WorldWideScience

Sample records for chca copper salt

  1. Titanium electroplating of copper in molten salt media

    International Nuclear Information System (INIS)

    Renaud, Denis

    1985-01-01

    After a bibliographical survey on electroplating in molten salt media and on the electrolytic production of titanium, the author explains the reasons for the choice of the LiF-NaF-KF eutectic mix as solvent. He recalls the main properties which are used, and describes the conventional and convolutional processing of data obtained by linear volt-amperometry. He presents the electrolyte preparation mode which takes into account the existence of titanium ions with intermediate oxidation degree, and the reactivity of titanium with oxygenated species. Experimental results are discussed. Then, after the study of the mechanism of reduction of trivalent titanium into titanium on molybdenum (intermetallic diffusion is here negligible), he reports the study of this mechanism on copper (it is a more complicated situation, due to combinations between titanium and copper). The effect of different parameters (electrolyte purity, current density, electrode potential and temperature) is interpreted in order to identify optimal conditions for titanium electroplating of copper [fr

  2. CROATIAN AND INTERNATIONAL COPPER AND SALT ROUTES IN THE PART OF EUROPE

    Directory of Open Access Journals (Sweden)

    Berislav Šebečić

    2001-12-01

    Full Text Available Middle Ages as well as in modern times. Those were caravan and cart routes and navigable river routes adapted to the possibilities of the then traffic. The iinportance of the copper and salt trade has been fin pointed out. From ancient times up until the mid-nineteenth century copper was pro-duced from copper ores in Rude near Samobor and from the mid-nine-teenth century until the beginning of the World War I mostly in Trgovi and Bešinac in Trgovska gora. The main copper trade was carried out from Rude over Dubovac (Karlovac, later on and Vrbovsko to Bakar and later on to Rijeka. I have named that the most important Croatian copper route. Intense intenational trade through Croatia that took place at the late fifteenth and in the course of the sixteenth centuries was a combination of river and cart traffic from the former foundries iu Bans-ka Bistrica (in Slovakia todayover Budim, Zagreb, Dubovac and Mod-ruš to Senj from where cargo was loaded on the ships sailing to Venice and all over the world. That route I have named the intenational copper route. Sea-salt was transported from the Adriatic saltvorks towards inland areas (Croatia salts routes; rock-salt was imported from Hungarian salt-works (todaj in ihe western Roumania and from the Tuzla salts works to the northern part of Croatia (International salt routes (the paper is published in Croatian.

  3. Biomarkers of waterborne copper exposure in the guppy Poecilia vivipara acclimated to salt water

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Anderson Abel de Souza [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Oceanografia Biológica, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Hoff, Mariana Leivas Müller [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Klein, Roberta Daniele [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Cardozo, Janaina Goulart [Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Giacomin, Marina Mussoi [Universidade Federal do Rio Grande, Programa de Pós-Graduação em Ciências Fisiológicas – Fisiologia Animal Comparada, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); Pinho, Grasiela Lopes Leães [Universidade Federal do Rio Grande, Instituto de Oceanografia, Av. Itália km 8, 96201-900 Rio Grande, Rio Grande do Sul (Brazil); and others

    2013-08-15

    Highlights: •Acute effects of waterborne copper were evaluated in the estuarine guppy Poecilia vivipara. •Fishes were acutely exposed to waterborne copper in salt water. •Waterborne copper affects the response of several biochemical and genetic endpoints. •Catalase, reactive oxygen species, antioxidant capacity and lipid peroxidation are responsive to copper exposure. •Copper exposure induces DNA damages in fish erythrocytes. -- Abstract: The responses of a large suite of biochemical and genetic parameters were evaluated in tissues (liver, gills, muscle and erythrocytes) of the estuarine guppy Poecilia vivipara exposed to waterborne copper in salt water (salinity 24 ppt). Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase), metallothionein-like protein concentration, reactive oxygen species (ROS) content, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were evaluated in liver, gills, and muscle. Comet assay score and nuclear abnormalities and micronucleated cell frequency were analyzed in peripheral erythrocytes. The responses of these parameters were evaluated in fish exposed (96 h) to environmentally relevant copper concentrations (5, 9 and 20 μg L{sup −1}). In control and copper-exposed fish, no mortality was observed over the experimental period. Almost all biochemical and genetic parameters proved to be affected by waterborne copper exposure. However, the response of catalase activity in liver, ROS, ACAP and LPO in muscle, gills and liver, and DNA damages in erythrocytes clearly showed to be dependent on copper concentration in salt water. Therefore, the use of these parameters could be of relevance in the scope of biomonitoring programs in salt water environments contaminated with copper.

  4. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; McLaughlin, Mike J.; Whatmuff, Mark; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2010-01-01

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl 2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  5. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    Energy Technology Data Exchange (ETDEWEB)

    Heemsbergen, Diane A., E-mail: diane.heemsbergen@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); McLaughlin, Mike J., E-mail: mike.mclaughlin@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5064 (Australia); Whatmuff, Mark, E-mail: mark.whatmuff@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); NSW Department of Primary Industries, Locked Bag 4 Richmond, NSW 2753 (Australia); Warne, Michael St.J., E-mail: michael.warne@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Broos, Kris, E-mail: kris.broos@vito.b [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Bell, Mike, E-mail: Mike.Bell@dpi.qld.gov.a [Department of Primary Industries, Kingaroy, Queensland 4610 (Australia); Nash, David, E-mail: David.Nash@dpi.vic.gov.a [Department of Primary Industries, Ellinbank, Victoria 3821 (Australia); Barry, Glenn, E-mail: Glenn.Barry@nrw.qld.gov.a [Department of Natural Resources and Mines, Indooroopilly, Queensland 4068 (Australia); Pritchard, Deb, E-mail: D.Pritchard@curtin.edu.a [Curtin University of Technology, Muresk Institute, Northam, Western Australia 6401 (Australia); Penney, Nancy, E-mail: Nancy.Penney@WaterCorporation.com.a [Water Corporation of Western Australia, Leederville, Western Australia 6001 (Australia)

    2010-05-15

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl{sub 2} extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  6. Copper-promoted sandmeyer difluoromethylthiolation of aryl and heteroaryl diazonium salts.

    Science.gov (United States)

    Wu, Jiang; Gu, Yang; Leng, Xuebing; Shen, Qilong

    2015-06-22

    An efficient copper-promoted difluoromethylthiolation of aryl and heteroaryl diazonium salts is described. The reaction is conducted under mild reaction conditions and various functional groups were compatible. In addition, reactions of heteroaryl diazonium salts such as pyridyl, quinolinyl, benzothiazolyl, thiophenyl, carbazolyl, and pyrazolyl diazonium salts occurred smoothly to afford the medicinally important difluoromethylthiolated heteroarenes. Furthermore, a more practical one-pot direct diazotization and difluoromethylthiolation protocol was developed, and it converts the aniline derivatives into difluoromethylthiolated arenes. The utility of the method is demonstrated by difluoromethylthiolation of a number of natural products and drug molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quenching characteristics of bathocuproinedisulfonic acid, disodium salt in aqueous solution and copper sulfate plating solution

    Science.gov (United States)

    Koga, Toshiaki; Hirakawa, Chieko; Takeshita, Michinori; Terasaki, Nao

    2018-04-01

    Bathocuproinedisulfonic acid, disodium salt (BCS) is generally used to detect Cu(I) through a color reaction. We newly found BCS fluorescence in the visible blue region in an aqueous solution. However, the fluorescence mechanism of BCS is not well known, so we should investigate its fundamental information. We confirmed that the characteristics of fluorescence are highly dependent on the molecular concentration and solvent properties. In particular, owing to the presence of the copper compound, the fluorescence intensity extremely decreases. By fluorescence quenching, we observed that a copper compound concentration of 10-6 mol/L or less could easily be measured in an aqueous solution. We also observed BCS fluorescence in copper sulfate plating solution and the possibility of detecting monovalent copper by fluorescence reabsorption.

  8. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  9. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    International Nuclear Information System (INIS)

    Rabah, Mahmoud A.

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics

  10. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    Directory of Open Access Journals (Sweden)

    Ratajczak Tomasz

    2017-01-01

    Full Text Available Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl and organic reagents (ethylamine, propylamine as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tension of the aqueous solution of salt and inversely proportional to the height of the foam. On the other hand, for organic reagents solutions (short chain amines, a reverse effect has been observed in relation to the inorganic compounds studied, that is the yield of copper-bearing shale flotation and the foam height were inversely proportional to the surface tension of the amine solution.

  11. Flotation of copper-bearing shale in solutions of inorganic salts and organic reagents

    OpenAIRE

    Ratajczak Tomasz

    2017-01-01

    Flotation data on copper-bearing shale in aqueous solutions of inorganic electrolytes (NaCl, Na2SO4, KPF6, NH4Cl) and organic reagents (ethylamine, propylamine) as frothers were presented and discussed. The relationships between shale flotation, surface tension of aqueous solution and foam height during bubbling with air in the flotation system were presented. It has been found that flotation of shale in the presence of inorganic salts the yield was directly proportional to the surface tensio...

  12. Acclimation and tolerance of Artemia salina to copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Saliba, L.J.; Krzyz, R.M.

    1976-01-01

    The brine shrimp Artemia salina L. was acclimated in sea water with cupric chloride, acetate, carbonate, and sulfate, each at concentrations of 0.1, 0.05 and 0.025 ppM Cu/sup + +/, together with sea water controls. Growth inhibition was observed in all four compounds, generally in direct relationship to the concentration. It was least in sulfate, and increased progressively in chloride, acetate and carbonate in that order. In toxicity tests, 2-week old larvae from each solution were exposed to concentrations of 10, 7.5, 5, 2.5 and 1 ppM Cu/sup + +/ of the same compounds, together with unacclimated larvae of the same age. Similar tests were held with 6-week old adults. Toxicity to unacclimated larvae and adults differed with the compounds, carbonate being the least toxic, followed by sulfate, chloride and acetate in increasing order. Larvae acclimated in chloride and sulfate showed an increased tolerance to 1 and 2.5 ppM Cu/sup + +/ compared to untreated controls. Tolerance was not enhanced from 5 ppM Cu/sup + +/ upwards. In both compounds, adults acclimated in 0.1 ppM Cu/sup + +/ showed an increased tolerance to concentrations between 1 and 7.5 ppM Cu/sup + +/ compared to controls. Considerable precipitation occurred with the high levels of this compound, thus effecting the ''final'' concentrations. No acclimation effect was observed in acetate for either larvae or adults. It is suggested that in A. salina, copper toxicity depends on the particular form of the metal, and that this difference is also evident in growth inhibition and in the potential acquisition of increased tolerance through exposure to low concentrations.

  13. Synthesis of Quaternary Ammonium Salts Based on Diketopyrrolopyrroles Skeletons and Their Applications in Copper Electroplating.

    Science.gov (United States)

    Chen, Biao; Xu, Jie; Wang, Limin; Song, Longfeng; Wu, Shengying

    2017-03-01

    A series of DPP derivatives bearing quaternary ammonium salt centers with different lengths of carbon chains have been designed and synthesized. Their inhibition actions on copper electroplating were first investigated. A total of four diketopyrrolopyrrole (DPP) derivatives showed different inhibition capabilities on copper electroplating. To investigate interactions between metal surface and additives, we used quantum chemical calculations. Static and dynamic surface tension of four DPP derivatives had been measured, and the results showed DPP-10C (1c) with a faster-decreasing rate of dynamic surface tension among the four derivatives, which indicated higher adsorption rate of additive on the cathode surface and gives rise to stronger inhibiting effect of copper electrodeposition. Then, DPP-10C (1c) as the representative additive, was selected for the systematic study of the leveling influence during microvia filling through comprehensive electroplating tests. In addition, field-emission scanning electron microscope images and X-ray diffraction results showed the surface morphology, which indicated that addition of DPP derivative (1c) could lead a fine copper deposit and cause the preferential orientations of copper deposits to change from [220] to [111], which happened in particular at higher concentrations.

  14. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  15. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  16. Haematolohical profile of subacute oral toxicity of molybdenum and ameliorative efficacy of copper salt in goats.

    Science.gov (United States)

    Kusum; Raina, R; Verma, P K; Pankaj, N K; Kant, V; Kumar, J; Srivastava, A K

    2010-07-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils.

  17. Sensing response of copper phthalocyanine salt dispersed glass with organic vapours

    Energy Technology Data Exchange (ETDEWEB)

    Ridhi, R.; Sachdeva, Sheenam; Saini, G. S. S.; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (INDIA) Fax: +91-172-2783336; Tel.:+91-172-2544362 (India)

    2016-05-06

    Copper Phthalocyanine and other Metal Phthalocyanines are very flexible and tuned easily to modify their structural, spectroscopic, optical and electrical properties by either functionalizing them with various substituent groups or by replacing or adding a ligand to the central metal atom in the phthalocyanine ring and accordingly can be made sensitive and selective to various organic species or gaseous vapours. In the present work, we have dispersed Copper Phthalocyanine Salt (CuPcS) in sol-gel glass form using chemical route sol-gel method and studied its sensing mechanism with organic vapours like methanol and benzene and found that current increases onto their exposure with vapours. A variation in the activation energies was also observed with exposure of vapours.

  18. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  19. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  20. Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry.

    Science.gov (United States)

    Porta, Tiffany; Grivet, Chantal; Knochenmuss, Richard; Varesio, Emmanuel; Hopfgartner, Gérard

    2011-02-01

    Analysis of low molecular weight compounds (LMWC) in complex matrices by vacuum matrix-assisted laser desorption/ionization (MALDI) often suffers from matrix interferences, which can severely degrade limits of quantitation. It is, therefore, useful to have available a range of suitable matrices, which exhibit complementary regions of interference. Two newly synthesized α-cyanocinnamic acid derivatives are reported here; (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) and (2E)-3-(anthracen-9-yl)-2-cyanoprop-2enoic acid (AnCCA). Along with the commonly used α-cyano-4-hydroxycinnamic acid (CHCA), and the recently developed 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrices, these constitute a chemically similar series of matrices covering a range of molecular weights, and with correspondingly differing ranges of spectral interference. Their performance was compared by measuring the signal-to-noise ratios (S/N) of 47 analytes, mostly pharmaceuticals, with the different matrices using the selected reaction monitoring (SRM) mode on a triple quadrupole instrument equipped with a vacuum MALDI source. AnCCA, NpCCA and Cl-CCA were found to offer better signal-to-noise ratios in SRM mode than CHCA, but Cl-CCA yielded the best results for 60% of the compounds tested. To better understand the relative performance of this matrix series, the proton affinities (PAs) were measured using the kinetic method. Their relative values were: AnCCA > CHCA > NpCCA > Cl-CCA. This ordering is consistent with the performance data. The synthesis of the new matrices is straightforward and they provide (1) tunability of matrix background interfering ions and (2) enhanced analyte response for certain classes of compounds. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Regioselective 1,4-trifluoromethylation of α,β-unsaturated ketones via a S-(trifluoromethyldiphenylsulfonium salts/copper system

    Directory of Open Access Journals (Sweden)

    Satoshi Okusu

    2013-10-01

    Full Text Available Regioselective conjugate 1,4-trifluoromethylation of α,β-unsaturated ketones by the use of shelf-stable electrophilic trifluoromethylating reagents, S-(trifluoromethyldiphenylsulfonium salts and copper under mild conditions is described. A wide range of acyclic aryl–aryl–enones and aryl–alkyl–enones were converted into β-trifluoromethylated ketones in low to moderate yields.

  2. Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: Survival, reproduction and avoidance responses

    International Nuclear Information System (INIS)

    Amorim, Mónica João Barros; Scott-Fordsmand, Janeck James

    2012-01-01

    Environmental effects of copper nanoparticles are little studied in terrestrial ecosystems. In the present article, the toxicity of copper nanoparticles (Cu-NP) on the enchytraeid Enchytraeus albidus is compared to the toxicity of a copper-salt (CuCl 2 ). The effect parameters studied were survival, reproductive output and avoidance behaviour. The results show that Cu-NP were more toxic to E. albidus than the same concentrations of the CuCl 2 -salt. The physic-chemical analysis of the particles indicated that only a small fraction was released as ions. Hence, the results indicated a nanoparticle-specific effect – lower reproductive output and higher avoidance. This was observed as 2–8 fold (significant) lower ECx values for Cu-NP (EC 50-reprod = 95 mg Cu/kg; EC 50-avoid = 241 mg Cu/kg) exposed organisms compared to CuCl 2 (EC 50-reprod = 251 mg Cu/kg; EC 50-avoid = 475 mg Cu/kg) exposed organisms. These results corroborate with a nanoparticle-specific effect. - Highlights: ► Enchytraeus albidus were exposed to Cu-salt and Cu nanoparticles (80 nm) in soil. ► Survival, reproduction and avoidance behaviour were assessed. ► Particles characterization indicated very small ion release. ► Cu nanoparticles toxicity was higher than Cu-salt for reproduction and avoidance. - Toxicity of Cu chloride salt and Cu nanoparticles to Enchytraeus albidus indicated higher toxicity of Cu-NP.

  3. Thermochemical study of some inorganic and organic salts of cobalt, nickel and copper

    International Nuclear Information System (INIS)

    Le Van, My

    1968-01-01

    Differential enthalpy analysis has been carried out on a certain number of inorganic (halides, halide oxy-acid salts, nitrates and sulfates) and organic (alkanoates, and dicarboxylates) of cobalt, nickel and copper using a Tian-Calvet high-temperature microcalorimeter. Other investigational methods such as thermo-crystallography, thermogravimetry, spectroscopy and gas-phase chromatography have been used to complete this work. An intrinsic study of the microcalorimeter covering thermal leakage, the sensitivity and the aging of the batteries, the deviation of the experimental zero, has been carried out. A satisfactory experimental device has been developed which corresponds to optimum conditions of analysis. We have shown which are the most important factors affecting differential thermal analysis and have detected certain phenomena; we have also demonstrated that intermediate hydrates exist and shown the possibilities of thermal recrystallization. Various enthalpies of transformation have been evaluated. The various possible reaction mechanisms are discussed. The normal formation enthalpies of several series of alkanoates and dicarboxylates have been measured. A graphical method has been devised for evaluating the kinetic parameters of heterogeneous dissociations from the thermograms obtained. Finally, we have developed a simple method for estimating the normal formation enthalpies of carboxylates and oxy-acid salts, both anhydrous and hydrated. The agreement with available experimental data is satisfactory. (author) [fr

  4. Synthesis of copolymers suitable for the storage and slow release of reactants. Cases of copper salts for intra-uterine devices

    International Nuclear Information System (INIS)

    Gaussens, Gilbert; Duchemin-Berthet, Jeanne.

    1976-01-01

    This research has been carried out to determine whether a grafted poly(ethylene-vinyl acetate) matrix could be prepared which would release useful amounts of copper salts when used in intra-uterine devices. Intra-uterine devices were prepared by grafting hydroxyethyl acrylate onto ethylene-vinylacetate copolymers (EVA). The kinetics of the grafting reaction were studied. The grafting reaction was initiated by cobalt 60 gamma rays using the simultaneous method. The conditions of copper salts absorption by the grafted copolymers were selected. The average quantity of copper salts released daily from the intra-uterine device was meaured as a function of grafting ratio and the amount of copper salt initially incorporated in the grafted polymeric matrix. In vitro experiments samples showed constant release rates during a period of 18 months

  5. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion

    Directory of Open Access Journals (Sweden)

    Ana Chira

    2017-02-01

    Full Text Available Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctylaniline, 4-aminoantipyrine, 4-(4-aminophenylbutyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM. The electrodeposited mass varies between 26 ng/cm2 for 4-fluoroaniline formed during 30 s to 442 ng/cm2 for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenylbutyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  6. Electrodeposited Organic Layers Formed from Aryl Diazonium Salts for Inhibition of Copper Corrosion.

    Science.gov (United States)

    Chira, Ana; Bucur, Bogdan; Radu, Gabriel-Lucian

    2017-02-28

    Copper substrates deposed on a gold screen-printed electrode were covered with different aryl diazonium salts by electrodeposition at 0.25 mA for 30 or 300 s. Seven compounds were investigated: 4-aminophenylacetic acid, 4-aminophenethyl alcohol, 4-fluoroaniline, 4-(heptadecafluorooctyl)aniline, 4-aminoantipyrine, 4-(4-aminophenyl)butyric acid and 3,4,5-trimethoxyaniline. Quantitative monitoring of the electrodeposition process was carried out by electrogravimetry using quartz crystal microbalance (QCM). The electrodeposited mass varies between 26 ng/cm² for 4-fluoroaniline formed during 30 s to 442 ng/cm² for 4-phenylbutyric acid formed during 300 s. The corrosion inhibition properties of aryl-modified layers have been studied in buffer citrate with pH = 3 or 3.5% NaCl solutions using electrochemical noise (ECN) and Tafel potentiodynamic polarization measurements. A corrosion inhibiting efficiency up to 90% was found. The highest corrosion inhibition was obtained for 4-(4-aminophenyl)butyric acid and the lowest for 4-fluoroaniline. A relation between the inhibition efficiency and the chemical nature of the substituents in the protective layer was found.

  7. Influence of the lithium salt electrolyte on the electrochemical performance of copper/LiFePO4 composites

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Morales, Julián; Franger, Sylvain; Santos-Peña, Jesús

    2012-01-01

    In this work, we studied the influence of the electrolyte salt, LiPF 6 or LiClO 4 , on the electrochemical properties of copper/LiFePO 4 composites. We found a different stability voltage window for the two electrolytes that was remarkably wide for LiPF 6 . Also, copper addition is commonly accepted to increase electrode conductivity, which is beneficial for electrochemical purposes. However, copper is always oxidised to a variable extent depending on the particular electrolyte during the charge phase. Oxidation of the electrolyte solvent (especially with LiClO 4 ) was also observed during the first charge. In the first cycle, copper was more or less efficiently removed from the electrode surface. In subsequent cycles, however, these phenomena failed to occur (LiPF 6 ) or were weaker (LiClO 4 ). In all these configurations, iron is partially dissolved, to an extent dependent on the amount of copper present in the composite and differing with the particular electrolyte used. Electrochemical impedance spectroscopy allowed us to identify the process taking place close to 3.6 V in LiPF 6 configuration: Fe(II) from the composites are oxidised and irreversibly complexed by the joint action of HF formed from LiPF 6 and water traces and Cu(I) formed upon charging. Our hypothesis accurately explains the results observed in terms of charge/discharge profiles, capacities provided and capacities evolution upon cycling. Also, our test results testify to the importance of using low contents of copper in the composites and the good properties of LiPF 6 as electrolyte solvent.

  8. Chemical Speciation of Copper in a Salt Marsh Estuary and Bioavailability to Thaumarchaeota

    Directory of Open Access Journals (Sweden)

    Hannah Whitby

    2017-06-01

    Full Text Available The concentrations of dissolved copper (Cud, copper-binding ligands, thiourea-type thiols, and humic substances (HSCu were measured in estuarine waters adjacent to Sapelo Island, Georgia, USA, on a monthly basis from April to December 2014. Here we present the seasonal cycle of copper speciation within the estuary and compare it to the development of an annually occurring bloom of Ammonia Oxidizing Archaea (AOA, which require copper for many enzymes. Two types of complexing ligands (L1 and L2 were found to dominate with mean complex stabilities (log KCuL′ of 14.5 and 12.8. Strong complexation resulted in lowering the concentration of free cupric ion (Cu2+ to femtomolar (fM levels throughout the study and to sub-fM levels during the summer months. A Thaumarchaeota bloom during this period suggests that this organism manages to grow at very low Cu2+ concentrations. Correlation of the concentration of the L1 ligand class with a thiourea-type thiol and the L2 ligand class with HSCu provide an interesting dimension to the identity of the ligand classes. Due to the stronger complex stability, 82–99% of the copper was bound to L1. Thiourea-type thiols typically form Cu(I species, which would suggest that up to ~90% copper could be present as Cu(I in this region. In view of the very low concentration of free copper (pCu > 15 at the onset and during the bloom and a reputedly high requirement for copper, it is likely that the Thaumarchaeota are able to access thiol-bound copper directly.

  9. Stabilization of polyamides V. Thermooxidation of hexano-6-lactam in the presence of copper salts

    Czech Academy of Sciences Publication Activity Database

    Lánská, Božena; Matisová-Rychlá, L.; Rychlý, J.

    2005-01-01

    Roč. 89, č. 3 (2005), s. 534-544 ISSN 0141-3910 R&D Projects: GA AV ČR KSK4050111 Keywords : oxidation of N-alkyl amides * Cu and Ag salts * influence of salts on the oxidation mechanism Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.749, year: 2005

  10. The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts

    Energy Technology Data Exchange (ETDEWEB)

    Ilnicka, Anna, E-mail: annakucinska@o2.pl; Walczyk, Mariusz; Lukaszewicz, Jerzy P.

    2015-07-01

    Renewable raw materials chitin and chitosan (N-deacetylated derivative of chitin) were subjected to action of different copper modifiers that were carbonized in the atmosphere of the N{sub 2} inert gas. As a result of the novel manufacturing procedure, a series of carbon materials was obtained with developed surface area and containing copper derivatives of differentiated form, size, and dispersion. The copper modifier and manufacturing procedure (concentration, carbonization temperature) influence the physical–chemical and fungicide properties of the carbons. The received carbons were chemically characterized using several methods like low-temperature adsorption of nitrogen, X-ray diffraction analysis, scanning electron microscopy, cyclic voltammetry, elemental analysis, and bioassay. Besides chemical testing, some biological tests were performed and let to select carbons with the highest fungicidal activity. Such carbons were characteristic of the specific form of copper derivatives occurring in them, i.e., nanocrystallites of Cu{sup 0} and/or Cu{sub 2}O of high dispersion on the surface of carbon. The carbons may find an application as effective contact fungistatic agents in cosmetology, medicine, food industry, etc. - Highlights: • The novel manufacturing procedure yields new functional carbon materials. • Two biopolymers chitin and chitosan can undergo copper(II) ion modification. • The Cu-modified carbon materials exhibit high fungicidal activity. • The fungicidal activity results from the presence of Cu{sup 0} and Cu{sub 2}O nano-crystallites.

  11. Combined action of radiation, salts of copper and nickel on cell viability in vitro

    Directory of Open Access Journals (Sweden)

    D. D. Gapeenko

    2014-09-01

    Full Text Available Experimental study of the combined action of heavy metals and ionizing radiation on the viability of cells in culture was made. We established a significant toxic effect of copper and nickel in the proliferative and mitotic activity of cells in vitro. Under the combined effects of radiation and copper ions on cells we observed the mor-phological changes in morphologically-functional properties of cells that were determined by or radiation dose or by concentration of copper ions. While incubation of irradiated cells with nickel ions we observed sensitiza-tion of cells by nickel ions under the irradiation dose of 0.5 and 5.0 Gy, and the resistance of cells to exposure to sublethal dose of 10.0 Gy.

  12. Review of Thermal Materials for CSP Plants and LCOE Evaluation for Performance Improvement using Chilean Strategic Minerals: Lithium Salts and Copper Foams

    Directory of Open Access Journals (Sweden)

    Gustavo Cáceres

    2016-01-01

    Full Text Available The improvement of solar thermal technologies in emerging economies like Chile is particularly attractive because the country is endowed with one of the most consistently high solar potentials, lithium and copper reserves. In recent years, growing interests for lithium based salts and copper foams in application of thermal technologies could change the landscape of Chile transforming its lithium reserves and copper availability into competitive energy produced in the region. This study reviews the technical advantages of using lithium based salts—applied as heat storage media and heat transfer fluid—and copper foam/Phase Change Materials (PCM alternatives—applied as heat storage media—within tower and parabolic trough Concentrated Solar Power (CSP plants, and presents a first systematic evaluation of the costs of these alternatives based on real plant data. The methodology applied is based on material data base compilation of price and technical properties, selection of CSP plant and estimation of amount of required material, and analysis of Levelized Cost of Electricity (LCOE. Results confirm that some lithium based salts are effective in reducing the amount of required material and costs for the Thermal Energy Storage (TES systems for both plant cases, with savings of up to 68% and 4.14% in tons of salts and LCOE, respectively. Copper foam/PCM composites significantly increase thermal conductivity, decreasing the volume of the TES system, but costs of implementation are still higher than traditional options.

  13. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical Reduction with Vanadium (+2 Salts

    Directory of Open Access Journals (Sweden)

    Andrea Pietro Reverberi

    2016-09-01

    Full Text Available Copper nanoparticles have been synthesized in ethylene glycol (EG using copper sulphate as a precursor and vanadium sulfate as an atypical reductant being active at room temperature. We have described a technique for a relatively simple preparation of such a reagent, which has been electrolytically produced without using standard procedures requiring an inert atmosphere and a mercury cathode. Several stabilizing agents have been tested and cationic capping agents have been discarded owing to the formation of complex compounds with copper ions leading to insoluble phases contaminating the metallic nanoparticles. The elemental copper nanoparticles, stabilized with polyvinylpyrrolidone (PVP and sodium dodecyl sulphate (SDS, have been characterized for composition by energy dispersive X-ray spectroscopy (EDS, and for size by dynamic light scattering (DLS, and transmission electron microscopy (TEM, giving a size distribution in the range of 40–50 nm for both stabilizing agents. From a methodological point of view, the process described here may represent an alternative to other wet-chemical techniques for metal nanoparticle synthesis in non-aqueous media based on conventional organic or inorganic reductants.

  14. Copper-catalyzed trifluoromethylation of arylsulfinate salts using an electrophilic trifluoromethylation reagent

    KAUST Repository

    Lin, Xiaoxi

    2013-03-01

    A copper-catalyzed method for the trifluoromethylation of arylsulfinates with Togni\\'s reagent has been developed, affording aryltrifluoromethylsulfones in moderate to good yields. A wide range of functional groups in arylsulfinates are compatible with the reaction conditions. © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation.

    Science.gov (United States)

    Montenegro, I P F M; Mucha, A P; Reis, I; Rodrigues, P; Almeida, C M R

    2016-10-01

    This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.

  16. Change of brown coal oxidation kinetic characteristics by promoting additives appending in the form of copper salts

    Science.gov (United States)

    Larionov, K. B.; Mishakov, I. V.; Gromov, A. A.; Zenkov, A. V.

    2017-11-01

    Process of brown coal oxidation with 5%wt content of copper-salt additives of various nature (Cu (NO3)2, CuSO4 and Cu(CH3COO)2) was studied. The experiment has been performed by thermogravimetric analysis at a heating rate of 2.5°C/min to a maximum temperature of 600°C in the air. Analytical evaluation of oxidation process kinetic characteristics has been conducted based on the results of TGA. It has been established that addition of initiating agents leads to significant reduction in the initial ignition temperature of coal (ΔTi = 15÷40°C), shortening of the sample warm-up time to the ignition point (Δte = 6÷12 min) and reduction of the sample burning time (Δtf = 40÷54 min). The following series of additives activity affecting ignition temperature of coals has been established: Cu(CH3COO)2 > Cu(NO3)2 > CuSO4. Additionally, the opposite can be said about the effect of additives on residence time of the sample in its combustion area (CuSO4 > Cu(NO3)2 > Cu(CH3COO)2). According to mass spectrometric analysis, presence of NOx, SO2, CO2 (intense peaks at 190÷290°C) was recorded in oxidation products of modified samples, which is explained by partial or complete decomposition of salts.

  17. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts

    International Nuclear Information System (INIS)

    Ahn, Sye Hee; Oh, Sei Chang; Choi, In-gyu; Han, Gyu-seong; Jeong, Han-seob; Kim, Ki-woo; Yoon, Young-ho; Yang, In

    2010-01-01

    Novel biocides, such as copper azole (CuAz) and ammoniacal copper quaternary (ACQ), are extensively used as substitutes for chromate copper arsenate (CCA) in wood preservation. However, the expense of these biocides has necessitated the development of cost-effective and environmentally friendly wood preservatives. This study was conducted to investigate the effectiveness against decaying fungi of the preservatives formulated with enzymatic-hydrolyzed okara (OK), which is an organic waste produced from the manufacture of tofu, CuCl 2 (CC) and/or Na 2 B 4 O 7 .10H 2 O (B). With the addition of NH 4 OH as a dissociating agent, the addition of OK facilitated the target retention of most of the OK/CC and OK/CC/B preservative formulations in wood blocks. The OK-based wood preservatives (OK-WPs) were stable against hot-water leaching. When compared with control and CC-treated wood blocks, the leached wood blocks treated with OK/CC and OK/CC/B formulations showed excellent decay resistance against both Postia placenta and Gloeophyllum trabeum, especially when OK was hydrolyzed by Celluclast at a loading level of 0.1 ml/g. Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray (SEM-EDX) spectrometry analyses demonstrated that preservative complexes, such as OK-CC and OK-CC-B, existed in the wood blocks treated with OK/CC and OK/CC/B formulations. This study results support the potential application of OK-WPs as environmentally friendly wood preservatives capable of replacing CuAz and ACQ.

  18. Environmentally friendly wood preservatives formulated with enzymatic-hydrolyzed okara, copper and/or boron salts

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sye Hee; Oh, Sei Chang [Department of Forest Resources, Daegu University, Gyeongsan 712-714 (Korea, Republic of); Choi, In-gyu [Department of Forest Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Han, Gyu-seong [Department of Wood and Paper Sciences, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Jeong, Han-seob [Department of Forest Sciences, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Ki-woo [National Instrumentation Center for Environmental Management, Seoul National University, Seoul 151-921 (Korea, Republic of); Yoon, Young-ho [KCI Co. Ltd., Seosan, Chungcheongnam-do 356-874 (Korea, Republic of); Yang, In, E-mail: dahadad2000@yahoo.com [Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1 Sillim-Dong, Kwanak-gu, Seoul 151-921 (Korea, Republic of)

    2010-06-15

    Novel biocides, such as copper azole (CuAz) and ammoniacal copper quaternary (ACQ), are extensively used as substitutes for chromate copper arsenate (CCA) in wood preservation. However, the expense of these biocides has necessitated the development of cost-effective and environmentally friendly wood preservatives. This study was conducted to investigate the effectiveness against decaying fungi of the preservatives formulated with enzymatic-hydrolyzed okara (OK), which is an organic waste produced from the manufacture of tofu, CuCl{sub 2} (CC) and/or Na{sub 2}B{sub 4}O{sub 7}.10H{sub 2}O (B). With the addition of NH{sub 4}OH as a dissociating agent, the addition of OK facilitated the target retention of most of the OK/CC and OK/CC/B preservative formulations in wood blocks. The OK-based wood preservatives (OK-WPs) were stable against hot-water leaching. When compared with control and CC-treated wood blocks, the leached wood blocks treated with OK/CC and OK/CC/B formulations showed excellent decay resistance against both Postia placenta and Gloeophyllum trabeum, especially when OK was hydrolyzed by Celluclast at a loading level of 0.1 ml/g. Scanning electron microscopy (SEM) and SEM-energy dispersive X-ray (SEM-EDX) spectrometry analyses demonstrated that preservative complexes, such as OK-CC and OK-CC-B, existed in the wood blocks treated with OK/CC and OK/CC/B formulations. This study results support the potential application of OK-WPs as environmentally friendly wood preservatives capable of replacing CuAz and ACQ.

  19. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  20. Copper Salts Mediated Morphological Transformation of Cu2O from Cubes to Hierarchical Flower-like or Microspheres and Their Supercapacitors Performances

    Science.gov (United States)

    Chen, Liang; Zhang, Yu; Zhu, Pengli; Zhou, Fengrui; Zeng, Wenjin; Lu, Daoqiang Daniel; Sun, Rong; Wong, Chingping

    2015-01-01

    Monodisperse Cu2O of different microstructures, such as cubes, flower-like, and microspheres, have been extensively synthesized by a simple polyol reduction method using different copper salts, i.e. (Cu(acac)2, Cu(OH)2, and Cu(Ac)2·H2O). The effects of copper salts on the morphology of Cu2O were investigated in details through various characterization methods, including X-ray diffraction, transmission electron microscopy, scanning electron microscopy and UV-Vis absorption spectra. The effects of morphology on the electrochemical properties were further studied. Among the different structures, Cu2O with the microspheric morphology shows the highest specific capacitance and the best cycling stability compared with those of the other two structures, thus bear larger volume charge during the electrochemical reaction due to the microspheres of small nanoparticles. PMID:25857362

  1. Toxicity of road deicing salt (NaCl) and copper (Cu) to fertilization and early developmental stages of Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Mahrosh, Urma; Kleiven, Merethe; Meland, Sondre; Rosseland, Bjørn Olav; Salbu, Brit; Teien, Hans-Christian

    2014-09-15

    In many countries, salting of ice or snow covered roads may affect aquatic organisms in the catchment directly or indirectly by mobilization of toxic metals. We studied the toxicity of road deicing salt and copper (Cu) on the vulnerable early life stages of Atlantic salmon (Salmo salar), from fertilization till hatching. Controlled episodic exposure to road salt (≥ 5,000 mg/L) during fertilization resulted in reduced swelling and less percent egg survival. Exposure to Cu both during and post fertilization caused delayed hatching. Larval deformities were, however found as an additional effect, when eggs were exposed to high salt concentration (≥ 5,000 mg/L) mixed with Cu (10 μg Cu/L) during fertilization. Thus, it appears that the sensitivity of early developmental stages of Atlantic salmon increased when exposed to these stressors, and road salt application during spawning can pose threat to Atlantic salmon in water bodies receiving road runoff. The study gives insight on assessment and management of risks on Atlantic salmon population posed by road related hazardous chemicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effect of weathering on chromated copper arsenate (CCA) treated wood : leaching of metal salts and change in water repellency

    Science.gov (United States)

    R. Sam Williams; Stan Lebow; Patricia Lebow

    2003-01-01

    Wood pressure-treated with chromated copper arsenate (CCA) wood preservative is commonly used for outdoor construction. Oxides of arsenic, copper, and chromium are bound in the wood by a complex series of chemical reactions, but a small percentage of these compounds are gradually released by leaching and weathering. Recent studies suggest that the release of these...

  3. Solubility diagrams in ternary aqueous-salt systems with yttrium, barium and copper nitrates at 25 deg C

    International Nuclear Information System (INIS)

    Petrenko, S.V.; Lyashchenko, A.K.; Karataeva, I.M.; Mozhaev, A.P.

    1990-01-01

    Solubility diagrams in Cu(NO 3 ) 2 -Y(NO 3 ) 3 -H 2 O, Y(NO 3 ) 3 -Ba(NO 3 ) 2 -H 2 O and Cu(NO 3 ) 2 -Ba(NO 3 ) 2 -H 2 O systems are studied at 25 deg C based on experimental determinations of salt solubility, isopiestic measurements and data of the calculation-experimental method in the framework of the Pitzer model. Binary and ternary parameters of interionic interactions are calculated; applicability of the method to the given systems is shown. Salts of complex composition and structure are absent in them; mutual salting out of components is also observed

  4. Layered copper hydroxide n-alkylsulfonate salts: synthesis, characterization, and magnetic behaviors in relation to the basal spacing.

    Science.gov (United States)

    Park, Seong-Hun; Lee, Cheol Eui

    2005-01-27

    A series of hybrid inorganic-organic copper(II) hydroxy n-alkylsulfonate with a triangular lattice, Cu(2)(OH)(3)(C(n)H(2)(n)(+1)SO(3)) (n = 6, 8, 10), are prepared by anion exchange, starting from copper hydroxy nitrate Cu(2)(OH)(3)NO(3). These compounds show a layered structure as determined by X-ray diffraction, with interlayer distances of 14.3-34.8 A in alternation with interdigitated bilayer packing. Magnetic properties have been investigated by means of dc and ac measurements. All the compounds show similar metamagnet behaviors, with a Neel temperature of about 11 K. A subtle difference in the ac magnetic susceptibility among the compounds is understood by the existence of hydrogen bonding between the sulfonate headgroup and the hydroxide anion. A detailed molecular structure of the alkyl chains incorporated to the inorganic copper hydroxide layer is also discussed from the FTIR data.

  5. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    Science.gov (United States)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  6. Effects of replacing a dietary antibacterial agent (zinc bacitracin) with copper salts in Cherry Valley Pekin meat ducks.

    Science.gov (United States)

    Wu, D W; Wang, L C; Wen, C; Hooge, D M; Liang, C; Zhou, Y M

    2013-01-01

    1. A study was conducted to investigate the effectiveness of high dietary copper concentrations obtained from tribasic copper chloride (TBCC, 58% copper) and copper sulphate pentahydrate (CuSO4, 25% copper) in replacing antibiotic growth promoters (AGP) in duck diets. 2. A total of 960 one-day-old Cherry Valley meat-strain ducks were divided into 3 treatment groups, with 8 replicates per treatment, in a 6-week feeding trial. The ducks were fed a basal diet supplemented with AGP (40 mg zinc bacitracin/kg and 40 mg garlicin/kg of diet) or 150 mg of Cu/kg of diet, given as either CuSO4 or TBCC. 3. The body weight, average daily gain, average daily feed intake and mortality of ducks were not affected by the dietary treatments. However, the feed/gain ratio of ducks that were fed TBCC diets was significantly lower than those of ducks that were fed CuSO4 diets and were similar to those in the AGP group. 4. TBCC increased the Cu content in the liver tissue of ducks compared with the content in those that were fed the diet supplemented with AGP. TBCC also increased the Fe and Zn content in breast muscles compared with that in ducks that were fed the diet supplemented with CuSO4. 5. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were significantly higher in the serum of ducks that received the diet supplemented with TBCC than AGP or CuSO4. TBCC treatment decreased the malondialdehyde (MDA) content in serum of ducks compared with groups supplemented with CuSO4. 6. No significant difference was observed in liver or muscle fat content among the different dietary treatment groups. The serum low-density lipoprotein cholesterol concentration was lower in ducks fed AGP diets than those fed CuSO4 diets. 7. It was concluded that the replacement of AGP with 150 mg of Cu/kg of feed from TBCC improved the feed efficiency, trace mineral deposition and antioxidant status more than when the source of copper was CuSO4.

  7. Hemoglobin and Myoglobin as Reducing Agents in Biological Systems. Redox Reactions of Globins with Copper and Iron Salts and Complexes.

    Science.gov (United States)

    Postnikova, G B; Shekhovtsova, E A

    2016-12-01

    In addition to reversible O2 binding, respiratory proteins of the globin family, hemoglobin (Hb) and myoglobin (Mb), participate in redox reactions with various metal complexes, including biologically significant ones, such as those of copper and iron. HbO 2 and MbO 2 are present in cells in large amounts and, as redox agents, can contribute to maintaining cell redox state and resisting oxidative stress. Divalent copper complexes with high redox potentials (E 0 , 200-600 mV) and high stability constants, such as [Cu(phen) 2 ] 2+ , [Cu(dmphen) 2 ] 2+ , and CuDTA oxidize ferrous heme proteins by the simple outer-sphere electron transfer mechanism through overlapping π-orbitals of the heme and the copper complex. Weaker oxidants, such as Cu2+, CuEDTA, CuNTA, CuCit, CuATP, and CuHis (E 0 ≤ 100-150 mV) react with HbO 2 and MbO 2 through preliminary binding to the protein with substitution of the metal ligands with protein groups and subsequent intramolecular electron transfer in the complex (the site-specific outer-sphere electron transfer mechanism). Oxidation of HbO 2 and MbO 2 by potassium ferricyanide and Fe(3) complexes with NTA, EDTA, CDTA, ATP, 2,3-DPG, citrate, and pyrophosphate PP i proceeds mainly through the simple outer-sphere electron transfer mechanism via the exposed heme edge. According to Marcus theory, the rate of this reaction correlates with the difference in redox potentials of the reagents and their self-exchange rates. For charged reagents, the reaction may be preceded by their nonspecific binding to the protein due to electrostatic interactions. The reactions of LbO 2 with carboxylate Fe complexes, unlike its reactions with ferricyanide, occur via the site-specific outer-sphere electron transfer mechanism, even though the same reagents oxidize structurally similar MbO 2 and cytochrome b 5 via the simple outer-sphere electron transfer mechanism. Of particular biological interest is HbO 2 and MbO 2 transformation into met-forms in the presence

  8. Preparation of Copper (II) Containing Phosphomolybdic Acid Salt as Catalyst for the Synthesis of Biodiesel by Esterification.

    Science.gov (United States)

    Cai, Jie; Zhang, Qiu-Yun; Wei, Fang-Fang; Huang, Jin-Shu; Feng, Yun-Mei; Ma, Hai-Tao; Zhang, Yutao-

    2018-04-01

    Copper (II) containing phosphomolybdic acid (PMA) catalysts were synthesized by ion exchange method and characterization using various physico-chemical techniques such as X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), thermogravimetric (TG) and scanning electron microscopy (SEM). The characterization results showed that the Keggin ions were retained in the catalysts and possessed well thermal stability. The catalytic esterification of lauric acid with methanol could be easily achieved about 78.7% conversion under optimum condition, the catalyst also contributed to the stability of the catalyst in which it can be reused for a certain time. This study demonstrated an alternative approach to biodiesel production with high efficiency by Cu (II) ion exchanged phosphomolybdic acid catalyst in the esterification catalytic.

  9. Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models

    International Nuclear Information System (INIS)

    Warne, Michael St.J.; Heemsbergen, Diane; McLaughlin, Mike; Bell, Mike; Broos, Kris; Whatmuff, Mark; Barry, Glenn; Nash, David; Pritchard, Deb; Penney, Nancy

    2008-01-01

    Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat (Triticum aestivum L.) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses. - Field-based toxicity of Cu and Zn to wheat can be modelled using soil properties. Laboratory-based models should not be used to estimate toxicity in the field

  10. Cloning, Characterization and Expression Pattern Analysis of a Cytosolic Copper/Zinc Superoxide Dismutase (SaCSD1 in a Highly Salt Tolerant Mangrove (Sonneratia alba

    Directory of Open Access Journals (Sweden)

    Enze Yang

    2015-12-01

    Full Text Available Mangroves are critical marine resources for their remarkable ability to tolerate seawater. Antioxidant enzymes play an especially significant role in eliminating reactive oxygen species and conferring abiotic stress tolerance. In this study, a cytosolic copper/zinc superoxide dismutase (SaCSD1 cDNA of Sonneratia alba, a mangrove species with high salt tolerance, was successfully cloned and then expressed in Escherichia coli Rosetta-gami (designated as SaCSD1. SaCSD1 comprised a complete open reading frame (ORF of 459 bp which encoded a protein of 152 amino acids. Its mature protein is predicted to be 15.32 kDa and the deduced isoelectric point is 5.78. SaCSD1 has high sequence similarity (85%–90% with the superoxide dismutase (CSD of some other plant species. SaCSD1 was expressed with 30.6% yield regarding total protein content after being introduced into the pET-15b (Sma I vector for expression in Rosetta-gami and being induced with IPTG. After affinity chromatography on Ni-NTA, recombinant SaCSD1 was obtained with 3.2-fold purification and a specific activity of 2200 U/mg. SaCSD1 showed good activity as well as stability in the ranges of pH between 3 and 7 and temperature between 25 and 55 °C. The activity of recombinant SaCSD1 was stable in 0.25 M NaCl, Dimethyl Sulphoxide (DMSO, glycerol, and chloroform, and was reduced to a great extent in β-mercaptoethanol, sodium dodecyl sulfate (SDS, H2O2, and phenol. Moreover, the SaCSD1 protein was very susceptive to pepsin digestion. Real-time Quantitative Polymerase Chain Reaction (PCR assay demonstrated that SaCSD1 was expressed in leaf, stem, flower, and fruit organs, with the highest expression in fruits. Under 0.25 M and 0.5 M salt stress, the expression of SaCSD1 was down-regulated in roots, but up-regulated in leaves.

  11. Copper nanoparticles in zeolite Y

    NARCIS (Netherlands)

    Seidel, A.; Loos, J.; Boddenberg, B.

    1999-01-01

    CuCl has been dispersed in the supercages of a Y-type zeolite by heating a mechanical salt/host mixture in vacuo. The occluded salt was subsequently reduced to copper metal in a hydrogen atmosphere. Virtually complete reduction of the salt is achieved at 460°C. Under the same conditions,

  12. Corrosion characterization of in-situ titanium diboride (TiB2) reinforced aluminium-copper (Al-Cu) alloy by two methods: Salts spray fog and linear polarization resistance (LPR)

    Science.gov (United States)

    Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah

    2018-05-01

    Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.

  13. Treatment of food-agro (sugar industry wastewater with copper metal and salt: Chemical oxidation and electro-oxidation combined study in batch mode

    Directory of Open Access Journals (Sweden)

    Anurag Tiwari

    2017-06-01

    Full Text Available Sugar industry is one of the major industries which have been included in the polluting industries list by the World Bank. Different pollution monitoring agencies like State and National Pollution Control Boards have been made compulsory for each industry to set up a waste water treatment plants. In treatment system, single treatments of effluent are not effective to manage the dischargeable limit. So an attempted has been made to treat sugar industry wastewater with electrochemical and chemical process by using copper as electrode and chemical. Electrochemical process shows 81% chemical oxygen demand and 83.5% color reduction at pH 6, electrode distance 20 mm, current density 178 A m−2 and 120 min treatment time. The combined treatment results show 98% chemical oxygen demand and 99.5% color removal at 8 mM mass loading and pH 6 with copper sulphate.

  14. Trifluoromethylselenolation of Aryldiazonium Salts: A Mild and Convenient Copper-Catalyzed Procedure for the Introduction of the SeCF3Group

    KAUST Repository

    Nikolaienko, Pavlo

    2016-01-21

    The straightforward introduction of the trifluoromethylseleno group into aromatic and heteroaromatic compounds is accomplished by the utilization of readily available aryldiazonium tetrafluoroborates, potassium selenocyanate, and Ruppert-Prakash reagent. The reaction tolerates a wide range of aromatic and heteroaromatic diazonium salts and is also amenable to the synthesis of pentafluoroethyl selenoethers. Furthermore, the methodology can be applied directly starting from anilines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Trifluoromethylselenolation of Aryldiazonium Salts: A Mild and Convenient Copper-Catalyzed Procedure for the Introduction of the SeCF3Group

    KAUST Repository

    Nikolaienko, Pavlo; Rueping, Magnus

    2016-01-01

    The straightforward introduction of the trifluoromethylseleno group into aromatic and heteroaromatic compounds is accomplished by the utilization of readily available aryldiazonium tetrafluoroborates, potassium selenocyanate, and Ruppert-Prakash reagent. The reaction tolerates a wide range of aromatic and heteroaromatic diazonium salts and is also amenable to the synthesis of pentafluoroethyl selenoethers. Furthermore, the methodology can be applied directly starting from anilines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The comparison of CHCA solvent compositions for improving LC-MALDI performance and its application to study the impact of aflatoxin B1 on the liver proteome of diabetes mellitus type 1 mice.

    Science.gov (United States)

    Tsai, Fuu-Jen; Chen, Shih-Yin; Liu, Yu-Ching; Liao, Hsin-Yi; Chen, Chao-Jung

    2017-01-01

    In nanoflow liquid chromatography-matrix-assisted laser desorption/ionization tandem time-of-flight (nanoLC-MALDI-TOF/TOF) approaches, it is critical to directly apply small amounts of the sample elutes on the sample target using a nanoLC system due to its low flow rate of 200 ~ 300 nl/min. It is recommended to apply a sheath liquid containing a matrix with a several μL/min flow rate at the end of the nanoLC column to ensure a larger co-eluted droplet for more reproducible sample spotting and avoid the laborious task of post-manual matrix spotting. In this study, to achieve a better nanoLC-MALDI performance on sample spotting, we first compared α-Cyano-4-hydroxycinnamic acid (CHCA) solvent composition for efficiently concentrating nanoLC elutes on an anchor chip. The solvent composition of isopropanol (IPA): acetonitrile (ACN):acetone:0.1% Trifluoroacetic acid (TFA) (2:7:7:2) provided strong and homogeneous signals with higher peptide ion yields than the other solvent compositions. Then, nanoLC-MALDI-TOF/TOF was applied to study the impact of aflatoxin B1 on the liver proteome from diabetes mellitus type 1 mice. Aflatoxin B1 (AFB1), produced by Aspergillus flavus and Aspergillus parasiticus is a carcinogen and a known causative agent of liver cancer. To evaluate the effects of long-term exposure to AFB1 on type 1 diabetes mellitus (TIDM), the livers of T1DM control mice and mice treated with AFB1 were analyzed using isotope-coded protein labeling (ICPL)-based quantitative proteomics. Our results showed that gluconeogenesis, lipid, and oxidative phosphorylation mechanisms, normally elevated in T1DM, were disordered following AFB1 treatment. In addition, major urinary protein 1 (MUP1), an indicator of increased insulin sensitivity, was significantly decreased in the T1DM/AFB1 group and may have resulted in higher blood glucose levels compared to the T1DM group. These results indicate that T1DM patients should avoid the AFB1 intake, as they could lead to increased

  17. The comparison of CHCA solvent compositions for improving LC-MALDI performance and its application to study the impact of aflatoxin B1 on the liver proteome of diabetes mellitus type 1 mice.

    Directory of Open Access Journals (Sweden)

    Fuu-Jen Tsai

    Full Text Available In nanoflow liquid chromatography-matrix-assisted laser desorption/ionization tandem time-of-flight (nanoLC-MALDI-TOF/TOF approaches, it is critical to directly apply small amounts of the sample elutes on the sample target using a nanoLC system due to its low flow rate of 200 ~ 300 nl/min. It is recommended to apply a sheath liquid containing a matrix with a several μL/min flow rate at the end of the nanoLC column to ensure a larger co-eluted droplet for more reproducible sample spotting and avoid the laborious task of post-manual matrix spotting. In this study, to achieve a better nanoLC-MALDI performance on sample spotting, we first compared α-Cyano-4-hydroxycinnamic acid (CHCA solvent composition for efficiently concentrating nanoLC elutes on an anchor chip. The solvent composition of isopropanol (IPA: acetonitrile (ACN:acetone:0.1% Trifluoroacetic acid (TFA (2:7:7:2 provided strong and homogeneous signals with higher peptide ion yields than the other solvent compositions. Then, nanoLC-MALDI-TOF/TOF was applied to study the impact of aflatoxin B1 on the liver proteome from diabetes mellitus type 1 mice. Aflatoxin B1 (AFB1, produced by Aspergillus flavus and Aspergillus parasiticus is a carcinogen and a known causative agent of liver cancer. To evaluate the effects of long-term exposure to AFB1 on type 1 diabetes mellitus (TIDM, the livers of T1DM control mice and mice treated with AFB1 were analyzed using isotope-coded protein labeling (ICPL-based quantitative proteomics. Our results showed that gluconeogenesis, lipid, and oxidative phosphorylation mechanisms, normally elevated in T1DM, were disordered following AFB1 treatment. In addition, major urinary protein 1 (MUP1, an indicator of increased insulin sensitivity, was significantly decreased in the T1DM/AFB1 group and may have resulted in higher blood glucose levels compared to the T1DM group. These results indicate that T1DM patients should avoid the AFB1 intake, as they could lead to

  18. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    Science.gov (United States)

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  19. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  20. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  1. Sea salt

    OpenAIRE

    Galvis-Sánchez, Andrea C.; Lopes, João Almeida; Delgadillo, Ivone; Rangel, António O. S. S.

    2013-01-01

    The geographical indication (GI) status links a product with the territory and with the biodiversity involved. Besides, the specific knowledge and cultural practices of a human group that permit transforming a resource into a useful good is protected under a GI designation. Traditional sea salt is a hand-harvested product originating exclusively from salt marshes from specific geographical regions. Once salt is harvested, no washing, artificial drying or addition of anti-caking agents are all...

  2. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  3. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  4. Photophysical properties of some xanthylium salts performances under CVL pumping

    International Nuclear Information System (INIS)

    Doizi, D.; Lompre, L.A.; Gazeau, M.C.

    1995-01-01

    We report the photochemical and photophysical performances of some new dyes belonging to the xanthylium salts family. Performances under Copper Vapor Laser (CVL) pumping are described and compared to those of Rhodamine 6G. (author)

  5. Copper hazards to fish, wildlife and invertebrates: a synoptic review

    Science.gov (United States)

    Eisler, Ronald

    1998-01-01

    Selective review and synthesis of the technical literature on copper and copper salts in the environment and their effects primarily on fishes, birds, mammals, terrestrial and aquatic invertebrates, and other natural resources. The subtopics include copper sources and uses; chemical and biochemical properties; concentrations of copper in field collections of abiotic materials and living organisms; effects of copper deficiency; lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds and mammals, including effects on survival, growth, reproduction, behavior, metabolism, carcinogenicity, matagenicity, and teratogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  6. Trend analysis of copper and zinc in animal feed

    NARCIS (Netherlands)

    Adamse, P.; Egmond, van H.J.; Polanen, van A.; Bikker, P.; Jong, de J.

    2011-01-01

    The EC has introduced maximum inclusion levels of copper and zinc salts in animal diets from 1970 onwards and reduced these levels in recent years. In this report historical values are used to give insight into trends in levels of copper and zinc in compound feeds for animals in the Netherlands. The

  7. 40 CFR 721.2577 - Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copper complex of (substituted... Copper complex of (substituted sulfonaphthyl azo substituted phenyl) disulfonaphthyl azo, amine salt... substances identified generically as copper complex of (substituted sulfonaphthyl azo substituted phenyl...

  8. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  9. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    OpenAIRE

    Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in ...

  10. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes

    OpenAIRE

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A.

    2016-01-01

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper io...

  11. An 131I iodotamoxifen: no carrier added iodination via a diazonium salt

    International Nuclear Information System (INIS)

    Hunter, D.H.; Strickland, L.A.

    1986-01-01

    An 131 I-labeled iodotamoxifen has been prepared by a ''no carrier added'' procedure in a 40% radiochemical yield via an aryl diazonium ion salt intermediate. Two approaches were used to produce high specific activity iodotamoxifen: nonaqueous solvents and copper catalysis. The use of the nonaqueous solvent acetonitrile has proved successful while neither copper powder, copper-bronze, copper(I)oxide nor Cu(II) sulphate showed any catalytic effects. (author)

  12. Microstructural characterization of copper corrosion in aqueous and soil environments

    International Nuclear Information System (INIS)

    Srivastava, A.; Balasubramaniam, R.

    2005-01-01

    Scanning electron microscopy has been used to investigate the surface films on pure copper after exposure to different aqueous and soil environments, containing chloride, sulfide and ammonium salts. The morphology of the films formed on copper surface in aqueous and soil environments was different for the same amount of pollutants. The surface films formed in soil environments were not homogenous in contrast to the films formed in aqueous environments. The damaging effect of chloride ions and the benign role of sulfide ions were revealed in both the environments. Local compositional analysis confirmed that the surface films formed on copper consisted predominantly of copper and oxygen

  13. Bath Salts

    Science.gov (United States)

    ... deaths and been blamed for a handful of suicides and murders. Two of the chemicals in bath salts (mephedrone and MDPV) are Schedule I class drugs. That means they have a high potential for abuse and no accepted medical use . People who are ...

  14. 76 FR 34211 - Intent To Prepare a Draft Environmental Impact Statement for the Proposed Kennecott Utah Copper...

    Science.gov (United States)

    2011-06-13

    ... Environmental Impact Statement for the Proposed Kennecott Utah Copper LLC Tailings Expansion Project, Near Magna... Copper Tailings Expansion Project, an expansion of an active commercial mining operation near Magna, Salt Lake County, UT. Kennecott Utah Copper LLC (KUC) has applied for a Department of the Army (DA) permit...

  15. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    Science.gov (United States)

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  16. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  17. Measurement and evaluation of the water and the salt solutions occurring in the exploitation of rock salt, potash or copper shale deposits in the Bernburg Hauptsattel or the Sangerhaeuser Revier in order to assess the long-term safety of repositories

    International Nuclear Information System (INIS)

    Schwandt, A.

    1993-01-01

    For a thorough assessment of conditions governing the occurrence of salt solutions or water in a repository in the Zechstein, i.e. in the salt formation and at its boundaries, data measured in other mines developed in this formation can yield valuable information. The studies reported were based on geological, hydrogeological, geochemical and geomechanical data collected for more than 50 inflow areas or salt solution bearing areas, covering approx. 15,000 chemical or physical analyses from which the data were derived describing the characteristics or development of inflow streams with time. In addition, the mapped inflow streams were evaluated with a view to the geological and hydrogeological and the geomechanical conditions of origin, as well as engineering impacts. (DG) [de

  18. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  19. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  20. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  1. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  2. One-pot production of copper ferrite nanoparticles using a chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Naoki, E-mail: nnishida@rs.tus.ac.jp; Amagasa, Shota [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Yoshio [The University of Electro-Communications, Department of Engineering Science (Japan); Yamada, Yasuhiro [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Copper ferrite nanoparticles were synthesized via the oxidation of precipitates obtained from the reaction of FeCl{sub 2}, CuSO{sub 4} and N{sub 2}H{sub 4} in the presence of gelatin. These copper ferrite particles were subsequently examined using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Mössbauer spectroscopy. The average size of the copper ferrite nanoparticles was less than 5 nm, and they exhibited superparamagnetic behavior as a result of their small size. The low temperature Mössbauer spectrum exhibited three sets of sextets, two corresponding to the tetrahedral and octahedral sites of the copper spinel structure and one with small hyperfine magnetic field corresponding to the surface or defects of the nanoparticles. When the ratio of copper salt was increased, the tetrahedral site became preferable for copper, and metallic copper and copper ferrite were both present in a single nanoparticle.

  3. Harvesting Water from Air: Using Anhydrous Salt with Sunlight

    KAUST Repository

    Li, Renyuan

    2018-04-02

    Atmospheric water is abundant alternative water resource, equivalent to 6 times of water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl2), copper sulfate (CuSO4) and magnesium sulfate (MgSO4) distinguish themselves and are further made into bi-layer water collection devices, with the top layer being photothermal layer while the bottom layer being salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15 %) and releasing water under regular and even weakened sunlight (i.e. 0.7 kW/m2). The work shines light on the potential use of anhydrous salt towards producing drinking water in water scarce regions.

  4. Cooking without salt

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000760.htm Cooking without salt To use the sharing features on ... other dishes to add zest. Try Salt-free Cooking Explore cooking with salt substitutes. Add a splash ...

  5. Phosphoramidite accelerated copper(I)-catalyzed [3+2] cycloadditions of azides and alkynes

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Mirfeizi, Leila; Dierckx, Rudi A.; Elsinga, Philip H.; Feringa, Ben L.

    2009-01-01

    Monodentate phosphoramidite ligands are used to accelerate the copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and alkynes (CuAAC) rapidly yielding a wide variety of functionalized 1,4-disubstituted-1,2,3-triazoles; Cu(I) and Cu(II) salts both function as the copper source in aqueous

  6. Chemical characterisation of himalayan rock salt

    International Nuclear Information System (INIS)

    Hassan, A.U.; Din, M.U.

    2017-01-01

    Present study involves the chemical evaluation of rock salt samples collected from the plugging sites of Himalayan salt (Khewra salt mines and Kalabagh salt mines) for their moisture content, water insoluble matter, calcium, magnesium, sulphate content and trace minerals such as Fe,Cu,Cd,Pb,As,Ag and Zn determined by atomic absorption spectroscopy. Moisture content of Khewra and Kalabagh salt samples ranged from 0.03 wt. % to 0.09 wt. % and 0.06 % to 0.08 %, respectively. Water insoluble matter ranged from 0.08 wt. % to 1.4 wt. % and 1.5 wt. % to 2.8wt. % for Khewra and Kalabagh salt samples, respectively. Sulphate content for Khewra salt sample was from 0.39 % to 0.91 % and for Kalabagh salt mines from 0.75 wt. % to 0.95 wt. %. For Khewra salt mines calcium ranged 0.15 wt. % to 0.32 wt. % and for Kalabagh salt samples from 0.1 wt. % to 0.27 wt. %. Magnesium ranged from 0.11 wt. % to 0.35 wt. % for Khewra salt mines, while for Kalabagh salt samples its range was 0.18 wt. % to 0.89 wt. %. Trace metals had the concentration ranges between 0.2 to 1.85 mg/kg for copper; between 0.21 to 0.42 mg/kg for manganese; between 0.04 to 0.06 mg/kg for zinc; between 0.12 to 0.18 mg/kg for arsenic and between 0.03 and 0.05 mg/kg for lead while cadmium content was either below the method's detection limits or in very trace amounts. The results show that the concentrations of all the parameters studied are below the limits set by World Health Organization (WHO) and Food and Agriculture Organization (FAO). Therefore, it can be concluded from the paper that the Himalayan salt from the plugging sites of Khewra and Kalabagh salt mines are safe to use. (author)

  7. Salt consumption and the effect of salt on mineral metabolism in horses.

    Science.gov (United States)

    Schryver, H F; Parker, M T; Daniluk, P D; Pagan, K I; Williams, J; Soderholm, L V; Hintz, H F

    1987-04-01

    The voluntary salt consumption of mature unexercised horses was measured weekly for up to 45 weeks. Voluntary intake among horses was quite variable ranging from 19 to 143 g of salt per day and was inversely related to total salt intake (salt in feeds plus voluntary intake). Mean daily voluntary salt consumption was 53 g. Season of the year did not influence voluntary intake. In preference tests which evaluated every two choice combination of 0.2% and 4% NaCl in test diets fed daily for four days, ponies generally preferred diets containing the lower amount of salt. In similar preference studies which used NaHCO3 as a sodium source, ponies always preferred the diet containing the lower level of NaHCO3. Metabolism studies employing diets containing 1, 3 or 5% NaCl showed that urinary excretion was the major excretory pathway for sodium and chloride. Fecal excretion, intestinal absorption and retention of sodium were not affected by level of salt intake. Urinary calcium excretion was unaffected by salt intake but calcium and phosphorus absorption and retention were enhanced when ponies were fed diets containing 3 or 5% sodium chloride. Magnesium and copper metabolism were unaffected by salt intake. Horses voluntarily consume relatively large amounts of sodium chloride but it is likely that not all voluntary consumption is related to the salt requirement of the horse. Habit and taste preference could also be involved. Salt consumption at the levels used in these studies does not appear to be detrimental to the metabolism of other minerals in the horse.

  8. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  9. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  10. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  11. Novel waste printed circuit board recycling process with molten salt

    OpenAIRE

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450?470??C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, a...

  12. Copper iodide nanoparticles on poly(4-vinylpyridine): A new and ...

    Indian Academy of Sciences (India)

    sustainable and competitive alternative to conventional catalysis since the nanoparticles possess a high surface- to-volume ratio, which enhances their activity and selectivity, while at the same time maintaining the intrinsic features of a heterogeneous catalyst.19 In par- ticular, the immobilization of copper(I) salts nanopar-.

  13. Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates

    NARCIS (Netherlands)

    Fañanás-Mastral, Martín; Feringa, Ben L

    2014-01-01

    Copper-catalysis allows the direct oxygenarylation of dialkyl phosphonates with diaryliodonium salts. This novel methodology proceeds with a wide range of phosphonates and phosphoramidates under mild conditions and gives straightforward access to valuable mixed alkyl aryl phosphonates in very good

  14. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    nanoparticles and sulfate salt of copper in M.posthuma inhabiting the soil of India, an agriculture based country. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Preparation of ultrafine grained copper nanoparticles via immersion deposit method

    Science.gov (United States)

    Abbasi-Kesbi, Fatemeh; Rashidi, Ali Mohammad; Astinchap, Bandar

    2018-03-01

    Today, the exploration about synthesis of nanoparticles is much of interest to materials scientists. In this work, copper nanoparticles have been successfully synthesized by immersion deposit method in the absence of any stabilizing and reducing agents. Copper (II) sulfate pentahydrate as precursor salt and distilled water and Ethylene glycol as solvents were used. The copper nanoparticles were deposited on plates of low carbon steel. The effects of copper sulfate concentrations and solvent type were investigated. X-ray diffraction, scanning electron microscopy and UV-Visible spectroscopy were taken to investigate the crystallite size, crystal structure, and morphology and size distribution and the growth process of the nanoparticles of obtained Cu particles. The results indicated that the immersion deposit method is a particularly suitable method for synthesis of semispherical copper nanoparticles with the crystallites size in the range of 22 to 37 nm. By increasing the molar concentration of copper sulfate in distilled water solvent from 0.04 to 0.2 M, the average particles size is increased from 57 to 81 nm. The better size distribution of Cu nanoparticles was achieved using a lower concentration of copper sulfate. By increasing the molar concentration of copper sulfate in water solvent from 0.04 to 0.2, the location of the SPR peak has shifted from 600 to 630 nm. The finer Cu nanoparticles were formed using ethylene glycol instead water as a solvent. Also, the agglomeration and overlapping of nanoparticles in ethylene glycol were less than that of water solvent.

  16. Raman spectroscopic studies of the interaction of oxalic acid and sodium oxalate used as corrosion inhibitors with copper

    Science.gov (United States)

    Jeziorowski, H.; Moser, B.

    1985-09-01

    The Raman spectra of the liquid-solid interface recorded in situ show the formation of a salt complex of the inhibitor molecules and the copper ions. This suggests that this chemisorbed surface species produces the protective layer.

  17. [Historical roles of salt].

    Science.gov (United States)

    Ritz, E; Ritz, C

    2004-12-17

    Recently increasing evidence has been provided pointing to a close relation of salt consumption to hypertension as well as to target organ damage. It is interesting to note that the discussion concerning salt is unusually emotional. This may be explained, at least in part, by the fact that since ancient times salt had deep symbolic significance, as exemplified, mostly subconsciously, by many customs and expressions still in current use. In the past salt was essential to preserve food. The past importance of salt as a commodity can well be compared with that of oil today. These and further historical aspects of the role of salt are briefly dealt with in this article.

  18. Improved Design and Fabrication of Hydrated-Salt Pills

    Science.gov (United States)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  19. Synthesis of copper polyacrylate nanocomposites by gamma irradiation

    International Nuclear Information System (INIS)

    Casalme, Loida Olores

    2005-04-01

    This research involves the synthesis of copper nanoparticles with controlled size by the application of gamma radiation with varying polyacrylic acid (PAA) and CuSO 4 concentration. An alternative and convenient method was done which employs Co 60 irradiation of solutions of copper salt and PAA with irradiation dose of 1.6, 3.6, 6.4, and 9.2 MRad. The effect of polymer and copper sulfate's initial concentrations as well as the effect of the presence of alcohol as radical scavenger and the presence of ethylenediaminetetraacetic acid as stabilizer were evaluated. Characterization of nanocomposite properties such as plasmon resonance band, fluorescence, and particle morphology and size were determined. Layer-by-layer assembly of Cu-PAA nanocomposites and polydiallyl dimethyl ammonium chloride (PDDA) was also constructed. Stability of the synthesized copper-PAA nanocomposites in terms of the disappearance of plasmon band with time was evaluated. (Author)

  20. Sea Salt vs. Table Salt: What's the Difference?

    Science.gov (United States)

    ... and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, texture ...

  1. Low-salt diet

    Science.gov (United States)

    Low-sodium diet; Salt restriction ... control many functions. Too much sodium in your diet can be bad for you. For most people, ... you limit salt. Try to eat a balanced diet. Buy fresh vegetables and fruits whenever possible. They ...

  2. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    1977-01-01

    MSBR Study Group formed in October 1974 has studied molten salt breeder reactor and its various aspects. Usage of a molten salt fuel, extremely interesting as reactor chemistry, is a great feature to MSBR; there is no need for separate fuel making, reprocessing, waste storage facilities. The group studied the following, and these results are presented: molten salt technology, molten salt fuel chemistry and reprocessing, reactor characteristics, economy, reactor structural materials, etc. (Mori, K.)

  3. Synthesis of copper nanocolloids using a continuous flow based microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lei, E-mail: xulei_kmust@aliyun.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle 98195 (United States); Peng, Jinhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Srinivasakannan, C. [Chemical Engineering Program, The petroleum Institute, Abu Dhabi, P.O. Box 253 (United Arab Emirates); Chen, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Shen, Amy Q., E-mail: amy.shen@oist.jp [Mechanical Engineering, University of Washington, Seattle 98195 (United States); Micro/Bio/Nanofluidics Unit, Okinawa Institute of Technology Graduate University, Okinawa (Japan)

    2015-11-15

    Highlights: • The copper nanocolloidal were synthesized in a T-shaped microreactor at room temperature. • The morphology of copper nanocolloidal are spherical, and with good size distribution. • The mean particle diameter increased with decreases the NaBH{sub 4} molar concentration. • With increasing particle size, the more obvious localized surface plasmon resonance absorption. - Abstract: The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH{sub 4}) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH{sub 4} molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet–visible spectroscopy (UV–vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH{sub 4} molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO{sub 4}/NaBH{sub 4} molar concentration ratio of 1:2.

  4. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  5. Influence of complexing on physicochemical properties of polymer-salt solutions

    International Nuclear Information System (INIS)

    Ostroushko, A.A.; Yushkova, S.M.; Koridze, N.V.; Skobkoreva, N.V.; Zhuravleva, L.I.; Palitskaya, T.A.; Antropova, S.V.; Ostroushko, I.P.; AN SSSR, Moscow

    1993-01-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated

  6. Submarine Salt Karst Terrains

    Directory of Open Access Journals (Sweden)

    Nico Augustin

    2016-06-01

    Full Text Available Karst terrains that develop in bodies of rock salt (taken as mainly of halite, NaCl are special not only for developing in one of the most soluble of all rocks, but also for developing in one of the weakest rocks. Salt is so weak that many surface-piercing salt diapirs extrude slow fountains of salt that that gravity spread downslope over deserts on land and over sea floors. Salt fountains in the deserts of Iran are usually so dry that they flow at only a few cm/yr but the few rain storms a decade so soak and weaken them that they surge at dm/day for a few days. We illustrate the only case where the rates at which different parts of one of the many tens of subaerial salt karst terrains in Iran flows downslope constrains the rates at which its subaerial salt karst terrains form. Normal seawater is only 10% saturated in NaCl. It should therefore be sufficiently aggressive to erode karst terrains into exposures of salt on the thousands of known submarine salt extrusions that have flowed or are still flowing over the floors of hundreds of submarine basins worldwide. However, we know of no attempt to constrain the processes that form submarine salt karst terrains on any of these of submarine salt extrusions. As on land, many potential submarine karst terrains are cloaked by clastic and pelagic sediments that are often hundreds of m thick. Nevertheless, detailed geophysical and bathymetric surveys have already mapped likely submarine salt karst terrains in at least the Gulf of Mexico, and the Red Sea. New images of these two areas are offered as clear evidence of submarine salt dissolution due to sinking or rising aggressive fluids. We suggest that repeated 3D surveys of distinctive features (± fixed seismic reflectors of such terrains could measure any downslope salt flow and thus offer an exceptional opportunity to constrain the rates at which submarine salt karst terrains develop. Such rates are of interest to all salt tectonicians and the many

  7. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  8. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  9. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  10. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  11. A history of salt.

    Science.gov (United States)

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  12. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  13. Worth its salt?

    Science.gov (United States)

    The idea that all underground salt deposits can serve as storage sites for toxic and nuclear waste does not always hold water—literally. According to Daniel Ronen and Brian Berkowitz of Israel's Weizmann Institute of Science and Yoseph Yechieli of the Geological Survey of Israel, some buried salt layers are in fact highly conductive of liquids, suggesting that wastes buried in their confines could easily leech into groundwater and nearby soil.When drilling three wells into a 10,000-year-old salt layer near the Dead Sea, the researchers found that groundwater had seeped into the layer and had absorbed some of its salt.

  14. CONSIDERATIONS ON THE INFLUENCE OF COMPLEXATION IN THE COPPER UPTAKE AND TRANSLOCATION

    Directory of Open Access Journals (Sweden)

    SEMAGHIUL BIRGHILA

    2014-07-01

    Full Text Available The actual knowledge about food and the environment underlines the fact that agricultural and environmental sciences must solve various problems regarding copper uptake from soil to plants and its bioaccumulation, being important issues for copper concentration in crops and also for phytoremediation of polluted soils. We studied the relation between the form in which copper is applied to soil and the consequential copper bioavailability, uptake and translocation, using as examples simple and complex copper compounds. The copper concentration in basil plants harvested from soils treated with copper compounds and the calculated values of transfer coefficient, translocation factor, bioaccumulation factor, and uptake coefficient demonstrated that the ionic copper (from simple salts is not necessarily easier to uptake than complex ions, but is easier translocated in plants, while the copper given as complex ions is most likely to be retained by roots. The results indicated that the involvement of copper complexes in agricultural treatments is a solution for soils phytoremediation, concerning the phytostabilization technology.

  15. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  16. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  17. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  18. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  19. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  20. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  1. Novel waste printed circuit board recycling process with molten salt.

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  2. Novel waste printed circuit board recycling process with molten salt

    Science.gov (United States)

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  3. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  4. Molten salt reactors: chemistry

    International Nuclear Information System (INIS)

    1983-01-01

    This work is a critical analysis of the 1000 MW MSBR project. Behavior of rare gases in the primary coolant circuit, their extraction from helium. Coating of graphite by molybdenum, chemistry of protactinium and niobium produced in the molten salt, continuous reprocessing of the fuel salt and use of stainless steel instead of hastelloy are reviewed [fr

  5. Synthesis of polymer nanocomposites using layered hydroxide salts (LHS)

    International Nuclear Information System (INIS)

    Machado, Paula F. de M.P.B.; Lona, Liliane M.F.; Marangoni, Rafael; Wypych, Fernando

    2011-01-01

    In this work latexes of poly (methyl methacrylate) were synthesized via emulsion polymerization using layered hydroxide salts (LHS) as reinforcements: zinc hydroxide nitrate (Zn 5 (OH) 8 (NO 3 ) 2 ·2H 2 O) and copper hydroxide acetate (Cu 2 (OH) 3 CH 3 COO.H 2 O). The LHSs were characterized by X-ray powder diffraction (XRPD). Mastersizer analysis indicated the particle diameter of the latexes. Molecular weights and conversion data were also obtained. (author)

  6. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  7. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Serata, S.; Milnor, S.W.

    1979-01-01

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  8. Salt og forbrugervalg

    DEFF Research Database (Denmark)

    Mørk, Trine; Grunert, Klaus G

    af saltreducerede fødevarer og deres købsintention af disse. Dette blev undersøgt ved at måle forbrugerens viden om salt, anvendelse af salt, ønske om reduktion af salt og købsintention af saltreducerede fødevarer i en web-baseret undersøgelse. Efter den web-baserede undersøgelse, blev de samme mål...... undersøgt, men i et supermarked, hvor deltagerne blev inddelt i fire grupper for at undersøge effekten af priming og saltmærkning. Desuden blev der foretaget 15 kvalitative interviews, for at studere hvem og hvad der karakteriserer de deltagere i eksperimentet, som enten ender med ingen salt......-reducerede produkter at købe eller som ender med at købe alle de salt-reducerede produkter....

  9. Lowering Salt in Your Diet

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Lowering Salt in Your Diet Share Tweet Linkedin Pin it ... Subscribe: FDA Consumer Health Information Everyone needs some salt to function. Also known as sodium chloride, salt ...

  10. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  11. Ultrasonic-assisted chemical reduction synthesis and structural characterization of copper nanoparticles

    Science.gov (United States)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Thanh-Quoc, Nguyen; Ha, Do Tuong

    2018-04-01

    Copper nanoparticles, due to their special properties, small dimensions and low-cost preparation, have many potential applications such as in optical, electronics, catalysis, sensors, antibacterial agents. In this study, copper nanoparticles were synthesized by chemical reduction method with different conditions in order to investigate the optimum conditions which gave the smallest (particle diameter) dimensions. The synthesis step used copper (II) acetate salt as precursor, ascorbic acid as reducing agent, glycerin and polyvinylpyrrolidone (PVP) as protector and stabilizer. The assistance of ultrasonic was were considered as the significant factor affecting the size of the synthesized particles. The results showed that the copper nanoparticles have been successfully synthesized with the diameter as small as 20-40 nm and the conditions of ultrasonic waves were 48 kHz of frequency, 20 minutes of treated time and 65-70 °C of temperature. The synthesized copper nanoparticles were characterized by optical absorption spectrum, scanning electron microscopy (SEM), and Fourier Transform Infrared Spectrometry.

  12. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    Directory of Open Access Journals (Sweden)

    Semra Çoruh

    2012-01-01

    Full Text Available Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5°C.

  13. Statistical evaluation and optimization of factors affecting the leaching performance of copper flotation waste.

    Science.gov (United States)

    Coruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in a number of environmental problems. The aim of this study is to investigate the leaching characteristics of copper flotation waste by use of the Box-Behnken experimental design approach. In order to obtain the optimized condition of leachability, a second-order model was examined. The best leaching conditions achieved were as follows: pH = 9, stirring time = 5 min, and temperature = 41.5 °C.

  14. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes

  15. Crushed Salt Constitutive Model

    International Nuclear Information System (INIS)

    Callahan, G.D.

    1999-01-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well

  16. Molten salt reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Simon, N.; Renault, C.

    2014-01-01

    Molten salt reactors are one of the 6 concepts retained for the 4. generation of nuclear reactors. The principle of this reactor is very innovative: the nuclear fuel is dissolved in the coolant which allows the online reprocessing of the fuel and the online recovery of the fission products. A small prototype: the Molten Salt Reactor Experiment (MSRE - 8 MWt) was operating a few years in the sixties in the USA. The passage towards a fast reactor by the suppression of the graphite moderator leads to the concept of Molten Salt Fast Reactor (MSFR) which is presently studied through different European projects such as MOST, ALISIA and EVOL. Worldwide the main topics of research are: the adequate materials resisting to the high level of corrosiveness of the molten salts, fuel salt reprocessing, the 3-side coupling between neutron transport, thermohydraulics and thermo-chemistry, the management of the changing chemical composition of the salt, the enrichment of lithium with Li 7 in the case of the use of lithium fluoride salt and the use of MSFR using U 233 fuel (thorium cycle). The last part of the article presents a preliminary safety analysis of the MSFR. (A.C.)

  17. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  18. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  19. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  20. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  1. What Are Bath Salts?

    Science.gov (United States)

    ... bath salts can produce: feelings of joy increased social interaction increased sex drive paranoia nervousness hallucinations (see or ... Institutes of Health; U.S. Department of Health and Human Services. Cite this article APA Style MLA Style ...

  2. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  3. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  4. Mass transport in bedded salt and salt interbeds

    International Nuclear Information System (INIS)

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports

  5. Pitting corrosion of copper. An equilibrium - mass transport study

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases

  6. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  7. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. Emphasize is put essentially on the fuel salt of the primary circuit inside which fission reactions occur. The reasons why the (LiF-BeF 2 -ThF 4 -UF 4 ) salt was chosen for the M.S.B.R. concept are examined; the physical, physicochemical and chemical properties of this salt are discussed with its interactions with the structural materials and its evolution in time. An important part of this volume is devoted to the continuous reprocessing of the active salt, the project designers having deemed advisable to take advantage at best from the availability of a continuous purification, in a thermal breeding. The problem of tritium formation and distribution inside the reactor is also envisaged and the fundamentals of the chemistry of the secondary coolant salt are given. The solutions proposed are: the hydrogen scavenging of the primary circuit, a reduction in metal permeability by an oxyde layer deposition on the side in contact with the vapor, and tritium absorption through an isotope exchange with the hydroxifluoroborate [fr

  8. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  9. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  10. Cooperativity of complex salt bridges

    OpenAIRE

    Gvritishvili, Anzor G.; Gribenko, Alexey V.; Makhatadze, George I.

    2008-01-01

    The energetic contribution of complex salt bridges, in which one charged residue (anchor residue) forms salt bridges with two or more residues simultaneously, has been suggested to have importance for protein stability. Detailed analysis of the net energetics of complex salt bridge formation using double- and triple-mutant cycle analysis revealed conflicting results. In two cases, it was shown that complex salt bridge formation is cooperative, i.e., the net strength of the complex salt bridge...

  11. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  12. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  13. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  14. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  15. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  16. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  17. Copper-Sulfate Pentahydrate as a Product of the Waste Sulfuric Acid Solution Treatment

    Science.gov (United States)

    Marković, Radmila; Stevanović, Jasmina; Avramović, Ljiljana; Nedeljković, Dragutin; Jugović, Branimir; Stajić-Trošić, Jasna; Gvozdenović, Milica

    2012-12-01

    The aim of this study is synthesis of copper-sulfate pentahydrate from the waste sulfuric acid solution-mother liquor generated during the regeneration process of copper bleed solution. Copper is removed from the mother liquor solution in the process of the electrolytic treatment using the insoluble lead anodes alloyed with 6 mass pct of antimony on the industrial-scale equipment. As the result of the decopperization process, copper is removed in the form of the cathode sludge and is precipitated at the bottom of the electrolytic cell. By this procedure, the content of copper could be reduced to the 20 mass pct of the initial value. Chemical characterization of the sludge has shown that it contains about 90 mass pct of copper. During the decopperization process, the very strong poison, arsine, can be formed, and the process is in that case terminated. The copper leaching degree of 82 mass pct is obtained using H2SO4 aqueous solution with the oxygen addition during the cathode sludge chemical treatment at 80 °C ± 5 °C. Obtained copper salt satisfies the requirements of the Serbian Standard for Pesticide, SRPS H.P1. 058. Therefore, the treatment of waste sulfuric acid solutions is of great economic and environmental interest.

  18. Molten salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Tsukada, Kineo; Nakahara, Yasuaki; Oomichi, Toshihiko; Oono, Hideo.

    1982-01-01

    Purpose: To simplify the structure, as well as improve the technical reliability and safety by the elimination of a proton beam entering window. Constitution: The nuclear reactor container main body is made of Hastelloy N and provided at the inner surface with two layers of graphite shields except for openings. An aperture was formed in the upper surface of the container, through which protons accelerated by a linear accelerator are directly entered to the liquid surface of molten salts such as 7LiF-BeF 2 -ThF 4 , 7LiF-NaF-ThF 4 , 7LiF-Rb-UF 4 , NaF-KF-UF 4 and the like. The heated molten salts are introduced by way of a pipeway into a heat exchanger where the heat is transferred to coolant salts and electric generation is conducted by way of heated steams. (Furukawa, Y.)

  19. Mineral resource of the month: salt

    Science.gov (United States)

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  20. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part 'CIRCUITS' regroups under a condensed form - in French and using international units - the essential information contained in both basic documents of the American project for a molten-salt breeder power plant. This part is only dealing with things relating to the CEA-EDF workshop 'CIRCUITS'. It is not concerned with information on: the reactor and the moderator replacement, the primary and secondary salts, and the fuel salt reprocessing, that are dealt with in parts 'CORE' and 'CHEMISTRY' respectively. The possible evolutions in the data - and solutions - taken by the American designers for their successive projects (1970 to 1972) are shown. The MSBR power plant comprises three successive heat transfer circuits. The primary circuit (Hastelloy N), radioactive and polluted, containing the fuel salt, includes the reactor, pumps and exchangers. The secondary circuit (pipings made of modified Hastelloy N) contaminated in the exchanger, ensures the separation between the fuel and the fluid operating the turbo-alternator. The water-steam circuit feeds the turbine with steam. This steam is produced in the steam generator flowed by the secondary fluid. Some subsidiary circuits (discharge and storage of the primary and secondary salts, ventilation of the primary circuit ...) complete the three principal circuits which are briefly described. All circuits are enclosed inside the controlled-atmosphere building of the nuclear boiler. This building also ensures the biological protection and the mechanical protection against outer aggressions [fr

  1. Copper-encapsulated vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  2. The Effect of Copper

    African Journals Online (AJOL)

    environment, where fishes are found, stuns them ... of earthen ponds are springing up near cocoa ... farm, which posses toxicological risk to farmed ... Veg. oil. 1.0. 1.0. 1.0. 1.0. 1.0. Copper sulphate 0. 1.0. 2.5. 5.0. 7.5. Total ..... Cellulase Production by Wild Strains of Aspergillus Niger, ... Mangrove Area of Lagos, Nigeria.

  3. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  4. 21 CFR 100.155 - Salt and iodized salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  5. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  6. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  7. to salt stress

    African Journals Online (AJOL)

    Tony

    2012-02-14

    Feb 14, 2012 ... 3Inner Mongolia Industrial Engineering Research, Center of University for Castor, Tongliao 028042, ... strengthen and improve salt stress tolerance in plants. .... 2 µl cDNA, 1 µl each of 4 µM forward and reverse primer, 0.2 µl.

  8. Molten salt reactor concept

    International Nuclear Information System (INIS)

    Sood, D.D.

    1980-01-01

    Molten salt reactor is an advanced breeder concept which is suited for the utilization of thorium for nuclear power production. This reactor is based on the use of solutions of uranium or plutonium fluorides in LiF-BeF 2 -ThF 4 as fuel. Unlike the conventional reactors, no external coolant is used in the reactor core and the fuel salt itself is circulated through heat exchangers to transfer the fission produced heat to a secondary salt (NaF-NaBF 4 ) for steam generation. A part of the fuel stream is continuously processed to isolate 233 Pa, so that it can decay to fissile 233 U without getting converted to 234 Pa, and for the removal of neutron absorbing fission products. This on-line processing scheme makes this reactor concept to achieve a breeding ratio of 1.07 which is the highest for any thermal breeder reactor. Experimental studies at the Bhabha Atomic Research Centre, Bombay, have established the use of plutonium as fuel for this reactor. This molten salt reactor concept is described and the work conducted at the Bhabha Atomic Research Centre is summarised. (auth.)

  9. Molten salt electrorefining method

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Nakamura, Hitoshi; Shoji, Yuichi; Matsumaru, Ken-ichi.

    1994-01-01

    A molten cadmium phase (lower side) and a molten salt phase (upper side) are filled in an electrolytic bath. A basket incorporating spent nuclear fuels is inserted/disposed in the molten cadmium phase. A rotatable solid cathode is inserted/disposed in the molten salt phase. The spent fuels, for example, natural uranium, incorporated in the basket is dissolved in the molten cadmium phase. In this case, the uranium concentration in the molten salt phase is determined as from 0.5 to 20wt%. Then, electrolysis is conducted while setting a stirring power for stirring at least the molten salt phase of from 2.5 x 10 2 to 1 x 10 4 based on a reynolds number. Crystalline nuclei of uranium are precipitated uniformly on the surface of the solid cathode, and they grow into fine dendrites. With such procedures, since short-circuit between the cathode precipitates and the molten cadmium phase (anode) is scarcely caused, to improve the recovering rate of uranium. (I.N.)

  10. Borehole closure in salt

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1988-12-01

    Constitutive law parameters are determined from salt behavior characterization experiments. The results are applied to predict creep (time-dependent) closure of boreholes in salt specimens subjected to various loading configurations. Rheological models (linear and nonlinear viscoelastic and viscoplastic models), empirical models, and physical theory models have been formulated from the results of uniaxial creep tests, strain and stress rate controlled uniaxial tests, constant strain rate triaxial tests, cyclic loading tests, and seismic velocity measurements. Analytical solutions for a thick-walled cylinder subjected to internal and external pressures and for a circular hole in an infinite plate subjected to a biaxial or uniaxial stressfield have been derived from each of the linear viscoelastic models and from one of the empirical laws. The experimental results indicate that the salt samples behave as an elastic-viscoplastic material. The elastic behavior tends to be linear and time-independent. The plastic deformation is time-dependent. The stress increment to strain rate increment ratio gradually decreases as the stress level increases. The transient potential creep law seems to give the simplest satisfactory governing equation describing the viscoplastic behavior of salt during the transient phase. 204 refs., 27 figs., 29 tabs

  11. Salt repository design approach

    International Nuclear Information System (INIS)

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure

  12. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  13. Salt ingestion caves.

    Directory of Open Access Journals (Sweden)

    Lundquist Charles A.

    2006-01-01

    Full Text Available Large vertebrate herbivores, when they find a salt-bearing layer of rock, say in a cliff face, can produce sizable voids where, overgenerations, they have removed and consumed salty rock. The cavities formed by this natural animal process constitute a uniqueclass of caves that can be called salt ingestion caves. Several examples of such caves are described in various publications. Anexample in Mississippi U.S.A., Rock House Cave, was visited by the authors in 2000. It seems to have been formed by deer orbison. Perhaps the most spectacular example is Kitum Cave in Kenya. This cave has been excavated to a length over 100 metersby elephants. An ancient example is La Cueva del Milodon in Chile, which is reported to have been excavated by the now extinctmilodon, a giant ground sloth. Still other possible examples can be cited. This class of caves deserves a careful definition. First, thecavity in rock should meet the size and other conventions of the locally accepted definition of a cave. Of course this requirement differsin detail from country to country, particularly in the matter of size. The intent is to respect the local conventions. The characteristicthat human entry is possible is judged to be a crucial property of any recognized cave definition. Second, the cavity should besignificantly the result of vertebrate animal consumption of salt-bearing rock. The defining process is that rock removed to form thecave is carried away in the digestive track of an animal. While sodium salts are expected to be the norm, other salts for which thereis animal hunger are acceptable. Also some other speleogenesis process, such as solution, should not be excluded as long as it issecondary in formation of a cave in question.

  14. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  15. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  16. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  17. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  18. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C

    1996-11-01

    A mathematical model for the propagation of corrosion pits on copper is described. The model is used to predict the potentials below which copper is immune to pitting. The criteria used for immunity against pitting is that the volume of the cuprous oxide formed at the site of the metal oxidation at the bottom of a corrosion pit must be smaller than the volume of the oxidised metal. Equal volumes would give a complete coverage of the metal in a pit by adherent cuprous oxide and propagation would not be possible. For potentials where copper is not immune to pitting an estimate of the maximum growth rate is given. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles from the bulk water outside a corrosion pit to the site of the metal dissolution at the bottom a corrosion pit. Precipitation of oxides as well as of basic salts of copper is considered. A total of 26 aqueous species are considered in waters with compositions ranging from those of tap waters to that of sea water. Calculations are made for the temperatures 25 deg C and 75 deg C. 38 refs, 60 figs, 17 tabs

  19. Heavy Metals in Salt and Water Samples from Maharloo Lake and their Comparison with Metal Concentrations in Samples from Sirjan, Lar, and Firoozabad Salt Mines

    Directory of Open Access Journals (Sweden)

    Farahnaz Sabet

    2015-03-01

    Full Text Available Maharloo Lake is one of the most important water ecosystems in Iran, which is nowadays exposed to multiple risks and threats due to poor water management, salt extraction, and heavy metal pollution. In this study, the concentrations of such heavy metals as chromium, copper, zinc, arsenic, cadmium, and lead in both water and salt samples collected from areas in the north and south of the lake were determined by atomic absorption (AA-670G after the samples had been digested. Results showed that metal concentrations in the salt samples taken from both the northern and southern areas had identical mean values in the order of Cr> Cu> As> Cd> Pb. An almost similar pattern was detected in metal concentrations in water samples taken from the same areas but with a slight difference in the way they were ordered (Cr> Cu> As> Pb> Cd. It was found that both water and salt samples collected from the northern areas had higher metal concentrations, except for that of Pb which was slightly lower. Comparison of the mean values of metal concentrations in the Salt Lake and those of Sirjan, Lar, and Firoozabad salt mines revealed that copper, cadmium, and lead had their highest concentrations in the Salt Lake while arsenic and chromium recorded their highest values in samples taken from Lar and Firoozabad salt mines, respectively. Based on these findings, it may be concluded that the increased metal concentrations observed in samples from both northern and southern areas of the lake are due to the sewage and effluents from urban, industrial, and hospital sources in Shiraz disposed into the lake as well as such other human activities as farming in the areas around the lake, especially in the northern stretches. These observations call for preventive measures to avoid further water quality degradation in the area.

  20. Facile Synthesis of Copper Oxide Nanoparticles via Electrospinning

    Directory of Open Access Journals (Sweden)

    Abdullah Khalil

    2014-01-01

    Full Text Available A novel approach for synthesizing copper oxide (CuO nanoparticles (NPs through electrospinning is reported. The approach is based on producing rough and discontinuous electrospun nanofibers from a precursor based on copper acetate salt and polyvinyl alcohol (PVA polymer. Selectively removing the polymeric phase from the fibers produced highly rough CuO nanofibers, which were composed of NPs that are weakly held together in a one-dimensional (1D manner. Sonication in a suitable liquid under controlled conditions completely disintegrated the nanofibers into NPs, resulting in the formation of uniform CuO NPs suspension. Aberration corrected high resolution transmission electron microscope (HRTEM showed that the obtained NPs are highly crystalline and nearly sphere-like with a diameter of 30 to 70 nm. Thus, electrospinning, which is a low cost and industrially scalable technique, can also be employed for economic and large scale synthesis of NPs.

  1. Solvothermal synthesis of copper sulfide semiconductor micro/nanostructures

    International Nuclear Information System (INIS)

    Liu, Jun; Xue, Dongfeng

    2010-01-01

    Covellite copper sulfide (CuS) micro/nanometer crystals in the shape of hierarchical doughnut-shaped, superstructured spheric-shaped and flowerlike architectures congregated from those nanoplates with the thickness of 20-100 nm have been prepared by a solvothermal method. The as-obtained CuS products were characterized by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD) and energy-dispersive X-ray spectroscopy (EDS). A systematic investigation has been carried out to understand the factors influencing the evolution of CuS particle morphology which found to be predominant by solvent, surfactant, sulfur resource and copper salt. The possible formation mechanism for the nanostructure formation was also discussed. These CuS products show potential applications in solar cell, photothermal conversion and chemical sensor.

  2. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  3. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes.

    Science.gov (United States)

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A

    2017-01-05

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.

  4. Salt-Induced Physical Weathering of Stone

    Science.gov (United States)

    Schiro, M.; Ruiz-Agudo, E.; Rodriguez-Navarro, C.

    2010-12-01

    Salt weathering is recognized as an important mechanism that contributes to the modeling and shaping of the earth’s surface, in a range of environments spanning from the Sahara desert to Antarctica. It also contributes to the degradation and loss of cultural heritage, particularly carved stone and historic buildings. Soluble salts have recently been suggested to contribute to the shaping of rock outcrops on Mars and are being identified in other planetary bodies such as the moons of Jupiter (Europa and IO)1. Soluble salts such as sulfates, nitrates, chlorides and carbonates of alkali and alkali earth metals can crystallize within the porous system of rocks and building stones, exerting sufficient pressure against the pore walls to fracture the substrate. This physical damage results in increased porosity, thus providing a higher surface area for salt-enhanced chemical weathering. To better understand how salt-induced physical weathering occurs, we have studied the crystallization of the particularly damaging salt, sodium sulfate2, in a model system (a sintered porous glass of controlled porosity and pore size). For this elusive task of studying sub-surface crystallization in pores, we combined a variety of instruments to identify which phases crystallized during evaporation and calculated the supersaturation and associated crystallization pressure that caused damage. The heat of crystallization was measured using differential scanning calorimetry (DSC), providing the timing of crystallization events and phase transitions3, while the evaporation rate was recorded using thermal gravimetry (TG). These methods enabled calculation of the sodium sulfate concentration in solution at every point during evaporation. Two-dimensional X-ray diffraction (2D-XRD) performs synchrotron-like experiments in a normal lab by using a Molybdenum X-ray source (more than 5 times more penetrative than conventional Copper source). Using this method, we determined that the first phase to

  5. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  6. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  7. Voltammetric determination of copper in selected pharmaceutical preparations--validation of the method.

    Science.gov (United States)

    Lutka, Anna; Maruszewska, Małgorzata

    2011-01-01

    It were established and validated the conditions of voltammetric determination of copper in pharmaceutical preparations. The three selected preparations: Zincuprim (A), Wapń, cynk, miedź z wit. C (B), Vigor complete (V) contained different salts and different quantity of copper (II) and increasing number of accompanied ingredients. For the purpose to transfer copper into solution, the samples of powdered tablets of the first and second preparation were undergone extraction and of the third the mineralization procedures. The concentration of copper in solution was determined by differential pulse voltammetry (DP) using comparison with standard technique. In the validation process, the selectivity, accuracy, precision and linearity of DP determination of copper in three preparations were estimated. Copper was determined within the concentration range of 1-9 ppm (1-9 microg/mL): the mean recoveries approached 102% (A), 100% (B), 102% (V); the relative standard deviations of determinations (RSD) were 0.79-1.59% (A), 0.62-0.85% (B) and 1.68-2.28% (V), respectively. The mean recoveries and the RSDs of determination satisfied the requirements for the analyte concentration at the level 1-10 ppm. The statistical verification confirmed that the tested voltammetric method is suitable for determination of copper in pharmaceutical preparation.

  8. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  9. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    International Nuclear Information System (INIS)

    Selishcheva, Elena; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2012-01-01

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In 2 O 3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV–Vis-absorption spectroscopy are used to characterize the samples.

  10. Test procedures for salt rock

    International Nuclear Information System (INIS)

    Dusseault, M.B.

    1985-01-01

    Potash mining, salt mining, design of solution caverns in salt rocks, disposal of waste in salt repositories, and the use of granular halite backfill in underground salt rock mines are all mining activities which are practised or contemplated for the near future. Whatever the purpose, the need for high quality design parameters is evident. The authors have been testing salt rocks in the laboratory in a number of configurations for some time. Great care has been given to the quality of sample preparation and test methodology. This paper describes the methods, presents the elements of equipment design, and shows some typical results

  11. Thermochemical Properties of Nicotine Salts

    Directory of Open Access Journals (Sweden)

    Riggs DM

    2014-12-01

    Full Text Available The thermal gravimetric analysis (TGA and differential scanning calorimetry (DSC results presented in this report clearly show that the thermal stability and the endothermic peak nicotine release temperatures are different for different nicotine salts and these temperatures appear to be linked to the general microstructural details of the salt itself. In addition, the peak nicotine release temperatures are highly dependent upon the sample size used. The heat of vaporization for neat (non-protonated nicotine is also sample-size dependent. The TGA data showed that the least stable of the salts tested at elevated temperatures was the liquid salt nicotine triacetate followed by the crystalline materials (e.g., nicotine gallate and finally, the amorphous salts (e.g., nicotine alginate. The DSC results revealed that the liquid and crystalline salts exhibit nicotine release endotherms that are strongly related to the sample weight being tested. The amorphous salts show nicotine endotherm peak temperatures that are nearly independent of the sample weight. The range of peak nicotine release temperatures varied depending upon the specific salts and the sample size from 83 oC to well over 200 oC. Based on these results, the evolution of nicotine from the nicotine salt should be expected to vary based on the composition of the salt, the details of its microstructure, and the amount of nicotine salt tested.

  12. Copper(I) coordination compounds with closododecaborate anion

    International Nuclear Information System (INIS)

    Malinina, E.A.; Drozdova, V.V.; Mustyatsa, V.N.; Goeva, L.V.; Polyakova, I.N.; Votinova, N.A.; Zhizhin, K.Yu.; Kuznetsov, N.T.

    2006-01-01

    Cu(I) Complexes with closo-dodecaborate anion Cat[CuB 12 H 12 ], where Cat= Cs + , Ph 4 P + , Ph 4 As + , R x NH 4-x + (R=Me, Et, Pr, Bu, X=3-4) are synthesized. Synthesis of complexes was conducted in the copper(II) salt-salt of dodecaborate anion-sulfur dioxide (sodium sulfite) system. Structure of the complex [Cu 2 (NCCH 3 ) 4 B 12 H 12 ] assigned by X-ray structural analysis discloses that B 12 H 12 2- anion enters into the inner sphere of metal-complexing agent, and connection of closo-borate ligand with the metal is caused by the formation of three-centric metal-hydrogen-boron bonds [ru

  13. The material flow of salt

    International Nuclear Information System (INIS)

    Kostick, D.S.

    1993-01-01

    Salt (NaCl) is a universal mineral commodity used by virtually every person in the world. Although a very common mineral today, at one time it was considered as precious as gold in certain cultures. This study traces the material flow of salt from its origin through the postconsumer phase of usage. The final disposition of salt in the estimated 14,000 different uses, grouped into several macrocategories, is traced from the dispersive loss of salt into the environment to the ultimate disposal of salt-base products into the waste stream after consumption. The base year for this study is 1990, in which an estimated 196 million short tons of municipal solid waste was discarded by the US population. Approximately three-fourths of domestic salt consumed is released to the environment and unrecovered while about one-fourth is discharged to landfills and incinerators as products derived from salt. Cumulative historical domestic production, trade, and consumption data have been compiled to illustrate the long-term trends within the US salt industry and the cumulative contribution that highway deicing salt has had on the environment. Salt is an important component of drilling fluids in well drilling. It is used to flocculate and to increase the density of the drilling fluid in order to overcome high down-well gas pressures. Whenever drilling activities encounter salt formations, salt is added to the drilling fluid to saturate the solution and minimize the dissolution within the salt strata. Salt is also used to increase the set rate of concrete in cemented casings. This subsector includes companies engaged in oil, gas, and crude petroleum exploration and in refining and compounding lubricating oil. It includes SIC major groups 13 and 29. 13 refs., 14 figs., 6 tabs

  14. Gold-Copper alloy “nano-dumplings” with tunable compositions and plasmonic properties

    International Nuclear Information System (INIS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2016-01-01

    The unique yet tunable optical properties of plasmonic metal nanoparticles have made them attractive targets for a wide range of applications including nanophotonics, molecular sensing, catalysis etc. Such diverse applications that require precisely stable / reproducible plasmonic properties depend sensitively on the particle morphology ie. the shape, size and constituents. Herein, we systematically study the size / shape controlled synthesis of gold-copper “dumpling” shaped alloy nanoparticles by simultaneous reduction of gold and copper salts in the PVP-methanol solute-solvent system, by effectively utilizing the efficient but mild reduction as well as capping abilities of Poly (N-vinylpyrrolidone). Introduction of copper salts not only yielded the alloy nanoparticles, but also slowed down the growth process to maintain high mono-dispersity of the new shapes evolved. Copper and gold has different lattice constants (0.361 and 0.408 nm respectively) and hence doping/addition/replacement of copper atoms to gold FCC unit cell introduces strain into the lattice which is key parameter to the shape evolution in anisotropic nanoparticles. Synthesized alloy nanoparticles were characterized by UV-visible absorption spectroscopy, XRD and TEM imaging.

  15. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    Science.gov (United States)

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  16. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  17. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  18. Influence of complexing on physicochemical properties of polymer-salt solutions. Vliyanie kompleksoobrazovaniya na fiziko-khimicheskie svojstva polimerno-solevykh rastvorov

    Energy Technology Data Exchange (ETDEWEB)

    Ostroushko, A A; Yushkova, S M; Koridze, N V; Skobkoreva, N V; Zhuravleva, L I; Palitskaya, T A; Antropova, S V; Ostroushko, I P [Ural' skij Gosudarstvennyj Univ., Sverdlovsk (Russian Federation) AN SSSR, Moscow (Russian Federation). Inst. Obshchej i Neorganicheskoj Khimii

    1993-06-01

    Using the methods of spectrophotometry, viscosimetry, conductometry the influence of salt-polymer complexing processes on physicochemical prperties of aqueous solutions of yttrium, barium, copper nitrates and formates with polyvinyl alcohol was studied. Change of dynamic viscosity, specific electric conductivity of solutions in the process of complexing was shown. Thermal effects of salt-polymer interaction were measured. It is shown that decrease of transition temperature of polymer to plastic state in films, temperature and effective activation energy of salt decomposition is also connected with complexing. Effective values of surface tension on the boundary with air are measured. Coefficients of cation diffusion in polymer-salt solutions are estimated.

  19. Where Does Road Salt Go - a Static Salt Model

    Science.gov (United States)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  20. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  1. Research on the effect of alkali roasting of copper dross on leaching rate of indium

    Science.gov (United States)

    Dafang, Liu; Fan, Xingxiang; Shi, Yifeng; Yang, Kunbin

    2017-11-01

    The byproduct copper dross produced during refining crude lead was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrometer (XRF), which showed that copper dross mainly contained lead, copper, zinc, arsenic, antimony, bismuth, sulfur and a small amount of indium and silver etc. The mineralogical phase change of oxidation roasting of copper dross by adding sodium hydroxide was analyzed with the help of XRD and SEM. The effects of water leaching, ratio of sodium hydroxide, roasting time, and roasting temperature on leaching rate of indium were investigated mainly. The experimental results showed that phase of lead metal and sulfides of lead, copper and zinc disappeared after oxidation roasting of copper dross by adding sodium hydroxide, new phase of oxides of lead, copper, zinc and sodium salt of arsenic and antimony appeared. Water leaching could remove arsenic, and acid leaching residue obtained was then leached with acid. The leaching rate of indium was higher 6.98% compared with alkali roasting of copper dross-acid leaching. It showed that removing arsenic by water leaching and acid leaching could increase the leaching rate of indium and be beneficial to reducing subsequent acid consumption of extracting indium by acid leaching. The roasting temperature had a significant effect on the leaching rate of indium, and leaching rate of indium increased with the rise of roasting temperature. When roasting temperature ranged from 450°C to 600°C, leaching rate of indium increased significantly with the rise of roasting temperature. When roasting temperature rose from 450°C to 600°C, leaching rate of indium increased by 60.29%. The amount of sodium hydroxide had an significant effect on the leaching rate of indium, and the leaching of indium increased with the increase of the amount of sodium hydroxide, and the leaching rate of indium was obviously higher than that of copper dross blank roasting and acid leaching.

  2. Generic aspects of salt repositories

    International Nuclear Information System (INIS)

    Laughon, R.B.

    1979-01-01

    The history of geological disposal of radioactive wastes in salt is presented from 1957 when a panel of the National Academy of Sciences-National Research Council recommended burial in bedded salt deposits. Early work began in the Kansas, portion of the Permian Basin where simulated wastes were placed in an abandoned salt mine at Lyons, Kansas, in the late 1960's. This project was terminated when the potential effect of nearby solution mining activities could not be resolved. Evaluation of bedded salts resumed a few years later in the Permian Basin in southeastern New Mexico, and search for suitable sites in the 1970's resulted in the formation of the National Waste Terminal Storage Program in 1976. Evaluation of salt deposits in many regions of the United States has been virtually completed and has shown that deposits having the greatest potential for radioactive waste disposal are those of the largest depositional basins and salt domes of the Gulf Coast region

  3. Development of High Throughput Salt Separation System with Integrated Liquid Salt Separation - Salt Distillation Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sangwoon; Park, K. M.; Kim, J. G.; Jeong, J. H.; Lee, S. J.; Park, S. B.; Kim, S. S.

    2013-01-15

    The capacity of a salt distiller should be sufficiently large to reach the throughput of uranium electro-refining process. In this study, an assembly composing a liquid separation sieve and a distillation crucible was developed for the sequential operation of a liquid salt separation and a vacuum distillation in the same tower. The feasibility of the sequential salt separation was examined by the rotation test of the sieve-crucible assembly and sequential operation of a liquid salt separation and a vacuum distillation. The adhered salt in the uranium deposits was removed successfully. The salt content in the deposits was below 0.1 wt% after the sequential operation of the liquid salt separation - salt distillation. From the results of this study, it could be concluded that efficient salt separation can be realized by the sequential operation of liquid salt separation and vacuum distillation in one distillation tower since the operation procedures are simplified and no extra operation of cooling and reheating is necessary.

  4. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  5. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  6. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  7. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  8. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  9. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  10. Zechstein salt Denmark. Vol. 1

    International Nuclear Information System (INIS)

    Lyngsie Jacobsen, F.; Soenderholm, M.; Springer, N.; Gutzon Larsen, J.; Lagoni, P.; Fabricius, J.

    1984-01-01

    The Salt Research Project EFP-81 has mainly been aiming upon an elucidation of the stratigraphy of the Danish Zechstein evaporites. Also an attempt to clarify the connection between the fabric and the strength of the strongly deformed domal rock salt is performed. The unravelling of the stratigraphy is carried out by means of renewed interpretations of new and old data from all the wells drilling in the Danish Permian basin in connection with a revaluation of the core descriptions. By means of trace elements analysis it is possible to some extent to distinguish between Zestein 1 and 2 ''grey salt''. A description of the transition zone between Zechstein 1 and 2 is carried out. New methods of fabric analyses are introduced and the strength measurements of the rock salt are treated statistically in connection with new defined rock salt parameters. An investigation of fluid inclusions in halite and quartz crystals from dome salt has resulted in the determination of salinity and chemical composition of the brines present in the salt. Temperatures and corresponding pressures during the evolution of the salt pillow and salt dome have been established. The dehydration conditions of natural carnallite in situ are clarified. (author)

  11. Salt formations offer disposal alternative

    International Nuclear Information System (INIS)

    Funderburk, R.

    1990-01-01

    This paper discusses how three U.S. firms are spending millions to permit and build underground disposal sites in salt formations. These companies claim salt is the ideal geological medium for holding hazardous wastes. Two Texas locations and one in Michigan have been targeted as future sites for hazardous waste disposal. The Michigan site, outside Detroit, is a former salt mine 2,000 feet beneath the Ford Motor Co. (Detroit) assembly works in Dearborn. Both Texas sites are atop salt domes---one east and one west of Houston

  12. Fused salt electrolysis

    International Nuclear Information System (INIS)

    Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    Working conditions for zirconium preparation by fused salt electrolysis were studied. For such purpose, a cell was built for operation under argon atmosphere. A graphite crucible served as anode, with steel cathodes. Proper design allowed cathode rechange under the inert atmosphere. Cathodic deposits of zirconium powder occluded salts from the bath. After washing with both water and hydrochloric acid, the metallic powder was consolidated by fusion. Optimum operating conditions were found to arise from an electrolyte of 12% potassium hexafluorzirconate -88% sodium chloride, at 820 deg C and 5 A/cm 2 cathodic current density. Deposits contained 35% of metal and current efficiency reached 66%. The powder contained up to 600 ppm of chlorine and 1.700 ppm of fluorine; after fusion, those amounts decreased to 2 ppm and 3 ppm respectively, with low proportion of metallic impurities. Though oxygen proportion was 4.500 ppm, it should be lowered by improving working conditions, as well as working on an ampler scale. (Author)

  13. Molten salt fueled reactors with a fast salt draining

    International Nuclear Information System (INIS)

    Ventre, Edmond; Blum, J.M.

    1976-01-01

    This invention relates to a molten salt nuclear reactor which comprises a new arrangement for shutting it down in complete safety. This nuclear reactor has a molten salt primary circuit comprising, in particular, the core of this reactor. It includes a leak tight vessel the capacity of which is appreciably greater than that of the molten salt volume of the circuit and placed so that the level of the molten salt, when all the molten salt of the circuit is contained in this vessel, is less than that of the base of the core. There are facilities for establishing and maintaining an inert gas pressure in the vessel above the molten salt, for releasing the compressed gas and for connecting the vessel to the primary circuit entering this vessel at a lower level than that of the molten salt and enabling molten salt to enter or leave the vessel according to the pressure of the inert gas. The particular advantage of this reactor is that it can be shut down safely since the draining of the primary circuit no longer results from a 'positive action' but from the suppression of an arrangement essential for the operation of the reactor consisting of the build-up of the said inert gas pressure in the said vessel [fr

  14. A copper-mediated reverse aromatic Finkelstein reaction in ionic liquid

    Directory of Open Access Journals (Sweden)

    Anh T.H. Nguyen

    2018-03-01

    Full Text Available We have developed a general method for reverse aromatic Finkelstein reactions. Good reaction yields were obtained when aryl iodides or aryl bromides were treated with copper halide salts as promoters in a 1-butyl-3-methylimidazolium bromide ([BMIM]Br ionic liquid (IL solvent at 140 °C for 8 h. Preliminary investigation supported that the copper salts were also the halide sources in halogen exchange reactions. The optimized conditions are applicable to a variety of substrates and have excellent functional group tolerance. Additionally, the [BMIM]Br solvent showed good stability for at least 10 consecutive runs. Results indicated that the [BMIM]Br solvent was recyclable for reverse aromatic Finkelstein reactions.

  15. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  16. Experiments in connection with Salt Domes

    NARCIS (Netherlands)

    Escher, B.G.; Kuenen, Ph.H.

    1928-01-01

    The different theories concerning the origin of Salt Domes in Roumania, Germany, Texas, Louisiana, Colorado and Utah are discussed. In Roumania the salt occurs in cores of “Diapir” anticlines. The existance of hills of salt indicates, that the salt is still pushing upwards. In Germany the salt

  17. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  18. The copper deposits of Michigan

    Science.gov (United States)

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  19. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  20. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  1. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  2. Corrosion aspects of high-level waste disposal in salt domes

    International Nuclear Information System (INIS)

    Roerbo, K.

    1979-12-01

    In the ELSAM/ELKRAT waste management project it is planned that the high-level waste is glassified, encapsuled in canisters and finally deposited in a deep hole drilled in a salt dome. In the present report corrosion aspects of the canisters after deposition are discussed. The chemical environment will probably be a limited amount of brine coming from brine inclusions in the surrounding salt and moving up against the temperature gradient, the temperature at the canister surface being in the range of 100-150degC. The possible types of corrosion and the expected corrosion rates for a number of potential canister materials (mild steel, austenitic and ferritic stainless steels, Ni-base alloys, copper, titanium and a few combinations of materials) are discussed. Mild steel (possibly combined with an inner layer of copper or titanium) might possibly be an appropriate choice of material for the canister. (author)

  3. Nitric acid recycling and copper nitrate recovery from effluent.

    Science.gov (United States)

    Jô, L F; Marcus, R; Marcelin, O

    2014-01-01

    The recycling of nitric acid and copper nitrate contained in an industrial effluent was studied. The experiments conducted on such a medium showed that the presence of copper nitrate significantly improves nitric acid-water separation during distillation in an azeotropic medium. At the temperature of the azeotrope, however, this metal salt starts to precipitate, making the medium pasty, thus inhibiting the nitric acid extraction process. The optimisation of parameters such as column efficiency and adding water to the boiler at the azeotrope temperature are recommended in this protocol in order to collect the various components while avoiding the formation of by-products: NOx compounds. Thus, the absence of column, along with the addition of a small volume of water at a temperature of 118 °C, significantly increases the yield, allowing 94 % nitric acid to be recovered at the end of the process, along with the residual copper nitrate. The resulting distillate, however, is sufficiently dilute to not be used as is. Rectification is required to obtain concentrated nitric acid at 15 mol·l(-1), along with a weakly acidic distillate from the distillation front. This latter is quenched using potassium hydroxide and is used as a fertiliser solution for horticulture or sheltered market gardening. This process thus allows complete recycling of all the medium's components, including that of the distillate resulting from the nitric acid rectification operation.

  4. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  5. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  6. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.

    Science.gov (United States)

    Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A

    2016-12-19

    We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Improvement to molten salt reactors

    International Nuclear Information System (INIS)

    Bienvenu, Claude.

    1975-01-01

    The invention proposes a molten salt nuclear reactor whose core includes a mass of at least one fissile element salt to which can be added other salts to lower the melting temperature of the mass. This mass also contains a substance with a low neutron capture section that does not give rise to a chemical reaction or to an azeotropic mixture with these salts and having an atmospheric boiling point under that of the mass in operation. Means are provided for collecting this substance in the vapour state and returning it as a liquid to the mass. The kind of substance chosen will depend on that of the molten salts (fissile element salts and, where required, salts to lower the melting temperature). In actual practice, the substance chosen will have an atmospheric pressure boiling point of between 600 and 1300 0 C and a melting point sufficiently below 600 0 C to prevent solidification and clogging in the return line of the substance from the exchanger. Among the materials which can be considered for use, mention is made of magnesium, rubidium, cesium and potassium but metal cesium is not employed in the case of many fissile salts, such as fluorides, which it would reduced to the planned working temperatures [fr

  8. Caenorhabditis elegans response to salt

    NARCIS (Netherlands)

    O.O. Umuerri (Oluwatoroti Omowayewa)

    2012-01-01

    textabstractThis thesis describes my work, where I used genetic methods to identify new genes involved in salt taste in C. elegans. In addition, I used calcium imaging to characterize the cellular response of C. elegans to salt. The thesis is divided into five sections and each section is summarized

  9. Molten salt reactor type

    International Nuclear Information System (INIS)

    1977-01-01

    This document is one of the three parts of a first volume devoted to the compilations of American data on the molten salt reactor concept. This part describes the MSBR core (data presented are from ORNL 4541). The principal characteristics of the core are presented in tables together with plane and elevation drawings, stress being put upon the reflector, and loading and unloading. Neutronic, and thermal and hydraulic characteristics (core and reflectors) are more detailed. The reasons why a graphite with a tight graphite layer has been chosen are briefly exposed. The physical properties of the standard graphite (irradiation behavior) have been determined for an isotropic graphite with fine granulometry; its dimensional variations largely ressemble that of Gilsonite. The mechanical stresses computed (Wigner effect) do not implicate in any way the graphite stack [fr

  10. The Salt II Treaty

    International Nuclear Information System (INIS)

    Caldwell, D.

    1991-01-01

    The first strategic arms limitation talks resulted in two agreements: the Anti-Ballistic Missile Treaty and the Interim Agreement to Limit Strategic Offensive Arms. Senator Henry M. (Scoop) Jackson (D-Wa.) was concerned about the numerical advantage granted to the USSR by the Latter agreement and proposed an amendment that would prohibit future negotiators from granting the Soviet Union similar terms. This paper discusses the second round of SALT negotiations which opened in November 1972 and continued under presidents Richard M. Nixon, Gerald Ford, and Jimmy Carter. As the negotiators met, U.S. and Soviet scientists and engineers continued their work to develop new nuclear weapons and launchers. Particularly problematic were modern, large ballistic missiles, cruise missiles, and the Soviet Backfire bomber

  11. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  12. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  13. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  14. Cotton fabrics with UV blocking properties through metal salts deposition

    International Nuclear Information System (INIS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Introducing metal salt based UV-blocking properties into cotton fabric. • A quite simple technique used to produce wash resistant UV-absorbers using different Cu-, Zn- and Ti-salts. • Good UPF was obtained after treatment with Cu and Ti salts, and ranged between 11.6 and 14. • The efficiency of the deposited metal oxides is compared on molar basis. - Abstract: Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1–46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  15. Method For Creating Corrosion Resistant Surface On An Aluminum Copper Alloy

    Science.gov (United States)

    Mansfeld, Florian B.; Wang, You; Lin, Simon H.

    1997-06-03

    A method for treating the surface of aluminum alloys hang a relatively high copper content is provided which includes the steps of removing substantially all of the copper from the surface, contacting the surface with a first solution containing cerium, electrically charging the surface while contacting the surface in an aqueous molybdate solution, and contacting the surface with a second solution containing cerium. The copper is substantially removed from the surface in the first step either by (i) contacting the surface with an acidic chromate solution or by (ii) contacting the surface with an acidic nitrate solution while subjecting the surface to an electric potential. The corrosion-resistant surface resulting from the invention is excellent, consistent and uniform throughout the surface. Surfaces treated by the invention may often be certified for use in salt-water services.

  16. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  17. NID Copper Sample Analysis

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Zhu, Zihua

    2011-01-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76 Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76 Ge. The DEMONSTRATOR will utilize 76 Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  18. Salt brickwork as long-term sealing in salt formations

    International Nuclear Information System (INIS)

    Walter, F.; Yaramanci, U.

    1993-01-01

    Radioactive wastes can be disposed of in deep salt formations. Rock salt is a suitable geologic medium because of its unique characteristics. Open boreholes, shafts and drifts are created to provide physical access to the repository. Long-term seals must be emplaced in these potential pathways to prevent radioactive release into the biosphere. The sealing materials must be mechanically and, most important, geochemically stable within the host rock. Salt bricks made from compressed salt-powder are understood to be the first choice long-term sealing material. Seals built of salt bricks will be ductile. Large sealing systems are built by combining the individual bricks with mortar. Raw materials for mortar are fine-grained halite powder and ground saliferous clay. This provides for the good adhesive strength of the mortar to the bricks and the high shear-strength of the mortar itself. To test the interaction of rock salt with an emplaced long-term seal, experiments will be carried out in situ, in the Asse salt mine in Germany. Simple borehole sealing experiments will be performed in horizontal holes and a complicated drift sealing experiment is planned, to demonstrate the technology of sealing a standard size drift or shaft inside a disturbed rock mass. Especially, the mechanical stability of the sealing system has to be demonstrated

  19. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  20. [Tolerance of the association sucralfate / Cu-Zn salts in radiation dermatitis].

    Science.gov (United States)

    De Rauglaudre, G; Courdi, A; Delaby-Chagrin, F; d'Hombres, A; Hannoun-Levi, J-M; Moureau-Zabotto, L; Richard-Tallet, A; Rouah, Y; Salem, N; Thomas, O; Nocera, T; Mery, S; Merial-Kieny, C

    2008-01-01

    The aim of this study was to evaluate the tolerance of topical application of the combination sucralfate / copper zinc salts in radiation dermatitis in women suffering from breast cancer and treated by radiotherapy. 47 patients (average age : 57,5 years) that have to be treated by radiation therapy on non lesional areas, were included into this open multicentric study. They had to apply Cicalfate cream twice a day, from the fi rst radiation therapy session and during 10 weeks. Patients were treated by photon- or electrontherapy (72 % et 28 %, respectively; cumulated total dose : 58,6Gy). Tolerance was considered to be excellent. The radiation dermatitis (score NCIC > or = 2) was noted at the 3rd week of radiotherapy only in 5 % of the subjects and in 53 % of the subjects, the last week of treatment. Pruritus was significantly increased at D21. Pain and discomfort were increased at D28, but remained low intensity. The soothing effect of the combination of sucralfate/ copper zinc salts were considered satisfying or very satisfying by investigators and patients during the study, varying from 94 to 100 % of satisfaction. The impact of radiation therapy on the patients'quality of life, assessed by DLQI, evaluated at the end of the study was not statistically different from the score calculated at D7 (DLQI=0,8 et D7 versus DLQI=1 at D70). Thus, topical application of the combination sucralfate / copper zinc salts can be used in the indication radiation dermatitis.

  1. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  2. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  3. Moltex Energy's stable salt reactors

    International Nuclear Information System (INIS)

    O'Sullivan, R.; Laurie, J.

    2016-01-01

    A stable salt reactor is a molten salt reactor in which the molten fuel salt is contained in fuel rods. This concept was invented in 1951 and re-discovered and improved recently by Moltex Energy Company. The main advantage of using molten salt fuel is that the 2 problematic fission products cesium and iodine do not exist in gaseous form but rather in a form of a salt that present no danger in case of accident. Another advantage is the strongly negative temperature coefficient for reactivity which means the reactor self-regulates. The feasibility studies have been performed on a molten salt fuel composed of sodium chloride and plutonium/uranium/lanthanide/actinide trichloride. The coolant fluid is a mix of sodium and zirconium fluoride salts that will need low flow rates. The addition of 1 mol% of metal zirconium to the coolant fluid reduces the risk of corrosion with standard steels and the addition of 2% of hafnium reduces the neutron dose. The temperature of the coolant is expected to reach 650 Celsius degrees at the exit of the core. This reactor is designed to be modular and it will be able to burn actinides. (A.C.)

  4. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  5. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  6. Impacts of using salt and salt brine for roadway deicing.

    Science.gov (United States)

    2014-06-01

    Idaho Transportation Department (ITD) uses a variety of methods to help ensure safe travel on the state highway system : following winter storm events. These methods include plowing, use of sand to improve traction, and use of salt and chemical : com...

  7. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  8. Molten salts in nuclear reactors

    International Nuclear Information System (INIS)

    Dirian, J.; Saint-James

    1959-01-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [fr

  9. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  10. Rock salt constitutive modeling

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1980-01-01

    The Serata model is the best operational model available today because it incorporates: (1) a yield function to demarcate between viscoelastic and viscoplastic behavior of rock salt; (2) a pressure and temperature dependence for yield stresses; and (3) a standard linear solid, which can be readily extended into the non-linear regime, to represent creep behavior. Its only deficiencies appear to be the lack of secondary creep behavior (a free dashpot) and some unsettling arbitrariness about the Poisson's ratio (ν → 0.5) argument for viscoplasticity. The Sandia/WIPP model will have good primary and secondary creep capability, but lacks the viscoplastic behavior. In some cases, estimated inelastic strains may be underpredicted. If a creep acceleration mechanism associated with brine inclusions is observed, this model may require extensive revision. Most of the other models available (SAI, RE-SPEC, etc.) are only useful for short-term calculations, because they employ temporal power law (t/sup n/) primary creep representations. These models are unsatisfactory because they cannot represent dual mechanisms with differing characteristic times. An approach based upon combined creep and plasticity is recommended in order to remove the remaining deficiency in the Serata model. DOE/Sandia/WIPP should be encouraged to move aggressively in this regard

  11. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  12. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  13. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  14. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  15. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  16. Figurines in Pietrele: Copper Age ideology

    Directory of Open Access Journals (Sweden)

    Svend Hansen

    2011-12-01

    Full Text Available Major trends in figurine production of the copper age settlement of Pietrele (Romania are discussed. The bone figurines are seen as an ideological innovation of the Early Copper Age system in the Eastern Balkans.

  17. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  18. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  19. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  20. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  1. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  2. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  3. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    Science.gov (United States)

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-01-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.

  4. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey); East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum (Turkey); Genişel, Mucip, E-mail: m.genisel@hotmail.com [Department of Crop and Animal Production, Vocational High School, Agri (Turkey); Erdal, Serkan, E-mail: serkanerdal25@hotmail.com [Biology Department, Science Faculty, Ataturk University, Erzurum (Turkey)

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combined application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.

  5. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  6. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  7. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi......-quantitatively and also accounts for the stored energy of cold-work. An interesting feature of the model is that it shows very clearly that, although dislocation pile-ups may exist, the flow stress of the composite is entirely due to the resistance to dislocation motion in the tangles of forest dislocations....

  8. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  9. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  10. INORGANIC AND ORGANIC ONIUM SALTS

    Science.gov (United States)

    The nitrosonium NO ion absorbs in the infrared between 1/2400 and 1/ 2150 cm. Salts of complex fluoro-acids absorb at higher frequencies than salts...halide adducts generally contain nitrosonium ions . Hexaphenylditin does not undergo marked heterolytic dissociation in nitromethane solution...influencing the covalent-ionic equilibrium are discussed. Infrared spectrum nitrosonium ion ; ionic character in lattice and position nitrosonium ion absorption

  11. Microbiology of solar salt ponds

    Science.gov (United States)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  12. Molten-salt converter reactors

    International Nuclear Information System (INIS)

    Perry, A.M.

    1975-01-01

    Molten-salt reactors appear to have substantial promise as advanced converters. Conversion ratios of 0.85 to 0.9 should be attainable with favourable fuel cycle costs, with 235 U valued at $12/g. An increase in 235 U value by a factor of two or three ($10 to $30/lb. U 3 O 8 , $75/SWU) would be expected to increase the optimum conversion ratio, but this has not been analyzed in detail. The processing necessary to recover uranium from the fuel salt has been partially demonstrated in the MSRE. The equipment for doing this would be located at the reactor, and there would be no reliance on an established recycle industry. Processing costs are expected to be quite low, and fuel cycle optimization depends primarily on inventory and burnup or replacement costs for the fuel and for the carrier salt. Significant development problems remain to be resolved for molten-salt reactors, notably the control of tritium and the elimination of intergranular cracking of Hastelloy-N in contact with tellurium. However, these problems appear to be amenable to solution. It is appropriate to consider separating the development schedule for molten-salt reactors from that for the processing technology required for breeding. The Molten-Salt Converter Reactor should be a useful reactor in its own right and would be an advance towards the achievement of true breeding in thermal reactors. (author)

  13. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  14. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    Science.gov (United States)

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Sayed Zia, E-mail: szmohammadi@yahoo.com [Department of Chemistry, Payame Noor University (PNU), Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment Department, Institute Research of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Baghelani, Yar Mohammad [Department of Chemistry, Payame Noor University (PNU), Kerman (Iran, Islamic Republic of)

    2009-10-27

    In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL{sup -1}-0.6 {mu}g mL{sup -1} of copper with R{sup 2} = 0.9985. Detection limit was 0.5 ng mL{sup -1} in original solution (3S{sub b}/m) and the relative standard deviation for seven replicate determination of 0.2 {mu}g mL{sup -1} copper was {+-}1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.

  16. Copper Metal-Organic Framework Nanoparticles Stabilized with Folic Acid Improve Wound Healing in Diabetes.

    Science.gov (United States)

    Xiao, Jisheng; Zhu, Yunxiao; Huddleston, Samantha; Li, Peng; Xiao, Baixue; Farha, Omar K; Ameer, Guillermo A

    2018-02-27

    The successful treatment of chronic nonhealing wounds requires strategies that promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Copper ions have been reported to stimulate angiogenesis; however, several applications of copper salts or oxides to the wound bed are required, leading to variable outcomes and raising toxicity concerns. We hypothesized that copper-based metal-organic framework nanoparticles (Cu-MOF NPs), referred to as HKUST-1, which are rapidly degraded in protein solutions, can be modified to slowly release Cu 2+ , resulting in reduced toxicity and improved wound healing rates. Folic acid was added during HKUST-1 synthesis to generate folic-acid-modified HKUST-1 (F-HKUST-1). The effect of folic acid incorporation on NP stability, size, hydrophobicity, surface area, and copper ion release profile was measured. In addition, cytotoxicity and in vitro cell migration processes due to F-HKUST-1 and HKUST-1 were evaluated. Wound closure rates were assessed using the splinted excisional dermal wound model in diabetic mice. The incorporation of folic acid into HKUST-1 enabled the slow release of copper ions, which reduced cytotoxicity and enhanced cell migration in vitro. In vivo, F-HKUST-1 induced angiogenesis, promoted collagen deposition and re-epithelialization, and increased wound closure rates. These results demonstrate that folic acid incorporation into HKUST-1 NPs is a simple, safe, and promising approach to control Cu 2+ release, thus enabling the direct application of Cu-MOF NPs to wounds.

  17. Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions

    International Nuclear Information System (INIS)

    Mohammadi, Sayed Zia; Afzali, Daryoush; Baghelani, Yar Mohammad

    2009-01-01

    In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL -1 -0.6 μg mL -1 of copper with R 2 = 0.9985. Detection limit was 0.5 ng mL -1 in original solution (3S b /m) and the relative standard deviation for seven replicate determination of 0.2 μg mL -1 copper was ±1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.

  18. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  19. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  20. On the possibility of reprocessing of fuel elements of dispersion type with copper matrix by pyrochemical methods

    International Nuclear Information System (INIS)

    Vasin, B.D.; Ivanov, V.A.; Shchetinskij, A.V.; Vavilov, S.K.; Savochkin, Yu.P.; Bychkov, A.V.; Kormilitsyn, M.V.

    2005-01-01

    A consideration is given to pyrochemical processes suitable for separation of uranium dioxide from structural materials when reprocessing cermet type fuel elements. The estimation of the possibility to apply liquid antimony and bismuth, potassium and copper chlorides melts is made. The specimens compacted of copper and uranium dioxide powders in a stainless steel can are used as simulators of fuel element sections. It is concluded that the dissolution of structural materials in molten salts at the stage of uranium dioxide concentration is the process of choice for reprocessing of dispersion type fuel elements [ru

  1. Structure and thermodynamics of molten salts

    International Nuclear Information System (INIS)

    Papatheodorou, G.N.

    1983-01-01

    This chapter investigates single-component molten salts and multicomponent salt mixtures. Molten salts provide an important testing ground for theories of liquids, solutions, and plasmas. Topics considered include molten salts as liquids (the pair potential, the radial distribution function, methods of characterization), single salts (structure, thermodynamic correlations), and salt mixtures (the thermodynamics of mixing; spectroscopy and structure). Neutron and X-ray scattering techniques are used to determine the structure of molten metal halide salts. The corresponding-states theory is used to obtain thermodynamic correlations on single salts. Structural information on salt mixtures is obtained by using vibrational (Raman) and electronic absorption spectroscopy. Charge-symmetrical systems and charge-unsymmetrical systems are used to examine the thermodynamics of salt mixtures

  2. Electrodeposition of copper composites from deep eutectic solvents based on choline chloride.

    Science.gov (United States)

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; McKenzie, Katy J; Ryder, Karl S

    2009-06-07

    Here we describe for the first time the electrolytic deposition of copper and copper composites from a solution of the metal chloride salt in either urea-choline chloride, or ethylene glycol-choline chloride based eutectics. We show that the deposition kinetics and thermodynamics are quite unlike those in aqueous solution under comparable conditions and that the copper ion complexation is also different. The mechanism of copper nucleation is studied using chronoamperometry and it is shown that progressive nucleation leads to a bright nano-structured deposit. In contrast, instantaneous nucleation, at lower concentrations of copper ions, leads to a dull deposit. This work also pioneers the use of the electrochemical quartz crystal microbalance (EQCM) to monitor both current efficiency and the inclusion of inert particulates into the copper coatings. This technique allows the first in situ quantification or particulate inclusion. It was found that the composition of composite material was strongly dependent on the amount of species suspended in solution. It was also shown that the majority of material was dragged onto the surface rather than settling on to it. The distribution of the composite material was found to be even throughout the coating. This technology is important because it facilitates deposition of bright copper coatings without co-ligands such as cyanide. The incorporation of micron-sized particulates into ionic liquids has resulted, in one case, in a decrease in viscosity. This observation is both unusual and surprising; we explain this here in terms of an increase in the free volume of the liquid and local solvent perturbation.

  3. Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces.

    Science.gov (United States)

    Mesnage, Alice; Lefèvre, Xavier; Jégou, Pascale; Deniau, Guy; Palacin, Serge

    2012-08-14

    The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

  4. In Vitro and In Vivo Antibacterial Activity of Some Organic and Inorganic Salts Against Asiatic Citrus Canker Agent Xanthomonas Citri Subsp. Citri

    Directory of Open Access Journals (Sweden)

    Vahideh Hasabi

    2014-07-01

    Full Text Available Asiatic citrus canker caused by Xanthomonas citri subsp. citri is becoming a disease of high economic impact, affecting all types of important citrus crops. In this study, the potential antibacterial activity of ten organic and inorganic salts on X. citri subsp. citri and on citrus canker disease development was evaluated. Among the salt compounds, copper, iron and zinc inorganic salts particularly zinc (with the highest diameter of inhibition, the lowest MIC and MBC values and the highest bacterial growth inhibitory effect had direct antibacterial activity and strongly reduced the development of canker disease and bacterial population of lime plants.

  5. Effects of copper on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, L

    1971-01-01

    The author deals with the effects of copper on mitosis. He found that a Cu concentration of 1 mg per liter is very toxic and strongly inhibits the course of mitosis in Vicia fabia. The effects of 0.5 mg and 0.25 mg Cu concentrations per liter were similar but a much weaker character.

  6. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Unknown

    anticancer drug famotidine has been shown as a better catalyst than CuCl2 for sulfite ... Effect of addition of bis-chelate copper(II) complexes (dpq, •; phen, ; ..... Reproduction, Development & Genetics for their help in the DNA cleavage studies ...

  7. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  8. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  9. Lab Tracker and Copper Calculator

    Science.gov (United States)

    ... have to do with factors of asymmetric neurologic development, such as being right or left-handed. The copper is often seen most prominently in the basal ganglia, the area deep within the brain that coordinates movements. The face of the giant ...

  10. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  11. COPPER CORROSION AND SOLUBILITY RESEARCH

    Science.gov (United States)

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  12. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  13. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  14. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  15. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  16. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  18. Thermal conductivity of crushed salt

    International Nuclear Information System (INIS)

    Kuehn, K.

    Heat transfer through an annular space filled with crushed salt depends primarily on the thermal conductivity, lambda, of the material. This report gives a formula with which lambda can be computed. The formula includes two quantities that can be influenced through screening of the salt smalls: the porosity, psi, and the fraction, alpha, of the more highly resistive heat-flow paths. The report computes and presents graphically the thermal conductivities for various values of psi and alpha. Heat-transfer properties are computed and compared for an annular space filled with crushed salt and for an air gap. The comparison shows that the properties of the annular space are larger only up to a certain temperature, because the properties of the air gap increase exponentially while those f the annular space increase only in an approximately linear way. Experimental results from Project Salt Vault in the U.S. are in good agreement with the calculations performed. Trials in Temperature Experimental Field 2 at the Asse II salt mine will provide an additional check on the calculations. 3 figures, 3 tables

  19. Fracture and Healing of Rock Salt Related to Salt Caverns

    International Nuclear Information System (INIS)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-01-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  20. Copper-Mediated Formation of Aryl, Heteroaryl, Vinyl and Alkynyl Difluoromethylphosphonates: A General Approach to Fluorinated Phosphate Mimics.

    Science.gov (United States)

    Ivanova, Maria V; Bayle, Alexandre; Besset, Tatiana; Poisson, Thomas; Pannecoucke, Xavier

    2015-11-02

    A general and efficient access to aryl, heteroaryl, vinyl and alkynyl difluoromethylphosphonates is described. The developed methodology using TMSCF2PO(OEt)2, iodonium salts and a copper salt provided a straightforward manifold to reach these highly relevant products. The reaction proved to be highly functional group tolerant and proceeded under mild conditions, giving the corresponding products in good to excellent yields. This method represents the first general synthetic route to this important class of fluorinated scaffolds, which are well-recognized as in vivo stable phosphate surrogates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  2. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  3. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    Science.gov (United States)

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  4. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  5. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  6. Salt site performance assessment activities

    International Nuclear Information System (INIS)

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables

  7. Field experiments in salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.

    1986-01-01

    Field experiments in salt formations started as early as 1965 with Project Salt Vault in the Lyons Mine, Kansas, U.S.A., and with the purchase of the Asse salt mine by the German Federal Government. Underground tests concentrated on the heat dissipation around buried high-level radioactive wastes and the geomechanical consequences of their disposal. Near-field investigations cover the properties of water and gas release, radiolysis and corrosion. Further objectives of field experiments are the development and underground testing of a handling system for high-level wastes. The performance of an underground test disposal for such wastes is not only considered to be necessary for technical and scientific reasons but also for improving public acceptance of the concept of radioactive waste disposal. (author)

  8. The molten salt reactor adventure

    International Nuclear Information System (INIS)

    MacPherson, H.G.

    1985-01-01

    A personal history of the development of molten salt reactors in the United States is presented. The initial goal was an aircraft propulsion reactor, and a molten fluoride-fueled Aircraft Reactor Experiment was operated at Oak Ridge National Laboratory in 1954. In 1956, the objective shifted to civilian nuclear power, and reactor concepts were developed using a circulating UF 4 -ThF 4 fuel, graphite moderator, and Hastelloy N pressure boundary. The program culminated in the successful operation of the Molten Salt Reactor Experiment in 1965 to 1969. By then the Atomic Energy Commission's goals had shifted to breeder development; the molten salt program supported on-site reprocessing development and study of various reactor arrangements that had potential to breed. Some commercial and foreign interest contributed to the program which, however, was terminated by the government in 1976. The current status of the technology and prospects for revived interest are summarized

  9. Salt splitting with ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.

    1996-01-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures

  10. Salt effects in electromembrane extraction

    DEFF Research Database (Denmark)

    Seip, Knut Fredrik; Jensen, Henrik; Kieu, Thanh Elisabeth

    2014-01-01

    Electromembrane extraction (EME) was performed on samples containing substantial amounts of NaCl to investigate how the presence of salts affected the recovery, repeatability, and membrane current in the extraction system. A group of 17 non-polar basic drugs with various physical chemical...... this loss and the physical chemical properties of these substances was seen. The recovery loss was hypothesized to be caused by ion pairing in the SLM, and a mathematical model for the extraction recovery in the presence of salts was made according to the experimental observations. Some variations...... to the EME system reduced this recovery loss, such as changing the SLM solvent from NPOE to 6-undecanone, or by using a different EME setup with more favorable volume ratios. This was in line with the ion pairing hypothesis and the mathematical model. This thorough investigation of how salts affect EME...

  11. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  12. Antibacterial activity of nicotine and its copper complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cu(II)-nicotine was isolated from leaves of Nicotiana tabacum using metal ions following the method of Munir et al., 1994. Their antibacterial activity against ten different species of gram positive and gram negative bacteria were studied. For comparative study, pure sample of nicotine and metal salts used for complexation; Copper(II) chloride were also subjected to antibacterial tests with the same species of bacteria under similar conditions. Results indicated that nicotine had no effect on all the bacteria tested except Escherichia coli, Pseudomonas aeroginosa and Enterococcus faecalis, which showed 14 mm zone of inhibition at 200 mu g l00 mul/sup -1/ Copper(II) chloride was found to be effective against seven species and ineffective against three species of selected bacteria. On the other hand, Cu(II)-nicotine complex was ineffective against five species of bacteria at lower level while at higher level, only one species of bacteria showed resistance against this complex. The complex was compared with three standard antibiotics. Thus, this complex can be used against a variety of microorganisms at higher level. (author)

  13. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  14. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  15. Salted, dried and smoked fish

    International Nuclear Information System (INIS)

    Lamprecht, E.; Riley, F.R.; Vermaak, K.; Venn, C.

    1986-01-01

    Heat resistance tests were carried out using a heat resistant strain of red halophiles isolated from a commercial salt and comparing this with three known species, i.e. Halobacterium halobium, H. salinarum and H. antirubrum. These four halophic strains were used to prepare artificially infected salts which were then subjected to three different forms of heat treatment: heat-treatment in oil bath, microwave heating and gamma radiation. The conclusion was made that gamma radiation appears to be less effective than microwave heating at the levels tested

  16. Simulation of salt production process

    Science.gov (United States)

    Muraveva, E. A.

    2017-10-01

    In this paper an approach to the use of simulation software iThink to simulate the salt production system has been proposed. The dynamic processes of the original system are substituted by processes simulated in the abstract model, but in compliance with the basic rules of the original system, which allows one to accelerate and reduce the cost of the research. As a result, a stable workable simulation model was obtained that can display the rate of the salt exhaustion and many other parameters which are important for business planning.

  17. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  18. Relationship Between Salt Intake, Salt-Taste Threshold and Blood ...

    African Journals Online (AJOL)

    Conclusion: Sodium intake measured as 24-hour urinary sodium is increased in subjects with hypertension attesting to sodium intake as a risk factor for the development of high blood pressure. Subjects with high salt taste threshold also have increased urinary sodium excretion which may predispose them to deveploment ...

  19. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  20. Salt tectonics in Santos Basin, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, David G.; Nielsen, Malene; Raven, Madeleine [Maersk Oil and Gas, Copenhagen (Denmark); Menezes, Paulo [Maersk Oil and Gas, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    From Albian to end Cretaceous times, the inboard part of the Santos Basin in Brazil was affected by extension as salt flowed basinwards under the effect of gravity. Salt rollers, flip-flop salt diapirs and the famous Albian Gap were all formed by this process. Outboard of these extensional structures, contraction was taken up in a wide zone of thickened salt where salt collected. The overburden was carried on top of the salt as it flowed down-dip, with up to 40 km of translation recorded in Albian strata. (author)

  1. Molten salt thermal energy storage systems: salt selection

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Huang, V.S.

    1976-08-01

    A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

  2. Salt-Free Strategy for the Insertion of CO2 into C-H Bonds: Catalytic Hydroxymethylation of Alkynes.

    Science.gov (United States)

    Wendling, Timo; Risto, Eugen; Krause, Thilo; Gooßen, Lukas J

    2018-04-20

    A copper(I) catalyst enables the insertion of carbon dioxide into alkyne C-H bonds by using a suitable organic base with which hydrogenation of the resulting carboxylate salt with regeneration of the base becomes thermodynamically feasible. In the presence of catalytic copper(I) chloride/4,7-diphenyl-1,10-phenanthroline, polymer-bound triphenylphosphine, and 2,2,6,6-tetramethylpiperidine as the base, terminal alkynes undergo carboxylation at 15 bar CO 2 and room temperature. After filtration, the ammonium alkynecarboxylate can be hydrogenated to the primary alcohol and water at a rhodium/molybdenum catalyst, regenerating the amine base. This demonstrates the feasibility of a salt-free overall process, in which carbon dioxide serves as a C1 building block in a C-H functionalization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  4. Copper disinfection ban causes storm.

    Science.gov (United States)

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK.

  5. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  6. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  7. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  8. Sources of household salt in South Africa.

    Science.gov (United States)

    Jooste, Pieter L

    2005-01-01

    Marketing of non-iodized salt through unconventional distribution channels is one of the factors weakening the national salt iodization program in South Africa. The aim of this study was therefore to quantify the various sources of household salt, and to relate this information to socio-economic status. Questionnaire information was collected by personal interview during home visits from a multistage, cluster, probability sample of 2164 adults representative of the adult population. Nationally 77.7% of households obtained their table salt from the typical food shops distributing iodized salt. However, in the nine different provinces between 8 and 37.3% of households used unconventional sources, distributing mainly non-iodized salt, to obtain their household salt. These alternative sources include distributors of agricultural salt, small general dealer shops called spaza shops, in peri-urban and rural townships, street vendors and salt saches placed in the packaging of maize meal bags. Country-wide around 30% of low socio-economic households obtained their salt from unconventional sources compared to less than 5% in high socio-economic households, emphasizing the vulnerability of low socio-economic groups to the use of non-iodized salt. Intervention strategies should mobilize all role players involved in unconventional marketing channels of household salt to provide only iodized salt to consumers, as required by law.

  9. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  10. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.; John, E.K.; Barnhart, A.J.

    1990-01-01

    Several isotopes of gallium and copper exhibit nuclear properties that make them attractive for applications in nuclear medicine, most notably Ga-67, Ga-68, Cu-67 and Cu-62. Of these, gamma-emitting Ga-67 has historically found the greatest clinical use, based on the observation that tracer gallium(III) citrate rapidly produces Ga-67 transferrin upon intravenous injection and then slowly affords selective Ga-67 localization in sites of abscess and certain tumors. Copper-67 has received attention as a potential label for tissue-selective monoclonal antibodies, since its associated γ-photons can be used for external imaging and its β - -emissions could be used for radiation therapy. Positron-emitting gallium-68 and copper-62, being available from parent/daughter generator systems, have attracted interest as potential labels for radiopharmaceuticals used in positron emission tomography (PET) because they could reduce the dependence of this imaging technology on hospital-based cyclotrons. The 10 min. half-life of Cu-62 is particularly well-suited to the time frame of PET studies of tissue perfusion, an application for which Cu(II)-bis(thiosemicarbazone) derivatives appear promising. The 68 min. half-life of Ga-68 makes it appropriate for PET studies over longer imaging time spans

  11. Association constants of telluronium salts

    International Nuclear Information System (INIS)

    Kovach, N.A.; Rivkin, B.B.; Sadekov, T.D.; Shvajka, O.P.

    1996-01-01

    Association constants in acetonitrile of triphenyl telluronium salts, which are dilute electrolytes, are determined through the conductometry method. Satisfactory correlation dependence of constants of interion association and threshold molar electroconductivity on the Litvinenko-Popov constants for depositing groups is identified. 6 refs

  12. Properties of organic salt superconductors

    International Nuclear Information System (INIS)

    Whangbo, M.H.; Jung, D.; Evain, M.; Williams, J.M.; Beno, M.A.; Schultz, A.J.

    1989-01-01

    Structural and electronic properties of the β- and κ-phase superconducting salts of organic donor molecules are compared. Importance of donor... donor and donor...anion interactions involving the C-H bonds in setting the lattice softness, the electron-phonon coupling constant, and the superconducting transitions temperature are discussed

  13. Salt decontamination demonstration test results

    International Nuclear Information System (INIS)

    Snell, E.B.; Heng, C.J.

    1983-06-01

    The Salt Decontamination Demonstration confirmed that the precipitation process could be used for large-scale decontamination of radioactive waste sale solution. Although a number of refinements are necessary to safely process the long-term requirement of 5 million gallons of waste salt solution per year, there were no observations to suggest that any fundamentals of the process require re-evaluation. Major accomplishments were: (1) 518,000 gallons of decontaminated filtrate were produced from 427,000 gallons of waste salt solution from tank 24H. The demonstration goal was to produce a minimum of 200,000 gallons of decontaminated salt solution; (2) cesium activity in the filtrate was reduced by a factor of 43,000 below the cesium activity in the tank 24 solution. This decontamination factor (DF) exceeded the demonstration goal of a DF greater than 10,000; (3) average strontium-90 activity in the filtrate was reduced by a factor of 26 to less than 10 3 d/m/ml versus a goal of less than 10 4 d/m/ml; and (4) the concentrated precipitate was washed to a final sodium ion concentration of 0.15 M, well below the 0.225 M upper limit for DWPF feed. These accomplishments were achieved on schedule and without incident. Total radiation exposure to personnel was less than 350 mrem and resulted primarily from sampling precipitate slurry inside tank 48. 3 references, 6 figures, 2 tables

  14. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... [27] Zavoico, AB. Solar Power Tower Design Basis Document. Tech. rep, Sandia National. Laboratories, SAND2001-2100, 2001. How to cite this article: Boukelia T.E, Mecibah M.S and Laouafi A. Performance simulation of parabolic trough solar collector using two fluids (thermic oil and molten salt).

  15. The effect of natural and anthropogenic factors on sorption of copper in chernozem

    Science.gov (United States)

    Bauer, Tatiana; Minkina, Tatiana; Mandzhieva, Saglara; Pinskii, David; Linnik, Vitaly; Sushkova, Svetlana

    2016-04-01

    The aim of this work was to study the effect of the attendant anions and particle-size distribution on the adsorption of copper by ordinary chernozem. Solutions of HM nitrates, acetates, chlorides, and sulfates were used to study the effect of the chemical composition of added copper salts on the adsorption of copper by an ordinary chernozem. Samples of the soil sieved through a 1-mm sieve in the natural ionic form and soil fraction with different particle size (clay - the particle with size chernozem from acetate solutions is described by the Langmuir equation: Cads = C∞ÊLC / (1 + ÊLC), (3) where Cadsis the content of the adsorbed cations, mM/kg soil;C∞ is the maximum adsorption of the HM, mM/kg soil; ÊL is the affinity constant, L/mM; C is the concentration of the HM in the equilibrium solution, mM/L. According to the values of KH, the binding strength of the copper cations adsorbed from different salt solutions decreases in the series: Cu(Ac)2(1880,5± 76,2) > CuCl2(1442,8±113,5) > Cu(NO3)2(911,4 ± 31,1) >> CuSO4(165,3 ± 12,9). Thus, copper is most strongly adsorbed from the acetate solution and least strongly from the sulfate solution. The adsorption of copper by clay and physical clay fractions from the ordinary chernozem was of limited character and followed the (3) equation. In the particle-size fractions separated from the soils, the concentrations of copper decreased with the decreasing particle size. The values of ÊL and C∞characterizing the HM adsorption by the chernozem and its particle-size fractions formed the following sequence: clay (80,20±20,29 and 28,45±0,46 > physical clay (58,20±14,54 and 22,15±1,22) > entire soil (38,80±12,33 and 17,58±3,038). This work was supported by the Russian Ministry of Education and Science, project no. 5.885.2014/K, Russian Foundation for Basic Research, projects no. 14-05-00586 À

  16. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  17. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  18. Dietary salt reduction for control of hypertension

    Directory of Open Access Journals (Sweden)

    Richard Tjan

    2016-02-01

    Full Text Available In developed as well as developing countries, the four main factors affecting blood pressure are high salt intake, low potassium intake, overweight, and low physical activity level. This is also true for the increase in blood pressure with advancing age, occurring in all societies. It is now accepted that excess dietary salt raises blood pressure levels, whereas dietary salt reduction reduces blood pressure and prevents vascular complications.(1 The effect of salt on blood pressure is presumably due to the inability of the kidneys to excrete large amounts of salt, as humans are evolutionary adapted to ingest and excrete less than 1 gram of salt per day.(2 In this connection it should be noted that the more important element in common salt (sodium chloride is the sodium ion, and any restrictions applying to common salt also apply to all food items that contain sodium ions, such as sodium glutamate and baking soda.

  19. Copper Bioleaching in China: Review and Prospect

    OpenAIRE

    Shenghua Yin; Leiming Wang; Eugie Kabwe; Xun Chen; Rongfu Yan; Kai An; Lei Zhang; Aixiang Wu

    2018-01-01

    The commercial application of copper bioleaching, an environmentally-friendly approach for low-grade and secondary mineral resources recycling, has increased worldwide since the 2000s. As the world’s second-largest economic entity and the largest developing country, China has the largest demand for metal resources, significantly advancing the theory and industrial technology of copper bioleaching. This paper reviews the exploration and application of copper bioleaching in China. Two typical b...

  20. World Copper Market Outlook: 2003-2014

    OpenAIRE

    Florela Stoian

    2015-01-01

    This paper presents synthetically the copper market outlook (demand, supply, and prices) during 2003-2014, highlighting the impact of economic crisis of 2008-2009 on the world copper market. During the crisis, the decline in demand caused increases in excess supply of metal, as the supply has followed an upward trend, contributing to the imbalances of the copper market and putting pressure on stock prices at LME London Metal Exchange.

  1. Electrochemical synthesis of highly crystalline copper nanowires

    International Nuclear Information System (INIS)

    Kaur, Amandeep; Gupta, Tanish; Kumar, Akshay; Kumar, Sanjeev; Singh, Karamjeet; Thakur, Anup

    2015-01-01

    Copper nanowires were fabricated within the pores of anodic alumina template (AAT) by template synthesis method at pH = 2.9. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to investigate the structure, morphology and composition of fabricated nanowires. These characterizations revealed that the deposited copper nanowires were highly crystalline in nature, dense and uniform. The crystalline copper nanowires are promising in application of future nanoelectronic devices and circuits

  2. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  3. High temperature salting of fish mince

    OpenAIRE

    Talabi, S.O.; Sorinmade, S.O.; Nwanekezie, R.U.; Aliu, A.

    1986-01-01

    Freshly caught miscellaneous fish were transported to the laboratory, gutted and washed before mechanical separation into bone and mince. Seven batches of the mince were then treated with seven different concentrations (Wt/Wt) of sodium chloride before cooking. The cooked mince was divided into two groups, pressed and unpressed. Percentage residual salt of the salted cooked mince, cooked water and salted pressed mince was determined. Also, the moisture content of the salted cooked mince and s...

  4. Reconsolidated Salt as a Geotechnical Barrier

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Francis D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gadbury, Casey [USDOE Carlsbad Field Office, NM (United States)

    2015-11-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  5. Reconsolidated Salt as a Geotechnical Barrier

    International Nuclear Information System (INIS)

    Hansen, Francis D.; Gadbury, Casey

    2015-01-01

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to one that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  6. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  7. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  8. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  9. Pilot Study of Topical Copper Chlorophyllin Complex in Subjects With Facial Acne and Large Pores.

    Science.gov (United States)

    Stephens, Thomas J; McCook, John P; Herndon, James H

    2015-06-01

    Acne vulgaris is one of the most common skin diseases treated by dermatologists. Salts of copper chlorophyllin complex are semi-synthetic naturally-derived compounds with antioxidant, anti-inflammatory and wound healing activity that have not been previously tested topically in the treatment of acne-prone skin with enlarged pores. This single-center pilot study was conducted to assess the efficacy and safety of a liposomal dispersion of topically applied sodium copper chlorophyllin complex in subjects with mild-moderate acne and large, visible pores over a course of 3 weeks. Subjects were supplied with the test product, a topical gel containing a liposomal dispersion of sodium copper chlorophyllin complex (0.1%) with directions to apply a small amount to the facial area twice daily. Clinical assessments were performed at screening/baseline and at week 3. VISIA readings were taken and self-assessment questionnaires were conducted. 10 subjects were enrolled and completed the 3-week study. All clinical efficacy parameters showed statistically significant improvements over baseline at week 3. The study product was well tolerated. Subject questionnaires showed the test product was highly rated. In this pilot study, a topical formulation containing a liposomal dispersion of sodium copper chlorophyllin complex was shown to be clinically effective and well tolerated for the treatment of mild-moderate acne and large, visible pores when used for 3 weeks.

  10. Lethal action of soluble metallic salts on fishes

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, K E

    1927-01-01

    A study of pollution of Welsh rivers by lead-mine effluents revealed the fact that fishes were killed by the action of soluble salts of lead, which proved lethal at concentrations so low as pb i : 3,000,000. A physiological investigation of the action of lead-salts revealed the following facts: the action does not correspond to the normal toxic type. The graph of survival-times in different concentrations closely follows the equation: K = i/t log i/conc. The speed of the reaction is dependent upon the total quantity of metallic ion present, as well as upon the actual concentrations. The speed of the reaction varies in inverse relation to the size and weight of fishes employed. The most marked symptom is the formation of a film over gills and skin, by interaction of the metallic ion with a mucus-constituent. Death by suffocation is the final result. Where insufficient lead ion is present, the film is shed off, and complete recovery takes place. The speed of the reaction varies in direct relation to the temperature. Chemical analysis of residues shows that no trace of metallic ion penetrates into the body itself. The action is thus held to be purely external in process, chemical in type, and mechanical in effect; i.e., it is not a toxic action in the ordinary sense of the term. The action of soluble salts of zinc, iron, copper, cadmium, and mercury is shown to follow the same law as that of lead. Attention is directed to the economic importance of the facts, in connection with the pollution of rivers.

  11. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    Science.gov (United States)

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-03

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  12. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  13. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  14. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG JinXian; WEI BangGuo; ZHAO LianBiao; HU YuLai; KANG LiQing

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  15. Synthesis and Characterization of Bovine Serum Albumin-Conjugated Copper Sulfide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Peng Huang

    2010-01-01

    Full Text Available A simple biomolecule-assisted solution route was developed to synthesize Bovine Serum Albumin-conjugated copper sulfide (CuS/BSA nanocomposites, directly using copper salts and thioacetamide (TAA as the starting materials with a zwitterionic surfactant Bovine Serum Albumin (BSA as foaming and stabilizing agent. The CuS/BSA nanocomposites have been characterized by UV, TEM, Zeta, DLS, XRD, and FTIR. The results indicate that the as-prepared CuS/BSA nanocomposites are approximate sphere with a size distribution from 10 to 35 nm in diameter and good dispersibility, depending highly on concentration of BSA concentration. These protein-assisted synthesized nanocomposites have a great potential application in biomedical engineering and microelectronics.

  16. Superhydrophobic copper surfaces fabricated by fatty acid soaps in aqueous solution for excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenlong; Hu, Yuanyuan; Bao, Wenda; Xie, Xiaoyu; Liu, Yiran; Song, Aixin, E-mail: songaixin@sdu.edu.cn; Hao, Jingcheng

    2017-03-31

    Highlights: • The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol. • The fabrication process of superhydrophobic metal surfaces greatly increases the safety in industrial manufacture in commercial scale. • The superhydrophobic copper surfaces show excellent corrosion resistance. - Abstract: A simple and safe one-step immersion method was developed to obtain the stable superhydrophobic copper surfaces with excellent corrosion resistance ability using fatty acids in water-medium instead of ethanol. An organic alkali, N,N-dimethylcyclohexylamine (DMCHA), was chosen to solve the poor solubility of fatty acids in water and the high Krafft point of carboxylate salts with inorganic counterions. The superhydrophobic property can be realized in a much quicker process (7.5 min) in aqueous solution than in ethanol (more than 2 d), which is universally feasible for the fabrication of superhydrophobic metal surfaces in industry scale, thereby greatly increasing the safety in industrial manufacture.

  17. Photodegradation of bifenthrin and deltamethrin-effect of copper amendment and solvent system.

    Science.gov (United States)

    Tariq, Saadia Rashid; Ahmed, Dildar; Farooq, Amna; Rasheed, Sonia; Mansoor, Mubarkah

    2017-02-01

    The photodegradation of bifenthrin and deltamethrin was studied in the presence of Cu salts and two different solvents, methanol and acetonitrile. Results of the study showed that in the absence of any metal salt, the two pesticides degraded more rapidly in acetonitrile than in methanol. After 24 h of UV irradiation, 70% of deltamethrin had degraded in acetonitrile, while only 41% bifenthrin degraded in this solvent. In methanol, bifenthrin degraded at a much enhanced rate than in acetonitrile while the rate of degradation of deltamethrin was comparable to that in acetonitrile. The photodegradation was further enhanced by the addition of copper to the solution of bifenthrin and deltamethrin in acetonitrile. The rate of photodegradation of deltamethrin increased from 2.4 × 10 -2 to 3.5 × 10 -2  h -1 in acetonitrile and 2.5 × 10 -2 to 3.4 × 10 -2  h -1 in methanol after the addition of copper. Similarly, the rate of photodegradation of bifenthrin was increased from 5.0 × 10 -3 to 9.0 × 10 -3  h -1 in acetonitrile and 7.0 × 10 -3 to 9.05 × 10 -3  h -1 in methanol with the addition of copper. Thus, copper has the potential to enhance the photodegradation of bifenthrin and deltamethrin in both the solvents.

  18. Community solar salt production in Goa, India.

    Science.gov (United States)

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  19. Copper oxide--copper sulfate water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S. E.; Schreiber, J. D.; Dafler, J. R.

    1978-08-01

    A hybrid copper oxide--copper sulfate thermochemical water-splitting cycle, IGT's H-5, has been demonstrated in the laboratory with recycled materials. The optimum configuration and operating conditions for the electrolytic hydrogen-producing step have not yet been defined. With cooperative funding (A.G.A./G.R.I./DOE) a conceptual flowsheet was developed for this cycle and a load-line efficiency of about 37% calculated. This figure is the result of a single iteration on the original base case flow sheet and compares well with the values calculated for other processes at this stage of development. An iterative optimization of process conditions would improve efficiency. The data required to perform an economic analysis are not yet available and the electrolysis step must be more fully defined. An attractive process efficiency, relatively few corrosive materials, and few gas-phase separations are attributes of Cycle H-5 that lead us to believe hydrogen costs (to be developed during future analyses) would be improved significantly over similar processes analyzed to date.

  20. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  1. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  2. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    Hereditary deposition of iron (primary haemochromatosis) or copper (Wilson's disease) are autosomal recessive metabolic disease characterized by progressive liver pathology and subsequent involvement of various other organs. The prevalence of primary haemochromatosis is approximately 0.5%, about......, they may be inadequate in patients diagnosed so late that extensive body deposits of metal have been developed. The main research needs in this field are to further clarify molecular mechanisms of disease progression and to develop new chelators that are more effective and less toxic than those presently...

  3. Copper-Assisted Oxidative Trifluoromethylthiolation of 2,3-Allenoic Acids with AgSCF3.

    Science.gov (United States)

    Pan, Shen; Huang, Yangen; Xu, Xiu-Hua; Qing, Feng-Ling

    2017-09-01

    The oxidative trifluoromethylthiolation of 2,3-allenoic acids with AgSCF 3 in the presence of (NH 4 ) 2 S 2 O 8 and catalytic copper salt was investigated. A series of 4-aryl-2,3-allenoic acids underwent radical trifluoromethylthiolation/intramolecular cyclization to afford β-trifluoromethylthiolated butenolides, which were conveniently transformed into trifluoromethylthiolated furan derivatives. In contrast, 2-monosubstituted 2,3-allenoic acids were converted into the corresponding 3,4-bis(trifluoromethylthio)but-2-enoic-acids under similar reaction conditions.

  4. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  5. Accelerator molten-salt breeder reactor

    International Nuclear Information System (INIS)

    Furukawa, Kazuo; Kuroi, Hideo; Kato, Yoshio; Oomichi, Toshihiko.

    1979-01-01

    Purpose: To obtain fission products and to transmute transuranium elements and other radioactive wastes by the use of Accelerator Molten-Salt Breeder Reactor. Constitution: Beams from an accelerator pipe at one end of a target vessel is injected through a window into target molten salts filled inside of the target vessel. The target molten salts are subjected to pump recycling or spontaneous convection while forcively cooled by blanket molten salts in an outer vessel. Then, energy is recovered from the blanket molten salts or the target molten salts at high temperatures through electric power generation or the like. Those salts containing such as thorium 232 and uranium 238 are used as the blanket molten salts so that fission products may be produced by neutrons generated in the target molten salts. PbCl 2 -PbF 2 and LiF-BeF 2 -ThF 4 can be used as the target molten salts and as the blanket molten salts respectively. (Seki, T.)

  6. Thermophysical properties of reconsolidating crushed salt.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urquhart, Alexander [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300°C, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  7. Molten salt reactors: reactor cores

    International Nuclear Information System (INIS)

    1983-01-01

    In this critical analysis of the MSBR I project are examined the problems concerning the reactor core. Advantages of breeding depend essentially upon solutions to technological problems like continuous reprocessing or graphite behavior under neutron irradiation. Graphite deformation, moderator unloading, control rods and core instrumentation require more studies. Neutronics of the core, influence of core geometry and salt composition, fuel evolution, and thermohydraulics are reviewed [fr

  8. Mixing of zeolite powders and molten salt

    International Nuclear Information System (INIS)

    Pereira, C.; Zyryanov, V.N.; Lewis, M.A.; Ackerman, J.P.

    1996-01-01

    Transuranics and fission products in a molten salt can be incorporated into zeolite A by an ion exchange process and by a batch mixing or blending process. The zeolite is then mixed with glass and consolidated into a monolithic waste form for geologic disposal. Both processes require mixing of zeolite powders with molten salt at elevated temperatures (>700 K). Complete occlusion of salt and a uniform distribution of chloride and fission products are desired for incorporation of the powders into the final waste form. The relative effectiveness of the blending process was studied over a series of temperature, time, and composition profiles. The major criteria for determining the effectiveness of the mixing operations were the level and uniformity of residual free salt in the mixtures. High operating temperatures (>775 K) improved salt occlusion. Reducing the chloride levels in the mixture to below 80% of the full salt capacity of the zeolite significantly reduced the free salt level in the final product

  9. Bile salts as semiochemicals in fish

    Science.gov (United States)

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  10. Yttria hydroxy-salt binders

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1978-01-01

    Binder phase (primarily chloride or nitrate) formation was examined in YX 3 --NaOH--H 2 O, Y 2 O 3 --acid--H 2 O, and Y 2 O 3 --salt--H 2 O systems. The cementitious phase consisted mostly of plate- (or needle-) shaped hydroxy salts of the general formula Y 2 (OH)/sub 6-m/X/sub m/ nH 2 O, where m and n normally equal one. These binders were examined by x-ray diffraction and thermal analysis techniques. Nitrate binders decompose to Y 2 O 3 by 600 0 C, whereas chloride binders form oxychlorides that sublime or convert to Y 2 O 3 after oxygen replacement of chlorine (in air) at > 1000 0 C. Although nitric and hydrochloric acid solutions form porous ( 2 O 3 powder, salt solutions (i.e., NH 4 NO 3 , Mg(NO 3 ) 2 , NH 4 Cl, and YCl 3 approx. = 6H 2 O) slow the reaction considerably (48 h to 4 weeks), allowing 70- to 80%-dense cements to form. The effects of formation conditions on physical properties of binders were studied. Examination of scandium and lanthanide oxides showed that several behave in the same way as yttria

  11. Radioluminescence of polyester resin modified with acrylic acid and its salts

    Science.gov (United States)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  12. Radioluminescence of polyester resin modified with acrylic acid and its salts

    International Nuclear Information System (INIS)

    Szalinska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    1987-01-01

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60 Co radiation. (author)

  13. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  14. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  15. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  16. The copper metallome in prokaryotic cells

    DEFF Research Database (Denmark)

    Rensing, Christopher Günther T; Alwathnani, Hend A.; McDevitt, Sylvia F.

    2016-01-01

    and protozoans also utilize heavy metals such as copper and zinc in the killing of phagocytized bacteria. It seems, therefore, not surprising that many bacteria including pathogens harbor additional copper resistance determinants. However, the occurrence of these resistance determinants is more widespread than...

  17. Copper laser diagnostics and kinetics support

    International Nuclear Information System (INIS)

    1981-12-01

    In the effort MSNW participated with the LINL copper-Vapor Laser Program by providing a useful plasma diagnostic for interpretation of Copper-vapor laser kinetics. MSNW developed and delivered a pulsed interferometric diagnostic package to LLNL. Moreover MSNW provided personal services at the request and direction of LLL in the implementation of the diagnostic and interpretation of the data

  18. Photocleavage of DNA by copper (II) complexes

    Indian Academy of Sciences (India)

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino ...

  19. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    Abstract. A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the.

  20. Molybdenum extraction from copper-molybdenum ores

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1982-01-01

    Molybdenum extraction from copper-molybdenum ores as practised in different countries is reviewed. In world practice the production process including depression of copper and iron sulfides and flotation of molybdenite is widely spread. At two USA factories the process of a selective flotation with molybdenite depression by dextrin is used

  1. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4...

  2. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver...

  3. Ultrasonic characterization of pork meat salting

    International Nuclear Information System (INIS)

    García-Pérez, J V; De Prados, M; Pérez-Muelas, N; Cárcel, J A; Benedito, J

    2012-01-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p 2 = 0.975) and moisture (R 2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  4. The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts in a new light.

    Science.gov (United States)

    Hari, Durga Prasad; König, Burkhard

    2013-04-26

    The use of diazonium salts for aryl radical generation and C-H arylation processes has been known since 1896 when Pschorr first used the reaction for intramolecular cyclizations. Meerwein developed it further in the early 1900s into a general arylation method. However, this reaction could not compete with the transition-metal-mediated formation of C(sp(2))-C(sp(2)) bonds. The replacement of the copper catalyst with iron and titanium compounds improved the situation, but the use of photocatalysis to induce the one-electron reduction and activation of the diazonium salts is even more advantageous. The first photocatalyzed Pschorr cyclization was published in 1984, and just last year a series of papers described applications of photocatalytic Meerwein arylations leading to aryl-alkene coupling products. In this Minireview we summarize the origins of this reaction and its scope and applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation of phenacylchloride, morpholinophenacyl and N-Piperidinophenacyl oximes and study of their complexation with Copper (II) and Cobalt (II) ions

    International Nuclear Information System (INIS)

    Ali, Kamal Eldin Ahmed

    1999-01-01

    The aim of the present work is to prepare phenacyl chloride oxime and phenacyl of N-Piperidine and morpholine derivatives, and mainly to study their complexes with Cu(II) and Co(II) ions with objective ascertaining that one of these ligands can be used in quantitative extraction of these metal ions from the aqueous solution. Copper (II) salts form 1:1 complexes with the phenyacyl oximes of N-piperidine and morpholine and 1:2 complex with phenacyl chloride oxime. However, cobalt(II) salts form 1:2 complexes with phenacyl oxime of N-piperidine and morpholine but does not complex with phenacyl chloride oxime. The stoichiometry of these complexes were determined by UV/VIS spectrophotometry using the mole ratio, continuous variation and slope ratio methods.The stability constants of the five complexes were calculated from aberrances using Job's method. They showed that the copper (II) and cobalt (II) complexes with N-piperidinophenacy oxime are more stable than those with morpholinophenacyl oxime. Copper (II) complexes with any of these two ligands are more stable than those of cobalt (II). IR spectra of the complexes of copper (II) and cobalt (II) with phenacyl oxime of N-piperidine and morpholine show diminished peaks of hydrogen bonds between N and O atoms of the ligand. Specific extractabilities using amylalcohol of copper (II) complexes with the three ligands increase from PH4 to reach its maximum at PH8. The high value for N-piperidinophenacyl oxime ligand (96%-97%) indicates that, this ligand can be used as analytical reagent for the quantitative spectrophotometric determination of copper (II) salts in aqueous media. Cobalt (II) complexes were formed and extracted from solution only at PH6 (specific PH). The extractabilities ranging from 81.6-87.2% warrants the use of these ligands in quantitative spectrophotometric determination of cobalt (II).(Author)

  6. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency: elimina......Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...... for ADAM 12 involving both furin cleavage and copper binding....

  7. Microbial leaching of low grade copper ores

    International Nuclear Information System (INIS)

    Rauf, A.; Ashfaq, M.

    1991-01-01

    Biotechnology is regarded as one of the most promising and revolutionary solution to various problems which are generally faced in the extraction of metals from their ores such as high energy, capital costs and environmental pollution. The paper deals with the study of low grade copper ores for their beneficiation and extraction of copper. The ores used were chalcopyrite and oxidized copper ores. Microorganisms play a vital role in the solubilization of valuable contents from ores such as copper and other metals. Studies have been conducted on the indigenous copper ores by using thiobacillus ferro oxidans and thiobacillus thio oxidans. For comparison purpose some experiments have also been conducted by chemical leaching. The results of bacterial leaching are encouraging. (author)

  8. Modification of polycrystalline copper by proton irradiation

    International Nuclear Information System (INIS)

    Garcia S, F.; Cabral P, A.; Saniger B, J.M.; Banuelos, J.G.; Barragan V, A.

    1997-01-01

    Polished copper samples were irradiated with proton beams of 300 and 700 keV at room temperature and at -150 Centigrade. In this work the obtained results are reported when such copper irradiated samples are analysed with Sem, Tem, AFM. The Sem micrographs showed evident changes in surface of these copper samples, therefore an EDAX microanalysis was done for its characterization. additionally, the Tem micrographs showed heaps formation until 200 nm. Its electron diffraction spectra indicated that these heaps consist of a copper compound. Finally with AFM were observed changes in coloration of the irradiated sample surface, as well as changes in texture and rugosity of them. These results show in general that irradiation process with protons which is known as an innocuo process produces changes in the copper properties. (Author)

  9. Engineering kinetic barriers in copper metallization

    International Nuclear Information System (INIS)

    Huang Hanchen; Wei, H.L.; Woo, C.H.; Zhang, X.X.

    2002-01-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusion--a direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality

  10. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  11. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  12. Study of interaction of bismuth, strontium, calcium copper, lead nitrates solutions with sodium oxalate solution with the aim of HTSC synthesis

    International Nuclear Information System (INIS)

    Danilov, V.P.; Krasnobaeva, O.N.; Nosova, T.A.

    1993-01-01

    With the aim of developing a new technique for HTSC oxides synthesis on the base of combined sedimentation of hydroxy salts and their heat treatment is studied interaction of bismuth, strontium, calcium, copper and lead nitrates with alkali solution of sodium oxalate. Conditions for total sedimentation of all five metals from the solution are found. The phase composition of interaction products is determined. It is established that they are high-dispersed homogeneous mixture of three phases of variable composition: twin hydroxalate of copper-bismuth, lead hydroxalate and twin oxalate of strontium-calcium. After heat treatment of the phases are obtained the HTSC oxides

  13. Salt bridges: geometrically specific, designable interactions.

    Science.gov (United States)

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F

    2011-03-01

    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms. Copyright © 2010 Wiley-Liss, Inc.

  14. Compatibility of molten salt and structural materials

    International Nuclear Information System (INIS)

    Kawakami, Masahiro

    1994-01-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF 2 was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.)

  15. Discretionary salt use in airline meal service.

    Science.gov (United States)

    Wallace, S; Wellman, N S; Dierkes, K E; Johnson, P M

    1987-02-01

    Salt use in airline meal service was studied through observation of returned meal trays of 932 passengers. Observation and weighing of salt packets on returned trays revealed that 64% of passengers did not salt their airline dinner, while 6% used the entire salt packet, 0.92 gm NaCl (362 mg Na). Average discretionary salt use among the 234 passengers (25%) who added salt was 0.57 gm NaCl (232 mg Na). Estimates of total sodium in the four airline dinners averaged 2.0 gm NaCl (786 mg Na). Laboratory assays of menu items produced by the airline foodservice differed 3% to 19% from estimated values. Sodium content of the four airline dinner menus was similar and did not affect salt use. Discretionary salt use was related to the total amount of entrée consumed but was not affected by the amount of salad consumed. It is postulated that salt use in the "captive" airline situation is predicated on consistent, habitual practices. Lowering sodium consumption in this setting may require alteration in both food preparation methods and quantity of salt presented in the packets.

  16. Compatibility of molten salt and structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Masahiro [Toyohashi Univ. of Technology, Aichi (Japan)

    1994-12-01

    As the important factors for considering the compatibility of fuel salt and coolant salt with structural materials in molten salt reactors, there are the moisture remaining in molten salt and the fluorine potential in molten salt. In this study, as for the metals which are the main components of corrosion resistant alloys, the corrosion by the moisture remaining in molten salt and the dependence of the corrosion on fluorine potential were examined. As the molten salts, an eutectic molten salt LiF-BeF{sub 2} was mainly used, and LiF-KF was used in combination. As the metallic materials, Cr, Ni and Cu which are the main components of corrosion resistant and heat resistant alloys, Hastelloy and Monel, were used. In the experiment, the metal pieces were immersed in the molten salt, and by sampling the molten salt, the change with time lapse of the concentration of the dissolved metals was examined. Besides, the electrochemical measurement was carried out for Cr, of which the corrosion was remarkable, and the change with time lapse of the dissolved ions was examined. The experimental setup, the experimental method, and the results of the immersion test and the electrochemical test are reported. The experiment on the corrosion of metals depending on fluorine potential is also reported. (K.I.).

  17. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.

    2002-10-01

    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  18. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  19. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  20. The ligational behavior of an isatinic quinolyl hydrazone towards copper(II- ions

    Directory of Open Access Journals (Sweden)

    Mousa Marwa A

    2011-04-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring. Quinoline ring has therapeutic and biological activities whereas, the indole ring occurs in Jasmine flowers and Orange blossoms. As a ligand, the isatin moiety is potentially ambidentate and can coordinate the metal ions either through its lactam or lactim forms. In a previous study, the ligational behavior of a phenolic quinolyl hydrazone towards copper(II- ions has been studied. As continuation of our interest, the present study is planned to check the ligational behavior of an isatinic quinolyl hydrazone. Results New homo- and heteroleptic copper(II- complexes were obtained from the reaction of an isatinic quinolyl hydrazone (HL with several copper(II- salts viz. Clˉ, Brˉ, NO3ˉ, ClO4-, SO42- and AcO-. The obtained complexes have Oh, Td and D4h- symmetry and fulfill the strong coordinating ability of Clˉ, Brˉ, NO3ˉ and SO42- anions. Depending on the type of the anion, the ligand coordinates the copper(II- ions either through its lactam (NO3ˉ and ClO4- or lactim (the others forms. Conclusion The effect of anion for the same metal ion is obvious from either the geometry of the isolated complexes (Oh, Td and D4h or the various modes of bonding. Also, the obtained complexes fulfill the strong coordinating ability of Clˉ, Brˉ, NO3ˉ and SO42- anions in consistency with the donor ability of the anions. In case of copper(II- acetate, a unique homoleptic complex (5 was obtained in which the AcO- anion acts as a base enough to quantitatively deprotonate the hydrazone. The isatinic hydrazone uses its lactim form in most complexes.

  1. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  2. Salt splitting using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  3. Grain boundary corrosion of copper canister material

    International Nuclear Information System (INIS)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J.

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters

  4. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  5. 168 Hours Salt Fog Test

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Muhamad Daud; Siti Radiah Mohd Kamarudin

    2011-01-01

    This report explained the test conducted in salt fog chamber to evaluate the effectiveness of mild steel, coated with rust converter, for 168 hours in artificial seawater exposure. The samples were compared with mild steel coated with commercial primer. The tests were conducted followed ASTM B117. Individual pictures were taken of each sample before the tests began, at 24, 48, 72, 96, 120, 144 and 168 hours to see the progression of the corrosion. Results showed that the samples coated with rust converter provide a good significant protection against corrosion phenomenon than the samples coated with commercial primer that available in the market. (author)

  6. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  7. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  8. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  9. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  10. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  11. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false [Phthalocyaninato(2-)] copper. 74.3045 Section 74...-)] copper. (a) Identity. The color additive is [phthalocyaninato(2-)] copper (CAS Reg. No. 147-14-8) having... [phthalocyaninato(2-)] copper shall conform to the following specifications and shall be free from impurities other...

  12. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  13. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  14. Conditions for precipitation of copper phases in DWPF waste glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.; Ramsey, W.G.

    1993-01-01

    The Defense Waste Processing Facility (DWPF) precipitate hydrolysis process requires the use of copper formate catalyst. The expected absorbed radiation doses to the precipitate require levels of copper formate that increase the potential for the precipitation of metallic copper in the DWPF Melter. The conditions required to avoid the precipitation of copper are described

  15. Salt Block II: description and results

    International Nuclear Information System (INIS)

    Hohlfelder, J.J.

    1980-06-01

    A description of and results from the Salt Block II experiment, which involved the heating of and measurement of water transport within a large sample of rock salt, are presented. These results include the measurement of water released into a heated borehole in the sample as well as measured temperatures within the salt. Measured temperatures are compared with the results of a mathematical model of the experiment

  16. Dissolution of the Mors salt dome

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1982-01-01

    Regardless of the interpretation of the measured salinity profiles above the Mors salt dome, they can at most be the result of dissolution rates of about 0.004 mm per year. This means that it would take more than 2.5 mill. years to dissolve 10 m of salt. Variations in groun water velocity and cap rock porosity will not significantly change this condition. The stability of the Mors salt dome is therefore not affected by dissolution of the dome. (EG)

  17. Coastal salt-marshes in Albania

    OpenAIRE

    JULIAN SHEHU; ALMA IMERI; RUDINA KOCI; ALFRED MULLAJ

    2014-01-01

    The salt marshes of Albania comprise a narrow belt along the Adriatic and Ionian Seas. They have been the subject of a range of human activities causing habitat loss. Enclosure for agricultural use, ports and other infrastructure has reduced many salt marshes to a narrow fringe along estuary shores. Salt marshes are important for a range of interests. In particular they support a range of specialist plant communities and associated animals (especially breeding and wintering birds) and often h...

  18. Evaluation of salt content in school meals

    Directory of Open Access Journals (Sweden)

    Cláudia Alexandra Colaço Lourenço Viegas

    2015-04-01

    Full Text Available OBJECTIVE: High blood pressure is a major rick factor for cardiovascular disease, and it is closely associated with salt intake. Schools are considered ideal environments to promote health and proper eating habits. Therefore the objective of this study was to evaluate the amount of salt in meals served in school canteens and consumers' perceptions about salt. METHODS: Meals, including all the components (bread, soup, and main dish were retrieved from school canteens. Salt was quantified by a portable salt meter. For food perception we constructed a questionnaire that was administered to high school students. RESULTS: A total of 798 food samples were analysed. Bread had the highest salt content with a mean of 1.35 g/100 g (SD=0.12. Salt in soups ranged from 0.72 g/100 g to 0.80 g/100 g (p=0.05 and, in main courses, from 0.71 g/100 to 0.97 g/100g (p=0.05. The salt content of school meals is high with a mean value of 2.83 to 3.82 g of salt per meal. Moreover, a high percentage of students consider meals neither salty nor bland, which shows they are used to the intensity/amount of salt consumed. CONCLUSION: The salt content of school meals is high, ranging from 2 to 5 times more than the Recommended Dietary Allowances for children, clearly exceeding the needs for this population, which may pose a health risk. Healthy choices are only possible in environments where such choices are possible. Therefore, salt reduction strategies aimed at the food industry and catering services should be implemented, with children and young people targeted as a major priority.

  19. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  20. Copper doped borate dosimeters revisited

    International Nuclear Information System (INIS)

    Alajerami, Y.S.M.; Hashim, S.; Ghoshal, S.K.; Bradley, D.A.; Mhareb, M.; Saleh, M.A.

    2014-01-01

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu + and Cu ++ ) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu + ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated technique in borate

  1. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...

  2. Copper Promoted Synthesis of Diaryl Ethers

    OpenAIRE

    Ghosh, Rajshekhar; Samuelson, Ashoka G

    2004-01-01

    An efficient protocol using copper based reagents for the coupling of aryl halides with phenols to generate diaryl ethers is described. Acopper( I) complex, [ Cu( CH3CN) (4)] ClO4, or the readily available copper( II) source, CuCO3 . Cu( OH) (2) . H2O ( in combination with potassium phosphate), can be used. Aryl halides and phenols with different steric and electronic demands have been used to assess the efficiency of the procedure. The latter source of copper gives better yields under all co...

  3. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  4. Present status and prospect of copper radiopharmaceuticals

    International Nuclear Information System (INIS)

    Chen Huawei; Li Hongfeng; Liu Boli

    1996-01-01

    In the past decade most of the efforts of copper radiopharmaceuticals research has been focused on bis(thiosemicarbazonato) copper complexes for use in myocardial and brain imaging agents. In the present work, the analogs of bis(thiosemicarbazone) is studied in labeling antibodies and tumors. The retention mechanism of Cu-PTSM is investigated. Other kinds of ligands, BAT (N 2 S 2 ) for example, can be used to prepare neutral copper complexes in order to obtain brain radiopharmaceuticals in future. (60 refs.)

  5. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  6. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  7. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  8. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  9. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  10. Applications of molten salts in plutonium processing

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1987-01-01

    Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900 0 C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics

  11. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  12. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  13. Granular Salt Summary: Reconsolidation Principles and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  14. Vacuum distillation of plutonium pyrochemical salts

    International Nuclear Information System (INIS)

    Bourges, Gilles; Faure, S.; Fiers, B.; Saintignon, S.; Lemoine, O.; Cardona-Barrau, D.; Devillard, D.

    2012-01-01

    A pyrochemical process is developed to upgrade the safety of plutonium spent salts interim storage. The feed material, consisting of alkali or alkali-earth chlorides containing various Pu and Am species, is first oxidized to convert the actinides into oxides. Then the chlorides are removed by vacuum distillation which requires temperature from 750 degrees C to 1100 degrees C. After a comprehensive R and D program, full-scale equipment was built to test the distillation of active salts. Tests with NaCl/KCl oxidized spent salt give decontamination factor of chlorides higher than 20000. The distilled salt meets the radiologic requirements to be discarded as low level waste. (authors)

  15. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft

    OpenAIRE

    Sidebottom, A.; Belur, J.; Bowers, K.; Tompson, L.; Johnson, S. D.

    2011-01-01

    Recently, against a backdrop of general reductions in acquisitive crime, increases have been observed in the frequency of metal theft offences. This is generally attributed to increases in metal prices in response to global demand exceeding supply. The main objective of this article was to examine the relationship between the price of copper and levels of copper theft, focusing specifically on copper cable theft from the British railway network. Results indicated a significant positive correl...

  16. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    OpenAIRE

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  17. Anaglyph, Salt Lake City, Utah

    Science.gov (United States)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed

  18. Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polycheate, Eudistylia vancouveri

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Roesijadi, G.

    1983-01-01

    Chemically injured branchial pinnae of copper-treated polychaetes, Eudistylia vancouveri, regenerated while still exposed to copper. The first observations of pinna regeneration coincided with the apparent induction of a low molecular weight (approx.5000 daltons) copper-binding protein. This protein may play a role in the detoxification of copper and subsequent tissue regeneration. 7 references, 5 figures.

  19. ERG review of salt constitutive law, salt stress determinations, and salt corrosion and modeling studies

    International Nuclear Information System (INIS)

    Balon, J.E.

    1986-03-01

    The Engineering Review Group (ERG) was established by the Office of Nuclear Waste Isolation (ONWI) to help evaluate engineering-related issues in the US Department of Energy's nuclear waste repository program. The August 1983 meeting of the ERG reviewed a RE/SPEC technical report containing a review of eight constitutive laws that have been proposed to model the creep of salt over the ranges of stress and temperature anticipated in a nuclear repository. This report documents the ERG's comments and recommendations on this subject and the ONWI responses to the specific points raised by the ERG

  20. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  1. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  2. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Winicov, I [Department of Microbiology and Biochemistry, Univ. of Nevada-Reno, Reno, NV (United States)

    1997-07-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. `Pokkali`. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with {+-} 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from `Pokkali` seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs.

  3. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    Science.gov (United States)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  4. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    NARCIS (Netherlands)

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-01-01

    High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011-2016) and

  5. In vitro selection of induced mutants to salt-tolerance: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.

    1997-01-01

    A selection protocol to obtain salt tolerant calli, followed by regeneration and progeny-test of the regenerated plants for salt tolerance in rice was investigated. Callus cultures were initiated from salt-sensitive US elite rice lines and cv. 'Pokkali'. Salt-tolerant cell lines were selected from these by a single step selection procedure. The selected salt-tolerant lines grew well on medium with ± 0.5% or 1% NaCl, while the parent lines occasionally survived, but did not grow at these salt concentrations. Plants were regenerated from these cell lines through different passages on medium containing salt. Seed was collected from the regenerated plants and salt tolerance of R2 seedlings was compared with those regenerated without salt selection. Salt-tolerance was measured by survival and productive growth of newly germinated seedlings in Hoagland solution with 0.3% and 0.5% NaCl for 4 weeks. Heritable improvement in salt tolerance was obtained in R2 seedlings from one plant regenerated after 5 months selection. Survival and growth of these seedlings was equivalent to that from 'Pokkali' seedlings. These results show that cellular tolerance can provide salt-tolerance in rice plants. (author). 6 refs, 2 tabs

  6. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  7. Refining processes of selected copper alloys

    Directory of Open Access Journals (Sweden)

    S. Rzadkosz

    2009-04-01

    Full Text Available The analysis of the refining effectiveness of the liquid copper and selected copper alloys by various micro additions and special refiningsubstances – was performed. Examinations of an influence of purifying, modifying and deoxidation operations performed in a metal bath on the properties of certain selected alloys based on copper matrix - were made. Refining substances, protecting-purifying slag, deoxidation and modifying substances containing micro additions of such elements as: zirconium, boron, phosphor, sodium, lithium, or their compounds introduced in order to change micro structures and properties of alloys, were applied in examinations. A special attention was directed to macro and micro structures of alloys, their tensile and elongation strength and hot-cracks sensitivity. Refining effects were estimated by comparing the effectiveness of micro structure changes with property changes of copper and its selected alloys from the group of tin bronzes.

  8. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  9. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  10. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  11. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  12. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  13. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  14. Copper content in blood of Uzbek population

    International Nuclear Information System (INIS)

    Mikhol'skaya, I.N.; Agzamova, S.S.; Kutyakova, T.Yu.; Osinskaya, N.S.

    1990-01-01

    The content of copper in blood of Uzbekistan population, depending on place of residence, sex and age was studied to solve certain medicobiological problems. The method of neutron activation with radiochemcial isolation was employed for the analysis. According to the data obtained average content of copper for the points in the republic selected for men and women of different age groups were calculated. 5 refs

  15. Radiation environmental impact assessment of copper exploitation

    International Nuclear Information System (INIS)

    Fan Guang; Wen Zhijian

    2010-01-01

    The radiation environmental impact of mineral exploitation on the surrounding environment has become a public concern. This paper presents the radiation environmental impact assessment of copper exploitation. Based on the project description and detailed investigations of surrounding environment, systematic radiation environmental impacts have been identified. The environmental impacts are assessed during both construction and operation phase. The environmental protection measures have also been proposed. The related conclusion and measures can play an active role in copper exploitation and environmental protection. (authors)

  16. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  17. Lead and copper removal from aqueous solutions by porous glass derived calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Liang Wen; Zhan Lei; Piao Longhua; Ruessel, Christian

    2011-01-01

    Graphical abstract: . Adsorption of Pb 2+ increases with the increase in NaCl volume percentage (1:0%, 2:30%, 3:40%, 4:40%) of the Glass Derived Hydroxyapatite and reaches equilibrium after 24 h. Highlights: → Novel porous glass derived hydroxyapatite matrix is prepared. → Glass derived hydroxyapatite matrix adsorbs lead and copper ions in solutions effectively. → Two adsorption mechanisms including ion exchange theory and the dissolution and precipitation theory are involved in removal of the heavy metal ions from the solutions. - Abstract: A porous glass was prepared by sintering Na 2 O-CaO-B 2 O 3 glass powder with powdered sodium chloride. Subsequently, the sodium chloride was dissolved in water resulting in a highly porous material. A sample was prepared consisting of 60 vol% glass and 40 vol% salt which both had particle sizes 2 HPO 4 solutions at room temperature for 1 day. The porous glass derived hydroxyapatite matrix was then processed for removing lead and copper ions from aqueous solutions. The results showed that the glass derived calcium hydroxyapatite matrix effectively immobilizes lead and copper ions in solution. The adsorption mechanism was investigated by the X-ray Diffraction (XRD) and Scanning Electron Microscopy including Energy Dispersive X-Ray Spectrometry (SEM-EDX).

  18. Optimizing the recovery of copper from electroplating rinse bath solution by hollow fiber membrane.

    Science.gov (United States)

    Oskay, Kürşad Oğuz; Kul, Mehmet

    2015-01-01

    This study aimed to recover and remove copper from industrial model wastewater solution by non-dispersive solvent extraction (NDSX). Two mathematical models were developed to simulate the performance of an integrated extraction-stripping process, based on the use of hollow fiber contactors using the response surface method. The models allow one to predict the time dependent efficiencies of the two phases involved in individual extraction or stripping processes. The optimal recovery efficiency parameters were determined as 227 g/L of H2SO4 concentration, 1.22 feed/strip ratio, 450 mL/min flow rate (115.9 cm/min. flow velocity) and 15 volume % LIX 84-I concentration in 270 min by central composite design (CCD). At these optimum conditions, the experimental value of recovery efficiency was 95.88%, which was in close agreement with the 97.75% efficiency value predicted by the model. At the end of the process, almost all the copper in the model wastewater solution was removed and recovered as CuSO4.5H2O salt, which can be reused in the copper electroplating industry.

  19. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  20. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  1. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  2. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  3. Mined salt storage feasibility: Engineering study report

    International Nuclear Information System (INIS)

    1987-07-01

    This study addresses a method of eliminating the surface storage of mined salt at the Deaf Smith repository site. It provides rough estimates of the logistics and costs of transporting 3.7 million tons of salt from the repository to the salt disposal site near Carlsbad, New Mexico and returning it to the repository for decommissioning backfill. The study assumes that a railcar/truck system will be installed and that the excavated salt will be transported from the repository to an existing potash mine located near Carlsbad, New Mexico approximately 300 miles from the repository. The 3.7 million tons of salt required for repository decommissioning backfill can be stored in the potash mines along with the excess salt, with no additional capital costs required for either a railcar or a truck transportation system. The capital cost for facilities to reclaim the 3.7 million tons of salt from the potash mine is estimated to be $4,400,000 with either a rail or truck transportation system. Segregating the 3.7 million tons of backfill salt in a surface storage area at the potash mine requires a capital cost of $13,900,000 with a rail system or $11,400,000 with a truck system. Transportation costs are estimated at $0.08/ton-mile for rail and $0.13/ton-mile for truck. 2 figs., 5 tabs

  4. Specific investigations related to salt rock behaviour

    International Nuclear Information System (INIS)

    Vons, L.H.

    1985-01-01

    In this paper results are given of work in various countries in rather unrelated areas of research. Nevertheless, since the studies have been undertaken to better understand salt behaviour, both from mechanical and chemical points of view, some connection between the studies can be found. In the French contribution the geological conditions have been investigated that might promote or prevent the formation of salt domes from layers in view of possible use of the latter type of formation. This was done theoretically by the finite element method, and a start was made with centrifuge tests. The density of a number of samples from salt and overburden from the Bresse basin was measured and it was shown that a favourable condition exists in this region for waste disposal. In the German contribution various subjects are touched upon, one being the effect of water on the mobility in the early stages of salt dome formation. Evidence was found for an anisotropy in salt. One Dutch contribution describes results of studies on the effect of small amounts of water on the rheology of salt. The results imply that flow laws obtained for salt at rapid strain rates and/or low confining pressure cannot be reliably extrapolated to predict the long term behaviour of wet or even very dry material under natural conditions. Preliminary results on the effect of water upon ion-mobility indicate a certain pseudo-absorptive capacity of salt e.g. for Sr

  5. Fundamentals of molten-salt thermal technology

    International Nuclear Information System (INIS)

    1980-08-01

    This book has been published by the Society of Molten-Salt Thermal Technology to publish a part of the achievement of its members. This book is composed of seven chapters. The chapter 1 is Introduction. The chapter 2 explains the physical properties of molten salts, such as thermal behavior, surface tension, viscosity, electrical conductivity and others. The chapter 3 presents the compatibility with construction materials. Corrosion in molten salts, the electrochemical behavior of fluoride ions on carbon electrodes in fluoride melts, the behaviors of hastelloy N and metals in melts are items of this chapter. The equipments and instruments for molten salts are described in chapter 4. The heat transfer in molten salts is discussed in chapter 5. The chapter 6 explains the application of molten salt technology. The molten salt technology can be applied not only to thermal engineering and energy engineering but also to chemical and nuclear engineerings, and the technical fundamentals, current development status, technical problems and the perspective for the future are outlined. The chapter 7 is the summary of this book. The commercialization of molten salt power reactors is discussed at the end of this book. (Kato, T.)

  6. Salt extraction by poulticing : an NMR study

    NARCIS (Netherlands)

    Voronina, V.

    2011-01-01

    The crystallization of salts is widely recognized as one of the most significant causes of damage to many cultural objects consisting of porous materials, such as monuments, sculptures, historic buildings, wall paintings, etc. A common response to salt damage problems are treatments aimed at

  7. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  8. Electrokinetic removal of salt from brick masonry

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Pedersen, Anne Juul; Rörig-Dalgaard, Inge

    2006-01-01

    A method to effectively remove salts from masonry is lacking. The present study aims at determining the removal efficiency of salts from bricks in an applied low current electric DC field. At first an investigation on removal of NaCl and Na(NO3)2 from spiked bricks in laboratory scale was conducted...

  9. Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-01-01

    Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.

  10. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Disposition of the fluoride fuel and flush salts from the Molten Salt Reactor experiment at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1996-01-01

    The Molten Salt Reactor Experiment (MSRE) is an 8 MW reactor that was operated at Oak Ridge National Laboratory (ORNL) from 1965 through 1969. The reactor used a unique liquid salt fuel, composed of a mixture of LIF, BeF 2 , ZrF 4 , and UF 4 , and operated at temperatures above 600 degrees C. The primary fuel salt circulation system consisted of the reactor vessel, a single fuel salt pump, and a single primary heat exchanger. Heat was transferred from the fuel salt to a coolant salt circuit in the primary heat exchanger. The coolant salt was similar to the fuel salt, except that it contains only LiF (66%) and BeF, (34%). The coolant salt passed from the primary heat exchanger to an air-cooled radiator and a coolant salt pump, and then returned to the primary heat exchanger. Each of the salt loops was provided with drain tanks, located such that the salt could be drained out of either circuit by gravity. A single drain tank was provided for the non-radioactive coolant salt. Two drain tanks were provided for the fuel salt. Since the fuel salt contained radioactive fuel, fission products, and activation products, and since the reactor was designed such that the fuel salt could be drained immediately into the drain tanks in the event of a problem in the fuel salt loop, the fuel salt drain tanks were provided with a system to remove the heat generated by radioactive decay. A third drain tank connected to the fuel salt loop was provided for a batch of flush salt. This batch of salt, similar in composition to the coolant salt, was used to condition the fuel salt loop after it had been exposed to air and to flush the fuel salt loop of residual fuel salt prior to accessing the reactor circuit for maintenance or experimental activities. This report discusses the disposition of the fluoride fuel and flush salt

  12. Actinide removal from molten salts by chemical oxidation and salt distillation

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, J.A.; Garcia, E.; Dole, V.R. [Los Alamos National Laboratory, NM (United States)] [and others

    1995-10-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed.

  13. Actinide removal from molten salts by chemical oxidation and salt distillation

    International Nuclear Information System (INIS)

    McNeese, James A.; Garcia, Eduardo; Dole, Vonda R.; Griego, Walter J.

    1995-01-01

    Actinide removal from molten salts can be accomplished by a two step process where the actinide is first oxidized to the oxide using a chemical oxidant such as calcium carbonate or sodium carbonate. After the actinide is precipitated as an oxide the molten salt is distilled away from the actinide oxides leaving a oxide powder heel and an actinide free distilled salt that can be recycled back into the processing stream. This paper discusses the chemistry of the oxidation process and the physical conditions required to accomplish a salt distillation. Possible application of an analogous process sequence for a proposed accelerator driven transmutation molten salt process is also discussed

  14. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  15. Dam construction in salt rock

    International Nuclear Information System (INIS)

    Stockmann, N.; Beinlich, A.; Flach, D.; Jockwer, N.; Klarr, K.; Krogmann, P.; Miehe, R.; Schmidt, M.W.; Schwaegermann, H.F.; Walter, F.; Yaramanci, U.

    1991-11-01

    Barriers are a major component of the satefy concept for the Gorleben repository. The construction and performance of dams are currently tested within the framework of a project carried out in the Asse salt mine. A measuring programme has been established to give evidence of the sealing capacities of a barrier consisting of an abatement, long-term sealing material, and a hydraulic sealing system. Tests are to be made to verify the barrier's performance for shorter of long time periods (up to about 500 years). The tests are assisted by computed models established for the project. The long-term safety aspects to be studied include such conditions as permeability changes due to mechanical impacts, circulation conditions at the roadside, and the serviceable life and efficiency of the sealing components. (DG) [de

  16. Titanium for salt water service

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Shibad, P.R.

    1980-01-01

    Titanium has potential as major material of construction in desalination plants, in condensers and heat exchangers, in view of its excellent corrosion resistance to salt water upto at least 120deg C. The advantages of titanium in such applications are brought out. The various specific problems such as pitting, crevice and galvanic corrosion and the preventive methods, for adopting titanium have been discussed. The hydriding problem can be overcome by suitably controlling the operating parameters such as temperature and surface preparation. A case has been made to prove the economic viability of titanium in comparison to Al-brass and Cu-Ni alloy. The future of titanium seems to be very promising in view of the negligible tube failures and outages. (auth.)

  17. Fluid migration studies in salt

    International Nuclear Information System (INIS)

    Shefelbine, H.C.; Raines, G.E.

    1980-01-01

    This discussion will be limited to the migration of water trapped in the rock salt under the influence of the heat field produced by nuclear waste. This is of concern because hypotheticl scenarios have been advanced in which this fluid movement allows radionuclides to escape to the biosphere. While portions of these scenarios are supported by observation, none of the complete scenarios has been demonstrated. The objectives of the present fluid migration studies are two-fold: 1. determine the character of the trapped fluid in terms of quantity, habitat and chemical constituents; and 2. define the mechanisms that cause the fluid to migrate toward heat sources. Based on the observations to date, fluid migration will not have a major impact on repository integrity. However, the above objectives will be pursued until the impacts, if any, can be quantified

  18. Hopper Growth of Salt Crystals.

    Science.gov (United States)

    Desarnaud, Julie; Derluyn, Hannelore; Carmeliet, Jan; Bonn, Daniel; Shahidzadeh, Noushine

    2018-06-07

    The growth of hopper crystals is observed for many substances, but the mechanism of their formation remains ill understood. Here we investigate their growth by performing evaporation experiments on small volumes of salt solutions. We show that sodium chloride crystals that grow very fast from a highly supersaturated solution form a peculiar form of hopper crystal consisting of a series of connected miniature versions of the original cubic crystal. The transition between cubic and such hopper growth happens at a well-defined supersaturation where the growth rate of the cubic crystal reaches a maximum (∼6.5 ± 1.8 μm/s). Above this threshold, the growth rate varies as the third power of supersaturation, showing that a new mechanism, controlled by the maximum speed of surface integration of new molecules, induces the hopper growth of cubic crystals in cascade.

  19. Vitrification in the presence of salts

    International Nuclear Information System (INIS)

    Marra, J.C.; Andrews, M.K.; Schumacher, R.F.

    1994-01-01

    Glass is an advantageous material for the immobilization of nuclear wastes because of the simplicity of processing and its unique ability to accept a wide variety of waste elements into its network structure. Unfortunately, some anionic species which are present in the nuclear waste streams have only limited solubility in oxide glasses. This can result in either vitrification concerns or it can affect the integrity, of the final vitrified waste form. The presence of immiscible salts can also corrode metals and refractories in the vitrification unit as well as degrade components in the off-gas system. The presence of a molten salt layer on the melt may alter the batch melting rate and increase operational safety concerns. These safety concerns relate to the interaction of the molten salt and the melter cooling fluids. Some preliminary data from ongoing experimental efforts examining the solubility of molten salts in glasses and the interaction of salts with melter component materials is included

  20. Molten salt processes in special materials preparation

    International Nuclear Information System (INIS)

    Krishnamurthy, N.; Suri, A.K.

    2013-01-01

    As a class, molten salts are the largest collection of non aqueous inorganic solvents. On account of their stability at high temperature and compatibility to a number of process requirements, molten salts are considered indispensable to realize many of the numerous benefits of high temperature technology. They play a crucial role and form the basis for numerous elegant processes for the preparation of metals and materials. Molten salt are considered versatile heat transfer media and have led to the evolution of many interesting reactor concepts in fission and possibly in fusion. They also have been the basis of thinking for few novel processes for power generation. While focusing principally on the actual utilization of molten salts for a variety of materials preparation efforts in BARC, this lecture also covers a few of the other areas of technological applications together with the scientific basis for considering the molten salts in such situations. (author)

  1. SEPARATION OF METAL SALTS BY ADSORPTION

    Science.gov (United States)

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  2. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.

    Science.gov (United States)

    Li, Jie; Xie, Yanan; Wang, Rui; Fang, Zemin; Fang, Wei; Zhang, Xuecheng; Xiao, Yazhong

    2018-04-01

    Laccase (benzenediol: oxygen oxidoreductases, EC1.10.3.2) is a multi-copper oxidase capable of oxidizing a variety of phenolic and other aromatic organic compounds. The catalytic power of laccase makes it an attractive candidate for potential applications in many areas of industry including biodegradation of organic pollutants and synthesis of novel drugs. Most laccases are vulnerable to high salt and have limited applications. However, some laccases are not only tolerant to but also activated by certain concentrations of salt and thus have great application potential. The mechanisms of salt-induced activity enhancement of laccases are unclear as yet. In this study, we used dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, intrinsic fluorescence emission, circular dichroism, ultraviolet-visible light absorption, and an enzymatic assay to investigate the potential correlation between the structure and activity of the marine-derived laccase, Lac15, whose activity is promoted by low concentrations of NaCl. The results showed that low concentrations of NaCl exert little influence on the protein structure, which was partially folded in the absence of the salt; moreover, the partially folded rather than the fully folded state seemed to be favorable for enzyme activity, and this partially folded state was distinctive from the so-called 'molten globule' occasionally observed in active enzymes. More data indicated that salt might promote laccase activity through mechanisms involving perturbation of specific local sites rather than a change in global structure. Potential binding sites for chloride ions and their roles in enzyme activity promotion are proposed.

  3. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  4. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  5. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    International Nuclear Information System (INIS)

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs

  7. Systematic Evaluation of Salt Cavern Well Integrity

    Science.gov (United States)

    Roberts, B. L.; Lord, D. L.; Lord, A. S.; Bettin, G.; Sobolik, S. R.; Park, B. Y.

    2017-12-01

    The U.S. Strategic Petroleum Reserve (SPR) holds a reserve of crude oil ( 700 million barrels) to help ease any interruptions in oil import to the United States. The oil is stored in a set of 63 underground caverns distributed across four sites along the U.S. Gulf Coast. The caverns were solution mined into salt domes at each of the four sites. The plastic nature of the salt is beneficial for the storage of crude oil as it heals any fractures that may occur in the salt. The SPR is responsible for operating and maintaining the nearly 120 wells used to access the storage caverns over operational lifetimes spanning decades. Salt creep can induce deformation of the well casing which must be remediated to insure cavern and well integrity. This is particularly true at the interface between the plastic salt and the rigid caprock. The Department of Energy, the SPR Management and Operations contractor, and Sandia National Laboratories has developed a multidimensional well-grading system for the salt cavern access wells. This system is designed to assign numeric grades to each well indicating its risk of losing integrity and remediation priority. The system consists of several main components which themselves may consist of sub-components. The main components consider such things as salt cavern pressure history, results from geomechanical simulations modeling salt deformation, and measurements of well casing deformation due to salt creep. In addition, the geology of the salt domes and their overlying caprock is also included in the grading. These multiple factors are combined into summary values giving the monitoring and remediation priority for each well. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  8. Augmenting the salt tolerance in wheat ( Triticum aestivum ) through ...

    African Journals Online (AJOL)

    Augmenting the salt tolerance in wheat ( Triticum aestivum ) through exogenously applied silicon. ... African Journal of Biotechnology ... physiology and biochemistry of wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) ...

  9. Vitrification of copper flotation waste

    Energy Technology Data Exchange (ETDEWEB)

    Karamanov, Alexander [Institute of Physical Chemistry, Bulgarian Academy of Science, G. Bonchev Str. Block 11, 1113 Sofia (Bulgaria)]. E-mail: karama@ing.univaq.it; Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, 67040 Monteluco di Roio, L' Aquila (Italy)

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  10. The Copper Balance of Cities

    Science.gov (United States)

    Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H

    2014-01-01

    Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460

  11. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  12. Vitrification of copper flotation waste

    International Nuclear Information System (INIS)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-01-01

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30 wt% W were melted for 30 min at 1400 deg. C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit

  13. Method for providing uranium with a protective copper coating

    Science.gov (United States)

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  14. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  15. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  16. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  17. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  18. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  19. Poly(glycidyl methacrylate)-A soft template for the facile preparation of poly(glycidyl methacrylate) core-copper nanoparticle shell nanocomposite

    Science.gov (United States)

    Mohammed Safiullah, S.; Abdul Wasi, K.; Anver Basha, K.

    2015-12-01

    Poly(glycidyl methacrylate) core/copper nanoparticle shell nanocomposite (PGMA/Cu nanohybrid) was prepared by simple two step method (i) The synthesis of poly(glycidyl methacrylate) (PGMA) beads by free radical suspension polymerization followed by (ii) direct deposition of copper nanoparticles (CuNPs) on activated PGMA beads. The PGMA beads were used as a soft template to host the CuNPs without surface modification of it. In this method the CuNPs were formed by chemical reduction of copper salts using sodium borohydride in water medium and deposited directly on the activated PGMA. Two different concentrations of copper salts were employed to know the effect of concentration on the shape and size of nanoparticles. The results showed that, the different sizes and shapes of CuNPs were deposited on the PGMA matrix. The X-ray Diffraction study results showed that the CuNPs were embedded on the surface of the PGMA matrix. The scanning electron microscopic images revealed that the fabrication of CuNPs on the PGMA matrix possess different shapes and changes the morphology and nature of PGMA beads significantly. The fluorescent micrograph also confirmed that the CuNPs were doped on the PGMA surface. The thermal studies have demonstrated that the CuNPs deposition on the surface of PGMA beads had a significant effect.

  20. Evaluation of dried salted pork ham and neck quality

    Directory of Open Access Journals (Sweden)

    Simona Kunová

    2015-12-01

    Full Text Available The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, for example length of drying and ripening period. The average moisture of dried salted pork ham was 63.77% and dried salted pork neck was 59.26%. The protein content was 24.87% in dried salted pork ham and significantly lower (20.51% in dried salted pork neck. The value of intramuscular fat in dried salted pork ham was 4.97% and 14.40% in dried salted pork neck. The salt content was 5.39% in dried salted pork ham and 4.83% in dried salted pork neck. The cholesterol content was 1.36 g.kg-1 in dried salted pork ham and significant lower in dried salted pork neck (0.60 g.kg-1. The value of lightness was 44.36 CIE L* in dried salted pork ham and significantly lower in dried salted pork neck (40.74 CIE L*. The pH value was 5.84 in dried salted pork ham and 5.80 in dried salted pork neck. The shear work was 9.99 kg.s-1 in dried salted pork ham and 6.34 in dried salted pork neck. The value of water activity (aw was 0.929 in dried salted pork ham and similar 0.921 in dried salted pork neck.