WorldWideScience

Sample records for charpy v-notch cvn

  1. Computer simulation of the Charpy V-notch toughness test

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.

    1977-01-01

    The dynamic Charpy V-notch test was simulated on a computer. The calculational models (for A-533 Grade B class 1 steel) used both a rounded and a flat-tipped striker. The notch stress/strain state was found to be independent of the three-point loading type and was most strongly correlated with notch-opening displacement. The dynamic stress/strain state at the time of fracture initiation was obtained by comparing the calculated deformed shape with that obtained in interrupted Charpy V-notch tests where cracking had started. The calculation was also compared with stress/strain states calculated in other geometries at failure. The distribution and partition of specimen energy was calculated and adiabatic heating and strain rate are discussed

  2. Ductile crack initiation in the Charpy V-notch test

    International Nuclear Information System (INIS)

    Server, W.L.; Norris, D.M. Jr.; Prado, M.E.

    1978-01-01

    Initiation and growth of a crack in the Charpy V-notch test was investigated by performing both static and impact controlled deflection tests. Test specimens were deformed to various deflections, heat-tinted to mark crack extension and broken apart at low temperature to allow extension measurements. Measurement of the crack extension provided an estimate of crack initiation as defined by different criteria. Crack initiation starts well before maximum load, and is dependent on the definition of ''initiation''. Using a definition of first micro-initiation away from the ductile blunting, computer model predictions agreed favorably with the experimental results

  3. Determination of the toughness of a low alloy steel from the Charpy V-notch impact testing

    International Nuclear Information System (INIS)

    Rossoll, A.

    1998-12-01

    Charpy V-notch (CVN) impact testing is widely used to characterize the resistance of a material to brittle fracture, by measuring the energy consumed by a specimen during impact. Notably materials undergoing a ductile-to-brittle transition, e.g. ferritic steels, are quality controlled by means of CVN testing, and their ductile-to-brittle transition temperature can be determined. Charpy testing is also widely used in the toughness assessment of large forged components, e.g. pressure vessels for pressurised water reactors (PWR). However, currently no satisfactory link between the Charpy impact energy CVN and the fracture toughness KIc exists. This study aims to establish a non-empirical relationship between the Charpy V-notch energy CVN, and the fracture toughness KIc, on the lower shelf of fracture toughness and the onset of the ductile-to-brittle transition of a A508 Cl.3 steel. The methodology employed is based on the so-called 'local approach'. Brittle cleavage fracture is modelled in terms of the Beremin (1983) model based on 'weakest link' statistics, whereas ductile crack advance preceding cleavage in the transition region is accounted for with the GTN model (Gurson, 1977; Tvergaard, 1982; Tvergaard and Needleman, 1984). Mechanical testing at different strain rates allowed for the establishment of the constitutive equations of the material in an elastic-viscoplastic formulation. Fracture tests on different specimen geometries provided the large data set necessary for statistical evaluation. All specimen types have been modelled with finite element analysis. However, the dynamic nature of the Charpy test requires special consideration. The origin of these dynamic effects was studied, as well as their implications on interpretation of experimental results and on modeling. After a proper modeling procedure had been defined, the local approach was employed for studying fracture. It is found that the fracture toughness can be predicted from the Charpy impact test

  4. Use of forces from instrumented Charpy V-notch testing to determine crack-arrest toughness

    International Nuclear Information System (INIS)

    Iskander, S.K.; Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.; Hutton, J.T.

    1996-06-01

    The objective of this investigation is an estimation of the crack-arrest toughness, particularly of irradiated materials, from voltage versus time output of an instrumented setup during a test on a Charpy V-notch (CVN) specimen. This voltage versus time trace (which can be converted to force versus displacement) displays events during fracture of the specimen. Various stages of the fracture process can be identified on the trace, including an arrest point indicating arrest of brittle fracture. The force at arrest, F a , versus test temperature, T, relationship is examined to explore possible relationships to other experimental measures of crack-arrest toughness such as the drop-weight nil-ductility temperature (NDT), or crack-arrest toughness, K a . For a wide range of weld and plate materials, the temperature at which F a = 2.45 kN correlates with NDT with a standard deviation, sigma, of about 11 K. Excluding the so-called low upper-shelf energy (USE) welds from the analysis resulted in F a = 4.12 kN and σ = 6.6 K. The estimates of the correlation of the temperature for F a = 7.4 kN with the temperature at 100-MPa√m level for a mean American Society of Mechanical Engineers (ASME) type K Ia curve through crack-arrest toughness values show that prediction of conservative values of K a are possible

  5. On impact testing of subsize Charpy V-notch type specimens

    International Nuclear Information System (INIS)

    Mikhail, A.S.; Nanstad, R.K.

    1994-01-01

    The potential for using subsize specimens to determine the actual properties of reactor pressure vessel steels is receiving increasing attention for improved vessel condition monitoring that could be beneficial for light-water reactor plant-life extension. This potential is made conditional upon, on the one hand, by the possibility of cutting samples of small volume from the internal surface of the pressure vessel for determination of actual properties of the operating pressure vessel. The plant-life extension will require supplemental surveillance data that cannot be provided by the existing surveillance programs. Testing of subsize specimens manufactured from broken halves of previously tested surveillance Charpy V-notch (CVN) specimens offers an attractive means of extending existing surveillance programs. Using subsize CVN type specimens requires the establishment of a specimen geometry that is adequate to obtain a ductile-to-brittle transition curve similar to that obtained from full-size specimens. This requires the development of a correlation of transition temperature and upper-shelf toughness between subsize and full-size specimens. The present study was conducted under the Heavy-Section Steel Irradiation Program. Different published approaches to the use of subsize specimens were analyzed and five different geometries of subsize specimens were selected for testing and evaluation. The specimens were made from several types of pressure vessel steels with a wide range of yield strengths, transition temperatures, and upper-shelf energies (USEs). Effects of specimen dimensions, including depth, angle, and radius of notch have been studied. The correlation of transition temperature determined from different types of subsize specimens and the full-size specimen is presented. A new procedure for transforming data from subsize specimens was developed and is presented

  6. Material inertia and size effects in the Charpy V-notch test

    DEFF Research Database (Denmark)

    Desandre, D. A.; Benzerga, A. A.; Tvergaard, Viggo

    2004-01-01

    The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the re......The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation...

  7. Analysis of the Charpy V-notch test for welds

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    The ductile-brittle transition for a weld is investigated by numerical analyses of Charpy impact specimens. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the resulting thermal...... softening accounted for. The onset of cleavage is taken to occur when a critical value of the maximum principal stress is attained. The effect of weld strength undermatch or overmatch is investigated for a comparison material, and analyses are also carried out based on experimentally determined flow...... strength variations in a weldment in a HY100 steel. The predicted work to fracture shows a strong sensitivity to the location of the notch relative to the weld, with the most brittle behavior for a notch close to the narrow heat affected zone. The analyses illustrate the strong dependence of the transition...

  8. Weld investigations by 3D analyses of Charpy V-notch specimens

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, Allan

    2005-01-01

    The Charpy impact test is a standard procedure for determining the ductile-brittle transition in welds. The predictions of such tests have been investigated by full three dimensional transient analyses of Charpy V-notch specimens. The material response is characterised by an elastic...... parameters in the weld material differ from those in the base material, and the heat a®ected zone (HAZ) tends to be more brittle than the other material regions. The effect of weld strength undermatch or overmatch is an important issue. Some specimens, for which the notched surface is rotated relative...... to the surface of the test piece, have so complex geometry that only a full 3D analysis is able to account for the interaction of failure in the three different material regions, whereas ther specimens can be approximated in terms of a planar analysis....

  9. Results of charpy V-notch impact testing of structural steel specimens irradiated at ∼30 degrees C to 1 x 1016 neutrons/cm2 in a commercial reactor cavity

    International Nuclear Information System (INIS)

    Iskander, S.K.; Stoller, R.E.

    1997-04-01

    A capsule containing Charpy V-notch (CVN) and mini-tensile specimens was irradiated at ∼ 30 degrees C (∼ 85 degrees F) in the cavity of a commercial nuclear power plant to a fluence of 1 x 10 16 neutrons/cm 2 (> 1MeV). The capsule included six CVN impact specimens of archival High Flux Isotope Reactor A212 grade B ferritic steel and five CVN impact specimens of a well-studied A36 structural steel. This irradiation was part of the ongoing study of neutron-induced damage effects at the low temperature and flux experienced by reactor supports. The plant operators shut down the plant before the planned exposure was reached. The exposure of these specimens produced no significant irradiation-induced embrittlement. Of interest were the data on unirradiated specimens in the L-T orientation machined from a single plate of A36 structural steel, which is the same specification for the structural steel used in some reactor supports. The average CVN energy of five unirradiated specimens obtained from one region of the plate and tested at room temperature was ∼ 99 J, while the energy of 11 unirradiated specimens from other locations of the same plate was 45 J, a difference of ∼ 220%. The CVN impact energies for all 18 specimens ranged from a low of 32 J to a high of 111 J. Moreover, it appears that the University of Kansas CVN impact energy data of the unirradiated specimens at the 100-J level are shifted toward higher temperatures by about 20 K. The results were an example of the extent of scatter possible in CVN impact testing. Generic values for the CVN impact energy of A36 should be used with caution in critical applications

  10. Computer simulation of plastic deformation in the Charpy V-notch impact test

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.; Quinones, D.F.; Moran, B.

    1978-01-01

    Calculations describe the dynamic stress and strain states in the standard Charpy specimen from impact to the start of cracking. We model A533 Grade B Class 1 nuclear-pressure-vessel steel at 100 0 C with an elastic-plastic constitutive law. Large deformation and rotation of the material are accounted for. The specimen velocity field during the impact transient is presented and how the early wave effects cause separation of the specimen from the striker is shown. The calculations show why correlations between Charpy fracture energy and fracture toughness have been largely unsuccessful and suggest methods to improve these correlations using the same specimen geometry

  11. Effects of annealing time on the recovery of Charpy V-notch properties of irradiated high-copper weld metal

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1994-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. An important issue to be resolved is the effect on the toughness properties of reirradiating a vessel that has been annealed. This paper describes the annealing response of irradiated high-copper submerged-arc weld HSSI 73W. For this study, the weld has been annealed at 454 C (850 F) for lengths of time varying between 1 and 14 days. The Charpy V-notch 41-J (30-ft-lb) transition temperature (TT 41J ) almost fully recovered for the longest period studied, but recovered to a lesser degree for the shorter periods. No significant recovery of the TT 41J was observed for a 7-day anneal at 343 C (650 F). At 454 C for the durations studied, the values of the upper-shelf impact energy of irradiated and annealed weld metal exceeded the values in the unirradiated condition. Similar behavior was observed after aging the unirradiated weld metal at 460 and 490 C for 1 week

  12. Dynamic Toughness Testing of Pre-Cracked Charpy V-Notch Specimens. Convention ELECTRABEL - SCK-CEN

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E

    1999-04-01

    This document describes the experimental and analytical procedures which have been adopted at the laboratories of the Belgian Nuclear Research Centre SCK-CEN for performing dynamic toughness tests on pre-cracked Charpy-V specimens. Such procedures were chosen on the basis of the existing literature on the subject, with several updates in the data analysis stages which reflect more recent developments in fracture toughness testing. Qualification tests have been carried out on PCCv specimens of JRQ steel, in order to assess the reliability of the results obtained; straightforward comparisons with reference data have been performed, as well as more advanced analyses using the Master Curve approach. Aspects related to machine compliance and dynamic tup calibration have also been addressed.

  13. Miniaturized Charpy test for reactor pressure vessel embrittlement characterization

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, M.P. Sr. [MPM Research and Consulting, Lemont, PA (United States)

    1999-10-01

    Modifications were made to a conventional Charpy machine to accommodate the miniaturized Charpy V-Notch (MCVN) specimens which were fabricated from an archived reactor pressure vessel (RPV) steel. Over 100 dynamic MCVN tests were performed and compared to the results from conventional Charpy V-Notch (CVN) tests to demonstrate the efficacy of the miniature specimen test. The optimized sidegrooved MCVN specimens exhibit transitional fracture behavior over essentially the same temperature range as the CVN specimens which indicates that the stress fields in the MCVN specimens reasonably simulate those of the CVN specimens and this fact has been observed in finite element calculations. This result demonstrates a significant breakthrough since it is now possible to measure the ductile-brittle transition temperature (DBTT) using miniature specimens with only small correction factors, and for some materials as in the present study, without the need for any correction factor at all. This development simplifies data interpretation and will facilitate future regulatory acceptance. The non-sidegrooved specimens yield energy-temperature data which is significantly shifted downward in temperature (non-conservative) as a result of the loss of constraint which accompanies size reduction.

  14. Numerical modelling of Charpy-V notch test by local approach to fracture. Application to an A508 steel in the ductile-brittle transition range

    International Nuclear Information System (INIS)

    Tanguy, B.

    2001-07-01

    Ferritic steels present a transition of the rupture mode which goes progressively of a brittle rupture (cleavage) to a ductile rupture when the temperature increases. The following of the difference of the transition temperature of the PWR vessel steel by the establishment of toughness curves makes of the Charpy test an integrating part of the monitoring of the French PWR reactors. In spite of the advantages which are adapted to it in particular its cost, the Charpy test does not allow to obtain directly a variable which characterizes a crack propagation resistance as for instance the toughness used for qualifying the mechanical integrity of a structure. This work deals with the establishment of the through impact strength-toughness in the transition range of the vessel steel: 16MND5 from a non-empirical approach based on the local approach of the rupture. The brittle rupture is described by the Beremin model (1983), which allows to describe the dispersion inherent in this rupture mode. The description of the brittle fissure is carried out by the GTN model (1984) and by the Rousselier model (1986). This last model has been modified in order to obtain a realistic description of the brittle damage in the case of fast solicitations and of local heating. The method proposed to determine the parameters of the damage models depends only of tests on notched specimens and of the inclusion data of the material. The behaviour is described by an original formulation parametrized in temperature which allows to describe all the tests carried out in this study. Before using this methodology, an experimental study of the behaviour and of the rupture modes of the steel 16MND5 has been carried out. From the toughness tests carried out in quasi-static and dynamical conditions, it has been revealed that this steel does not present important unwedging of its toughness curve due to the velocity effect. In the transition range, local heating of about 150 C have been measured in the root

  15. Investigation of Ductile-to-Brittle Transition of RPV Materials by using the Pre-cracked Charpy Impact Data

    International Nuclear Information System (INIS)

    Lee, Ho Jin; Lee, Bong Sang; Hong, Jun Hwa

    2005-01-01

    Much recent work in the field of elastic-plastic fracture mechanics has been directed to developing a mechanics-based relationship between the onset of cleavage fracture in structural components and that of Charpy V-notch specimens. The assessing processes of the cracks located in the reactor pressure vessel (RPV) is described in the ASME code Sec. III, App. G and Sec. XI, App. A. The RTNDT obtained from the impact test using standard Charpy V-notch (CVN) specimens is used as a reference temperature to assess the integrity of RPV materials. The initial RTNDT, for the Linde 80 weld, was determined by the 67.8J Charpy impact energy instead of drop weight test. Generally, Linde 80 weld has low upper-shelf energy. The initial RTNDT obtained from the Charpy impact energy curve has been considered overly conservative. Recently, master curve method has been investigated to assess the integrity of RPV materials directly. The initial RTT0 obtained from the master curve method is considered more realistic than the initial RTNDT obtained from impact test for low upper-shelf fracture toughness RPV materials. In this research, the correlation of transition regions between the master curves and the Charpy impact energy curves was investigated using the dynamic fracture toughness curve and the impact energy curve obtained from the impact test of pre-cracked Charpy (PCC) specimens. For the low toughness RPV material the ductile-to-brittle transition corresponding to the static master curve was anticipated using the invested correlation

  16. Influence of thermal conditioning media on Charpy specimen test temperature

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Swain, R.L.; Berggren, R.G.

    1989-01-01

    The Charpy V-notch (CVN) impact test is used extensively for determining the toughness of structural materials. Research programs in many technologies concerned with structural integrity perform such testing to obtain Charpy energy vs temperature curves. American Society for Testing and Materials Method E 23 includes rather strict requirements regarding determination and control of specimen test temperature. It specifies minimum soaking times dependent on the use of liquids or gases as the medium for thermally conditioning the specimen. The method also requires that impact of the specimen occur within 5 s removal from the conditioning medium. It does not, however, provide guidance regarding choice of conditioning media. This investigation was primarily conducted to investigate the changes in specimen temperature which occur when water is used for thermal conditioning. A standard CVN impact specimen of low-alloy steel was instrumented with surface-mounted and embedded thermocouples. Dependent on the media used, the specimen was heated or cooled to selected temperatures in the range -100 to 100 degree C using cold nitrogen gas, heated air, acetone and dry ice, methanol and dry ice, heated oil, or heated water. After temperature stabilization, the specimen was removed from the conditioning medium while the temperatures were recorded four times per second from all thermocouples using a data acquisition system and a computer. The results show that evaporative cooling causes significant changes in the specimen temperatures when water is used for conditioning. Conditioning in the other media did not result in such significant changes. The results demonstrate that, even within the guidelines of E 23, significant test temperature changes can occur which may substantially affect the Charpy impact test results if water is used for temperature conditioning. 7 refs., 11 figs

  17. Numerical modelling of Charpy-V notch test by local approach to fracture. Application to an A508 steel in the ductile-brittle transition range; Modelisation de l'essai Charpy par l'approche locale de la rupture. Application au cas de l'acier 16MND5 dans le domaine de transition

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, B

    2001-07-15

    Ferritic steels present a transition of the rupture mode which goes progressively of a brittle rupture (cleavage) to a ductile rupture when the temperature increases. The following of the difference of the transition temperature of the PWR vessel steel by the establishment of toughness curves makes of the Charpy test an integrating part of the monitoring of the French PWR reactors. In spite of the advantages which are adapted to it in particular its cost, the Charpy test does not allow to obtain directly a variable which characterizes a crack propagation resistance as for instance the toughness used for qualifying the mechanical integrity of a structure. This work deals with the establishment of the through impact strength-toughness in the transition range of the vessel steel: 16MND5 from a non-empirical approach based on the local approach of the rupture. The brittle rupture is described by the Beremin model (1983), which allows to describe the dispersion inherent in this rupture mode. The description of the brittle fissure is carried out by the GTN model (1984) and by the Rousselier model (1986). This last model has been modified in order to obtain a realistic description of the brittle damage in the case of fast solicitations and of local heating. The method proposed to determine the parameters of the damage models depends only of tests on notched specimens and of the inclusion data of the material. The behaviour is described by an original formulation parametrized in temperature which allows to describe all the tests carried out in this study. Before using this methodology, an experimental study of the behaviour and of the rupture modes of the steel 16MND5 has been carried out. From the toughness tests carried out in quasi-static and dynamical conditions, it has been revealed that this steel does not present important unwedging of its toughness curve due to the velocity effect. In the transition range, local heating of about 150 C have been measured in the root

  18. Numerical modelling of Charpy-V notch test by local approach to fracture. Application to an A508 steel in the ductile-brittle transition range; Modelisation de l'essai Charpy par l'approche locale de la rupture. Application au cas de l'acier 16MND5 dans le domaine de transition

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, B

    2001-07-15

    Ferritic steels present a transition of the rupture mode which goes progressively of a brittle rupture (cleavage) to a ductile rupture when the temperature increases. The following of the difference of the transition temperature of the PWR vessel steel by the establishment of toughness curves makes of the Charpy test an integrating part of the monitoring of the French PWR reactors. In spite of the advantages which are adapted to it in particular its cost, the Charpy test does not allow to obtain directly a variable which characterizes a crack propagation resistance as for instance the toughness used for qualifying the mechanical integrity of a structure. This work deals with the establishment of the through impact strength-toughness in the transition range of the vessel steel: 16MND5 from a non-empirical approach based on the local approach of the rupture. The brittle rupture is described by the Beremin model (1983), which allows to describe the dispersion inherent in this rupture mode. The description of the brittle fissure is carried out by the GTN model (1984) and by the Rousselier model (1986). This last model has been modified in order to obtain a realistic description of the brittle damage in the case of fast solicitations and of local heating. The method proposed to determine the parameters of the damage models depends only of tests on notched specimens and of the inclusion data of the material. The behaviour is described by an original formulation parametrized in temperature which allows to describe all the tests carried out in this study. Before using this methodology, an experimental study of the behaviour and of the rupture modes of the steel 16MND5 has been carried out. From the toughness tests carried out in quasi-static and dynamical conditions, it has been revealed that this steel does not present important unwedging of its toughness curve due to the velocity effect. In the transition range, local heating of about 150 C have been measured in the root

  19. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu

    2012-09-01

    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  20. Estimation of quasi-static J–R curves from Charpy energy and adaptation to ASTM E 1921 reference temperature estimation of ferritic steels

    International Nuclear Information System (INIS)

    Sreenivasan, P.R.

    2014-01-01

    Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T 0 – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T Q-est = T Q-IGC for T Q-Sch dy ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T Q-Sch dy > 20 °C, T Q-IGC = T Q-WLm (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T Q-WL estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures, T Q-IGC is consistently conservative and not over

  1. RS CVn binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    The author attempts to place in context the vast amount of data obtained in the last few years as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. He concentrates on the RS CVn systems and their long-period analogs, and restricts the scope by attempting to answer on the basis of the recent data and theory following questions: (1) Are the original defining characteristics still valid and still adequate? (2) What is the evidence for discrete active regions? (3) Have we derived any meaningful physical properties for the atmospheres of RS CVn systems? (4) What are the flare observations telling us about magnetic fields in the RS CVn systems? (5) Is there evidence for systematic trends in RS CVn systems with spectral type?

  2. Z CVn - Still mysterious

    Science.gov (United States)

    Skarka, M.; Liška, J.; Dřevěný, R.; Sódor, Á.; Barnes, T.; Kolenberg, K.

    2018-04-01

    We comment on short- and long-term pulsation period variations of Z CVn, a classical RR Lyrae star with the Blazhko effect. Z CVn shows cyclic-like O-C diagram that can be interpreted as a consequence of binarity throught the light travel time effect. We show that this hypothesis is false and that the observed long-term period variations must be caused by some effect that is intrinsic to the star. We also show that the Blazhko period is not simply anti-correlated with the long-term period variations as was suggested by previous authors.

  3. Modeling and simulation of Charpy impact test of maraging steel 300 using Abaqus

    Science.gov (United States)

    Madhusudhan, D.; Chand, Suresh; Ganesh, S.; Saibhargavi, U.

    2018-03-01

    This work emphasizes the modeling and simulation of Charpy impact test to evaluate fracture energy at different pendulum velocities of armor maraging steel 300 using ABAQUS. To evaluate the fracture energy, V-notch specimen is fractured using the Johnson and Cook Damage model. The Charpy impact tests are of great importance related to fracture properties of steels. The objective of this work is to present absorbed energy variation at pendulum velocities of 5 m/sec, 6 m/sec, 7 m/sec and 9 m/sec in addition to stress distribution at v-notch. Finite Element Method of modeling for three dimensional specimens is used for simulation in commercial software of ABAQUS.

  4. Application of computer techniques to charpy impact testing of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Landow, M.P.; Fromm, E.O.; Perrin, J.S.

    1982-01-01

    A Rockwell AIM 65 microcomputer has been modified to control a remote Charpy V-notch impact test machine. It controls not only handling and testing of the specimen but also transference and storage of instrumented Charpy test data. A system of electrical solenoid activated pneumatic cylinders and switches provides the interface between the computer and the test apparatus. A command language has been designated that allows the operator to command checkout, test procedure, and data storage via the computer. Automatic compliance with ASTM test procedures is built into the program

  5. Estimation of quasi-static J–R curves from Charpy energy and adaptation to ASTM E 1921 reference temperature estimation of ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R., E-mail: sreeprs@yahoo.co.in

    2014-04-01

    Many researchers had suggested a sort of scaling procedure for predicting the quasi-static J–R curves from dynamic J–R curves obtained from instrumented Charpy V-notch (CVN) impact tests using key-curve, compliance or other procedures. Chaouadi, based on extensive tests and literature data, had quantitatively formalized the method and suggested general applicability of his method for a class of steels. In this paper, first, the Chauoadi-procedure is tried on some selected data from the literature (including the data used by Chaouadi and other workers) and an adaptation of the method is suggested using Wallin's as well as Landes's lower bound methods for upper-shelf J–R curve estimation from CVN energy. Using Chaouadi and other data as the benchmark, suitable scaling factors have been determined that enable estimation of quasi-static J–R curves from CVN energy alone, without the need for dynamic CVN J–R curves. The final formulae are given. This new method can be called modified Wallin–Landes procedure. Then this method is applied to fracture toughness and reference temperature (T{sub 0} – ASTM E-1921) estimation from the full Charpy-transition data. The results are compared with those from the author's IGC-procedure, and modifications, if any, are suggested. Based on the new results, it is suggested that the IGC-procedure may be modified as: final T{sub Q-est} = T{sub Q-IGC} for T{sub Q-Sch}{sup dy} ≤ 20 °C (in the IGC-procedure the dividing temperature was 60 °C); and for T{sub Q-Sch}{sup dy} > 20 °C, T{sub Q-IGC} = T{sub Q-WLm} (different from the IGC-procedre and subscript WLm indicating modified Wallin–Landes procedure). For the 59 or more steels examined (including highly irradiated steels), the T{sub Q-WL} estimates at higher temperatures are consistent and conservative; a few non-conservative values are acceptably less than 20 °C, whereas other predictions show non-conservatism of up to 40–50 °C. At lower temperatures

  6. The Evolution of the Maine Lobster V-Notch Practice: Cooperation in a Prisoner's Dilemma Game

    Directory of Open Access Journals (Sweden)

    James Acheson

    2011-03-01

    Full Text Available The Maine lobster industry is experiencing record high catches because, in all probability, of an effective management program. One of the most important conservation measures is the V-notch program that allows fishermen to conserve proven breeding females by notching the tails of egg-bearing lobsters. Such marked lobsters may never be taken. Although thousands of lobster fishermen participate, it is a voluntary practice. The genesis of this practice is not easily explained, because V-notching poses a prisoner's dilemma problem that gives fishermen an incentive to avoid the practice. The most common explanations for ways to overcome prisoner's dilemma problems will not work in the case of the V-notch. An unusual combination of factors explains the V-notch program: (1 a strong belief among those in the industry that the V-notch is effective in conserving the lobster stock; (2 a low discount rate because the long-term gains from V-notching are higher than the one-time gain from defection; (3 a gain in reputation for those who V-notch. At the start of the 20th century, fishermen did not V-notch; by the end of the century, V-notching was common. We explain the change in strategies using a three-parameter evolutionary model that emphasizes the importance of culture change.

  7. Critical applied stresses for a crack initiation from a sharp V-notch

    Directory of Open Access Journals (Sweden)

    L. Náhlík

    2014-10-01

    Full Text Available The aim of the paper is to estimate a value of the critical applied stress for a crack initiation from a sharp V-notch tip. The classical approach of the linear elastic fracture mechanics (LELM was generalized, because the stress singularity exponent differs from 0.5 in the studied case. The value of the stress singularity exponent depends on the V-notch opening angle. The finite element method was used for a determination of stress distribution in the vicinity of the sharp V-notch tip and for the estimation of the generalized stress intensity factor depending on the V-notch opening angle. Critical value of the generalized stress intensity factor was obtained using stability criteria based on the opening stress component averaged over a critical distance d from the V-notch tip and generalized strain energy density factor. Calculated values of the critical applied stresses were compared with experimental data from the literature and applicability of the LEFM concept is discussed.

  8. Effect of notch dimension on the fatigue life of V-notched structure

    International Nuclear Information System (INIS)

    Cheng Changzheng; Naman, Recho; Niu Zhongrong; Zhou Huanlin

    2011-01-01

    Highlights: → A novel method is proposed to calculate the SIFs of crack at notch tip. → Effect of notch opening angle on the crack extension and propagation is studied. → Influence of notch depth on the crack extension and propagation is analyzed. → The fatigue life of a welded joint is analyzed by the present method. - Abstract: The stress singularity degree associated to a V-notch has a great influence on the fatigue life of V-notched structure. The growth rate of the crack initiated at the tip of a V-notch depends on the stress singularity of the V-notch. The fatigue life accompanying with this small crack will represent a large amount of the total fatigue life. In this work, boundary element method (BEM) is used to study the propagation of the crack emanating from a V-notch tip under fatigue loading. A comparison of the fatigue life between the crack initiated from V-notch tip and a lateral crack is done by a crack propagation law until these two cracks have the same stress intensity factors (SIFs). The effect of initial crack length, notch opening angle and notch depth on the crack extension and propagation is analyzed. As an example of engineering application, the fatigue life of a welded joint is investigated by the present method. The influence of weld toe angle and initial crack length on the fatigue life of the welded structure is studied. Some suggestions are given as an attempt to improve the fatigue life of welded structures at the end.

  9. Three-dimensional vibrations of cylindrical elastic solids with V-notches and sharp radial cracks

    Science.gov (United States)

    McGee, O. G.; Kim, J. W.

    2010-02-01

    This paper provides free vibration data for cylindrical elastic solids, specifically thick circular plates and cylinders with V-notches and sharp radial cracks, for which no extensive previously published database is known to exist. Bending moment and shear force singularities are known to exist at the sharp reentrant corner of a thick V-notched plate under transverse vibratory motion, and three-dimensional (3-D) normal and transverse shear stresses are known to exist at the sharp reentrant terminus edge of a V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done in this work utilizing a variational Ritz procedure including these essential singularity effects. The procedure incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of " edge functions" that explicitly model the 3-D stress singularities which exist along a reentrant terminus edge (i.e., α>180°) of the V-notch. The first set of polynomials guarantees convergence to exact frequencies, as sufficient terms are retained. The second set of edge functions—in addition to representing the corner stress singularities—substantially accelerates the convergence of frequency solutions. This is demonstrated through extensive convergence studies that have been carried out by the investigators. Numerical analysis has been carried out and the results have been given for cylindrical elastic solids with various V-notch angles and depths. The relative depth of the V-notch is defined as (1- c/ a), and the notch angle is defined as (360°- α). For a very small notch angle (1° or less), the notch may be regarded as a "sharp radial crack." Accurate (four significant figure) frequencies are presented for a wide spectrum of notch angles (360°- α), depths (1- c/ a), and thickness ratios ( a/ h for plates and h/ a for cylinders). An extended database of frequencies for completely free thick sectorial, semi-circular, and

  10. Use of precracked Charpy and smaller specimens to establish the master curve

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Nanstad, R.K.; Davidov, Y.A.

    1997-01-01

    The current provisions used in the U.S. Code of Federal Regulations for the determination of the fracture toughness of reactor pressure vessel steels employs an assumption that there is a direct correlation between K Ic lower-bound toughness and the Charpy V-notch transition curve. Such correlations are subject to scatter from both approaches which weakens the reliability of fracture mechanics-based analyses. In this study, precracked Charpy and smaller size specimens are used in three-point static bend testing to develop fracture mechanics based K k values. The testing is performed under carefully controlled conditions such that the values can be used to predict the fracture toughness performance of large specimens. The concept of a universal transition curve (master curve) is applied. Data scatter that is characteristic of commercial grade steels and their weldments is handled by Weibull statistical modeling. The master curve is developed to describe the median K Jc fracture toughness for 1T size compact specimens. Size effects are modeled using weakest-link theory and are studied for different specimen geometries. It is shown that precracked Charpy specimens when tested within their confined validity limits follow the weakest-link size-adjustment trend and predict the fracture toughness of larger specimens. Specimens of smaller than Charpy sizes (5 mm thick) exhibit some disparities in results relative to weakest-link size adjustment prediction suggesting that application of such adjustment to very small specimens may have some limitations

  11. Effects of anisotropic properties on bursting behavior of rectangular cup with a V-notch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Tai [R and D Center, TERA Co. Ltd., Seoul (Korea, Republic of); Kim, Sang Mok [R and D Center, Hyosung Power and Industrial Systems PG, Changwon (Korea, Republic of); Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of); Ku, Tae Wan [Engineering Research Center of Innovative Technology on Advanced Forming, Pusan National University, Busan (Korea, Republic of)

    2016-09-15

    Effects of mechanical anisotropic properties on bursting failure and its pressure of rectangular deep-drawn cup fabricated by using AA3005-H14 thin sheet are investigated to utilize for electrolyte container of lithium-ion secondary batteries. The V-notch shape with a depth of 0.1 mm and an angle of 20.0 degrees is defined on the rectangular cup, which has a thickness of 0.20 mm on the major surface and that of 0.30 mm on the minor surface. With the measured mechanical properties by uni-axial tensile tests and the defined V-notch geometry, a series of numerical prediction models considering isotropic, planar and normal anisotropic characteristics, are built-up and the bursting simulations are performed. Thereafter, the bursting fracture behavior is investigated by adopting ductile fracture criterion proposed by Cockcroft and Latham. The results predicted for the planar and the normal anisotropic models show that the bursting fracture pressure is well matched to 0.400 MPa, and the isotropic and the planar anisotropic models present a bursting fracture height of about 4.95 mm and 4.92 mm, respectively. A series of experimental investigations are undertaken to verify the bursting deformation that had been predicted. The bursting pressure and its height during experimental verifications are shown to be in good agreement with each variation of about 5.88% and roughly 0.20% with respect to the numerical results obtained using the planar anisotropic model.

  12. Charpy impact test of oxidized and hydrogenated zircaloy using a thin strip specimen

    International Nuclear Information System (INIS)

    Otsuka, Teppei; Hashizume, Kenichi; Sugisaki, Masayasu

    2004-01-01

    The impact properties of an oxidized and a hydrogenated Zircaloy have been studied with an instrumented Charpy machine by using a strip Charpy V-notch specimen (1 mm thick by 4mm wide). Fracture processes such as crack initiation and propagation were examined using load-displacement curves obtained in this study. In the case of the hydrogenated specimen containing preferentially oriented hydrides, an appreciable decrease in the absorbed energy was observed in the crack propagation rather than in the crack initiation. From results of fractographs of the specimen, it was suggested that the reduction of the crack propagation energy of hydrogenated specimen could be attributed to the change of the stress state in the Zircaloy matrix, which was caused by the fracture of hydride in the inner part of specimen. In the case of the specimen oxidized at 973k for 60 min, on which an oxide layer (4 μm in thickness) and oxygen incursion layer (4μm) were formed, the surface layers affected the crack initiation process. The growing oxygen incursion layer, in particular, resulted in the constraint of plastic deformation of the Zircaloy matrix not only in the crack initiation but also in the crack propagation as its thickness increased. (author)

  13. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K{sub Ic}n K{sub Id} temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K{sub Ia} degradation. Finally, the CVN-tensile load-temperature diagram

  14. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    International Nuclear Information System (INIS)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K Ic n K Id temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K Ia degradation. Finally, the CVN-tensile load-temperature diagram provides substantial

  15. The origin of the RS CVn binaries

    International Nuclear Information System (INIS)

    Biermann, P.

    1976-01-01

    Six possible origins for the RS CVn binaries are considered based on the following possibilities. RS CVn binaries might now be either pre-main-sequence or post-main-sequence. A pre-main-sequence binary might not always have been a binary but might have resulted from fission of a rapidly rotating single pre-main-sequence star. The main-sequence counterparts might be either single stars or binaries. To decide which of the six origins is possible, the following observed data for the RS CVn binaries are considered: total mass, total angular momentum, lack of observed connection with regions of star formation, large space density, kinematical age, and the visual companion of WW Dra. In addition lifetimes and space densities of single stars and other types of binaries are considered. The only origin possible is that the RS CVn binaries are in a thermal phase following fission of a main-sequence single star. In this explanation the single star had a rapidly rotating core which became unstable due to the core contraction which made it begin to evolve off the main sequence. The present Be stars might be examples of such parent single stars. (Auth.)

  16. Infrared observations of RS CVn stars

    International Nuclear Information System (INIS)

    Berriman, G.; De Campli, W.M.; Werner, M.W.; Hatchett, S.P.

    1983-01-01

    Infrared photometry is presented of the RS CVn binary stars AR Lac (1.2-10 μm) and MM Her (1.2-3.5 μm) as they egressed from their primary and secondary eclipses; of the eclipsing systems RS CVn and Z Her at maximum light (1.2-10 μm) and of the non-eclipsing systems UX Ari and HR 1099 (1.2-10 μm). An analysis of these and published V data based on flux ratio diagrams (linear analogues of colour-colour diagrams) shows that G and K stars supply the infrared light of these systems. None of these systems shows infrared emission from circumstellar matter. (author)

  17. Influence of phase transformations on the asymptotic residual stress distribution arising near a sharp V-notch tip

    International Nuclear Information System (INIS)

    Ferro, P

    2012-01-01

    In this work, the residual stress distribution induced by the solidification and cooling of a fusion zone in the vicinity of a sharp V-notch tip is investigated. The intensity of the residual asymptotic stress fields, quantified by the notch stress intensity factors, was studied for two different V-notch specimen geometries under generalized plane-strain conditions. In order to analyze the influence of phase transformations on the obtained results, simulations with and without the effects of phase transformation were carried out on ASTM SA 516 steel plates. Thanks to the possibilities of numerical modelling, additional analyses were performed without taking into account the transformation plasticity phenomenon. It was found that phase transformation effects (both volume change and transformation plasticity) have a great influence on the intensity and sign of the asymptotic stress fields at the sharp V-notch tips. This result is believed to be very important for the correct numerical determination (and future applications) of notch stress intensity factors resulting from asymptotic residual stress distributions induced by transient thermal loads. The analyses were performed with the finite element code SYSWELD. (paper)

  18. Computer model for ductile fracture

    International Nuclear Information System (INIS)

    Moran, B.; Reaugh, J. E.

    1979-01-01

    A computer model is described for predicting ductile fracture initiation and propagation. The computer fracture model is calibrated by simple and notched round-bar tension tests and a precracked compact tension test. The model is used to predict fracture initiation and propagation in a Charpy specimen and compare the results with experiments. The calibrated model provides a correlation between Charpy V-notch (CVN) fracture energy and any measure of fracture toughness, such as J/sub Ic/. A second simpler empirical correlation was obtained using the energy to initiate fracture in the Charpy specimen rather than total energy CVN, and compared the results with the empirical correlation of Rolfe and Novak

  19. Nuclear reactor pressure vessel integrity insurance by crack arrestability evaluation using load from CVN tests

    International Nuclear Information System (INIS)

    Fabry, A.

    1997-01-01

    The present work is undertaken in the framework of nuclear reactor pressure vessel (RPV) surveillance and aims at revisiting the crack arrest approach to structural integrity insurance. This approach, performed under normal plant operation conditions, can also offer an attractive alternative to the crack initiation philosophy promoted for accidental analysis. To this end, an accidental conservative, cost effective and robust methodology is forwarded and demonstrated: it makes use of the crack arrest information contained in the instrumented Charpy V-notch impact test and/or in the shear fracture appearance of broken samples. Particular attention is paid to the appraisal of uncertainties and the related safety margin. The resulting capability is placed in perspective with the state-of-the-art crack initiation methodology based on the slow bend testing of recracked specimens, presently under standardization world-wide. The investigation leads to highlight three conceptual weaknesses of current enfgineering and regulatory practices. Improved crack arrestability evaluation emerges as an optimal approach to insure safe PWR operation up to design end-of-life and beyond

  20. Nuclear reactor pressure vessel integrity insurance by crack arrestability evaluation using load from CVN tests

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-10-15

    The present work is undertaken in the framework of nuclear reactor pressure vessel (RPV) surveillance and aims at revisiting the crack arrest approach to structural integrity insurance. This approach, performed under normal plant operation conditions, can also offer an attractive alternative to the crack initiation philosophy promoted for accidental analysis. To this end, an accidental conservative, cost effective and robust methodology is forwarded and demonstrated: it makes use of the crack arrest information contained in the instrumented Charpy V-notch impact test and/or in the shear fracture appearance of broken samples. Particular attention is paid to the appraisal of uncertainties and the related safety margin. The resulting capability is placed in perspective with the state-of-the-art crack initiation methodology based on the slow bend testing of recracked specimens, presently under standardization world-wide. The investigation leads to highlight three conceptual weaknesses of current enfgineering and regulatory practices. Improved crack arrestability evaluation emerges as an optimal approach to insure safe PWR operation up to design end-of-life and beyond.

  1. Comparisons of irradiation-induced shifts in fracture toughness, crack arrest toughness, and Charpy impact energy in high-copper welds

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.

    1991-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program is examining relative shifts and changes in shape of fracture and crack-arrest toughness versus temperature behavior for two high-copper welds. Fracture toughness 100-MPa√m temperature shifts are greater than Charpy 41-J shifts for both welds. Mean curve fits to the fracture toughness data provide mixed results regarding curve shape changes, but curves constructed as lower boundaries indicate lower slopes. Preliminary crack-arrest toughness results indicate that shifts of lower-bound curves are approximately the same as CVN 41-J shifts with no shape changes

  2. Charpy V, an application in Mat lab

    International Nuclear Information System (INIS)

    Castillo M, J.A.; Torres V, M.

    2003-01-01

    The obtained results with the system Charpy V V 1 designed in Mat lab for the estimate of parameters of three mathematical models are shown. The adjustment of data is used to determine the fracture energy, the lateral expansion and the percentage of ductility of steels coming from the reactor vessels of Laguna Verde, Veracruz. The data come from test tubes type Charpy V of irradiated material and not irradiated. To verify our results they were compared with those obtained by General Electric of data coming from the Laguna Verde nuclear power plant. (Author)

  3. Infrared observations of RS CVn stars

    Science.gov (United States)

    Berriman, G.; De Campli, W. M.; Werner, M. W.; Hatchett, S. P.

    1983-01-01

    The paper presents infrared photometry of the RS CVn binary stars AR Lac (1.2-10 microns) and MM Her (1.2-3.5 microns) as they egressed from their primary and secondary eclipses; of the eclipsing systems RS CVn and Z Her at maximum light (1.2-10 microns) and of the non-eclipsing systems UX Ari and HR 1099 (1.2-10 microns). An analysis of these and published V data based on flux ratio diagrams (linear analogues of color-color diagrams) shows that G and K stars supply the infrared light of these systems. In AR Lac, the combined light of a G5-K0 subgiant and either a late F dwarf or an early F subgiant can account for the observed visual and infrared light curves. None of these systems shows infrared emission from circumstellar matter. This result is simply understood: dust grains would not be expected to form in the physical conditions surrounding the subgiant, and the corona and chromosphere (whose properties have been deduced from spectroscopic X-ray observations) should not produce appreciable infrared emission.

  4. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  5. Recent advances on Charpy specimen reconstitution techniques

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J., E-mail: aandrade@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  6. Recent advances on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.; Miranda, Carlos Alexandre J.

    2017-01-01

    Charpy specimen reconstitution is widely used around the world as a tool to enhance or supplement surveillance programs of nuclear reactor pressure vessels. The reconstitution technique consists in the incorporation of a small piece from a previously tested specimen into a compound specimen, allowing to increase the number of tests. This is especially important if the available materials is restricted and fracture mechanics parameter have to be determined. The reconstitution technique must fulfill some demands, among them tests results like the original standard specimens and the loaded material of the insert must not be influenced by the welding and machining procedure. It is known that reconstitution of Charpy specimens may affect the impact energy in a consequence of the constraint of plastic deformation by the hardened weldment and HAZ. This paper reviews some recent advances of the reconstitution technique and its applications. (author)

  7. Comparative study on Charpy specimen reconstitution techniques

    International Nuclear Information System (INIS)

    Bourdiliau, B.; Decroix, G.-M.; Averty, X.; Wident, P.; Bienvenu, Y.

    2011-01-01

    Highlights: → Welding processes are used to reconstitute previously tested Charpy specimens. → Stud welding is preferred for a quick installation, almost immediately operational. → Friction welding produces better quality welds, but requires a development effort. - Abstract: Reconstitution techniques are often used to allow material from previously fractured Charpy-V specimens to be reused for additional experiments. This paper presents a comparative experimental study of various reconstitution techniques and evaluates the feasibility of these methods for future use in shielded cells. The following techniques were investigated: arc stud welding, 6.0 kW CO 2 continuous wave laser welding, 4.5 kW YAG continuous wave laser welding and friction welding. Subsize Charpy specimens were reconstituted using a 400 W YAG pulsed wave laser. The best result was obtained with arc stud welding; the resilience of the reconstituted specimens and the load-displacement curves agreed well with the reference specimens, and the temperature elevation caused by the welding process was limited to the vicinity of the weld. Good results were also obtained with friction welding; this process led to the best quality welds. Laser welding seems to have affected the central part of the specimens, thus leading to different resilience values and load-displacement curves.

  8. V-notch tip subjected to in-plane mixed mode loading: overview of recent results and possible future outcomes

    Directory of Open Access Journals (Sweden)

    F. Berto

    2017-07-01

    Full Text Available . The fictitious notch rounding concept is applied for the first time to V-notches with root hole subjected to in-plane mixed mode loading. Outof-bisector crack propagation is taken into account. The fictitious notch radius is determined as a function of the real notch radius, the microstructural support length and the notch opening angle. Due to the complexity of the problem, a method based on the simple normal stress failure criterion has been used. It is combined with the maximum tangential stress criterion to determine the crack propagation angle. An analytical method based on Neuber's procedure has been developed. The method provides the values of the microstructural support factor as a function of the mode ratio and the notch opening angle. The support factor is considered to be independent of the microstructural support length. Finally, for comparison, the support factor is determined on a purely numerical basis by iterative analysis of FE models.

  9. Evaluation of fracture toughness in dental ceramics using indentation and SEVNB (Single Edge V-Notched Beam)-method

    International Nuclear Information System (INIS)

    Santos, L.A.; Santos, C.; Souza, R.C.; Ribeiro, S.

    2009-01-01

    In this work, the fracture toughness of different ceramics based on Al 2 O 3 and ZrO 2 were evaluated using, comparatively two methods, Vickers indentation and SEVNB (Single Edge V-Notched Beam) method. Al 2 O 3 , ZrO 2 (3%Y 2 O 3 ) micro-particled and ZrO 2 (3%Y 2 O 3 ) nanometric, ZrO 2 -Al 2 O 3 and Al 2 O 3 -ZrO 2 composites were sintered at different temperatures. Samples were characterized by relative density, X-ray diffraction, SEM, and mechanical evaluation by hardness, bending strength and fracture toughness obtained by ickers indentation and SEVNB-method. The results were presented comparing the densification and microstructural results. Furthermore, the advantages and limitations of each method were discussed. (author)

  10. Charpy V, an application in Mat lab; Charpy V, una aplicacion en Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J.A.; Torres V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The obtained results with the system Charpy V{sub V}1 designed in Mat lab for the estimate of parameters of three mathematical models are shown. The adjustment of data is used to determine the fracture energy, the lateral expansion and the percentage of ductility of steels coming from the reactor vessels of Laguna Verde, Veracruz. The data come from test tubes type Charpy V of irradiated material and not irradiated. To verify our results they were compared with those obtained by General Electric of data coming from the Laguna Verde nuclear power plant. (Author)

  11. Application of Instrumented Charpy Method in Characterisation of Materials

    OpenAIRE

    Alar, Željko; Mandić, Davor; Dugorepec, Andrija; Sakoman, Matija

    2015-01-01

    Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method...

  12. Evaluation of fracture toughness in dental ceramics using indentation and SEVNB (Single Edge V-Notched Beam)-method; Avaliacao da tenacidade a fratura de ceramicas dentarias atraves do metodo de entalhe - SEVNB (Single Edge V-Notched Beam)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.A.; Santos, C.; Souza, R.C.; Ribeiro, S. [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de Lorena. Dept. de Engenharia de Materiais. Polo Urbo-Industrial; Strecker, K. [Universidade Federal de Sao Joao del-Rei (DME/UFSJ), MG (Brazil). Dept. de Materiais Eletricos; Oberacker, R. [Karlsruhe Univ. (Germany)

    2009-07-01

    In this work, the fracture toughness of different ceramics based on Al{sub 2}O{sub 3} and ZrO{sub 2} were evaluated using, comparatively two methods, Vickers indentation and SEVNB (Single Edge V-Notched Beam) method. Al{sub 2}O{sub 3}, ZrO{sub 2}(3%Y{sub 2}O{sub 3}) micro-particled and ZrO{sub 2}(3%Y{sub 2}O{sub 3}) nanometric, ZrO{sub 2}-Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-ZrO{sub 2} composites were sintered at different temperatures. Samples were characterized by relative density, X-ray diffraction, SEM, and mechanical evaluation by hardness, bending strength and fracture toughness obtained by ickers indentation and SEVNB-method. The results were presented comparing the densification and microstructural results. Furthermore, the advantages and limitations of each method were discussed. (author)

  13. Classification of Ap-stars HR 830 and ZI CVn

    International Nuclear Information System (INIS)

    Zverko, J.

    1984-01-01

    Two ambiguously classified Ap-stars, HR 830 and 21 CVn, are studied. The observational data are compared with the data for normal stars αDel and αLyr. Star HR 830 is classified as Ap of type Si based on the enhanced absorption in the Si lines and photometric variability in UBV. 21 CVn is classified as Ap Si based on weaker absorption of helium, the variability of helium lines, photometric periodic variability and the properties of the UV spectrum. It is concluded that the photometric periodic variability is a good indicator of Ap-properties of rapidly rotating A and late B stars. (author)

  14. Charpy impact test results on five materials and NIST verification specimens using instrumented 2-mm and 8-mm strikers

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Sokolov, M.A.

    1995-01-01

    The Heavy-Section Steel Irradiation Program at Oak Ridge National Laboratory is involved in two cooperative projects, with international participants, both of which involve Charpy V-notch impact tests with instrumented strikers of 2mm and 8mm radii. Two heats of A 533 grade B class I pressure vessel steel and a low upper-shelf (LUS) submerged-arc (SA) weld were tested on the same Charpy machine, while one heat of a Russian Cr-Mo-V forging steel and a high upper-shelf (HUS) SA weld were tested on two different machines. The number of replicate tests at any one temperature ranged from 2 to 46 specimens. Prior to testing with each striker, verification specimens at the low, high, and super high energy levels from the National Institute of Standards and Technology (NIST) were tested. In the two series of verification tests, the tests with the 2mm striker met the requirements at the low and high energy levels but not at the super high energy. For one plate, the 2mm striker showed somewhat higher average absorbed energies than those for the 8-mm striker at all three test temperatures. For the second plate and the LUS weld, however, the 2mm striker showed somewhat lower energies at both test temperatures. For the Russian forging steel and the HUS weld, tests were conducted over a range of temperatures with tests at one laboratory using the 8mm striker and tests at a second laboratory using the 2mm striker. Lateral expansion was measured for all specimens and the results are compared with the absorbed energy results. The overall results showed generally good agreement (within one standard deviation) in energy measurements by the two strikers. Load-time traces from the instrumented strikers were also compared and used to estimate shear fracture percentage. Four different formulas from the European Structural Integrity Society draft standard for instrumented Charpy test are compared and a new formula is proposed for estimation of percent shear from the force-time trace

  15. Application of Instrumented Charpy Method in Characterisation of Materials

    Directory of Open Access Journals (Sweden)

    Željko Alar

    2015-07-01

    Full Text Available Testing of absorbed impact energy according to the Charpy method is carried out to determine the behaviour of a material under the impact load. Instrumented Charpy method allows getting the force displacement curve through the entire test, That curve can be related to force-displacement curve which is obtained by the static tensile test. The purpose of this study was to compare the results of forces obtained by the static tensile test with the forces obtained by the instrumented Charpy method. Experimental part of the work contains testing of the mechanical properties of S275J0 steel by the static tensile test and Impact test on instrumented Charpy pendulum.

  16. CARA CVN: inherently safe fuel element for PHWR power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Lestani, Hector A.; Agueda, Horacio C.; Marino, Armando C.; Florido, Pablo C.; Daverio, Hernando

    2007-01-01

    This paper presents design alternatives of the CARA fuel element with negative void reactivity coefficient (CVN) enhancing the PHWR safety for L-LOCA sequences. This design enhances the safety and the operation performance in Atucha and Embalse without changes in the operation conditions. This new design balances wide performance margins of CARA SEU 0.9% previous design, with new intrinsic safety requirements without economic penalties. (author) [es

  17. Long-term photometric behaviour of outbursting AM CVn systems

    OpenAIRE

    Levitan, David; Groot, Paul J.; Prince, Thomas A.; Kulkarni, Shrinivas R.; Laher, Russ; Ofek, Eran O.; Sesar, Branimir; Surace, Jason

    2015-01-01

    The AM CVn systems are a class of He-rich, post-period minimum, semidetached, ultracompact binaries. Their long-term light curves have been poorly understood due to the few systems known and the long (hundreds of days) recurrence times between outbursts. We present combined photometric light curves from the Lincoln Near Earth Asteroid Research, Catalina Real-Time Transient Survey, and Palomar Transient Factory synoptic surveys to study the photometric variability of these systems over an almo...

  18. Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks

    Science.gov (United States)

    Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.

    2018-04-01

    We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.

  19. Gravitational waves from double white dwarfs and AM CVn binaries

    International Nuclear Information System (INIS)

    Nelemans, Gijs

    2003-01-01

    I give a brief overview of our model for the galactic population of compact binaries that is used to predict the low-frequency gravitational wave signal from the galaxy, and discuss recent observational developments that will enable us to test and improve this model. The SPY project will discover some 150 new close double white dwarfs and, recently, two ROSAT sources turned out to be new AM CVn candidates, one with an orbital period of only 5 min. I give an update on the expected binaries that will be resolved by LISA and discuss what we can learn about the galactic population of compact binaries once LISA gives her first results

  20. Effects of Notch Misalignment and Tip Radius on Displacement Field in V-Notch Rail Shear Test as Determined by Photogrammetry

    Science.gov (United States)

    Hill, Charles S.; Oliveras, Ovidio M.

    2011-01-01

    Evolution of the 3D strain field during ASTM-D-7078 v-notch rail shear tests on 8-ply quasi-isotropic carbon fiber/epoxy laminates was determined by optical photogrammetry using an ARAMIS system. Specimens having non-optimal geometry and minor discrepancies in dimensional tolerances were shown to display non-symmetry and/or stress concentration in the vicinity of the notch relative to a specimen meeting the requirements of the standard, but resulting shear strength and modulus values remained within acceptable bounds of standard deviation. Based on these results, and reported difficulty machining specimens to the required tolerances using available methods, it is suggested that a parametric study combining analytical methods and experiment may provide rationale to increase the tolerances on some specimen dimensions, reducing machining costs, increasing the proportion of acceptable results, and enabling a wider adoption of the test method.

  1. Determinación de la tenacidad a la fractura de muestras de Acero 45 fundido, empleando las correlaciones entre el KIC y la energía de impacto medida en el ensayo de Charpy. // Determination of the fracture tenacity of cast Steel grade 45 samples, using th

    Directory of Open Access Journals (Sweden)

    F. Ramos Morales

    2005-05-01

    Full Text Available En el presente trabajo se determinan los valores de tenacidad a la fractura (KIC de muestras de Acero 45 fundido,empleando las correlaciones entre la tenacidad a la fractura y la energía de impacto (CVN obtenida del ensayo de Charpy.Se hace una discusión sobre las correlaciones que más se ajustan en la región de transición y en upper shelf. Se comparanlos valores obtenidos de estas correlaciones a valores de tenacidad a la fractura establecidos en la literatura.Palabras claves: Fractura, energía de impacto, acero fundido.______________________________________________________________________________Abstract.In this paper, the values of fracture toughness (KIC are determined on specimens of cast steel grade 45, using thecorrelations among the fracture toughness (KIC and the impact energy (CVN obtained from a Charpy test. A discussion ismade on the correlations that are better adjusted in the transition region and in upper shelf region. The obtained values arecompared from these correlations to values of fracture toughness (KIC settled down in the literature.Key words. Fracture, impact energy, cast steel.

  2. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Y.T.; Chang, H.T.; Huang, B.M. [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China); Huang, C.Y. [Iron and Steel R& D Department, China Steel Corporation, Kaohsiung, Taiwan, ROC (China); Yang, J.R., E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC (China)

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite was found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during

  3. SHPL: The Scaleable High-Performance LAN on the CVN 71

    National Research Council Canada - National Science Library

    Blackwell, L

    1998-01-01

    ...) Core Technology Program aboard USS Theodore Roosevelt (CVN-71). The program demonstrates advanced concepts in strike planning, visualization, and execution using the latest technology in high speed computing, 3-D graphics, and networking...

  4. Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress

    Science.gov (United States)

    2013-10-22

    states: The CVN 78 is experiencing cost growth due to “first of class” material availability (i.e., valves, actuators ), construction labor...assessment during IOT &E [initial operational test and evaluation]. • The current TEMP [test and evaluation master plan] does not adequately address...developmental testing significantly raises the likelihood of the discovery of platform-level problems during IOT &E. • The Navy plans to deliver CVN-78 in

  5. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

    1998-01-01

    The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

  6. Evaluation and uncertainty estimates of Charpy-impact data

    International Nuclear Information System (INIS)

    Stallman, F.W.

    1982-01-01

    Shifts in transition temperature and upper-shelf energy from Charpy tests are used to determine the extent of radiation embrittlement in steels. In order to determine these parameters reliably and to obtain uncertainty estimates, curve fitting procedures need to be used. The hyperbolic tangent or similar models have been proposed to fit the temperature-impact-energy curve. These models are not based on the actual fracture mechanics and are indeed poorly suited in many applications. The results may be falsified by forcing an inflexible curve through too many data points. The nonlinearity of the fit poses additional problems. In this paper, a simple linear fit is proposed. By eliminating data which are irrelevant for the determination of a given parameter, better reliability and accuracy can be achieved. Additional input parameters like fluence and irradiation temperature can be included. This is important if there is a large variation of fluence and temperature in different test specimens. The method has been tested with Charpy specimens from the NRC-HSST experiments

  7. Analysis of impact energy to fracture un-notched charpy specimens made from railroad tank car steel

    Science.gov (United States)

    2007-09-11

    This paper describes a nonlinear finite element analysis : (FEA) framework that examines the impact energy to fracture : unnotched Charpy specimens by an oversized, nonstandard : pendulum impactor called the Bulk Fracture Charpy Machine : (BFCM). The...

  8. High-speed photometry of Gaia14aae: an eclipsing AM CVn that challenges formation models

    Science.gov (United States)

    Green, M. J.; Marsh, T. R.; Steeghs, D. T. H.; Kupfer, T.; Ashley, R. P.; Bloemen, S.; Breedt, E.; Campbell, H. C.; Chakpor, A.; Copperwheat, C. M.; Dhillon, V. S.; Hallinan, G.; Hardy, L. K.; Hermes, J. J.; Kerry, P.; Littlefair, S. P.; Milburn, J.; Parsons, S. G.; Prasert, N.; van Roestel, J.; Sahman, D. I.; Singh, N.

    2018-05-01

    AM CVn-type systems are ultracompact, hydrogen-deficient accreting binaries with degenerate or semidegenerate donors. The evolutionary history of these systems can be explored by constraining the properties of their donor stars. We present high-speed photometry of Gaia14aae, an AM CVn with a binary period of 49. 7 min and the first AM CVn in which the central white dwarf is fully eclipsed by the donor star. Modelling of the light curves of this system allows for the most precise measurement to date of the donor mass of an AM CVn, and relies only on geometric and well-tested physical assumptions. We find a mass ratio q = M2/M1 = 0.0287 ± 0.0020 and masses M1 = 0.87 ± 0.02 M⊙ and M2 = 0.0250 ± 0.0013 M⊙. We compare these properties to the three proposed channels for AM CVn formation. Our measured donor mass and radius do not fit with the contraction that is predicted for AM CVn donors descended from white dwarfs or helium stars at long orbital periods. The donor properties we measure fall in a region of parameter space in which systems evolved from hydrogen-dominated cataclysmic variables are expected, but such systems should show spectroscopic hydrogen, which is not seen in Gaia14aae. The evolutionary history of this system is therefore not clear. We consider a helium-burning star or an evolved cataclysmic variable to be the most likely progenitors, but both models require additional processes and/or fine-tuning to fit the data. Additionally, we calculate an updated ephemeris which corrects for an anomalous time measurement in the previously published ephemeris.

  9. DISCOVERY OF A NEW AM CVn SYSTEM WITH THE KEPLER SATELLITE

    International Nuclear Information System (INIS)

    Fontaine, G.; Brassard, P.; Dufour, P.; Bergeron, P.; Green, E. M.; Hubeny, I.; Guvenen, B.; O'Malley, C. J.; Charpinet, S.; Van Grootel, V.; Steeghs, D.; Marsh, T. R.; Aerts, C.; Oestensen, R. H.; Bloemen, S.; Randall, S. K.; Silvotti, R.; Howell, S. B.; Baran, A.; Kepler, S. O.

    2011-01-01

    We report the discovery of a new AM CVn system on the basis of broadband photometry obtained with the Kepler satellite supplemented by ground-based optical spectroscopy. Initially retained on Kepler target lists as a potential compact pulsator, the blue object SDSS J190817.07+394036.4 (KIC 004547333) has turned out to be a high-state AM CVn star showing the He-dominated spectrum of its accretion disk significantly reddened by interstellar absorption. We constructed new grids of NLTE synthetic spectra for accretion disks in order to analyze our spectroscopic observations. From this analysis, we infer preliminary estimates of the rate of mass transfer, the inclination angle of the disk, and the distance to the system. The AM CVn nature of the system is also evident in the Kepler light curve, from which we extracted 11 secure periodicities. The luminosity variations are dominated by a basic periodicity of 938.507 s, likely to correspond to a superhump modulation. The light curve folded on the period of 938.507 s exhibits a pulse shape that is very similar to the superhump wavefront seen in AM CVn itself, which is a high-state system and the prototype of the class. Our Fourier analysis also suggests the likely presence of a quasi-periodic oscillation similar to those already observed in some high-state AM CVn systems. Furthermore, some very low-frequency, low-amplitude aperiodic photometric activity is likely present, which is in line with what is expected in accreting binary systems. Inspired by previous work, we further looked for and found some intriguing numerical relationships between the 11 secure detected frequencies, in the sense that we can account for all of them in terms of only three basic clocks. This is further evidence in favor of the AM CVn nature of the system.

  10. THE HOT COMPONENTS OF AM CVn HELIUM CATACLYSMICS

    International Nuclear Information System (INIS)

    Sion, Edward M.; Godon, Patrick; Ballouz, Ronald-Louis; Linnell, Albert P.

    2011-01-01

    We present the results of a multi-component synthetic spectral analysis of the archival far-ultraviolet spectra of the hot components of several AM CVn double degenerate interacting binaries with known distances from trigonometric parallaxes. Our analysis was carried out using the code BINSYN, which takes into account the donor companion star, the shock front which forms at the disk edge, and the FUV and NUV energy distribution. We fixed the distance of each system at its parallax-derived value and adopted appropriate values of orbital inclination and white dwarf (WD) mass. We find that the accretion-heated 'DO/DB' WDs are contributing significantly to the FUV flux in five of the systems (ES Ceti, CR Boo, V803 Cen, HP Lib, GP Com). In three of the systems, GP Com, ES Ceti, and CR Boo, the WD dominates the FUV/NUV flux. We present model-derived accretion rates which agree with the low end of the range of accretion rates derived earlier from blackbody fits over the entire spectral energy distribution. We find that the WD in ES Ceti is very likely not a direct impact accretor but has a small disk. The WD in ES Ceti has T eff ∼ 40, 000 ± 10, 000 K. This is far cooler than the previous estimate of Espaillat et al.. We find that the WD in GP Com has T eff = 14, 800 ± 500 K, which is hotter than the previously estimated temperature of 11,000 K. We present a comparison between our empirical results and current theoretical predictions for these systems.

  11. Discovery of a New AM CVn System with the Kepler Satellite

    DEFF Research Database (Denmark)

    Fontaine, G.; Brassard, P.; Green, Elizabeth M.

    2011-01-01

    004547333) has turned out to be a high-state AM CVn star showing the He-dominated spectrum of its accretion disk significantly reddened by interstellar absorption. We constructed new grids of NLTE synthetic spectra for accretion disks in order to analyze our spectroscopic observations. From this analysis...... analysis also suggests the likely presence of a quasi-periodic oscillation similar to those already observed in some high-state AM CVn systems. Furthermore, some very low-frequency, low-amplitude aperiodic photometric activity is likely present, which is in line with what is expected in accreting binary...

  12. Charpy trend-curve development based on PWR surveillance date

    International Nuclear Information System (INIS)

    Guthrie, G.L.

    1983-01-01

    The formulas given in the text provide a useful method of predicting the irradiation induced increase in the 41 joule Charpy transition temperature for plate and weld material. The standard deviations for the least squares fits are 26.4 0 F for the weld equation and 15.6 0 F for the plat relationship. The current method of derivation produces an unbiased estimate of the fluence exponent, resulting in increased reliability for fluence extrapolations. The method given for error estimation provides a relatively rigorous procedure for calculating uncertainties and takes proper account of the effects of uncertainties in the independent variables in any given application of the formulas. 11 refs., 4 figs., 4 tabs

  13. Charpy impact behavior of manganese-stabilized martensitic steels

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1986-05-01

    Tests were conducted to evaluate the irradiation-induced shift in ductile-to-brittle transition behavior of two manganese stabilized martensitic steels. Miniature Charpy specimens were fabricated from two heats of steel similar in composition to HT-9 but with 0.1% C and Mn contents ranging from 3.3 to 6.6.%. The 3.3% Mn steel showed a transition temperature similar to that of HT-9 in both the unirradiated condition and in specimens irradiated to 11.3 dpa. The steel containing 6.6% Mn exhibited a higher transition temperature after irradiation than the steel containing 3.3% Mn. The upper shelf energy (USE) after irradiation for the manganese stabilized alloys was much higher than for HT-9. 6 refs., 3 figs., 2 tabs

  14. Unravelling the Nature of HD 81032 – A New RS CVn Binary

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... ... component solar-abundance coronal plasma model, but implies either the presence of two or more plasma components, non-solar abundances, or a combination of both of these properties. All of the above properties of HD 81032 suggest that it is a newly identified, evolved RS CVn binary.

  15. Short-period AM CVn systems as optical, X-ray and gravitational-wave sources

    NARCIS (Netherlands)

    Nelemans, G.; Yungelson, L.; Portegies Zwart, S.F.

    2004-01-01

    We model the population of AM CVn systems in the Galaxy and discuss the detectability of these systems with optical, X-ray and gravitational-wave detectors. We concentrate on the short-period (P < 1500 s) systems, some of which are expected to be in a phase of direct-impact accretion. Using a

  16. Fracture toughness of Charpy-size compound specimens and its application in engineering

    International Nuclear Information System (INIS)

    Zhang, X.P.; Shi, Y.W.

    1994-01-01

    The use of a pre-cracked Charpy-size specimen with a side-groove to evaluate the fracture toughness of materials has been researched and considered. This method not only satisfies the demand for small-size specimens in surveillance tests of fracture toughness but also avoids using complicated physical methods to monitor the initial conditions of crack propagation. For most materials this method has solved the problem in which the small-size specimen did not satisfy the valid conditions of a fracture toughness measurement. In order to obtain more information from neutron-irradiated sample specimens and raise the reliability of fracture toughness surveillance tests, it has been considered more important to repeatedly exploit the broken Charpy-size specimen tested in the surveillance test, and to make it renewable. In this work, on the renewing design and utilization of Charpy-size specimens, nine data on fracture toughness can be obtained from one pre-cracked side-grooved Charpy-size specimen, while at present usually only one to three data on fracture toughness can be obtained from one Charpy-size specimen. Thus, it is found that the new method would improve the reliability of fracture toughness surveillance testing and evaluation. In addition, some factors that affect the optimum design of pre-cracked deep side-groove Charpy-size compound specimens have also been discussed. (author)

  17. Correlations between Standard and Miniaturised Charpy-V Specimens

    International Nuclear Information System (INIS)

    Lucon, E.; Van Walle, E.; Fabry, A.; Puzzolante, J.-L.; Verstrepen, A.; Vosch, R.; Van de Velde, L.

    1998-12-01

    A total of 565 instrumented impact tests (232 performed on full-size and 333 on sub-size Charpy-V specimens) have been analysed in order to derive meaningful assumptions on the correlations existing between test results obtained on specimens of different size. Nine materials (pressure vessel steels) have been considered, in both as-received and irradiated state, for a total of 19 conditions examined. For the analysis of data, conventional as well novel approaches have been investigated; former ones, based on a review of the existing literature, include predictions of USE values by the use of normalization factors (NF), shifts of index temperatures related to energy/lateral expansion/shear fracture levels, and a combination of both approaches (scaling and shifting of energy curves). More original and recent proposals have also been verified, available in the literature but also proposed by SCK-CEN in the frame of enhanced surveillance of nuclear reactor pressure vessels. Conclusions have been drawn regarding the applicability and reliability of these methodologies, and recommendations have been given for future developments of the activities on this topic

  18. The double helium-white dwarf channel for the formation of AM CVn binaries

    Science.gov (United States)

    Zhang, Xian-Fei; Liu, Jin-Zhong; Jeffery, C. Simon; Hall, Philip D.; Bi, Shao-Lan

    2018-01-01

    Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation. However, a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer. Such stable mass transfer between two helium white dwarfs (HeWDs) provides one channel for the production of AM CVn binary stars. In previous calculations of double HeWD progenitors, the accreting HeWD was treated as a point mass. We have computed the evolution of 16 double HeWD models in order to investigate the consequences of treating the evolution of both components in detail. We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach. By comparing with observed periods and mass ratios, we redetermine masses of eight known AM CVn stars by our double HeWDs channel, i.e. HM Cnc, AM CVn, V406 Hya, J0926, J1240, GP Com, Gaia14aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240, GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double HeWD channel. The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna (LISA) project.

  19. Computer aided instrumented Charpy test applied dynamic fracture toughness evaluation system

    International Nuclear Information System (INIS)

    Kobayashi, Toshiro; Niinomi, Mitsuo

    1986-01-01

    Micro computer aided data treatment system and personal computer aided data analysis system were applied to the traditional instrumented Charpy impact test system. The analysis of Charpy absorbed energy (E i , E p , E t ) and load (P y , P m ), and the evaluation of dynamic toughness through whole fracture process, i.e. J Id , J R curve and T mat was examined using newly developed computer aided instrumented Charpy impact test system. E i , E p , E t , P y and P m were effectively analyzed using moving average method and printed out automatically by micro computer aided data treatment system. J Id , J R curve and T mat could be measured by stop block test method. Then, J Id , J R curve and T mat were effectively estimated using compliance changing rate method and key curve method on the load-load point displacement curve of single fatigue cracked specimen by personal computer aided data analysis system. (author)

  20. Significance of Charpy and COD tests in the determination of fracture toughness of welds

    International Nuclear Information System (INIS)

    Caminha Junior, H.M.; Bastian, F.L.

    1983-01-01

    A comparison is made between the Charpy and crack opening displacement (COD) tests used to acess the fracture toughness of metallic materials. The main problems inherent in these tests are discussed, such as scatter of results and their advantages and limitations. The chief experimental difficulties when they are applied to welds are indicated and the various methods available for calculating the COD from a test graph are described. Comments are made on the use of the Charpy test and the methods of calculating the COD in determing critical defect sizes in welded structures. (Author) [pt

  1. Small specimen test technology of fracture toughness in structural material F82H steel for fusion nuclear reactors

    International Nuclear Information System (INIS)

    Wakai, Eiichi; Ohtsuka, Hideo; Jitsukawa, Shiro; Matsukawa, Shingo; Ando, Masami

    2006-03-01

    Small specimen test technology (SSTT) has been developed to investigate mechanical properties of nuclear materials. SSTT has been driven by limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources, and it is very useful for the reduction of waste materials produced in nuclear engineering. In this study new bend test machines have been developed to obtain fracture behaviors of F82H steel for very small bend specimens of pre-cracked t/2-1/3CVN (Charpy V-notch) with 20 mm-length and DFMB (deformation and fracture mini bend specimen) with 9 mm-length and disk compact tension of 0.18DCT type, and fracture behaviors were examined to evaluate DBTT (ductile-brittle transition temperature) at temperature from -180 to 25degC. The effect of specimen size on DBTT of F82H steel was also examined by using Charpy type specimens such as 1/2t-CVN, 1/3CVN and t/2-1/3CVN. In this paper, it also provides the information of the specimens irradiated at 250degC and 350degC to about 2 dpa in the capsule of 04M-67A and 04M-68A of JMTR experiments. (author)

  2. Laser weld reconstitution of conventional Charpy and Miniaturized Notch Test (MNT) specimens

    International Nuclear Information System (INIS)

    Manahan, M.P.; Williams, J.; Martukanitz, R.P.

    1993-01-01

    As nuclear power plants approach end-of-license (EOL) and consideration is given to license renewal, there is an ever increasing need to expand the amount of data obtainable from the original surveillance specimens. A laser welding technique to reconstitute broken Charpy specimens is being developed to produce both conventional and miniaturized Charpy specimens. This paper reports on early laser welding development efforts and summarizes previous proof-of-principle experiments on a 1/16 scale miniaturized Charpy test. In order to benchmark the laser welding procedure, the laser-reconstituted specimen data have been compared with the original specimen data. In addition, the microstructure after welding has been examined to ensure that the material in the vicinity of the notch is essentially unchanged after the welding process. Data which characterize the thermal transient during welding are obtained by attaching thermocouples to the specimens. Other important considerations include perturbation of the stress field near the notch, dynamic stress waves, and contact of the weld region with the tup. Precise control of welding parameters has been demonstrated, heat-affected zones as small as 0.25 mm can be achieved, and sufficient penetration depth can be obtained to enable welding thick sections (1T or greater) to yield conventional Charpy specimens or fracture toughness specimens and thin sections (∼5 mm) to yield Miniaturized Notch Test (MNT) specimens

  3. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  4. Prediction of fracture toughness K/sub Ic/ of steel from Charpy impact test results

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Tadao; Tanaka, Yasuhiko; Takemata, Hiroyuki; Terashima, Shuhei

    1986-08-01

    This paper presents a method to predict the fracture toughness K/sub Ic/ and/or K/sub Id/ of steels using their Charpy impact test results and tensile properties. The fracture toughness, Charpy impact and tensile properties of 2 1/4 Cr-1Mo, ASTM A508 Cl.1, A508 Cl.2 A508 Cl.3 and A533 Gr.B Cl.1 steels were measured and analysed on the basis of the excess temperature (test temperature minus FATT) and Rolfe-Novak correlation. The relationship between K/sub Ic//K/sub Ic-us/ and the excess temperature, where K/sub Ic-us/ is the upper-shelf fracture toughness K/sub Ic/ predicted by Rolfe-Novak correlation, discloses that the K/sub Ic/ transition curves of several steels are representable by only one trend curve of K/sub Ic//K/sub Ic-us/ or K/sub Id//K/sub Id-us/ versus excess temperature relation. This curve is denoted as a ''master curve''. By using this curve, the fracture toughness of steel can be predicted using Charpy impact and tensile test results. By taking account of the scattering of both the fracture toughness and Charpy impact test results, the confidence limits of the master curve were also determined. Another approach to develop more general procedure of predicting the fracture toughness K/sub Ic/ is also discussed.

  5. A 15.7-Minute AM CVn Binary Discovered in K2

    Science.gov (United States)

    Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.

    2018-04-01

    We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 minutes, 16.1121 ± 0.0004 minutes and 664.82 ± 0.06 minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1 = 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.

  6. Relationships between Charpy impact shelf energies and upper shelf Ksub(IC) values for reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Witt, F.J.

    1983-01-01

    Charpy shelf data and lower bound estimates of Ksub(IC) shelf data for the same steels and test temperatures are given. Included are some typical reactor pressure vessel steels as well as some less tough or degraded steels. The data were evaluated with shelf estimates of Ksub(IC) up to and exceeding 550 MPa√m. It is shown that the high shelf fracture toughness representative of tough reactor pressure vessel steels may be obtained from a knowledge of the Charpy shelf energies. The toughness transition may be obtained either by testing small fracture toughness specimens or by Charpy energy indexing. (U.K.)

  7. The interpretation of Charpy impact test data using hyper-logistic fitting functions

    International Nuclear Information System (INIS)

    Helm, J.L.

    1996-01-01

    The hyperbolic tangent function is used almost exclusively for computer assisted curve fitting of Charpy impact test data. Unfortunately, there is no physical basis to justify the use of this function and it cannot be generalized to test data that exhibits asymmetry. Using simple physical arguments, a semi-empirical model is derived and identified as a special case of the so called hyper-logistic equation. Although one solution of this equation is the hyperbolic tangent, other more physically interpretable solutions are provided. From the mathematics of the family of functions derived from the hyper-logistic equation, several useful generalizations are made such that asymmetric and wavy Charpy data can be physically interpreted

  8. Neutron embrittlement of the reactor vessel in Borssele as determined from Charpy specimens

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.; Dufour, L.B.

    1983-01-01

    Two sets of Charpy specimens have been retrieved from the reactor in the nuclear power plant at Borssele after two and four cycles of operation, respectively. The neutron fluxes at the sample positions and at the vessel wall have been calculated with a point-kernel method and S 2 calculations. The calculated fluxes at the two specimen positions are in fair agreement with fluences measured by threshold detectors. The Reference Temperature of Nil Ductility has been determined from the Charpy tests by a tan-h fit procedure. An extrapolation to a 40-year vessel life has been made on the basis of a square-root dependence of the change in the reference temperature with effective full-power years. Under these assumptions the heat-affected zone material will reach 296 K. The other materials will remain below 280 K. The vessel life therefore is not limited by embrittlement. (orig.)

  9. SISTEMA DE AQUISIÇÃO DE DADOS PARA A MÁQUINA DE IMPACTO CHARPY

    Directory of Open Access Journals (Sweden)

    Jermana Lopes Moraes

    2014-08-01

    Full Text Available Este trabalho tem o objetivo de implementar e desenvolver um sistema de aquisição de dados para a máquina de impacto Charpy. Assim, é realizado um estudo da máquina de impacto Charpy, do ensaio de impacto e das ferramentas necessárias para desenvolvimento do projeto. Utiliza-se um acelerômetro para determinar a aceleração nos eixos x e y do pêndulo Charpy durante a realização do ensaio. Para leitura e interpretação dos dados enviados pelo acelerômetro utiliza-se a plataforma de hardware Arduino UNO com software específico. Os dados enviados ao Arduino são apresentados em uma interface gráfica desenvolvida no Matlab. Nesta interface é possível inserir os dados iniciais de ensaio Charpy e apresentar ao usuário final os resultados finais de ensaio, como a energia de impacto, a resistência de impacto e a força necessária para romper o corpo de prova. Além disso, é apresentado ao usuário um gráfico da aceleração ao longo da realização do ensaio e o gráfico de força ao longo do tempo. Desta forma, registram-se os dados em um arquivo específico para análise e estudo posterior. A porcentagem de erro entre o valor medidor no mostrador da máquina e o resultado automatizado não ultrapassa o limite de 8 %.

  10. On the Effectiveness of the Dynamic Force Adjustment for Reducing the Scatter of Instrumented Charpy Results

    International Nuclear Information System (INIS)

    Lucon, E.

    2008-01-01

    One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. An interesting alternative to the conventional static calibration recommended by the standards is the Dynamic Force Adjustment (DFA), in which forces and displacements are iteratively adjusted until equality is achieved between absorbed energies calculated under the test record (Wt) and measured by the machine encoder (KV). In this study, this procedure has been applied to the instrumented data obtained by 10 international laboratories using notched and precracked Charpy specimens, in the framework of a Coordinated Research Project (CRP8) of IAEA. DFA is extremely effective in reducing the between-laboratory scatter for both general yield and maximum forces. The effect is less significant for dynamic reference temperatures measured from precracked Charpy specimens using the Master Curve procedure, but a moderate reduction of the standard deviation is anyway observed. It is shown that striker calibration is a prominent contribution to the interlaboratory variability of instrumented impact forces, particularly in the case of maximum forces.

  11. On the Effectiveness of the Dynamic Force Adjustment for Reducing the Scatter of Instrumented Charpy Results

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-09-15

    One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. An interesting alternative to the conventional static calibration recommended by the standards is the Dynamic Force Adjustment (DFA), in which forces and displacements are iteratively adjusted until equality is achieved between absorbed energies calculated under the test record (Wt) and measured by the machine encoder (KV). In this study, this procedure has been applied to the instrumented data obtained by 10 international laboratories using notched and precracked Charpy specimens, in the framework of a Coordinated Research Project (CRP8) of IAEA. DFA is extremely effective in reducing the between-laboratory scatter for both general yield and maximum forces. The effect is less significant for dynamic reference temperatures measured from precracked Charpy specimens using the Master Curve procedure, but a moderate reduction of the standard deviation is anyway observed. It is shown that striker calibration is a prominent contribution to the interlaboratory variability of instrumented impact forces, particularly in the case of maximum forces.

  12. PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing Sites - Apra Harbor, Guam

    Science.gov (United States)

    2017-09-01

    sedimentation outside of the channel footprint. For example, dredging near the edge of the footprint can be confined to time periods when tidal currents...Cases 1 or 2 due to the lower loss rate. Sedimentation rates outside the channel prism are further reduced because all sediment is introduced in the...ER D C/ CH L TR -1 7- 16 PTM Modeling of Dredged Suspended Sediment at Proposed Polaris Point and Ship Repair Facility CVN Berthing

  13. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  14. A study on the Charpy-V impact energy and impact properties of stainless steel

    International Nuclear Information System (INIS)

    Han, Gill Young

    1988-01-01

    It has been thought that by analyzing and considering the shock strength and fracture of impact load. We can accurtely determine strength and thus it will be helpful in optimum design. In this experimental study the following results were obtained by using the instrumented impact test for SUS 316 1) The total charpy impact energy is progressively decreased by increasing the shock pressure. 2) The dynamic yield strength is increased by increasing the shock pressure for all test temperatures. 3) The ratio of dynamic yield to static yield strength was found to decrease with increasing shock pressure. (Author)

  15. Change of Charpy impact fracture behavior of precracked ferritic specimens due to thermal aging in sodium

    International Nuclear Information System (INIS)

    Hu, W.L.

    1985-12-01

    A series of tests were conducted to evaluate the effect of sodium on the impact fracture behavior of precracked Charpy specimens made of HT-9 weldment. One set of samples was precracked prior to sodium aging and the other set was precracked after aging in sodium. Both set of specimens exhibited the same DBTT. Samples precracked prior to sodium exposure, however, showed a 40% reduction in the upper shelf energy (USE) as compared to the set precracked after aging. The results suggest that the fracture toughness of the material may be reduced if an existing crack was soaked in sodium at elevated temperature for a period of time

  16. Next generation self-shielded flux cored electrode with improved toughness for off shore oil well platform structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daya; Soltis, Patrick; Narayanan, Badri; Quintana, Marie; Fox, Jeff [The Lincoln Electric Company (United States)

    2005-07-01

    Self-shielded flux cored arc welding electrodes (FCAW-S) are ideal for outdoor applications, particularly open fabrication yards where high winds are a possibility. Development work was carried out on a FCAW-S electrode for welding 70 and 80 ksi yield strength base materials with a required minimum average Charpy V-Notch (CVN) absorbed energy value of 35 ft-lb at -40 deg F in the weld metal. The effect of Al, Mg, Ti, and Zr on CVN toughness was evaluated by running a Design of Experiments approach to systematically vary the levels of these components in the electrode fill and, in turn, the weld metal. These electrodes were used to weld simulated pipe joints. Over the range of compositions tested, 0.05% Ti in the weld metal was found to be optimum for CVN toughness. Ti also had a beneficial effect on the usable voltage range. Simulated offshore joints were welded to evaluate the effect of base metal dilution, heat input, and welding procedure on the toughness of weld metal. CVN toughness was again measured at -40 deg F on samples taken from the root and the cap pass regions. The root pass impact toughness showed strong dependence on the base metal dilution and the heat input used to weld the root and fill passes. (author)

  17. Validation Study of Unnotched Charpy and Taylor-Anvil Impact Experiments using Kayenta

    Energy Technology Data Exchange (ETDEWEB)

    Kamojjala, Krishna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lacy, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chu, Henry S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brannon, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Validation of a single computational model with multiple available strain-to-failure fracture theories is presented through experimental tests and numerical simulations of the standardized unnotched Charpy and Taylor-anvil impact tests, both run using the same material model (Kayenta). Unnotched Charpy tests are performed on rolled homogeneous armor steel. The fracture patterns using Kayenta’s various failure options that include aleatory uncertainty and scale effects are compared against the experiments. Other quantities of interest include the average value of the absorbed energy and bend angle of the specimen. Taylor-anvil impact tests are performed on Ti6Al4V titanium alloy. The impact speeds of the specimen are 321 m/s and 393 m/s. The goal of the numerical work is to reproduce the damage patterns observed in the laboratory. For the numerical study, the Johnson-Cook failure model is used as the ductile fracture criterion, and aleatory uncertainty is applied to rate-dependence parameters to explore its effect on the fracture patterns.

  18. ASK Procedure for Instrumented Pre-cracked Charpy-Type Tests

    International Nuclear Information System (INIS)

    Varga, T.; Njo, D.H.; Prantl, G.

    1981-01-01

    The essential technical content of the ASK procedure originated from development work in Switzerland since 1963, and practical experiences gained since 1972. The remainder of the content and the format of the procedure are based on the ASTM E 24.03.03. (Tentative Draft Copy) 'Proposed Method for Pre-cracked Charpy Impact and Slow-Bend Testing of Metallic Materials' by C. E. Harbower, 1973. Two different velocities, 5 m/s and 0.1 m/s were used with a Schnadt-type machine of rigid construction. The stiffness of the machine proved to be very suitable for instrumented testing. The instrumented Schnadt-Type machine was equipped with strain gauges both on the top of the pendulum and on the chisel. A static force calibration was followed by energy calibration, comparing potential energy losses with the area under the force-deflection curve. Deflection was measured using a high frequency eddy current method on the pendulum, and for slow testing by means of an inductive gauge on the chisel. Charpy-Type specimens of 1.0 mm max notch depth and 0.12 mm max notch radius were pre-cracked using a resonant fatigue testing machine, or an eccentric drive machine. Crack propagation rate da/dN was measured using 'Russenberger' measuring gauges. In addition a new technique for the detection of dynamic crack initiation, developed at the Institute of Research and Technology (TVFA) in Vienna is discussed and some results presented

  19. Influence of Loading Rate on the Calibration of Instrumented Charpy Strikers

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.; McColskey, D.; McCowan, C.

    2009-01-15

    One of the key factors for obtaining reliable instrumented Charpy results is the calibration of the instrumented striker. The conventional approach for establishing an analytical relationship between strain gage output and force applied to the transducer is the static calibration, which is preferably performed with the striker installed in the pendulum assembly. However, the response of an instrumented striker under static force application may sometimes differ significantly from its dynamic performance during an actual Charpy test. This is typically reflected in a large difference between absorbed energy returned by the pendulum encoder (KV) and calculated under the instrumented force/displacement test record (Wt). Such difference can be either minimized by optimizing the striker design or analytically removed by adjusting forces and displacements until KV = Wt (the so-called 'Dynamic Force Adjustment'). This study investigates the influence of increasing force application rates on the force/voltage characteristics of two instrumented strikers, one at NIST in Boulder, CO and one at SCK-CEN in Mol, Belgium.

  20. Star-spot distributions and chromospheric activity on the RS CVn type eclipsing binary SV Cam

    Science.gov (United States)

    Şenavcı, H. V.; Bahar, E.; Montes, D.; Zola, S.; Hussain, G. A. J.; Frasca, A.; Işık, E.; Yörükoǧlu, O.

    2018-06-01

    Using a time series of high-resolution spectra and high-quality multi-colour photometry, we reconstruct surface maps of the primary component of the RS CVn type rapidly rotating eclipsing binary, SV Cam (F9V + K4V). We measure a mass ratio, q, of 0.641(2) using our highest quality spectra and obtain surface brightness maps of the primary component, which exhibit predominantly high-latitude spots located between 60° - 70° latitudes with a mean filling factor of ˜35%. This is also indicated by the R-band light curve inversion, subjected to rigourous numerical tests. The spectral subtraction of the Hα line reveals strong activity of the secondary component. The excess Hα absorption detected near the secondary minimum hints to the presence of cool material partially obscuring the primary star. The flux ratios of Ca II IRT excess emission indicate that the contribution of chromospheric plage regions associated with star-spots is dominant, even during the passage of the filament-like absorption feature.

  1. Discovery of 36 eclipsing EL CVn binaries found by the Palomar Transient Factory

    Science.gov (United States)

    van Roestel, J.; Kupfer, T.; Ruiz-Carmona, R.; Groot, P. J.; Prince, T. A.; Burdge, K.; Laher, R.; Shupe, D. L.; Bellm, E.

    2018-04-01

    We report on the discovery and analysis of 36 new eclipsing EL CVn-type binaries, consisting of a core helium-composition pre-white dwarf (pre-He-WD) and an early-type main-sequence companion. This more than doubles the known population of these systems. We have used supervised machine learning methods to search 0.8 million light curves from the Palomar Transient Factory (PTF), combined with Sloan Digital Sky Survey (SDSS), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and Two-Micron All-Sky Survey (2MASS) colours. The new systems range in orbital periods from 0.46 to 3.8 d and in apparent brightness from ˜14 to 16 mag in the PTF R or g΄ filters. For 12 of the systems, we obtained radial velocity curves with the Intermediate Dispersion Spectrograph at the Isaac Newton Telescope. We modelled the light curves, radial velocity curves and spectral energy distributions to determine the system parameters. The radii (0.3-0.7 R⊙) and effective temperatures (8000-17 000 K) of the pre-He-WDs are consistent with stellar evolution models, but the masses (0.12-0.28 M⊙) show more variance than models have predicted. This study shows that using machine learning techniques on large synoptic survey data is a powerful way to discover substantial samples of binary systems in short-lived evolutionary stages.

  2. Influence of Striking Edge Radius (2 mm versus 8 mm) on Instrumented Charpy Data and Absorbed Energies

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-08-15

    The most commonly used test standards for performing Charpy impact tests (ISO 148 and ASTM E 23) envisage the use of strikers having different radii of the striking edge, i.e. 2 mm (ISO) and 8 mm (ASTM). The effect of striker geometry on Charpy results was extensively studied in the past in terms of absorbed energy measured by the machine encoder, but few investigations are available on the influence of striker configuration on the results of instrumented Charpy tests (characteristic forces, displacements and integrated energy). In this paper, these effects are investigated based on the analysis of published results from three interlaboratory studies and some unpublished Charpy data obtained at SCK-CEN. The instrumented variables which are the most sensitive to the radius of the striking edge are the maximum force and its corresponding displacement, with 8mm-strikers providing systematically higher values. Absorbed energies, obtained both from the instrumented trace and from the pendulum encoder, are almost insensitive to the type of striker up to 200 J. For higher energy levels, the values obtained from 8mm strikers become progressively larger. Data scatter is generally higher for 2mm-strikers.

  3. Maximum mass ratio of AM CVn-type binary systems and maximum white dwarf mass in ultra-compact X-ray binaries

    Directory of Open Access Journals (Sweden)

    Arbutina Bojan

    2011-01-01

    Full Text Available AM CVn-type stars and ultra-compact X-ray binaries are extremely interesting semi-detached close binary systems in which the Roche lobe filling component is a white dwarf transferring mass to another white dwarf, neutron star or a black hole. Earlier theoretical considerations show that there is a maximum mass ratio of AM CVn-type binary systems (qmax ≈ 2/3 below which the mass transfer is stable. In this paper we derive slightly different value for qmax and more interestingly, by applying the same procedure, we find the maximum expected white dwarf mass in ultra-compact X-ray binaries.

  4. Development of a reconstitution system of Charpy probes for the surveillance of vessels in nucleo electric plants

    International Nuclear Information System (INIS)

    Romero C, J.; Hernandez, R.; Fernandez, F.; Gonzalez M, A.

    2007-01-01

    This work describes the development of a welding system, for the rebuilding of halves of Charpy test tubes, the rebuilding consists on welding two implants in those ends of these halves of test tubes, in these welding the main requirement is not to alter the mechanical properties in a minimum volume of 1 cm 3 , the rebuilding is medullary in the surveillance programs of the reactor vessel. In these programs, the mechanical state of the vessel is evaluated, for it there are surveillance capsules with a Charpy witness test tubes series, subjected to a neutron flow similar or bigger to that of the vessel. The objective is to evaluate in advance on the vessel fragilization grade its life design. However the number of capsules with the witness test tubes it is only for the plant design life and at the moment the nucleo electric, negotiates an extension of life of these, until for 20 more years, of there the importance of this material witness's that stores the information of the damage accumulated by the neutron flow. This material requires to be taken advantage it after being rehearsed and the normative one settles down as obligatory to qualify the rebuilding process with all the requirements settled down in the ASTM Designation: E 1253-99 'Standard Guide for Reconstitution of irradiated Charpy-Sized Specimens', to obtain other reconstituted Charpy test tubes that are again introduced in the reactor. When being reconstituted the halves of the original test tubes it is obtained double reconstituted Charpy test tubes. Half of the test tubes they are used in the surveillance program of the vessel, with the surpluses test tubes, it can determine the fracture toughness, property of the material used in the extension methodology of life of vessel. (Author)

  5. Charpy impact test results of four low activation ferritic alloys irradiated at 370{degrees}C to 15 DPA

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Miniature CVN specimens of four low activation ferritic alloys have been impact tested following irradiation at 370{degrees}C to 15 dpa. Comparison of the results with those of control specimens indicates that degradation in the impact behavior occurs in each of these four alloys. The 9Cr-2W alloy referred to as GA3X and the similar alloy F82H with 7.8Cr-2W appear most promising for further consideration as candidate structural materials in fusion energy system applications. These two alloys exhibit a small DBTT shift to higher temperatures but show increased absorbed energy on the upper shelf.

  6. Charpy impact test pada kampas rem hybrid komposit phenolic resin matrik dengan penguat serbuk basalt-Alumina-kulit kerang

    Directory of Open Access Journals (Sweden)

    I N. G. Suma Wijaya

    2017-03-01

    Full Text Available Abstrak: Penelitian ini adalah difokuskan untuk mengamati ketahanan impact dari material kampas rem kendaraan bermotor. Kampasrem yang diujikan adalah kampas yang terbuat dari material hybrid komposit dengan penguat serbuk basalt – serbuk kulitkerang dan alumina dan pengikat phenolic resin. Material kampas rem hibrid komposit diproses melalui proses sinteringdengan penekanan 2 ton, temperatur 150ºC selama 30 menit. Tujuan penelitian adalah menginvestigasi kekuatan impact daripada bahan hybrid komposit untuk masing – masing variasi terhadap perlakuan impact charpy yang didasarkan pada standarASTM D6110–04. Pengujian dilakukan dengan menganalisa nilai energy yang mampu diserap oleh bahan akibat bebanimpact, selanjutnya patahan impact charpy dianalisa dengan SEM. Diperoleh hasil pengujian charpy impact untuk masing –masing variasi hybrid komposit adalah nilai kekuatan yang tinggi terjadi pada hibrid komposit variasi 2 (HK2 dengan nilai0,000339547 J/mm2, ini disebabkan karena mempunyai ikatan antara metrik dan basalt yang lebih kuat dan sempurnadibandingkan dengan hibrid komposit lainnya. Untuk nilai hibrid komposit variasi 1 (HK1 adalah 0,000304851 J/mm², hibridkomposit variasi 3 (HK3 adalah 0,000334516 J/mm², hibrid komposit variasi 4 (HK4 adalah 0,000325059 J/mm², hibridkomposit variasi 5 (HK5 adalah 0,0003327 J/mm². (2 Dari perbandingan antara kampas rem dipasaran dengan kampas remhibrid komposit maka didapat nilai kekuatannya berbeda pada hibrid komposit variasi 2 (HK2 dengan kampas pembanding(KP yang memiliki nilai kekuatannya lebih besar yaitu, 0,000374867 J/mm².Kata kunci : Kampas rem, Impact charpy, Hibrid komposit, Basalt, Aluminium, Kulit Kerang Abstract: This research is focused to observe the impact resistance of motor vehicles brake lining material. Brake tested are canvasmade of hybrid composite materials with basalt powder reinforced – seashells, alumina powder, and a phenolic resin matrix.Hybrid composite brake

  7. A cautionary tale of interpreting O-C diagrams: period instability in a classical RR Lyr Star Z CVn mimicking as a distant companion

    Science.gov (United States)

    Skarka, M.; Liška, J.; Dřevěný, R.; Guggenberger, E.; Sódor, Á.; Barnes, T. G.; Kolenberg, K.

    2018-02-01

    We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examine. We used original photometric and spectroscopic measurements and investigated the period evolution using available maximum times spanning more than one century. If the binary hypothesis is valid, Z CVn orbits around a black hole with minimal mass of 56.5 M_{⊙} on a very wide (Porbit = 78.3 yr) and eccentric orbit (e = 0.63). We discuss the probability of the formation of a black hole-RR Lyrae pair, and, although we found it possible, there is no observational evidence of the black hole in the direction to Z CVn. However, the main objection against the binary hypothesis is the comparison of the systemic radial velocity curve model and spectroscopic observations that clearly show that Z CVn cannot be bound in such a binary. Therefore, the variations of pulsation period are likely intrinsic to the star. This finding represents a discovery/confirmation of a new type of cyclic period changes in RR Lyrae stars. By the analysis of our photometric data, we found that the Blazhko modulation with period of 22.931 d is strongly dominant in amplitude. The strength of the phase modulation varies and is currently almost undetectable. We also estimated photometric physical parameters of Z CVn and investigated their variations during the Blazhko cycle using the inverse Baade-Wesselink method.

  8. Methods and devices for small specimen testing at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Jitsukawa, Shiro; Kizaki, Minoru; Umino, Akira; Shiba, Kiyoyuki; Hishinuma, Akimichi

    1993-01-01

    Devices for a punch test on annular notched specimens, small punch (SP) tests, and miniaturized tension tests in hot cells were developed. A micro-manipulator to handle small specimens and an electro-discharge machine (EDM) to extract miniaturized tension specimens and annular notched specimens from transmission electron microscopy (TEM) disks were also fabricated. These devices were designed and made for remote operation in hot cells. Preliminary tests to evaluate the applicability of test methods were carried out. Correlation between SP test results and tensile properties was not strong. Miniaturized tensile results were reasonably similar to the results with larger specimens. The ductile-brittle transition temperature (DBTT) by the punch test on annular notched specimens was higher than that obtained from the SP test. However, materials dependence of the DBTT was different from that measured by standard Charpy V-notch (CVN) tests. This may be due to a specimen size effect

  9. Efecto de la Profundidad sobre la Soldabilidad de Aceros Ferríticos en Ambientes Simulados Unidos por Soldadura Húmeda

    Directory of Open Access Journals (Sweden)

    Fernando Macías López

    Full Text Available Resumen El objetivo de este trabajo fue evaluar el efecto de la profundidad sobre las propiedades en soldaduras de ranura en “V” con varios cordones de relleno. Metal base y electrodos comerciales fueron utilizados (ASTM A36 y AWS E7014 y cuatro diferentes condiciones se utilizaron para desarrollar las soldaduras húmedas como son 10, 20, 30 y 40m de profundidad. Una cámara presurizada con 30 atmósferas de capacidad fue utilizada para simular la profundidad, inundada con agua fresca. Un buzo soldador fue quien realizo las soldaduras. Las propiedades en la sección transversal mediante pruebas de tenacidad CVN (Charpy V-notch, macro ataque y esfuerzo a la tensión fueron determinadas por correlación. Las pruebas mecánicas con mejores resultados se observaron en la condición de 20m de profundidad.

  10. An investigation of safety aspects of operating the end-shields in a brittle condition

    International Nuclear Information System (INIS)

    Seth, V.K.; Patwardhan, V.M.

    1975-01-01

    Published data on radiation embrittlement of 3.5% Ni steels (material for RAPP-1, RAPP-2 and MAPP-1 end shields - with charpy V notch value of 2.074 gm at -101 0 C) indicates that the nil ductility transition temperature rise would be of the order of 205 0 C to 260 0 C at the end of 30 year reactor life, against earlier figure of around 120 0 C. Surveillance programme on radiation embrittlement of the end-shields is being conducted to get an idea of the actual condition of the material at any required time. A study has been made to investigate safety aspects of operating the end shields in 'Brittle condition' of the material under the presently designed operating conditions. This study is based on the concept of crack arrest approach (employing fracture analysis diagram; FAD and linear elastic fracture mechanics (using possible correlation between Ksub(Ic) and CVN values). (author)

  11. Effect of effective grain size on Charpy impact properties of high-strength bainitic steels

    International Nuclear Information System (INIS)

    Shin, Sang Yong; Han, Seung Youb; Lee, Sung Hak; Hwang, Byoung Chul; Lee, Chang Gil

    2008-01-01

    This study is concerned with the effect of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels. Six kinds of steels were fabricated by varying alloying elements and hot-rolling conditions, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of bainitic ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their higher volume fraction of granular bainite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in the overall effective grain size due to the presence of bainitic ferrite having smaller effective grain size

  12. A reassessment of the effects of helium on Charpy impact properties of ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hamilton, M.L.; Hankin, G.L.

    1998-01-01

    To test the effect of helium on Charpy impact properties of ferritic/martensitic steels, two approaches are reviewed: quantification of results of tests performed on specimens irradiated in reactors with very different neutron spectra, and isotopic tailoring experiments. Data analysis can show that if the differences in reactor response are indeed due to helium effects, then irradiation in a fusion machine at 400 C to 100 dpa and 1000 appm He will result in a ductile to brittle transition temperature shift of over 500 C. However, the response as a function of dose and helium level is unlikely to be simply due to helium based on physical reasoning. Shear punch tests and microstructural examinations also support this conclusion based on irradiated samples of a series of alloys made by adding various isotopes of nickel in order to vary the production of helium during irradiation in HFIR. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys. However, helium itself, up to 75 appm at over 7 dpa appears to have little effect on the mechanical properties of the alloys. This behavior is instead understood to result from complex precipitation response. The database for effects of helium on embrittlement based on nickel additions is therefore probably misleading and experiments should be redesigned to avoid nickel precipitation

  13. Investigation of the effects on Charpy impact characteristics by shape of pendulum striking edge

    International Nuclear Information System (INIS)

    Kawai, Toshihiko; Etoh, Mikio; Hanawa, Namio; Shibaike, Masayuki; Inoue, Kazuo.

    1983-01-01

    Charpy impact test is used versatilely and practically as the method of evaluating the toughness of metals. In Japan, usually the JIS type testing machines are used, but recently, the test with ASTM type testing machines has been often demanded for steel materials for export or for nuclear use. Accordingly, the testing machines of both types must be installed, the testing works become troublesome, and the costs of initial investment, maintenance, management and so on increase. When the standards in various countries were investigated, the stipulation on the various particulars of the testing machines was almost similar except the shape of striking edges, which are 8mm radius in ASTM and 2mm radius in other standards. Recently it was clarified that there was some difference between the impact values of high toughness steel using JIS and ASTM machines. In order to clarify the cause of this difference and to unify the shape of edges, the investigation was carried out by the working group. The investigation of the effect of the difference of edge shapes on impact values, the analysis of fracture phenomena in impact test and the consideration on the results are reported. ASTM type testing machines should not be used for mild steel when absorbed energy exceeds 10kgf-m. (Kako, I.)

  14. Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels

    International Nuclear Information System (INIS)

    Nanstad, R.K.

    1980-01-01

    The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior is characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens

  15. Effects of boron addition on tensile and Charpy impact properties in high-phosphorous steels

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Lee, Junghoon [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Park, Kyong Su [Next Generation Products Research Group, Technical Research Laboratories, POSCO, Pohang 790-785 (Korea, Republic of); Lee, Sunghak, E-mail: shlee@postech.ac.kr [Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-01-01

    In order to provide a new possibility for improving the steel-making productivity by fabricating plain carbon steels containing high phosphorous (P), effects of microstructures on tensile and Charpy impact properties were investigated in this study. Nine plain carbon steels were fabricated by controlling the addition of P and boron (B), and isothermal or quench heat-treatments were conducted on these steels to make ferrite–bainite-based or martensite-based microstructures. The addition of B positively influenced the grain refinement and the formation of bainites, thereby leading to the increase in strength. The upper shelf energy (USE) decreased with increasing P content, while the energy transition temperature (ETT) increased, in all the steels. The B addition beneficially affected both the USE and ETT as the dimpled ductile fracture mode prevailed in the B-added steels. This was because B preferentially covered grain boundaries, which reduced the grain boundary segregation of P. Thus, it effectively suppressed the intergranular fracture due to the segregation of P. According to the fractographic results, the increased tendency of intergranular fracture mode was observable in the 20-ppm-B-added steels rather than in the 10-ppm-B-added steels. When an excess amount of B, e.g., 20 ppm of B, was added, the severe segregation of B on grain boundaries occurred, and led to the precipitation of boro-carbides, which could act as intergranular crack initiation sites.

  16. Re-utilization by '' Stud Welding'' of capsules charpy-V belonged to surveillance programs

    International Nuclear Information System (INIS)

    Lapena, J.; Perosanz, F. J.; Gachuz, M.

    1998-01-01

    The perspectives of nuclear plants life extension that are approximating to their end of design life compels to make new surveillance programs. The re-utilization of specimens belonging to surveillance capsules already tested in these new surveillance programs seems be a solution worldwide accepted. The two possible re-utilization processes of this irradiated material are: Subsized specimens and Reconstitution. While the first alternative (Subsized specimens) outlines serious problems for apply the results, the reconstitution eliminates this problem, since the resulting specimens after of the reconstruction procedure would be of the same dimensions that the original. The reconstruction process involves welds, and therefore it has associated the specific problems of this type of joints. Furthermore, by be tried to material irradiated with certain degree of internal damage, that is the variable to evaluate, requires that the heat contribution to the piece not originate local thermal treatments that alter its mechanical qualities. In this work has been followed the evolution by the variables of the weld process and their influence on the quality by the union from metallographic al point of view as well as mechanical for a weld procedure by Stud Welding. The principal objective is to optimize said parameters to assure a good mechanical continuity, without detriment of the microstructural characteristics of the original material. To verify this last have been accomplished with metallographical tests, temperature profile, hardness and will be carried out also Charpy tests. (Author)

  17. The period analysis of V418 AQL, SU BOO, RV CVn, CR CAS, GV CYG, V432 PER, and BD+42 2782

    International Nuclear Information System (INIS)

    Zasche, P.; Wolf, M.; Kučáková, H.; Uhlař, R.

    2014-01-01

    The minimum timings of eclipsing binaries V418 Aql, SU Boo, RV CVn, CR Cas, GV Cyg, V432 Per, and BD+42 2782 were collected and analyzed. Their long-term behavior was studied via period analysis, revealing a periodic term in eclipse times. We derived 576 new times of minimum. Hence, to describe the periodic variation, a third-body hypothesis was proposed and the resulting orbital periods are as follows: 70, 7.4, 53, 37, 27, 53, and 18 yr, respectively. For the system V432 Per an additional 9.5 yr variation was also found. The predicted minimum masses of these distant bodies were calculated and their detectability discussed. The light curves of SU Boo and RV CVn were analyzed using the PHOEBE program, resulting in physical parameters of the components. New variable stars in the field of V418 Aql were discovered.

  18. Charpy impact test results of ferritic alloys from the HFIR[High Flux Isotope Reactor]-MFE-RB2 test

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1987-03-01

    Miniature Charpy specimens of HT-9 in base metal, weld metal and heat affected zone (HAZ) metal conditions, and 9Cr-1Mo in base metal and weld metal conditions have been tested following irradiation in HFIR-MFE-RB2 at 55 0 C to ≅10 dpa. All specimen conditions have degraded properties (both DBTT and USE) in comparison with specimens irradiated to lower dose. 9Cr-Mo degraded more than HT-9 and weld metal performed worse than base metal which performed worse than HAZ material. Property degradation was approximately linear as a function of dose, indicating that degradation response had not saturated by 10 dpa

  19. Use of the strength ratio for pre-cracked Charpy specimens for the measuring, of the dynamic toughness of steels

    International Nuclear Information System (INIS)

    Pereira, L.C.; Darwish, F.A.I.

    1981-01-01

    The specimen strength ratio (R sub(sb)) determined for precraked Charpy specimens fractured in dynamic bending was correlated with plane strain fracture toughness (K sub(Id)) obtained through valid measurements of the J-integral at the moment of fracture initiation in various microstructures of the AISI 4140 steel. The results indicate a linear relationship between K sub(Id) and R sub(sb) for the microstructures considered in this work. The range of validity of this linear correlation is presented and discussed in terms of the ASTM E399 specimen size criterion. (Author) [pt

  20. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Schubert, L.E. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  1. Conclusions regarding fracture mechanics testing and evaluation of small specimens - As evidenced by the finnish contribution to the IAEA CRP3 programme

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, K; Valo, M; Rintamaa, R; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, R [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    An extensive mechanical property evaluation has been carried out on various specimens (a Japanese steel plate (JRQ), a French forging material (FFA) and a Japanese forging material (JFL)) in the as-received and irradiated conditions. The mechanical properties measured at different temperatures include Charpy-V notch and instrumented pre-cracked Charpy data and static and dynamic elastic-plastic fracture toughness based on the J-integral, with various specimen size and geometry. Test analysis lead to conclusions regarding the use of small specimen fracture mechanical tests for investigating irradiation effects: CVN{sub pc} and RCT type specimens are suitable for determining the materials fracture toughness even in the ductile/brittle transition region provided the elastic-plastic parameter K{sub JC} is applied together with a statistical size correction. These two specimen types yield equivalent results for the fracture toughness transition shift. Charpy-V appears not to be suitable for estimating the static fracture toughness transition shift. 8 refs., 11 figs.

  2. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}C to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.

  3. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430 degrees C to 67 dpa

    International Nuclear Information System (INIS)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-01-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430 degrees C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430 degrees C to ∼67 dpa and at 370 degrees C to ∼15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430 degrees C to ∼67 dpa than after irradiation at 370 degrees C to ∼15 dpa

  4. Fractographic examination of HT-9 and 9Cr-1Mo Charpy specimens irradiated in the AD-2 test

    International Nuclear Information System (INIS)

    Gelles, D.S.; Hu, W.L.

    1983-01-01

    Fracture surface topologies have been examined using scanning electron microscopy for 20 selected half sized Charpy impact specimens of HT-9 and Modified 9Cr-1Mo in order to provide improved understanding of fracture toughness degradation as a result of irradiation for Path E alloys. The specimen matrix included unirradiated specimens and specimens irradiated in EBR-II in the AD-2 experiment. Also, hardness measurements have been made on selected irradiated Charpy specimens. The results of examinations indicate that irradiation hardening due to G-phase formation at 390 0 C is responsible for the large shift in ductile-to-brittle transition temperature (DBTT) found in HT-9. Toughness degradation in HT-9 observed following higher temperature irradiations is attributed to precipitation at delta ferrite stringers. Reductions in toughness as a consequence of irradiation in Modified 9Cr-1Mo are attributed to in-reactor precipitation of (V,Nb)C and M 23 C 6 . It is shown that crack propagation rates for ductile and brittle failure modes can be measured, that they differ by over an order of magnitude and that unexpected multiple shifts in fracture mode from ductile to brittle failure can be attributed to the effect of delta ferrite stringers on crack propagation rates

  5. Time-series photometric spot modeling. 2: Fifteen years of photometry of the bright RS CVn binary HR 7275

    Science.gov (United States)

    Strassmeier, K. G.; Hall, D. S.; Henry, G. W.

    1994-01-01

    We present a time-dependent spot modeling analysis of 15 consecutive years of V-band photometry of the long-period (P(sub orb) = 28.6 days) RS CVn binary HR 7275. This baseline in time is one of the longest, uninterrupted intervals a spotted star has been observed. The spot modeling analysis yields a total of 20 different spots throughout the time span of our observations. The distribution of the observed spot migration rates is consistent with solar-type differential rotation and suggests a lower limit of the differential-rotation coefficient of 0.022 +/-0.004. The observed, maximum lifetime of a single spot (or spot group) is 4.5 years, the minimum lifetime is approximately one year, but an average spot lives for 2.2 years. If we assume that the mechanical shear by differential rotation sets the upper limit to the spot lifetime, the observed maximum lifetime in turn sets an upper limit to the differential-rotation coefficient, namely 0.04 +/- 0.01. This would be differential rotation just 5 to 8 times less than the solar value and one of the strongest among active binaries. We found no conclusive evidence for the existence of a periodic phenomenon that could be attributed to a stellar magnetic cycle.

  6. Instrumentation of a Charpy-pendulum. Additional data obtained from it and its application to nuclear reactor pressure vessels surveillance programs

    International Nuclear Information System (INIS)

    Chomik, Enrique P.; Dhers, Horacio; Iorio, Antonio F.; Ciriani, Dario F.

    1999-01-01

    Charpy test gives information about a material dynamic fracture behavior. In a plain Charpy test, this information is the absorbed energy during fracture of the specimen, lateral deformation and the percentage of ductile fracture of the specimen. These parameters can then be used for the determination of the material response to a dynamic applied load, and are used at present to determine the brittle-ductile transition temperature of a material. However, there is a lot of additional information that can be obtained from a Charpy test, which is vital for the case of surveillance programs of nuclear power plants, where it is necessary to get the most available information from the specimens to be tested, because each one of them was irradiated for many years under temperature and neutronic flux conditions similar to that of the internal surface of the reactor pressure vessel, which converts these specimens in unique and very expensive ones. This additional information can be obtained from the curve that determines the evolution of the applied force to the specimen throughout the time involved in its fracture. It was possible to instrument a Charpy pendulum at a fraction of the cost necessary to buy an instrumentation package like the ones available in the market, and since the instrumentation equipment obtained is easy to transport. It has the additional advantage that can be used to instrument any other pendulum replacing only the hammer of the pendulum with a instrumented one for that pendulum. (author)

  7. Effect of mechanical alloying atmosphere on the microstructure and Charpy impact properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Baluc, N.

    2009-01-01

    Two types of oxide dispersion strengthened (ODS) ferritic steels, with the composition of Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (in weight percent), have been produced by mechanically alloying elemental powders of Fe, Cr, W, and Ti with Y 2 O 3 particles either in argon atmosphere or in hydrogen atmosphere, degassing at various temperatures, and compacting the mechanically alloyed powders by hot isostatic pressing. It was found in particular that mechanical alloying in hydrogen yields a significant reduction in oxygen content in the materials, a lower dislocation density, and a strong improvement in the fast fracture properties of the ODS ferritic steels, as measured by Charpy impact tests.

  8. Radio-wavelength observations of magnetic fields on active dwarf-M, RS CVN and magnetic stars

    Energy Technology Data Exchange (ETDEWEB)

    Lang, K.R.

    1986-01-01

    The dwarf M stars YZ Canis Minoris and AD Leonis exhibit narrow band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars AD Leonis and Wolf 424 emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process which could result from coherent mechanisms such as an electron-cyclotron maser or coherent-plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic of the gyrofrequency, the coronal magnetic field strength H = 250 or 167 G and constraints on the plasma frequency imply an electron density of 6 x 10/sup 9//cm/sup 3/. Coherent-plasma radiation requires similar values of electron density but much weaker magnetic fields. Radio spikes from AD Leonis and Wolf 424 have rise times tau/sub R/ < 5 ms, indicating a linear size of L < 1.5 x 10/sup 8/ cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour. The shortest variation implies a linear size much less than that of the halo observed by VLBI techniques, and most probably sizes smaller than those of the component stars. The observed variations might be due to absorption by a thermal plasma located between the stars.

  9. A VERY BRIGHT, VERY HOT, AND VERY LONG FLARING EVENT FROM THE M DWARF BINARY SYSTEM DG CVn

    Energy Technology Data Exchange (ETDEWEB)

    Osten, Rachel A. [Space Telescope Science Institute (United States); Kowalski, Adam [U. Md/GSFC (United States); Drake, Stephen A. [USRA/CRESST and NASA/GSFC (United States); Krimm, Hans [USRA/CRESST (United States); Page, Kim [X-ray and Observational Astronomy Group, Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH (United Kingdom); Gazeas, Kosmas [Department of Astrophysics, Astronomy and Mechanics, University of Athens, GR-15784 Zografos, Athens (Greece); Kennea, Jamie [Penn State (United States); Oates, Samantha [Instituto de Astrofsica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Page, Mathew [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking RH5 6NT (United Kingdom); De Miguel, Enrique [Departamento de Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva (Spain); Novák, Rudolf [Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 3, 625 00 Brno (Czech Republic); Apeltauer, Tomas [Brno University of Technology, Faculty of Civil Engineering, Veveri 331/95, 602 00 Brno (Czech Republic); Gehrels, Neil, E-mail: osten@stsci.edu [NASA/GSFC (United States)

    2016-12-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3–100 keV bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T{sub X} of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be >10{sup 20} cm{sup 2}, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T  ∼ 10{sup 4} K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3–10 keV bandpass of 4 × 10{sup 35} and 9 × 10{sup 35} erg, and optical flare energies at E{sub V} of 2.8 × 10{sup 34} and 5.2 × 10{sup 34} erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  10. A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

    Science.gov (United States)

    Osten, Rachel A.; Kowalski, Adam; Drake, Stephen; Krimm, Hans; Page, Kim; Gazeas, Kosmas; Page, Mathew; Miguel, Enrique De; Novak, Rudolf; Gehrels, Cornelis

    2016-01-01

    On 2014 April 23, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3100 kiloelectron volts bandpass by either a single very high-temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T(sub x) of 290 megakelvin. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be greater than 10(exp 20) sq cm, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T approximately 10(exp 4) K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3-10 kiloelectron volts bandpass of 4 x 10(exp 35) and 9 x 10(exp 35) erg, and optical flare energies at E(sub V) of 2.8 x 10(exp 34) and 5.2 x 10(exp 34) erg, respectively. The results presented here should be integrated into updated modeling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.

  11. Effects of thermal aging and neutron irradiation on the mechanical properties of three-wire stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.

    1997-05-01

    Thermal aging of three-wire series-arc stainless steel weld overlay cladding at 288 degrees C for 1605 h resulted in an appreciable decrease (16%) in the Charpy V-notch (CVN) upper-shelf energy (USE), but the effect on the 41-J transition temperature shift was very small (3 degrees C). The combined effect of aging and neutron irradiation at 288 degrees C to a fluence of 5 x 10 19 neutrons/cm 2 (> 1 MeV) was a 22% reduction in the USE and a 29 degrees C shift in the 41-J transition temperature. The effect of thermal aging on tensile properties was very small. However, the combined effect of irradiation and aging was an increase in the yield strength (6 to 34% at test temperatures from 288 to -125 degrees C) but no apparent change in ultimate tensile strength or total elongation. Neutron irradiation reduced the initiation fracture toughness (J Ic ) much more than did thermal aging alone. Irradiation slightly decreased the tearing modulus, but no reduction was caused by thermal aging alone. Other results from tensile, CVN, and fracture toughness specimens showed that the effects of thermal aging at 288 or 343 degrees C for 20,000 h each were very small and similar to those at 288 degrees C for 1605 h. The effects of long-term thermal exposure time (50,000 h and greater) at 288 degrees C will be investigated as the specimens become available in 1996 and beyond

  12. Generic analyses for evaluation of low Charpy upper-shelf energy effects on safety margins against fracture of reactor pressure vessel materials

    International Nuclear Information System (INIS)

    Dickson, T.L.

    1993-07-01

    Appendix G to 10 CFR Part 50 requires that reactor pressure vessel beltline material maintain Charpy upper-shelf energies of no less than 50 ft-lb during the plant operating life, unless it is demonstrated in a manner approved by the Nuclear Regulatory Commission (NRC), that lower values of Charpy upper-shelf energy provide margins of safety against fracture equivalent to those in Appendix G to Section XI of the ASME Code. Analyses based on acceptance criteria and analysis methods adopted in the ASME Code Case N-512 are described herein. Additional information on material properties was provided by the NRC, Office of Nuclear Regulatory Research, Materials Engineering Branch. These cases, specified by the NRC, represent generic applications to boiling water reactor and pressurized water reactor vessels. This report is designated as HSST Report No. 140

  13. Instrumentation of a Charpy-pendulum. Additional data obtained from it and its application to nuclear reactor pressure vessels surveillance programs; Instrumentacion de un pendulo Charpy. Datos adicionales obtenidos a partir de la misma y su aplicacion a programas de vigilancia de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Chomik, Enrique P; Dhers, Horacio; Iorio, Antonio F [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales; Ciriani, Dario F [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Combustibles Nucleares

    1999-07-01

    Charpy test gives information about a material dynamic fracture behavior. In a plain Charpy test, this information is the absorbed energy during fracture of the specimen, lateral deformation and the percentage of ductile fracture of the specimen. These parameters can then be used for the determination of the material response to a dynamic applied load, and are used at present to determine the brittle-ductile transition temperature of a material. However, there is a lot of additional information that can be obtained from a Charpy test, which is vital for the case of surveillance programs of nuclear power plants, where it is necessary to get the most available information from the specimens to be tested, because each one of them was irradiated for many years under temperature and neutronic flux conditions similar to that of the internal surface of the reactor pressure vessel, which converts these specimens in unique and very expensive ones. This additional information can be obtained from the curve that determines the evolution of the applied force to the specimen throughout the time involved in its fracture. It was possible to instrument a Charpy pendulum at a fraction of the cost necessary to buy an instrumentation package like the ones available in the market, and since the instrumentation equipment obtained is easy to transport. It has the additional advantage that can be used to instrument any other pendulum replacing only the hammer of the pendulum with a instrumented one for that pendulum. (author)

  14. The effect of microstructural change on the Charpy impact properties of the high-strength ferritic/martensitic steel (PNC-FMS) irradiated in JOYO/MARICO-1

    International Nuclear Information System (INIS)

    Yano, Yasuhide; Akasaka, Naoaki; Yoshitake, Tsunemitsu; Abe, Yasuhiro

    2004-03-01

    It is well known that the irradiation embrittlement is one of the most important issues to apply ferritic steels for FBR core materials, although ferritic steels have been considered to be candidate core materials of the commercialized FBR core material because of their superior swelling resistance. In order to evaluate the effects of microstructural changes during irradiation on the Charpy impact properties of the high-strength ferritic/martensitic steel (PNC-FMS), microstructural observations were performed with transmission electron microscopy on ruptured halves of the half-sized Charpy specimens of PNC-FMS irradiated in the JOYO/MARICO-1. The results obtained in this study are as follows: (1) There was remarkable disappearance of the lath of martensite in the samples irradiated at 650degC, although there was no significant change in microstructures, especially the lath of martensite between the samples irradiated at 500degC and unirradiated. The disappearance of martensitic lath in the samples irradiated at 650degC was larger than that of the samples thermally aged at 650degC. (2) The ductile-brittle transition temperature (DBTT) of irradiated PNC-FMS is judged to increase with the disappearance of martensitic lath and to decrease with the recovery in dislocations. (3) The decrease in the upper shelf energy (USE) of irradiated PNC-FMS is significantly accompanied by the change of precipitation behavior. (4) The Charpy impact properties and microstructures of PNC-FMS irradiated at 500degC were superior under these irradiation conditions. In future, it is necessary to establish how to evaluate Charpy impact properties in a high fluence region, based on theoretical methods introduced from the data gained in low fluence experiments, in addition to expanding the data area widely. (author)

  15. Visual interface for the automation of the instrumented pendulum of Charpy tests used in the surveillance program of reactors vessel of nuclear power plants

    International Nuclear Information System (INIS)

    Rojas S, A.S.; Sainz M, E.; Ruiz E, J.A.

    2004-01-01

    Inside the Programs of Surveillance of the nuclear power stations periodic information is required on the state that keep the materials with those that builds the vessel of the reactor. This information is obtained through some samples or test tubes that are introduced inside the core of the reactor and it is observed if its physical characteristics remain after having been subjected to the radiation changes and temperature. The rehearsal with the instrumented Charpy pendulum offers information on the behavior of fracture dynamics of a material. In the National Institute of Nuclear Research (ININ) it has an instrumented Charpy pendulum. The operation of this instrument is manual, having inconveniences to carry out rehearsals with radioactive material, handling of high and low temperatures, to fulfill the normative ones for the realization of the rehearsals, etc. In this work the development of a computational program is presented (virtual instrument), for the automation of the instrumented pendulum. The system has modules like: Card of data acquisition, signal processing, positioning system, tempered system, pneumatic system, compute programs like it is the visual interface for the operation of the instrumented Charpy pendulum and the acquisition of impact signals. This system shows that given the characteristics of the nuclear industry with radioactive environments, the virtual instrumentation and the automation of processes can contribute to diminish the risks to the personnel occupationally exposed. (Author)

  16. Prediction of the brittle fracture toughness value of a RPV steel from the analysis of a limited set of Charpy results

    International Nuclear Information System (INIS)

    Forget, P.; Marini, B.; Verdiere, N.

    2001-01-01

    Our objective is to establish a method to be able to determine fracture toughness of a reactor pressure vessel (RPV) by using the small number of Charpy specimens used in the reactor surveillance program. Previous studies have shown that it is possible to determine fracture toughness from Charpy tests. Another point is to determine if statistical effects are compatible with a restricted number of specimens, this paper deals with this point and presents a methodology that is applicable to the case of irradiated materials from the surveillance program. Several conclusions can be drawn from this study: -) When determining failure parameters, we gain most accuracy by increasing the number of samples from 3 to about 6; -) it is possible to evaluate brittle fracture toughness using local approach, either by using Beremin or Renevey model; -) The effect of using a small number of Charpy specimens to determine fracture toughness in brittle fracture is evaluated. The error in the evaluation of fracture toughness is much smaller than the experimental dispersion itself. (A.C.)

  17. Fracture toughness of A533B Part III - variability of A533B fracture toughness as determined from Charpy data

    International Nuclear Information System (INIS)

    Druce, S.G.; Eyre, B.L.

    1978-08-01

    This is the final part of a series of three reports examining the upper shelf fracture toughness of A533B Class 1 pressure vessel steel. Part I (AERE R 8968) critically reviews the current elasto plastic fracture mechanics methodologies employed to characterise toughness following extensive yielding and Part II (AERE R 8969) examines several sources of fracture mechanics data pertinent to A533B Class 1 in the longitudinal (RW) orientation. Part III is a review of the effects of (i) position and orientation within the plate (ii) welding processes and post weld heat treatment and (iii) neutron irradiation as measured by Charpy impact testing. It is concluded that the upper shelf factor energy is dependent on orientation and position and can be reduced by welding, extended post weld heat treatments and neutron irradiation. Neutron irradiation effects are known to be strongly dependent on composition and metallurgical conditions, but an explanation for the variability following extended post weld treatments has yet to be resolved. (author)

  18. Miniature Precracked Charpy Specimens for Measuring the Master Curve Reference Temperature of RPV Steels at Impact Loading Rates

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Scibetta, M.; Puzzolante, L.

    2008-10-15

    In the framework of the 2006 Convention, we investigated the applicability of fatigue precracked miniature Charpy specimens of KLST type (MPCC - B = 3 mm, W = 4 mm and L = 27 mm) for impact toughness measurements, using the well-characterized JRQ RPV steel. In the ductile to-brittle transition region, MPCC tests analyzed using the Master Curve approach and compared to data previously obtained from PCC specimens had shown a more ductile behavior and therefore un conservative results. In the investigation presented in this report, two additional RPV steels have been used to compare the performance of impact-tested MPCC and PCC specimens in the transition regime: the low-toughness JSPS steel and the high-toughness 20MnMoNi55 steel. The results obtained (excellent agreement for 20MnMoNi55 and considerable differences between T0 values for JSPS) are contradictory and do not presently allow qualifying the MPCC specimens as a reliable alternative to PCC samples for impact toughness measurements.

  19. Proceedings of a C.S.N.I. specialist meeting on instrumented pre-cracked Charpy testing

    Energy Technology Data Exchange (ETDEWEB)

    Wullaert, R A [Fracture Control Corp., 340 South Kellogg Avenue, Suite G, Goleta, California 93017 (United States)

    1981-11-15

    This report presents the status of the testing and data analysis procedures for the instrumented pre-cracked Charpy test with emphasis on the application of the test technique to the nuclear industry. The report (Proceedings) consist of invited technical papers by specialists in the field and a synopsis of the comments, conclusions, and recommendations reached in a workshop session. The CSNl-sponsored and EPRI-hosted meeting confirmed both the popularity of the test technique in the nuclear industry and the problems associated with the test technique due to the lack of a national or international consensus standard. Major emphasis in the meeting was devoted to evaluating the existing industry testing procedure (EPRI procedure) and proposed national standards (ASTM, ASK). The EPRI procedures were considered adequate by specialists concerned with engineering applications, but too restrictive by specialists concerned with research applications. As a result of the conference, a compilation of state-of-the-art papers is now available to code and standard committees. Specific comments concerning test and data analysis procedures, applications in the nuclear industry, and future research areas are also contained in the proceedings

  20. Charpy impact test results of ferritic alloys at a fluence of 6 x 1022n/cm2

    International Nuclear Information System (INIS)

    Hu, W.L.

    1985-01-01

    Charpy impact tests on specimens in the AD-2 reconstitution experiment were completed. One hundred ten specimens made of HT-9 base metal, 9Cr-1Mo base metal and 9Cr-1Mo weldment at various heat treatment conditions were tested in temperature range from -73 0 C to 260 0 C. The specimens were irradiated from 390 0 C to 550 0 C and the fluence of the specimens reached 6 x 10 22 n/cm 2 . This is the first time that the transition behavior of ferritic alloys at high fluence was obtained. This is also the first time that comprehensive results on the irradiated 9Cr-1Mo weldment are available. The test results show a small additional shift in transition temperature for HT-9 base metal irradiated at 390 0 C and 450 0 C as the fluence was raised to 6 x 10 22 n/cm 2 . At higher irradiation temperatures, however, the shift in transition temperature is less conclusive. Further reduction in USE was observed at higher fluence for all the irradiation temperatures. There is no apparent fluence effect for 9Cr-1Mo base metal at all the irradiation temperatures studied. Contrary to the previous finding on HT-9 base metal and weldment, the 9Cr-1Mo weldment shows a higher transition temperature ( + 60 0 C) and a higher USE ( + 100%) as compared to the 9Cr-1MO base metal for the same irradiation conditions. 6 references, 7 figures, 7 tables

  1. Power spectra decomposition of 36 RS CVn UBV photometric light curves from the first two years of the automatic photoelectric telescope

    International Nuclear Information System (INIS)

    Nelson, E.R.

    1988-01-01

    The first search for multiple periodic structure of a major subset of the RS CVn class of interacting binary stars systems, using a rigorous numerical approach appropriate to unevenly-spaced gapped data, is presented. The main intent of this dissertation is to characterize properly the power spectral content of RS CVn binary light curves and describe how this information can constrain the current models for the systems. If the light curve can be considered as a tracer of stellar surface activity, then the photometric distortions can be used to characterize magnetic activity cycles and add to the understanding of stellar dynamics. Most of the systems exhibit multiple periodic structure, 40% of which show changes in the photometric period on a time scale of a few hundred days. A preference is observed for photometric periods with time scales near the orbital and half orbital periods. The effect is particularly strong for the shorter period systems and is interpreted as evidence for synchronous, or near synchronous, rotation. A strong linear correlation in the periods for the multiply periodic systems is observed which indicates a preferential pairing of spot groups on the stellar surface. No correlation is found for the relative phases of the multiple periodic signals. Changes in the photometric period are associated with variations in the amplitude of the distortion wave, which would indicate the growth and decay of spot groups. The growth and decay of pairs of spot groups, arbitrarily separated in phase, on a differentially rotating star is the model most consistent with the results of my analysis

  2. Adequacy of Current Equivalent Margins Analysis (EMA) Guidance, Data and Methodologies for 60+ Years of Operation

    International Nuclear Information System (INIS)

    Server, W.; Hardin, T.; Cipolla, R.; Hall, B.

    2015-01-01

    In order to assure the structural integrity of reactor pressure vessels (RPVs), the fracture toughness of the ferritic steels used to fabricate the RPV must be shown to be adequate during their entire operating life, including extended license life. The Charpy V-notch (CVN) impact test has been used in the nuclear industry since it uses a small test specimen that can be irradiated in surveillance programs and provides an indirect way of assessing the fracture toughness of RPV steels. The effects of embrittlement typically are characterized by changes to the average Charpy curves measured before and after irradiation: shift of the 30 ft-lb (41 J) index temperature, and decrease in the CVN upper shelf energy (USE). Requirements in the USA for the USE of RPV belt-line materials are codified in Title 10, Code of Federal Regulations, Part 50 (10 CFR 50), Appendix G. Before irradiation, USE in the transverse (T-L) orientation for base materials and crack extension in the welding direction for weld materials must be greater than or equal to 75 ft-lb (102 J), and it is not to become less than 50 ft-lb (68 J) due to radiation embrittlement throughout the license of the RPV. If the projected USE of any RPV belt-line steel falls below 50 ft-lb (68 J), the projected value must be demonstrated to provide a margin of safety against ductile fracture equivalent to that required by Appendix G of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI. The analytical evaluation method used is called an equivalent margin analysis (EMA). This paper reviews the current status of EMAs and recommends improvements and clarifications that can be made to meet the needs of extended license life to 80 years. Focus is placed on analytical methodology, material property needs and proper implementation. (authors)

  3. Use of miniature and standard specimens to evaluate effects of irradiation temperature on pressure vessel steels

    International Nuclear Information System (INIS)

    Haggag, F.M.; Nanstad, R.K.; Byrne, S.T.

    1991-01-01

    The effects of neutron irradiation on the steel reactor vessel for the modular high-temperature gas-cooled reactor (MHTGR) are being investigated, primarily because the operating temperatures are low [121 to 210 degrees C (250--410 degrees F)] compared to those for commercial light-water reactors (LWRs) [∼288 degrees C (550 degrees F)]. The need for design data on the reference temperature shift necessitated the irradiation at different temperatures of A 533 grade B class 1 plate. A 508 class 3 forging, and welds used for the vessel shell, vessel closure head, the vessel flange. This paper presents results from the first four irradiation capsules of this program. The four capsules were irradiated in the University of Buffalo Reactor to an effective fast fluence of 1 x10 18 neutron/cm 2 [0.68 x 10 18 neutron/cm 2 (>1 MeV)] at temperatures of 288, 204, 163, and 121 degrees C (550, 400, 325, and 250 degrees F), respectively. The yield and ultimate strengths of both steel plate materials of the MHTGR Program increased with decreasing irradiation temperature. Similarly, the 41-J Charpy V-notch (CVN) transition temperature shift increased with decreasing irradiation temperature (in agreement with the increase in yield strength). The miniature tensile and automated ball indentation (ABI) test results (yield strength and flow properties) were in good agreement with those from standard tensile specimens. The miniature tensile and ABI test results were also used in a model that utilizes the changes in yield strength to estimate the CVN ductile-to-brittle transition temperature shift due to irradiation. The model predictions were compared with CVN test results obtained here and in earlier work. 5 refs., 11 figs., 6 tabs

  4. Numerical simulation of a Charpy test and correlation of fracture toughness with fracture energy. Vessel steel and duplex stainless steel of the primary loop

    International Nuclear Information System (INIS)

    Breban, P; Eripret, C.

    1995-01-01

    The analysis methods used to evaluate the harmlessness of defects in the components of the primary coolant circuit of pressurized water reactor are based on the knowledge of the failure properties of concerned materials. The toughness is used to be measured through tests performed on normalized samples. But in some cases, especially for the vessel steel submitted to irradiation effects or for cast components in duplex stainless steel sensitive to thermal ageing, these measurements are not available on the material aged in operation. Therefore, fracture resistance has been evaluated through Charpy tests. Toughness is thus obtained on the basis of an empirical correlation. To improve these predictions, a modeling of the Charpy test in the framework of the local approach to fracture has been performed, for both materials. For the vessel steel, a complete evaluation of toughness has been achieved on the basis of a bidimensional viscoplastic modeling under large strain assumptions and a post-treatment with a Weibull model (cleavage fracture). The main hypothesis (partition between plain stress and plain strain areas in the bidimensional modeling) was corrected after a three dimensional calculations with the finite element program Code-Aster. The fracture analysis put into evidence that damage considerations like cavity nucleation and growth have to be introduced in the model in order to improve the description of physical phenomena. Two ways of progress have been suggested and are in course of being investigated, one in the framework of local approach to failure, the other with the help of micro-macro relationship. With regard to the duplex steel, the description of a Charpy (U) test allowed to clearly discriminate between crack initiation and propagation phases. A modeling through an equivalent homogenous material with a damage law based on a modified Gurson potential enables to describe quantitatively both phases of fracture. It clearly appears that a reliable

  5. Definition of the minimum longitude of insert in the rebuilding of Charpy test tubes for surveillance and life extension of vessels in Mexico

    International Nuclear Information System (INIS)

    Romero C, J.; Hernandez C, R.; Rocamontes A, M.

    2011-11-01

    In the National Institute of Nuclear Research (Mexico) a welding system for the rebuilding of Charpy test tubes has been developed, automated, qualified and used for the surveillance of the mechanical properties (mainly embrittlement) of the vessel. This system uses the halves of the rehearsed Charpy test tubes of the surveillance capsules extracted of the reactors, to obtain, of a rehearsed test tube, two reconstituted test tubes. This rebuilding process is used so much in the surveillance program like in the potential extension of the operation license of the vessel. To the halves of Charpy test tubes that have been removed the deformed part by machine are called -insert- and in a very general way the rebuilding consists in weld with the welding process -Stud Welding- two metallic implants in the ends of the insert, to obtain a reconstituted test tube. The main characteristic of this welding are the achieved small dimensions, so much of the areas welded as of the areas affected by the heat. The applicable normative settles down that the minim longitude of the insert for the welding process by Stud Welding it should be of 18 mm, however according to the same normative this longitude can diminish if is demonstrated analytic or experimentally that the central volume of 1 cm 3 in the insert is not affected. In this work the measurement of the temperature profiles to different distances of the welding interface is presented, defining an equation for the maximum temperatures reached in function of the distance, on the other hand the real longitude affected in the test tube by means of metallography is determined and this way the minimum longitude of the insert for this developed rebuilding system was determined. (Author)

  6. Visual interface for the automation of the instrumented pendulum of Charpy tests used in the surveillance program of reactors vessel of nuclear power plants; Interfase visual para la automatizacion del pendulo instrumentado de pruebas Charpy utilizado en el programa de vigilancia de la vasija de reactores de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Sainz M, E.; Ruiz E, J.A. [ININ, Carretera Mexico-Toluca Km.36.5, Mpio. de Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: asrs@nuclear.inin.mx; esm@nuclear.inin.mx; jare@nuclear.inin.mx

    2004-07-01

    Inside the Programs of Surveillance of the nuclear power stations periodic information is required on the state that keep the materials with those that builds the vessel of the reactor. This information is obtained through some samples or test tubes that are introduced inside the core of the reactor and it is observed if its physical characteristics remain after having been subjected to the radiation changes and temperature. The rehearsal with the instrumented Charpy pendulum offers information on the behavior of fracture dynamics of a material. In the National Institute of Nuclear Research (ININ) it has an instrumented Charpy pendulum. The operation of this instrument is manual, having inconveniences to carry out rehearsals with radioactive material, handling of high and low temperatures, to fulfill the normative ones for the realization of the rehearsals, etc. In this work the development of a computational program is presented (virtual instrument), for the automation of the instrumented pendulum. The system has modules like: Card of data acquisition, signal processing, positioning system, tempered system, pneumatic system, compute programs like it is the visual interface for the operation of the instrumented Charpy pendulum and the acquisition of impact signals. This system shows that given the characteristics of the nuclear industry with radioactive environments, the virtual instrumentation and the automation of processes can contribute to diminish the risks to the personnel occupationally exposed. (Author)

  7. Definition of the minimum longitude of insert in the rebuilding of Charpy test tubes for surveillance and life extension of vessels in Mexico; Definicion de la longitud minima de inserto en la reconstitucion de probetas Charpy para vigilancia y extension de vida de vasijas en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Romero C, J.; Hernandez C, R.; Rocamontes A, M., E-mail: jesus.romero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    In the National Institute of Nuclear Research (Mexico) a welding system for the rebuilding of Charpy test tubes has been developed, automated, qualified and used for the surveillance of the mechanical properties (mainly embrittlement) of the vessel. This system uses the halves of the rehearsed Charpy test tubes of the surveillance capsules extracted of the reactors, to obtain, of a rehearsed test tube, two reconstituted test tubes. This rebuilding process is used so much in the surveillance program like in the potential extension of the operation license of the vessel. To the halves of Charpy test tubes that have been removed the deformed part by machine are called -insert- and in a very general way the rebuilding consists in weld with the welding process -Stud Welding- two metallic implants in the ends of the insert, to obtain a reconstituted test tube. The main characteristic of this welding are the achieved small dimensions, so much of the areas welded as of the areas affected by the heat. The applicable normative settles down that the minim longitude of the insert for the welding process by Stud Welding it should be of 18 mm, however according to the same normative this longitude can diminish if is demonstrated analytic or experimentally that the central volume of 1 cm{sup 3} in the insert is not affected. In this work the measurement of the temperature profiles to different distances of the welding interface is presented, defining an equation for the maximum temperatures reached in function of the distance, on the other hand the real longitude affected in the test tube by means of metallography is determined and this way the minimum longitude of the insert for this developed rebuilding system was determined. (Author)

  8. Mechanical properties of low alloy high phosphorus weathering steel

    Directory of Open Access Journals (Sweden)

    Jena B.K.

    2015-01-01

    Full Text Available Mechanical behaviour of two low alloy steels (G11 and G12 was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11 revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20°C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

  9. Potential radiation damage: Storage tanks for liquid radioactive waste

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1992-01-01

    High level waste at SRS is stored in carbon steel tanks constructed during the period 1951 to 1981. This waste contains radionuclides that decay by alpha, beta, or gamma emission or are spontaneous neutronsources. Thus, a low intensity radiation field is generated that is capable of causing displacement damage to the carbon steel. The potential for degradation of mechanical properties was evaluated by comparing the estimated displacement damage with published data relating changes in Charpy V-notch (CVN) impact energy to neutron exposure. Experimental radiation data was available for three of the four grades of carbonsteel from which the tanks were constructed and is applicable to all four steels. Estimates of displacement damage arising from gamma and neutron radiation have been made based on the radionuclide contents for high level waste that are cited in the Safety Analysis Report (SAR) for the Liquid Waste Handling Facilities in the 200-Area. Alpha and beta emissions do not penetrate carbon steel to a sufficient depth to affect the bulk properties of the tank walls but may aggravate corrosion processes. The damage estimates take into account the source of the waste (F- or H-Area), the several types of tank service, and assume wateras an attenuating medium. Estimates of displacement damage are conservative because they are based on the highest levels of radionuclide contents reported in the SAR and continuous replenishment of the radionuclides

  10. Statistical analyses of fracture toughness results for two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Nanstad, R.K.; McCabe, D.E.; Haggag, F.M.; Bowman, K.O.; Downing, D.J.

    1990-01-01

    The objectives of the Heavy-Section Steel Irradiation Program Fifth Irradiation Series were to determine the effects of neutron irradiation on the transition temperature shift and the shape of the K Ic curve described in Sect. 6 of the ASME Boiler and Pressure Vessel Code. Two submerged-arc welds with copper contents of 0.23 and 0.31% were commercially fabricated in 215-mm-thick plates. Charpy V-notch (CVN) impact, tensile, drop-weight, and compact specimens up to 203.2 mm thick [1T, 2T, 4T, 6T, and 8T C(T)] were tested to provide a large data base for unirradiated material. Similar specimens with compacts up to 4T were irradiated at about 288 degrees C to a mean fluence of about 1.5 x 10 19 neutrons/cm 2 (>1 MeV) in the Oak Ridge Research Reactor. Both linear-elastic and elastic-plastic fracture mechanics methods were used to analyze all cleavage fracture results and local cleavage instabilities (pop-ins). Evaluation of the results showed that the cleavage fracture toughness values determined at initial pop-ins fall within the same scatter band as the values from failed specimens; thus, they were included in the data base for analysis (all data are designated K Jc )

  11. Crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1994-03-01

    The objective of the Heavy-Section Steel Irradiation Program Sixth Irradiation Series is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest toughness data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degrees C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). This is the second report giving the results of the tests on irradiated duplex-type crack-arrest specimens. A previous report gave results of tests on irradiated weld-embrittled-type specimens. Charpy V-notch (CVN) specimens irradiated in the same capsules as the crack-arrest specimens were also tested, and a 41-J transition temperature shift was determined from these specimens. open-quotes Mean close-quote curves of the same form as the American Society of Mechanical Engineers (ASME) K la curve were fit to the data with only the open-quotes reference temperatureclose quotes as a parameter. The shift between the mean curves agrees well with the 41-J transition temperature shift obtained from the CVN specimen tests. Moreover, the four data points resulting from tests on the duplex crack-arrest specimens of the present study did not make a significant change to mean curve fits to either the previously obtained data or all the data combined

  12. Applicability of the Modified Ritchie-Knott-Rice Failure Criterion to Examine the Feasibility of Miniaturized Charpy Type SE(B Specimens

    Directory of Open Access Journals (Sweden)

    Toshiyuki Meshii

    2016-01-01

    Full Text Available This paper examined whether the modified Ritchie-Knott-Rice (RKR failure criterion can be applied to examine the feasibility of miniaturized Charpy type SE(B specimens of thickness-to-width ratio B/W=1. The modified RKR failure criterion considered in this paper is the (4δt,σ22c criterion which predicts the onset of cleavage fracture when the midplane crack-opening stress measured at a distance equal to four times the crack-tip opening displacement, denoted as σ22d, exceeds a critical stress σ22c. Specimens with B values of 25, 10, 3, and 2 mm (denoted as 25t, 10t, 3t, and 2t specimens, resp. manufactured with 0.55% carbon steel were tested at 20°C. The results showed that the modified RKR criterion could appropriately predict the occurrence of cleavage fracture accompanied by negligibly small stable crack extension (denoted as KJc fracture naturally for the 25t and 10t specimens. The modified RKR criterion could also predict that KJc fracture does not occur for the 2t specimen. The σ22c obtained from specimens for the 25t and 10t specimens exhibited only a small difference, indicating that the Jc obtained from the 10t specimens can be used to predict the Jc that will be obtained with the 25t specimens.

  13. Effect of groove design on mechanical and metallurgical properties of quenched and tempered low alloy abrasion resistant steel welded joints

    International Nuclear Information System (INIS)

    Sharma, Varun; Shahi, A.S.

    2014-01-01

    Highlights: • Effect of weld groove design on Q and T steel welded joints is investigated. • Groove design influences heat dissipation characteristics of welded joints. • Double-V groove joint possesses maximum yield strength and UTS. • C-groove joint possesses highest impact energy, both at room temperature and 0 °C. • A wide variation in microhardness exists across different zone of the weldments. - Abstract: Experimental investigations were carried out to study the influence of three different groove designs on mechanical and metallurgical properties of 15 mm thick Q and T (quenched and tempered) steel welded joints. Welding heat input variation corresponding to each joint configuration was kept to a minimal such that the objective of investigating, exclusively, the effect of varied weld volume on the mechanical and metallurgical performance of these joints could be accomplished. Mechanical performance of these joints was evaluated by subjecting them to transverse tensile testing, and Charpy V-notch impact testing of the weld zones at room temperature and 0 °C. The results of this study reveal that among all types of groove formations used for welding, double-V groove joint possessed maximum YS (yield strength) and UTS (ultimate tensile strength), besides maximum strength ratio (YS/UTS) that was followed by U-groove joint and C-groove joint, respectively. However, weld zone tested individually, for the cover as well as the root pass of the C-groove joint possessed highest CVN (Charpy V-notch) values, both at room temperature and 0 °C. Extensive microhardness studies of these weldments showed a wide variation in the microhardness values of the weld zone and the HAZ (heat affected zone). It was concluded that each groove formation/design exerted a significant influence on the heat dissipation characteristics of these joints, which is evident from different morphological features as revealed through optical microscopy. Scanning electron microscopic

  14. SCK-CEN Contribution to the''Relation between different measures of exposure-induced shifts in ductile-brittle transition temperatures'' (REFEREE). Progress Report

    International Nuclear Information System (INIS)

    Chaouadi, R.; Van Walle, E.; Fabry, A.; Puzzolante, J.L.

    1998-08-01

    The relationship between Charpy-V (CVN) impact, fracture toughness and tensile properties for selected reactor pressure -vessel steels in the transition temperature range are investigated. Data on the testing of unirradiated material are reported. The applied methods include chemical analysis, Charpy-V impact testing, tensile testing and fracture toughness determination

  15. Irradiation, Annealing, and Reirradiation Effects on American and Russian Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chernobaeva, A.A.; Korolev, Y.N.; Nanstad, R.K.; Nikolaev, Y.A.; Sokolov, M.A.

    1998-01-01

    One of the options to mitigate the effects of irradiation on reactor pressure vessels (RPVs) is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. Even though a postirradiation anneal may be deemed successful, a critical aspect of continued RPV operation is the rate of embrittlement upon reirradiation. There are insufficient data available to allow for verification of available models of reirradiation embrittlement or for the development of a reliable predictive methodology. This is especially true in the case of fracture toughness data. Under the U.S.-Russia Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS), Working Group 3 on Radiation Embrittlement, Structural Integrity, and Life Extension of Reactor Vessels and Supports agreed to conduct a comparative study of annealing and reirradiation effects on RPV steels. The Working Group agreed that each side would irradiate, anneal, reirradiate (if feasible ), and test two materials of the other. Charpy V-notch (CVN) and tensile specimens were included. Oak Ridge National Laboratory (ORNL) conducted such a program (irradiation and annealing, including static fracture toughness) with two weld metals representative of VVER-440 and VVER-1000 RPVs, while the Russian Research Center-Kurchatov Institute (RRC-KI) conducted a program (irradiation, annealing, reirradiation, and reannealing) with Heavy-Section Steel Technology (HSST) Program Plate 02 and Heavy-Section Steel Irradiation (HSSI) Program Weld 73W. The results for each material from each laboratory are compared with those from the other laboratory. The ORNL experiments with the VVER welds included irradiation to about 1 x 10 19 n/cm 2 (>1 MeV), while the RRC-KI experiments with the U.S. materials included irradiations from about 2 to 18 x 10 19 n/cm 2 (>l MeV). In both cases, irradiations were conducted at ∼290 C and annealing treatments were conducted at ∼454 C. The ORNL and RRC

  16. Tensile and Charpy impact properties of an ODS ferritic/martensitic steel 9Cr–1.8W–0.5Ti–0.35Y{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guangming; Zhou, Zhangjian, E-mail: zhouzhj@mater.ustb.edu.cn; Wang, Man; Li, Shaofu; Zou, Lei; Zhang, Liwei

    2014-04-15

    Highlights: • The tensile property and Charpy impact were tested. • Both strength and plasticity in LT direction are better than that of TL direction. • The LSE was more than 65% of the USE from absorbed energy curve. • The initiation and propagation energy at different temperatures were calculated. • High LSE and dimples on the fracture surface indicated good toughness at −60 °C. - Abstract: A 9Cr-ODS ferritic/martensitic steel with a composition of 9Cr–1.8W–0.5Ti–0.35Y{sub 2}O{sub 3} was fabricated by mechanical alloying and hot isostatic pressing, followed by hot rolling. Tensile properties were measured at room temperature (23 °C) and 700 °C in the rolling direction (LT) and the transverse direction (TL). The ultimate tensile strength (UTS) of the as-rolled samples in both directions reached 990 MPa at 23 °C, and still maintained at 260 MPa at 700 °C. The tensile strength and elongation of the rolling direction was greater than that of the transverse direction. The Charpy impact was tested from −100 to 100 °C in the LT direction. The lower shelf energy (LSE) was more than 65% of the upper shelf energy (USE). The total absorbed energy was separated into the energies for crack initiation and propagation. The propagation energy was always higher than the initiation energy in the range of temperatures tested. The ductile-to-brittle transition temperature (DBTT) of the rolled 9Cr ODS evaluated by an absorbed energy curve was about 0 °C. However, the high LSE and the fracture surface that still contained dimples at lower shelf indicated good toughness of the as-rolled 9Cr ODS steels at temperature of −60 °C.

  17. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in

  18. Heavy-section steel irradiation program. Semiannual progress report, September 1993--March 1994

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1995-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only component in the primary pressure boundary for which, if it should rupture, the engineering safety systems cannot assure protection from core damage. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. In particular, ft is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. The Heavy-Section Steel (HSS) Irradiation Program has been established; its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties of typical pressure-vessel steels, as they relate to light-water RPV integrity. The program includes the direct continuation of irradiation studies previously conducted within the HSS Technology Program augmented by enhanced examinations of the accompanying microstructural changes. During this period, the report on the duplex-type crack-arrest specimen tests from Phase 11 of the K la program was issued, and final preparations for testing the large, irradiated crack-arrest specimens from the Italian Committee for Research and Development of Nuclear Energy and Alternative Energies were completed. Tests on undersize Charpy V-notch (CVN) energy specimens in the irradiated and annealed weld 73W were completed. The results are described in detail in a draft NUREG report. In addition, the ORNL investigation of the embrittlement of the High Flux Isotope RPV indicated that an unusually large ratio of the high-energy gamma-ray flux to fast-neutron flux is most likely responsible for the apparently accelerated embrittlement

  19. Instrumented impact testing as a way to obtain further information on the behaviour of steel in welded constructions

    International Nuclear Information System (INIS)

    Nielsen, A.

    1976-05-01

    Based on experience gained from instrumented impact testing of ten different mild steels using test pieces of different geometrical shape (Charpy V-notch, Charpy knife-notch, DVM, Schnadt K 0 , Ksub(0.5), K 1 and K 2 ), some general features of the fracture process during impact testing are discussed. Steels can be divided into two main groups that are significantly different with respect to the behaviour during Charpy V-notch testing. The difference vanishes when a crack-like notch is used, and other properties of steel are revealed. It is evident that, even when modified impact testing bears little resemblance to what is happening in an actual steel construction. For the purpose of investigating the fracture conditions in welds, it seems more significant to relate the dynamic aspects to the speed of propagation of the crack when it starts to penetrate the volume considered at a certain stress level. (author)

  20. Results of crack-arrest tests on irradiated a 508 class 3 steel

    International Nuclear Information System (INIS)

    Iskander, S.K.; Milella, P.P.; Pini, M.A.

    1998-02-01

    Ten crack-arrest toughness values for irradiated specimens of A 508 class 3 forging steel have been obtained. The tests were performed according to the American Society for Testing and Materials (ASTM) Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, K la of Ferritic Steels, E 1221-88. None of these values are strictly valid in all five ASTM E 1221-88 validity criteria. However, they are useful when compared to unirradiated crack-arrest specimen toughness values since they show the small (averaging approximately 10 degrees C) shifts in the mean and lower-bound crack-arrest toughness curves. This confirms that a low copper content in ASTM A 508 class 3 forging material can be expected to result in small shifts of the transition toughness curve. The shifts due to neutron irradiation of the lower bound and mean toughness curves are approximately the same as the Charpy V-notch (CVN) 41-J temperature shift. The nine crack-arrest specimens were irradiated at temperatures varying from 243 to 280 degrees C, and to a fluence varying from 1.7 to 2.7 x 10 19 neutrons/cm 2 (> 1 MeV). The test results were normalized to reference values that correspond to those of CVN specimens irradiated at 284 degrees C to a fluence of 3.2 x 10 19 neutrons/cm 2 (> 1 MeV) in the same capsule as the crack-arrest specimens. This adjustment resulted in a shift to lower temperatures of all the data, and in particular moved two data points that appeared to lie close to or lower than the American Society of Mechanical Engineers K la curve to positions that seemed more reasonable with respect to the remaining data. A special fixture was designed, fabricated, and successfully used in the testing. For reasons explained in the text, special blocks to receive the Oak Ridge National Laboratory clip gage were designed, and greater-than-standard crack-mouth opening displacements measured were accounted for. 24 refs., 13 figs., 12 tabs

  1. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  2. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  3. Comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe PWR vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1999-01-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature (∼260 C) and their plates were austenitized at higher-than-usual temperature (∼970 C) -- a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behavior characterized by a 41J. Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program; this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel

  4. Aplicación del ensayo miniatura de embutido para la evaluación de la tenacidad a temperaturas criogénicas de aceros inoxidables austeníticos envejecidos isotérmicamente

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, M. L.

    2003-10-01

    Full Text Available Two types of austenitic stainless steels JJl and JNl were isothermally aged at temperatures from 873 to 1173 K for 10 to 1000 min in order to study the microstructural evolution and its effect on fracture toughness at cryogenic temperatures. The Charpy V-Notch (CVN and Small-Punch (SPTesting methods were conducted at 77 K to evaluate the toughness of both solution treated and aged specimens. The fracture energy at 77 K determined for both methods showed a significant decrease with aging time for both steels. A linear correlation between the fracture energies of both methods was found. The intergranular precipitation of carbides and nitrides was responsible for the fracture toughness deterioration. The scanning electron microscope fractographs showed an intergranular brittle fracture and its fraction also increased with aging time and temperature. The presence of a more abundant intergranular precipitation resulted in a more rapid decrease in fracture toughness with aging time in JNl steel due to its higher content of C and N, compared to that of JJl steel.

    Dos tipos de aceros inoxidables austeníticos, JJl y JNl, se envejecieron isotérmicamente a temperaturas entre 873 y 1.173 K por tiempos de 10 a 1.000 min, para estudiar la evolución microestructural y su efecto sobre la tenacidad a la fractura a temperaturas criogénicas. Los métodos de ensayo de impacto Charpy y el ensayo miniatura de embutido se llevaron a cabo a 77 K para evaluar la tenacidad de las muestras tratadas térmicamente. La energía de fractura determinada por ambos métodos mostró una disminución con el tiempo de envejecido para ambos aceros. Se encontró una relación lineal entre ambos valores de energía. La precipitación intergranular de carburos y nitruros fue la responsable de la pérdida de la tenacidad en las muestras envejecidas. La fractografía indicó que la fractura intergranular se incrementa con la temperatura y el tiempo de envejecido. La presencia

  5. Ageing phenomena in ULCB-NiCu steels

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Wieczorek, P.

    1999-01-01

    Effect od ageing time and temperature on microstructure development, precipitation of ε C u, advancement of recrystallization process and their influence on yield strength and fracture toughness properties K IC as well as high Charpy V impact energy CVN = 84 J at 120 o C of ultra low carbon bainitic copper bearing steels have ben discussed. (author)

  6. Specimen size effects in Charpy impact testing

    International Nuclear Information System (INIS)

    Alexander, D.J.; Klueh, R.L.

    1989-01-01

    Full-size , half-size, and third-size specimens from several different steels have been tested as part of an ongoing alloy development program. The smaller specimens permit more specimens to be made from small trail heats and are much more efficient for irradiation experiments. The results of several comparisons between the different specimen sizes have shown that the smaller specimens show qualitatively similar behavior to large specimens, although the upper-shelf energy level and ductile-to-ductile transition temperature are reduced. The upper-shelf energy levels from different specimen sizes can be compared by using a simple volume normalization method. The effect of specimen size and geometry on the ductile-to-ductile transition temperature is more difficult to predict, although the available data suggest a simple shift in the transition temperature due to specimen size changes.The relatively shallower notch used in smaller specimens alters the deformation pattern, and permits yielding to spread back to the notched surface as well as through to the back. This reduces the constraint and the peak stresses, and thus the initiation of cleavage is more difficult. A better understanding of the stress and strain distributions is needed. 19 refs., 3 figs., 3 tabs

  7. Fundamental study of crack initiation and propagation. Annual progress report, March 1976--March 1977

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.

    1977-01-01

    Ductile fracture in nuclear pressure vessel steel was characterized using a computer model of material damage. The model predicts crack initiation and growth and contains constants that are set by computer simulation of the following fracture tests: the simple tension test, the circumferentially notched round tension test, the blunt-notched compact tension test, and the Charpy V-notch test. The simulations provide the stress and strain states of these tests at fracture. The major goal of our characterization program is to determine the correlation between Charpy toughness and fracture toughness

  8. Application of subsize specimens in nuclear plant life extension

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kumar, A.S.; Cannon, N.S.; Hamilton, M.L.

    1993-01-01

    The US Department of Energy is sponsoring a research effort through Sandia National Laboratories and the University of Missouri-Rolla to test a correlation for the upper shelf energy (USE) values obtained from the impact testing of subsize Charpy V-notch specimens to those obtained from the testing of full-size samples. The program involves the impact testing of unirradiated and irradiated full-, half-, and third-size Charpy V-notch specimens. To verify the applicability of the correlation on LWR materials, unirradiated and irradiated full-, half-, and third-size Charpy V-notch specimens of a commercial pressure vessel steel (ASTM A533 Grade B) will be tested. The correlation methodology is based on the partitioning of the USE into crack initiation and crack propagation energies. To accomplish this partition, both precracked and notched-only specimens will be used. Whereas the USE of notched-only specimens is the sum of both crack initiation and crack propagation energies, the USE of precracked specimens reflects only the crack propagation component. The difference in the USE of the two types of specimens represents a measure of the crack initiation energy. Normalizing the values of the crack initiation energy to the fracture volume of the sample produces similar values for the full-, half-, and third-size specimens. In addition, the ratios of the USE and the crack propagation energy are also in agreement for full-, half-, and third-size specimens. These two observations will be used to predict the USE of full-size specimens based on subsize USE data. This paper provides details of the program and presents results obtained from the application of the developed correlation methodology to the impact testing of the unirradiated full-, half-, and third-size A533 Grade B Charpy V-notch specimens

  9. 46 CFR 154.605 - Toughness test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Toughness test. 154.605 Section 154.605 Shipping COAST....605 Toughness test. (a) Each toughness test under §§ 154.610 through 154.625 must meet Subpart 54.05 of this chapter. (b) If subsize test specimens are used for the Charpy V-notch toughness test, the...

  10. Fractography evaluation of impact and tensile specimens from the HFBR [High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Czajkowski, C.J.

    1989-10-01

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) has performed a fractographic examination of neutron irradiated and unirradiated tensile and Charpy ''V'' notch specimens. The evaluation was carried out using a scanning electron microscope (SEM) to evaluate the fracture mode. Photomicrographs were then evaluated to determine the extent of ductility present on the fracture surfaces of the unirradiated specimens. Ductility area measurements ranged from 4.6--9.5% on typical photomicrographs examined. 12 figs

  11. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  12. CVN 78 Gerald R. Ford Class Nuclear Aircraft Carrier (CVN 78)

    Science.gov (United States)

    2015-12-01

    Combat Systems Trial Rehearsal ( CSTR ) Jul 2014 Jul 2015 Jan 2016 May 20161 (Ch-2) Initial Operational Capability (IOC) Sep 2015 Sep 2016 Mar 2017 Oct...with the shipboard testing and integration schedule. (Ch-2) The current estimate for CSTR is rescheduled from November 2015 to May 2016 to reflect...resulting from the delay to delivery. Acronyms and Abbreviations CSTR - Combat Systems Trial Rehersal DT - Developmental Testing IOT&E - Initial Operational

  13. Evaluation of toughness deterioration by an electrochemical method in an isothermally-aged N-containing austenitic stainless steel

    International Nuclear Information System (INIS)

    Saucedo-Munoz, Maribel L.; Lopez-Hirata, Victor M.; Avila-Davila, Erika O.; Melo-Maximo, Dulce V.

    2009-01-01

    This work presents the results of an evaluation of the deterioration of cryogenic toughness by means of an electrochemical method in a N-containing austenitic stainless steel (JK2) aged at temperatures of 700, 800 and 900 deg. C for times from 10 to 1000 min. The aging process at 700 and 800 deg. C caused the decrease in the Charpy V-Notch impact energy at - 196 deg. C because of the intergranular precipitation of carbides. Scanning electron micrographs of the Charpy V-Notch test specimens showed the presence of intergranular brittle fracture. The degree of sensitization was determined by the ratio of the maximum current density generated by the reactivation scan to that of the anodic scan, I r /I a , using the double-loop electrochemical potentiokinetic reactivation test. The Charpy V-Notch impact energy decreased with increase in the I r /I a ratio. This relation permits an estimate of the deterioration of cryogenic toughness due to thermal aging in this type of steel

  14. Low temperature impact testing of welded structural wrought iron

    Science.gov (United States)

    Rogers, Zachary

    During the second half of the 19th century, structural wrought iron was commonly used in construction of bridges and other structures. Today, these remaining structures are still actively in use and may fall under the protection of historic preservation agencies. Continued use and protection leads to the need for inspection, maintenance, and repair of the wrought iron within these structures. Welding can be useful to achieve the appropriate repair, rehabilitation, or replacement of wrought iron members. There is currently very little published on modern welding techniques for historic wrought iron. There is also no pre-qualified method for this welding. The demand for welding in the repair of historic structural wrought iron has led to a line of research investigating shielded metal arc welding (SMAW) of historic wrought iron at the University of Colorado Denver. This prior research selected the weld type and other weld specifications to try and achieve a recognized specific welding procedure using modern SMAW technology and techniques. This thesis continues investigating SMAW of historic wrought iron. Specifically, this thesis addresses the toughness of these welds from analysis of the data collected from performing Charpy V-Notch (CVN) Impact Tests. Temperature was varied to observe the material response of the welds at low temperature. The wrought iron used in testing was from a historic vehicle bridge in Minnesota, USA. This area, and many other areas with wrought iron structures, can experience sustained or fluctuating temperatures far below freezing. Investigating the toughness of welds in historic wrought iron at these temperatures is necessary to fully understand material responses of the existing structures in need of maintenance and repair. It was shown that welded wrought iron is tougher and more ductile than non-welded wrought iron. In regards to toughness, welding is an acceptable repair method. Information on wrought iron, low temperature failure

  15. Fundamental study of crack initiation and propagation

    International Nuclear Information System (INIS)

    Norris, D.M. Jr.; Reaugh, J.E.; Moran, B.; Quinones, D.F.; Wilkins, M.L.

    1977-01-01

    Objective is to determine the fracture toughness of A533B-1 steel by computer modeling Charpy V-notch tests. A computer model of ductile fracture was developed that predicts fracture initiation. The model contains a set of material-dependent parameters obtained by computer simulations of small specimen tests. The computer calculations give detailed stress and strain histories up to the time of fracture, which are used to determine the model parameter values. The calibrated fracture model, that correctly predicts fracture initiation (and initiation energy) in the Charpy specimen, may then be used to simulate tests of accepted fracture-toughness specimens and hence obtain fracture toughness. The model parameters were calibrated to predict fracture in four different test specimens: two different notched-tension specimens, a simple tension specimen, and a precracked compact-tension specimen. The model was then used in a computer simulation of the Charpy V-notch specimen to initiate and advance a flat fracture. Results were compared with interrupted Charpy tests. Calibration of the model for two additional heat treatments of A533B-1 steel is in progress

  16. CVN’s, is Eleven Too Many or Too Few?

    Science.gov (United States)

    2011-03-10

    allows for transit and work ups for deployment. The complete cycle has one ship on post, one corning off post and one preparing to take post in each of...developed the Silk Missile, an. anti -ship missile that can sink a smaller vessel with one burst. Many of the defenses used in the modem carrier

  17. Fracture Toughness Evaluation of Kori-1 RPV Beltline Weld for a Long-Term Operation

    International Nuclear Information System (INIS)

    Lee, Bong-Sang; Kim, Min-Chul; Ahn, Sang-Bok; Kim, Byung-Chul; Hong, Jun-Hwa

    2007-01-01

    Irradiation embrittlement of RPV (reactor pressure vessel) material is the most important aging issue for a long-term operation of nuclear power plants. KORI unit 1, which is the first PWR in Korea, is approaching its initial licensing life of 30 years. In order to operate the reactor for another 10 years and more, it should be demonstrated that the irradiation embrittlement of the reactor will be adequately managed by ensuring that the fracture toughness properties have a certain level of the safety margin. The current regulation requires Charpy V-notch impact data through conventional surveillance tests. It is based on the assumption that Charpy impact test results are well correlated with the fracture toughness properties of many engineering steels. However, Charpy V-notch impact data may not be adequate to estimate the fracture toughness of certain materials, such as Linde 80 welds. During the last decade, a tremendous number of fracture toughness data on many RPV steels have been produced in accordance with the new standard test method, the so-called master curve method. ASTM E1921 represents a revolutionary advance in characterizing fracture toughness of RPV steels, since it permits establishing the ductile to brittle transition portion of the fracture toughness curve with direct measurements on a relatively small number of relatively small specimens, such as pre-cracked Charpy specimens. Actual fracture toughness data from many different RPV steels revealed that the Charpy test estimations are generally conservative with the exception of a few cases. Recent regulation codes in USA permit the master curve fracture toughness methodology in evaluating an irradiation embrittlement of commercial nuclear reactor vessels

  18. Multivariable modeling of pressure vessel and piping J-R data

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.

    1991-05-01

    Multivariable models were developed for predicting J-R curves from available data, such as material chemistry, radiation exposure, temperature, and Charpy V-notch energy. The present work involved collection of public test data, application of advanced pattern recognition tools, and calibration of improved multivariable models. Separate models were fitted for different material groups, including RPV welds, Linde 80 welds, RPV base metals, piping welds, piping base metals, and the combined database. Three different types of models were developed, involving different combinations of variables that might be available for applications: a Charpy model, a preirradiation Charpy model, and a copper-fluence model. In general, the best results were obtained with the preirradiation Charpy model. The copper-fluence model is recommended only if Charpy data are unavailable, and then only for Linde 80 welds. Relatively good fits were obtained, capable of predicting the values of J for pressure vessel steels to with a standard deviation of 13--18% over the range of test data. The models were qualified for predictive purposes by demonstrating their ability to predict validation data not used for fitting. 20 refs., 45 figs., 16 tabs

  19. Ductile growth of crack like flawing during hydrotest; Propagacao dutil de defeitos planares durante teste hidrostatico

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jose C; Donato, Guilherme V [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Silva, Marcinei S. da; Bastian, Fernando L [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Romulo S. de [PETROBRAS/AB-RE, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    In this paper effects of hydrostatic testing on ductile propagation of crack like flaw defects were evaluated in API X-60 steel. The model used was based on the J-tearing theory, supported by elastic - plastic fracture mechanics. The J-initiation resistance values (JIc) were determined by fracture mechanic tests using potential drop technique and compact test specimen. The JIc values were also determined from flow stress and Charpy V-notch at plateau, which are both usually available in mill-test data. Despite of being based on small database it seems it could be extended and it will be useful for future analysis. (author)

  20. Mechanical properties and examination of cracking in TMI-2 pressure vessel lower head material

    International Nuclear Information System (INIS)

    Diercks, D.R.; Neimark, L.A.

    1993-09-01

    Mechanical tests have been conducted on material from 15 samples removed from the lower head of the Three Mile Island unit 2 nuclear reactor pressure vessel. Measured properties include tensile properties and hardness profiles at room temperature, tensile and creep properties at temperatures of 600 to 1200 degrees C, and Charpy V-notch impact properties at -20 to +300 degrees C. These data, which were used in the subsequent analyses of the margin-to-failure of the lower head during the accident, are presented here. In addition, the results of metallographic and scanning electron microscope examinations of cladding cracking in three of the lower head samples are discussed

  1. Weldability of thermally grain-refined Fe-12Ni-0.25Ti for cryogenic structural applications

    International Nuclear Information System (INIS)

    Williams, D.E.

    1980-02-01

    The weldability of a research alloy designed for structural use in liquid helium temperature, cryogenic environments was investigated. Plates of iron-12 weight percent nickel-0.25 weight percent titanium were grain refined by the four-step, grain refining thermal treatment developed for this alloy and welded with Inconel Number 92 weld wire using the Gas Metal Arc (GMA) welding process with argon-15% helium gas shielding. Both a single pass and a double-sided, 2 pass electron beam (EB) weld were also made without filler metal addition. Weldments were radiographed and sectioned and the charpy V-notch specimens removed were tested at liquid nitrogen and helium temperatures

  2. Irradiation and annealing behavior of 15Kh2MFA reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Popp, K.; Bergmann, U.; Bergner, F.; Hampe, E.; Leonhardt, W.D.; Schuetzler, H.P.; Viehrig, H.W.

    1992-01-01

    This work deals with the mechanical properties of RPV steels used WWER-440. The materials under investigation were a forging (base metal 15Kh2MFA) and the corresponding weld. Charpy V-notch specimens and tensile test specimens were irradiated in the WWER-2 Rheinsberg at about 270 C up to the two neutron fluence levels of 4 x 10 18 and 5 x 10 19 n/cm 2 (E>1MeV). Post-irradiation annealing heat treatments were performed, among others a 475 C/152 h treatment of technical interest. (orig.)

  3. Irradiation effects in strain aged pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M; Myers, H P

    1962-02-15

    Tensile specimens, Charpy-V notch and subsize impact specimens of an aluminium killed carbon manganese steel, have been irradiated at 160 - 190 deg C in the reactor G1. The total neutron dose received was 2.4 x 10{sup 18} n/cm{sup 2} (> 1 MeV). Specimens were prepared from normalized plate and from strain aged material from the same plate. It was found that the changes in brittle ductile transition temperature due to neutron irradiation and those due to strain ageing must be considered additive.

  4. Liability and lifetime of metallic components and structures

    International Nuclear Information System (INIS)

    Tanguy, B.

    2009-12-01

    In this overview of his research activity, the author describes the ductile damage process in structures subjected to high rate loadings, notably for tank steels and gas pipeline high resistance steels. Then, he describes the cleavage fracture process in bainitic steels by means of a local fracture approach. He proposes a modelling of the Charpy v-notch impact test of the resilience-to-toughness transition during the ductile-brittle transition for bainitic steels, the developed method being used to interpret resilience and toughness tests performed on an irradiated material. He finally discusses these works, describes the current ones, and discusses research perspectives within his Nuclear Material Department

  5. Impact strength of the uranium-6 weight percent niobium alloy between -1980 and +2000C

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1981-09-01

    A study was conducted to determine if a ductile-to-brittle transition wxisted for the uranium-6 wt % niobium (U-6Nb) alloy. Standard V-notched Charpy bars were made from both solution-quenched and solution-quenched and aged U-6Nb alloy and were tested between -198 0 and +200 0 C. It was found that a sharp ductile-brittle transition does not exist for the alloy. A linear relationship existed between test temperature and impact strength, and the alloy retained a significant amount of impact strength even at very low temperatures. 9 figures

  6. Half bead welding technique

    International Nuclear Information System (INIS)

    Canonico, D.A.; Holz, P.P.

    1978-05-01

    The ORNL has employed the Section XI half-bead procedure for six repair welds. Table 2 identifies the repairs and the components upon which they were accomplished. The weld repairs were performed to permit us to evaluate material properties, residual stresses, weld repair procedures, and structural behavior of repaired pressure vessels. As a consequence of our study we concluded that when the half bead procedure is correctly applied: (1) there is no metallurgical degradation of the base material, (2) residual stresses of yield point magnitude will be present, and (3) the structural integrity of the pressure vessel is not impaired at Charpy V-notch upper shelf temperatures

  7. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings

    Directory of Open Access Journals (Sweden)

    Reza H Oskouei

    2016-02-01

    Full Text Available In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses.

  8. Extended analysis of WWER-1000 Charpy test data

    International Nuclear Information System (INIS)

    Vodenicharov, St.; Kamenova, Tz.

    2001-01-01

    The aim of this work is to study the embrittlement rate of WWER-1000 RPV weld metal with high Ni content and to determine influence of neutron irradiation on partial energies of ductile crack initiation, stable and unstable crack propagation and post crack arrest. (author)

  9. Characteristics of the IAEA correlation monitor material for surveillance programmes

    International Nuclear Information System (INIS)

    Wallin, K.; Valo, M.; Rintamaa, R.; Toerroenen, K.

    1989-08-01

    Within the IAEA Coordinated Research Programme on optimizing of reactor pressure vessel surveillance programmes and their analysis, phase 3, a specially tailored 'radiation sensitive' correlation monitor material has been fabricated. This material will serve as a reference to the IAEA programme for future vessel surveillance programmes throughout the world. An extensive evaluation of the correlation monitor material in the as-received condition has been carried out in Finland and the results are presented here. The mechanical properties measured at different temperatures include Charpy V notch and instrumented precracked Charpy data, and elastic-plastic fracture toughness (J). The specimen size and geometry have been varied in the tests. Correlation between different fracture properties are evaluated and discussed

  10. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel

    International Nuclear Information System (INIS)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-01-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs

  11. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel; Degradacion de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-07-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs.

  12. The flow effect in the irradiation embrittlement in pressure vessel steels of nuclear power plants

    International Nuclear Information System (INIS)

    Kempf, Rodolfo A.; Cativa Tolosa, Sebastian; Fortis, Ana M.

    2009-01-01

    This paper deals with the advances in the study of the mechanical behavior of the Reactor Pressure Vessel steels under accelerate irradiations. The objective is to study the effect of lead factors on the interpretation of the mechanisms that induced the embrittlement of the RPV, like those of the reactors Atucha II and CAREM. It is described a device designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. It is presented also an automatic digital image processing technique for partitioning Charpy fracture surface into regions with a clear physical meaning and appropriate for the work in hot cells. The aim is to obtain the fracture behavior of irradiated specimens with different lead factors in the range of high fluencies and to know the dependence with the composition of the alloy and with the diffusion of other alloy elements. (author)

  13. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    International Nuclear Information System (INIS)

    Albuquerque, Victor Hugo C. de; Melo, Tadeu Antonio de A; Gomes, Rodinei M.; Lima, Severino Jackson G. de; Tavares, Joao Manuel R.S.

    2010-01-01

    Research highlights: → This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. → The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. → Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. → First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. → The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  14. Grain size and temperature influence on the toughness of a CuAlBe shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Victor Hugo C. de, E-mail: victor.albuquerque@fe.up.pt [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Melo, Tadeu Antonio de A, E-mail: tadeu@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Gomes, Rodinei M., E-mail: gomes@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Lima, Severino Jackson G. de, E-mail: jackson@lsr.ct.ufpb.br [Universidade Federal da Paraiba (UFPB), Departamento de Engenharia Mecanica (DEM), Laboratorio de Solidificacao Rapida LSR, Cidade Universitaria, S/N 58059-900 Joao Pessoa, PB (Brazil); Tavares, Joao Manuel R.S., E-mail: tavares@fe.up.pt [Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Mecanica (DEMec)/Instituto de Engenharia Mecanica e Gestao Industrial INEGI, Rua Dr. Roberto Frias, S/N 4200-465 Porto (Portugal)

    2010-11-25

    Research highlights: {yields} This work evaluated the capacity of a CuAlBe alloy to absorb energy until rupture. {yields} The V-notch Charpy test was adopted at -150, -100, -50, 0, 50, 100 and 150 deg. C. {yields} Charpy tests were complemented by DSC, DSC with optical microscope and by SEM. {yields} First work to analyze the toughness of a CuAlBe alloy based on the Charpy test. {yields} The results are of relevant value to enhance the understanding of the CuAlBe alloy. - Abstract: This work is a study of the influence of grain size and temperature on the toughness of CuAlBe shape memory alloys with (CuAlBeNbNi) and without NbNi (CuAlBe) grain refiner elements. The toughness analysis was based on the V-notch Charpy impact test under temperatures of -150, -100, -50, 0, 50, 100 and 150 deg. C. A statistical analysis of the results led to the conclusion that the toughness of both alloys was influenced by temperature and grain size. The CuAlBeNbNi alloy absorbed higher impact energy than the CuAlBe alloy showing that the refining elements improved the toughness of the alloy. To confirm and complement these findings, the fracture surfaces were evaluated by stereomicroscopy. Smooth homogeneous surfaces and rough heterogonous surfaces were detected for the CuAlBeNbNi and CuAlBe alloys, respectively. Predominately brittle zones were confirmed by scanning electron microscopy in both alloys. Furthermore, to determine the phase transformation temperatures and the associated microstructures, the alloys were assessed by conventional differential scanning calorimetry (DSC) and DSC with optical microscopy.

  15. Assessment of the effects of neutron fluence on Swedish nuclear pressure vessels

    International Nuclear Information System (INIS)

    Rao, S.

    1980-11-01

    Nuclear pressure vessels are subject to neutron irradiation during service causing embrittlement. This is one important factor in the overall problem of reactor vessel integrity. At present the irradiation effects are mainly assessed by the Charpy V-notch test. Two measures of embrittlement are defined: the increase of the ductile/brittle transition temperature and the decrease in the upper-shelf energy. The object of the present work is to assess these changes for the Swedish nuclear pressure vessels. On the basis of data from irradiations carried out in other countries and Swedish surveillance programmes, the expected end of life embrittlement is estimated for Swedish vessels. The results show that the embrittlement of most reactor vessels is expected to be quite small. Oskarshamn 1 and PWR-vessels, however, will probably show moderate changes, the former due to the higher copper content, and the latter due to the high end of life fluences. Some of the vessel materials which exhibit marginal properties in the upper-shelf energy, as measured by the Charpy V-notch impact test, are identified. It is recommended that fracture mechanics analyses be applied in these cases. (author)

  16. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    Science.gov (United States)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  17. Analysis of the irradiation data for A302B and A533B correlation monitor materials

    International Nuclear Information System (INIS)

    Wang, J.A.

    1996-04-01

    The results of Charpy V-notch impact tests for A302B and A533B-1 Correlation Monitor Materials (CMM) listed in the surveillance power reactor data base (PR-EDB) and material test reactor data base (TR-EDB) are analyzed. The shift of the transition temperature at 30 ft-lb (T 30 ) is considered as the primary measure of radiation embrittlement in this report. The hyperbolic tangent fitting model and uncertainty of the fitting parameters for Charpy impact tests are presented in this report. For the surveillance CMM data, the transition temperature shifts at 30 ft-lb (ΔT 30 ) generally follow the predictions provided by Revision 2 of Regulatory Guide 1.99 (R.G. 1.99). Difference in capsule temperatures is a likely explanation for large deviations from R.G. 1.99 predictions. Deviations from the R.G. 1.99 predictions are correlated to similar deviations for the accompanying materials in the same capsules, but large random fluctuations prevent precise quantitative determination. Significant scatter is noted in the surveillance data, some of which may be attributed to variations from one specimen set to another, or inherent in Charpy V-notch testing. The major contributions to the uncertainty of the R.G. 1.99 prediction model, and the overall data scatter are from mechanical test results, chemical analysis, irradiation environments, fluence evaluation, and inhomogeneous material properties. Thus in order to improve the prediction model, control of the above-mentioned error sources needs to be improved. In general the embrittlement behavior of both the A302B and A533B-1 plate materials is similar. There is evidence for a fluence-rate effect in the CMM data irradiated in test reactors; thus its implication on power reactor surveillance programs deserves special attention

  18. Review of in-service thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1984-01-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper-shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. A test reactor pressure vessel has been wet annealed at less than 343 0 C (650 0 F), and annealing of the Belgian BR-3 reactor vessel has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place is feasible, but solvable engineering problems do exist. The materials with highest radiation sensitivity in the older reactor vessels are submerged-arc weld metals with high copper and nickel concentrations. The limited Charpy V-notch and fracture toughness data available for five such welds were reviewed. The review suggested that significant recovery results from annealing at 454 0 C (850 0 F) for one week. Two of the main concerns with a localized heat treatment at 454 0 C (850 0 F) are the degree of distortion that may occur after the annealing cycle and the extent of residual stresses. A thermal and structural analysis of a reactor vessel for distortions and residual stresses found no problems with the reactor vessel itself but did indicate a rotation at the nozzle region of the vessel that would plastically deform the attached primary piping. Further analytical studies are needed. An American Society for Testing and Materials (ASTM) task group is upgrading and revising the ASTM Recommended Guide for In-Service Annealing of WaterCooled Nuclear Reactor Vessels (E 509-74) with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (for example, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  19. Influence of Mo addition on the tempered properties of 13Cr martensitic stainless steel

    International Nuclear Information System (INIS)

    Jung, Byong Ho; Ahn, Yong Sik

    1998-01-01

    In order to investigate the effect of Mo addition on the mechanical properties of 13Cr-0.2C martensitic stainless steel, tensile test and Charpy V-notch test were performed after tempering at the temperature range of 200∼700 .deg. C following austenitizing at 1100 .deg. C. The yield strength and hardness of the steel were increased with the increase of Mo content at all tempering conditions, because Mo causes retardation of precipitation and coarsening of carbides and solid solution strengthening of matrix. Except 500 .deg. C of tempering temperature, the Charpy impact energy was significantly increased with Mo content and showed the highest value at 1.5 wt% addition. The increase of impact energy of the steel containing Mo is thought to be caused by δ-ferrite formed in the tempered martensitic matrix. At 500 .deg. C tempering, Charpy impact energy was decreased drastically due to temper embrittlement and it was not possible to prevent it even though Mo was added up to 1.5 wt%

  20. A mechanical property and stress corrosion evaluation of VIM-ESR-VAR work strengthened and direct double aged Inconel 718 bar material

    Science.gov (United States)

    Montano, J. W.

    1986-01-01

    Presented are the mechanical properties and the stress corrosion resistance of triple melted vacuum induction melted (VIM), electro-slag remelted (ESR), and vacuum arc remelted (VAR), solution treated, work strengthened and direct double aged Inconel 718 alloy bars 4.00 in. (10.16) and 5.75 in. (14.60 cm) diameter. Tensile, charpy v-notched impact, and compact tension specimens were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 220 ksi (1516.85 MPa) and 200 ksi (1378.00 MPa) respectively, were realized at ambient temperature. Additional charpy impact and compact tension tests were performed at -100 F (-73 C). Longitudinal charpy impact strength equalled or exceeded 12.0 ft-lbs (16.3 Joules) at ambient and at -100 F(-73 C) while longitudinal compact (LC) tension fracture toughness strength remained above 79 ksi (86.80 MPa) at ambient and at -100 F(-73 C) temperatures. No failures occurred in the longitudinal or transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.

  1. Instrumented impact testing machine with reduced specimen oscillation effects

    International Nuclear Information System (INIS)

    Rintamaa, R.; Rahka, K.; Wallin, K.

    1984-07-01

    Owing to small and inexpensive specimens the Charpy impact test is widely used in quality control and alloy development. Limitations in power reactor survellance capsules it is also widely used for safety analysis purposes. Instrumenting the tup and computerizing data acquisition, makes dynamic fracture mechanics data measurement possible and convenient. However, the dynamic effects (inertia forces, specimen oscillations) in the impact test cause inaccuracies in the recorded load-time diagram and hence diminish the reliability of the calculated dynamic fracture mechanics parameters. To decrease inaccuracies a new pendulum type of instrumented impact test apparatus has been developed and constructed in the Metals Laboratory of the Technical Research Centre of Finland. This tester is based on a new principle involving inverted test geometry. The purpose of the geometry inversion is to reduce inertia load and specimen oscillation effects. Further, the new impact tester has some other novel features: e.g. the available initia impact energy is about double compared to the conventional standard (300 J) impact tester allowing the use of larger (10 x 20 x 110 mm) bend specimens than normal Charpy specimens. Also, the rotation asix in the three point bending is nearly stationary making COD-measurements possible. An experimental test series is described in which the inertia effects and specimen oscillations are compared in the conventional and new impact tester utilizing Charpy V-notch specimens. Comparison of the two test geometries is also made with the aid of an analytical model using finite element method (FEM) analysis. (author)

  2. Evaluation of ductile-brittle transition behavior with neutron irradiation in nuclear reactor pressure vessel steels using small punch test

    International Nuclear Information System (INIS)

    Kim, M. C.; Lee, B. S.; Oh, Y. J.

    2003-01-01

    A Small Punch (SP) test was performed to evaluate the ductile-brittle transition temperature before and after neutron irradiation in Reactor Pressure Vessel (RPV) steels produced by different manufacturing (refining) processes. The results were compared to the standard transition temperature shifts from the Charpy test and Master Curve fracture toughness test in accordance with the ASTM standard E1921. The samples were taken from 1/4t location of the vessel thickness and machined into a 10x10x0.5mm dimension. Irradiation of the samples was carried out in the research reactor at KAERI (HANARO) at about 290 .deg. C of the different fluence levels respectively. SP tests were performed in the temperature range of RT to -196 .deg. C using a 2.4mm diameter ball. For the materials before and after irradiation, SP transition temperatures (T sp ), which are determined at the middle of the upper and lower SP energies, showed a linear correlation with the Charpy index temperature, T 41J . T sp from the irradiated samples was increased as the fluence level increased and was well within the deviation range of the unirradiated data. The TSP had a correlation with the reference temperature (T 0 ) from the master curve method using a pre-cracked Charpy V-notched (PCVN) specimen

  3. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  4. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  5. The effect of plasma arc process parameters on the properties of dissimilar AISI 1040/AISI 304 steel plate welds

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Musa; Kirik, Ihsan; Orhan, Nuri [Firat Univ., Elazig (Turkey); Celik, Ferkan [Science Industry and Technology Ministry of Turkey (Turkey)

    2012-11-01

    In this study, 10 mm thick AISI 1040 and AISI 304 steel plates were welded in the butt position without pretreatment by plasma transferred arc (PTA) welding technique. Therefore, mechanical behaviour, microstructure, penetration depth and length were investigated. After welding, microstructural changes in the interface regions of the welded specimens were examined by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Micro-hardness as well as V-notch Charpy tests were performed to determine the mechanical properties of the welds. The influence of the welding parameters on the dimension and shape of the joints has been found out. From the results, it was derived that with the parameters used, a partly keyhole weld bead formed with a penetration depth of 10 mm and a width of 11 mm in butt position. (orig.)

  6. Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. Gokul; Ramkumar, K. Devendranath; Arivazhagan, N. [VIT University, Vellore (India)

    2015-03-15

    This article investigated the weldability, metallurgical and mechanical properties of Inconel 625 and AISI 316L stainless steel weldments obtained by continuous current (CC) and pulsed current (PC) gas tungsten arc welding (GTAW) processes employing ERNiCr-3 and ER2209 fillers. Microstructure studies showed the migrated grain boundaries at the weld zone of ERNiCr-3 weldments and multidirectional grain growth for ER2209 weldments. It was inferred from the tension tests that the fracture occurred at the parent metal of AISI 316L in all the cases. Charpy V-notch impact tests accentuated that the CCGTA weldments employing ERNiCr-3 filler offered better impact toughness of 77 J at room temperature. Further a detailed study has been carried out to analyze the structure - property relationships of these weldments using the combined techniques of scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis.

  7. Applicability and interpretation of fracture test methods for metals

    International Nuclear Information System (INIS)

    Langford, W.J.

    1978-05-01

    Fracture tests are conducted usually out of a conviction (sometimes only vaguely defined) that they will guarantee a certain level of protecton from metal failure. Qualitative tests, such as the Charpy V-notch, produce results which cannot be rigorously related to a measure of fracture tolerance: rather, they indicate metal quality so that fracture tolerance may be inferred. Quantitative tests on the other hand provide parameters which may be used directly in equations to determine the likelihood of fracture. Both types of tests have limitations which should be understood: the paper tries to provide guidance on the relative merits of either approach for a particular purpose, and gives an insight into near-future test methods which will extend the range of usefullness of quantitative tests. (author)

  8. Study on aging embrittlement of 17-4PH martensite stainless steel at 350 degree C

    International Nuclear Information System (INIS)

    Wang Jun; Shen Baoluo

    2005-01-01

    The transformation of microstructure and hardness with the extension of aging time on the 17-4PH Martensite stainless steel at 350 degree C is studied, and the change of dynamic fracture toughness and fractography of the stainless steel for various holding time at this temperature are also studied by instrumental impact test and scanning electron microscope. The results indicate that the crack initiation energy (E i ), crack propagation energy (E p ), absorbed-in-fracture energy (E t ) and dynamic fracture toughness (K 1d ) of this type of alloy Charpy v-notch sample is decreased with the continuation of time at 350 degree C. It means that the toughness of the alloy is degraded, and the hardness of the steel is ascended when aging time is expanded and reaches the maximum at 9000 h. The fractography of this steel changes from dimple fracture into cleavage fracture and inter-granular rapture. (authors)

  9. Evaluations of the criterion for lateral expansion of steels for nuclear components

    International Nuclear Information System (INIS)

    Susukida, H.; Satoh, M.; Fukuhara, A.

    1980-01-01

    The Charpy V notch impact tests were performed on Japanese made ferritic steels for nuclear components and their lateral expansions were investigated. The correlations of lateral expansion and absorbed energy with yield strength, and the correlation between lateral expansion and fracture toughness were also studied. The correlation at each lateral expansion level between absorbed energy and yield strength almost agreed with that published by the US PVRC. It was confirmed that lateral expansion could be used as a criterion for the toughness of the steels corresponding to changes in their yield strength, and that the lateral expansion criterion adopted in the ASME Code Section III was appropriate. Further, the correlation between fracture toughness and lateral expansion and that between fracture toughness and absorbed energy, were evaluated, and respective equations of correlation were proposed. (author)

  10. Status on the selection and development of an embrittlement trend curve to use in ASTM standard guide E900

    International Nuclear Information System (INIS)

    Kirk, M.; Brian Hall, J.; Server, W.; Lucon, E.; Erickson, M.; Stoller, R.

    2015-01-01

    ASTM E900-07, Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, includes an embrittlement trend curve. The trend curve can be used to predict the effect of neutron irradiation on the embrittlement of ferritic pressure vessel steels, as quantified by the shift in the Charpy V-Notch transition curve at 41 Joules of absorbed energy (ΔT 41J ). The current E900 trend curve was first adopted in the 2002 revision. In 2011 ASTM Subcommittee E10.02 undertook an extensive effort to evaluate the adequacy of the E900 trend curve for continued use. This paper summarizes the current status of this effort, which has produced a trend curve calibrated using a database of over 1800 ΔT 41J values from the light water reactor surveillance programs in thirteen countries. (authors)

  11. Oxide formation and precipitation behaviors on interface of F82H steel joints during HIPing and hot pressing

    International Nuclear Information System (INIS)

    Kishimoto, H.; Ono, T.; Sakasegawa, H.; Tanigawa, H.; Ando, M.; Shibayama, T.; Kohno, Y.; Kohyama, A.

    2013-01-01

    Joining technologies for F82H steels are important issues for the development of fusion energy. The hot isostatic pressing (HIP) method is appropriate for consolidating the first wall of the blanket because of the flexibility of the shape of HIPed products. The HIP method is planned for fabricating a complex-shaped first wall component with built-in cooling channels; thus, accumulation of studies of microstructural and mechanical property changes, especially lower toughness of the HIPed joints, is essential. Present research aims to reveal the microstructural evolution of F82H joints fabricated by the HIP method compared with joints fabricated by hot pressing, focusing on the formation of oxides on the interface. F82H joints were characterized using 1/3-scale Charpy V-notch impact test, transmission electron microscope, scanning electron microscope, and electron probe analysis to survey the microstructural characteristics of the interface

  12. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing, E-mail: chunjing.li@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Bo; Liu, Shaojun [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  13. Toughness testing and high-temperature oxidation evaluations of advanced alloys for core internals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lizhen [ORNL; Pint, Bruce A [ORNL; Chen, Xiang [ORNL

    2016-09-16

    Alloy X-750 was procured from Carpenter Technology and Bodycote in this year. An appropriate TMT was developed on Alloy 439 to obtain materials with refined grain size for property screening tests. Charpy V-notch impact tests were completed for the three ferritic steels Grade 92, Alloy 439, and 14YWT. Fracture toughness tests at elevated temperatures were completed for 14YWT. The tests will be completed for the other alloys in next fiscal year. Steam oxidation tests of the three ferritic steels, 316L, and Zr–2.5Nb have been completed. The steam tests of the Ni-based superalloys and the other austenitic stainless steels will be continued and finished in next fiscal year. Performance ranking in terms of steam oxidation resistance and impact/fracture toughness of the alloys will be deduced.

  14. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.; Wirth, B.; Liu, C.L.

    1997-01-01

    Radiation enhanced diffusion at RPV operating temperatures around 290 degrees C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper, nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools

  15. Thermal aging evaluation of cast austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Song, T. H.; Jung, I. S.

    2002-01-01

    24 years have been passed since Kori Unit 1 began its commercial operation, and 19 years have been passed since Kori Unit 2 began its commercial operation. As the end point of design life become closer, plant life extension and periodic safety assessment is paid more and more attention to by utility company. In this paper, the methodologies and results of cast austenitic stainless steel pipe thermal aging evaluations of both units have been presented in association with aging time of 10, 20, and 30 years and operating temperature, respectively. Life extension cases respectively. As a result of this, at the operating temperature of 280 .deg. C, thermal aging was not a problem as long as Charpy V-notch room temperature minimum impact energy is concerned. However, more than 300 .deg. C and 30 years of operating condition, we should perform detailed fracture mechanics analysis with CMTR of NPP pipe

  16. Plastic fracture toughness of austenitic welding connection for Ver-1000 nuclear reactor piping of 300-350 mm diameter

    International Nuclear Information System (INIS)

    Vasil'chenko, G.S.; Dragunov, Yu.G.; Kabelevskij, M.G.; Kazantsev, A.G.; Kunavin, S.A.; Merinov, G.N.; Sokov, L.M.

    2000-01-01

    The outside welding technology for circular welds in a pearlitic tube using austenitic welding wire materials is developed and applied in manufacturing pipelines of CPP and ECC. Mechanical properties and fracture toughness of austenitic welded joints in pearlitic tubes are determined to substantiate by calculation the practicality of the leakage prior to failure concept. The work is accomplished on experimental tube manufactured by hand arc welding. When manufactured the tube is cut into 5 rings. From the rings the tensile specimens are cut for testing at 20 and 350 deg C as well as Charpy V-notch impact specimens and compact specimens ST-1T. It is shown that the materials of the experimental tube meet the standard requirements. Only axial specimens cut across the weld are not in conformity with the requirements for specific elongation [ru

  17. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  18. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Science.gov (United States)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  19. A survey of tests for protection against non-ductile failure

    International Nuclear Information System (INIS)

    Girotra, C.C.

    1975-01-01

    A study of the various tests available to test susceptibility to brittle fracture - their advantages, limitations has been made and the present status of data available to engineers has been surveyed. Due to the limitations of the charpy V-notch impact testing method - LEFM based Ksub(Ic) test and GYFM based COD test have been receiving recognition. ASME Section III has recently recommended Ksub(Ic) test as an alternative test for the selection of (ferritic) materials for class 1 pressure vessels. COD test proposed by British research workers, however, is yet to gain recognition for pressure vessel code particles, although it has existed as a tentative specification for more than 2 years and is more relevant to the materials with average strength. (author)

  20. Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials, E706 (IIF)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This guide presents a method for predicting reference transition temperature adjustments for irradiated light-water cooled power reactor pressure vessel materials based on Charpy V-notch 30-ftlbf (41-J) data. Radiation damage calculative procedures have been developed from a statistical analysis of an irradiated material database that was available as of May 2000. The embrittlement correlation used in this guide was developed using the following variables: copper and nickel contents, irradiation temperature, and neutron fluence. The form of the model was based on current understanding for two mechanisms of embrittlement: stable matrix damage (SMD) and copper-rich precipitation (CRP); saturation of copper effects (for different weld materials) was included. This guide is applicable for the following specific materials, copper, nickel, and phosphorus contents, range of irradiation temperature, and neutron fluence based on the overall database: 1.1.1 MaterialsA 533 Type B Class 1 and 2, A302 Grade B, A302 G...

  1. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  2. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  3. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    International Nuclear Information System (INIS)

    Raoul, S.; Marini, B.; Pineau, A.

    1998-01-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior γ grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V c ) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.)

  4. Effect of microstructure on the susceptibility of a 533 steel to temper embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Raoul, S.; Marini, B. [CEA Centre d`Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Recherches Metallurgiques Appliquees; Pineau, A. [CNRS, Evry (France). Centre de Materiaux

    1998-11-01

    In ferritic steels, brittle fracture usually occurs at low temperature by cleavage. However the segregation of impurities (P, As, Sn etc..) along prior {gamma} grain boundaries can change the brittle fracture mode from transgranular to intergranular. In quenched and tempered steels, this segregation is associated with what is called the temper-embrittlement phenomenon. The main objective of the present study is to investigate the influence of the as-quenched microstructure (lower bainite or martensite) on the susceptibility of a low alloy steel (A533 cl.1) to temper-embrittlement. Dilatometric tests were performed to determine the continous-cooling-transformation (CCT) diagram of the material and to measure the critical cooling rate (V{sub c}) for a martensitic quench. Then subsized Charpy V-notched specimens were given various cooling rates from the austenitization temperature to obtain a wide range of as-quenched microstructures, including martensite and bainite. These specimens were subsequently given a heat treatment to develop temper embrittlement and tested to measure the V-notch fracture toughness at -50 C. The fracture surfaces were examined by SEM. It is shown that martensitic microstructures are more susceptible to intergranular embrittlement than bainitic microstructures. These observed microstructural influences are briefly discussed. (orig.) 11 refs.

  5. A Study on the Low Temperature Brittleness by Cyclic Cooling-Heating of Low Carbon Hot Rolled Steel Plate

    International Nuclear Information System (INIS)

    Lee, Hyo Bok

    1979-01-01

    The ductile-brittle transition phenomenon of low carbon steel has been investigated using the standard Charpy V-notch specimen. Dry ice and acetone were used as refrigerants. Notched specimens were cut from the hot rolled plate produced at POSCO for the Olsen impact test. The effect of cyclic cooling and heating of 0.14% carbon steel on the embrittlement was extensively examined. The ductile-brittle transition temperature was found to be approximately-30 .deg. C. The transition temperature was gradually increased as the number of cooling-heating cycles increased. On a typical V-notch fracture surface it was found that the ductile fracture surface showed a thick and fibrous structure, while the brittle fracture surface a small and light grain with irregular disposition. As expected, the transition temperature was also increased as the carbon content of steel increased. Compared with the case of 0.14% carbon steel, the transition temperature of 0.17% carbon steel was found to be increased about 12 .deg. C

  6. Material properties characterization of low carbon steel using TBW and PWHT techniques in smooth-contoured and U-shaped geometries

    International Nuclear Information System (INIS)

    Aloraier, Abdulkareem S.; Joshi, Suraj; Price, John W.H.; Alawadhi, Khaled

    2013-01-01

    This paper investigates the effects of the temper bead welding (TBW) technique and post weld heat treatment (PWHT) on mechanical properties of multi-layer welding on low carbon steel specimens using Charpy V-notch impact testing and tensile testing. Several samples of two different weld geometries, viz. (i) smooth-contoured, and (ii) U-shaped were made with multiple bead layers using both TBW and PWHT techniques. Impact testing showed that at room temperature and below, TBW gave an impact toughness in the Heat Affected Zone (HAZ) better than both PWHT and the parent material. At temperatures higher than the room temperature but below 60 °C, PWHT gave better impact toughness in the HAZ. Above 60 °C, both TBW and PWHT showed impact toughness lower than that of the parent material. In tensile testing, both TBW and PWHT weld metal specimens produced acceptable results; however, TBW gave yield and tensile strengths closer to that of the actual material than PWHT. -- Highlights: • Effects of post weld heat treatment (PWHT) and temper bead welding (TBW) on properties are tested. • Charpy V-notch impact and tensile testing was performed on multi-layer welding of low carbon steel. • At room temperature and below, TBW gave better impact toughness than both PWHT and parent material. • Above room temperature but below 60 °C, PWHT gave better impact toughness than TBW. • Above 60 °C, both TBW and PWHT showed impact toughness lower than that of parent material

  7. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.W.; Han, L.Z.; Luo, X.M.; Liu, Q.D.; Gu, J.F., E-mail: gujf@sjtu.edu.cn

    2016-08-15

    The microstructure and mechanical properties of reactor pressure vessel (RPV) steel were investigated after tempering at different temperatures ranging from 580 to 700 °C for 5 h. With increasing tempering temperature, the impact toughness, which is qualified by Charpy V-notch total absorbed energy, initially increases from 142 to 252 J, and then decreases to 47 J, with a maximum value at 650 °C, while the ultimate tensile strength varies in exactly the opposite direction. Comparing the microstructure and fracture surfaces of different specimens, the variations in toughness and strength with the tempering temperature were generally attributed to the softening of the bainitic ferrite, the agminated Fe{sub 3}C carbides that resulted from decomposition of martensite/austenite (M/A) constituents, the precipitation of Mo{sub 2}C carbides, and the newly formed M/A constituents at the grain boundaries. Finally, the correlation between the impact toughness and the volume fraction of the M/A constituents was established, and the fracture mechanisms for the different tempering conditions are explained. - Highlights: • The dependence of the deterioration of impact toughness on tempering temperature has been analysed. • The instrumented Charpy V-notch impact test has been employed to study the fracture mechanism. • The influence of M/A constituents on different fracture mechanisms based on the hinge model has been demonstrated. • A correlation between the mechanical properties and the amount of M/A constituents has been established.

  8. Nuclear reactor pressure vessel surveillance capsule examinations. Application of American Society for Testing and Materials Standards

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1978-01-01

    A series of pressure vessel surveillance capsules is installed in each commercial nuclear power plant in the United States. A capsule typically contains neutron dose meters, thermal monitors, tensile specimens, and Charpy V-notch impact specimens. In order to determine property changes of the pressure vessel resulting from irradiation, surveillance capsules are periodically removed during the life of a reactor and examined. There are numerous standards, regulations, and codes governing US pressure vessel surveillance capsule programmes. These are put out by the US Nuclear Regulatory Commission, the Boiler and Pressure Vessel Committee of the American Society of Mechanical Engineers, and the American Society for Testing and Materials (ASTM). A majority of the pertinent ASTM standards are under the jurisdiction of ASTM Committee E-10 on Nuclear Applications and Measurements of Radiation Effects. The standards, regulations, and codes pertaining to pressure vessel surveillance play an important role in ensuring reliability of the nuclear pressure vessels. ASTM E 185-73 is the Standard Recommended Practice for Surveillance Tests for Nuclear Reactors. This standard recommends procedures for both the irradiation and subsequent testing of surveillance capsules. ASTM E 185-73 references many additional specialized ASTM standards to be followed in specific areas of a surveillance capsule examination. A key element of surveillance capsule programmes is the Charpy V-notch impact test, used to define curves of fracture behaviour over a range of temperatures. The data from these tests are used to define the adjusted reference temperature used in determining pressure-temperature operating curves for a nuclear power plant. (author)

  9. Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2013-11-01

    Full Text Available escalating concentrations of these lectins became increasingly resistant tolerating 2 to 12 times their 50% inhibitory concentrations. Sequence analysis of gp120 showed that most had deletions of 1 to 5 mannose-rich glycans. Glycosylation sites at positions...

  10. Early optical follow-up of the nearby active star DG CVn during its 2014 superflare

    Czech Academy of Sciences Publication Activity Database

    Caballero-Garcia, M.D.; Šimon, Vojtěch; Jelínek, M.; Castro-Tirado, A.J.; Cwiek, A.; Claret, A.; Opiela, R.; Zarnecki, A.F.; Gorosabel, J.; Oates, S.R.; Cunniffe, R.; Jeong, S.; Hudec, René; Sokolov, V. V.; Makarov, D.I.; Tello, J.; Lara-Gil, O.; Kubánek, Petr; Guziy, S.; Bai, J.; Fan, Y.; Wang, C.; Park, I.H.

    2015-01-01

    Roč. 452, č. 4 (2015), s. 4195-4202 ISSN 0035-8711 EU Projects: European Commission(XE) 283783 - GLORIA Grant - others:GA ČR(CZ) GA13-33324S Institutional support: RVO:67985815 ; RVO:68378271 Keywords : stars * activity * flare Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 4.952, year: 2015

  11. Unravelling the Nature of HD 81032 – A New RS CVn Binary J. C. ...

    Indian Academy of Sciences (India)

    A signal-to-noise of ratio between 20 and 40 was achieved in these spectra. ... to 12th. The exposure time was 501s, and was accumulated in 26 separate short scans ..... fluxes. However, only upper limits are available at 25, 60 and 100 µm.

  12. Navy Ford (CVN 78) Class Aircraft Carrier Program: Background and Issues for Congress

    Science.gov (United States)

    2016-05-27

    late to examine the carrier’s acquisition history to illustrate the dynamics of shipbuilding—and weapon system—acquisition and the challenges they...in the hearing, Stackley testified that the history in shipbuilding is since you don’t have a prototype for a new ship, the first of class referred...with the integrated master schedule;  zero delinquent engineering and planning products;  resolution of engineering problems in < 8 [i.e., less

  13. Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress

    Science.gov (United States)

    2016-05-27

    late to examine the carrier’s acquisition history to illustrate the dynamics of shipbuilding—and weapon system—acquisition and the challenges they...in the hearing, Stackley testified that the history in shipbuilding is since you don’t have a prototype for a new ship, the first of class referred...with the integrated master schedule;  zero delinquent engineering and planning products;  resolution of engineering problems in < 8 [i.e., less

  14. Long-term Optical Activity of the Hard X-ray Flaring Star DG CVn

    Czech Academy of Sciences Publication Activity Database

    Šimon, Vojtěch

    2017-01-01

    Roč. 53, č. 1 (2017), s. 59-66 ISSN 0185-1101 Grant - others:GAO(CZ) GC13-39464J Institutional support: RVO:67985815 Keywords : observational methods * radiation mechanisms * stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 0.712, year: 2016

  15. A Decision Support Strategy for the Acquisition of CVN Q-Cosal Target Date Material

    Science.gov (United States)

    1991-12-01

    affecting the parameters are provided by personnel who are familiar with the behavior of the parameters and have access to the data which affect the... COMSUMER LEVEL: E47: (H) @IF(F35ə,0,1) F47: (FO) +E47*@TRIANG(E26,F26,G26)+@TRIANG(EI6,F16,G16) H47: (FO) +F47 A49: ’DELIVERY FROM INTERMEDIATE LEVEL

  16. Chemical composition of δ Scuti stars: 1. AO CVn, CP Boo, KW Aur

    Science.gov (United States)

    Galeev, A. I.; Ivanova, D. V.; Shimansky, V. V.; Bikmaev, I. F.

    2012-11-01

    We used high-resolution echelle spectra acquired with the 1.5-m Russian-Turkish Telescope to determine the fundamental atmospheric parameters and abundances of 30 chemical elements for three δ Scuti stars: AOCVn, CP Boo, and KWAur. The chemical compositions we find for these stars are similar to those for Am-star atmospheres, though some anomalies of up to 0.6-0.7 dex are observed for light and heavy elements. We consider the effect of the adopted stellar parameters (effective temperature, log g, microturbulent velocity) and the amplitude of pulsational variations on the derived elemental abundances.

  17. 3D analyses of the effect of weld orientation in Charpy specimens

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2004-01-01

    . The onset of cleavage is taken to occur when the average of the maximum principal stress over a specified volume attains a critical value. The weld analyzed here is overmatched, so that the yield strength for the weld is larger than that of the base material. Analyses are carried out for specimens where...... the notch is cut parallel to the surface of the test piece, as well as more complex geometries where the notched surface of the specimen is rotated relative to the surface of the test piece. It is found that even for a homogeneous material the brittle-ductile transition can be much affected by three...... dimensional effects; for example, curvature of the deformed free surface gives rise to a stress increase that promotes cleavage. Furthermore, for the rotated specimens the weld geometry relative to the notched specimen surface is so complex that only a full 3D analysis is able to account for the interaction...

  18. Effects of Microstructural Inhomogeneity on Charpy Impact Properties for Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokmin; Song, Jaemin; Kim, Min-Chul; Choi, Kwon-Jae; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Reactor pressure vessel (RPV) steels are fabricated by vacuum carbon deoxidation (VCD), and then heat treatment of quenching and tempering is conducted after forging. The through-the-thickness variation of microstructure in RPV can occur due to the cooling rate gradient during quenching and inhomogeneous deformation during forging process. The variation of microstructure in RPV affects the mechanical properties, and inhomogeneity in mechanical properties can occur. The evaluation of mechanical properties of RPV is conducted at thickness of 1/4T. In order to evaluate the safety of RPV more correctly, the research about the through-the-thickness variation of microstructure and mechanical properties in RPV is need. 1. The fine low bainite (LB) is the dominant phase at the inner-surface (0T), but coarse upper bainite (UB) is the dominant phase at the center (1/2T). This is because cooling rate gradient from surface to center occurs during quenching. 2. Inter-lath carbides act as fracture initiation site, and it reduces impact toughness. 3. The upper shelf energy is low and the reference temperatures are high at the 1/4T. Impact properties are poor at 1/4T because of the formation of coarse upper bainite structure and coarse inter-lath carbides.

  19. Effect of Tempering and Baking on the Charpy Impact Energy of Hydrogen-Charged 4340 Steel

    Science.gov (United States)

    Mori, K.; Lee, E. W.; Frazier, W. E.; Niji, K.; Battel, G.; Tran, A.; Iriarte, E.; Perez, O.; Ruiz, H.; Choi, T.; Stoyanov, P.; Ogren, J.; Alrashaid, J.; Es-Said, O. S.

    2015-01-01

    Tempered AISI 4340 steel was hydrogen charged and tested for impact energy. It was found that samples tempered above 468 °C (875 °F) and subjected to hydrogen charging exhibited lower impact energy values when compared to uncharged samples. No significant difference between charged and uncharged samples tempered below 468 °C (875 °F) was observed. Neither exposure nor bake time had any significant effect on impact energy within the tested ranges.

  20. On the Use of the Instrumented Charpy-V Impact Signal for Assessment of RPVS Embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A; van Walle, E; Van de Velde, J; Chaouadi, R; Puzzolante, J L; Van Ransbeeck, Th; Verstrepen, A

    1994-04-01

    In the context of LWR pressure vessel surveillance, the significance of the Cv notch impact test, instrumented by strain gages, has been revisited. The load diagram - general yield, maximum, brittle fracture and arrest loads versus temperature - is the most fundamental feature of the test. It is directly correlated to the appearance (percentage shear) of the fracture surface, and also constitutes a straightforward expression of the davidenkov diagram, by which DBTT shifts are linked to damage mechanisms. In combination with static uniaxial tensile tests, it allows to quantify strain rate effects on the yielding and work hardening capability of the steel. By contrast, the bulk of the absorbed energy and lateral expansion stems from plastic deformation, associated to ductile stable crack growth under conditions unrepresentative of the constraints and stress-strain field near the tip of a sharp crack in a pressure vessel. It has been shown that the temperature at which a fixed energy is absorbed in the test (41 or 68 J) cannot always trace, to acceptable accuracy, the effect of steel service exposure on the ductile-brittle transition temperature DBTT and on cleavage fracture toughness. It is contented that this can be done more reliably by using characteristic temperatures of the load diagram. The engineering and regulatory implications of this physically- grounded dynamic fracture toughness indexation approach are reported. Some related findings relative to damage mechanisms and strain ageing effects are outlined.

  1. Fracture toughness evaluation of steels through master curve approach using Charpy impact specimens

    International Nuclear Information System (INIS)

    Chatterjee, S.; Sriharsha, H.K.; Shah, Priti Kotak

    2007-01-01

    The master curve approach can be used for the evaluation of fracture toughness of all steels which exhibit a transition between brittle to ductile mode of fracture with increasing temperature, and to monitor the extent of embrittlement caused by metallurgical damage mechanisms. This paper details the procedure followed to evaluate the fracture toughness of a typical ferritic steel used as material for pressure vessels. The potential of master curve approach to overcome the inherent limitations of the estimation of fracture toughness using ASME Code reference toughness is also illustrated. (author)

  2. On the use of the instrumented Charpy-V impact signal for assessment of RPVS embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Van Walle, E.; Van de Velde, J.; Chauoadi, R.; Puzzolante, J.L.; Van Ransbeeck, Th.; Verstrepen, A.

    1995-12-01

    In the context of LWR pressure vessel surveillance, the significance of the Cv notch impact test instrumented by strain gages has been revised. The load diagram (general yield, maximum, brittle fracture and arrest loads versus temperature ) is the most fundamental feature of the test. It is directly correlated to the appearance (percentage shear) of the fracture surface and also constitutes a straightforward experimental expression of the Davidenkov diagram, by which ductile-brittle transition temperature shifts are linked to irradiation damage mechanisms. In combination with static uniaxial tensile tests, it allows quantification of strain rate effects on the yielding and work hardening capacity of the steel. By contrast, the bulk of the absorbed energy and lateral expansion stems from ductile stable crack growth associated with plastic deformation under conditions, unrepresentative of the constraints and stress-strain field near the tip of a sharp crack in a pressure vessel. It is shown that the temperature at which fixed energy is absorbed in the test (41 or 68 Joules) cannot always trace to acceptable accuracy the effect of steel service exposure on the ductile - brittle transition temperature and on cleavage fracture toughness. It is contented that this can be done more reliably by using characteristic temperatures of the load diagram. An attempt to determine the engineering and regulatory implications of this physically-grounded fracture toughness approach is made.

  3. On the Use of the Instrumented Charpy-V Impact Signal for Assessment of RPVS Embrittlement

    International Nuclear Information System (INIS)

    Fabry, A.; van Walle, E.; Van de Velde, J.; Chaouadi, R.; Puzzolante, J.L.; Van Ransbeeck, Th.; Verstrepen, A.

    1994-04-01

    In the context of LWR pressure vessel surveillance, the significance of the Cv notch impact test, instrumented by strain gages, has been revisited. The load diagram - general yield, maximum, brittle fracture and arrest loads versus temperature - is the most fundamental feature of the test. It is directly correlated to the appearance (percentage shear) of the fracture surface, and also constitutes a straightforward expression of the davidenkov diagram, by which DBTT shifts are linked to damage mechanisms. In combination with static uniaxial tensile tests, it allows to quantify strain rate effects on the yielding and work hardening capability of the steel. By contrast, the bulk of the absorbed energy and lateral expansion stems from plastic deformation, associated to ductile stable crack growth under conditions unrepresentative of the constraints and stress-strain field near the tip of a sharp crack in a pressure vessel. It has been shown that the temperature at which a fixed energy is absorbed in the test (41 or 68 J) cannot always trace, to acceptable accuracy, the effect of steel service exposure on the ductile-brittle transition temperature DBTT and on cleavage fracture toughness. It is contented that this can be done more reliably by using characteristic temperatures of the load diagram. The engineering and regulatory implications of this physically- grounded dynamic fracture toughness indexation approach are reported. Some related findings relative to damage mechanisms and strain ageing effects are outlined

  4. On the use of the instrumented Charpy-V impact signal for assessment of RPVS embrittlement

    International Nuclear Information System (INIS)

    Fabry, A.; Van Walle, E.; Van de Velde, J.; Chauoadi, R.; Puzzolante, J.L.; Van Ransbeeck, Th.; Verstrepen, A.

    1995-12-01

    In the context of LWR pressure vessel surveillance, the significance of the Cv notch impact test instrumented by strain gages has been revised. The load diagram (general yield, maximum, brittle fracture and arrest loads versus temperature ) is the most fundamental feature of the test. It is directly correlated to the appearance (percentage shear) of the fracture surface and also constitutes a straightforward experimental expression of the Davidenkov diagram, by which ductile-brittle transition temperature shifts are linked to irradiation damage mechanisms. In combination with static uniaxial tensile tests, it allows quantification of strain rate effects on the yielding and work hardening capacity of the steel. By contrast, the bulk of the absorbed energy and lateral expansion stems from ductile stable crack growth associated with plastic deformation under conditions, unrepresentative of the constraints and stress-strain field near the tip of a sharp crack in a pressure vessel. It is shown that the temperature at which fixed energy is absorbed in the test (41 or 68 Joules) cannot always trace to acceptable accuracy the effect of steel service exposure on the ductile - brittle transition temperature and on cleavage fracture toughness. It is contented that this can be done more reliably by using characteristic temperatures of the load diagram. An attempt to determine the engineering and regulatory implications of this physically-grounded fracture toughness approach is made

  5. Quantification of the toughness distribution in a heavy section submerged arc multilayer reactor pressure vessel weldment

    International Nuclear Information System (INIS)

    Cerjak, H.; Prader, R.

    1999-01-01

    In a working procedure qualification test weld representing a heavy section circumferential reactor pressure vessel (RPV) weld tested in 1968, lower toughness values were observed in the top layer region compared to those found in the filler region. Gleeble simulation, extensive microscopic evaluation, diligent Charpy V-notch testing and modelling of the bead sequence and distribution of alloying elements was applied to explain this effect. It could be revealed that the microstructure of the weld metal is the most important factor influencing the toughness. When an 'as welded' microstructure is partly or fully reaustenitised by the adjacent multilayer beads, the microstructure transforms and the toughness increases. In the filler region, 85% of the cross-section consists from transformed microstructure, whereas in the top layer only 20% are transformed. It is quite evident that, accidentally, the notch tip of Charpy samples in 1968 were placed in untransformed microstructures. When the top layer on the inner surface of the RPV is weld cladded by austenitic stainless steel, full transformation occurs and the toughness representing the filler region can be taken into account for safety evaluations. (orig.)

  6. Effect of weld metal toughness on fracture behavior under ultra-low cycle fatigue loading (earthquake)

    Energy Technology Data Exchange (ETDEWEB)

    Kermajani, M. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghaini, F. Malek, E-mail: Fmalek@modares.ac.ir [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Miresmaeili, R. [School of Materials Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Aghakouchak, A.A. [School of Civil Engineering, College of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shadmand, M. [Department of Research and Development, MAPNA Electric and Control (MECO) Company, Karaj (Iran, Islamic Republic of)

    2016-06-21

    Results from 12 ultra-low cycle fatigue tests performed on the weld metals of both toughness and non-toughness rated grades are presented. Fracture resistance under these loadings seemed to be dependent on materials' toughness, displacement amplitude, and stress state triaxiality, while the toughness effect was more highlighted at high stress levels and concentrations. To study the effect of microstructures on these failures, supporting ancillary tests including all-weld tension coupons, Charpy V-notched impact tests, and optical and scanning electron microscope analyses were performed. The favored microstructures appeared to be those which absorbed energy by plastic deformation and, hence, hindered void formation and/or could avoid crack propagation by deflection. Considering the response of the tested materials to cyclic loadings and the requirements of the materials specified in AISC341 Provisions could question the adequacy of these requirements for weld metals. However, the role of microstructural features like inclusions would be the same in both the Charpy impact tests and ultra-low cycle loadings.

  7. Irradiation Effects at 160-240 deg C in Some Swedish Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M [AB Atomenergi, Nykoeping (Sweden); Myers, H P [Chalmers Institute of Technology, Goeteborg (Sweden); Hannerz, N E [Motala Verkstads AB, Motala (Sweden)

    1967-09-15

    Tensile specimens, Charpy impact specimens and miniature impact specimens of six steels in different conditions were irradiated to 2.8 x 10{sup 18} and 5.6 x 10{sup 18} n/cm{sup 2} (> 1 MeV) at 160-240 deg C. The steels investigated were SIS 142103, 2103/R3, NO 345, Fortiweld, Fortiweld HS and OK 54 P. There is no correlation between the increase in transition temperature and initial transition temperature. However, changes in strength and ductility can be correlated to the initial yield strength. The increases in transition temperature due to strain aging and irradiation are approximately additive. The irradiation-induced changes in 2103/R3 and Fortiweld HS steels do not vary with position in the thickness of the plate. Different tempering treatments in Fortiweld HS steel do not change the extent of irradiation effects. Normal Charpy V-notch impact specimens and miniature specimens give the same irradiation-induced increase in transition temperature.

  8. In-place thermal annealing of nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Server, W.L.

    1985-04-01

    Radiation embrittlement of ferritic pressure vessel steels increases the ductile-brittle transition temperature and decreases the upper shelf level of toughness as measured by Charpy impact tests. A thermal anneal cycle well above the normal operating temperature of the vessel can restore most of the original Charpy V-notch energy properties. The Amry SM-1A test reactor vessel was wet annealed in 1967 at less than 343 0 C (650 0 F), and wet annealing of the Belgian BR-3 reactor vessel at 343 0 C (650 0 F) has recently taken place. An industry survey indicates that dry annealing a reactor vessel in-place at temperatures as high as 454 0 C (850 0 F) is feasible, but solvable engineering problems do exist. Economic considerations have not been totally evaluated in assessing the cost-effectiveness of in-place annealing of commercial nuclear vessels. An American Society for Testing and Materials (ASTM) task group is upgrading and revising guide ASTM E 509-74 with emphasis on the materials and surveillance aspects of annealing rather than system engineering problems. System safety issues are the province of organizations other than ASTM (e.g., the American Society of Mechanical Engineers Boiler and Pressure Vessel Code body)

  9. A perspective on thermal annealing of reactor pressure vessel materials from the viewpoint of experimental results

    International Nuclear Information System (INIS)

    Iskander, S.K.; Sokolov, M.A.; Nanstad, R.K.

    1996-01-01

    It is believed that in the next decade or so, several nuclear reactor pressure vessels (RPVs) may exceed the reference temperature limits set by the pressurized thermal shock screening criteria. One of the options to mitigate the effects of irradiation on RPVs is to thermally anneal them to restore the toughness properties that have been degraded by neutron irradiation. This paper summarizes recent experimental results from work performed at the Oak Ridge National Laboratory to study the annealing response, or ''recovery'' of several irradiated RPV steels. The fracture toughness is one of the important properties used in the evaluation of the integrity of RPVs. Optimally, the fracture toughness is measured directly by fracture toughness specimens, such as compact tension or precracked Charpy specimens, but is often inferred from the results of Charpy V-notch impact specimens. The experimental results are compared to the predictions of models for embrittlement recovery which have been developed by Eason et al. Some of the issues in annealing that still need to be resolved are discussed

  10. Effect of lead factors on the embrittlement of RPV SA-508 cl 3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Rodolfo, E-mail: kempf@cnea.gov.ar [CNEA, Unidad Actividad Combustibles Nucleares, División Caracterización, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina); Troiani, Horacio, E-mail: troiani@cab.cnea.gov.ar [Centro Atómico Bariloche (CNEA) e Instituto Balseiro (UNCU), CONICET, Av. Bustillo 9500, CP 8400, Rio Negro (Argentina); Fortis, Ana Maria, E-mail: fortis@cnea.gov.ar [CNEA, Departamento Estructura y Comportamiento, UNSAM, Avda. Gral Paz 1499, C.P.B1650KNA, San Martín, Buenos Aires (Argentina)

    2013-03-15

    This paper presents a project to study the effect of lead factors on the mechanical behaviour of the SA-508 type 3 Reactor Pressure Vessel (RPV) steel used in the reactor under construction Atucha II in Argentina. Charpy-V notch specimens of this steel were irradiated at the RA1 experimental reactor at a temperature of 275 °C with two lead factors (186 and 93). The neutron flux was 3.71 × 10{sup 15} n m{sup −2} s{sup −1} and 1.85 × 10{sup 15} n m{sup −2} s{sup −1} (E > 1 MeV) respectively. In both cases, the fluence was 6.6 × 10{sup 21} n m{sup −2}, which is equivalent to that received by the PHWR Atucha II RPV in 10 years of full power irradiation. The results of Charpy tests revealed significant embrittlement both in the ΔT = 14 °C and ΔT = 21 °C shifts of the ductile–brittle transition temperatures (DBTT) and in the reduction of the maximum energy absorbed. This result shows that the shift of the DBTT with a lead factor of 93 is larger than that obtained with a lead factor of 186. Then, the results of irradiation in experimental reactors (MTR) with high lead factors may not be conservative with respect to the actual RPV embrittlement.

  11. Irradiation Effects at 160-240 deg C in Some Swedish Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Grounes, M.; Myers, H.P.; Hannerz, N.E.

    1967-09-01

    Tensile specimens, Charpy impact specimens and miniature impact specimens of six steels in different conditions were irradiated to 2.8 x 10 18 and 5.6 x 10 18 n/cm 2 (> 1 MeV) at 160-240 deg C. The steels investigated were SIS 142103, 2103/R3, NO 345, Fortiweld, Fortiweld HS and OK 54 P. There is no correlation between the increase in transition temperature and initial transition temperature. However, changes in strength and ductility can be correlated to the initial yield strength. The increases in transition temperature due to strain aging and irradiation are approximately additive. The irradiation-induced changes in 2103/R3 and Fortiweld HS steels do not vary with position in the thickness of the plate. Different tempering treatments in Fortiweld HS steel do not change the extent of irradiation effects. Normal Charpy V-notch impact specimens and miniature specimens give the same irradiation-induced increase in transition temperature

  12. Effect of aging on impact properties of ASTM A890 Grade 1C super duplex stainless steel

    International Nuclear Information System (INIS)

    Martins, Marcelo; Forti, Leonardo Rodrigues Nogueira

    2008-01-01

    Super duplex stainless steels in the solution annealed condition are thermodynamically metastable systems which, when exposed to heat, present a strong tendency to 'seek' the most favorable thermodynamic condition. The main purpose of this study was to characterize the microstructure of a super duplex stainless steel in the as cast and solution annealed conditions, and to determine the influence of aging heat treatments on its impact strength, based on Charpy impact tests applied to V-notched test specimens. The sigma phase was found to begin precipitating at heat treatment temperatures above 760 deg. C and to dissolve completely only above 1040 deg. C, with the highest peak concentration of this phase appearing at close to 850 deg. C. Heat treatments conducted at temperatures of 580 deg. C to 740 deg. C led to a reduction of the energy absorbed in the Charpy impact test in response to the precipitation of a particulate phase with particle sizes ranging from 0.5 μm to 1.0 μm, with a chromium and iron-rich chemical composition

  13. Irradiation damage behavior of low alloy steel wrought and weld materials

    International Nuclear Information System (INIS)

    Stofanak, R.J.; Poskie, T.J.; Li, Y.Y.; Wire, G.L.

    1993-01-01

    A study was undertaken to evaluate the irradiation damage response of several different types of low alloy steel: vintage type ASTM A302 Grade B (A302B) plates and welds containing different Ni and Cu concentrations, 3.5% Ni steels similar to ASTM A508 Class 4, welds containing about 1% Ni (similar to type 105S), and 3.5% Ni steels with ''superclean'' composition. All materials were irradiated at several different irradiation damage levels ranging from 0.0003 to 0.06 dpa at 232C (450F). Complete Charpy V-notch impact energy transition temperature curves were generated for all materials before and after irradiation to determine transition temperature at 4IJ (30 ft-lb) or 47J (35 ft-lb) and the upper shelf energy. Irradiation damage behavior was measured by shift in Charpy 41J or 47J transition temperature (ΔTT4 41J or ΔTT 47J ) and lowering of upper shelf Charpy energy at a given irradiation damage level. It was found that chemical composition greatly influenced irradiation damage behavior; highest irradiation damage (greatest ΔTT) was found in an A302B type weld containing 1.28% Ni and 0.20% Cu while the least damage was found in 3.5% Ni, 0.05% Cu, superclean wrought materials. Combination of Ni and Cu was found to affect irradiation damage behavior at higher irradiation damage levels in the A302B welds where the 1.28% Ni, 0.20% Cu weld showed more damage than a 0.60% Ni, 0.31% Cu weld. For the 3.5% Ni steels, fabrication influenced irradiation behavior in that a silicon (Si) killed material showed greater irradiation damage than a low silicon material. In general, the 3.5% Ni materials with low copper showed less irradiation damage than the A302B materials

  14. Analysis of mechanical property data obtained from nuclear pressure vessel surveillance capsules

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1977-01-01

    A typical pressure vessel surveillance capsule examination program provides mechanical property data from tensile, Charpy V-notch impact, and, in some cases, fracture mechanics specimens. This data must be analyzed in conjunction with the unirradiated baseline mechanical property data to determine the effect of irradiation on the mechanical properties. In the case of Charpy impact specimens, for example, irradiation typically causes an increase in the transition temperature, and a decrease in the upper shelf energy level. The results of the Charpy impact and other mechanical specimen tests must be evaluated to determine if property changes are occurring in the manner expected when the reactor was put into service. The large amount of data obtained from surveillance capsule examinations in recent years enables one to make fairly good predictions. After the changes in the mechanical properties of specimens from a particular surveillance capsule have been experimentally determined and evaluated, they must be related to the reactor pressure vessel. This requires a knowledge of the neutron fluence of the surveillance capsule, and the ratio of the surveillance capsule fluence to the pressure vessel wall fluence. This ratio is frequently specified by the reactor manufacturer, or can be calculated from a knowledge of the geometry and materials of the reactor components inside the pressure vessel. A knowledge of the exact neutron fluence of the capsule specimens and the capsule to vessel wall neutron fluence ratio is of great importance, since inaccuracies in these numbers cause just as serious a problem as inaccuracies in the mechanical property determinations. A further area causing analysis difficulties is problems encountered in recent capsule programs relating to capsule design, construction, operation, and dismantling. (author)

  15. Effects of irradiation on strength and toughness of commercial LWR vessel cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Alexander, D.J.; Nanstad, R.K.

    1987-01-01

    The potential for stainless steel cladding to improve the fracture behavior of an operating nuclear reactor pressure vessel, particularly during certain overcooling transients, may depend greatly on the properties of the irradiated cladding. Therefore, weld overlay cladding irradiated at temperatures and to fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the three-wire series-arc commercial method. Cladding was applied in three layers to provide adequate thickness for the fabrication of test specimens. The three-wire series-arc procedure, developed by Combustion Engineering, Inc., Chattanooga, Tennessee, produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. Charpy V-notch and tensile specimens were irradiated at 288 0 C to fluence levels of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Postirradiation testing results show that, in the test temperature range from -125 to 288 0 C, the yield strength increased by 8 to 30%, ductility insignificantly increased, while there was almost no change in ultimate tensile strength. All cladding exhibited ductile-to-brittle transition behavior during Charpy impact testing, due to the dominance of delta-ferrite failures at low temperatures. On the upper shelf, energy was reduced, due to irradiation exposure, 15 and 20%, while the lateral expansion was reduced 43 and 41%, at 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV), respectively. In addition, radiation damage resulted in 13 and 28 0 C shifts of the Charpy impact transition temperature at the 41-J level for the low and high fluences, respectively

  16. Mechanical properties of 1950's vintage 304 stainless steel weldment components after low temperature neutron irradiation

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Caskey, G.R. Jr.; Thomas, J.K.; Hawthorne, J.R.; Hiser, A.L.; Lott, R.A.; Begley, J.A.; Shogan, R.P.

    1991-01-01

    The reactor vessels of the nuclear production reactors at the Savannah River Site (SRS) were constructed in the 1950's from Type 304 stainless steel plates welded with Type 308 stainless steel filler using the multipass metal inert gas process. An irradiated mechanical properties database has been developed for the vessel with materials from archival primary coolant system piping irradiated at low temperatures (75 to 150 degrees C) in the State University of New York at Buffalo reactor (UBR) and the High Flux Isotope Reactor (HFIR) to doses of 0.065 to 2.1 dpa. Fracture toughness, tensile, and Charpy-V impact properties of the weldment components (base, weld, and weld heat-affected-zone (HAZ)) have been measured at temperatures of 25 degrees C and 125 degrees C in the L-C and C-L orientations for materials in both the irradiated and unirradiated conditions for companion specimens. Fracture toughness and tensile properties of specimens cut from an SRS reactor vessel sidewall with doses of 0.1 and 0.5 dpa were also measured at temperatures of 25 and 125 degrees C. The irradiated materials exhibit hardening with loss of work hardenability and a reduction in toughness relative to the unirradiated materials. The HFIR-irradiated materials show an increase in yield strength between about 20% and 190% with a concomitant tensile strength increase between about 15% to 30%. The elastic-plastic fracture toughness parameters and Charpy-V energy absorption both decrease and show only a slight sensitivity to dose. The irradiation-induced decrease in the elastic-plastic fracture toughness (J def at 1 mm crack extension) is between 20% to 65%; the range of J 1C values are 72.8 to 366 kJ/m 2 for the irradiated materials. Similarly, Charpy V-notch results show a 40% to 60% decrease in impact energies

  17. Ductile Fracture Behaviour of Hot Isostatically Pressed Inconel 690 Superalloy

    Science.gov (United States)

    Cooper, A. J.; Brayshaw, W. J.; Sherry, A. H.

    2018-04-01

    Herein we assess the differences in Charpy impact behavior between Hot Isostatically Pressed and forged Inconel 690 alloy over the temperature range of 300 °C to - 196 °C. The impact toughness of forged 690 exhibited a relatively small temperature dependence, with a maximum difference of ca. 40 J measured between 300 °C and - 196 °C, whereas the HIP'd alloy exhibited a difference of approximately double that of the forged alloy over the same temperature range. We have conducted Charpy impact testing, tensile testing, and metallographic analyses on the as-received materials as well as fractography of the failed Charpy specimens in order to understand the mechanisms that cause the observed differences in material fracture properties. The work supports a recent series of studies which assess differences in fundamental fracture behavior between Hot Isostatically Pressed and forged austenitic stainless steel materials of equivalent grades, and the results obtained in this study are compared to those of the previous stainless steel investigations to paint a more general picture of the comparisons between HIP vs forged material fracture behavior. Inconel 690 was selected in this study since previous studies were unable to completely omit the effects of strain-induced martensitic transformation at the tip of the Chary V-notch from the fracture mechanism; Inconel 690 is unable to undergo strain-induced martensitic transformation due to the alloy's high nickel content, thereby providing a sister study with the omission of any martensitic transformation effects on ductile fracture behavior.

  18. DE-NE0000724 - Research Performance Final Report - Investigation of Thermal Aging Effects on the Evolution of Microstructure and Mechanical Properties of Cast Duplex Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ankem, Sreeramamurthy [University of Maryland, College Park, MD (United States); Perea, Daniel E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kolli, R. Prakash [University of Maryland, College Park, MD (United States); Mburu, Sarah [University of Maryland, College Park, MD (United States); Schwarm, Samuel C. [University of Maryland, College Park, MD (United States)

    2017-12-11

    This report details the research activities carried out under DOE-NEUP award number DE-NE0000724 concerning the evolution of structural and mechanical properties during thermal aging of CF–3 and CF–8 cast duplex stainless steels (CDSS). The overall objective of this project was to use state-of-the-art characterization techniques to elucidate trends and phenomena in the mechanical and structural evolution of cast duplex stainless steels (CDSS) during thermal aging. These steels are commonly used as structural materials in commercial light water nuclear power plants, undergoing aging for decades in operation as cooling water pipes, pump casings, valve bodies, etc. During extended exposure to these conditions, CDSS are known to undergo a change in mechanical properties resulting in a loss of ductility, i.e. embrittlement. While it is generally accepted that structural changes within the ferrite phase, such as decomposition into iron (Fe)-rich and chromium (Cr)-rich domains, lead to the bulk embrittlement of the steels, many questions remain as to the mechanisms of embrittlement at multiple length scales. This work is intended to shed insight into the atomic level composition changes, associated kinetic mechanisms, and effects of changing phase structure on micro- and nano-scale deformation that lead to loss of impact toughness and tensile ductility in these steels. In general, this project provides a route to answer some of these major questions using techniques such as 3-dimensional (3-D) atom probe tomography (APT) and real-microstructure finite element method (FEM) modeling, which were not readily available when these steels were originally selected for service in light water reactors. Mechanical properties evaluated by Charpy V-notch impact testing (CVN), tensile testing, and microhardness and nanohardness measurements were obtained for each condition and compared with the initial baseline properties to view trends in deformation behavior during aging

  19. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.

  20. Chromospherically active stars. III - HD 26337 = EI Eri: An RS CVn candidate for the Doppler-imaging technique

    Science.gov (United States)

    Fekel, Francis C.; Quigley, Robert; Gillies, Kim; Africano, John L.

    1987-01-01

    Spectroscopic observations of the chromospherically active G5 IV single-lined binary HD 26337 = EI Eri are presented. An orbital period of 1.94722 days is found for the star. It has moderately strong Ca II H and K emission and strong ultraviolet emission features, while H-alpha is a weak absorption feature that is variable in strength. The inclination of the system is 46 + or - 12 deg, and the unseen secondary is probably a late K or early M dwarf. The v sin i of the primary is 50 + or - 3 km/s, resulting in a minimum radius of 1.9 + or - 0.1 solar radius. The star is within the required limits for Doppler imaging. The primary is close to filling its Roche lobe, resulting in a strong constraint that the mass ratio is 2.6 or greater, with a primary mass of at least 1.4 solar mass. The distance to the system is estimated at 75 pc.

  1. Binary-induced magnetic activity?. Time-series echelle spectroscopy and photometry of HD 123351 = CZ CVn

    Science.gov (United States)

    Strassmeier, K. G.; Carroll, T. A.; Weber, M.; Granzer, T.; Bartus, J.; Oláh, K.; Rice, J. B.

    2011-11-01

    Context. Multi-wavelength time-series observations with high cadence and long duration are needed to resolve and understand the many variations of magnetically active late-type stars, which is an approach often used to observe the Sun. Aims: We present a first and detailed study of the bright and active K0IV-III star HD 123351. Methods: We acquired a total of 955 high-resolution STELLA echelle spectra during the years 2006-2010 and a total of 2260 photometric VIC data points during 1998-2010. These data are complemented by some spectra from CFHT and KPNO. Results: The star is found to be a single-lined spectroscopic binary with a period of 147.8919 ± 0.0003 days and a large eccentricity of e = 0.8086 ± 0.0001. The rms of the orbital solution is just 47 m s-1, making it the most precise orbit ever obtained for an active binary system. The rotation period is constrained from long-term photometry to be 58.32 ± 0.01 days. It shows that HD 123351 is a very asynchronous rotator, rotating five times slower than the expected pseudo-synchronous value. Two spotted regions persisted throughout the 12 years of our observations. We interpret them as active longitudes on a differentially rotating surface with a ΔP/P of 0.076. Four years of Hα, Ca ii H&K and He i D3 monitoring identifies the same main periodicity as the photometry but dynamic spectra also indicate that there is an intermittent dependence on the orbital period, in particular for Ca ii H&K in 2008. Line-profile inversions of a pair of Zeeman sensitive/insensitive iron lines yield an average surface magnetic-flux density of 542 ± 72 G. The time series for 2008 is modulated by the stellar rotation as well as the orbital motion, such that the magnetic flux is generally weaker during times of periastron and that the chromospheric emissions vary in anti-phase with the magnetic flux. We also identify a broad and asymmetric lithium line profile and measure an abundance of log n(Li) = 1.70 ± 0.05. The star's position in the H-R diagram indicates a mass of 1.2 ± 0.1 M⊙ and an age of 6-7 Gyr. Conclusions: We interpret the anti-phase relation of the magnetic flux with the chromospheric emissions as evidence that there are two magnetic fields present at the same time, a localized surface magnetic field associated with spots and a global field that is oriented towards the (low-mass) secondary component. We suggest that the inter-binary field is responsible for the magnetic-flux dilution at periastron. It is also likely to be responsible for the unexpected slow and asynchronous rotation of the primary star. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.

  2. Modernizing the U.S. Aircraft Carrier Fleet: Accelerating CVN 21 Production versus Mid-Life Refueling

    National Research Council Canada - National Science Library

    Schank, John; Smith, Giles; Alkire, Brien; Arena, Mark V; Birkler, John; Chiesa, James; Keating, Edward; Schmidt, Lara

    2005-01-01

    .... This class of carriers will use the same basic hull form as the current Nimitz class, but will include a substantial redesign of the interior of the ship for improved weapons handling and stores management functions...

  3. Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process

    Directory of Open Access Journals (Sweden)

    Julien Kiener

    2016-07-01

    Full Text Available Nanocomposites of ordered mesoporous carbon associated with chromium nitride (CrN or vanadium nitride (VN nanoparticles were obtained by a simple one-pot synthesis based on the solvent evaporation induced self-assembly (EISA process using Pluronic triblock surfactant as soft-template and a phenol-based resin (resol as carbon precursor. These nanocomposites were characterized by X-ray diffraction, nitrogen physisorption and Transmission Electron Microscopy (TEM techniques. Electron tomography (or 3D-TEM technique was particularly useful for providing direct insight on the internal architecture of C/CrN nanocomposite. Nanocomposites showed a very well organized hexagonal mesoporous carbon structure and a relatively high concentration of nanoparticles well distributed in the porous network. The chromium and vanadium nitrides/mesoporous carbon nanocomposites could have many potential applications in catalysis, Li-ion batteries, and supercapacitors.

  4. Demonstration project as a procedure for accelerating the application of new technology (Charpie Task Force report). Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    This report examines the issues associated with government programs proposed for the ''commercialization'' of new energy technologies; these programs are intended to hasten the pace at which target technologies are adopted by the private sector. The ''commercial demonstration'' is the principal tool used in these programs. Most previous government interventions in support of technological change have focused on R and D and left to the private sector the decision as to adoption for commercial utilization; thus there is relatively little in the way of analysis or experience which bears direct application. The analysis is divided into four sections. First, the role of R, D, and D within the structure of the national energy goals and policies is examined. The issue of ''prices versus gaps'' is described as a crucial difference of viewpoint concerning the role of the government in the future of the energy system. Second, the process of technological change as it occurs with respect to energy technologies is then examined for possible sources of misalignment of social and private incentives. The process is described as a series of investments. Third, correction of these sources of misalignment then becomes the goal of commercial demonstration programs as this goal and the means for attaining it are explored. Government-supported commercialization may be viewed as a subsidy to the introduction stage of the process; the circumstances under which such subsidies are likely to affect the success of the subsequent diffusion stage are addressed. The discussion then turns to the political, legal, and institutional problems. Finally, methods for evaluation and planning of commercial demonstration programs are analyzed. The critical areas of ignorance are highlighted and comprise a research agenda for improved analytical techniques to support decisions in this area.

  5. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Guoming, E-mail: zhuguoming@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-05

    The purpose of this study was to analyze the microstructure of lath martensite in 0.1C–1.1Si–1.7Mn (wt.%) steel and its effect on mechanical properties and fracture behavior. The microstructure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back scattering diffraction (EBSD). Charpy V-notch impact samples and compact tension (CT) samples were used to investigate the Charpy impact properties and fatigue crack growth behavior of the steel, respectively. The propagation of cleavage crack and fatigue crack were analyzed to figure out the effective grain size. The results showed that the typical hierarchical lath martensite structure contained prior austenite grains, packets, blocks and laths; packet size and block width were positively correlated to prior austenite grain size, while lath width was maintained at about 0.29 μm. Yield strength was related to prior austenite grain size, packet size and block width, and obeyed Hall–Petch relationship. Grain refinement was effective in improving the resistance to cleavage fracture by introducing barriers to crack propagation; packet boundaries and block boundaries hold similar ability to impede the propagation of crack. Paris model can well describe the FCG behavior of the investigated steel. Block width governs the effective grain size for strength, toughness and fatigue crack propagation. - Graphical abstract: Mechanical properties and fracture behavior of 0.1C–1.1Si–1.7Mn steel. - Highlights: • Hall–Petch relationship is obeyed between yield strength and martensite microstructure size. • Packet boundaries and block boundaries hold similar ability to impede the propagation of crack. • Block width is the effective grain size for strength, toughness and fatigue crack propagation.

  6. Application of small specimens to fracture mechanics characterization of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; Wallin, K.; McCabe, D.E.

    1996-01-01

    In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic K Jc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for K Jc data. By converting PCVN data to IT compact specimen equivalent K Jc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic K Jc database and the ASME lower bound K Ic curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of K Jc with respect to K Ic in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for K Jc data from PCVN specimens. 13 refs., 8 figs., 1 tab

  7. Experimental and statistical requirements for developing a well-defined K/sub IR/ curve. Final report

    International Nuclear Information System (INIS)

    Server, W.L.; Oldfield, W.; Wullaert, R.A.

    1977-05-01

    Further development of a statistically well-defined reference fracture toughness curve to verify and compliment the K/sub IR/ curve presently specified in Appendix G, Section III of the ASME Code was accomplished by performing critical experiments in small specimen fracture mechanics and improving techniques for statistical analysis of the data. Except for cleavage-initiated fracture, crack initiation was observed to occur prior to maximum load for all of the materials investigated. Initiation fracture toughness values (K/sub Jc/) based on R-curve heat-tinting studies were up to 50 percent less than the previously reported equivalent energy values (K*/sub d/). At upper shelf temperatures, the initiation fracture toughness (K/sub Jc/) generally increased with stress intensification rate. Both K/sub Jc/--Charpy V-notch and K/sub Ic/--specimen strength ratio correlations are promising methods for predicting thick-section behavior from small specimens. The previously developed tanh curve fitting procedure was improved to permit estimates of the variances and covariances of the regression coefficients to be computed. The distribution of the fracture toughness data was determined as a function of temperature. Instrumented precracked Charpy results were used to normalize the larger specimen fracture toughness data. The transformed large specimen fracture toughness data are used to generate statistically based lower-bound fracture toughness curves for either static or dynamic test results. A comparison of these lower bound curves with the K/sub IR/ curve shows that the K/sub IR/ curve is more conservative over most of its range. 143 figures, 26 tables

  8. Feasibility of correlating V-Cr-Ti alloy weld strength with weld chemistry. CRADA final report

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Odom, R.W.

    1998-06-01

    The mechanical properties of refractory metals such as vanadium are determined to a large extent by the interstitial impurities in the alloy. In the case of welding, interstitial impurities are introduced in the welding process from the atmosphere and by dissolution of existing precipitates in the alloy itself. Because of the necessity of having an ultra-pure atmosphere, a vacuum chamber or a glove box is necessary. In the V-Cr-Ti system, the titanium serves as a getter to control the concentration of oxygen and nitrogen in solid solution in the alloy. In this project the secondary ion mass spectrometry (SIMS) technique was used to detect, measure, and map the spacial distribution of impurity elements in welds in the alloy V-4Cr-4Ti. An attempt was then made to correlate the concentrations and distributions of the impurities with mechanical properties of the welds. Mechanical integrity of the welds was determined by Charpy V-notch testing. Welds were prepared by the gas-tungsten-arc (GTA) method. Charpy testing established a correlation between weld impurity concentration and the ductile to brittle transition temperature (DBTT). Higher concentrations of oxygen resulted in a higher DBTT. An exception was noted in the case of a low-oxygen weld which had a high hydrogen concentration resulting in a brittle weld. The concentrations and distributions of the impurities determined by SIMS could not be correlated with the mechanical properties of the welds. This research supports efforts to develop fusion reactor first wall and blanket structural materials

  9. Effects of delta ferrite content on the mechanical properties of E308-16 stainless steel weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, D. P.; Vandergriff, D. M.; Gray, R. J.

    1978-01-01

    The effects of ferrite content on the properties of type 308 stainless steel shielded metal-arc (SMA) welds were investigated. Welds were made at four levels of ferrite content ranging from 2 to 15 FN (Ferrite Number). Creep and tensile tests were performed. Specimens were aged at 1100/sup 0/C (593/sup 0/C) for times up to 10,000 h (36 Ms) and Charpy V-notch impact tests were performed. Chemical analysis of the original deposits, Magne-gage evaluations, and metallographic evaluation of tested specimens were made. The E308-16 stainless steel electrodes were formulated to produce SMA welds with 2, 5, 9, and 15 FN. The ferrite number was made to vary by varying the nickel and chromium concentrations. Magne-gage determinations revealed that as-welded structures contained an average of 1.8, 4.2, 9.6, and 14.5 FN, respectively. Chemical anslysis of these deposits revealed no unusually high concentrations of tramp elements that would significantly affect mechanical properties. The extra low-ferrite electrodes were made with a different core wire, which produced deposits with slightly higher molybdenum concentrations. This variation in molybdenum should affect properties only minimally. From these chemical analyses and a constitutional diagram, ferrite concentrations were calculated, and the results correlated with the Magne-gage values

  10. The approach to analysis of significance of flaws in ASME section III and section XI

    International Nuclear Information System (INIS)

    Cowan, A.

    1979-01-01

    ASME III Appendix G and ASME XI Appendix A describe linear elastic fracture mechanics methods to assess the significance of defects in thick-walled pressure vessels for nuclear reactor systems. The assessment of fracture toughness, Ksub(Ic), is based upon recommendations made by a Task Group of the USA Pressure Vessel Research Committee and is dependent upon correlations with drop weight and Charpy V-notch data to give a lower bound of fracture toughness Ksub(IR). The methods used in the ASME Appendices are outlined noting that, whereas ASME III Appendix G defines a procedure for obtaining allowable pressure vessel loadings for normal service in the presence of a defect, ASME XI Appendix A defines methods for assessing the significance of defects (found by volumetric inspection) under normal and emergency and faulted conditions. The methods of analysis are discussed with respect to material properties, flaw characterisation, stress analysis and recommended safety factors; a short discussion is given on the applicability of the data and methods to other materials and non-nuclear structures. (author)

  11. Assessment of lamellar tearing

    International Nuclear Information System (INIS)

    McEnerney, J.W.

    1978-03-01

    Information on lamellar tearing is summarized and related to proposed ASME Code requirements. Lamellar tearing is characterized as a complex phenomenon related to poor short transverse ductility and through-thickness strain. The material, welding, and design variables that affect lamellar tearing are shown to be complex and interrelated. The commonly reported tests for assessing material susceptibility are described, with the controversy over their validity being carefully detailed. Although the use of a nondestructive test such as ultrasonic examination is most desirable, a widely applicable test method does not appear to be available. Of the destructive tests, the short transverse tensile reduction-of-area currently offers the most applicable means of assessing material susceptibility. However, because of the importance of matrix toughness, the short transverse Charpy V-notch test should be considered for use as an additional test if acceptance limits are developed. The ultrasonic detection of lamellar tears is susceptible to interpretation errors, which can make it overly conservative and lead to unnecessary repairs. The repair of tears is described as costly, difficult, and sometimes ineffective. Current design requirements appear to preclude any failures during static and fatigue service loads. However, without improvement of short transverse ductility, certain dynamic service loads could cause lamellar tearing failures. Two alternate design paths are recommended to prevent tearing during fabrication or service loading. The current and proposed ASME requirements dealing with lamellar tearing are reviewed and recommendations are made

  12. High-energy-beam welding of type 316LN stainless steel for cryogenic applications

    International Nuclear Information System (INIS)

    Siewert, T.A.; Gorni, D.; Kohn, G.

    1988-01-01

    Laser and electron beam welds in 25-mm-thick AISI 316LN specimens containing 0.16 wt.$% N were evaluated for fusion reactor applications and their mechanical properties were compared with those of welds generated by lower productivity processes such as shielded-metal-arc and gas-metal-arc welding. Tensile tests were performed on transverse tensile specimens at 4 K. For both welding processes the fractures occurred in the base metal at a strength level near 950 MPa. This indicated that the weld and heat affected zone had a strength similar to that of the base metal. The 4 K weld fracture toughness was only slightly less than that for the base metal and comparable to the best values achieved with conventional welding processes in 316Ln weld metal. The Charpy V-notch absorbed energies averaged near 70 J at 76 K. Metallographic analysis revealed cellular and fully austenitic solidification with little porosity and no evidence of hot cracking

  13. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  14. Effects of irradiation on crack-arrest toughness of two high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1990-01-01

    The objective of this study is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). A preliminary evaluation of the results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves, (for the range of test temperatures covered), compared to those of the ASME K Ia -curve did not seem to have been altered by irradiation. 10 refs., 9 figs., 7 tabs

  15. Resolution of the Task A-11 reactor-vessel materials-toughness safety issue. Part I. Main report. Part II. Staff responses to public comments, and Appendices A and B

    International Nuclear Information System (INIS)

    Johnson, R.

    1982-10-01

    This report provides the NRC position with respect to the reactor pressure vessel safety analysis required according to the rules given in the Code of Federal Regulations, Title 10 (10 CFR). An analysis is required whenever neutron irradiation reduces the Charpy V-notch upper shelf energy level in the vessel steel to 50 ft-lb or less. Task A-11 was needed because the available engineering methodology for such an analysis utilized linear elastic fracture mechanics principles, which could not fully account for the plastic deformation or stable crack extension expected at upper shelf temperatures. The Task A-11 goal was to develop an elastic-plastic fracture mechanics methodology, applicable to the beltline region of a pressurized water reactor vessel, which could be used in the required safety analysis. The goal was achieved with the help of a team of recognized experts. Part I of this volume contains the For Comment NUREG-0744, originally published in September 1981 and edited to accommodate comments from the public and the NRC staff. Edited segments are noted by vertical marginal lines. Part II of this volume contains the staff's responses to, and resolution of, the public comments received

  16. Assessment of a European V–4Cr–4Ti alloy – CEA-J57

    International Nuclear Information System (INIS)

    Le Flem, Marion; Gentzbittel, Jean-Marie; Wident, Pierre

    2013-01-01

    About 30 kg of 7 mm-thick plates (grade CEA-J57) were fabricated to support development of vanadium alloys for applications as structural components in future fast neutron fission reactors. After a stress relieve annealing at 973 K, the material exhibited elongated grains and large Ti-rich precipitates oriented in the rolling direction. After final heat-treatment of 2 h at 1273 K, the microstructure was fully recrystallised with remaining aligned large precipitates. Charpy V-notch and tensile specimens were machined in various directions of stress-relieved and recrystallised plates. The fracture energy and the lateral expansion were determined between 113 K and 598 K. Stress-relieved specimens clearly highlighted an anisotropic behavior with both ductile and brittle features while the recrystallized specimens are all ductile: a DBTT of 113 K is suggested. The fracture mode and morphology were related to the microstructure and especially to the Ti-rich precipitate distribution. Additionally, tensile tests were performed at room temperature and between 873 K and 1223 K. The results were consistent with previous results: after a plateau around 400 MPa, a significant decrease in tensile strength is observed above 1023 K. The fracture surfaces always exhibited ductile fracture mode. The present work suggests the good quality of this vanadium alloy

  17. Effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xuesong; Yang Feng; Zou Xingrong [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Suo Jinping, E-mail: jpsuo@yahoo.com.cn [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-11-15

    The effect of twice quenching and tempering on the mechanical properties and microstructures of SCRAM steel was investigated. The results from tensile tests showed that whether twice quenching and tempering processes(1253 K/0.5 h/W.C(water cool) + 1033 K/2 h/A.C(air cool) + 1233 K/0.5 h/W.C + 1033 K/2 h/A.C named after 2Q and 2TI, and 1253 K/0.5 h/W.C + 1033 K/2 h/A.C + 1233 K/0.5 h/W.C + 1013 K/2 h/A.C named after 2Q and 2TII)increased strength of steel or not depended largely on the second tempering temperature compared to quenching and tempering process(1253 K/0.5 h/W.C + 1033 K/2 h/A.C named after 1Q and 1T). Charpy V-notch impact tests indicated that twice quenching and tempering processes reduced the ductile brittle transition temperature (DBTT). Microstructure inspection revealed that the prior austenitic grain size and martensite lath width were refined after twice quenching and tempering treatments. Precipitate growth was inhibited by a slight decrease of the second tempering temperature from 1033 to 1013 K. The finer average size of precipitates is considered to be the main possible reason for the higher strength and lower DBTT of 2Q and 2TII compared with 2Q and 2TI.

  18. The analysis of reactor vessel surveillance program data

    International Nuclear Information System (INIS)

    Norris, E.B.

    1979-01-01

    Commercial nuclear power reactor vessel surveillance programs are provided by the reactor supplier and are designed to meet the requirements of ASTM Method E 185. (3). Each surveillance capsule contains sets of Charpy V-notch (Csub(v)) specimens representing selected materials from the vessel beltline region and some reference steel, tension test specimens machined from selected beltline materials, temperature monitors, and neutron flux dosimeters. Surveillance capsules may also contain fracture mechanics specimens machined from selected vessel beltline materials. The major steps in the conduct of a surveillance program include (1) the testing of the surveillance specimens to determine the exposure conditions at the capsule location and the resulting embrittlement of the vessel steel, (2) the extrapolation of the capsule results to the pressure vessel wall, and (3) the determination of the heatup and cooldown limits for normal, upset, and test operation. This paper will present data obtained from commercial light water reactor surveillance programs to illustrate the methods of analysis currently in use at Southwest Research Institute and to demonstrate some of the limitations imposed by the data available. Details concerning the procedures for testing the surveillance capsule specimens will not be included because they are considered to be outside of the scope of this paper

  19. Required grades of hull steel plates in consideration of fracture toughness; Hakai jinsei wo koryoshita sentaiyo koban shiyo kubun ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, H; Yamamoto, M; Ogaki, Y [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1997-10-01

    This paper discusses the required grades of hull steel plates based on the steel ship rule of Nippon Kaiji Kyokai (NK). The minimum value of the allowable crack length in NK rule (critical safety crack length at 0degC just before brittle unstable crack causing fatal fracture) was estimated. In the case where the estimated crack tip exists in a matrix, the crack length was a minimum of 200-210mm, while nearly 60mm in a fusion line at high-heat-input welded joint. The allowable crack lengths estimated from a specified value in the NK rule were fairly different. The allowable crack length at 0degC was also estimated from the minimum value in V-notch Charpy impact test. The private proposal on the required grades of hull steel plates in consideration of fracture toughness was discussed. Thirty-five percent of crack lengths found in real ships is 100mm or less, however, cracks of 250-400mm long are frequently found suggesting the allowable crack length of 400mm. The required grade integrally considering required values and design conditions is demanded to secure the reliability of hull strength. 5 refs., 5 figs., 2 tabs.

  20. Mechanical properties of as-cast microalloyed steels produced via investment casting

    International Nuclear Information System (INIS)

    Najafi, H.; Rassizadehghani, J.; Norouzi, S.

    2011-01-01

    Tensile and room temperature Charpy V-notch impact tests were used to evaluate the variations in the as-cast mechanical properties of a low-carbon steel produced via shell mould investment casting and containing combinations of vanadium, niobium and titanium. Tensile results indicate that the yield strength and ultimate tensile strength (UTS) have increased up to respectively 615 MPa and 770 MPa due to the fine-scale microalloy precipitates in the microalloyed samples. Room temperature impact test results show that while addition of vanadium individually has not changed the impact energy, Nb has decreased it considerably. However, examination of fracture surfaces reveals that all microalloyed samples have failed by transgranular cleavage. Based on the transmission electron microscope (TEM) studies, it seems that carbonitrides being greater than 50 nm in size and formed along prior austenite grain boundaries before γ transformation are responsible for the observed reduction in impact energies and brittle fracture. In comparison to sand mould casting, the yield and UTS obtained from investment casting are superior. Furthermore, although the impact energies of Nb-containing alloys are approximately the same as those obtained from sand moulds, the impact energy of the alloy containing only vanadium has improved considerably.

  1. Analysis of Intergranular Precipitation in Isothermally Aged Nitrogen-Containing Austenitic Stainless Steels by an Electrochemical Method and Its Relation to Cryogenic Toughness

    Directory of Open Access Journals (Sweden)

    Maribel L. Saucedo-Muñoz

    2011-01-01

    Full Text Available The precipitation process in two N-containing austenitic stainless steels, aged at temperatures between 873 and 1173 K for times from 10 to 1000 min, was analyzed by an electrochemical method based on the anodic polarization test with an electrolyte of 1 N KOH solution. The anodic polarization curves showed the following intergranular precipitation sequence: austenite → austenite + Cr23C6→ austenite + Cr23C6 + Cr2N. Besides, the fastest precipitation kinetics was detected in the aged steel with the highest content of nitrogen and carbon due to its higher driving force for precipitation. The higher the aging temperature, the higher volume fraction of precipitates. The precipitation fraction can be associated with the current density of the dissolution peaks of each phase. The Charpy-V-Notch impact energy of the aged specimens decreased with the increase in the volume fraction of precipitates.

  2. Crack arrest toughness of structural steels evaluated by compact test

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Tanaka, Michihiro

    1982-01-01

    Crack arrest tests such as compact, ESSO and DCB tests were made on SA533B Cl. 1, HT80 and KD32 steels to evaluate the crack arrest toughness. The main results obtained are as follows: (1) The crack arrest toughness could be evaluated by K sub(Ia) which was obtained by the static analysis of compact test. (2) K sub(ID) determined by the dynamic analysis of compact test was greater than K sub(Ia), though K sub(ID) became close to K sub(Ia)/K sub(Q) became a unity where K sub(Q) is the stress intensity factor at the crack initiation. (3) No significant difference was observed between K sub(Ia) and K sub(ca) obtained by ESSO and DCB tests, though K sub(ca) obtained by DCB test tended to be smaller than K sub(Ia) at lower temperatures. (4) K sub(Ia) was smaller than K sub(Ic) in the transition temperature range, while it was greater than K sub(Id). In the temperature range where K sub(Ic), which was determined from J sub(Ic), decreased with temperature increase, however, it was smaller than K sub(Ia). (5) The fracture appearance transition temperature and the absorbed energy obtained by 2 mm V-notch Charpy test were appropriate parameters for representing the crack arrest toughness, while the NDT temperature was not. (author)

  3. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Prieto, G.; Ipiña, J.E. Perez; Tuckart, W.R.

    2014-01-01

    Cryogenic treatments have been employed over the last three decades in both tool and high-alloy steels to improve wear resistance, mainly through the transformation of retained austenite and the precipitation of fine carbides. The application of these treatments to low-alloy steels and even to non-ferrous materials is becoming the subject of several investigations, due to their potentiality to reduce wear. This study was aimed at analyzing the microstructural changes and the effect of cryogenic treatments on hardness and impact toughness in martensitic AISI 420 stainless steel. X-ray diffraction (XRD) was employed for phase analysis and characterization, while carbide volume fraction, size and composition evaluation was measured by using scanning electron microscopy (SEM-EDX) and Energy Dispersive Spectrometry (EDS). Hardness was assessed with Vickers technique and the impact toughness was measured by means of Charpy's V-notch tests. Fracture surfaces were analyzed by scanning electron microscopy to evaluate the fracture micromechanisms. In this study, it has been experimentally demonstrated that cryogenic treatments favors the precipitation of small carbides, which also present a more homogeneous size distribution. It was observed that this microstructural feature is responsible for the improvement in the mechanical properties of the material

  4. Feasibility of and methodology for thermal annealing an embrittled reactor vessel. Volume 2. Detailed technical description of the work. Final report

    International Nuclear Information System (INIS)

    Mager, T.R.

    1982-11-01

    Program materials were three weldments fabricated from A533 Grade B class 1 plate material and Mn Mo Ni weld wire. Specimens fabricated from the three submerged arc weldments included Type A Charpy V-notch impact, small size tensile, and 1/2T compact tension specimens. After encapsulation, the specimens were irradiated at the UVAR to two fluence levels, 8 x 10 18 n/cm 2 and 1.5 x 10 19 n/cm 2 (E > 1 MeV). Specimens were subjected to sequences of irradiation and anneals and then tested. Metallurgial/mechanistic analyses were also performed. It was concluded that excellent recovery of all properties could be achieved by annealing at greater than or equal to 850 0 F (454 0 C) for 168 hours. Such an annealing resulted in ductile-brittle transition temperature shift recovery of 80 to 100%, and reirradiation after this annealing indicated that the ductile-brittle transition temperature shift appears to continue at the expected rate. Several drawbacks were identified for wet thermal annealing. A conceptual dry in-situ thermal annealing procedure was developed for thermal annealing embrittled reactor vessels

  5. U.S. Advanced Materials Development Program for steam generators

    International Nuclear Information System (INIS)

    Patriarca, P.; Harkness, S.D.; Duke, J.M.

    1975-01-01

    The selection of construction materials for LMFBR steam generators is reviewed, presenting the advantages and limitations of 2 1 / 2 Cr-1 Mo steel selected for the Clinch River Breeder Reactor Plant. These limitations indicate that further development of high-strength ferritic steels containing 9 to 12 percent Cr and the high-nickel Alloy 800 could lead to superior materials, and programs to develop these materials have been started. Combustion Engineering has surveyed the experience with the high-strength ferritic steels and prepared ingots of 26 selected compositions. Charpy V-notch tests and metallography have been used to characterize these alloys, and optimum welding rod compositions for these alloys are under development. Westinghouse-Tampa is undertaking a program to gain code acceptance of Alloy 800. A program has been set up to provide the information required for design, justification, and fabrication of reliable components. Progress has been made on characterization, the role of tertiary creep in failure, and the development of welding processes. (U.S.)

  6. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Chang-Hoon; Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Jang, Min-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, Seongdong-ku, Seoul 133-791 (Korea, Republic of); Park, Min-Gu [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 642-831 (Korea, Republic of); Department of Material Science and Engineering, Pusan National University, 30 Jangjeon-Dong, Geumjeong-gu, Pusan 609-735 (Korea, Republic of); Han, Heung Nam [Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2014-12-15

    In this work, the phase transformation and impact properties in the weld heat-affected zone (HAZ) of a reduced activation ferritic/martensitic (RAFM) steel are investigated. The HAZs were experimentally simulated using a Gleeble simulator. The base steel consisted of tempered martensite through normalizing at 1000 °C and tempering at 750 °C, while the HAZs consisted of martensite, δ-ferrite and a small volume of autotempered martensite. The impact properties using a Charpy V-notch impact test revealed that the HAZs showed poor impact properties due to the formation of martensite and δ-ferrite as compared with the base steel. In addition, the impact properties of the HAZs further deteriorated with an increase in the δ-ferrite fraction caused by increasing the peak temperature. The impact properties of the HAZs could be improved through the formation of tempered martensite after post weld heat treatment (PWHT), but they remained lower than that of the base steel because the δ-ferrite remained in the tempered HAZs.

  7. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanwei; Han, Lizhan; Yan, Guanghua; Liu, Qingdong; Luo, Xiaomeng; Gu, Jianfeng, E-mail: gujf@sjtu.edu.cn

    2016-11-15

    The microstructural evolution of reactor pressure vessel (RPV) steel and its effect on the mechanical properties during tempering at 650 °C were studied to reveal the time-dependent toughness and temper embrittlement. The results show that the toughening of the material should be attributed to the decomposition of the martensite/austenite constituents and uniform distribution of carbides. When the tempering duration was 5 h, the strength of the investigated steel decreased to strike a balance with the material impact toughness that reached a plateau. As the tempering duration was further increased, the material strength was slightly reduced but the material impact toughness deteriorated drastically. This time-dependent temper embrittlement is different from traditional temper embrittlement, and it can be partly attributed to the softening of the matrix and the broadening of the ferrite laths. Moreover, the dimensions and distribution of the grain carbides are the most important factors of the impact toughness. - Highlights: • The fracture mechanism of reactor pressure vessel (RPV) steels under impact load was investigated. • The Charpy V-notch impact test and the hinge model were employed for the study. • Grain boundary carbides play a key role in the impact toughness and fracture toughness. • The dependence of the deterioration of impact toughness on tempering time was analyzed for the first time.

  8. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  9. Comparison of ductile-to-brittle transition curve fitting approaches

    International Nuclear Information System (INIS)

    Cao, L.W.; Wu, S.J.; Flewitt, P.E.J.

    2012-01-01

    Ductile-to-brittle transition (DBT) curve fitting approaches are compared over the transition temperature range for reactor pressure vessel steels with different kinds of data, including Charpy-V notch impact energy data and fracture toughness data. Three DBT curve fitting methods have been frequently used in the past, including the Burr S-Weibull and tanh distributions. In general there is greater scatter associated with test data obtained within the transition region. Therefore these methods give results with different accuracies, especially when fitting to small quantities of data. The comparison shows that the Burr distribution and tanh distribution can almost equally fit well distributed and large data sets extending across the test temperature range to include the upper and lower shelves. The S-Weibull distribution fit is poor for the lower shelf of the DBT curve. Overall for both large and small quantities of measured data the Burr distribution provides the best description. - Highlights: ► Burr distribution offers a better fit than that of a S-Weibull and tanh fit. ► Burr and tanh methods show similar fitting ability for a large data set. ► Burr method can fit sparse data well distributed across the test temperature. ► S-Weibull method cannot fit the lower shelf well and show poor fitting quality.

  10. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters

    International Nuclear Information System (INIS)

    Carretero Olalla, V.; Bliznuk, V.; Sanchez, N.; Thibaux, P.; Kestens, L.A.I.; Petrov, R.H.

    2014-01-01

    The yield strength of different pipeline steel grades, rolled under four different conditions, was correlated with calculated strengthening contributions. Slabs with the same composition were rolled under identical roughing conditions but varied finish rolling temperature (FRT). Two cooling routes, consisting of accelerated water cooling condition (ACC) followed by slow cooling in an oven to simulate coiling and air cooling were applied after the last rolling pass. The microstructures obtained after each thermo mechanical controlled process (TMCP) schedule, were characterized using Transmission Electron Microscopy (TEM), Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Electron backscatter diffraction (EBSD). The mechanical properties of the plates were determined by means of tensile tests and Charpy V-notch impact test. It was confirmed that a combination of fast cooling rate and low finish rolling temperature produces higher strength than the slow cooling rate and high finish rolling temperature. Contributions to the strengthening arising from the various microstructural features like solid solution strengthening, grain size, dislocation density and precipitation hardening, were analyzed using Taylor, Hall–Petch and Ashby–Orowan approaches. The root of the sum of the squares method was applied to link the experimental with the model-predicted strength. It is believed that this approach provides a better understanding of the effect of TMCP parameters on the microstructure and strengthening mechanisms in pipeline steels

  11. Mehanical Properties of Electron Beam Welded Joints in Thick Gage CA6NM Stainless Steel

    Science.gov (United States)

    Sarafan, Sheida; Wanjara, Priti; Gholipour, Javad; Champliaud, Henri; Mathieu, Louis

    2017-10-01

    Design of hydroelectric turbine components requires high integrity welds (without detectable volumetric defects) in heavy gage sections of stainless steel materials, such as ASTM A743 grade CA6NM—a low carbon 13% Cr-4% Ni martensitic stainless steel that is manufactured in cast form. In this work, 90-mm-thick plates of CA6NM were joined using a single-pass autogenous electron beam (EB) welding process and the mechanical properties were evaluated in the as-welded condition to characterize the performance of the joints. The static tensile properties that were evaluated in two directions—transverse and longitudinal to the EB weld seam—demonstrated conformance of the joints with the requirements of the ASME Section IX standard. The Charpy impact energies of the EB welds—measured at -18 °C on samples with V-notch roots located in the fusion and heat-affected zones—met the minimum requirements of 27 J specified in ASME Section VIII standard. In addition, bend tests that were conducted on the entire weld cross section displayed no discontinuities on the tension side of the bent joints. Hence, the developed EB welding process was demonstrated to render high-performance joints and promises key advantages for industrialization, such as cost savings through reductions in consumable material, production time and labor intensity.

  12. Cryogenic treatments on AISI 420 stainless steel: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, G., E-mail: german.prieto@uns.edu.ar [Tribology Group, Universidad Nacional del Sur/CONICET, Av. Alem 1253, 8000 Bahía Blanca (Argentina); Ipiña, J.E. Perez [GMF UNComa/CONICET, Buenos Aires 1400, 8300 Neuquén (Argentina); Tuckart, W.R. [Tribology Group, Universidad Nacional del Sur/CONICET, Av. Alem 1253, 8000 Bahía Blanca (Argentina)

    2014-05-01

    Cryogenic treatments have been employed over the last three decades in both tool and high-alloy steels to improve wear resistance, mainly through the transformation of retained austenite and the precipitation of fine carbides. The application of these treatments to low-alloy steels and even to non-ferrous materials is becoming the subject of several investigations, due to their potentiality to reduce wear. This study was aimed at analyzing the microstructural changes and the effect of cryogenic treatments on hardness and impact toughness in martensitic AISI 420 stainless steel. X-ray diffraction (XRD) was employed for phase analysis and characterization, while carbide volume fraction, size and composition evaluation was measured by using scanning electron microscopy (SEM-EDX) and Energy Dispersive Spectrometry (EDS). Hardness was assessed with Vickers technique and the impact toughness was measured by means of Charpy's V-notch tests. Fracture surfaces were analyzed by scanning electron microscopy to evaluate the fracture micromechanisms. In this study, it has been experimentally demonstrated that cryogenic treatments favors the precipitation of small carbides, which also present a more homogeneous size distribution. It was observed that this microstructural feature is responsible for the improvement in the mechanical properties of the material.

  13. Characterisation of weldment hardness, impact energy and microstructure in API X65 steel

    International Nuclear Information System (INIS)

    Hashemi, S.H.; Mohammadyani, D.

    2012-01-01

    The variation of microstructure and mechanical properties in various sub-zones of double submerged arc welded line pipe steel of grade API X65 was investigated. Instrumented Charpy V-notch tests and Vickers hardness experiments were conducted on the fusion zone, base metal and heat affected zone of the weld joint in 14.3 mm thick, 1219 mm outside diameter spiral pipeline. The lowest impact energy and the highest hardness level (160J and 218 HV, respectively) were recorded in the fusion zone. The low energy and high hardness characteristics of the seam weld can be attributed to its cast microstructure and the presence of grain boundary phases (such as proeutectoid ferrite), confirmed by standard metallographic observation. Despite this, service requirements set by the API 5L industry code (minimum impact energy of 73J, maximum hard spots of 350 HV) were fulfilled by the tested steel. Highlights: ► Experimental study of API X65 steel microstructure. ► Analysis of the relationship between X65 steel microstructure and hardness. ► Analysis of the relationship between X65 steel microstructure and impact energy. ► Presentation of detailed technical information on DSA welding in spiral pipes.

  14. Radiation damage in a high Ni weld

    International Nuclear Information System (INIS)

    Brumovsky, M.; Kytka, M.; Kopriva, R.

    2015-01-01

    WWER-1000 RPV weld metals are characterized by a high content of nickel, mostly about 1.7 mass % with content of manganese around 0.8 mass % with a very low copper content - about 0.05 mass %. In such material some late blooming phase effect should be observed during irradiation. Such typical weld material was irradiated in the experimental reactor LVR-15 in N RI Rez at the irradiation temperature 290 C degrees and at five neutron fluences from 1.5 to 9.5 *10 23 m -2 (E>1 MeV). Charpy V-notch impact tests, static fracture toughness tests, tensile and hardness measurement were performed to obtain effect of neutron fluence on radiation hardening as well as embrittlement. Neutron fluence dependences of all these property changes have monotonic character but with a high neutron embrittlement exponent around 0.8. Scanning electron microscope of fracture surfaces showed no or very small portion of intercrystalline fracture. Transmission electron microscopy was performed on specimens from all neutron fluences. Only low density of black-dot damage has been observed. It is assumed that most of defect are dislocation loops. The late blooming phase which may be observed from results of mechanical properties are probably below the resolution of the used JEM-2010, i.e. 1.5 nm. (authors)

  15. Correlation between radiation damage and magnetic properties in reactor vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, R.A., E-mail: kempf@cnea.gov.ar [División Caracterización, GCCN, CAC-CNEA (Argentina); Sacanell, J. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Milano, J. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Guerra Méndez, N. [Departamento Física de la Materia Condensada, GIyA, CAC-CNEA, CONICET (Argentina); Winkler, E.; Butera, A. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Troiani, H. [División Física de Metales, CAB-CNEA and Instituto Balseiro (UNCU), CONICET (Argentina); Saleta, M.E. [División Resonancias Magnéticas, CAB-CNEA, CONICET (Argentina); Fortis, A.M. [Departamento Estructura y Comportamiento. Gerencia Materiales-GAEN, CAC-CNEA (Argentina)

    2014-02-01

    Since reactor pressure vessel steels are ferromagnetic, provide a convenient means to monitor changes in the mechanical properties of the material upon irradiation with high energy particles, by measuring their magnetic properties. Here, we discuss the correlation between mechanical and magnetic properties and microstructure, by studying the flux effect on the nuclear pressure vessel steel used in reactors currently under construction in Argentina. Charpy-V notched specimens of this steel were irradiated in the RA1 experimental reactor at 275 °C with two lead factors (LFs), 93 and 183. The magnetic properties were studied by means of DC magnetometry and ferromagnetic resonance. The results show that the coercive field and magnetic anisotropy spatial distribution are sensitive to the LF and can be explained by taking into account the evolution of the microstructure with this parameter. The saturation magnetization shows a dominant dependence on the accumulated damage. Consequently, the mentioned techniques are suitable to estimate the degradation of the reactor vessel steel.

  16. Temperature dependence of the dynamic fracture toughness of the alloy Incoloy 800 after cold work

    International Nuclear Information System (INIS)

    Krompholz, K.; Ullrich, G.

    1991-02-01

    Precracked charpy-V-notch specimens of the iron-nickel base alloy Incoloy 800 in the as-received condition and after cold work have been tested using an instrumented impact tester (hammer) in the temperature range 293 ≤ T/K ≤ 1223. The specific impact energies were determined by dial readings, from the integration of the load versus time and the load versus load point displacement diagrams; in all cases the agreement was excellent. The specific impact energies and the impulses are correlated with the test temperature and with the degree of cold work, respectively. The dynamic fracture toughness values were determined following the equivalent energy approach. In all cases a distinct decrease of the mechanical properties in the range between the as-received state and after 5 % cold work was found. The temperature behaviour of the impact energies clearly reveals an increase of its value between room temperature and 673 K. This increase is distinctly reduced after cold work. The dynamic fracture toughness decreases with increasing temperature. The fracture surfaces clearly show elasto-plastic fracture behaviour of the material in the temperature regime investigated. (author) 19 figs., 3 tabs., 7 refs

  17. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  18. An Assessment of the Ductile Fracture Behavior of Hot Isostatically Pressed and Forged 304L Stainless Steel

    Science.gov (United States)

    Cooper, A. J.; Smith, R. J.; Sherry, A. H.

    2017-05-01

    Type 300 austenitic stainless steel manufactured by hot isostatic pressing (HIP) has recently been shown to exhibit subtly different fracture behavior from that of equivalent graded forged steel, whereby the oxygen remaining in the component after HIP manifests itself in the austenite matrix as nonmetallic oxide inclusions. These inclusions facilitate fracture by acting as nucleation sites for the initiation, growth, and coalescence of microvoids in the plastically deforming austenite matrix. Here, we perform analyses based on the Rice-Tracey (RT) void growth model, supported by instrumented Charpy and J-integral fracture toughness testing at ambient temperature, to characterize the degree of void growth ahead of both a V-notch and crack in 304L stainless steel. We show that the hot isostatically pressed (HIP'd) 304L steel exhibits a lower critical void growth at the onset of fracture than that observed in forged 304L steel, which ultimately results in HIP'd steel exhibiting lower fracture toughness at initiation and impact toughness. Although the reduction in toughness of HIP'd steel is not detrimental to its use, due to the steel's sufficiently high toughness, the study does indicate that HIP'd and forged 304L steel behave as subtly different materials at a microstructural level with respect to their fracture behavior.

  19. A study of the mechanical property changes of irradiation embrittled pressure vessel steels and their response to annealing treatments

    International Nuclear Information System (INIS)

    Tipping, P.; Waeber, W.B.; Mercier, O.

    1991-01-01

    Isochronal and isothermal heat treatments have been used to study the recovery of hardness of a neutron irradiated pressure vessel steel forging for the purposes of planning and realizing IAR (Irradiated-Annealed-Reirradiated) experiments. Charpy V notch tests have been performed to assess the toughness of the material irradiated to various fluences up to a maximum of 5 x 10 19 n/cm 2 , E>1 MeV at 290 o C with and without an intermediate annealing treatment at 450 o C x 168 h. The effect of the intermediate annealing was evident. The recovery of the upper shelf energies was strongly enhanced by a thermal ageing effect due to the annealing treatment for all fluence levels investigated compared to the irradiated condition. The transition temperature shifts exhibited a less straightforward behaviour due to the mentioned ageing effect which opposed the recovery process for this property leading to a net shift increase at lower and to a net recovery benefit at higher fluence levels. A phenomenological model description for the IAR embrittlement-recovery path is suggested. For this material and these irradiation conditions a plant life extension (PLEX) may be brought about if a specific annealing treatment is applied at a fluence level that is half the anticipated target fluence F for PLEX. In this case it was found that F>1.6 x 10 19 n/cm 2 . (author)

  20. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  1. Reactor pressure vessel structural integrity research

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  2. On the proper fracture toughness properties to be used for pressurized thermal shock evaluations

    International Nuclear Information System (INIS)

    Server, W.L.

    1997-01-01

    The traditional approach in the U.S. for evaluating PTS has relied upon probabilistic studies in which the toughness has been based upon the data used to generated the lower bound ASME Code K IC and K IR curves. A mean curve through this data with a Gaussian statistical distribution assumed, except for a lower bound cutoff of somewhere between 2 and 3 standard deviations, has been used. The RT NDT normalizing concept has been maintained which then requires the measured shift in Charpy V-notch toughness at the 41 J (30 ft-lb) energy level be used to adjust the position of the Code curves. The Master Curve method provides a unique alternative in providing a much better measure of real fracture toughness, plus the opportunity to use a more refined statistical distribution using Weibull statistics. There are active moves in the U.S. to Standardize and Codify the Master Curve (also termed T 0 method). Benefits to both deterministic and probabilistic analyses will be realized since more realistic measures of toughness can be used

  3. Analysis of the Mechanical Behavior, Creep Resistance and Uniaxial Fatigue Strength of Martensitic Steel X46Cr13

    Science.gov (United States)

    Brnic, Josip; Krscanski, Sanjin; Lanc, Domagoj; Brcic, Marino; Turkalj, Goran; Canadija, Marko; Niu, Jitai

    2017-01-01

    The article deals with the analysis of the mechanical behavior at different temperatures, uniaxial creep and uniaxial fatigue of martensitic steel X46Cr13 (1.4034, AISI 420). For the purpose of considering the aforementioned mechanical behavior, as well as determining the appropriate resistance to creep and fatigue strength levels, numerous uniaxial tests were carried out. Tests related to mechanical properties performed at different temperatures are presented in the form of engineering stress-strain diagrams. Short-time creep tests performed at different temperatures and different stress levels are presented in the form of creep curves. Fatigue tests carried out at stress ratios R=0.25 and R=−1 are shown in the form of S–N (fatigue) diagrams. The finite fatigue regime for each of the mentioned stress ratios is modeled by an inclined log line, while the infinite fatigue regime is modeled by a horizontal line, which represents the fatigue limit of the material and previously was calculated by the modified staircase method. Finally, the fracture toughness has been calculated based on the Charpy V-notch impact energy. PMID:28772749

  4. Results of crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K.

    1990-12-01

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K Ia curve. 9 refs., 21 figs., 10 tabs

  5. Relationship between irradiation hardening and embrittlement of pressure vessel steels

    International Nuclear Information System (INIS)

    Odette, G.R.; Lombrozo, P.M.; Wullaert, R.A.

    1984-01-01

    Based on a large body of test and power reactor data, empirical relationships between irradiation strengthening and embrittlement are derived. It is shown that the Charpy V-notch (C /SUB v/ ) 41-J indexed transition temperature increases and the upper-shelf energy decreases systematically with increases in the yield stress. The transition temperature shifts are related to two mechanisms: increases in the maximum temperature of elastic-cleavage fracture, and decreases in the slope of the C, energy versus test temperature curve associated with reductions in the upper-shelf energy. The cleavage shift contribution, which is usually dominant, can be predicted from the initial temperature of fracture at general yield and the change in ambient temperature static yield stress. In developing this simplified cleavage fracture model, it is shown that: (a) yield stress changes are independent of temperature and strain rate; (b) the increase in yield stress with decreasing temperature is independent of the strain rate, irradiation, and metallurgical state; and (c) the microcleavage fracture stress is independent of irradiation and temperature. A semi-empirical procedure for estimating the shift contribution due to upper-shelf energy decreases and the total temperature shift at 41 J, based on the observation of an approximately constant temperature interval of the transition regime, is proposed, along with a method for forecasting the entire irradiated C, curve

  6. Advanced-gas-cooled-nuclear-reactor materials evaluation and development program. Volume 1.Final report, September 23, 1976-September 30, 1982

    International Nuclear Information System (INIS)

    Kimball, O.F.

    1983-01-01

    Included in this report is a discussion of the materials selected for the screening phase and more intensive screening phase test programs and the systems and components for which they are candidate materials. Thirty-one (31) commercially available alloy and alloy/coating materials and ten (10) experimental alloys were evaluated in the program. The experimental test facilities developed as part of this program are discussed and experimental testing procedures are summarized. The results of the initial screening test programs are presented. This includes creep testing results and metallographic analyses of candidate materials exposed to simulated HTGR helium and air under stress at temperatures of 750 0 , 850 0 , 950 0 , or 1050 0 C (1382 0 , 1562 0 , 1742 0 , or 1922 0 F) for exposure times to 10,000 hours. Metallographic analyses, weight change and carbon analyses results, and post exposure room temperature tensile and Charpy V-notch impact test results are presented for candidate materials exposed unstressed under the conditions stated above

  7. On the proper fracture toughness properties to be used for pressurized thermal shock evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Server, W L [ATI Consulting, Danville, CA (United States)

    1997-09-01

    The traditional approach in the U.S. for evaluating PTS has relied upon probabilistic studies in which the toughness has been based upon the data used to generated the lower bound ASME Code K{sub IC} and K{sub IR} curves. A mean curve through this data with a Gaussian statistical distribution assumed, except for a lower bound cutoff of somewhere between 2 and 3 standard deviations, has been used. The RT{sub NDT} normalizing concept has been maintained which then requires the measured shift in Charpy V-notch toughness at the 41 J (30 ft-lb) energy level be used to adjust the position of the Code curves. The Master Curve method provides a unique alternative in providing a much better measure of real fracture toughness, plus the opportunity to use a more refined statistical distribution using Weibull statistics. There are active moves in the U.S. to Standardize and Codify the Master Curve (also termed T{sub 0} method). Benefits to both deterministic and probabilistic analyses will be realized since more realistic measures of toughness can be used.

  8. Effects of irradiation on initiation and crack-arrest toughness of two high-copper welds and on stainless steel cladding

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1990-01-01

    The objective of the study on the high-copper welds is to determine the effect of neutron irradiation on the shift and shape of the ASME K Ic and K Ia toughness curves. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Compact specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to fluences from 1.5 to 1.9 x 10 19 neutrons/cm 2 (>1 MeV). The fracture toughness test results show that the irradiation-induced shifts at 100 MPa/m were greater than the Charpy 41-J shifts by about 11 and 18 degree C. Mean curve fits indicate mixed results regarding curve shape changes, but curves constructed as lower boundaries to the data do indicate curves of lower slopes. A preliminary evaluation of the crack-arrest results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower bound curves (for the range of test temperatures covered), compared to those of the ASME K Ia curve did not appear to have been altered by the irradiation. Three-wire stainless steel weld overlay cladding was irradiated at 288 degree C to fluences of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Charpy 41-J temperature shifts of 13 and 28 degree C were observed, respectively. For the lower fluence only, 12.7-mm thick compact specimens showed decreases in both J Ic and the tearing modulus. Comparison of the fracture toughness results with typical plate and a low upper-shelf weld reveals that the irradiated stainless steel cladding possesses low ductile initiation fracture toughness comparable to the low upper-shelf weld. 8 refs., 12 figs., 2 tabs

  9. Degradación de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Directory of Open Access Journals (Sweden)

    Vargas-Arista, B.

    2008-12-01

    Full Text Available The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal of an API5L-X52 linepipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 °C for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractographs that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak-aged. The microstructural analysis indicated the precipitation of transgranular iron nanocarbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior.

    Se evaluó, mediante el ensayo de impacto Charpy, fractografía y microscopia electrónica de transmisión el efecto del envejecimiento acelerado sobre la tenacidad y fractura de la soldadura en tubería de acero API5L-X52. El envejecimiento se realizó a 250 °C por 1.000 h, con control cada 100 h. Los resultados de impacto indicaron una disminución en la energía de fractura y tenacidad al impacto en función del tiempo del envejecimiento, los cuales se evidenciaron mediante fractografía, por la reducción en la fracción volumétrica de microhuecos por fractura dúctil con el tiempo, favoreciendo la fractura frágil por clivaje transgranular. Sin embargo, a 500 h, se observó la fracción volumétrica mínima debido al pico del envejecimiento. El análisis microestructural evidenció la precipitación de nanocarburos de hierro transgranulares en las muestras envejecidas, la cual se relaciono con la pérdida de tenacidad y cambio en el comportamiento dúctil a frágil, confirmado por fractografía.

  10. Development of Mini-Compact Tension Test Method for Determining Fracture Toughness Master Curves for Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of small specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Validation of the mini compact tension specimen (mini-CT) geometry has been performed on previously well characterized Midland beltline Linde 80 (WF-70) weld in the unirradiated condition. It was shown that the fracture toughness transition temperature, To, measured by these Mini-CT specimens is almost the same as To value that was derived from various larger fracture toughness specimens. Moreover, an International collaborative program has been established to extend the assessment and validation efforts to irradiated Linde 80 weld metal. The program is underway and involves the Oak Ridge National Laboratory (ORNL), Central Research Institute for Electrical Power Industry (CRIEPI), and Electric Power Research Institute (EPRI). The irradiated Mini-CT specimens from broken halves of previously tested Charpy

  11. Using System Architecture, Review Entry Criteria, and Standard Work Package Data to Enable Rapid Development of Integrated Master Schedules

    Science.gov (United States)

    2016-03-01

    critical path, EVM, project management, systems engineering, CVN, obsolescence , integrated master schedule , portfolio schedule 15. NUMBER OF PAGES...after the decision to swap deployments between the CVN-69 and CVN-75. C. COTS OBSOLESCENCE While CVN deadlines impose schedule constraints...Elements The context diagram shows how a CVN IT program SEP and IMS interact with COTS obsolescence , the CPA availability schedule , and other internal

  12. Effects of helium on ductile brittle transition behavior of reduced activation ferritic steels after high concentration he implantation at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Ejiri, M.; Nogami, S.; Ishiga, M.; Abe, K. [Tohoku Univ., Dept. of Quantum Science and Energy Engr, Sendai (Japan); Kasada, R.; Kimura, A. [Kyoto Univ., Institute of Advanced Energy (Japan); Jitsukawa, S. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Influence of Helium (He) on fracture behavior of reduced activation ferritic/martensitic steels including Oxide Dispersion Strengthening (ODS) steels and F82H were examined. To study the He effects on fracture behavior of these steels after He bubble formation conditions, higher concentration of He implantation at around 550 C were performed and examined the relationship between microstructure evolution and fracture behavior of the steels. The 1.5CVN mini size Charpy specimens were used to evaluate impact test behavior. Reduced activation ferritic ODS steels, 9Cr-ODS and 12Cr-ODS steels were examine. F82H was also examined as reference material. Helium implantation was performed by a cyclotron of Tohoku University with a beam of 50 MeV {alpha}-particles at temperature around 550 C. A tandem-type energy degrader system was used to implant He into the specimen from the irradiated surface to the range of 50 MeV {alpha}-particles, that was about 380 {mu}m in iron. Implanted He concentration were about 1000 appm. Charpy impact test was performed using a instrumented impact test apparatus in Oarai branch of IMR, Tohoku University. Analyses of absorbed energy change and fracture surface were carried out. Vickers hardness test was also carried out on He implanted area of the 1.5CVN specimen to estimate irradiation hardening. Microstructural observation was performed by TEM. In the case of F82H, DBTT increased by the 1000 appm He implantation condition was about 80 C and grain boundary fracture surface was only observed in the He implanted area of all the ruptured specimens in brittle manner. On the other hand, DBTT shift and fracture mode change of He implanted 9Cr-ODS steel was not observed after He implantation. Microstructural observation showed that He bubble formation on the lath boundaries and grain boundaries were significant in F82H, but the bubble segregation on grain boundary in ODS steel was not apparent. The bubble formation

  13. Effects of the phase fractions on the carbide morphologies, Charpy and tensile properties in SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    To improve the strength and toughness of RPV (reactor pressure vessel) steels for nuclear power plants, an effective way is the change of material specification from tempered bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel into tempered martensitic/bainitic SA508 Gr.4N Ni-Cr-Mo low alloy steel. It is known that the phase fractions of martensitic/bainitic steels are very sensitive to the austenitizing cooling rates. Kim reported that there are large differences of austenitizing cooling rates between the surface and the center locations in RPV due to its thickness of 250mm. Hence, the martensite/bainite fractions would be changed in different locations, and it would affect the microstructure and mechanical properties in Ni-Cr-Mo low alloy steel. These results may lead to inhomogeneous characteristics after austenitizing. Therefore, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite/bainite fractions on microstructure and mechanical properties in Ni-Cr-Mo low alloy steel were examined. The changes in phase fractions of Ni-Cr-Mo low alloy steel with different cooling rates were analyzed, and then the phase fractions were correlated with its microstructural observation and mechanical properties

  14. Mechanical properties of medieval bloomery iron materials - comparative tensile and charpy-tests on bloomery iron samples and S235JRG2

    Czech Academy of Sciences Publication Activity Database

    Thiele, Á.; Hošek, Jiří

    2015-01-01

    Roč. 59, č. 1 (2015), s. 35-38 ISSN 0324-6051 R&D Projects: GA ČR GAP405/12/2289 Institutional support: RVO:67985912 Keywords : bloomery iron * phosphoric iron * mechanical properties * archaeometallurgy Subject RIV: AC - Archeology, Anthropology, Ethnology

  15. Study of crack propagation mechanisms during Charpy impact toughness tests on both equiaxed and lamellar microstructures of Ti–6Al–4V titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Buirette, Christophe, E-mail: christophe.buirette@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Huez, Julitte, E-mail: julitte.huez@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France); Gey, Nathalie, E-mail: Nathalie.gey@univ-lorraine.fr [Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Île du Saulcy, 57045 METZ Cedex 1 (France); DAMAS, Laboratory of Excellence on Design of Alloy Metals for Low-Mass Structures, Université de Lorraine (France); Vassel, Alain, E-mail: alain.vassel@titane.asso.fr [Association Française du Titane, 16 quai Ernest Renaud, BP 70515, 44105 Nantes Cedex 4 (France); Andrieu, Eric, E-mail: eric.andrieu@ensiacet.fr [Institut Carnot CIRIMAT, ENSIACET, 4 allée Emile Monso, 31030 Toulouse (France)

    2014-11-17

    The impact toughness of two highly textured rolled plates of Ti–6Al–4V alloy with an α equiaxed and an α lamellar microstructures has been investigated. The results show a strong anisotropy of the fracture energy for both materials and underline that a coincidence of the prismatic planes with the shear bands at the notch tip is favorable for higher fracture energies. Moreover, it is pointed out, as it was already done by previous studies, that the α lamellar microstructure presents higher fracture energy than the α equiaxed one. Thanks to electron back scattering diffraction, and tensile tests, local microstructure heterogeneities, called macrozones, have been observed and characterized. Their size depends on microstructure element and is larger for α lamellar microstructure than for the α equiaxed. High strain is localized on the macrozones favorably oriented for prismatic slip with respect to the direction of impact and leads to a particular dimple free zone on the fracture surface. The contribution of these macrozones in the fracture behavior, and more precisely on the crack propagation rate was evaluated; thus the effects of the macroscopic texture and of the microstructure element on the impact toughness are discussed separately.

  16. Ductile fracture toughness of modified A 302 Grade B Plate materials, data analysis. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-01-01

    The goal of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A302 grade B plate materials typical of those used in reactor pressure vessels. A previous experimental study on one heat of A302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in tests made on recent production materials of A533 grade B and A508 class 2 pressure vessel steels. It was unknown if the departure from norm for the material was a generic characteristic for all heats of A302 grade B steels or unique to that particular plate. Seven heats of modified A302 grade B steel and one heat of vintage A533 grade B steel were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550F. Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, 1T, 2T, and 4T). The fracture mechanics-based evaluation method covered three test orientations and three test temperatures (80, 400, and 550F). However, the coverage of these variables was contingent upon the amount of material provided. Drop-weight NDT temperature was determined for the T-L orientation only. None of the heats of modified A302 grade B showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550F produced the usual loss in J-R curve fracture toughness. Generic J-R curves and curve fits were generated to represent each heat of material. This volume deals with the evaluation of data and the discussion of technical findings. 8 refs., 18 figs., 8 tabs.

  17. Ductile fracture toughness of modified A 302 grade B plate materials. Volume 2

    International Nuclear Information System (INIS)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-02-01

    The objective of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A 302 grade B plate materials typical of those used in fabricating reactor pressure vessels. A previous experimental study at Materials Engineering Associates (MEA) on one particular heat of A 302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in numerous tests made on the more recent production materials of A 533 grade B and A 508 class 2 pressure vessel steels. It was unknown if the departure from norm for the MEA material was a generic characteristic for all heats of A 302 grade B steels or just unique to that one particular plate. Seven heats of modified A 302 grade B steel and one heat of vintage A 533 grade B steel were provided to this project by the General Electric Company of San Jose, California. All plates were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550 degrees F (288 degrees C). Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, IT, 2T, and 4T). None of the seven heats of modified A 302 grade showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550 degrees F (82 to 288 degrees C) produced the usual loss in J-R curve fracture toughness. Generic J-R curves and mathematical curve fits to the same were generated to represent each heat of material. This volume is a compilation of all data developed

  18. Effect of direct quenching on the microstructure and mechanical properties of the lean-chemistry HSLA-100 steel plates

    International Nuclear Information System (INIS)

    Dhua, S.K.; Sen, S.K.

    2011-01-01

    Highlights: → Direct-quenched and tempered (DQT) steels gives better mechanical properties. → Fine Cu and Nb (C, N) precipitates enhance matrix strengthening and tempering resistance. → Boron promotes hardenability, but low temperature Charpy impact toughness gets affected. → Mechanical properties equivalent to HSLA-100 steel is achieved by directly quenched leaner chemistry alloys. - Abstract: The influence of direct quenching on structure-property behavior of lean chemistry HSLA-100 steels was studied. Two laboratory heats, one containing Cu and Nb (C:0.052, Mn:0.99, Cu:1.08, Nb:0.043, Cr:0.57, Ni:1.76, Mo:0.55 pct) and the other containing Cu, Nb and B (C:0.04, Mn:1.02, Cu:1.06, Nb:0.036, Cr:0.87, Ni:1.32, Mo:0.41, B:0.002 percent) were hot-rolled into 25 and 12.5 mm thick plates by varying finish-rolling temperatures. The plates were heat-treated by conventional reheat quenching and tempering (RQT), as well as by direct quenching and tempering (DQT) techniques. In general, direct-quench and tempered plates of Nb-Cu heat exhibited good strength (yield strength ∼ 900 MPa) and low-temperature impact toughness (average: 74 J at -85 deg. C); the Charpy V-notch impact energies were marginally lower than conventional HSLA-100 steel. In Nb-Cu-B heat, impact toughness at low-temperature was inferior owing to boron segregation at grain boundaries. Transmission electron microscopy (TEM) and scanning auger microprobe (SAM) analysis confirmed existence of borocarbides at grain boundaries in this steel. In general, for both the steels, the mechanical properties of the direct-quench and tempered plates were found to be superior to reheat quench and tempered plates. A detailed transmission electron microscopy study revealed presence of fine Cu and Nb (C, N) precipitates in these steels. It was also observed that smaller martensite inter-lath spacing, finer grains and precipitates in direct-quench and tempered plates compared to the reheat quench and tempered plates

  19. Ductile fracture toughness of modified A 302 Grade B Plate materials, data analysis. Volume 1

    International Nuclear Information System (INIS)

    McCabe, D.E.; Manneschmidt, E.T.; Swain, R.L.

    1997-01-01

    The goal of this work was to develop ductile fracture toughness data in the form of J-R curves for modified A302 grade B plate materials typical of those used in reactor pressure vessels. A previous experimental study on one heat of A302 grade B plate showed decreasing J-R curves with increased specimen thickness. This characteristic has not been observed in tests made on recent production materials of A533 grade B and A508 class 2 pressure vessel steels. It was unknown if the departure from norm for the material was a generic characteristic for all heats of A302 grade B steels or unique to that particular plate. Seven heats of modified A302 grade B steel and one heat of vintage A533 grade B steel were tested for chemical content, tensile properties, Charpy transition temperature curves, drop-weight nil-ductility transition (NDT) temperature, and J-R curves. Tensile tests were made in the three principal orientations and at four temperatures, ranging from room temperature to 550F. Charpy V-notch transition temperature curves were obtained in longitudinal, transverse, and short transverse orientations. J-R curves were made using four specimen sizes (1/2T, 1T, 2T, and 4T). The fracture mechanics-based evaluation method covered three test orientations and three test temperatures (80, 400, and 550F). However, the coverage of these variables was contingent upon the amount of material provided. Drop-weight NDT temperature was determined for the T-L orientation only. None of the heats of modified A302 grade B showed size effects of any consequence on the J-R curve behavior. Crack orientation effects were present, but none were severe enough to be reported as atypical. A test temperature increase from 180 to 550F produced the usual loss in J-R curve fracture toughness. Generic J-R curves and curve fits were generated to represent each heat of material. This volume deals with the evaluation of data and the discussion of technical findings. 8 refs., 18 figs., 8 tabs

  20. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting

    International Nuclear Information System (INIS)

    Liu, Jian; Yu, Hao; Zhou, Tao; Song, Chenghao; Zhang, Kai

    2014-01-01

    The effect of double quenching and tempering (DQT) treatment as well as conventional high temperature quenching and tempering (CQT) treatment on the microstructures and mechanical properties of low carbon 5Cr martensitic as cast steel produced by electroslag casting was investigated. The microstructure changes were characterized by optical microscope (OM), scanning electron microscope (SEM), electron back scatter diffraction (EBSD) and transmission electron microscopy (TEM). The characteristics of carbides precipitated during tempering were analyzed on both carbon extraction replica and thin foil samples by TEM. The mechanical performance was evaluated by Vickers hardness test, tensile test, and Charpy V-notch impact test at ambient temperature. The results of microstructure study indicated that DQT treatment led to a finer microstructure than that of CQT. The carbides of the tempered samples were identified as M 7 C 3 . The carbides along the prior austenite grain boundaries nucleated directly while those within the laths should be transformed from cementite which formed at the early tempering stage. Compared with CQT condition, yield strength slightly increased after DQT treatment, and impact toughness improved a lot. The strengthening mechanisms were analyzed and it was found that grain refining and precipitation strengthening were mainly responsible for the increase of strength. The superior toughness of DQT condition was attributed to the finer microstructure resulting in more frequent deflections of the cleavage crack and the smaller size of carbides along the prior austenite boundaries. EBSD analysis showed that both martensitic block and packet of low carbon 5Cr tempered martensitic steel could hinder crack propagation, while the latter was more effective

  1. Friction weld ductility and toughness as influenced by inclusion morphology

    International Nuclear Information System (INIS)

    Eberhard, B.J.; Schaaf, B.W. Jr.; Wilson, A.D.

    1983-01-01

    Friction welding consistently provides high strength, freedom from fusion defects, and high productivity. However, friction welds in carbon steel exhibit impact toughness and bend ductility that are significantly lower than that of the base metal. The inclusion content and morphology were suspected to be major contributors to the reduction in weld ductility. For this reason, four electric furnace steels - three types of ASTM A516 Grade 70, and an ASTM A737 Grade B steel - were investigated. Friction welds were made by both the inertia and direct drive process variations and the welds evaluated. It was shown that friction welds of inclusion-controlled steels exhibited much improved toughness and bend ductility were demonstrated. Upper shelf impact energy was equivalent to or greater than that of the base metal in the short transverse direction. The transition temperature range for all four materials was shifted to higher temperatures for both types of friction welds. Under the conditions of this test, the direct drive friction welds showed a greater shift than the inertia friction welds. The ductility and toughness of welds in A737 Grade B steel were superior to welds in A516 Grade 70 steels, reflecting the superior properties of the base metal. Welds of the A737 material had usable Charpy V-notch impact toughness of 20 to 30 ft-lb (27 to 41 J) at temperatures as low as -40 0 F (-40 0 C). All the welds had an acicular structure. The differences in properties between the inertia and direct drive friction welds appear associated with microstructural variations. These variations resulted from the different heat inputs and cooling rates of the two process variations were demonstrated. The beneficial effects of inclusion control on toughness and ductility. In addition, it also indicates that additional improvements may be attainable through control of the as-welded microstructure by process manipulation

  2. Thick-section weldments in 21-6-9 and 316LN stainless steel for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    The Burning Plasma Experiment (BPX), formerly known as the Compact Ignition Tokomak, will be a major advance in the design of a fusion reactor. The successful construction of fusion reactors will require extensive welding of thick-section stainless steel plates. Severe service conditions will be experienced by the structure. Operating temperatures will range from room temperature (300 K) to liquid nitrogen temperature (77 K), and perhaps even lower. The structure will be highly stressed, and subject to sudden impact loads if plasma disruptions occur. This demands a combination of high strength and high toughness from the weldments. Significant portions of the welding will be done in the field, so preweld and postweld heat treatments will be difficult. The thick sections to be welded will require a high deposition rate process, and will result in significant residual stresses in the materials. Inspection of these thick sections in complex geometries will be very difficult. All of these constraints make it essential that the welding procedures and alloys be well understood, and the mechanical properties of the welds and their heat-affected zones must be adequately characterized. The candidate alloy for structural applications in the BPX such as the magnet cases was initially selected as 21-6-9 austenitic stainless steel, and later changed to 316LN stainless steel. This study examined several possible filler materials for thick-section (25 to 50 mm) weldments in these two materials. The tensile and Charpy V-notch properties were measured at room temperature and 77 K. The fracture toughness was measured for promising materials

  3. Assessment of high-strength stainless steel weldments for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    Primary design considerations for the Compact Ignition Tokomak fusion reactor magnet cases are yield strength and toughness in the temperature range from liquid nitrogen to room temperature (77 to 300K). Type 21-6-9 stainless steel, also known as Nitronic 40, is the proposed alloy for this application. This study documented the mechanical properties, including tensile yield strength and Charpy V-notch impact toughness, at 77K and room temperature, of weldments made using seven different filler metals. Six welds were made with filler metal added as cold filler wire using the argon-shielded gas tungsten arc welding process. Filler metals included Nitronic 35W and 40W, 21-6-9, ERNiCr-3 (Inconel 82), ERNiCrMo-3 (Inconel 625), and Inconel 625 PLUS. All welds were prepared with a double-groove butt-weld geometry. At room temperature, all of the filler metals had yield strengths which exceeded the base metal. However, at 77K only the Nitronics and the 21-6-9 filler metals exceeded the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77K, impact toughness was greatly reduced for all of the filler metals with the exception of Inconel 82. This alloy had excellent toughness at both temperatures. The severe drop in the impact toughness of the Nitronic and 21-6-9 filler metals was attributed to the amount of ferrite present in these welds. At 77K, fracture occurred by a cleavage mechanism in the ferrite regions which allowed the crack to grow readily. The fully austenitic Inconel 82 material fractured by a microvoid coalescence mode at either test temperature. These results indicate that the Inconel 82 filler metal is the preferred material for welding 21-6-o stainless steel for this application

  4. Characterization of liquid metal reactor materials

    International Nuclear Information System (INIS)

    Kuk, I. H.; Ryu, W. S.; Kim, H. H. and others

    1999-03-01

    The objectives of this report were to assess the material requirements for LMR environment, to select the optimum candidates for KALIMER components, to characterize the performance for establishing a database of the structural materials for KALIMER, and to develop the basic material technologies for the localization of the advanced materials. Stainless steel ingots were melted by VIM and hot-rolled to plate with the thickness of 15mm. The plate was solution-treated for 1 hr at 1100 deg C and then water-quenched. Specimens were taken parallel to the rolling direction of the plate. The effects of nitrogen and phosphorus were analyzed on the high temperature mechanical properties of 316MRP (Liquid Metal Reactor, Primary candidate material) stainless steels with the different nitrogen content from 0.04 to 0.15% and with the different phosphorus content from 0.002 to 0.02%. Heat treatment was performed to investigate the changes in microstructure and mechanical properties of Cr-Mo steels for LMR heat transfer tube materials and core materials. The Cr-Mo steels were normalized at the temperatures between 900 deg C and 1200 deg C for 1hrs and tempered at the temperatures between 500 deg C and 800 deg C for 2hrs. Conventional optical and electron micrographic studies were carried out to investigate the martensite lath structure, carbide indentification and carbide shape. Vickers microhardness was measured at room temperature using 10g load. Tensile properties were tested at high temperature. Charpy V-notch impact tests were also carried out at temperature between -120 deg C and +180 deg C. (author). 72 refs., 28 tabs., 244 figs

  5. Development of austenitic stainless steel PC wire and strand

    International Nuclear Information System (INIS)

    Tsubono, Hideyoshi; Kawabata, Yoshinori; Yamaoka, Yukio

    1986-01-01

    The effects of aging and stress-aging (called hot stretching) at the temperatures from 120 deg C to 700 deg C on the mechanical properties, relaxation values, Charpy impact values and SCC behavior of hard drawn SUS 304, SUS 316 stainless steel wires have been studied. The main results obtained are as follows: (1) Yield and tensile strength of the wires increased by aging at 230 deg C and 530 deg C as well as by hot stretching. The strengthening after 230 deg C treatment may be due to the strain aging by C and the increase of strength after 530 deg C treatment results from precipitation of Cr 23 C 6 on dislocations. (2) Stress relaxation values up to 250 deg C are low due to precipitation of Cr 23 C 6 . Almost no difference can be observed between aging and hot stretching. (3) Impact value at -196 deg C of SUS 304 stainless steel wire which was measured with 1 mm V-notched specimen was found to be about the same as that of 9 % Ni steel. (4) It is considered that in comparison with high carbon PC wire SUS 304 stainless steel showing high tensile strength is insensitive to SCC in NH 4 SCN and NH 4 NO 3 solutions. (5) In practice, tension member of the austenitic stainless steel wire and strand which were produced by aging at 500 deg C may be useful in special industrial field, for example, (a) SUS 304, in cryogenic field use (b) SUS 316, in intensive magnetic field use as a nonmagnetic material. (author)

  6. Structure and mechanical properties of Fe--Cr--Mo--C alloys with and without boron

    International Nuclear Information System (INIS)

    Chen, Y.L.

    1976-05-01

    Nonconventional heat treatments were designed to improve the mechanical properties of these martensitic steels. Results show that the as-quenched structures of both steels consist mainly of dislocated martensite. In the boron-free steel, there are more lath boundary retained austenite films. The boron-treated steel shows higher strengths at all tempering temperatures but with lower Charpy V-notch impact energies. Both steels show tempered martensite embrittlement when tempered at 350 0 C for 1 hour. The properties above 500 0 C tempering are significantly different in the two steels. While the boron-free steel shows a continuous increase in toughness when tempered above 500 0 C, the boron-treated steel suffers a second drop in toughness at 600 0 C tempering. Transmission electron microscopy studies show that in the 600 0 C tempered boron-treated steel large, more or less continuous cementite films precipitate at the lath boundaries, which are probably responsible for the embrittlement. The differences in mechanical properties at tempering temperatures above 500 0 C are rationalized in terms of the effect of boron-vacancy interactions on the recovery and recrystallization behavior of these steels. Boron seems to impair room temperature impact toughness at low strength levels but not at high strength levels. By simple nonconventional heat treatments of the present alloys, martensitic steels may be produced with quite good strength-toughness properties which are much superior to those of existing commercial ultra-high strength steels. It has also been shown that the as-quenched martensitic steels need not be brittle and in fact very good combinations of strength and toughness can be obtained with as-quenched martensitic steels. 56 fig., 5 tables, 75 references

  7. Effect of double quenching and tempering heat treatment on the microstructure and mechanical properties of a novel 5Cr steel processed by electro-slag casting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian, E-mail: healygo@163.com; Yu, Hao, E-mail: yuhao@ustb.edu.cn; Zhou, Tao, E-mail: zhoutao130984@163.com; Song, Chenghao, E-mail: songchenghao28@126.com; Zhang, Kai, E-mail: zhangkai8901@126.com

    2014-12-01

    The effect of double quenching and tempering (DQT) treatment as well as conventional high temperature quenching and tempering (CQT) treatment on the microstructures and mechanical properties of low carbon 5Cr martensitic as cast steel produced by electroslag casting was investigated. The microstructure changes were characterized by optical microscope (OM), scanning electron microscope (SEM), electron back scatter diffraction (EBSD) and transmission electron microscopy (TEM). The characteristics of carbides precipitated during tempering were analyzed on both carbon extraction replica and thin foil samples by TEM. The mechanical performance was evaluated by Vickers hardness test, tensile test, and Charpy V-notch impact test at ambient temperature. The results of microstructure study indicated that DQT treatment led to a finer microstructure than that of CQT. The carbides of the tempered samples were identified as M{sub 7}C{sub 3}. The carbides along the prior austenite grain boundaries nucleated directly while those within the laths should be transformed from cementite which formed at the early tempering stage. Compared with CQT condition, yield strength slightly increased after DQT treatment, and impact toughness improved a lot. The strengthening mechanisms were analyzed and it was found that grain refining and precipitation strengthening were mainly responsible for the increase of strength. The superior toughness of DQT condition was attributed to the finer microstructure resulting in more frequent deflections of the cleavage crack and the smaller size of carbides along the prior austenite boundaries. EBSD analysis showed that both martensitic block and packet of low carbon 5Cr tempered martensitic steel could hinder crack propagation, while the latter was more effective.

  8. Heavy-section steel irradiation program: Embrittlement issues

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1991-01-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents and the potential for major contamination releases. The RPV is one of only two major safety- related components of the plant for which a duplicate or redundant backup system does not exist. In particular, it is vital to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance which occurs during service, since without that radiation damage it is virtually impossible to postulate a realistic scenario which would result in RPV failure. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established by the US Nuclear Regulatory Commission (USNRC) to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water reactor pressure-vessel integrity. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness crack arrest toughness ductile tearing resistance Charpy V-notch impact energy, dropweight nil-ductility temperature and tensile properties. Models based on observations of radiation-induced microstructural changes using the field on microprobe and the high resolution transmission electron microscopy provide improved bases for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI program are high-copper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs

  9. Heavy-section steel irradiation program summary

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1992-01-01

    Since a failure of the RPV carries the potential of major contamination release and severe accident, it is imperative to safe reactor operation to understand and be able to accurately predict failure models of the vessel material. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure vessel steels as they relate to light-water RPVs. The program includes the direct continuation of irradiation studies previously conducted within the Heavy-Section Steel Technology Program augmented by enhanced examinations of the accompanying microstructural changes. Effects of specimen size, material chemistry, product form and microstructure, irradiation fluence, flux, temperature and spectrum, and postirradiation annealing are being examined on a wide range of fracture properties including fracture toughness (K Ic and J Ic ), crack-arrest toughness (K Ia ), ductile tearing resistance (dJ/da), Charpy V-notch impact energy, dropweight nil-ductility temperature (NDT), and tensile properties. Models based on observations of radiation-induced microstructural changes using field ion and high-resolution transmission electron microscopy provide a firmer basis for extrapolating the measured changes in fracture properties to wider ranges of irradiation conditions. The principal materials examined within the HSSI Program are highcopper welds since their postirradiation properties are most frequently limiting in the continued safe operation of commercial RPVs. In addition, a limited effort will focus on stainless steel weld overlay cladding, typical of that used on the inner surface of RPVs, since its postirradiation fracture properties have the potential for strongly affecting the extension of small surface flaws during overcooling transients. (orig./GL)

  10. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel irradiation (HSSI) Program was aimed at obtaining a statistically significant fracture toughness data base on two weldments with high-copper contents to determine the shift and shape of the K lc curve as a consequence of irradiation. The program included irradiated Charpy V-notch impact, tensile, and drop-weight specimens in addition to compact fracture toughness specimens. Compact specimens with thicknesses of 25.4, 50.8, and 101.6 mm [1T C(T), 2T C(T), and 4T C(T), respectively] were irradiated. Additionally, unirradiated 6T C(T) and 8T C(T) specimens with the same K lc measuring capacity as the irradiated specimens were tested. The materials for this irradiation series were two weldments fabricated from special heats of weld wire with copper added to the melt. One lot of Linde 0124 flux was used for all the welds. Copper levels for the two welds are 0.23 and 0.31 wt %, while the nickel contents for both welds are 0.60 wt %. Twelve capsules of specimens were irradiated in the pool-side facility of the Oak Ridge Research Reactor at a nominal temperature of 288 degree C and an average fluence of about 1.5 x 10 19 neutrons/cm 2 (> 1 MeV). This volume, Appendices E and F, contains the load-displacement curves and photographs of the fracture toughness specimens from the 72W weld (0.23 wt % Cu) and the 73 W weld (0.31 wt % Cu), respectively

  11. Heavy-Section Steel Irradiation Program. Volume 2, No. 1: Semiannual progress report, October 1990--March 1991

    International Nuclear Information System (INIS)

    Corwin, W.R.

    1994-07-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the capabilities and limitations of the integrity inherent in the RPV. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established with its primary goal to provide a thorough, quantitative assessment of the effects of neutron irradiation on the material behavior, and in particular the fracture toughness properties, of typical pressure-vessel steels as they relate to light-water reactor pressure-vessel integrity. The HSSI Program is arranged into nine tasks: (1) program management, (2) K ic curve shift in high-copper welds, (3) K ia curve shift in high-copper welds, (4) irradiation effects on cladding, (5) K ic and K ia curve shifts in low upper-shelf (LUS) weld, (6) irradiation effects in a commercial LUS weld, (7) microstructural analysis of irradiation, (8) in-service aged material evaluations, and (9) correlation monitor materials. During this period, additional analyses on the effects of precleavage stable ductile tearing on the toughness of high-copper welds 72W and 73W demonstrated that the size effects observed in the transition region are not due to substantial differences in ductile tearing behavior. Possible modifications to irradiated duplex crack-arrest specimens were examined to increase the likelihood of their successful testing. Characterization of a second batch of 72W and 73W welds was begun and results of the Charpy V-notch testing is provided. A review of literature on the annealing response of reactor pressure vessel steels was initiated

  12. Evaluation of weldments in Type 21-6-9 stainless steel for Compact Ignition Tokamak structural applications: Phase 1

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.; Bloom, E.E.

    1991-06-01

    Primary design considerations for the Compact Ignition Tokamak toroidal field-coil cases are yield strength and toughness in the temperature range from 77 to 300 K. Type 21-6-9 stainless steel, also still known by its original Armco Steel Company trade name Nitronic 40, is the proposed alloy for this application. It has high yield strength and usually adequate base metal toughness, but weldments in thick sections have not been adequately characterized in terms of mechanical properties or hot-cracking propensity. In this study, weldability of the alloy in heavy sections and the mechanical properties of the resultant welds were investigated including tensile yield strength and Charpy V-notch toughness at 77 K and room temperature. Weldments were made in four different base metals using seven different filler metals. None of the weldments showed any indication of hot-cracking problems. All base metals, including weldment heat-affected zones, were found to have adequate strength and impact toughness at both test temperatures. Weld metals, on the other hand, except ERNiCr-3 and ENiCrFe-3 had impact toughnesses of less than 67 J at 77 K. Inconel 82 had an average weld metal impact toughness of over 135 J at 77 K, and although its strength at 77 K is less than that of type 21-6-9 base metal, at this point it is considered to be the first-choice filler metal. Phase 2 of this program will concentrate on composition refinement and process/procedure optimization for the generic ERNiCr-3 composition and will generate a design data base for base and weld metal, including tensile, fracture toughness, and crack growth rate data

  13. Experimental tests of irradiation-anneal-reirradiation effects on mechanical properties of RPV plate and weld materials

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1996-01-01

    The Charpy-V (C V ) notch ductility and tension test properties of three reactor pressure vessel (RPV) steel materials were determined for the 288 degree C (550 degree F) irradiated (I), 288 degree C (550 degree F) irradiated + 454 degree C (850 degree F)-168 h postirradiation annealed (IA), and 288 degree C (550 degree F) reirradiated (IAR) conditions. Total fluences of the I condition and the IAR condition were, respectively, 3.33 x 10 19 n/cm 2 and 4.18 x 10 19 n/cm 2 , E > 1 MeV. The irradiation portion of the IAR condition represents an incremental fluence increase of 1. 05 x 10 19 n/cm 2 , E > 1 MeV, over the I-condition fluence. The materials (specimens) were supplied by the Yankee Atomic Electric Company and represented high and low nickel content plates and a high nickel, high copper content weld deposit prototypical of the Yankee-Rowe reactor vessel. The promise of the IAR method for extending the fluence tolerance of radiation-sensitive steels and welds is clearly shown by the results. The annealing treatment produced full C V upper shelf recovery and full or nearly full recovery in the C V 41 J (30 ft-lb) transition temperature. The C V transition temperature increases produced by the reirradiation exposure were 22% to 43% of the increase produced by the first cycle irradiation exposure. A somewhat greater radiation embrittlement sensitivity and a somewhat greater reirradiation embrittlement sensitivity was exhibited by the low nickel content plate than the high nickel content plate. Its high phosphorus content is believed to be responsible. The IAR-condition properties of the surface vs. interior regions of the low nickel content plate are also compared

  14. A master curve-mechanism based approach to modeling the effects of constraint, loading rate and irradiation on the toughness-temperature behavior of a V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Odette, G.R.; Donahue, E.; Lucas, G.E.; Sheckherd, J.W.

    1996-01-01

    The influence of loading rate and constraint on the effective fracture toughness as a function of temperature [K e (T)] of the fusion program heat of V-4Cr-4Ti was measured using subsized, three point bend specimens. The constitutive behavior was characterized as a function of temperature and strain rate using small tensile specimens. Data in the literature on this alloy was also analysed to determine the effect of irradiation on K e (T) and the energy temperature (E-T) curves measured in subsized Charpy V-notch tests. It was found that V-4Cr-4Ti undergoes open-quotes normalclose quotes stress-controlled cleavage fracture below a temperature marking a sharp ductile-to-brittle transition. The transition temperature is increased by higher loading rates, irradiation hardening and triaxial constraint. Shifts in a reference transition temperature due to higher loading rates and irradiation can be reasonably predicted by a simple equivalent yield stress model. These results also suggest that size and geometry effects, which mediate constraint, can be modeled by combining local critical stressed area σ*/A* fracture criteria with finite element method simulations of crack tip stress fields. The fundamental understanding reflected in these models will be needed to develop K e (T) curves for a range of loading rates, irradiation conditions, structural size scales and geometries relying (in large part) on small specimen tests. Indeed, it may be possible to develop a master K e (T) curve-shift method to account for these variables. Such reliable and flexible failure assessment methods are critical to the design and safe operation of defect tolerant vanadium structures

  15. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the

  16. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought

  17. Marine Science

    African Journals Online (AJOL)

    Zanzibar (Tanzania), La Reunion Island and Okinawa,. Japan (Abed et al., 2003; Charpy et al., 2007; Bauer et al.,. 2008; Charpy et al., 2010, Charpy et al., 2012). Charpy et al. (2012) have reviewed the role of cyano- bacteria in coral reef ecosystems. They occur as part of the reef (microbialites), inside (endoliths), and.

  18. Maximum mass ratio of am CVn-type binary systems and maximum white dwarf mass in ultra-compact x-ray binaries (addendum - Serb. Astron. J. No. 183 (2011, 63

    Directory of Open Access Journals (Sweden)

    Arbutina B.

    2012-01-01

    Full Text Available We recalculated the maximum white dwarf mass in ultra-compact X-ray binaries obtained in an earlier paper (Arbutina 2011, by taking the effects of super-Eddington accretion rate on the stability of mass transfer into account. It is found that, although the value formally remains the same (under the assumed approximations, for white dwarf masses M2 >~0.1MCh mass ratios are extremely low, implying that the result for Mmax is likely to have little if any practical relevance.

  19. Irradiation Embrittlement Monitoring Programs of RPV's in the Slovak Republic NPP's

    International Nuclear Information System (INIS)

    Kupca, Ludovik

    2006-01-01

    Four types of surveillance programs were (are) realized in Slovak NPP's: 'Standard Surveillance Specimen Program' (SSSP) was finished in Jaslovske Bohunice V-2 Nuclear Power Plant (NPP) Units 3 and 4, 'Extended Surveillance Specimen Program' (ESSP), was prepared for Jaslovske Bohunice NPP V-2 with aim to validate the SSSP results, For the Mochovce NPP Unit 1 and 2 was prepared completely new surveillance program 'Modern Surveillance Specimen Program' (MSSP), based on the philosophy that the results of MSSP must be available during all NPP service life, For the Bohunice V-1 NPP was finished 'New Surveillance Specimen Program' (NSSP) coordinated by IAEA, which gave arguments for prolongation of service life these units for minimum 20 years, New Advanced Surveillance Specimen Program (ASSP) for Bohunice V-2 NPP (units 3 and 4) and Mochovce NPP (units 1, 2) is approved now. ASSP is dealing with the irradiation embrittlement of heat affected zone (HAZ) and RPV's austenitic cladding, which were not evaluated till this time in surveillance programs. SSSP started in 1979 and was finished in 1990. ESSP program started in 1995 and will be finished in 2007, was prepared with aim of: increasing of neutron fluence measurement accuracy, substantial improvement the irradiation temperature measurement, fixed orientation of samples to the centre of the reactor core, minimum differences of neutron dose for all the Charpy-V notch and COD specimens, the dose rate effect evaluation. In the year 1996 was started the new surveillance specimen program for the Mochovce RPV's unit-1 and 2, based on the fundamental postulate - to provide the irradiation embrittlement monitoring till the end of units operation. The 'New Surveillance Specimen Program' (NSSP) prepared in the year 1999 for the Bohunice V-1 NPP was finished in the year 2004. Main goal of this program was to evaluate the weld material properties degradation due to the irradiation and recovery efficiency by annealing too. The

  20. Status of reactor pressure vessel embrittlement study in Japan

    International Nuclear Information System (INIS)

    Sasajima, H.

    1997-01-01

    -year project. This project includes the development of neutron irradiation embrittlement prediction equations and the correlation equations between USE of Charpy V-notch and fracture toughness, and the verification to standardize surveillance test specimen reconstitution practices to deal with the extended service life of RPV. This paper presents the achievements made by the PTS Project and the current status of the PLIM Project. (author)

  1. Test methodology and technology of fracture toughness for small size specimens

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, E.; Takada, F.; Ishii, T.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Matsukawa, S. [JNE Techno-Research Co., Kanagawa-ken (Japan)

    2007-07-01

    Full text of publication follows: Small specimen test technology (SSTT) is required to investigate mechanical properties in the limited availability of effective irradiation volumes in test reactors and accelerator-based neutron and charged particle sources. The test methodology guideline and the manufacture processes for very small size specimens have not been established, and we would have to formulate it. The technology to control exactly the load and displacement is also required in the test technology under the environment of high dose radiation produced from the specimens. The objective of this study is to examine the test technology and methodology of fracture toughness for very small size specimens. A new bend test machine installed in hot cell has been manufactured to obtain fracture toughness and DBTT (ductile - brittle transition temperature) of reduced-activation ferritic/martensitic steels for small bend specimens of t/2-1/3PCCVN (pre-cracked 1/3 size Charpy V-notch) with 20 mm length and DFMB (deformation and fracture mini bend specimen) with 9 mm length. The new machine can be performed at temperatures from -196 deg. C to 400 deg. C under unloading compliance method. Neutron irradiation was also performed at about 250 deg. C to about 2 dpa in JMTR. After the irradiation, fracture toughness and DBTT were examined by using the machine. Checking of displacement measurement between linear gauge of cross head's displacement and DVRT of the specimen displacement was performed exactly. Conditions of pre-crack due to fatigue in the specimen preparation were also examined and it depended on the shape and size of the specimens. Fracture toughness and DBTT of F82H steel for t/2-1/3PCCVN, DFMB and 0.18DCT specimens before irradiation were examined as a function of temperature. DBTT of smaller size specimens of DFMB was lower than that of larger size specimen of t/2-1/3PCCVN and 0.18DCT. The changes of fracture toughness and DBTT due to irradiation were also

  2. Effects of turbidity on the neural structures of two closely related ...

    African Journals Online (AJOL)

    interpreted in terms of ecology and evolution (Bullock 1983;. Northcutt 1988: Goldschmid ... The fish were placed in a V -notched dissecting bloek on IIle stage of a ..... with comments on phylogeny and functional morphology. I. Freshwat. Eeol.

  3. Evaluation of the mechanical properties after thermal treatment of a structural hot rolled multiphase steel

    Directory of Open Access Journals (Sweden)

    Asensio-Lozano, J.

    2007-12-01

    Full Text Available The present paper corresponds to the experimental study conducted on a hot rolled (HR multiphase (MP steel, in which hardness, tensile and toughness properties were measured after the application of a series of subcritical and intercritical heat treatments (HT to the hot rolled stock. The aforementioned values were compared to the corresponding ones in the as-rolled state and after normalizing. The microstructure in the longitudinal plane of the strip was analyzed by light optical microscopy in the as-rolled state and in the HT samples. Longitudinal (L and transverse (T tensile and toughness specimens were cut to characterize every condition studied. Toughness properties were evaluated by means of Charpy V-notch tests conducted at 20 °C, 0 °C, –20 °C, –40 °C, –60 °C and –80 °C . It was observed that the yield stress increased with the increase in the heat treatment temperature in the subcritical range, while the tensile strength decreased slightly over the same range of temperatures. Uniform and total elongation only showed a slight improvement when the treatment was conducted at 620 °C and 700 °C, while the best toughness response corresponded to the sample treated at 500 °C for operating temperatures comprised between –40 °C and room temperature (RT.

    El presente estudio corresponde al trabajo experimental desarrollado en un acero multifase laminado en caliente, en el que se evaluaron las propiedades de dureza, tracción y tenacidad a impacto, tras realizar tratamientos térmicos subcríticos e intercríticos al material laminado en caliente. Los valores precedentes se comparan con el material de partida laminado en caliente y tras tratamiento de normalizado. Se analiza la microestructura en microscopía óptica de reflexión, en el plano longitudinal tanto en el estado laminado como en las muestras tratadas térmicamente. Se estudiaron los comportamientos longitudinales y transversales en tracción y frente a impacto

  4. 77 FR 39629 - Certifications and Exemptions Under the International Regulations for Preventing Collisions at...

    Science.gov (United States)

    2012-07-05

    ... technical findings that the placement of lights on this vessel in a manner differently from that prescribed.... In Table Two by revising the entry for USS HARRY S. TRUMAN (CVN 75); 0 B. In Table Four, paragraph 22.... In Table Five by revising the entry for USS HARRY S. TRUMAN (CVN 75). Sec. 706.2 Certifications of...

  5. RS CV sub n binary systems

    International Nuclear Information System (INIS)

    Linsky, J.L.

    1984-01-01

    An attempt is made to place in context the vast amount of data obtained as a result of X-ray, ultraviolet, optical, and microwave observations of RS CVn and similar spectroscopic binary systems. Emphasis is on the RS CVn systems and their long period analogs. The following questions are considered: (1) are the original defining characteristics still valid and still adequate; (2) what is the evidence for discrete active regions; (3) have any meaningful physical properties for the atmospheres of RS CVn systems been derived; (4) what do the flare observations tell about magnetic fields in RS CVn systems; (5) is there evidence for systematic trends in RS CVn systems with spectral type

  6. 32 CFR 706.2 - Certifications of the Secretary of the Navy under Executive Order 11964 and 33 U.S.C. 1605.

    Science.gov (United States)

    2010-07-01

    ... SIDES FFG 14 1.6 USS ESTOCIN FFG 15 1.6 USS JOHN A. MOORE FFG 19 1.6 USS BOONE FFG 28 1.6 USS STEPHEN W... USS HARRY S TRUMAN CVN 75 30.02 1 1 0.56 USS RONALD REAGAN CVN 76 31.09 0.56 USS GEORGE H. W. BUSH CVN... USS ESTOCIN FFG 15 USS JOHN A. MOORE FFG 19 USS BOONE FFG 28 USS STEPHEN W. GROVES FFG 29 USS JOHN L...

  7. Fracture toughness correlations

    International Nuclear Information System (INIS)

    Wallin, Kim

    1986-09-01

    In this study existing fracture parameter correlations are reviewed. Their applicability and reliability are discussed in detail. A new K IC -CVN-correlation, based on a theoretical brittle fracture model, is presented

  8. Artificial neural networks using complex numbers and phase encoded weights.

    Science.gov (United States)

    Michel, Howard E; Awwal, Abdul Ahad S

    2010-04-01

    The model of a simple perceptron using phase-encoded inputs and complex-valued weights is proposed. The aggregation function, activation function, and learning rule for the proposed neuron are derived and applied to Boolean logic functions and simple computer vision tasks. The complex-valued neuron (CVN) is shown to be superior to traditional perceptrons. An improvement of 135% over the theoretical maximum of 104 linearly separable problems (of three variables) solvable by conventional perceptrons is achieved without additional logic, neuron stages, or higher order terms such as those required in polynomial logic gates. The application of CVN in distortion invariant character recognition and image segmentation is demonstrated. Implementation details are discussed, and the CVN is shown to be very attractive for optical implementation since optical computations are naturally complex. The cost of the CVN is less in all cases than the traditional neuron when implemented optically. Therefore, all the benefits of the CVN can be obtained without additional cost. However, on those implementations dependent on standard serial computers, CVN will be more cost effective only in those applications where its increased power can offset the requirement for additional neurons.

  9. Postirradiation notch ductility tests of ESR alloy HT-9 and modified 9Cr-1Mo alloy from UBR reactor experiments

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1984-01-01

    During this period, irradiation exposures at 300 0 C and 150 0 C to approx. 8 x 10 19 n/cm 2 , E > 0.1 MeV, were completed for the Alloy HT-9 plate and the modified Alloy 9Cr-1Mo plates, respectively. Postirradiation tests of Charpy-V (C/sub v/) specimens were completed for both alloys; other specimen types included in the reactor assemblies were fatigue precracked Charpy-V (PCC/sub v/), half-size Charpy-V, and in the case of the modified 9Cr-1Mo, 2.54 mm thick compact tension specimens

  10. Mode II brittle fracture: recent developments

    Directory of Open Access Journals (Sweden)

    A. Campagnolo

    2017-10-01

    Full Text Available Fracture behaviour of V-notched specimens is assessed using two energy based criteria namely the averaged strain energy density (SED and Finite Fracture Mechanics (FFM. Two different formulations of FFM criterion are considered for fracture analysis. A new formulation for calculation of the control radius Rc under pure Mode II loading is presented and used for prediction of fracture behaviour. The critical Notch Stress Intensity Factor (NSIF at failure under Mode II loading condition can be expressed as a function of notch opening angle. Different formulations of NSIFs are derived using the three criteria and the results are compared in the case of sharp V-notched brittle components under in-plane shear loading, in order to investigate the ability of each method for the fracture assessment. For this purpose, a bulk of experimental data taken from the literature is employed for the comparison among the mentioned criteria

  11. The effect of a free surface on fatigue crack behaviour

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2010-01-01

    Roč. 32, č. 8 (2010), s. 1265-1269 ISSN 0142-1123 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : Vertex singularity * Generalized stress intenzity factor * Stress singularity * Fatigue crack * V- notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010

  12. A new method for improving the reliability of fracture toughness surveillance of nuclear pressure vessel by neutron irradiated embrittlement

    International Nuclear Information System (INIS)

    Zhang Xinping; Shi Yaowu

    1992-01-01

    In order to obtain more information from neutron irradiated sample specimens and raise the reliability of fracture toughness surveillance test, it has more important significance to repeatedly exploit the broken Charpy-size specimen which had been tested in surveillance test. In this work, on the renewing design and utilization for Charpy-size specimens, 9 data of fracture toughness can be gained from one pre-cracked side-grooved Charpy-size specimen while at the preset usually only 1 to 3 data of fracture toughness can be obtained from one Chharpy-size specimen. Thus, it is found that the new method would obviously improve the reliability of fracture toughness surveillance test and evaluation. Some factors which affect the reasonable design of pre-cracked deep side-groove Charpy-size compound specimen have been discussed

  13. 46 CFR 54.05-5 - Toughness test specimens.

    Science.gov (United States)

    2010-10-01

    ... shown in Figure 4 of the specification. Special attention is drawn to the fact that the Charpy Keyhole....090-inch. In preparing weld specimens for dropweight testing, weld reinforcement shall be ground flush...

  14. The Mechanics of Failure at Connections: Size Effects and Scaling

    National Research Council Canada - National Science Library

    Needleman, Alan

    2005-01-01

    ... out. The accomplishments under this grant include: 1. showing that the ductile-brittle transition temperature for welds as measured in the Charpy impact test is a structural not a material property; 2...

  15. Application of tan h curve fitting to toughness data

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu

    1985-01-01

    Curve-fitting regression procedures for toughness data have been examined. The objectives of fitting curve in the context of the study of nuclear pressure vessel steels are (1) convenient summarization of test data to permit comparison of materials and testing methods; (2) development of statistical base concerning the data; (3) the surveying of the relationships between charpy data and fracture toughness data; (4) estimation of fracture toughness level from charpy absorbed energy data. The computational procedures using the tanh function have been applied to the toughness data (charpy absorbed energy, static fracture toughness, dynamic fracture toughness, crack arrest toughness) of A533B cl.1 and A508 cl.3 steels. The results of the analysis shows the statistical features of the material toughness and gives the method for estimating fracture toughness level from charpy absorbed energy data. (author)

  16. Dependence of hardness and impact energy on cooling time Δt8/5and temperature for S960QL

    OpenAIRE

    Samardžić, I.; Dunđer, M.; Vuherer, T.

    2015-01-01

    The paper deals with research into dependence of hardness and impact energy of thermal cycle simulated specimens of fine-grained structural steel S960QL on cooling time from 800 to 500 °C and on tested temperature. Results were obtained by measuring hardness of HV 10 and by experimental testing of Charpy notched tubes on instrumented Charpy hammer. Total impact energy, initiation energy and fracture propagation energy needed for occurrence of fracture is also elaborated. Key words:

  17. The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4+ cells

    CSIR Research Space (South Africa)

    Alexandre, Kabamba B

    2012-02-01

    Full Text Available It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit...

  18. Isolation and Characterization of Blue Green Algae from Egyptian ...

    African Journals Online (AJOL)

    meldemellawy

    2014-02-20

    Feb 20, 2014 ... cyanobacteria, where CV-N blocks HIV infection by binding to the .... chain reaction (RT-PCR) has become the most frequently-used, ..... Microbial ecology. 51(2):154-165. Rao PV, Gupta N, Bhaskar AS, Jayaraj R (2002).

  19. Swift observations of SDSS J141118.31+481257.6 during superoutburst

    Science.gov (United States)

    Rivera Sandoval, L. E.; Maccarone, T.

    2018-06-01

    We report on follow-up Swift observations of the AM CVn-type binary SDSS J141118.31+481257.6 (ATEL #11668, #11672). Based on ground based photometry, the re-brightening previous to the current superoutburst was reported on 2018-June-1 (https://www.aavso.org/aavso-alert-notice-636).

  20. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Home; Journals; Journal of Astrophysics and Astronomy; Volume 26; Issue 4. Volume 26, Issue 4. December 2005, pages 359-456. pp 359-376. Unravelling the Nature of HD 81032 – A New RS CVn Binary · J. C. Pandey K. P. Singh S. A. Drake R. Sagar · More Details Abstract Fulltext PDF.

  1. Composition of the Active Fleet, U.S. Navy, 1961-1985.

    Science.gov (United States)

    1980-12-01

    Amberjack SS 324 Blenny SS 523 Grampus SS 331 Bugara SS 524 Pickerel SS 337 Carbonero SS 525 Grenadier SS 338 Carp SS 550 Barracuda SS 339 Catfish SS...LKA 57 Bordelon DD 881 Carbonero SS 337 Borie DD 704 Carl Vinson CVN 70 Boston CA 69 Caroline County LST 525 Boston SSN 703 Caron DD 970 Botetourt LPA

  2. A cautionary tale of interpreting O-C diagrams

    DEFF Research Database (Denmark)

    Skarka, M.; Liska, J.; Dreveny, R.

    2018-01-01

    We present a comprehensive study of Z CVn, an RR Lyrae star that shows long-term cyclic variations of its pulsation period. A possible explanation suggested from the shape of the O-C diagram is the light travel-time effect, which we thoroughly examine. We used original photometric and spectroscop...

  3. P1-15: Categorical Color Perception of LED Illuminant Color for Deuteranomals

    Directory of Open Access Journals (Sweden)

    Saeko Oishi

    2012-10-01

    Full Text Available Color information has great value in our everyday lives, but it is not mindful of people with color vision deficiency (CVD. We can choose several color names to categorize a lot of colors around us. Eleven color names (white, black, red, green, yellow, blue, brown, orange, pink, and gray are known as basic color categories, but people with CVD cannot necessarily describe colors as people who are color vision normal (CVN do. Previous studies showed that it was hard for people with CVD to discriminate illuminant color from object color, and their color perception changed largely depending on experimental conditions. In this study we investigated categorical color perception of illuminant color for deuteranomals, using a mixture of light which consists of a red, a green, and a blue LED as a test stimulus. We tested those stimuli with three luminance levels (180 cd/m2, 18 cd/m2, 1.8 cd/m2 and two visual angles (10 deg, 0.5 deg. Subjects were three deuteranomals and three people who are CVN. Our result showed that the categorical color of mild deuteranomals was similar to that of those who were CVN, but that of severe deuteranomals was not. Severe deuteranomals judged more low chromatic colors as achromatic colors than those who were CVN. The smaller visual angle or lower luminance level the test stimulus had, the more deuteranomals confused color. The results suggest that the effect of the Bezold-Brucke phenomenon is greater to deuteranomals than to those who are CVN. Furthermore, deuteranomals use not only chromatic information but also luminance information when they describe color.

  4. Effect of potential factors in manufacturing process on mechanical properties of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Tanigawa, Hisashi; Hirose, Takanori [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2014-10-15

    Highlights: • Effects of hot forging and cooling method on mechanical properties were studied. • Differences, inhomogeneity, and anisotropy in tensile and Charpy impact properties were observed for plates with a lower hot forging level. • No significant difference was observed in tensile and Charpy impact properties between air cooled and water quenched samples. - Abstract: A DEMO reactor requires over 3500 tons of reduced activation ferritic/martensitic steel. To prepare such a large quantity of the material with appropriate mechanical properties, it is important to study the effect of various factors in the manufacturing process for mass production. In our work, we focused on the effects of hot forging and the cooling method after normalizing, which have not been previously studied. Plates with three different thicknesses were fabricated from slabs with two different hot forging reduction ratios, and the tensile and Charpy impact properties were evaluated for each of these plates. The plates made using a lower hot forging reduction ratio had different tensile properties, and inhomogeneity and anisotropy were observed in the Charpy impact test results. These results indicate that the hot forging operation to which the ingot is initially subjected must be sufficiently high to ensure that the appropriate mechanical properties are achieved. To test the effect of the cooling method, plates cooled in air and those quenched in water after normalizing were prepared, and tensile and Charpy impact tests were performed on these plates. No significant differences were observed indicating that air cooling is sufficient to obtain the appropriate mechanical properties.

  5. Effect of Microstructures and Tempering Heat Treatment on the Mechanical Properties of 9Cr-2W Reduced-Activation Ferritic-Martensitic Steel

    International Nuclear Information System (INIS)

    Park, Min-Gu; Kang, Nam Hyun; Moon, Joonoh; Lee, Tae-Ho; Lee, Chang-Hoon; Kim, Hyoung Chan

    2015-01-01

    The aim of this study was to investigate the effect of microstructures (martensite, ferrite, or mixed ferrite and martensite) on the mechanical properties. Of particular interest was the Charpy impact results for 9Cr-2W reduced-activation ferritic-martensitic (RAFM) steels. Under normalized conditions, steel with martensitic microstructure showed superior tensile strength and Charpy impact results. This may result from auto-tempering during the transformation of martensite. On the other hand, both ferrite, and ferrite mixed with martensite, showed unusually poor Charpy impact results. This is because the ferrite phases, and coarse M_23C_6 carbides at the ferrite-grain boundaries acted as cleavage crack propagation paths, and as preferential initiation sites for cleavage cracks, respectively. After the tempering heat treatment, although tensile strength decreased, the energy absorbed during the Charpy impact test drastically increased for martensite, and ferrite mixed with martensite. This was due to the tempered martensite. On the other hand, there were no distinctive differences in tensile and Charpy impact properties of steel with ferrite microstructure, when comparing normalized and tempered conditions.

  6. Different approaches to estimation of reactor pressure vessel material embrittlement

    Directory of Open Access Journals (Sweden)

    V. M. Revka

    2013-03-01

    Full Text Available The surveillance test data for the nuclear power plant which is under operation in Ukraine have been used to estimate WWER-1000 reactor pressure vessel (RPV material embrittlement. The beltline materials (base and weld metal were characterized using Charpy impact and fracture toughness test methods. The fracture toughness test data were analyzed according to the standard ASTM 1921-05. The pre-cracked Charpy specimens were tested to estimate a shift of reference temperature T0 due to neutron irradiation. The maximum shift of reference temperature T0 is 84 °C. A radiation embrittlement rate AF for the RPV material was estimated using fracture toughness test data. In addition the AF factor based on the Charpy curve shift (ΔTF has been evaluated. A comparison of the AF values estimated according to different approaches has shown there is a good agreement between the radiation shift of Charpy impact and fracture toughness curves for weld metal with high nickel content (1,88 % wt. Therefore Charpy impact test data can be successfully applied to estimate the fracture toughness curve shift and therefore embrittlement rate. Furthermore it was revealed that radiation embrittlement rate for weld metal is higher than predicted by a design relationship. The enhanced embrittlement is most probably related to simultaneously high nickel and high manganese content in weld metal.

  7. Progress Report on Alloy 617 Notched Specimen Testing

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrey, Michael David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard Neil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lillo, Thomas Martin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    Creep behavior of Alloy 617 has been extensively characterized to support the development of a draft Code Case to qualify Alloy 617 in Section III division 5 of the ASME Boiler and Pressure Vessel Code. This will allow use of Alloy 617 in construction of nuclear reactor components at elevated temperatures and longer periods of time (up to 950°C and 100,000 hours). Prior to actual use, additional concerns not considered in the ASME code need to be addressed. Code Cases are based largely on uniaxial testing of smooth gage specimens. In service conditions, components will generally be under multi axial loading. There is also the concern of the behavior at discontinuities, such as threaded components. To address the concerns of multi axial creep behavior and at geometric discontinuities, notched specimens have been designed to create conditions representative of the states that service components experience. Two general notch geometries have been used for these series of tests: U notch and V notch specimens. The notches produce a tri axial stress state, though not uniform across the specimen. Characterization of the creep behavior of the U notch specimens and the creep rupture behavior of the V notch specimens provides a good approximation of the behavior expected of actual components. Preliminary testing and analysis have been completed and are reported in this document. This includes results from V notch specimens tested at 900°C and 800°C. Failure occurred in the smooth gage section of the specimen rather than at the root of the notch, though some damage was present at the root of the notch, where initial stress was highest. This indicates notch strengthening behavior in this material at these temperatures.

  8. Temperature and heat effects on polyethylene behaviour in the presence of imperfections

    Directory of Open Access Journals (Sweden)

    Murariu Alin Constantin

    2016-01-01

    Full Text Available This paper highlights the changes of polyethylene behaviour during various loading rate as well as the influence of test temperature on the material characteristics. Passive infrared thermography (IRT method and a high speed infrared camera were used to observe the temperature changes of the sample surface during the tests. The experimental program was carried out on samples taken from PE80 polyethylene gas pipes with simulated imperfections with bilateral V-notch, U-notch and central hole. Samples have been tensile tested (TT and the results are correlated with the temperature distribution of the samples surface.

  9. Influence of process parameters on the weld lines of a micro injection molded component

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2007-01-01

    The insufficient entanglement of the molecular chains and the stress amplification at the v-notch of a weld line compromise the mechanical strength of a plastic product, also in the micro scale. To investigate the influence of process parameters on the weld lines formation, a special micro cavity...... was designed and manufactured by µEDM (Electro Discharge Machining). Weld lines were quantitatively characterized both in the two-dimensional (direction and position) and three-dimensional range (surface topography characterization). Results showed that shape and position of weld lines are mainly influenced...

  10. Correction factors for safe performance of API X65 pipeline steel

    International Nuclear Information System (INIS)

    Hashemi, Sayyed H.

    2009-01-01

    Prediction of required Charpy energy for fracture arrest is vital for safe performance of gas transportation pipelines. This is commonly estimated through failure models calibrated in the past on fracture data from combined Charpy tests and full-thickness burst experiments. Unfortunately, such pipeline failure models are unable to correctly predict the minimum arrest toughness of thermo-mechanical controlled rolled (TMCR) steels. To refine the existing failure models, different empirical adjustments have been proposed in recent years. In this paper, similar correction factors were derived from fracture information of instrumented Charpy impact tests on API X65 steel. The contribution of different fracture mechanisms of impact test specimens was determined through energy partitioning analysis. Parts of the energy contribution were correlated then to the source of uncertainty observed in similar experiments. The applied technique was similar to that of previous studies on X70 and X100 steels, and proved to be encouraging in giving consistent results compared to available test data.

  11. Physical and mechanical properties of cast 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Rack, H.J.

    1981-02-01

    The physical and mechanical properties of an overaged 17-4 PH stainless steel casting have been examined. The tensile and compressive properties of cast 17-4 PH are only influenced to a slight degree by changing test temperature and strain rate. However, both the Charpy impact energy and dynamic fracture toughness exhibit a tough-to-brittle transition with decreasing temperature - this transition being related to a change in fracture mode from ductile, dimple to cleavage-like. Finally, although the overaged 17-4 PH casting had a relatively low room temperature Charpy impact energy when compared to wrought 17-4 PH, its fracture toughness was at least comparable to that of wrought 17-4 PH. This observation suggests that prior correlations between Charpy impact energies and fracture toughness, as derived from wrought materials, must be approached with caution when applied to cast alloys

  12. Belgian Contribution to the IAEA CRP-IV Programme on Assuring Structural Integrity of Reactor Pressure Vessel

    International Nuclear Information System (INIS)

    Van Walle, E.; Chaouadi, R.; Scibetta, M.; Puzzolante, J.L.; Fabry, A.; Van de Velde, J.

    1997-10-01

    This report contains the actual status of the Belgian contribution to the IAEA CRP-IV program. Besides Charpy-V impact tests on as-received CRP-IV JRQ-specimens, fracture toughness tests were performed on two geometries: PCCV-specimens and CRB-specimens. The Charpy-V impact results correspond very well with the as-received CRP-III results. The fracture toughness data are also very consistent with identical tests recently performed on remaining as-received CRP-III material. Irradiated broken Charpy-V samples were reconstituted and tested in PCCV-mode. This was done in order to investigate the evolution of the ASME-curve versus the evolution of the mastercurve with irradiation. Initial results were reported. A new CHIVAS-irradiation in the CALLISTO-loop of the BR-2-reactor to support this investigation, is under preparation

  13. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Park, Min-Gu [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Lee, Chang-Hoon, E-mail: lee1626@kims.re.kr [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho [Korea Institute of Materials Science, Changwon 642-831 (Korea, Republic of); Kang, Namhyun [Pusan National University, Busan 609-735 (Korea, Republic of); Chan Kim, Hyoung [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2017-03-15

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M{sub 23}C{sub 6} carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20–100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M{sub 23}C{sub 6} carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  14. Effect of rhenium and osmium on mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Sokolov, M.A.

    2000-01-01

    The nuclear transmutation of tungsten to rhenium and osmium in a tungsten-containing steel irradiated in a fission or fusion reactor will change the chemical composition of the steel. To determine the possible consequences of such compositional changes on the mechanical properties, tensile and Charpy impact properties were measured on five 9Cr-2W-0.25V-0.07Ta-0.1C steels that contained different amounts of rhenium, osmium, and tungsten. The mechanical properties changes caused by these changes in composition were minor. Observations were also made on the effect of carbon concentration. The effect of carbon on tensile behavior was minor, but there was a large effect on Charpy properties. Several of the steels showed little effect of tempering temperature on the Charpy transition temperature, a behavior that was tentatively attributed to the low silicon and/or manganese concentration of the experimental steels

  15. Mechanical properties test data of Alloy 718 for liquid metal fast breeder reactor applications

    International Nuclear Information System (INIS)

    Korth, G.E.

    1983-01-01

    Mechanical property test data are reported for Alloy 718 with two heat treatments: conventional heat treatment (CHT) for base metal and Idaho National Engineering Laboratory (INEL) heat treatment (IHT) for base and weld metal. Tests were conducted in air from 24 to 704 degree C and include elastic properties (Young's modulus, shear modulus, Poisson's ratio), tensile properties, creep-rupture properties, fatigue properties, creep-fatigue properties, and Charpy impact behavior. Effects of long term thermal aging at 538, 593, 649, and 704 degree C for times to 25,000 h are also reported for CHT material (tensile, creep-rupture, fatigue, and Charpy), and IHT material (tensile, and Charpy). 18 refs., 63 figs., 36 tabs

  16. Ultra low carbon bainitic (ULCB) steels after quenching and tempering

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Kolan, C.; Jeziorski, L.

    1998-01-01

    The mechanical and Charpy V impact strength properties of new advanced ultra low carbon bainitic (ULBC) steels after water quenching and tempering (WQT) have been investigated. Their chemical compositions are given. The nine continuous cooling transformation diagrams (CCT) of the new ULCB steel grades have been established. The CCT diagrams for ULCB N i steels containing 9% Ni - grade 10N9 and 5% Ni - grade HN5MVNb are given. The comparison between CCT diagrams of 3.5%Ni + 1.5%Cu containing steels grade HSLA 100 and HN3MCu is shown. The effect of the increase in carbon and titanium contents in the chemical composition of ULCB M n steels 04G3Ti, 06G3Ti and 09G3Ti on the kinetics of phase transformations during continuous cooling is presented by the shifting CCT diagrams. The Charpy V impact strength and brittle fracture occurence curves are shown. The effect of tempering temperature on tensile properties of WQT HN3MCu steel is shown and Charpy V impact strength curves after different tempering conditions are shown. The optimum tempering temperatures region of HN3MCu steel for high Charpy V impact toughness at law temperatures - 80 o C(193 K) and -120 o C(153 K) is estimated. The effect of tempering temperature on mechanical properties of HN5MVNb steel is given. The low temperature impact Charpy V toughness of HN5MVNb steel is shown. The optimum range of tempering temperature during 1 hour for high toughness of WQT HN5MVNb steel is given. HN3MCu and HN5MVNb steels after WQT have high yield strength YS≥690 MPa and high Charpy V impact toughness KV≥80 J at -100 o C (173K) and KCV≥50 J/cm 2 at - 120 o C (153K) so they may be used for cryogenic applications

  17. Ductile to Brittle Transition Behaviour of HSLA-65 Steel Welds: Dynamic Tear Testing

    Science.gov (United States)

    2011-01-01

    soumises aux essais ne s’est avérée apte au service dans des conditions arctiques. DRDC Atlantic TM 2010-220 iii Executive summary...de transition obtenues antérieurement à l’aide de l’essai de choc Charpy. Un objectif secondaire de la présente étude consistait à comparer la méthode...dynamique de résistance à l’arrachement sont beaucoup plus élevées que celles obtenues à l’aide de l’essai de choc Charpy, ce qui appuie l’exigence

  18. Testing of irradiated and annealed 15H2MFA materials

    International Nuclear Information System (INIS)

    Gillemot, F.; Uri, G.

    1994-01-01

    A set of surveillance samples made from 15H2MFA material has been studied in the laboratory of AEKI. Miniature notched tensile specimens were cut from some remnants of irradiated and broke surveillance charpy remnants. The Absorbed Specific Fracture Energy (ASFE) was measured on the specimens. A cutting machine and testing technique were elaborated for the measurements. The second part of the Charpy remnants was annealed at 460 deg. C and 490 deg. C for 6-8 hours. The specimens were tested similarity and the results were compared. (author). 5 refs, 9 figs

  19. Holistic Evaluation of Lightweight Operating Systems using the PERCU Method

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; He, Yun (Helen); Carter, Jonathan; Glenski, Joseph; Rippe, Lynn; Cardo, Nicholas

    2008-05-01

    The scale of Leadership Class Systems presents unique challenges to the features and performance of operating system services. This paper reports results of comprehensive evaluations of two Light Weight Operating Systems (LWOS), Cray's Catamount Virtual Node (CVN) and Linux Environment (CLE) operating systems, on the exact same large-scale hardware. The evaluation was carried out over a 5-month period on NERSC's 19,480 core Cray XT-4, Franklin, using a comprehensive evaluation method that spans Performance, Effectiveness, Reliability, Consistency and Usability criteria for all major subsystems and features. The paper presents the results of the comparison between CVN and CLE, evaluates their relative strengths, and reports observations regarding the world's largest Cray XT-4 as well.

  20. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients....

  1. Stellar astrophysics

    International Nuclear Information System (INIS)

    1987-01-01

    A number of studies in the field of steller astrophysics were undertaken by the South African Astronomical Observatory in 1986. These studies included; evolutionary effects on the surface abundances of an early-type supergiant; hydrogen deficient stars; t tauri stars; rotational modulation and flares on RS CVn and BY Dra stars; carbon and heavy element stars, and slow variability and circumstellar shells of red variable stars. 4 figs

  2. INTEGRAL/JEM-X detection of fading emission from GT Mus

    DEFF Research Database (Denmark)

    Fiocchi, M.; Chenevez, J.; Sguera, V.

    2015-01-01

    On November 15th 2015 the MAXI/GSC detected a big flare from the RS CVn star GT Mus with a flux of ~100 mCrab in the 2-20 keV energy band. (ATel #8285). During recent INTEGRAL observations of the Musca region performed between 17 Nov 16:08 and 18 Nov 00:05 (UTC) the source GT Mus was within the f...

  3. Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N.

    Science.gov (United States)

    Drake, Pascal M W; de Moraes Madeira, Luisa; Szeto, Tim H; Ma, Julian K-C

    2013-12-01

    The marshmallow plant (Althaea officinalis L.) has been used for centuries in medicine and other applications. Valuable secondary metabolites have previously been identified in Agrobacterium rhizogenes-generated transgenic 'hairy' roots in this species. In the present study, transgenic roots were produced in A. officinalis using A. rhizogenes. In addition to wild-type lines, roots expressing the anti-human immunodeficiency virus microbicide candidate, cyanovirin-N (CV-N), were generated. Wild-type and CV-N root lines were transferred to liquid culture and increased in mass by 49 and 19 % respectively over a 7 day culture period. In the latter, the concentration of CV-N present in the root tissue was 2.4 μg/g fresh weight, with an average secretion rate into the growth medium of 0.02 μg/ml/24 h. A. officinalis transgenic roots may therefore in the future be used not only as a source of therapeutic secondary metabolites, but also as an expression system for the production of recombinant pharmaceuticals.

  4. Investigation of eclipsing binary stars exhibiting calcium II emission

    International Nuclear Information System (INIS)

    Oliver, J.P.

    1974-01-01

    Three color photometry of some eclipsing binaries showing Calcium II emission is reported. A highly stable and accurate d.c. amplifier, and a new type digital averaging system are described. Past and current light curves of SS Boo, RS CVn, WY Cnc, WW Dra, UV Psc, Z Her, SS Cam, RW UMa, AR Lac, and RT Lac are discussed with particular emphasis on asymmetries in the heights of the maxima and variations in the depths of the minima. Both RS CVn and SS Boo show nearly sinusoidal variation outside eclipse. Spectra of SS Boo and RS CVn are discussed. The suggestion is made that many of these systems belong to a new category of variable eclipsing binary star. It is pointed out that most double line eclipsing binaries with late-type sub-giant secondary components fall into this group, and that many of the characteristics of this group are not easily explained on the basis of existing data and theory. Possible models are discussed and the need for future photometric and spectroscopic study is emphasized. (U.S.)

  5. Transition Fracture Toughness Characterization of Eurofer 97 Steel using Pre-Cracked Miniature Multi-notch Bend Bar Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sokolov, Mikhail A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, Kory D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clowers, Logan N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    In this report, we present the feasibility study of using pre-cracked miniature multi-notch bend bar specimens (M4CVN) with a dimension of 45mm (length) x 3.3mm (width) x 1.65mm (thickness) to characterize the transition fracture toughness of Eurofer97 based on the ASTM E1921 Master Curve method. From literature survey results, we did not find any obvious specimen size effects on the measured fracture toughness of unirradiated Eurofer97. Nonetheless, in order to exclude the specimen size effect on the measured fracture toughness of neutron irradiated Eurofer97, comparison of results obtained from larger size specimens with those from smaller size specimens after neutron irradiation is necessary, which is not practical and can be formidably expensive. However, limited literature results indicate that the transition fracture toughness of Eurofer97 obtained from different specimen sizes and geometries followed the similar irradiation embrittlement trend. We then described the newly designed experimental setup to be used for testing neutron irradiated Eurofer97 pre-cracked M4CVN bend bars in the hot cell. We recently used the same setup for testing neutron irradiated F82H pre-cracked miniature multi-notch bend bars with great success. Considering the similarity in materials, specimen types, and the nature of tests between Eurofer97 and F82H, we believe the newly designed experimental setup can be used successfully in fracture toughness testing of Eurofer97 pre-cracked M4CVN specimens.

  6. Annealing effects in low upper-shelf welds (series 9)

    International Nuclear Information System (INIS)

    Iskander, S.K.; Nanstad, R.K.

    1995-01-01

    The purpose of the Ninth Irradiation Series is to evaluate the correlation between fracture toughness and CVN impact energy during irradiation, annealing, and reirradiation (IAR). Results of annealing CVN specimens from the low-USE welds from the Midland beltline and nozzle course welds, as well as HSST plate 02 and HSSI weld 73W are given. Also presented is the effect of annealing on the initiation fracture toughness of annealed material from Midland beltline weld and HSST plate 02. The results from capsule 10-5 specimens of weld 73W confirm those previously obtained on the so-called undersize specimens that were irradiated in the Fifth Irradiation Series, namely that the recovery due to annealing at 343 degrees C (650 degrees F) for 1 week is insignificant. The fabrication of major components for the IAR facility for two positions on the east side of the FNR at the University of Michigan has begun. Fabrication of two reusable capsules (one for temperature verification and the other for dosimetry verification), as well as two capsules for IAR, studies is also under way. The design of a reusable capsule capable of reirradiating previously irradiated and annealed CVN and 1T C(T) specimens is also progressing. The data acquisition and control (DAC) instrumentation for the first two IAR facilities is essentially complete and awaiting completion of the IAR facilities and temperature test capsule for checkout and control algorithm development

  7. Analysis and tests of TF magnet insulation samples for the JET upgrade to 4 tesla

    CERN Document Server

    Miele, P; Bettinali, L; Kaye, A; Last, J; Papastergiou, S; Riccardo, V; Visca, E

    2000-01-01

    The JET Toroidal Field (TF) coils were originally designed for operation at 3.4 tesla. In order to upgrade the field to 4 tesla and thus improve the performance of the JET machine, new mechanical tests and analysis were carried out on the insulation of TF coil samples. They are aimed at investigating the mechanical properties and the status of the insulation in order to set allowable stresses and force limits. In particular since the shear stress in the insulation is strongly affected by the shear modulus of elasticity G, it is important to measure this parameter. A method for the measurement of G in glass-resin fibres, the V-notched beam method (Iosipescu method) , was applied. The particular shape of the rectangular Iosipescu V- notched sample and the particular modality of force application produce pure shear stress for a reliable measurement of the G value and of the shear strength of the insulation. The effect of temperature on these mechanical properties was also investigated. Results show higher averag...

  8. Weldability investigation steel P 91 by weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2015-07-01

    Full Text Available This paper elaborates results of hardness and impact energy of thermal cycle simulated specimens of high-alloy steel P 91 and their dependence on cooling time from 800 to 500 °C. Results were obtained by measuring hardness HV 1 and by experimental testing of Charpy notched specimens. Metallographic analysis of samples was performed on scanning electronic microscope.

  9. Small specimen measurements of dynamic fracture toughness of heavy section steels for nuclear pressure vessel

    International Nuclear Information System (INIS)

    Tanaka, Y.; Iwadate, T.; Suzuki, K.

    1987-01-01

    This study presents the dynamic fracture toughness properties (KId) of 12 heats of RPV steels measured using small specimens and analysed based on the current research. The correlation between the KId test and other engineering small specimen tests such as Charpy test and drop weight test are also discussed and a method to predict the KId value is presented. (orig./HP)

  10. Effects of Thermal Aging on Microstructure and Impact Properties of 316LN Stainless Steel Weld

    Directory of Open Access Journals (Sweden)

    LUO Qiang

    2017-12-01

    Full Text Available To study the thermal aging of nuclear primary pipe material 316LN stainless steel weld, accelerated thermal aging experiment was performed at 400℃ for 15000h. Microstructure evolution of weld after aging was investigated by TEM and HREM. Impact properties of weld thermally aged at different time was measured by Charpy impact test. Meanwhile, taking Charpy impact energy as the standard of thermal aging embrittlement, the thermal kinetics formula was obtained by the fitting method. Finally, the Charpy impact properties of the weld during 60 years of service at the actual operation temperature were estimated by the thermal kinetics formula. The results indicate that the spinodal decomposition occurs in the ferrite of the weld after thermal aging at 400℃ for 1000h, results in α (Fe-rich and α'(Cr-rich phases, and meanwhile, the G-phase is precipitated in the ferrite; the spinodal decomposition and the G-phase precipitation lead to the decrease in the impact energy of weld as time prolongs; the prediction results show that the Charpy impact energy of weld decreases quickly in the early 25 years, and then undergoes a slow decrease during the subsequent operation process.

  11. Pressurized-thermal-shock experiments with thick vessels

    International Nuclear Information System (INIS)

    Bryan, R.H.; Nanstad, R.K.; Merkle, J.G.; Robinson, G.C.; Whitman, G.D.

    1986-01-01

    Information is provided on the series of pressurized-thermal-shock experiments at the Oak Ridge National Laboratory, motivated by a concern for the behavior of flaws in reactor pressure vessels having welds or shells exhibiting low upper-shelf Charpy impact energies, approx. 68J or less

  12. Development of Reconstitution Technology for Surveillance Specimens

    International Nuclear Information System (INIS)

    Yasushi Atago; Shunichi Hatano; Eiichiro Otsuka

    2002-01-01

    The Japan Power Engineering and Inspection Corporation (JAPEIC) has been carrying out the project titled 'Nuclear Power Plant Integrated Management Technology (PLIM)' consigned by Japanese Ministry of Economy, Trade and Industry (METI) since 1996FY as a 10-years project. As one of the project themes, development of reconstitution technology for reactor pressure vessel (RPV/RV) surveillance specimens, which are installed in RPVs to monitor the neutron irradiation embrittlement on RPV/RV materials, is now on being carried out to deal with the long-term operation of nuclear power plants. The target of this theme is to establish the technical standard for applicability of reconstituted surveillance specimens including the reconstitution of the Charpy specimens and Compact Tension (CT) specimens. With the Charpy specimen reconstitution, application of 10 mm length inserts is used, which enables the conversion of tests from the LT-direction to the TL-direction. This paper presents the basic data from Charpy and CT specimens of RPV materials using the surveillance specimens obtained for un-irradiated materials including the following. 1) Reconstitution Technology of Charpy Specimens. a) The interaction between plastic zone and Heat Affected Zone (HAZ). b) The effects of the possible deviations from the standard specimens for the reconstituted specimens. 2) Reconstitution Technology of CT specimens. a) The correlation between fracture toughness and plastic zone width. Because the project is now in progress, this paper describes the outline of the results obtained as of the end of 2000 FY. (authors)

  13. Atucha I nuclear power plant surveillance programme

    Energy Technology Data Exchange (ETDEWEB)

    Jinchuk, D [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1994-12-31

    After a review of the main characteristics of the Atucha I nuclear power plant and its pressure vessel, the embrittlement surveillance capsules and the irradiation conditions are described; Charpy impact tests and tensile tests were performed on the irradiated samples, and results are discussed and compared to theoretical calculations: transition temperature shifts, displacement per atom values. 6 refs., 16 figs., 7 tabs.

  14. Study about the structural behavior of WStE-36N steel

    International Nuclear Information System (INIS)

    Santos Pinto, M. dos; Trindade, M.B.

    1985-01-01

    The influence of a stress relaxation heat treatment in welding done by submerged-arc-welding is studied. This influence was studied in a structural steel, WStE-36N, niobium alloy, made in Brazil, through Charpy V test, hardness measurements, micro-structural aspects and X-ray diffraction. (E.G.) [pt

  15. Influence of low shear mixing settings on the mechanical properties of long glass fibre polypropylene

    NARCIS (Netherlands)

    de Bruijn, Thomas A.; Vincent, Guillaume Almire; van Hattum, Ferrie

    2017-01-01

    The influence of several mixing settings on the mechanical properties were studied. A Long fibre thermoplastic glass polypropylene material was mixed, compression moulded and analysed by flexural tests and charpy impact. In a low-shear mixing machine, chosen for limited fibre length degradation, six

  16. Fractographic and microstructural aspects of fracture toughness testing in irradiated 304 stainless steel

    International Nuclear Information System (INIS)

    Cullen, W.H.; Hiser, A.L.; Hawthorne, J.R.; Abramczyk, G.A.; Caskey, G.R.

    1987-01-01

    Fracture toughness and Charpy impact test results on 304 stainless steel baseplate, weld and heat-affected zone (HAZ) tested at 25 0 C and 125 0 C are correlated with the microstructural and fractographic features observed in these materials. Specimens were collected from several sections of 12.7 mm (0.5 in.) wall thickness piping removed from a process system, and were characterized by different material chemistries and thermomechanical histories. As a result, mechanical properties vary over a considerable range from one pipe section to another. The presence of delta ferrite in some of the samples caused significant degradations in the toughness properties for certain crack orientations. Decreases in Charpy impact energies occur in the same material for different crack orientations. Materials irradiated showed 40% decreases in Charpy impact energy, but little change in fracture morphology. An increase in the test temperature resulted in an expected increase in Charpy energies for all materials. Fractographic features did not change appreciably with respect to the 100 0 C increase in test temperature. In unirradiated specimens, a test temperature increase caused lower J/sub Ic/ and J-R curve values with tearing modules values increased. The latter is due to the large decreases in tensile strength with increasing test temperature. The weld metals tend to have the highest tearing resistance, while the HAZ's tend to have the lowest. 30 figs., 3 tabs

  17. Microstructural and mechanical characterization of the ferritic martensitic steel eurofer'97 after simulated service conditions

    International Nuclear Information System (INIS)

    Fernandez, P.; Lancha, A. M.; Lapena, J.

    2002-01-01

    This report details the metallurgical characterization of the Eurofer'97 steel thermally aged in the range of temperatures from 400 degree centigrade to 600 degree centigrade up to 10000 H, microstructural studies and mechanical testing (hardness, tensile, Charpy and low cycle fatigue test) have been carried out

  18. Atucha I nuclear power plant surveillance programme

    International Nuclear Information System (INIS)

    Jinchuk, D.

    1993-01-01

    After a review of the main characteristics of the Atucha I nuclear power plant and its pressure vessel, the embrittlement surveillance capsules and the irradiation conditions are described; Charpy impact tests and tensile tests were performed on the irradiated samples, and results are discussed and compared to theoretical calculations: transition temperature shifts, displacement per atom values. 6 refs., 16 figs., 7 tabs

  19. Mechanical characterization of raw material quality and its implication for Early Upper Palaeolithic Moravia

    Czech Academy of Sciences Publication Activity Database

    Monik, M.; Hadraba, Hynek

    2016-01-01

    Roč. 425, DEC (2016), s. 425-436 ISSN 1040-6182 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Charpy impact test * Microhardness * Early Upper Palaeolithic * Moravia * Lithics Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.199, year: 2016

  20. The fracture behaviour and its predicion based on the local approach

    Czech Academy of Sciences Publication Activity Database

    Kozák, Vladislav; Dlouhý, Ivo; Holzmann, Miloslav

    č. 212 (2002), s. 67-73 ISSN 0029-5493 R&D Projects: GA ČR GA101/00/0170 Institutional research plan: CEZ:AV0Z2041904 Keywords : container for spent nuclear fuel * fracture toughness -charpy pre cracked specimen Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.386, year: 2002

  1. Monitoring of irradiation effects on the pressure vessel steels of Calder, Chapelcross and Windscale Advanced Gas Cooled Reactor (WAGR) nuclear reactors

    International Nuclear Information System (INIS)

    Turner, F.

    1980-01-01

    Tensile, Charpy and bend specimens of plate, forging and weld metal are exposed in the lower and upper zones of the reactors to neutron fluxes covering the range experienced by the vessels. The test conditions are described, the results presented and discussed. (author)

  2. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1996-01-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  3. The effect of the accelerated aging on the mechanical properties of the PMMA denture base materials modified with itaconates

    Directory of Open Access Journals (Sweden)

    Spasojević Pavle M.

    2011-01-01

    Full Text Available This study evaluated the effect of accelerated ageing on the tensile strength, elongation at break, hardness and Charpy impact strength in commercial PMMA denture base material modified with di-methyl itaconate (DMI and di-n-butyl itaconate (DBI. The samples were prepared by modifying commercial formulation by addition of itaconates in the amounts of 2.5, 5, 7.5 and 10% by weight. After polymerization samples were characterized by FT-IR and DSC analysis while residual monomer content was determined by HPLC-UV. Accelerated ageing was performed at 70°C in water for periods of 7, 15 and 30 days. Tensile measurements were performed using Instron testing machine while the hardness of the polymerized samples was measured by Shore D method. The addition of itaconate significantly reduces the residual MMA. Even at the small amounts of added itaconates (2.5% the residual MMA content was reduced by 50%. The increase of itaconate content in the system leads to the decrease of residual MMA. It has been found that the addition of di-n-alkyl itaconates decreases the tensile strength, hardness and Charpy impact strength and increases elongation at break. Samples modified with DMI had higher values of tensile strength, hardness and Charpy impact strength compared to the ones modified with DBI. This is explained by the fact that DBI has longer side chain compared to DMI. After accelerated ageing during a 30 days period the tensile strength decreased for all the investigated samples. The addition of DMI had no effect on the material ageing and the values for the tensile strength of all of the investigated samples decreased around 20%, while for the samples modified with DBI, the increase of the amount of DBI in the polymerized material leads to the higher decrease of the tensile strength after the complete accelerated ageing period od 30 days, aulthough after the first seven days of the accelerated ageing the values of hardness have increased for all of the

  4. Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies

    KAUST Repository

    Bulí ček, Miroslav; Má lek, Josef; Rajagopal, K. R.; Walton, Jay R.

    2015-01-01

    © 2015, Springer-Verlag Berlin Heidelberg. The main purpose of this study is to establish the existence of a weak solution to the anti-plane stress problem on V-notch domains for a class of recently proposed new models that could describe elastic materials in which the stress can increase unboundedly while the strain yet remains small. We shall also investigate the qualitative properties of the solution that is established. Although the equations governing the deformation that are being considered share certain similarities with the minimal surface problem, the boundary conditions and the presence of an additional model parameter that appears in the equation and its specific range makes the problem, as well as the result, different from those associated with the minimal surface problem.

  5. Fracture toughness of Dy123 low porosity bulks at liquid nitrogen temperature

    International Nuclear Information System (INIS)

    Murakami, A.; Otaka, K.; Miura, T.; Iwamoto, A.

    2011-01-01

    Fracture toughness values were measured for Dy123 bulks. Fracture toughness was improved by reducing porosity. Fracture toughness values at 77 K were higher than those at room temperature. Fracture toughness was also improved by Ag addition. In order to evaluate the fracture toughness of DyBa 2 Cu 3 O x (Dy123) low porosity bulks, bending tests of V-notched specimens cut from the bulks were carried out. Fracture toughness evaluations of a conventional Dy123 bulk which had pores were also carried out and effects of elimination of pores on the fracture toughness were investigated. Fracture toughness values at 77 K of the low porosity bulks were higher than those of the porous bulk. These fracture toughness values at 77 K were higher than the values at room temperature. Fracture toughness of the low porosity bulk was improved by Ag addition.

  6. Existence of solutions for the anti-plane stress for a new class of “strain-limiting” elastic bodies

    KAUST Repository

    Bulíček, Miroslav

    2015-04-21

    © 2015, Springer-Verlag Berlin Heidelberg. The main purpose of this study is to establish the existence of a weak solution to the anti-plane stress problem on V-notch domains for a class of recently proposed new models that could describe elastic materials in which the stress can increase unboundedly while the strain yet remains small. We shall also investigate the qualitative properties of the solution that is established. Although the equations governing the deformation that are being considered share certain similarities with the minimal surface problem, the boundary conditions and the presence of an additional model parameter that appears in the equation and its specific range makes the problem, as well as the result, different from those associated with the minimal surface problem.

  7. RPV steel embrittlement: Damage modeling and micro-mechanics in an engineering perspective

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A; Walle, E V; Chaouadi, R; Wannijn, J P; Werstrepen, A; Puzzolante, J L; VanRansbeeck, T H; VandeVelde, J [Sofia Univ. (Bulgaria)

    1994-12-31

    A new, consolidated strategy for improved Light Water Reactor pressure vessel surveillance is proposed. The methodology includes statistical fracture mechanics and damage modeling, while taking maximum advantage of the data generated by conventional surveillance practices. Available reconstitution and miniaturization allow to implement such strategy with minimal material inventory. The themes of the paper are: general philosophy of Belgian surveillance R D program; ductile-brittle transition temperature by use of instrumented C{sub v} load-time traces; towards an enhanced surveillance practice by combined use of instrumented C{sub v} load-time traces and uniaxial tensile tests; constraint, size and strain rate effects for C{sub v} notch impact test. 109 refs., 27 figs.

  8. Quantifying Sediment Transport in a Premontane Transitional Cloud Forest

    Science.gov (United States)

    Waring, E. R.; Brumbelow, J. K.

    2013-12-01

    Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.

  9. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  10. Function and modulation of premotor brainstem parasympathetic cardiac neurons that control heart rate by hypoxia-, sleep-, and sleep-related diseases including obstructive sleep apnea.

    Science.gov (United States)

    Dergacheva, Olga; Weigand, Letitia A; Dyavanapalli, Jhansi; Mares, Jacquelyn; Wang, Xin; Mendelowitz, David

    2014-01-01

    Parasympathetic cardiac vagal neurons (CVNs) in the brainstem dominate the control of heart rate. Previous work has determined that these neurons are inherently silent, and their activity is largely determined by synaptic inputs to CVNs that include four major types of synapses that release glutamate, GABA, glycine, or serotonin. Whereas prior reviews have focused on glutamatergic, GABAergic and glycinergic pathways, and the receptors in CVNs activated by these neurotransmitters, this review focuses on the alterations in CVN activity with hypoxia-, sleep-, and sleep-related cardiovascular diseases including obstructive sleep apnea. © 2014 Elsevier B.V. All rights reserved.

  11. Integrity, behavior and proposal of CARA fuel irradiation with empty negative coefficient

    International Nuclear Information System (INIS)

    Marino, Armando C.; Brasnarof, Daniel O.; Demarco, Gustavo L.; Agueda, Horacio C.

    2007-01-01

    The main issues of the CARA fuel, CVN version, are its negative void reactivity coefficient and an extraction burnup of ∼20000 MWd/ton U. The analysis of the fuel rod behaviour, under the irradiation conditions of the Embalse, Atucha I and II NPPs, are the key to recognize their demanding under operation, to review the classic issues of the PHWR fuels and to prepare a programme of experimental irradiations in order to demonstrate the CARA concept, to assess the fuel integrity, to improve the performance and the enhancement of the safety margins. (author) [es

  12. Spectrophotometry of the Hα region in the spectrum of HR 1099 during the February 1978 radio flare

    International Nuclear Information System (INIS)

    Fraquelli, D.A.

    1978-01-01

    Spectrophotometry of the Hα emission line in the spectrum of HR 1099 (=HD 22468=V711 Tauri) was obtained during the radio flare of February 1978. The profiles observed during the flare have higher peak intensities and larger equivalent widths than profiles obtained outside of the flare at approximately the same orbital phases. Both the general shapes of the profiles and the equivalent widths appear to correlate with the radio flux. A preflare profile exhibits a flare-type profile, suggesting that radio outbursts in RS CVn systems may be preceded by Hα enhancement

  13. Observations of the Star Cor Caroli at the Apple Valley Workshop 2016 (Abstract)

    Science.gov (United States)

    Estrada, R.; Boyd, S.; Estrada, C.; Evans, C.; Rhoades, H.; Rhoades, M.; Rhoades, T.

    2017-12-01

    (Abstract only) Using a 22-inch Newtonian Alt/Az telescope and Celestron Micro Guide eyepiece, students participating in a workshop observed the binary star Cor Caroli (STF 1692; alpha CVn) and found a position angle of 231.0 degrees as well as an average separation of 18.7" This observation compared favorably with the 2015 Washington Double Star published position. This project was part of Mark Brewer's Apple Valley Double Star Workshop. The results were analyzed using bias and circle error probability calculations.

  14. RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris

    2009-01-01

    We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency α CE = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between ∼0.5 and 1 Gyr; the SDS between ∼2 and 3 Gyr; and the AM CVn between ∼0.8 and 0.6 Gyr depending on the assumed α CE . For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: ∼10 -4 yr -1 for the SDS and AM CVn, and ∼10 -3 yr -1 for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion given the current understanding of accreting WDs, either the

  15. Galactic binaries with eLISA

    OpenAIRE

    Nelemans, G.

    2013-01-01

    I review what eLISA will see from Galactic binaries -- double stars with orbital periods less than a few hours and white dwarf (or neutron star/black hole) components. I discuss the currently known binaries that are guaranteed (or verification) sources and explain why the expected total number of eLISA Galactic binaries is several thousand, even though there are large uncertainties in our knowledge of this population, in particular that of the interacting AM CVn systems. I very briefly sketch...

  16. PHOTOELECTRIC OBSERVATIONS OF HD 8358

    Directory of Open Access Journals (Sweden)

    Woo-Baik Lee

    1989-06-01

    Full Text Available UBV photoelectric observations of RS CVn type variable star HD 8358 were made using the 61cm reflector at Sobaeksan Astronomical Observatory. The data were obtained on 15 nights from October 1987 to December 1988. Double peaks of maximum light is seen from the light curve and continuous change of phase in notified from the times of maximum lights. The colors of October, 1987 - January, 1988 observations are bluer in ∆(b-u, but redder in ∆(u-b, than those of November -December, 1988 observations.

  17. Swift observations of SDSS J141118.31+481257.6 during its first detected outburst

    Science.gov (United States)

    Sandoval, L. E. Rivera; Maccarone, T.

    2018-05-01

    We report Swift observations of the AM CVn-type system SDSS J141118.31+481257.6 (RA=14:11:18.31, Dec=+48:12:57.6) during its first ever recorded outburst. The system was detected by Tadashi Kojima on 2018-May-20 with a V magnitude of 12.6 +- 0.2 (http://ooruri.kusastro.kyoto-u.ac.jp/mailarchive/vsnet-alert/22176), an increase of 7 mags compared to any previous measurement in the same filter.

  18. Relaciones entre estilos de amor y violencia en adolescentes

    OpenAIRE

    Iris Xóchitl Galicia Moyeda; Alejandra Sánchez Velasco; Francisco Javier Robles Ojeda

    2013-01-01

    De acuerdo a diversas evidencias, la manera en que los y las ado- lescentes establecen sus relaciones amorosas podría estar asociada con la violencia producida y recibida en el noviazgo. Para esclarecer cómo se manifiesta esta relación en una muestra de 105 mujeres y 93 hombres, con una edad entre los 13 y los 15 años, en el Estado de México, se aplicaron dos herramientas: la Escala de Actitudes Amo- rosas (EAA) (Hendrick & Hendrick, 1986) y el Cuestionario sobre Violencia en el Noviazgo (CVN...

  19. Controlling Costs: The 6-3-5 Method - Case Studies at NAVSEA and NATO

    Science.gov (United States)

    2016-04-30

    Deming (1993) once stated, “A bad system will beat a good person every time.” For the branch manager who did not allow “red” stoplight issues to be...CVN 70 Carl Vinson’s mid-life RCOH refueling & maintenance. (2009, July 14). Defense Industry Daily. Deming , W. (1993). Deming four day seminar...in Phoenix, Arizona (via the notes of Mike Stoecklein). The W. Edwards Deming Institute Blog. Retrieved March 1, 2016 from http://blog.deming.org

  20. Curve collection, extension of databases

    International Nuclear Information System (INIS)

    Gillemot, F.

    1992-01-01

    Full text: Databases: generally calculated data only. The original measurements: diagrams. Information loss between them Expensive research eg. irradiation, aging, creep etc. Original curves should be stored for reanalysing. The format of the stored curves: a. Data in ASCII files, only numbers b. Other information in strings in a second file Same name, but different extension. Extensions shows the type of the test and the type of the file. EXAMPLES. TEN is tensile information, TED is tensile data, CHN is Charpy informations, CHD is Charpy data. Storing techniques: digitalised measurements, digitalising old curves stored on paper. Use: making catalogues, reanalysing, comparison with new data. Tools: mathematical software packages like quattro, genplot, exel, mathcad, qbasic, pascal, fortran, mathlab, grapher etc. (author)

  1. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  2. The Influence of Instrumented Striker Configuration on the Results of Dynamic Toughness Testing

    International Nuclear Information System (INIS)

    Lucon, E.

    2008-01-01

    Several studies are available on the influence of the edge radius of instrumented strikers (ASTM - 8 mm or ISO - 2 mm) on the results of both non instrumented and instrumented Charpy tests. This paper investigates the effect of using either a 2 mm or a 8 mm striker when performing dynamic toughness tests at impact loading rates on precracked Charpy specimens. Existing data from tests run in the ductile-to-brittle region (dynamic Master Curve reference temperature) and in the upper shelf regime (ductile initiation fracture toughness and crack resistance curves) have been analyzed. The results show that 2 mm strikers tend to yield lower cleavage fracture toughness in the transition region (although the effect cannot be considered statistically significant), whereas the influence of striker configuration is negligible in the upper shelf regime when data are generated using the low-blow multiple-specimen technique.

  3. Synchrotron analysis of toughness anomalies in nanostructured bainite

    International Nuclear Information System (INIS)

    Fielding, L.C.D.; Jones, N.G.; Walsh, J.; Van Boxel, S.; Blackmur, M.S.; Lee, P.D.; Withers, P.J.; Stone, H.J.; Bhadeshia, H.K.D.H.

    2016-01-01

    High-resolution synchrotron X-ray diffraction has been used to characterise the notch root regions of Charpy impact test specimens of a superbainitic steel, both before and after loading. The changes in the volume fraction of austenite induced by the application of a three-point-bending load were quantified. Analysis of diffraction peak shifts revealed the extent of residual tensile and compressive strains present due to both machining and an applied load. The results lend support to the hypothesis that the comparatively low energies absorbed during Charpy impact testing of superbainitic steels, <7 J, are due to the formation of stress-induced martensite at the notch root, prior to crack initiation.

  4. Fracture mechanics investigations within the swiss surveillance programme for the pressure vessel of modern nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, G; Krompholz, K [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    In the frame of surveillance programmes of Swiss nuclear power plants, irradiation tests have been performed on tensile, impact and wedge opening load specimens as well as on three point bend-type specimens (for J-integral investigations) and pre-cracked Charpy impact specimens (for dynamical stress intensities K{sub ID}). An experimental method (potential drop technique) is used together with a mathematical procedure which allow for the determination of the stress intensity K{sub IC} for small CT-samples instead of large ones: agreement of these both methods is found excellent, and the mapping of both methods to fatigue pre-cracked small specimens (3 PB and Charpy) is possible. The application of the analysis method to dynamical tests is also possible. 15 refs., 9 figs., 1 tab.

  5. Development of reconstitution method for surveillance specimens using surface activated joining

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Terumi; Kaihara, Shoichiro; Yoshida, Kazuo; Sato, Akira [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Onizawa, Kunio; Nishiyama, Yutaka; Fukaya, Kiyoshi; Suzuki, Masahide

    1996-03-01

    Evaluation of embrittlement of reactor vessel steel due to irradiation requires surveillance tests. However, many surveillance specimens are necessary for nuclear plants life extension. Therefore, a specimen reconstitution technique has become important to provide the many specimens for continued surveillance. A surface activated joining (SAJ) method has been developed to join various materials together at low temperatures with little deformation, and is useful to bond irradiated specimens. To assess the validity of this method, Charpy impact tests were carried out, and the characteristics caused by heating during joining were measured. The test results showed the Charpy impact values were almost the same as base materials, and surface activated joining reduced heat affected zone to less than 2 mm. (author).

  6. Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4

    Science.gov (United States)

    Brnic, Josip; Turkalj, Goran; Canadija, Marko; Lanc, Domagoj; Brcic, Marino

    2015-02-01

    The paper presents and analyzes the experimental results of the effect of elevated temperatures on the engineering properties of steel 42CrMo4. Experimental data relating to the mechanical properties of the material, the creep resistance as well as Charpy impact energy. Temperature dependence of the mentioned properties is also shown. Some of creep curves were simulated using rheological models and an analytical equation. Finally, an assessment of fracture toughness was made that was based on experimentally determined Charpy impact energy. Based on the obtained results it is visible that the tensile strength (617 MPa) and yield strength (415 MPa) have the highest value at the room temperature while at the temperature of 700 °C (973 K) these values significantly decrease. This steel can be considered resistant to creep at 400 °C (673 K), but at higher temperatures this steel can be subjected to low levels of stress in a shorter time.

  7. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel

    Science.gov (United States)

    Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang

    2018-04-01

    To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.

  8. The ARBOR irradiation project

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C. E-mail: claus.petersen@imf.fzk.de; Shamardin, V.; Fedoseev, A.; Shimansky, G.; Efimov, V.; Rensman, J

    2002-12-01

    The irradiation project 'ARBOR', for 'Associated Reactor Irradiation in BOR 60', includes 150 mini-tensile/low cycle fatigue specimens and 150 mini-Charpy (KLST) specimens of nine different RAFM steels. Specimens began irradiation on 22 November 2000 in an specially designed irradiation rig in BOR 60, in a fast neutron flux (>0.1 MeV) of 1.8x10{sup 15} n/cm{sup 2} s and with direct sodium cooling at a temperature less than 340 deg. C. Tensile, low cycle fatigue and Charpy specimens of the following materials are included: EUROFER 97, F82H mod., OPTIFER IVc, EUROFER 97 with different boron contents, ODS-EUROFER 97, as well as EUROFER 97 electron-beam welded and reference bulk material, from NRG, Petten.

  9. The ARBOR irradiation project

    International Nuclear Information System (INIS)

    Petersen, C.; Shamardin, V.; Fedoseev, A.; Shimansky, G.; Efimov, V.; Rensman, J.

    2002-01-01

    The irradiation project 'ARBOR', for 'Associated Reactor Irradiation in BOR 60', includes 150 mini-tensile/low cycle fatigue specimens and 150 mini-Charpy (KLST) specimens of nine different RAFM steels. Specimens began irradiation on 22 November 2000 in an specially designed irradiation rig in BOR 60, in a fast neutron flux (>0.1 MeV) of 1.8x10 15 n/cm 2 s and with direct sodium cooling at a temperature less than 340 deg. C. Tensile, low cycle fatigue and Charpy specimens of the following materials are included: EUROFER 97, F82H mod., OPTIFER IVc, EUROFER 97 with different boron contents, ODS-EUROFER 97, as well as EUROFER 97 electron-beam welded and reference bulk material, from NRG, Petten

  10. The Influence of Instrumented Striker Configuration on the Results of Dynamic Toughness Testing

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.

    2008-09-15

    Several studies are available on the influence of the edge radius of instrumented strikers (ASTM - 8 mm or ISO - 2 mm) on the results of both non instrumented and instrumented Charpy tests. This paper investigates the effect of using either a 2 mm or a 8 mm striker when performing dynamic toughness tests at impact loading rates on precracked Charpy specimens. Existing data from tests run in the ductile-to-brittle region (dynamic Master Curve reference temperature) and in the upper shelf regime (ductile initiation fracture toughness and crack resistance curves) have been analyzed. The results show that 2 mm strikers tend to yield lower cleavage fracture toughness in the transition region (although the effect cannot be considered statistically significant), whereas the influence of striker configuration is negligible in the upper shelf regime when data are generated using the low-blow multiple-specimen technique.

  11. Effect of neutron irradiation on the impact properties of A533B steel

    International Nuclear Information System (INIS)

    Schubert, L.E.; Kumar, A.S.; Rosinski, S.T.; Hamilton, M.L.

    1994-01-01

    A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, ASTM type A 533 Grade B (A533B) having a low USE (USE 19 n/cm 2 (E > 1 MeV) by 78 degree, 83 degree, and 70 degree C for full, half, and third size specimens, respectively. These shifts in DBTT appeared to be independent of specimen size and notch geometry

  12. Computational evaluation of the constraint loss on the fracture toughness of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Serrano Garcia, M.

    2007-01-01

    The Master Curve approach is included on the ASME Code through some Code Cases to assess the reactor pressure vessel integrity. However, the margin definition to be added is not defined as is the margin to be added when the Master Curve reference temperature T 0 is obtained by testing pre-cracked Charpy specimens. The reason is that the T 0 value obtained with this specimen geometry is less conservative than the value obtained by testing compact tension specimens possible due to a loss of constraint. The two parameter fracture mechanics, considered as an extension of the classical fracture mechanics, coupled to a micromechanical fracture models is a valuable tool to assess the effect of constraint loss on fracture toughness. The definition of a parameter able to connect the fracture toughens value to the constraint level on the crack tip will allow to quantify margin to be added to the T 0 value when this value is obtained testing the pre-cracked Charpy specimens included in the surveillance capsule of the reactor pressure vessel. The Nuclear Regulatory Commission (NRC) define on the To value obtained by testing compact tension specimens and ben specimens (as pre-cracked Charpy are) bias. the NRC do not approved any of the direct applications of the Master Curve the reactor pressure vessel integrity assessment until this bias will be quantified in a reliable way. the inclusion of the bias on the integrity assessment is done through a margin to be added. In this thesis the bias is demonstrated an quantified empirical and numerically and a generic value is suggested for reactor pressure vessel materials, so that it can be used as a margin to be added to the T 0 value obtained by testing the Charpy specimens included in the surveillance capsules. (Author) 111 ref

  13. Metallurgical Characterization of Reduced Activation Martensitic Steel F-82H Modified

    International Nuclear Information System (INIS)

    Fernandez, P.; Lapena, J.; Lancha, A.M.; Gomez-Briceno, D.; Schirra, M.

    1999-12-01

    During 1995-1998 within of research and development programs on reduced ferritic/martensitic steels for fusion, metallurgical characterization of 8Cr-2WVTa steel, denominated F-28H modified, have been carried out. The work has focused on studying the microstructural and mechanical (tensile, creep, low cycle fatigue and charpy) characteristics of as-received state and aged material in the temperature range 300 degree centigrade to 600 degree centigrade for periods up to 5000 h. (Author) 45 refs

  14. A new tensile impact test for the toughness characterization of sheet material

    Science.gov (United States)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  15. Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels

    International Nuclear Information System (INIS)

    McElroy, R.J.; English, C.A.; Foreman, A.J.; Gage, G.; Hyde, J.M.; Ray, P.H.N.; Vatter, I.A.

    1999-01-01

    Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200 C/0.5h heat treated (HT) and heat treated and 450 C/2000h aged (HTA) conditions. The HT condition was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209 C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the program. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425--475 C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA

  16. Initial assessment of the processes and significance of thermal aging in cast stainless steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.

    1988-10-01

    Charpy-impact and J-R curve data for thermally aged cast stainless steel are presented. The effects of material variables on the embrittlement of cast materials are evaluated. The chemical composition and ferrite morphology have a strong effect on the kinetics and extent of embrittlement. The procedure and correlations for predicting the impact strength and fracture toughness of cast component during reactor service are described. 19 refs., 17 figs., 4 tabs

  17. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems-revision 1

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1994-08-01

    This report presents a revision of the procedure and correlations presented earlier in NUREG/CR-4513, ANL-90/42 (June 1991) for predicting the change in mechanical properties of cast stainless steel components due to thermal aging during service in light water reactors at 280-330 degrees C (535-625 degrees F). The correlations presented in this report are based on an expanded data base and have been optimized with mechanical-property data on cast stainless steels aged up to ∼58,000 h at 290-350 degrees C (554-633 degrees F). The fracture toughness J-R curve, tensile stress, and Charpy-impact energy of aged cast stainless steels are estimated from known material information. Mechanical properties of a specific cast stainless steel are estimated from the extent and kinetics of thermal embrittlement. Embrittlement of cast stainless steels is characterized in terms of room-temperature Charpy-impact energy. Charpy-impact energy as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The initial impact energy of the unaged steel is required for these estimations. Initial tensile flow stress is needed for estimating the flow stress of the aged material. The fracture toughness J-R curve for the material is then obtained by correlating room-temperature Charpy-impact energy with fracture toughness parameters. The values of J IC are determined from the estimated J-R curve and flow stress. A common open-quotes predicted lower-boundclose quotes J-R curve for cast stainless steels of unknown chemical composition is also defined for a given grade of steel, range of ferrite content, and temperature. Examples of estimating mechanical properties of cast stainless steel components during reactor service are presented

  18. Development of a sealing process of capsules for surveillance test tubes of the vessel in nuclear power plants; Desarrollo de proceso de sellado de capsulas para probetas de vigilancia de la vasija en nucleoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Romero C, J.; Fernandez T, F.; Perez R, N.; Rocamontes A, M.; Garcia R, R. [ININ, Km 36.5 Carretera Mexico-Toluca, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The surveillance capsule is composed by the support, three capsules for impact test tubes, five capsules for tension test tubes and one porta dosemeters. The capsules for test tubes are of two types: rectangular capsule for Charpy test tubes and cylindrical capsule for tension test tubes. This work describes the development of the welding system to seal the capsules for test tubes that should contain helium of ultra high purity to a pressure of 1 atmosphere. (Author)

  19. Fracture toughness evaluation of circumferentially-cracked round bars

    International Nuclear Information System (INIS)

    Scibetta, M.

    1996-05-01

    The measure of the fracture toughness of a circumferentially-cracked round bar is generally performed through approximate formulae. Comparison of existing formulae to finite element results does not always show good agreement. Therefore an eta factor is introduced in order to improve the existing analytical formula. The axisymmetrical geometry is generally considered to be a high constrained geometry. Finite element calculations are performed to verify and quantify the constraint relative to the three point bending configuration (precracked Charpy)

  20. Development of a sealing process of capsules for surveillance test tubes of the vessel in nuclear power plants

    International Nuclear Information System (INIS)

    Romero C, J.; Fernandez T, F.; Perez R, N.; Rocamontes A, M.; Garcia R, R.

    2007-01-01

    The surveillance capsule is composed by the support, three capsules for impact test tubes, five capsules for tension test tubes and one porta dosemeters. The capsules for test tubes are of two types: rectangular capsule for Charpy test tubes and cylindrical capsule for tension test tubes. This work describes the development of the welding system to seal the capsules for test tubes that should contain helium of ultra high purity to a pressure of 1 atmosphere. (Author)

  1. Evaluation of aging degradation of structural components

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at 8 n/cm 2 ·s at the low operating temperature of the Shippingport NST, i.e., 55 degrees C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J IC of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of ∼15 y

  2. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  3. Embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1998-01-01

    The irradiation embrittlement of nuclear reactor pressure vessels (RPV) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. The objective of this work was to analyze the pertinent data and develop quantitative models for estimating the recovery in 41 J (30 ft-lb) Charpy transition temperature (TT) and Charpy upper shelf energy (USE) due to annealing. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Models were developed based on a combination of statistical techniques, including pattern recognition and transformation analysis, and the current understanding of the mechanisms governing embrittlement and recovery. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and a surrogate hardness data base. This work demonstrates that microhardness recovery is a good surrogate for shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes. (orig.)

  4. Development of the plant life management technology for RPV steels [ - Current status of surveillance test specimen reconstitution program -

    International Nuclear Information System (INIS)

    Kazunobu, Sakamoto; Eliichiro, Otsuka; Yoshiaki, Oka; Kosei, Taguchi; Michiyoshi, Yamamoto

    2001-01-01

    In order to develop the reconstitution technology to standardize surveillance test specimen reconstitution practices to deal with the extended service life of reactor pressure vessels, the Japan Power Engineering and Inspection Corporation (JAPEIC) has been carried out the project entrusted by the Ministry of International Trade and Industry (MITI). We focus on a correlation between the reduction of absorbed energy and the interaction of the heat affected zone (HAZ) and the plastic zone, to establish applicable reconstitution conditions for Charpy specimens. The relationship between the plastic zone width and the absorbed energy has been obtained by estimating the plastic zone width from the hardness distribution of the Charpy specimens. Impact tests of reconstituted specimens with 10 mm-length insert using the surface activated joining method were performed and the test results were compared to those obtained by the standard specimens. By comparing the length of insert material to the sum of HAZ width and plastic zone width, it is clear that the interaction causes the reduction of the absorbed energy. Hence, the applicable conditions of reconstituted Charpy specimens could be assessed by comparing the insert length to the sum of HAZ width and plastic zone width. Moreover the effects of the possible deviations from the standard shape and size specimens for the reconstituted specimens were studied. (authors)

  5. Comparative study for the estimation of To shift due to irradiation embrittlement

    International Nuclear Information System (INIS)

    Lee, Jin Ho; Park, Youn won; Choi, Young Hwan; Kim, Seok Hun; Revka, Volodymyr

    2002-01-01

    Recently, an approach called the 'Master Curve' method was proposed which has opened a new means to acquire a directly measured material-specific fracture toughness curve. For the entire application of the Master Curve method, several technical issues should be solved. One of them is to utilize existing Charpy impact test data in the evaluation of a fracture transition temperature shift due to irradiation damage. In the U.S. and most Western countries, the Charpy impact test data have been used to estimate the irradiation effects on fracture toughness changes of RPV materials. For the determination of the irradiation shift the indexing energy level of 41 joule is used irrespective of the material yield strength. The Russian Code also requires the Charpy impact test data to determine the extent of radiation embrittlement. Unlike the U.S. Code, however, the Russian approach uses the indexing energy level varying according to the material strength. The objective of this study is to determine a method by which the reference transition temperature shift (ΔT o ) due to irradiation can be estimated. By comparing the irradiation shift estimated according to the U.S. procedure (ΔT 41J ) with that estimated according to the Russian procedure (ΔT F ), it was found that one-to-one relation exists between ΔT o and ΔT F

  6. Mechanical properties of F82H plates with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp; Tanigawa, Hiroyasu

    2016-11-01

    Highlights: • Mass effect, homogeneity, and anisotropy in mechanical properties were studied. • Thickness dependence of tensile property was not observed. • Thickness dependence of Charpy impact property was observed. • Appropriate mechanical properties were obtained using an electric furnace. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel and it is indispensable to develop the manufacturing technology for producing large-scale components of DEMO blanket with appropriate mechanical properties. This is because mechanical properties are generally degraded with increasing production volume. In this work, we focused mechanical properties of F82H–BA12 heat which was melted in a 20 tons electric arc furnace. Plates with difference thicknesses from 18 to 100 mm{sup t} were made from its ingot through forging and hot-rolling followed by heat treatments. Tensile and Charpy impact tests were then performed on plates focusing on their homogeneity and anisotropy. From the result, their homogeneity and anisotropy were not significant. No obvious differences were observed in tensile properties between the plates with different thicknesses. However, Charpy impact property changed with increasing plate thickness, i.e. the ductile brittle transition temperature of a 100 mm{sup t} thick plate was higher than that of the other thinner plates.

  7. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI Series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel Irradiation Program obtained a statistically significant fracture toughness data base on two high-copper (0.23 and 0.31 wt %) submerged-arc welds to determine the shift and shape of the K Ic curve as a consequence of irradiation. Compact specimens with thicknesses to 101.6 mm (4 in) in the irradiated condition and 203.2 mm (8 in) in the unirradiated condition were tested, in addition to Charpy impact, tensile, and drop-weight specimens. Irradiations were conducted at a nominal temperature of 288 degree C and an average fluence of 1.5 x 10 19 neutrons/cm 2 (>l MeV). The Charpy 41-J temperature shifts are about the same as the corresponding drop-weight NDT temperature shifts. The irradiated welds exhibited substantial numbers of cleavage pop-ins. Mean curve fits using two-parameter (with fixed intercept) nonlinear and linearized exponential regression analysis revealed that the fracture toughness 100 MPa lg-bullet √m shifts exceeded the Charpy 41-J shifts for both welds. Analyses of curve shape changes indicated decreases in the slopes of the fracture toughness curves, especially for the higher copper weld. Weibull analyses were performed to investigate development of lower bound curves to the data, including the use of a variable K min parameter which affects the curve shape

  8. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    International Nuclear Information System (INIS)

    Chopra, O.K.

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330 degrees C (535--625 degrees F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature ''normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at ''saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, Φ, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common ''lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs

  9. Microstructure examination of Fe–14Cr ODS ferritic steels produced through different processing routes

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: z.oksiuta@pb.edu.pl [Bialystok University of Technology, Mechanical Department (Poland); Hosemann, P. [University of California Berkeley, Nuclear Engineering, 4169 Etcheverry Hall, Berkeley, CA 94720 (United States); Vogel, S.C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, PO Box 1663, NM (United States); Baluc, N. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Villigen PSI 5232 (Switzerland)

    2014-08-01

    Various thermo-mechanical treatments were applied to refine and homogenise grain size and improve mechanical properties of hot-isostatically pressed (HIP) 14%Cr ODS ferritic steel. The grain size was reduced, improving mechanical properties, tensile strength and Charpy impact, however bimodal-like distribution was also observed. As a result, larger, frequently elongated grains with size above 1 μm and refined, equiaxed grains with a diameter ranging from 250 to 500 nm. Neutron diffraction measurements revealed that for HIP followed by hydrostatic extrusion material the strongest fiber texture was observed oriented parallel to the extrusion direction. In comparison with hot rolling and hot pressing methods, this material exhibited promising mechanical properties: the ultimate tensile strength of 1350 MPa, yield strength of 1280 MPa, total elongation of 21.7% and Charpy impact energy of 5.8 J. Inferior Charpy impact energy of ∼3.0 J was measured for HIP and hot rolled material, emphasising that parameters of this manufacturing process still have to be optimised. As an alternative manufacturing route, due to the uniform microstructure and simplicity of the process, hot pressing might be a promising method for production of smaller parts of ODS ferritic steels. Besides, the ductile-to-brittle transition temperature of all thermo-mechanically treated materials, in comparison with as-HIPped ODS steel, was improved by more than 50%, the transition temperature ranging from 50 to 70 °C (323 and 343 K) remains still unsatisfactory.

  10. Fracture toughness evaluation in the transition region of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Onizawa, K.; Suzuki, M.

    1995-01-01

    The fracture toughness (K jc and Jc) values at the cleavage fracture initiation in the transition region of a RPV steel were investigated using mainly precracked Charpy specimens. A conventional statistical approach and a fractographic study were applied to analyze the scatter of the fracture toughness values from precracked Charpy specimens. The material used was an ASTM A533B class 1 steel, which was designated as an IAEA correlation monitor material, JRQ. A lower bound transition curve of the fracture toughness for unirradiated condition was determined by the 5% confidence limit from the Weibull and fractographic analyses. The lower bound transition curve after irradiation was evaluated based on the statistics of unirradiated specimens. The results indicated that the shift of the fracture toughness transition curbe were somewhat larger than the Charpy 41J transition temperature. The parameters to determine the lower bound toughness such as the Weibull slope and the amount of ductile crack growth are discussed. The results are also compared with a model based on weakest link theory. (author). 12 refs, 12 figs, 5 tabs

  11. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements

    Science.gov (United States)

    Hill, J. Grant; Peterson, Kirk A.

    2017-12-01

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  12. ORBITAL EVOLUTION OF COMPACT WHITE DWARF BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, David L. [Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Steinfadt, Justin D. R., E-mail: kaplan@uwm.edu, E-mail: bildsten@kitp.ucsb.edu, E-mail: jdrsteinfadt@gmail.com [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States)

    2012-10-10

    The newfound prevalence of extremely low mass (ELM, M{sub He} < 0.2 M{sub Sun }) helium white dwarfs (WDs) in tight binaries with more massive WDs has raised our interest in understanding the nature of their mass transfer. Possessing small (M{sub env} {approx} 10{sup -3} M{sub Sun }) but thick hydrogen envelopes, these objects have larger radii than cold WDs and so initiate mass transfer of H-rich material at orbital periods of 6-10 minutes. Building on the original work of D'Antona et al., we confirm the 10{sup 6} yr period of continued inspiral with mass transfer of H-rich matter and highlight the fact that the inspiraling direct-impact double WD binary HM Cancri likely has an ELM WD donor. The ELM WDs have less of a radius expansion under mass loss, thus enabling a larger range of donor masses that can stably transfer matter and become a He mass transferring AM CVn binary. Even once in the long-lived AM CVn mass transferring stage, these He WDs have larger radii due to their higher entropy from the prolonged H-burning stage.

  13. Engineering soya bean seeds as a scalable platform to produce cyanovirin-N, a non-ARV microbicide against HIV.

    Science.gov (United States)

    O'Keefe, Barry R; Murad, André M; Vianna, Giovanni R; Ramessar, Koreen; Saucedo, Carrie J; Wilson, Jennifer; Buckheit, Karen W; da Cunha, Nicolau B; Araújo, Ana Claudia G; Lacorte, Cristiano C; Madeira, Luisa; McMahon, James B; Rech, Elibio L

    2015-09-01

    There is an urgent need to provide effective anti-HIV microbicides to resource-poor areas worldwide. Some of the most promising microbicide candidates are biotherapeutics targeting viral entry. To provide biotherapeutics to poorer areas, it is vital to reduce the cost. Here, we report the production of biologically active recombinant cyanovirin-N (rCV-N), an antiviral protein, in genetically engineered soya bean seeds. Pure, biologically active rCV-N was isolated with a yield of 350 μg/g of dry seed weight. The observed amino acid sequence of rCV-N matched the expected sequence of native CV-N, as did the mass of rCV-N (11 009 Da). Purified rCV-N from soya is active in anti-HIV assays with an EC50 of 0.82-2.7 nM (compared to 0.45-1.8 nM for E. coli-produced CV-N). Standard industrial processing of soya bean seeds to harvest soya bean oil does not diminish the antiviral activity of recovered rCV-N, allowing the use of industrial soya bean processing to generate both soya bean oil and a recombinant protein for anti-HIV microbicide development. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Mineral nutrition as a factor of stability of technological quality in winter wheat cultivars

    Directory of Open Access Journals (Sweden)

    Đurić Veselinka

    2005-01-01

    Full Text Available Afield trial was carried out with eight cultivars (Libellula, Drina, Sremica NSR-2, Jugoslavija, Somborka, Lasta and Pobeda of winter wheat (Trticum aestivum L representing several different periods in our country's wheat selection and having different potentials for technological grain quality. Six different rates of nitrogen fertilizer were tested: 0, 60, 90, 120, 150 and 180 kgNha-1. Increasing N fertilizer rates resulted in a linear increase of the direct and indirect indicators of quality. The best results were obtained with the cultivar Sremica and the poorest with Lasta, while Jugoslavija and Pobeda were shown to be of approximately the same quality. The contribution of N fertilizer variance to total variance was the largest for protein content (43.7%. N nutrition had a greater influence on protein content in cultivars from the earlier periods of selection. Its effect on sedimentation value, on the other hand, was greater in the recently released cultivars. The contribution of the genetic factor to total variance was the highest for crumb value number (CVN (58.7% and bread volume yield (44.2% and the lowest for protein content (20.8%. The absence of significant differences in the CVN means at any of the N nutrition levels studied resulted from the variability of the indirect indicators closely linked with the direct indicators of baking quality, showing the importance of N nutrition for maintaining the stability of technological quality in winter wheat cultivars.

  15. Tides in differentially rotating convective envelopes. II. The tidal coupling

    International Nuclear Information System (INIS)

    Scharlemann, E.T.

    1982-01-01

    The tidal coupling between a star with an extended, differentially rotating convective envelope, and its companion in a close binary system, is calculated from the tidal velocity field derived in Paper I. The derived coupling torque can be tested using observations of RS Canum Venaticorum systems, for which a photometric wave in the light curve provides an accurate stellar rotation rate, and for which observed orbital period changes require the stars in the systems to be coupled. The coupling torque is sufficient to explain the nearly synchronous rotation of the active star in RS CVn systems, despite the observed orbital period changes, but may not be able to explain the extreme tightness of the coupling implied by the very long periods for the migration of the photometric waves in the systems. This conclusion depends on the origin of the orbital period changes, but not on the nature of the wave or the wave migration. When the coupling torque vanishes, a specific latitude at the surface of the convective star will exactly corotate with the binary system: this corotation latitude is calculated. Finally, it is shown that the additional viscous terms introduced by tides should not suppress differential rotation in binary systems with RS Cvn parameters

  16. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements.

    Science.gov (United States)

    Hill, J Grant; Peterson, Kirk A

    2017-12-28

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  17. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  18. A NEW SUB-PERIOD-MINIMUM CATACLYSMIC VARIABLE WITH PARTIAL HYDROGEN DEPLETION AND EVIDENCE OF SPIRAL DISK STRUCTURE

    International Nuclear Information System (INIS)

    Littlefield, C.; Garnavich, P.; Magno, K.; Applegate, A.; Pogge, R.; Irwin, J.; Marion, G. H.; Kirshner, R.; Vinkó, J.

    2013-01-01

    We present time-resolved spectroscopy and photometry of CSS 120422:111127+571239 (=SBS 1108+574), a recently discovered SU UMa-type dwarf nova whose 55 minute orbital period is well below the cataclysmic variable (CV) period minimum of ∼78 minutes. In contrast with most other known CVs, its spectrum features He I emission of comparable strength to the Balmer lines, implying a hydrogen abundance less than 0.1 of long-period CVs—but still at least 10 times higher than that in AM CVn stars. Together, the short orbital period and remarkable helium-to-hydrogen ratio suggest that mass transfer in CSS 120422 began near the end of the donor star's main-sequence lifetime, meaning that this CV is a strong candidate progenitor of an AM CVn system as described by Podsiadlowski et al. Moreover, a Doppler tomogram of the Hα line reveals two distinct regions of enhanced emission. While one is the result of the stream-disk impact, the other is probably attributable to spiral disk structure generated when material in the outer disk achieves a 2:1 orbital resonance with respect to the donor.

  19. The statistical background to proposed ASME/MPC fracture toughness reference curves

    International Nuclear Information System (INIS)

    Oldfield, W.

    1981-01-01

    The ASME Pressure Vessel Codes define, in Sec. 11, lower bound fracture toughness curves. These curves are used to predict the lower bound fracture toughness on the basis of the RT test procedure. This test is used to remove heat to heat differences, by permitting the lower bound (reference) curve to be moved along the temperature scale according to the measured RT. Numerous objections have been raised to the procedure, and a Subcommittee (the ASME/MPC Working Group on Reference Toughness) is currently revising the codified procedures for fracture toughness prediction. The task has required a substantial amount of statistical work, since the new procedure are to have a statistical basis. Using initiation fracture toughness (J-Integral R curve procedures in the ductile domain) it was shown that when CVN energy data is properly transformed it is highly correlated with valid fracture toughness measurements. A single functional relationship can be used to predict the mean fracture toughness for a sample of steel from a set of CVN energy measurements, and the coefficients of the function tabulated. More importantly, the approximate lower statistical bounds to the initiation fracture toughness behaviour can be similarly predicted, and coefficients for selected bounds have also been tabulated. (orig.)

  20. THE EVOLVED MAIN-SEQUENCE CHANNEL: HST AND LBT OBSERVATIONS OF CSS 120422:111127+571239

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, M.; Callanan, P. [Department of Physics, University College Cork, Cork (Ireland); Garnavich, P.; Littlefield, C. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Szkody, P. [Department of Astronomy, University of Washington, Seattle, WA (United States); Pogge, R. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43202 (United States)

    2015-12-20

    The “evolved main-sequence (EMS)” channel is thought to contribute significantly to the population of AM CVn-type systems in the Galaxy, and also to the number of cataclysmic variables (CVs) detected below the period minimum for hydrogen rich systems. CSS 120422:J111127+571239 was discovered by the Catalina Sky Survey in 2012 April. Its period was found to be 56 minutes, well below the minimum, and the optical spectrum is clearly depleted in hydrogen relative to helium, but still has two orders of magnitude more hydrogen than AM CVn stars. Doppler tomography of the Hα line hinted at a spiral structure existing in the disk. Here we present spectroscopy of CSS 120422:J111127+571239 using the Cosmic Origins Spectrograph FUV instrument on the Hubble Space Telescope and using the MODS spectrograph on the Large Binocular Telescope. The UV spectrum shows Si iv, N v, and He ii, but no detectable C iv. The anomalous nitrogen/carbon ratio is seen in a small number of other CVs and confirms a unique binary evolution. We also present and compare the optical spectrum of V418 Ser and advocate that it is also an EMS system.

  1. Three aspects of stellar evolution near the main sequence

    International Nuclear Information System (INIS)

    Morgan, J.C.

    1979-05-01

    Three problems of stellar evolution are considered: the gap in the HR diagram of M67, the evolutionary status of RS CVn binaries and the solar neutrino problem. The physical basis of the Eggleton stellar evolution computer program is described. The program was used to calculate a grid of evolutionary tracks for models with masses between 0.7 and 1.29 solar masses. The more massive stars considered here have expanding convective cores during their main sequence evolution. The isochrone of the old galactic cluster M67 has a gap at the top of its main sequence because of the rapid evolution of stars at hydrogen exhaustion. RS CVn binaries present a complex collection of observational phenomena although they appear to be detached binaries. Their evolutionary status has remained controversial because of their high space density. Here it is shown that a post main sequence interpretation is satisfactory. Models of the Sun with metal poor interiors have been proposed in an attempt to resolve the solar neutrino problem. Here the evolution of two such models is calculated in detail, including a gradual contamination of the surface convection zone to produce the observed metal abundance, giving fully consistent models of the Sun as it is observed. (author)

  2. Demand Forecast of Petroleum Product Consumption in the Chinese Transportation Industry

    Directory of Open Access Journals (Sweden)

    Shouyang Wang

    2012-03-01

    Full Text Available In this paper, petroleum product (mainly petrol and diesel consumption in the transportation sector of China is analyzed. This was based on the Bayesian linear regression theory and Markov Chain Monte Carlo method (MCMC, establishing a demand-forecast model of petrol and diesel consumption introduced into the analytical framework with explanatory variables of urbanization level, per capita GDP, turnover of passengers (freight in aggregate (TPA, TFA, and civilian vehicle number (CVN and explained variables of petrol and diesel consumption. Furthermore, we forecast the future consumer demand for oil products during “The 12th Five Year Plan” (2011–2015 based on the historical data covering from 1985 to 2009, finding that urbanization is the most sensitive factor, with a strong marginal effect on petrol and diesel consumption in this sector. From the viewpoint of prediction interval value, urbanization expresses the lower limit of the predicted results, and CVN the upper limit of the predicted results. Predicted value from other independent variables is in the range of predicted values which display a validation range and reference standard being much more credible for policy makers. Finally, a comparison between the predicted results from autoregressive integrated moving average models (ARIMA and others is made to assess our task.

  3. Constraining the Physics of AM Canum Venaticorum Systems with the Accretion Disk Instability Model

    Science.gov (United States)

    Cannizzo, John K.; Nelemans, Gijs

    2015-01-01

    Recent work by Levitan et al. has expanded the long-term photometric database for AM CVn stars. In particular, their outburst properties are well correlated with orbital period and allow constraints to be placed on the secular mass transfer rate between secondary and primary if one adopts the disk instability model for the outbursts. We use the observed range of outbursting behavior for AM CVn systems as a function of orbital period to place a constraint on mass transfer rate versus orbital period. We infer a rate approximately 5 x 10(exp -9) solar mass yr(exp -1) ((P(sub orb)/1000 s)(exp -5.2)). We show that the functional form so obtained is consistent with the recurrence time-orbital period relation found by Levitan et al. using a simple theory for the recurrence time. Also, we predict that their steep dependence of outburst duration on orbital period will flatten considerably once the longer orbital period systems have more complete observations.

  4. Backyard Telescopes Watch an Expanding Binary

    Science.gov (United States)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an

  5. Differential Gene Expression Profile in the Rat Caudal Vestibular Nucleus is Associated with Individual Differences in Motion Sickness Susceptibility.

    Directory of Open Access Journals (Sweden)

    Jun-Qin Wang

    Full Text Available To identify differentially expressed genes associated with motion sickness (MS susceptibility in the rat caudal vestibular nucleus.We identified MS susceptible (MSS and insusceptible (inMSS rats by quantifying rotation-induced MS symptoms: defecation and spontaneous locomotion activity. Microarray analysis was used to screen differentially expressed genes in the caudal vestibular nucleus (CVN after rotation. Plasma stress hormones were identified by radioimmunoassay. Candidate genes were selected by bioinformatics analysis and the microarray results were verified by real-time quantitative-PCR (RT-qPCR methods. By using Elvax implantation, receptor antagonists or recombinant adenovirus targeting the candidate genes were applied to the CVN to evaluate their contribution to MS susceptibility variability. Validity of gene expression manipulation was verified by RT-qPCR and western blot analysis.A total of 304 transcripts were differentially expressed in the MSS group compared with the inMSS group. RT-qPCR analysis verified the expression pattern of candidate genes, including nicotinic cholinergic receptor (nAchR α3 subunit, 5-hydroxytryptamine receptor 4 (5-HT4R, tachykinin neurokinin-1 (NK1R, γ-aminobutyric acid A receptor (GABAAR α6 subunit, olfactory receptor 81 (Olr81 and homology 2 domain-containing transforming protein 1 (Shc1. In MSS animals, the nAchR antagonist mecamylamine significantly alleviated rotation-induced MS symptoms and the plasma β-endorphin response. The NK1R antagonist CP99994 and Olr81 knock-down were effective for the defecation response, while the 5-HT4R antagonist RS39604 and Shc1 over-expression showed no therapeutic effect. In inMSS animals, rotation-induced changes in spontaneous locomotion activity and the plasma β-endorphin level occurred in the presence of the GABAAR antagonist gabazine.Our findings suggested that the variability of the CVN gene expression profile after motion stimulation might be a putative

  6. Models for embrittlement recovery due to annealing of reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1995-05-01

    The reactor pressure vessel (RPV) surrounding the core of a commercial nuclear power plant is subject to embrittlement due to exposure to high energy neutrons. The effects of irradiation embrittlement can be reduced by thermal annealing at temperatures higher than the normal operating conditions. However, a means of quantitatively assessing the effectiveness of annealing for embrittlement recovery is needed. The objective of this work was to analyze the pertinent data on this issue and develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy due to annealing. Data were gathered from the Test Reactor Embrittlement Data Base and from various annealing reports. An analysis data base was developed, reviewed for completeness and accuracy, and documented as part of this work. Independent variables considered in the analysis included material chemistries, annealing time and temperature, irradiation time and temperature, fluence, and flux. To identify important variables and functional forms for predicting embrittlement recovery, advanced statistical techniques, including pattern recognition and transformation analysis, were applied together with current understanding of the mechanisms governing embrittlement and recovery. Models were calibrated using multivariable surface-fitting techniques. Several iterations of model calibration, evaluation with respect to mechanistic and statistical considerations, and comparison with the trends in hardness data produced correlation models for estimating Charpy upper shelf energy and transition temperature after irradiation and annealing. This work provides a clear demonstration that (1) microhardness recovery is generally a very good surrogate for shift recovery, and (2) there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes

  7. Estimation of fracture toughness of cast stainless steels during thermal aging in LWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K. (Argonne National Lab., IL (USA))

    1991-06-01

    A procedure and correlations are presented for predicting the change in fracture toughness of cast stainless steel components due to thermal aging during service in light water rectors (LWRs) at 280--330{degrees}C (535--625{degrees}F). The fracture toughness J-R curve and Charpy-impact energy of aged cast stainless steels are estimated from known mineral in formation. Fracture toughness of a specific cast stainless steel is estimated from the extent and kinetics of thermal embrittlement. The extent of thermal embrittlement is characterized by the room-temperature normalized'' Charpy-impact energy. A correlation for the extent of embrittlement at saturation,'' i.e., the minimum impact energy that would be achieved for the material after long-term aging, is given in terms of a material parameter, {Phi}, which is determined from the chemical composition. The fracture toughness J-R curve for the material is then obtained from correlations between room-temperature Charpy-impact energy and fracture toughness parameters. Fracture toughness as a function of time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which is determined from chemical composition. A common lower-bound'' J-R curve for cast stainless steels with unknown chemical composition is also defined for a given material specification, ferrite content, and temperature. Examples for estimating impact strength and fracture toughness of cast stainless steel components during reactor service are describes. 24 refs., 39 figs., 2 tabs.

  8. Empirical correlation between mechanical and physical parameters of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Tipping, P.; Solt, G.; Waeber, W.

    1991-02-01

    Neutron irradiation embrittlement of nuclear reactor pressure vessel (PV) steels is one of the best known ageing factors of nuclear power plants. If the safety limits set by the regulators for the PV steel are not satisfied any more, and other measures are too expensive for the economics of the plant, this embrittlement could lead to the closure of the plant. Despite this, the fundamental mechanisms of neutron embrittlement are not yet fully understood, and usually only empirical mathematical models exist to asses neutron fluence effects on embrittlement, as given by the Charpy test for example. In this report, results of a systematic study of a French forging (1.2 MD 07 B), irradiated to several fluences will be reported. Mechanical property measurements (Charpy tensile and Vickers microhardness), and physical property measurements (small angle neutron scattering - SANS), have been done on specimens having the same irradiation or irradiation-annealing-reirradiation treatment histories. Empirical correlations have been established between the temperature shift and the decrease in the upper shelf energy as measured on Charpy specimens and tensile stresses and hardness increases on the one hand, and the size of the copper-rich precipitates formed by the irradiation on the other hand. The effect of copper (as an impurity element) in enhancing the degradation of mechanical properties has been demonstrated; the SANS measurements have shown that the size and amount of precipitates are important. The correlations represent the first step in an effort to develop a description of neutron irradiation induced embrittlement which is based on physical models. (author) 6 figs., 27 refs

  9. Enhancing the CuCrZr/316L HIP-joint by Ni electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Wei, R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Zhao, S.X., E-mail: sxzhao@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou, 730000 (China); Dong, H.; Che, H.Y. [Advanced Technology and Materials Co. Ltd., Beijing, 100081 (China); Li, Q.; Wang, W.J.; Wang, J.C.; Wang, X.L.; Sun, Z.X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031 (China); Science Island Branch of Graduate School, University of Science & Technology of China, Hefei, 230031 (China); Hefei Center for Physical Science and Technology, Hefei, 230022 (China); Hefei Science Center of Chinese Academy of Sciences, Hefei, 230027 (China)

    2017-04-15

    Highlights: • The quality of CuCrZr/316L HIP-joint can be enhanced by nickel electroplating on CuCrZr and 316L. • Nickel layer can prevent the occurrence of nickel-poor region in 316L and protect CuCrZr from oxidation. • A Charpy Impact Value as high as 111.5 ± 3.3 J/cm{sup 2} can be obtained by HIP at 980 °C, 140 MPa for 2 h. • At high temperature, CuCrZr is easily oxidized even in the situation of a high vacuum degree of 2 × 10{sup −5} Pa. - Abstract: The quality of CuCrZr/316L joint is crucial for the safety of ITER hypervapotron cooling structure and hot isostatic pressing (HIP) is an important bonding technique for this structure. In this paper, the authors present a finding that the CuCrZr/316L HIP-joint can be enhanced by nickel electroplating on 316L and CuCrZr. A Charpy Impact Value as high as 111.5 ± 3.3 J/cm{sup 2}, which is more than two times the value in a published article, is obtained. The influence of nickel electroplating is twofold: (1) it can prevent the occurrence of nickel-poor region in 316L and the formation of ferrite; (2) it can protect CuCrZr from oxidation during the heating stage of HIP. However, tensile test is not as effective as Charpy Impact Test in characterizing the bonding quality of the CuCrZr/316L HIP-joint. The surface treatment employed in this study is amenable to batch-scale industrial manufacturing at low cost.

  10. Neutron diffraction measurements of residual stress in additively manufactured stainless steel

    International Nuclear Information System (INIS)

    Brown, D.W.; Bernardin, J.D.; Carpenter, J.S.; Clausen, B.; Spernjak, D.; Thompson, J.M.

    2016-01-01

    Charpy test specimens were additively manufactured (AM) on a single stainless steel plate from a 17–4 class stainless steel using a powder-bed, laser melting technique on an EOS M280 direct metal laser sintering (DMLS) machine. Cross-hatched mesh support structures for the Charpy test specimens were varied in strut width and density to parametrically study their influence on the build stability and accuracy as the DMLS process has been known to generate parts with large amounts of residual stress. Neutron diffraction was used to profile the residual stresses in several of the AM samples before and after the samples were removed from the support structure for the purpose of determining residual stresses. The residual stresses were found to depend very little on the properties of the support structure over the limited range studied here. The largest stress component was in the long direction of each of the samples studied and was roughly 2/3 of the yield stress of the material. The stress field was altered considerably when the specimen was removed from the support structure. It was noted in this study that a single Charpy specimen developed a significant tear between the growth plate and support structure. The presence of the tear in the support structure strongly affected the observed stress field: the asymmetric tear resulted in a significantly asymmetric stress field that propagated through removal of the sample from the base plate. The altered final residual stress state of the sample as well as its observed final shape indicates that the tear initiated during the build and developed without disrupting the fabrication process, suggesting a need for in-situ monitoring.

  11. Determinación de los mecanismos de fractura de un material multicapa de aluminio de alta resistencia y excelente tenacidad a impacto basado en la aleación aeroespacial Al 7075

    Directory of Open Access Journals (Sweden)

    Cepeda-Jiménez, C. M.

    2012-08-01

    Full Text Available An aluminium multilayer laminate has been processed by hot rolling. It is constituted by 19 alternated layers of high-strength aluminium alloy (Al 7075-T6, 82 % vol and thinner pure aluminium layers (Al 1050-H24, 18 % vol. The microstructure of the constituent alloys and the composition gradient across the interfaces has been characterized. The multilayer laminate and the as-received aluminium alloys have been tested at room temperature by Vickers microhardness, three-point bend test and impact Charpy test. The outstanding improvement in damage tolerance, which is 18 times higher than that for the as-received Al 7075 alloy, is due to both intrinsic and extrinsic fracture mechanisms operating in the multilayer laminate during mechanical testing.

    En este trabajo se ha procesado mediante laminación en caliente un material multicapa constituido por 19 capas alternadas de aluminio de alta resistencia (Al 7075-T6, 82 %vol y capas de aluminio puro (Al 1050-H24, 18 %vol de menor espesor. Se ha caracterizado la microestructura de las aleaciones constituyentes después del procesado, así como el gradiente de composición generado alrededor de las intercaras. Las propiedades mecánicas a temperatura ambiente, tanto del material multicapa como de las aleaciones de partida, se han estudiado mediante microdureza Vickers, flexión en tres puntos y ensayos de impacto Charpy. El material multicapa procesado presenta una tenacidad a impacto Charpy 18 veces superior a la de la aleación de partida Al 7075. Este espectacular aumento de tolerancia al daño es debido a los mecanismos de fractura, tanto extrínsecos como intrínsecos, que operan en el material multicapa durante las diferentes solicitaciones mecánicas a las que ha sido sometido.

  12. Determination of ASTM 1016 structural welded joints fracture toughness through J integral

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Terra, Jose Lucio; Rabello, Emerson Giovani; Martins, Geraldo Antonio Scoralick; Carneiro, Jose Rubens Goncalves

    2009-01-01

    Fracture toughness is an important parameter for studies of materials behavior in nuclear and conventional industry. Crack propagation resistance is, in general, evaluate using one of the fracture mechanics parameters K IC , for the case of the materials that exhibits a linear elastic behavior, the CTOD (crack tip opening displacement) and J IC , the critical value of J Integral, for the case of materials with elastic-plastic behavior. On this work the fracture mechanics parameters of the ASTM 1016 structural steel welded joints were obtained, using the J Integral. Charpy V tests at several temperatures were also obtained, with the purpose to obtain the curves of ductile-brittle of the regions of the welded joints: Base Metal, (MB), and Melted Zone (MZ). The joints were welded by Gas Metal Arc Welding (GMAW) with V bevel for evaluation the MZ toughness properties. The tests were accomplished at temperatures varying from -100 deg C to 100 deg C using the technical of compliance variation for J IC determination, the critical value that defines the initial stable crack growth, that applies to brittle and ductile materials. The J Integral alternative specimens has square cross section 10mmX10mm, according ASTM E 1820, with notch localized respectively at the BM and MZ. After the tests, the specimens fractured were analyzed in a scanning microscopic electronic (SME) for verification of the fracture surface. The fractography of the specimens at elevated temperatures presented dimples at the region of stable crack growth, characteristic of ductile fracture. The results of J Integral and Charpy V presented a good correlation between these two parameters. From these correlations it can be concluded that in some applications, the use Charpy V energy to infer fracture toughness can be substitute the Integral J tests. (author)

  13. Neutron diffraction measurements of residual stress in additively manufactured stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.; Bernardin, J.D.; Carpenter, J.S.; Clausen, B.; Spernjak, D.; Thompson, J.M.

    2016-12-15

    Charpy test specimens were additively manufactured (AM) on a single stainless steel plate from a 17–4 class stainless steel using a powder-bed, laser melting technique on an EOS M280 direct metal laser sintering (DMLS) machine. Cross-hatched mesh support structures for the Charpy test specimens were varied in strut width and density to parametrically study their influence on the build stability and accuracy as the DMLS process has been known to generate parts with large amounts of residual stress. Neutron diffraction was used to profile the residual stresses in several of the AM samples before and after the samples were removed from the support structure for the purpose of determining residual stresses. The residual stresses were found to depend very little on the properties of the support structure over the limited range studied here. The largest stress component was in the long direction of each of the samples studied and was roughly 2/3 of the yield stress of the material. The stress field was altered considerably when the specimen was removed from the support structure. It was noted in this study that a single Charpy specimen developed a significant tear between the growth plate and support structure. The presence of the tear in the support structure strongly affected the observed stress field: the asymmetric tear resulted in a significantly asymmetric stress field that propagated through removal of the sample from the base plate. The altered final residual stress state of the sample as well as its observed final shape indicates that the tear initiated during the build and developed without disrupting the fabrication process, suggesting a need for in-situ monitoring.

  14. Experimental study associated to irradiation of FBR structural material, (4)

    International Nuclear Information System (INIS)

    1976-01-01

    The study presents one of the bases to evaluate the results of the post-irradiation tests to conduct the thermal control tests related to the second JMTR irradiation (70M-61P) of the demestic austenitic stainless steels for the structural material of the FBR performed by Power Reactor and Nuclear Fuel Development Corporation. The thermal control specimens were given the temperature history which simulated that of the irradiation temperature in vacuum by the electrical furnance, and then the tensile, fatigue and Charpy impact tests were performed. The changes of the material properties caused by the thermal history were investigated. (auth.)

  15. Notch toughness variability in A542 steel used in the European Group on Fracture Jsub(1c) round robin programme

    International Nuclear Information System (INIS)

    Druce, S.G.

    1983-04-01

    The through thickness variability of toughness in a 2 1/4 Cr 1Mo steel plate used in the EGF Jsub(1c) round robin has been evaluated using the Charpy impact testing. The results indicate that the toughness properties at the mid thickness position are inferior to those +- 50 mm from this position and that a comparatively large degree of scatter is present at all depth locations. The relevance of these findings to the Jsub(1c) round robin assessment is briefly discussed. (author)

  16. Surveillance extension experience at WWER-440 type reactors

    International Nuclear Information System (INIS)

    Gillemot, F.; Uri, G.; Oszwald, F.; Trampus, P.

    1993-01-01

    In WWER-440 reactors, the surveillance specimens are located in accelerated irradiation positions. After 5 years, all specimens are withdrawn and the operational changes are not monitored. At Paks NPP a new surveillance program extension has been settled in order to avoid these original program disadvantages and generate further data for plant lifetime management. This paper includes: research performed to prepare the surveillance extension programme, the evaluation method for the surveillance extension, and first results (Charpy and tensile tests). (authors). 6 refs., 12 figs., 3 tabs

  17. Survey of irradiation embrittlement effects on the mechanical properties of alloyed steels

    International Nuclear Information System (INIS)

    Gillemot, F.

    1992-01-01

    In the everyday engineering practice the neutron irradiation embrittlement of the PWR wall materials is measured by empirical methods like Charpy impact testing. New developments in fracture mechanics are given better material characteristics. The use of Absorbed Specific Fracture Energy Measured on tensile bars is a promising way to solve the problem. On the other hand the IAEA runs coordinated research program to correlate the chemical analysis with the rate of the neutron embrittlement. Better understanding of the physics of neutron embrittlement should help the life time management of the PWR vessels

  18. Assessment of weld heat-affected zones in a reactor vessel material

    International Nuclear Information System (INIS)

    Marston, T.U.; Server, W.

    1978-01-01

    The mechanical properties of weld heat-affected zones (HAZ's) associated with the heavy section, nuclear quality weldments are evaluated and found to be superior to those of the parent base material. The nil ductility transition temperature (NDTT), Charpy impact and static and dynamic fracture toughness properties of a HAZ associated with a submerged arc weld and one associated with a manual metal arc weld are directly compared with those of the parent base material. It is concluded that the stigma normally associated with HAZ is not justified for this grade and quality of material and weld procedure

  19. Experimental study on the resistance to hydrogen embrittlement of NIFS-V4Cr4Ti alloy

    International Nuclear Information System (INIS)

    Chen Jiming; Xu Zengyu; Den Ying; Muroga, T.

    2002-01-01

    SWIP (Southwestern Institute of Physics) has joined an international collaboration on the hydrogen embrittlement resistance evaluation of the vanadium alloy. This paper presents some experiments on the tensile properties and Charpy impact properties of the NIFS-V4Cr4Ti alloy with high-level hydrogen concentration. The experiment results show different properties against hydrogen embrittlement in static tension and impact load. The critical hydrogen concentration required to embrittle the alloy was about 215 - 310 mg·kg -1 on static tension load, but less than 130 mg·kg -1 on impact loading

  20. The utilize of gamma radiation on the examination of mechanical properties of polymeric materials

    Directory of Open Access Journals (Sweden)

    F. Greškovič

    2012-04-01

    Full Text Available The article deals about the application area of radiation crosslinking of plastics, which follows after the injection moulding. The main objective of the presented article is the research of influence irradiation dosage on mechanical properties of materials: PP filled by 15 % of mineral filler – talc. Mechanical properties - tensile strength and impact strength by Charpy were examined in dependence on absorbed dose of the gamma rays on various conditions and were compared with non-irradiated samples. Radiation processing involves mainly the use of either electron beams from electron accelerators or gamma radiation from Cobalt-60 sources.

  1. Microstructure and toughness in the zone affected by heat in welding of steel-alloy with 3,5% Ni

    International Nuclear Information System (INIS)

    Bussinger, E.R.

    1982-01-01

    The relation of microstructures obtained at different levels of Heat Input - from 1,7 kJ/cm to 30,6 kJ/cm- to the toughness, measured by Charpy impact test is studied. The specimens submitted to impact test were heat treated in such a way to abtain some microstructures similar to those obtained at real HAZ, however with a greater homogeneity. The results of this work show the existence of an optimal Heat Input of 14 kJ/cm, which gave the greatest toughness. (E.G.) [pt

  2. Use of miniaturized compact tension specimens for fracture toughness measurements in the upper shelf regime. Electrabel/Tractebel-SCK-CEN Convention 2004 Task 1.1.4/2

    International Nuclear Information System (INIS)

    Lucon, E.; Scibetta, M.; Chaouadi, R.; Walle, E. van

    2005-04-01

    In the nuclear field, the importance of direct fracture toughness measurements on RPV materials has been nowadays widely recognized, as opposed to Charpy-based estimations. However, sample dimensions have to be kept small in order to optimize the use of available material (often in the form of previously broken Charpy specimens) or, in the case of new irradiations, make effective use of the limited space available inside irradiation facilities. One of the most appealing geometries for fracture toughness measurements is the miniature Compact Tension specimen, MC(T), which has the following dimensions: B = 4.15 mm, W = 8.3 mm, cross section 10 x 10 mm 2 . Four MC(T) specimens can be machined out of a broken half Charpy, and in the case of irradiation ten MC(T) samples occupy approximately the same volume as a full-size Charpy specimen. The MC(T) geometry was already successfully applied and qualified for fracture toughness assessments in the ductile-to-brittle transition regime, using the Master Curve method (ASTM E1921-03). A further, comprehensive investigation is presented in this report, aimed at assessing the applicability of MC(T) specimens to measure fracture toughness in fully ductile (upper shelf) conditions. In this study, 18 1TC(T) and 20 MC(T) specimens have been tested at different temperatures from three RPV steels and one low-alloy C-Mn steel. The results obtained clearly show that MC(T) samples exhibit lower fracture toughness properties, both in terms of initiation of ductile tearing (according to various test standards) and resistance to ductile crack propagation (J-R curve). The reduction of tearing resistance might be attributed to work hardening prevailing over loss of constraint in the uncracked ligament in a side-grooved specimen, or to the inadequacy of J-integral to represent ductile crack extension in very small specimens. Both arguments will have to be verified with further investigations. (author)

  3. Survey of postirradiation heat treatment as a means to mitigate radiation embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Hawthorne, J.R.

    1979-01-01

    Nuclear-radiation service typically produces a progressive reduction in the notch ductility of low-alloy steels. The reduction is manifested by a decrease in Charpy-V (Csub(v)) upper-shelf energy level and by an elevation in temperature of the ductile-to-brittle transition. Post irradiation heat treatment (annealing) is being investigated as a method for the reversal of these detrimental radiation effects for reactor-vessel steels. This study was undertaken to analyze factors which could affect annealing response, report data available to qualify suspected influences on annealing, and summarize experimental results generated for many commercially produced reactor materials and companion materials produced in the laboratory

  4. Structural integrity of water reactor pressure boundary components. Progress report ending 29 February 1976

    International Nuclear Information System (INIS)

    Loss, F.J.

    1976-01-01

    The report describes progress in the following areas: (a) fatigue crack propagation in reactor pressure vessel steels in an air environment, (b) dynamic fracture toughness of 1-in. (25-mm) and precracked Charpy-V bend specimens under impact loading, (c) postirradiation notch ductility and properties recovery in reactor vessel steels, (d) factors contributing to variable resistance of structural steels to radiation embrittlement, and (e) the initial program plan to investigate the phenomena of warm prestress and plastic net ligament in support of thermal shock studies

  5. Evaluation and prediction of neutron embrittlement in reactor pressure vessel materials. Final report

    International Nuclear Information System (INIS)

    Hawthorne, J.R.; Menke, B.H.; Loss, F.J.; Watson, H.E.; Hiser, A.L.; Gray, R.A.

    1982-12-01

    This study evaluates the effects of fast neutron irradiation on the mechanical properties of eight nuclear reactor vessel materials. The materials include submerged arc weldments, three plates, and one forging. The materials are in the unirradiated and irradiated conditions with regard to tensile, Charpy impact, and static and dynamic fracture toughness properties. Correlations between impact and fracture toughness parameters are developed from the experimental results. The observed shifts in transition temperature and the drop in upper-shelf energy are compared with predictions developed from the Regulatory Guide 1.99.1 trend curves

  6. Pressure Vessel Steel Research: Belgian Activities

    International Nuclear Information System (INIS)

    Van Walle, E.; Fabry, A.; Ait Abderrahim, H.; Chaouadi, R.; D'hondt, P.; Puzzolante, J.L.; Van de Velde, J.; Van Ransbeeck, T.; Gerard, R.

    1994-03-01

    A review of the Belgian research activities on Nuclear Reactor Pressure Vessel Steels (RPVS) and on related Neutron Dosimetry Aspects is presented. Born out of the surveillance programmes of the Belgian nuclear power plants, this research has lead to the development of material saving techniques, like reconstitution and miniaturization, and to improved neutron dosimetry techniques. A physically- justified RPVS fracture toughness indexation methodology, supported by micro-mechanistic modelling, is based on the elaborate use of the instrumented Charpy impact signal. Computational tools for neutron dosimetry allow to reduce the uncertainties on surveillance capsule fluences significantly

  7. Pressure Vessel Steel Research: Belgian Activities

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E; Fabry, A; Ait Abderrahim, H; Chaouadi, R; D` hondt, P; Puzzolante, J L; Van de Velde, J; Van Ransbeeck, T [Centre d` Etude de l` Energie Nucleaire, Mol (Belgium); Gerard, R [TRACTEBEL, Brussels (Belgium)

    1994-03-01

    A review of the Belgian research activities on Nuclear Reactor Pressure Vessel Steels (RPVS) and on related Neutron Dosimetry Aspects is presented. Born out of the surveillance programmes of the Belgian nuclear power plants, this research has lead to the development of material saving techniques, like reconstitution and miniaturization, and to improved neutron dosimetry techniques. A physically- justified RPVS fracture toughness indexation methodology, supported by micro-mechanistic modelling, is based on the elaborate use of the instrumented Charpy impact signal. Computational tools for neutron dosimetry allow to reduce the uncertainties on surveillance capsule fluences significantly.

  8. Strain ageing of nuclear pressure vessel steels A533B and A508 cl.2

    International Nuclear Information System (INIS)

    Pelli, R.; Toerroenen, K.

    1978-04-01

    The susceptibility of the reactor pressure vessel steels A533B and A508 cl.2 to strain ageing has been studied using conventional tensile and impact testing of prestrained and aged specimens. The results show a modest susceptibility, seen as an increase in yield strength and Charpy V transition temperatures. The effect of varying alloying additions within the range of normal production was not observed, but the initial mechanical properties clearly affect the strain ageing. The lower the initial yield strength, the higher increase in strength and the lower increase in transition temperature is observed. (author)

  9. Reactor Structural Materials: Reactor Pressure Vessel Steels

    International Nuclear Information System (INIS)

    Chaouadi, R.

    2000-01-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported

  10. Effect of chemical composition on irradiation embrittlement and annealing in Ni-Cr-Mo-V reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Novosad, P [Czech Nuclear Society, Prague (Czech Republic)

    1994-12-31

    Results concerning copper and phosphorus influence on radiation-induced changes in the Ni-Cr-Mo-V steel mechanical properties, are presented. Correlations between different mechanical properties for steels with different chemical composition, are presented. A comparison of transition temperature shifts obtained for static and dynamic fracture toughness tests and Charpy impact tests, is discussed. Recovery of radiation hardening, measured by hardness test after isochronal annealing of steels with different compositions, is also shown. Copper content strongly affects irradiation-induced changes of mechanical properties, but phosphorus content in connection with variable copper content has only a small effect. (author). 4 refs., 4 figs., 4 tabs.

  11. Anomalous fracture toughness of irradiated Cr-MoV - Reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahistrand, R [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    The base metal Crack Opening Displacement (COD) specimens of the irradiation-induced embrittlement surveillance programme in Loviisa 1 revealed an anomalous behaviour of K{sub JC} compared to the Charpy-V results and to expected results according to standards: about 20% of the COD specimens showed an exceptionally low fracture toughness. Abnormal test specimens were analyzed through fractography, metallography and repeated tests using reconstitution technique: the anomalous behaviour appears to be caused by incorrect pre-fatigue cracking of base metal COD specimens. 7 refs., 9 figs.

  12. Surveillance extension experience at WWER-440 type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gillemot, F; Uri, G [Budapesti Mueszaki Egyetem, Budapest (Hungary); Oszwald, F; Trampus, P

    1994-12-31

    In WWER-440 reactors, the surveillance specimens are located in accelerated irradiation positions. After 5 years, all specimens are withdrawn and the operational changes are not monitored. At Paks NPP a new surveillance program extension has been settled in order to avoid these original program disadvantages and generate further data for plant lifetime management. This paper includes: research performed to prepare the surveillance extension programme, the evaluation method for the surveillance extension, and first results (Charpy and tensile tests). (authors). 6 refs., 12 figs., 3 tabs.

  13. Irradiation embrittlement of some 15Kh2MFA pressure vessel steels under varying neutron fluence rates

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Bars, B [Technical Research Centre of Finland, Espoo (Finland); Ahlstrand, A [Imatran Voima Oy (IVO), Helsinki (Finland)

    1994-12-31

    Irradiation sensitivity of two forging materials was measured with Charpy-V and fracture mechanic tests, and with different fluence, fluence rate and irradiation time values. Irradiation sensitivity of the materials was found to be less or equal to the current Russian standard, and appears to be well described by the fluence parameter only. A slight additional effect on embrittlement from a long term low fluence irradiation is noticed, but it stays within the total scatter band of data. 7 refs., 17 figs., 4 tabs.

  14. Test and evaluation of pressure vessel materials

    International Nuclear Information System (INIS)

    Choi, Sun Pil; Hong, Jun Hwa; Nho, Kye Hoe; Han, Dae June; Chi, Se Hwan

    1985-01-01

    We have prepared a method for analyzing the Charpy impact test data, which is deduced from ''the standard anelastic solid equation''. The theoretical expression for the absorbed energy is in a form of W=Wsub(U)+(Wsub(R)-Wsub(U))/ [1+(ωtau) 2 ] showing the Debye characteristics and where tau is given by the Arrhenius equation; tau=tau 0 exp(ΔH/ksub(B)T). Four measurable parameters, at the present stage, can characterize the dynamic hehavior of cracking (Charpy impact result). They are the upper shelf energy(Wsub(R), the lower shelf energy (Wsub(U)), the activation energy of crack (ΔH, and wtau(0) where w tau(0) are the resonance frequency of the specimen and the jumping pre-exponential factor of propagating crack respectively. However the states of R (relaxed) and U (un-relaxed) should be defined from reasonable physical conditions in the future and it is possible that Wsub(U) is small enough to be taken as zero. The effects of irradiation, alloying elements, and heat treatment on the impact results should be interpreted as changes in the above characteristic parameters. The present method has been applied for weld metal of SA 508-2 irradiated up to a fluence of 4x10 18 n/cm 2 , E>1.0Mev, resulting in about 29% decrease in Wsub(R), negligible change in Wsub(U), 5.6 times increase in ωtau 0 , and no change in ΔH. This seems to indicate that irradiation degrades an average value of YOUNG's modulus so that cracks propagate more easily and it does not effect on breaking the lattice bond. However much more systematic analyses should be necessary for correct judgment. It is concluded that the present method is quite adequate for analyzing the Charpy impact data even though plastic deformation in the specimen was not considered separately so that the method should be applied for various cases in order to evaluate the proper trend of effects of irradiation, alloying elements, and heat treatment on the Charpy impact results. (Author)

  15. Evolution of microstructure in stainless martensitic steel for seamless tubing

    Science.gov (United States)

    Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.

    2017-12-01

    Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.

  16. Mechanical properties of martensitic alloy AISI 422

    International Nuclear Information System (INIS)

    Huang, F.H.; Hu, W.L.; Hamilton, M.L.

    1992-09-01

    HT9 is a martensitic stainless steel that has been considered for structural applications in liquid metal reactors (LMRs) as well as in fusion reactors. AISI 422 is a commercially available martensitic stainless steel that closely resembles HT9, and was studied briefly under the auspices of the US LMR program. Previously unpublished tensile, fracture toughness and charpy impact data on AISI 422 were reexamined for potential insights into the consequences of the compositional differences between the two alloys, particularly with respect to current questions concerning the origin of the radiation-induced embrittlement observed in HT9. 8 refs, 8 figs

  17. Spatial Control of Crystal Texture by Laser DMD Process

    Science.gov (United States)

    2009-02-01

    Parallel to rolling direction 1120 827 31 205 24 Matweb In718 filler material 1140 414 Charpy Impact Energy (J) Hardness (HRC) Tensile strength (Mpa...J. Choi, K. Nagarathnam, J. Koch, and D. Hetzner, “The direct metal deposition of H13 tool steel for 3-D components,” JOM, 49(5), 1997, 55-60. 4. M...Transactions A, 36A, 2005, 3397-3406. 6. Y. Hua and J. Choi, “Feedback control effects on dimensions and defects of H13 tool steel by DMD process,” J. of Laser Applications, 17(2), 2005, 117-125. 412

  18. Metallographic study of reconstitution welding in inserts of 1 cm{sup 3}; Estudio metalografico de soldaduras de reconstitucion en insertos de 1 cm{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Romero C, J.; Garcia R, R.; Fernandez T, F.; Perez R, N.; Rocamontes A, M. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    In this article, the welding metallographic study carried out in Charpy test tubes reconstituted with notch in 'V', used in the surveillance programs of the vessel in nucleo electric plants is described. Inserts of 1 cm{sup 3} are used, where the inserts are usually rectangular of minimum 18 millimeters of length. The importance of using inserts of 1 cm{sup 3} is that the mechanical properties can be measured in another direction of the vessel steel, when changing the direction or sense of the notch in 'V' or the face where this notch is made in the insert. (Author)

  19. Low upper-shelf toughness, high transition temperature test insert in HSST [Heavy Section Steel Technology] PTSE-2 [Pressurized Thermal Shock Experiment-2] vessel and wide plate test specimens: Final report

    International Nuclear Information System (INIS)

    Domian, H.A.

    1987-02-01

    A piece of A387, Grade 22 Class 2 (2-1/4 Cr - 1 Mo) steel plate specially heat treated to produce low upper-shelf (LUS) toughness and high transition temperature was installed in the side wall of Heavy Section Steel Technology (HHST) vessel V-8. This vessel is to be tested by the Oak Ridge National Laboratory (ORNL) in the Pressurized Thermal Shock Experiment-2 (PTSE-2) project of the HSST program. Comparable pieces of the plate were made into six wide plate specimens and other samples. These samples underwent tensile tests, Charpy tests, and J-integral tests. The results of these tests are given in this report

  20. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.