WorldWideScience

Sample records for charging machines fission reactor

  1. Advanced Fission Reactor Program objectives

    International Nuclear Information System (INIS)

    The objective of an advanced fission reactor program should be to develop an economically attractive, safe, proliferation-resistant fission reactor. To achieve this objective, an aggressive and broad-based research and development program is needed. Preliminary work at Brookhaven National Laboratory shows that a reasonable goal for a research program would be a reactor combining as many as possible of the following features: (1) initial loading of uranium enriched to less than 15% uranium 235, (2) no handling of fuel for the full 30-year nominal core life, (3) inherent safety ensured by core physics, and (4) utilization of natural uranium at least 5 times as efficiently as light water reactors

  2. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  3. Fission modes in charged-particle induced fission

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, A.; Kotte, R.; Seidel, W.; Stary, F.; Wohlfarth, D. (Zentralinstitut fuer Kernforschung, Rossendorf bei Dresden (German Democratic Republic))

    1990-12-01

    The population of the three fission modes predicted by Brosa's multi-channel fission model for the uranium region was studied in different fissioning systems. They were produced bombarding {sup 232}Th and {sup 238}U targets by light charged particles with energies slightly above the Coulomb barrier. Though the maximum excitation energy of the compound nucleus amounted to about 22 MeV, the influences of various spherical and deformed nuclear shells on the mass and total kinetic energy distributions of fission fragments are still pronounced. The larger variances of the total kinetic energy distributions compared to those of thermal neutron induced fission were explained by temperature dependent fluctuations of the amount and velocity of alteration of the scission point elongation of the fissioning system. From the ratio of these variances the portion of the potential energy dissipated among intrinsic degrees of freedom before scission was deduced for the different fission channels. It was found that the excitation remaining after pre-scission neutron emission is mainly transferred into intrinsic heat and less into pre-scission kinetic energy. (orig.).

  4. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  5. Systems study of tokamak fusion--fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations.

  6. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  7. Optimally moderated nuclear fission reactor and fuel source therefor

    Science.gov (United States)

    Ougouag, Abderrafi M.; Terry, William K.; Gougar, Hans D.

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  8. Nuclear reactor fuelling machine

    International Nuclear Information System (INIS)

    The refuelling machine described comprises a rotatable support structure having a guide tube attached to it by a parellel linkage mechanism, whereby the guide tube can be displaced sideways from the support structure. A gripper unit is housed within the guide tube for gripping the end of a fuel assembly or other reactor component and has means for maintenance in the engaging condition during travel of the unit along the guide tube, except for a small portion of the travel at one end of the guide tube, where the inner surface of the guide tube is shaped so as to maintain the gripper unit in a disengaging condition. The gripper unit has a rotatable head, means for moving it linearly within the guide tube so that a component carried by the unit can be housed in the guide tube, and means for rotating the head of the unit through 1800 relative to its body, to effect rotation of a component carried by the unit. The means for rotating the head of the gripper unit comprises ring and pinion gearing, operable through a series of rotatable shafts interconnected by universal couplings. The reason for provision for 1800 rotation is that due to the variation in the neutron flux across the reactor core the side of a fuel assembly towards the outside of the core will be subjected to a lower neutron flux and therefore will grow less than the side of the fuel assembly towards the inside of the core. This can lead to bowing and possible jamming of the fuel assemblies. Full constructional details are given. See also BP 1112384. (U.K.)

  9. Uranium arc fission reactor for space propulsion

    Science.gov (United States)

    Watanabe, Yoichi; Maya, Isaac; Vitali, Juan; Appelbaum, Jacob; Schneider, Richard T.

    1991-01-01

    Combining the proven technology of solid core reactors with uranium arc confinement and non-equilibrium ionization by fission fragments can lead to an attractive propulsion system which has a higher specific impulse than a solid core propulsion system and higher thrust than an electric propulsion systems. A preliminary study indicates that a system with 300 MW of fission power can achieve a gas exhaust velocity of 18,000 m/sec and a thrust of 10,000 Newtons utilizing a magnetohydrodynamic generator and accelerator. An experimental program is underway to examine the major mass and energy transfer issues.

  10. Fission product decay heat for thermal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J. K.

    1979-01-01

    In the past five years there have been new experimental programs to measure decay heat (i.e., time dependent beta- plus gamma-ray energy release rates from the decay of fission products) following thermal-neutron fission of /sup 235/U, /sup 239/Pu, and /sup 241/Pu for times after fission between 1 and approx. 10/sup 5/ sec. Experimental results from the ORNL program stress the very short times following fission, particularly in the first few hundred sec. Complementing the experimental effort, computer codes have been developed for the computation of decay heat by summation of calculated individual energies released by each one of the fission products. By suitably combining the results of the summation calculations with the recent experimental results, a new Decay Heat Standard has been developed for application to safety analysis of operations of light water reactors. The new standard indicates somewhat smaller energy release rates than those being used at present, and the overall uncertainties assigned to the new standard are much smaller than those being used at present.

  11. Tritium chemistry in fission and fusion reactors

    International Nuclear Information System (INIS)

    We are interested in the behaviour of tritium inside the solids where it is generated both in the case of fission nuclear reactor fuel elements, and in that of blankets of future fusion reactor. In the first case it is desirable to be able to predict whether tritium will be found in the hulls or in the uranium oxide, and under what chemical form, in order to take appropriate steps for it's removal in reprocessing plants. In fusion reactors breeding large amounts of tritium and burning it in the plasma should be accomplished in as short a cycle as possible in order to limit inventories that are associated with huge activities. Mastering the chemistry of every step is therefore essential. Amounts generated are not of the same order of magnitude in the two cases studied. Ternary fissions produce about 66 1013Bq (18 000 Ci) per year of tritium in a 1000 MWe fission generator, i.e., about 1.8 1010Bq (0.5 Ci) per day per ton of fuel

  12. Fusion-Fission hybrid reactors and nonproliferation

    International Nuclear Information System (INIS)

    New options for the development of the nuclear energy economy which might become available by a successful development of fusion-breeders or fusion-fission hybrid power reactors, identified and their nonproliferative attributes are discussed. The more promising proliferation-resistance ettributes identified include: (1) Justification for a significant delay in the initiation of fuel processing, (2) Denaturing the plutonium with 238Pu before its use in power reactors of any kind, and (3) Making practical the development of denatured uranium fuel cycles and, in particular, denaturing the uranium with 232U. Fuel resource utilization, time-table and economic considerations associated with the use of fusion-breeders are also discussed. It is concluded that hybrid reactors may enable developing a nuclear energy economy which is more proliferation resistant than possible otherwise, whileat the same time, assuring high utilization of t he uranium and thorium resources in an economically acceptable way. (author)

  13. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  14. Precise Nuclear Data Measurements Possible with the NIFFTE fissionTPC for Advanced Reactor Designs

    Science.gov (United States)

    Towell, Rusty; Niffte Collaboration

    2015-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) Collaboration has applied the proven technology of Time Projection Chambers (TPC) to the task of precisely measuring fission cross sections. With the NIFFTE fission TPC, precise measurements have been made during the last year at the Los Alamos Neutron Science Center from both U-235 and Pu-239 targets. The exquisite tracking capabilities of this device allow the full reconstruction of charged particles produced by neutron beam induced fissions from a thin central target. The wealth of information gained from this approach will allow systematics to be controlled at the level of 1%. The fissionTPC performance will be presented. These results are critical to the development of advanced uranium-fueled reactors. However, there are clear advantages to developing thorium-fueled reactors such as Liquid Fluoride Thorium Reactors over uranium-fueled reactors. These advantages include improved reactor safety, minimizing radioactive waste, improved reactor efficiency, and enhanced proliferation resistance. The potential for using the fissionTPC to measure needed cross sections important to the development of thorium-fueled reactors will also be discussed.

  15. Future Scenarios for Fission Based Reactors

    Science.gov (United States)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile

  16. Contained fission explosion breeder reactor system

    International Nuclear Information System (INIS)

    A reactor system for producing useful thermal energy and valuable isotopes, such as plutonium-239, uranium-233, and/or tritium, in which a pair of sub-critical masses of fissile and fertile actinide slugs are propelled into an ellipsoidal pressure vessel. The propelled slugs intercept near the center of the chamber where the concurring slugs become a more than prompt configuration thereby producing a fission explosion. Re-useable accelerating mechanisms are provided external of the vessel for propelling the slugs at predetermined time intervals into the vessel. A working fluid of lean molten metal slurry is injected into the chamber prior to each explosion for the attenuation of the explosion's effects, for the protection of the chamber's walls, and for the absorbtion of thermal energy and debris from the explosion. The working fluid is injected into the chamber in a pattern so as not to interfere with the flight paths of the slugs and to maximize the concentration of working fluid near the chamber's center. The heated working fluid is drained from the vessel and is used to perform useful work. Most of the debris from the explosion is collected as precipitate and is used for the manufacture of new slugs

  17. Fission power: a search for a ''second-generation'' reactor

    International Nuclear Information System (INIS)

    This report touches on the history of US fission reactors and explores the current technical status of such reactors around the world, including experimental reactors. Its purpose is to identify, evaluate, and rank the most promising concepts among existing reactors, proposed but unadopted designs, and what can be described as ''new'' concepts. Also discussed are such related concerns as utility requirements and design considerations. The report concludes with some recommendations for possible future LLNL involvement

  18. Development of fission chamber for nuclear reactors controlling

    International Nuclear Information System (INIS)

    Fission Chambers are gas-filled type detectors that operate in the ionization chamber regime, which is without electron multiplication. As the fill-gas is not directly ionized by neutrons, fission chambers are lined with fissile material that through interaction with neutrons fission products are produced, are highly ionizing particles. Pulse type operation of these detectors are used for neutron flux measurements during start up and shut-down reactor conditions in which pulses of high amplitude produced by fission products can be easily discriminated from those produced by alpha radiation from uranium and also from the external gamma field. With current or current fluctuation mode operation (Campbell) the use of these detectors can be extended for the whole range of reactor operation. In this work, it is presented the development and construction of a fission chamber at IPEN-CNEN/SP. Furthermore, the material and techniques used and also the operational characteristics obtained with the first prototype are given. (author)

  19. A new method to identify nuclear charges of fission fragments

    International Nuclear Information System (INIS)

    For a mass and velocity selected beam of fission fragments, the elemental components of the beam have been determined by measuring the difference between the time the fragments enter an axial ionization chamber (with the electrical field lines parallel to the particle trajectory) and the time the anode pulse crosses a given level. The nuclear charge resolution achieved for typical fission fragments out of the light mass group in thermal neutron induced fission of 235U is Z/δZ = 43 for a nuclear charge Z = 39. (orig.)

  20. Isotopic studies relative to the Oklo natural fission reactors

    International Nuclear Information System (INIS)

    It has been clearly demonstrated that natural fission reactors operated about 2 109 years ago, in rich uranium one deposits of the Oklo mine in the Republique of Gabon. Six reactions zones have been identified in which approximately six tons of 235U were consumed and the same amount of fission products deposited in the ground. These fission products, their filiation isotopes and nuclei formed from neutron captures are precious tracers, which now can be analysed on well localized samples, to obtain informations on the stability in soil of such elements and data on the nuclear parameters and characteristics of the nuclear reactors. The studies which have been developed at Saclay concern several aspects of this phenomenon: the migrations of fission products, the age of the nuclear reaction, the date of the uranium deposit and the temperature of the reaction zones during the operation of the reactors

  1. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  2. distribution of Release Fission Products Through the Nuclear Reactor Site

    International Nuclear Information System (INIS)

    Through the operation of nuclear reactors, radioactive fission products could be release to the environment as a result of severe accidents e.g. Chernobyl accident. Estimation of the atmospheric dispersion, distribution and transport of the radioactive fission products is essential to assessment of the risk to the public from such accidents. In this work, the polluted plume is treated as a matrix of isolated particles.These particles are the fission product isotopes, which compose the radioactive plume.The fission products were classified depending on its half live into three category, long-lived, medium lived and small half-life.The normalized concentrations of the fission product isotopes in the radioactive plume were calculated.The travel time (the time elapsed from the released instant till the deposited time) of each fission products was calculated. The area around the nuclear reactor stack was divided into different zones, started from the reactor stack position until 5 km.The deposited radioactive fission products in each zone was estimated.The calculations were done using the spherical Gaussian plume model

  3. The Oklo natural reactor: Cumulative fission yields and retentivity of the symmetric mass region fission products

    Science.gov (United States)

    De Laeter, J. R.; Rosman, K. J. R.; Smith, C. L.

    1980-10-01

    Solid source mass spectrometry has been used to determine the relative cumulative fission yields of five elements in three samples of uranium ore from reactor zones in the Oklo mine site. Eighteen fission chains covering the mass range from 105 ≤ A ≤ 130 have been measured for Pd, Ag, Cd, Sn and Te. These measurements have enabled a number of nuclear parameters to be calculated including the relative proportions of 235U, 238U and 239Pu involved in the fission process. The concentration of the five elements in the Oklo samples have also been measured using the stable isotope dilution technique. These values have then been compared to the estimates of the amount of these elements produced by fission under the conditions that are appropriate to the three samples. This procedure enables the retentivity of the elements in the reactor zones to be evaluated. Our work confirms the fact that Pd and Te are retained almost in their entirety in the samples, whereas the other three elements have been partially lost from the reactor site. Almost all the Cd fission products have been lost, and more than 50% of the Ag and Sn fission-produced material has been removed.

  4. Experimental studies of fission properties utilized in reactor design

    International Nuclear Information System (INIS)

    Experimental studies of fission properties utilized in reactor design. A programme of experimental studies of fission parameters useful in reactor design is described including the following: (a) The periods and yields of delayed-neutron groups emitted following the neutron-induced fission of Pu241 are measured. Evidence for systematic isotopic dependence of delayed-neutron yields is presented. An experimental investigation of the relation between the time behaviour of delayed-neutron emission and the energy of the incident neutron inducing fission is described. (b) The cross-section for the inducing, of fission in Am243, Pu242 and Pu241 with neutrons in the energy range 0.030 to 1.8 MeV is measured. Emphasis is placed upon the detailed dependence of the fission cross-section on the incident-neutron energy. The absolute values of the cross-sections are given to a precision of ∼25%. (c) Detailed results of a measurement of the Pu241 fission-neutron spectrum are given, including the spectral shape and average fission-neutron energy. Techniques and methods of measuring prompt-fission-neutron spectra are described. (d) The dependence of #-v# (the average number of neutrons emitted per fission) of U235 on the incident neutron energy is measured from 100 keV to 1.6 MeV. #-v# of U238 and other fissile isotopes is compared to #-v# of U235 (thermal). The relative precision of the measurements is #>approx#1.2%. (author)

  5. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    International Nuclear Information System (INIS)

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed

  6. Fission product chemistry in severe nuclear reactor accidents

    International Nuclear Information System (INIS)

    A specialist's meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions)

  7. Fission energy: The integral fast reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements

  8. Refueling machine for a nuclear reactor

    International Nuclear Information System (INIS)

    An improved refuelling machine for inserting and removing fuel assemblies from a nuclear reactor is described which has been designed to increase the reliability of such machines. The system incorporates features which enable the refuelling operation to be performed more efficiently and economically. (U.K.)

  9. Fuel performance and fission product behaviour in gas cooled reactors

    International Nuclear Information System (INIS)

    The Co-ordinated Research Programme (CRP) on Validation of Predictive Methods for Fuel and Fission Product Behaviour was organized within the frame of the International Working Group on Gas Cooled Reactors. This International Working Group serves as a forum for exchange of information on national programmes, provides advice to the IAEA on international co-operative activities in advanced technologies of gas cooled reactors (GCRs), and supports the conduct of these activities. The objectives of this CRP were to review and document the status of the experimental data base and of the predictive methods for GCR fuel performance and fission product behaviour; and to verify and validate methodologies for the prediction of fuel performance and fission product transport

  10. Fission-suppressed hybrid reactor: the fusion breeder

    International Nuclear Information System (INIS)

    Results of a conceptual design study of a 233U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed

  11. Fission-suppressed hybrid reactor: the fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Coops, M.S.

    1982-12-01

    Results of a conceptual design study of a /sup 233/U-producing fusion breeder are presented. The majority of the study was devoted to conceptual design and evaluation of a fission-suppressed blanket and to fuel cycle issues such as fuel reprocessing, fuel handling, and fuel management. Studies in the areas of fusion engineering, reactor safety, and economics were also performed.

  12. Langevin description of fission fragment charge distribution from excited nuclei

    CERN Document Server

    Karpov, A V

    2002-01-01

    A stochastic approach to fission dynamics based on a set of three-dimensional Langevin equations was applied to calculate fission-fragment charge distribution of compound nucleus sup 2 sup 3 sup 6 U. The following collective coordinates have been chosen - elongation coordinate, neck-thickness coordinate, and charge-asymmetry coordinate. The friction coefficient of charge mode has been calculated in the framework of one-body and two-body dissipation mechanisms. Analysis of the results has shown that Langevin approach is appropriate for investigation of isobaric distribution. Moreover, the dependences of the variance of the charge distribution on excitation energy and on the two-body viscosity coefficient has been studied

  13. Developments and Tendencies in Fission Reactor Concepts

    Science.gov (United States)

    Adamov, E. O.; Fuji-Ie, Y.

    This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC

  14. Role of fission gas release in reactor licensing

    International Nuclear Information System (INIS)

    The release of fission gases from oxide pellets to the fuel rod internal voidage (gap) is reviewed with regard to the required safety analysis in reactor licensing. Significant analyzed effects are described, prominent gas release models are reviewed, and various methods used in the licensing process are summarized. The report thus serves as a guide to a large body of literature including company reports and government documents. A discussion of the state of the art of gas release analysis is presented

  15. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  16. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  17. Nuclear data requirements for fission reactor decommissioning

    International Nuclear Information System (INIS)

    The meeting was attended by 13 participants from 8 Member States and 2 International Organizations who reviewed the status of the nuclear data libraries and computer codes used to calculate the radioactive inventory in the reactor unit components for the decommissioning purposes. Nuclides and nuclear reactions important for determination of the radiation fields during decommissioning and for the final disposal of radioactive waste from the decommissioned units were identified. Accuracy requirements for the relevant nuclear data were considered. The present publication contains the text of the reports by the participants and their recommendations to the Nuclear Data Section of the IAEA. A separate abstract was prepared for each of these reports. Refs, figs and tabs

  18. Neutron dosimetry for radiation damage in fission and fusion reactors

    International Nuclear Information System (INIS)

    The properties of materials subjected to the intense neutron radiation fields characteristic of fission power reactors or proposed fusion energy devices is a field of extensive current research. These investigations seek important information relevant to the safety and economics of nuclear energy. In high-level radiation environments, neutron metrology is accomplished predominantly with passive techniques which require detailed knowledge about many nuclear reactions. The quality of neutron dosimetry has increased noticeably during the past decade owing to the availability of new data and evaluations for both integral and differential cross sections, better quantitative understanding of radioactive decay processes, improvements in radiation detection technology, and the development of reliable spectrum unfolding procedures. However, there are problems caused by the persistence of serious integral-differential discrepancies for several important reactions. There is a need to further develop the data base for exothermic and low-threshold reactions needed in thermal and fast-fission dosimetry, and for high-threshold reactions needed in fusion-energy dosimetry. The unsatisfied data requirements for fission reactor dosimetry appear to be relatively modest and well defined, while the needs for fusion are extensive and less well defined because of the immature state of fusion technology. These various data requirements are examined with the goal of providing suggestions for continued dosimetry-related nuclear data research

  19. SNIF: A Futuristic Neutrino Probe for Undeclared Nuclear Fission Reactors

    CERN Document Server

    Lasserre, Thierry; Mention, Guillaume; Reboulleau, Romain; Cribier, Michel; Letourneau, Alain; Lhuillier, David

    2010-01-01

    Today reactor neutrino experiments are at the cutting edge of fundamental research in particle physics. Understanding the neutrino is far from complete, but thanks to the impressive progress in this field over the last 15 years, a few research groups are seriously considering that neutrinos could be useful for society. The International Atomic Energy Agency (IAEA) works with its Member States to promote safe, secure and peaceful nuclear technologies. In a context of international tension and nuclear renaissance, neutrino detectors could help IAEA to enforce the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). In this article we discuss a futuristic neutrino application to detect and localize an undeclared nuclear reactor from across borders. The SNIF (Secret Neutrino Interactions Finder) concept proposes to use a few hundred thousand tons neutrino detectors to unveil clandestine fission reactors. Beyond previous studies we provide estimates of all known background sources as a function of the detecto...

  20. Fission product release from defected nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    The release of gaseous (krypton and xenon) and iodine radioactive fission products from defective fuel elements is described with a semi-empirical model. The model assumes precursor-corrected 'Booth diffusional release' in the UO2 and subsequent holdup in the fuel-to-sheath gap. Transport in the gap is separately modelled with a phenomenological rate constant (assuming release from the gap is a first order rate process), and a diffusivity constant (assuming transport in the gap is dominated by a diffusional process). Measured release data from possessing various states of defection are use in this analysis. One element (irradiated in an earlier experiment by MacDonald) was defected with a small drilled hole. A second element was machined with 23 slits while a third element (fabricated with a porous end plug) displayed through-wall sheath hydriding. Comparison of measured release data with calculated values from the model yields estimates of empirical diffusion coefficients for the radioactive species in the UO2 (1.56 x 10-10 to 7.30 x 10-9 s-1), as well as escape rate constants (7.85 x 10-7 to 3.44 x 10-5 s-1) and diffusion coefficients (3.39 x 10-5 to 4.88 x 10-2 cm2/s) for these in the fuel-to-sheath gap. Analyses also enable identification of the various rate-controlling processes operative in each element. For the noble gas and iodine species, the rate-determining process in the multi-slit element is 'Booth diffusion'; however, for the hydrided element an additional delay results from diffusional transport in the fuel-to-heath gap. Furthermore, the iodine species exhibit an additional holdup in the drilled element because of significant trapping on the fuel and/or sheath surfaces. Using experimental release data and applying the theoretical results of this work, a systematic procedure is proposed to characterize fuel failures in commercial power reactors (i.e., the number of fuel failures and average leak size)

  1. A Fusion-Fission Reactor Concept based on Viable Technologies

    International Nuclear Information System (INIS)

    Full text: The world needs a great deal of carbon free energy for civilization to continue. Nuclear power is attractive for helping cut carbon emissions and reducing imports of fossil fuel. It is commonly realized that it needs hard work before pure fusion energy could be commercially and economically utilized. Some countries are speeding up the development of their fission industry. In China, the government has decided to develop nuclear power with a mid-term target of ∼40 GWe in 2020. If only PWR is used to meet the huge nuclear capacity requirement, there may be a shortage of fissile uranium and an increase of long-lived nuclear wastes. Therefore, any activity to solve the problems has been welcome. A lot of research activities had been done to evaluate the possibility of the hybrid systems in the world, however, most of them were based on advanced fusion and fission technologies. In this contribution, three types of fusion-fission hybrid reactor concepts, i.e. the energy multiplier named FDS-EM, the fuel breeder named FDS-FB, waste transmuter named FDS-WT, have been proposed for the re-examination of feasibility, capability and safety and environmental potential of fission-fusion hybrid systems. Then based on the re-evaluation activity, a multi-functional fusion-fission reactor concept named FDS-MF simultaneously for nuclear waste transmutation, fissile fuel breeding and thermal energy production based on viable technologies i.e. available or limitedly extrapolated nuclear, processing and fusion technologies is proposed. The tokamak can be designed based on relatively easy-achieved plasma parameters extrapolated from the successful operation of the Experimental Advanced Superconducting Tokamak (EAST) in China and other tokamaks in the world, and the subcritical blanket can be designed based on the well-developed technology of PWR. The design and optimization of fusion plasma core parameters, fission blanket and fuel cycle have been presented. And the

  2. Material challenges for the next generation of fission reactor systems

    International Nuclear Information System (INIS)

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO2 emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  3. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  4. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    Science.gov (United States)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  5. Thermohydraulic and nuclear modeling of natural fission reactors

    Science.gov (United States)

    Viggato, Jason Charles

    Experimental verification of proposed nuclear waste storage schemes in geologic repositories is not possible, however, a natural analog exists in the form of ancient natural reactors that existed in uranium-rich ores. Two billion years ago, the enrichment of natural uranium was high enough to allow a sustained chain reaction in the presence of water as a moderator. Several natural reactors occurred in Gabon, Africa and were discovered in the early 1970's. These reactors operated at low power levels for hundreds of thousands of years. Heated water generated from the reactors also leached uranium from the surrounding rock strata and deposited it in the reactor cores. This increased the concentration of uranium in the core over time and served to "refuel" the reactor. This has strong implications in the design of modern geologic repositories for spent nuclear fuel. The possibility of accidental fission events in man-made repositories exists and the geologic evidence from Oklo suggests how those events may progress and enhance local concentrations of uranium. Based on a review of the literature, a comprehensive code was developed to model the thermohydraulic behavior and criticality conditions that may have existed in the Oklo reactor core. A two-dimensional numerical model that incorporates modeling of fluid flow, temperatures, and nuclear fission and subsequent heat generation was developed for the Oklo natural reactors. The operating temperatures ranged from about 456 K to about 721 K. Critical reactions were observed for a wide range of concentrations and porosity values (9 to 30 percent UO2 and 10 to 20 percent porosity). Periodic operation occurred in the computer model prediction with UO2 concentrations of 30 percent in the core and 5 percent in the surrounding material. For saturated conditions and 30 percent porosity, the model predicted temperature transients with a period of about 5 hours. Kuroda predicted 3 to 4 hour durations for temperature transients

  6. Thermoradiation treatment of sewage sludge using reactor waste fission products

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M. C.; Hagengruber, R. L.; Zuppero, A. C.

    1974-06-01

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined.

  7. Thermoradiation treatment of sewage sludge using reactor waste fission products

    International Nuclear Information System (INIS)

    The hazards to public health associated with the application of municipal sewage sludge to land usage are reviewed to establish the need for disinfection of sludge prior to its distribution as a fertilizer, especially in the production of food and fodder. The use of ionizing radiation in conjunction with mild heating is shown to be an effective disinfection treatment and an economical one when reactor waste fission products are utilized. A program for researching and experimental demonstration of the process on sludges is also outlined

  8. Charging machine for the transport of fuel elements

    International Nuclear Information System (INIS)

    Charging machines for the transport of fuel elements for nuclear reactors have got a bridge body supported by two parallel rails via wheels. According to the invention the wheels are fixed to the bridge body by means of guide rods in such a way that at least relative movements in direction of the wheels and transversal to it are possible. Parallel to the guide rods springs and movement attenuators are force-locking by connected. Therefore a stabilizing effect with respect to the transversal forces occurring during earthquakes is achieved. (orig.)

  9. Uncertainties analysis of fission fraction for reactor antineutrino experiments using DRAGON

    CERN Document Server

    Ma, X B; Chen, Y X; Zhong, W L; An, F P

    2014-01-01

    Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulation to predict reactor rates. First, DRAGON was developed to calculate the fission rates of the four most important isotopes in fissions,235U,238U,239Pu and141Pu, and it was validated for PWRs using the Takahama benchmark. The fission fraction calculation function was validated through comparing our calculation results with MIT's results. we calculate the fission fraction of the Daya Bay reactor core, and compare its with those calculated by the commercial reactor simulation program SCIENCE, which is used by the Daya Bay nuclear power plant, and the results was consist with each other. The uncertainty of the antineutrino flux by the fission fraction was studied, and the uncertainty of the antineutrino flux by the fission fraction simulation is 0.6% per core for Daya Bay antineutrino experiment.

  10. Coil Design and Related Studies for the Fusion-Fission Reactor Concept SFLM Hybrid

    OpenAIRE

    Hagnestål, Anders

    2012-01-01

    A fusion-fission (hybrid) reactor is a combination of a fusion device and a subcritical fission reactor, where the fusion device acts as a neutron source and the power is mainly produced in the fission core. Hybrid reactors may be suitable for transmutation of transuranic isotopes in the spent nuclear fuel, due to the safety margin on criticality imposed by the subcritical fission core. The SFLM Hybrid project is a theoretical project that aims to point out the possibilities with steady-state...

  11. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    Science.gov (United States)

    Sadhukhan, Jhilam; Nazarewicz, Witold; Schunck, Nicolas

    2016-01-01

    We propose a methodology to calculate microscopically the mass and charge distributions of spontaneous fission yields. We combine the multidimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic fission characteristics.

  12. Burning high-level TRU waste in fusion fission reactors

    Science.gov (United States)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  13. Validation of the neutron and gamma fields in the JSI TRIGA reactor using in-core fission and ionization chambers.

    Science.gov (United States)

    Žerovnik, Gašper; Kaiba, Tanja; Radulović, Vladimir; Jazbec, Anže; Rupnik, Sebastjan; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-02-01

    CEA developed fission chambers and ionization chambers were utilized at the JSI TRIGA reactor to measure neutron and gamma fields. The measured axial fission rate distributions in the reactor core are generally in good agreement with the calculated values using the Monte Carlo model of the reactor thus verifying both the computational model and the fission chambers. In future, multiple absolutely calibrated fission chambers could be used for more accurate online reactor thermal power monitoring. PMID:25479432

  14. Charged particle-induced nuclear fission reactions – Progress and prospects

    Indian Academy of Sciences (India)

    S Kailas; K Mahata

    2014-12-01

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of fissionable nuclei has been generated. The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review.

  15. Microscopic modeling of mass and charge distributions in the spontaneous fission of 240Pu

    CERN Document Server

    Sadhukhan, Jhilam; Schunck, Nicolas

    2016-01-01

    In this letter, we outline a methodology to calculate microscopically mass and charge distributions of spontaneous fission yields. We combine the multi-dimensional minimization of collective action for fission with stochastic Langevin dynamics to track the relevant fission paths from the ground-state configuration up to scission. The nuclear potential energy and collective inertia governing the tunneling motion are obtained with nuclear density functional theory in the collective space of shape deformations and pairing. We obtain a quantitative agreement with experimental data and find that both the charge and mass distributions in the spontaneous fission of 240Pu are sensitive both to the dissipation in collective motion and to adiabatic characteristics.

  16. Method of Fission Product Beta Spectra Measurements for Predicting Reactor Anti-neutrino Emission

    CERN Document Server

    Asner, D M; Campbell, L W; Greenfield, B; Kos, M S; Orrell, J L; Schram, M; VanDevender, B; Wood, 1 L S; Wootan, D W

    2014-01-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron rich fission products that subsequently beta decay and emit electron anti-neutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to current precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent re-considerations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable i...

  17. Sustainable and safe nuclear fission energy technology and safety of fast and thermal nuclear reactors

    CERN Document Server

    Kessler, Günter

    2012-01-01

    Unlike existing books of nuclear reactor physics, nuclear engineering and nuclear chemical engineering this book covers a complete description and evaluation of nuclear fission power generation. It covers the whole nuclear fuel cycle, from the extraction of natural uranium from ore mines, uranium conversion and enrichment up to the fabrication of fuel elements for the cores of various types of fission reactors. This is followed by the description of the different fuel cycle options and the final storage in nuclear waste repositories. In addition the release of radioactivity under normal and possible accidental conditions is given for all parts of the nuclear fuel cycle and especially for the different fission reactor types.

  18. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    Science.gov (United States)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-01

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  19. On the feasibility of a fusion-fission hybrid reactor driven by dense magnetized plasmas

    International Nuclear Information System (INIS)

    The feasibility of a fusion-fission hybrid reactor driven by dense magnetized plasmas was analyzed from the point of view of the technical requirements for the fusion and fission components of the reactor. In the conceptual design, a 200 MW hybrid fusion-fission reactor is considered to be used as a heat source for district heating. The fission heat-generating blanket is based on the CANDU reactor technology, while the fusion fast neutrons are provided by a high-density pinch plasma. As far as the fission components of the reactor are concerned, the hybrid reactor turns out to be entirely feasible based on existing technologies. On the other hand extensive development will be needed to meet the requirements for the fusion component of the reactor. The basic conditions for a dense magnetized plasma fusion device to be used for the proposed hybrid concept are not concerned only with the attainment of high neutron yield per pulse (at least 5 x 10 18), but also with a relatively high repetition rate (in the range 1-10 Hz). An important feature of the proposed design is its inherent safety feature: no active component are necessary within the reactor containment area, all the hybrid system control being ensured by the fusion component of the reactor. (authors)

  20. Fuels and fission products clean up for molten salt reactor of the incinerator type

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, V.; Gorbunov, V.; Zakirov, R. [RRC-Karchatov Institute, Moscow (Russian Federation)

    2000-07-01

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of plutonium, minor actinides and fission products, when the reactor and fission product cleanup unit are planned as an integral system. This contribution summarizes the reasons which led to selection of the salt compositions for the molten salt reactor of the TRU incinerator type (MSB). Special characteristics of behavior of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor (MSR) programs and relates then to the separation requirements for the MSB concept. Status and development needs in the thermodynamic properties of fluorides and fission product cleanup methods (with emphasis on actinides-lanthanides separation) are discussed. (authors)

  1. Fuels and fission products clean up for molten salt reactor of the incinerator type

    International Nuclear Information System (INIS)

    The objective of this paper is to discuss the feasibility of molten salt reactor technology for treatment of plutonium, minor actinides and fission products, when the reactor and fission product cleanup unit are planned as an integral system. This contribution summarizes the reasons which led to selection of the salt compositions for the molten salt reactor of the TRU incinerator type (MSB). Special characteristics of behavior of TRUs and fission products during power operation of MSB concepts are presented. The present paper briefly reviews the processing developments underlying the prior molten salt reactor (MSR) programs and relates then to the separation requirements for the MSB concept. Status and development needs in the thermodynamic properties of fluorides and fission product cleanup methods (with emphasis on actinides-lanthanides separation) are discussed. (authors)

  2. Specialists' meeting on fission product release and transport in gas-cooled reactors. Summary report

    International Nuclear Information System (INIS)

    The purpose of the Meeting on Fission Product Release and Transport in Gas-Cooled Reactors was to compare and discuss experimental and theoretical results of fission product behaviour in gas-cooled reactors under normal and accidental conditions and to give direction for future development. The technical part of the meeting covered operational experience and laboratory research, activity release, and behaviour of released activity

  3. A new MC-based method to evaluate the fission fraction uncertainty at reactor neutrino experiment

    OpenAIRE

    Ma, X. B.; Qiu, R. M.; Y. X. Chen

    2016-01-01

    Uncertainties of fission fraction is an important uncertainty source for the antineutrino flux prediction in a reactor antineutrino experiment. A new MC-based method of evaluating the covariance coefficients between isotopes was proposed. It was found that the covariance coefficients will varying with reactor burnup and which may change from positive to negative because of fissioning balance effect, for example, the covariance coefficient between $^{235}$U and $^{239}$Pu changes from 0.15 to ...

  4. Method of fission product beta spectra measurements for predicting reactor anti-neutrino emission

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Burns, Kimberly A.; Campbell, Luke W.; Greenfield, Bryce A.; Kos, Marek S.; Orrell, John L.; Schram, Malachi; VanDevender, Brent A.; Wood, Lynn S.; Wootan, David W.

    2015-03-01

    The nuclear fission process that occurs in the core of nuclear reactors results in unstable, neutron-rich fission products that subsequently beta decay and emit electron antineutrinos. These reactor neutrinos have served neutrino physics research from the initial discovery of the neutrino to today's precision measurements of neutrino mixing angles. The prediction of the absolute flux and energy spectrum of the emitted reactor neutrinos hinges upon a series of seminal papers based on measurements performed in the 1970s and 1980s. The steadily improving reactor neutrino measurement techniques and recent reconsiderations of the agreement between the predicted and observed reactor neutrino flux motivates revisiting the underlying beta spectra measurements. A method is proposed to use an accelerator proton beam delivered to an engineered target to yield a neutron field tailored to reproduce the neutron energy spectrum present in the core of an operating nuclear reactor. Foils of the primary reactor fissionable isotopes placed in this tailored neutron flux will ultimately emit beta particles from the resultant fission products. Measurement of these beta particles in a time projection chamber with a perpendicular magnetic field provides a distinctive set of systematic considerations for comparison to the original seminal beta spectra measurements. Ancillary measurements such as gamma-ray emission and post-irradiation radiochemical analysis will further constrain the absolute normalization of beta emissions per fission. The requirements for unfolding the beta spectra measured with this method into a predicted reactor neutrino spectrum are explored.

  5. Experimental study of neutrino oscillations at a fission reactor

    International Nuclear Information System (INIS)

    The energy spectrum of neutrinos from a fission reactor was studied with the aim of gaining information on neutrino oscillations. The well shielded detector was set up at a fixed position of 8.76 m from the point-like core of the Laue-Langevin reactor in an antineutrino flux of 9.8 x 1011cm-2s-1. The target protons in the reaction antiνsub(e)p → e+n were provided by liquid scintillation counters (total volume of 377l) which also served as positron detectors. The product neutrons moderated in the scintillator were detected by 3He wire chambers. A coincidence signature was required between the prompt positron and the delayed neutron events. The positron energy resolution was 18% FWHM at 0.91 MeV. The signal-to-background ratio was better than one to one between 2 MeV and 6 MeV positron energy. At a counting rate of 1.58 counts per hour, 4890+-180 neutrino induced events were detected. The shape of the measured positron spectrum was analyzed in terms of the parameters Δ2 and sin2 2theta for two-neutrino oscillations. The experimental data are consistent with no oscillations. An upper limit of 0.15 eV2 (90% c.l.) for the mass-squared differences Δ2 of the neutrinos was obtained, assuming maximum mixing of the two neutrino states. The ratio of the measured to the expected integral yield of positrons assuming no oscillations was determined to be ∫Ysub(exp)/∫Ysub(th) = 0.955+-0.035 (statistical)+-0.110 (systematic)

  6. Assessment of fission product yields data needs in nuclear reactor applications

    International Nuclear Information System (INIS)

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  7. Model to simulate the fission-product transport process in the Experimental Breeder Reactor II

    Energy Technology Data Exchange (ETDEWEB)

    So, B.Y.C.

    1979-01-01

    When fission products are released from a cladding breach in EBR-II, they mix turbulently with the sodium in the core, in the upper plenum and in the intermediate heat exchanger. Eventually the fission products are discharged 12 to 13 s later into the primary tank. Fission gases migrate upward through a 9-ft layer of sodium and enter the cover gas. Loss of fission gas is due to decay, leakage of cover gas, cold trapping of iodine and bromine parents. Depending on the reactor operation requirement, it may purge with fresh argon. The assumptions made and differential equations used to develop a model for such transport are presented.

  8. System model for analysis of the mirror fusion-fission reactor

    International Nuclear Information System (INIS)

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters

  9. System model for analysis of the mirror fusion-fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bender, D.J.; Carlson, G.A.

    1977-10-12

    This report describes a system model for the mirror fusion-fission reactor. In this model we include a reactor description as well as analyses of capital cost and blanket fuel management. In addition, we provide an economic analysis evaluating the cost of producing the two hybrid products, fissile fuel and electricity. We also furnish the results of a limited parametric analysis of the modeled reactor, illustrating the technological and economic implications of varying some important reactor design parameters.

  10. Determination of the fission coefficients in thermal nuclear reactors for antineutrino detection

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Lenilson M. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Cabral, Ronaldo G., E-mail: rgcabral@ime.eb.b [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Anjos, Joao C.C. dos, E-mail: janjos@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Dept. GLN - G

    2011-07-01

    The nuclear reactors in operation periodically need to change their fuel. It is during this process that these reactors are more vulnerable to occurring of several situations of fuel diversion, thus the monitoring of the nuclear installations is indispensable to avoid events of this nature. Considering this fact, the most promissory technique to be used for the nuclear safeguard for the nonproliferation of nuclear weapons, it is based on the detection and spectroscopy of antineutrino from fissions that occur in the nuclear reactors. The detection and spectroscopy of antineutrino, they both depend on the single contribution for the total number of fission of each actinide in the core reactor, these contributions receive the name of fission coefficients. The goal of this research is to show the computational and mathematical modeling used to determinate these coefficients for PWR reactors. (author)

  11. Temperature transients of a fusion-fission ITER pebble bed reactor in loss of coolant accident

    International Nuclear Information System (INIS)

    In this preliminary scoping study, post-accident temperature transients of several fusion-fission designs utilizing ITER-FEAT-like parameters and fission pebble bed fuel technology are examined using a 1-D cylindrical MATLAB heat transfer code along with conventional fission decay heat approximations. Scenarios studied include systems with no additional passive safety features to systems with melting reflectors designed to increase emissivity after reaching a specified temperature. Results show that for a total fission power of ∼1400-2800 MW, two of the realistic variants investigated are passively safe. The crucial time, defined as the time when either any structural part of the fusion-fission tokamak reaches melting point, or when the pebble fuel reaches 1873 K, ranges from 5.7 to 76 h for the unsafe configurations. Additionally, it is illustrated that, fundamentally, the LOCA characteristics of pure fission pebble beds and fusion-fission pebble beds are different. Namely, the former depends on the pebble fuel's large thermal capacity, along with external radiation and natural convective cooling, while the latter depends significantly more on the tokamak's sizeable total internal heat capacity. This difference originates from the fusion-fission reactor's conflicting goal of having to minimize heat transfer to the magnets during normal operation. These results are discussed in the context of overall fusion-fission reactor design and safety

  12. A new MC-based method to evaluate the fission fraction uncertainty at reactor neutrino experiment

    CERN Document Server

    Ma, X B; Chen, Y X

    2016-01-01

    Uncertainties of fission fraction is an important uncertainty source for the antineutrino flux prediction in a reactor antineutrino experiment. A new MC-based method of evaluating the covariance coefficients between isotopes was proposed. It was found that the covariance coefficients will varying with reactor burnup and which may change from positive to negative because of fissioning balance effect, for example, the covariance coefficient between $^{235}$U and $^{239}$Pu changes from 0.15 to -0.13. Using the equation between fission fraction and atomic density, the consistent of uncertainty of fission fraction and the covariance matrix were obtained. The antineutrino flux uncertainty is 0.55\\% which does not vary with reactor burnup, and the new value is about 8.3\\% smaller.

  13. Analysis of fission-product effects in a Fast Mixed-Spectrum Reactor concept

    International Nuclear Information System (INIS)

    The Fast Mixed-Spectrum Reactor (FMSR) concept has been proposed by BNL as a means of alleviating certain nonproliferation concerns relating to civilian nuclear power. This breeder reactor concept has been tailored to operate on natural uranium feed (after initial startup), thus eliminating the need for fuel reprocessing. The fissile material required for criticality is produced, in situ, from the fertile feed material. This process requires that large burnup and fluence levels be achievable, which, in turn, necessarily implies that large fission-product inventories will exist in the reactor. It was the purpose of this study to investigate the effects of large fission-product inventories and to analyze the effect of burnup on fission-product nuclide distributions and effective cross sections. In addition, BNL requested that a representative 50-group fission-product library be generated for use in FMSR design calculations

  14. Workshop summaries for the third US/USSR symposium on fusion-fission reactors

    International Nuclear Information System (INIS)

    Workshop summaries on topics related to the near-term development requirements for fusion-fission (hybrid) reactors are presented. The summary topics are as follows: (1) external factors, (2) plasma engineering, (3) ICF hybrid reactors, (4) blanket design, (5) materials and tritium, and (6) blanket engineering development requirements

  15. Workshop summaries for the third US/USSR symposium on fusion-fission reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L. (ed.)

    1979-07-01

    Workshop summaries on topics related to the near-term development requirements for fusion-fission (hybrid) reactors are presented. The summary topics are as follows: (1) external factors, (2) plasma engineering, (3) ICF hybrid reactors, (4) blanket design, (5) materials and tritium, and (6) blanket engineering development requirements. (MOW)

  16. Most probable charge of fission products in proton-induced fission of sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th

    CERN Document Server

    Kaji, D; Kudo, H; Fujita, M; Shinozuka, T; Fujioka, M

    2002-01-01

    The charge distributions of fission products in proton-induced fission of sup 2 sup 3 sup 8 U and sup 2 sup 3 sup 2 Th were measured in a wide mass range. The most probable charges lay on the proton-rich side in the light fragment region and on the proton-deficient side in the heavy one compared with the unchanged charge distribution hypothesis. This result implies that the charge polarization occurs in the fission process. The charge polarization was examined with respect to the ground-state Q values. The estimations by the Q values fairly well reproduced the experimental most probable charges. These results suggest that the fission path to the most favorable charge division may go through the most energetically favorable path at scission point. (author)

  17. High temperature and sensitivity fission chambers: qualification of the CFUCO7 in reactor

    International Nuclear Information System (INIS)

    We present, in this paper, the whole tests performed both in laboratory and in reactor on the high temperature, wide dynamic fission chamber CFUCO7 and on its associated electronics. Except the long time tests to be realized in the PHENIX reactor, this measurement device, fission chamber and wide range electronic, can be considered as qualified to be used in a large LMFBR. We present also the new improvements on the detector design and the future programme in the reactor SUPER-PHENIX. (authors). 9 figs., 4 tabs., 2 refs., 2 appendix

  18. A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system

    International Nuclear Information System (INIS)

    This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs

  19. Reference reactor module for NASA's lunar surface fission power system

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David I [Los Alamos National Laboratory; Kapernick, Richard J [Los Alamos National Laboratory; Dixon, David D [Los Alamos National Laboratory; Werner, James [INL; Qualls, Louis [ORNL; Radel, Ross [SNL

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO{sub 2}-fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  20. Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications

    CERN Document Server

    Herndon, J Marvin

    2013-01-01

    The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent ...

  1. Investigations on radioactive and stable fission gas release behaviour at the Halden reactor

    International Nuclear Information System (INIS)

    Two types of experiments have been used in the Halden reactor to investigate the release of fission gases from LWR fuel. The first employs internal pressure sensors from which the kinetics and quantity of stable gases can be measured during irradiation. The second is the use of sweep gases to carry released fission gases from the fuel rod to a detector situated outside the reactor. With this equipment, it is possible to measure, using gamma spectroscopy, both radioactive and stable fission product release. In conjunction with fuel centerline thermocouples to measure fuel temperatures, these techniques have been successful in improving our understanding of the release process and the factors affecting it. The data generated have been used in many member countries to develop models and validate fuel performance codes used in reactor safety assessments. (authors)

  2. Progress on the conceptual design of a mirror hybrid fusion--fission reactor

    International Nuclear Information System (INIS)

    A conceptual design study was made of a fusion-fission reactor for the purpose of producing fissile material and electricity. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and is sustained by neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and helium cooled. It was shown conceptually how the reactor might be built using essentially present-day technology and how the uranium-bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel

  3. Seminar on Fission VI

    Science.gov (United States)

    Wagemans, Cyriel; Wagemans, Jan; D'Hondt, Pierre

    2008-04-01

    Topical reviews. Angular momentum in fission / F. Gönnenwein ... [et al.]. The processes of fusion-fission and quasi-fission of heavy and super-heavy nuclei / M. G. Itkis ... [et al.] -- Fission cross sections and fragment properties. Minor-actinides fission cross sections and fission fragment mass yields via the surrogate reaction technique / B. Jurado ... [et al.]. Proton-induced fission on actinide nuclei at medium energy / S. Isaev ... [et al.]. Fission cross sections of minor actinides and application in transmutation studies / A. Letourneau ... [et al.]. Systematics on even-odd effects in fission fragments yields: comparison between symmetric and asymmetric splits / F. Rejmund, M Caamano. Measurement of kinetic energy distributions, mass and isotopic yields in the heavy fission products region at Lohengrin / A. Bail ... [et al.] -- Ternary fission. On the Ternary [symbol] spectrum in [symbol]Cf(sf) / M. Mutterer ... [et al.]. Energy degrader technique for light-charged particle spectroscopy at LOHENGRIN / A. Oberstedt, S. Oberstedt, D. Rochman. Ternary fission of Cf isotopes / S. Vermote ... [et al.]. Systematics of the triton and alpha particle emission in ternary fission / C. Wagemans, S. Vermote, O. Serot -- Neutron emission in fission. Scission neutron emission in fission / F.-J. Hambsch ... [et al.]. At and beyond the Scission point: what can we learn from Scission and prompt neutrons? / P. Talou. Fission prompt neutron and gamma multiplicity by statistical decay of fragments / S. Perez-Martin, S. Hilaire, E. Bauge -- Fission theory. Structure and fission properties of actinides with the Gogny force / H. Goutte ... [et al.]. Fission fragment properties from a microscopic approach / N. Dubray, H. Goutte, J.-P. Delaroche. Smoker and non-smoker neutron-induced fission rates / I. Korneev ... [et al.] -- Facilities and detectors. A novel 2v2E spectrometer in Manchester: new development in identification of fission fragments / I. Tsekhanovich ... [et al

  4. Calculated irradiation response of materials using fission reactor (HFIR, ORR, and EBR-II) neutron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Bishop, B.L.; Wiffen, F.W.

    1979-08-01

    In order to plan radiation damage experiments in fission reactors keyed toward fusion reactor applications, it is necessary to have available for these facilities displacement per atom (dpa) and gas production rates for many potential materials. This report supplies such data for the elemental constituents of alloys of interest to the United States fusion reactor alloy development program. The calculations are presented for positions of interest in the HFIR, ORR, and EBR-II reactors. DPA and gas production rates in alloys of interest can be synthesized from these results.

  5. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    Directory of Open Access Journals (Sweden)

    Salahuddin Asif

    2013-01-01

    Full Text Available Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor. For this purpose, the Karlsruhe version of isotope generation and depletion code, KORIGEN, has been modified accordingly. An entirely novel fission product yields library for fast reactors has been created which has replaced the old KORIGEN fission products library. For the purposes of this study, the standard 26 groups data set, KFKINR, developed at Forschungszentrum Karlsruhe, Germany, has been extended by the addition of the cross-sections of 13 important actinides and 68 most important fission products. It has been confirmed that these 68 fission products constitute about 95% of the total fission products yield and about 99.5% of the total absorption due to fission products in fast reactors. The amount of fissile material required to guarantee the criticality of the reactor during recycling schemes has also been investigated. Cumulative high active waste per ton of initial heavy metal is also calculated. Results show that the recycling of actinides and fission products in fast reactors through the atomics international reduction oxidation process results in a reduction of the potential hazard of radioactive waste.

  6. Fission product filter for hot reactor cooling gas

    International Nuclear Information System (INIS)

    The fission product filter for He consists of a winding body composed of two corrugated metal sheets simultaneously wound on a core laterally reversed. It is inserted into an enclosing tube and held at top and bottom by a star-shaped yoke. (DG)

  7. Relative fission product yield determination in the USGS TRIGA Mark I reactor

    Science.gov (United States)

    Koehl, Michael A.

    Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, modified spectral index, neutron temperature, and gold-based cadmium ratios were determined for various sampling positions in the USGS TRIGA Mark I reactor. The differential neutron energy spectrum measurement was obtained using the computer iterative code SAND-II-SNL. The mass attenuation coefficients for molecular precipitates were determined through experiment and compared to results using the EGS5 Monte Carlo computer code. Difficulties associated with sufficient production of fission product isotopes in research reactors limits the ability to complete a direct, experimental assessment of mass attenuation coefficients for these isotopes. Experimental attenuation coefficients of radioisotopes produced through neutron activation agree well with the EGS5 calculated results. This suggests mass attenuation coefficients of molecular

  8. Markets for reactor-produced non-fission radioisotopes

    International Nuclear Information System (INIS)

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included

  9. Feasibility study of applying the passive safety system concept to fusion–fission hybrid reactor

    International Nuclear Information System (INIS)

    The fusion–fission hybrid reactor can produce energy, breed nuclear fuel, and handle the nuclear waste, etc., with the fusion neutron source striking the subcritical blanket. The passive safety system consists of passive residual heat removal system, passive safety injection system and automatic depressurization system was adopted into the fusion–fission hybrid reactor in this paper. Modeling and nodalization of primary loop, partial secondary loop and passive core cooling system for the fusion–fission hybrid reactor using relap5 were conducted and small break LOCA on cold leg was analyzed. The results of key transient parameters indicated that the actuation of passive safety system could mitigate the accidental consequence of the 4-inch cold leg small break LOCA on cold leg in the early time effectively. It is feasible to apply the passive safety system concept to fusion–fission hybrid reactor. The minimum collapsed liquid level had great increase if doubling the volume of CMTs to increase its coolant injection and had no increase if doubling the volume of ACCs

  10. Thermochemical data for reactor materials and fission products: The ECN database

    International Nuclear Information System (INIS)

    The activities of the authors regarding the compilation of a database of thermochemical properties for reactor materials and fission products is reviewed. The evaluation procedures and techniques are outlined and examples are given. In addition, examples of the use of thermochemical data for the application in the field of Nuclear Technology are given. (orig.)

  11. Theory of fission detector signals in reactor measurements

    CERN Document Server

    Pál, L

    2015-01-01

    The Campbell theorem, relating the variance of the current of a fission chamber (a "filtered Poisson process") to the intensity of the detection events and to the detector pulse shape, becomes invalid when the neutrons generating the fission chamber current are not independent. Recently a formalism was developed by the present authors [1], by which the variance of the detector current could be calculated for detecting neutrons in a subcritical multiplying system, where the detection events are obviously not independent. In the present paper, the previous formalism, which only accounted for prompt neutrons, is generalised to account also for delayed neutrons. A rigorous probabilistic analysis of the detector current was performed by using the same simple, but realistic detector model as in the previous work. The results of the present analysis made it possible to determine the bias of the traditional Campbelling techniques both qualitatively and quantitatively. The results show that the variance still remains ...

  12. SABR fusion-fission hybrid transmutation reactor design concept

    Science.gov (United States)

    Stacey, Weston

    2009-11-01

    A conceptual design has been developed for a sub-critical advanced burner reactor (SABR) consisting of i) a sodium cooled fast reactor fueled with the transuranics (TRU) from spent nuclear fuel, and ii) a D-T tokamak fusion neutron source based on ITER physics and technology. Subcritical operation enables more efficient transmutation fuel cycles in TRU fueled reactors (without compromising safety), which may be essential for significant reduction in high-level waste repository requirements. ITER will serve as the prototype for the fusion neutron source, which means SABRs could be implemented to help close the nuclear fuel cycle during the 2^nd quarter of the century.

  13. Fission product release in accidents in light water reactors

    International Nuclear Information System (INIS)

    The author deals with the three phases of release from the reactor core, from the reactor system, and finally from the containment. Particular interest is given to the release from the reactor core at temperatures which let the fuel rod cladding burst leading to meltdown of the fuel elements and evaporation from the core melt. The special case of the steam explosion with small nuclear fuel particles pouring out into an oxidating atmosphere is touched upon. The Rasmussen study is the basis of the statements. (orig./LH)

  14. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    International Nuclear Information System (INIS)

    A fusion-fission hybrid conceptual reactor is established. It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium. The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D+ beam of the Cockcroft-Walton neutron generator in direct current mode. The measured TPR distribution is compared with the calculated results obtained by the three-dimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file. The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α, β) thermal scattering model, so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors. (authors)

  15. Measurement of tritium production rate distribution for a fusion-fission hybrid conceptual reactor

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-Hua; GUO Hai-Ping; MOU Yun-Feng; ZHENG Pu; LIU Rong; YANG Xiao-Fei; YANG Jian

    2013-01-01

    A fusion-fission hybrid conceptual reactor is established.It consists of a DT neutron source and a spherical shell of depleted uranium and hydrogen lithium.The tritium production rate (TPR) distribution in the conceptual reactor was measured by DT neutrons using two sets of lithium glass detectors with different thicknesses in the hole in the vertical direction with respect to the D+ beam of the Cockcroft-Walton neutron generator in direct current mode.The measured TPR distribution is compared with the calculated results obtained by the threedimensional Monte Carlo code MCNP5 and the ENDF/B-Ⅵ data file.The discrepancy between the measured and calculated values can be attributed to the neutron data library of the hydrogen lithium lack S(α,β) thermal scattering model,so we show that a special database of low-energy and thermal neutrons should be established in the physics design of fusion-fission hybrid reactors.

  16. Determination of the Primary Nuclear Charge of Fission Fragments from their Characteristic K-X-Ray Emission in Spontaneous Fission of Cf252

    International Nuclear Information System (INIS)

    The distribution of nuclear charge in the spontaneous fission of Cf252 has been determined directly by simultaneous measurement of the masses and characteristic K-X-ray energies associated with the primary fission products. The X-rays were detected by a thin Nal (Tl) crystal (or by an argon-filled proportional counter) in coincidence with a pair of solid-state detectors for the complementary fission fragments. Preliminary to the three-parameter study of the charge-mass distribution the gross characteristics of the K-X-rays were examined in some detail. The average yield of K-X-rays is 0.55 ± 0.1 pet fission (the heavy group accounting fot 70% of the total). From delayed-coincidence and fragment time-of-flight experiments it was.found that about 30% of the X-rays are emitted within 0.1 ns after fission, another 30% between 0.1 and 1 ns, 25% between 1 and 10 ns, the remainder appearing as two delayed components of equal intensity with half-lives of ∼30 ns and ∼100 ns. These characteristics indicate that the X-rays arise from internal conversion during de-excitation of the primary fission fragments, an interpretation supported by the observed yield 1 per fission) of 50 - 300 - keV electrons emitted within 2 ps of fission. In the three-parameter experiments the yield and energy of K-X-rays emitted in the first centimeter (ns) of fragment flight were determined as a function of fragment mass. The yield of K-X-rays per fragment is a pronounced saw-tooth function of mass, rising from p) function in better agreement with the empirical rule of equal charge displacement (ECD) than with other postulates for charge division in nuclear fission. (author)

  17. Status of pseudo-fission-product cross-sections for fast reactors

    International Nuclear Information System (INIS)

    Within the framework of the Subgroup 17 (SG17) benchmark organized by a Working Party of the Nuclear Science Committee of the Nuclear Energy Agency (FR), a comparison of lumped or pseudo-fission-product cross-sections for fast reactors has been made. Several parameters have been compared: the one- group cross-sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross-sections, and the one-group cross sections of individual fission products. Graphs of the multi-group cross-sections and those of capture cross-sections for 27 nuclides have also been compared. (R.P.)

  18. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Science.gov (United States)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  19. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  20. Machine-able Yttria Stabilized Zirconia Composites for Thermal Insulation in Nuclear Reactors

    Science.gov (United States)

    Lo, J.; Zhang, R.; Santos, R.

    2016-02-01

    Ceramics are a promising insulating material for high temperature environment. To qualify for in-core use in nuclear reactors, there are many other materials requirements to be met, such as neutron irradiation resistance, corrosion resistance, low thermal conductivity, high coefficient of thermal expansion, high strength, high fracture toughness, ease of fabricability, etc. And among the promising ceramics meeting most of the requirements, with the exception of fabricability, is yttria-stabilized zirconia (YSZ). Like all ceramics, YSZ is hard, brittle and difficult to machine. At CanmetMATERIALS, YSZ-based composites for in-core insulation that are machine-able and capable of being formed into complex shapes have been developed. In this paper, the focus is geared towards the fabrication and property evaluation of such composites. In addition, the machinability aspect of the YSZ composites was addressed with a demonstration of a machined component.

  1. A fusion-fission reactor driven by plasma-liner impact

    International Nuclear Information System (INIS)

    It is shown that the impact of a quasi-spherical plasma liner on a spherical solid liner can produce a highly luminous source of soft X-rays. This radiation can be used for the ablation of an inner spherical liner, which can be thus accelerated to speeds above 107 cm/sec. Such a liner should be able to compress a core of fissionable material, surrounded by a D-T mantle to fission - criticality. The burst of the fission energy then ignites the D-T mantle which produces a larger burst of fusion energy. The energy liberated in such a microexplosion is estimated to be of the order of 1 GJ. An apparatus based on a symmetrical plasma-focus geometry should be able to produce the plasma liner. A reactor combining these concepts is described. (orig.)

  2. Reaction rates in blanket assemblies of a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor, experiments for measuring reaction rates inside two simulating assemblies are performed. Two benchmark assemblies were developed for the neutronics experiments. A D-T fusion neutron source is placed at the center of the setup. One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells, and these shells are arranged alternatively. The 238U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer. The fission reaction rates are measured using a fission chamber coated with depleted uranium. The other assembly consists of depleted uranium and LiH shells. The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly. The measured reaction rates are compared with the calculated ones predicted using MCNP code, and C/E values are obtained. (authors)

  3. Fission fragment charge and mass distributions in 239Pu(n,f) in the adiabatic nuclear energy density functional theory

    CERN Document Server

    Regnier, D; Schunck, N; Verriere, M

    2016-01-01

    Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r-process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data is available is an incentive to develop a fully microscopic approach to fission dynamics. In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear energy density functional (EDF) method, where large amplitude collective motion is treated adiabatically using the time dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in tw...

  4. The Possibilities of Fission Material Reproduction Increase in Thermal Reactor with the Assemblies with a Hard Neutron Spectrum

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2011-01-01

    The possibility of additional neutron source development with the use of fast neutrons with an energy distribution close to the fission spectrum in the major part of thermal reactor core is researched in this paper.

  5. Major features of a mirror fusion--fast fission hybrid reactor

    International Nuclear Information System (INIS)

    A conceptual design was made of a fusion-fission reactor. The fusion component is a D-T plasma confined by a pair of magnetic mirror coils in a Yin-Yang configuration and sustained by hot neutral beam injection. The neutrons from the fusion plasma drive the fission assembly which is composed of natural uranium carbide fuel rods clad with stainless steel and is cooled by helium. It was shown how the reactor can be built using essentially present day construction technology and how the uranium bearing blanket modules can be routinely changed to allow separation of the bred fissile fuel of which approximately 1200 kg of plutonium are produced each year along with the approximately 750 MW of electricity. (U.S.)

  6. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Directory of Open Access Journals (Sweden)

    Wagemans Jan

    2016-01-01

    Full Text Available The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  7. The 235U Prompt Fission Neutron Spectrum in the BR1 Reactor at SCK•CEN

    Science.gov (United States)

    Wagemans, Jan; Malambu, Edouard; Borms, Luc; Fiorito, Luca

    2016-02-01

    The BR1 research reactor at SCK•CEN has a spherical cavity in the graphite above the reactor core. In this cavity an accurately characterised Maxwellian thermal neutron field is present. Different converters can be loaded in the cavity in order to obtain other types of neutron (and gamma) irradiation fields. Inside the so-called MARK III converter a fast 235U(n,f) prompt fission neutron field can be obtained. With the support of MCNP calculations, irradiations in MARK III can be directly related to the pure 235U(n,f) prompt fission neutron spectrum. For this purpose MARK III spectrum averaged cross sections for the most relevant fluence dosimetry reactions have been determined. A calibration factor for absolute measurements has been determined applying activation dosimetry following ISO/IEC 17025 standards.

  8. Comparison of actinides and fission products recycling scheme with the normal plutonium recycling scheme in fast reactors

    OpenAIRE

    Salahuddin Asif; Iqbal Masood

    2013-01-01

    Multiple recycling of actinides and non-volatile fission products in fast reactors through the dry re-fabrication/reprocessing atomics international reduction oxidation process has been studied as a possible way to reduce the long-term potential hazard of nuclear waste compared to that resulting from reprocessing in a wet PUREX process. Calculations have been made to compare the actinides and fission products recycling scheme with the normal plutonium recycling scheme in a fast reactor....

  9. Feasibility study of a fission-suppressed tandem-mirror hybrid reactor

    International Nuclear Information System (INIS)

    Results of a conceptual design study of a U-233 producing fusion breeder consisting of a tandem mirror fusion device and two types of fission-suppressed blankets are presented. The majority of the study was devoted to the conceptual design and evaluation of the two blankets. However, studies in the areas of fusion engineering, reactor safety, fuel reprocessing, other fuel cycle issues, economics, and deployment were also performed

  10. Resuspension of fission products during severe accidents in light-water reactors

    International Nuclear Information System (INIS)

    This report investigates the influence of resuspension phenomena on the overall radiological source term of core melt accidents in a pressurized water reactor. A review of the existing literature is given and the literature data are applied to calculations of the source term. A large scatter in the existing data was found. Depending on the scenario and on the data set chosen for the calculations the relative influence of resuspended fission products on the source term ranges from dominant to negligible. (orig.)

  11. Nuclear performance of molten salt fusion--fission symbiotic systems for catalyzed DD and DT reactors

    International Nuclear Information System (INIS)

    The nuclear performance of a fusion-fission hybrid reactor having a molten salt composed of Na-Th-F-Be as the blanket fertile material and operating with a catalyzed DD plasma is compared to a similar system utilizing a Li-Th-F-Be salt and operating with a DT plasma. The production of fissile fuel via the 232Th-233U fuel cycle was considered on the basis of its potential nonproliferation aspects. The calculations were performed using one-dimensional discrete ordinates methods to compare neutron balances, fuel producion rates, energy deposition rates, and the radiation damage in the reactor structure

  12. Device for cooling the main vessel of a fast fission nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Debru, M.

    1984-10-16

    The annular space delimited by the main vessel and an internal shell is in communication with the zone of the reactor vessel, in which the cold primary liquid is located. The annular space delimited by the shell and by an internal shell is in communication with the lower part of the core via tubes. Thus, the cold primary liquid is injected into the space where it circulates from bottom to top, and flows into the space, where it circulates from top to bottom while at the same time cooling the main vessel. The invention applies, in particular, to fast fission nuclear reactors cooled by liquid sodium.

  13. Fission product release phenomena during core melt accidents in metal fueled heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, P G; Hyder, M L; Monson, P R; Randolph, H W [Westinghouse Savannah River Co., Aiken, SC (USA); Hagrman, D L [EG and G Idaho, Inc., Idaho Falls, ID (USA); McClure, P R; Leonard, M T [Science Applications International Corp., Albuquerque, NM (USA)

    1990-01-01

    The phenomena that determine fission product release rates from a core melting accident in a metal-fueled, heavy water reactor are described in this paper. This information is obtained from the analysis of the current metal fuel experimental data base and from the results of analytical calculations. Experimental programs in place at the Savannah River Site are described that will provide information to resolve uncertainties in the data base. The results of the experiments will be incorporated into new severe accident computer codes recently developed for this reactor design. 47 refs., 4 figs.

  14. Thermodynamic performance of a gas-core fission reactor

    International Nuclear Information System (INIS)

    The purpose of this thesis was to investigate the thermodynamic behaviour of a critical quantity of gaseous uranium-fluorides in chemical equilibrium with a graphite wall. From the very beginning a container was considered with cooled walls. As it was evident that a nuclear reactor working with gaseous fuel should run at much higher temperatures than classical LWR or HTGR reactors, most of the investigations were performed for walls with a surface temperature of 1800 to 2000 K. It was supposed that such a surface temperature would be technologically possible for a heat load between 1 and 5 MWatt m-2. Cooling with high pressure helium-gas has to keep balance with this heat flux. The technical construction of such a wall will be a problem in itself. It is thought that the experiences with re-entry-vessels in space-technology can be used. A basic assumption in all the calculations is that the U-C-F reactor gas 'sees' a graphite wall, possibly graphite tiles supported by heat resistant materials like SiN2, SiC2 and at a lower temperature level by niobium-steel. Such a gastight compound-system is not necessarily of high-tensile strength materials. It has to be surrounded by a cooled neutron moderator-reflector which in its turn must be supported by a steel-wall at room temperature holding pressure of the order of 100 bar (10 MPa). The design of such a compound-wall is a task for the future. 116 refs.; 28 figs.; 29 tabs

  15. Conceptual design study of Hyb-WT as fusion–fission hybrid reactor for waste transmutation

    International Nuclear Information System (INIS)

    Highlights: • Conceptual design study of fusion-fission hybrid reactor for waste transmutation. • MCNPX and MONTEBURNS are compared for transmutation performance of WT-Hyb. • Detailed neutronic performance of final optimized Hyb-WT design is analyzed. • A new tube-in-duct core design is implemented and compared with pin type design. • Study shows many aspects of hybrid reactor even though scope was limited to neutronic analysis. - Abstract: This study proposes a conceptual design of a hybrid reactor for waste transmutation (Hyb-WT). The design of Hyb-WT is based on a low-power tokamak (less than 150 MWt) and an annular ring-shaped reactor core with metal fuel (TRU 60 w/o, Zr 40 w/o) and a fission product (FP) zone. The computational code systems MONTEBURNS and MCNPX2.6 are investigated for their suitability in evaluating the performance of Hyb-WT. The overall design performance of the proposed reactor is determined by considering pin-type and tube-in-duct core designs. The objective of such consideration is to explore the possibilities for enhanced transmutation with reduced wall loading from fusion neutrons and reduced transuranic (TRU) inventory. TRU and FP depletion is analyzed by calculating waste transmutation ratio, mass burned per full power year (in units of kg/fpy), and support ratio. The radio toxicity analysis of TRUs and FPs is performed by calculating the percentage of toxicity reduction in TRU and FP over a burn cycle

  16. Human machine interface for research reactor instrumentation and control system

    International Nuclear Information System (INIS)

    Most present design of Human Machine Interface for Research Reactor Instrumentation and Control System is modular-based, comprise of several cabinets such as Reactor Protection System, Control Console, Information Console as well as Communication Console. The safety, engineering and human factor will be concerned for the design. Redundancy and separation of signal and power supply are the main factor for safety consideration. The design of Operator Interface absolutely takes consideration of human and environmental factors. Physical parameters, experiences, trainability and long-established habit patterns are very important for user interface, instead of the Aesthetic and Operator-Interface Geometry. Physical design for New Instrumentation and Control System of RTP are proposed base on the state-of- the-art Human Machine Interface design. (author)

  17. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  18. Study of advanced fission power reactor development for the United States. Volume II

    International Nuclear Information System (INIS)

    This report presents the results of a multi-phase research study which had as its objective the comparative study of various advanced fission reactors and evaluation of alternate strategies for their development in the USA through the year 2020. By direction from NSF, ''advanced'' reactors were defined as those which met the dual requirements of (1) offering a significant improvement in fissile fuel utilization as compared to light-water reactors and (2) currently receiving U.S. Government funding. (A detailed study of the LMFBR was specifically excluded, but cursory baseline data were obtained from ERDA sources.) Included initially were the High-Temperature Gas-Cooled Reactor (HTGR), Gas-Cooled Fast Reactor (GCFR), Molten Salt Reactor (MSR), and Light-Water Breeder Reactor (LWBR). Subsequently, the CANDU Heavy Water Reactor (HWR) was included for comparison due to increased interest in its potential. This volume presents the reasoning process and analytical methods utilized to arrive at the conclusions for the overall study

  19. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  20. Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    Rainer Moormann

    2008-01-01

    Full Text Available Fission products deposited in the coolant circuit outside of the active core play a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA. The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element surfaces due to an air ingress. Dust has a size of about 1  m, consists mainly of graphite, is partly remobilized by flow perturbations, and deposits with time constants of 1 to 2 hours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase.

  1. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  2. Fission product transport in the high temperature gas-cooled reactor: Theory, program development and verification by recalculation of experiments

    International Nuclear Information System (INIS)

    The high temperature gascooled reactor (HTGR) reaches a special standard in safety because of its high temperature resistent fuel element. After all the possibility of fission product releases can not be excluded without further investigations for HTGRs. The mechanisms of fission product releases, which occur in case of such hypothetical events, are the subject of this work. The main focus of the investigation is how the fission products, which have been released, are re-adsorpted and prevented through this mechanism from being released in the environment. A strong effect of re-adsorption is expected, because experiments have shown that graphite, which is 100% of the core material, has an excellent capability to hold back fission products. With the program tools developed to calculate the fission product transport mechanisms, the corresponding experiments are recalculated and also fission product release calculations are carried out. (orig./HP)

  3. Radiation damage of graphite in fission and fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B. (GA Technologies, Inc., San Diego, CA (USA)); Kelly, B.T. (Springfields Nuclear Power Development Labs. (UK))

    1984-05-01

    Increasing the crystalline perfection of artificial graphites is suggested as one method of reducing the crystallite damage. The life expectance for the isotropic conventional graphites will in each case depend on the reactor component for which it will be used and on its design considerations. Based on neutron damage and related dimensional changes it is estimated graphite will be tenable to about 3x10/sup 22/ n/cm/sup 2/ (EDN) at 400/sup 0/C, 0.6x10/sup 22/ n/cm/sup 2/ (EDN) at 1000/sup 0/C and 1.4x10/sup 22/ n/cm/sup 2/ (EDN) at 1400/sup 0/C. There are no data above 1400/sup 0/C on which to speculate. A dose of 2x10/sup 22/ n/cm/sup 2/ may be accumulated in times ranging from as short as a few months in the first wall region of high power density designs to the fusion plant lifetime (30 years) in the neutron reflector region behind the blanket.

  4. Search for neutrino oscillations at a fission reactor

    International Nuclear Information System (INIS)

    In the Gosgen oscillation experiment flux and energy spectrum of these electron antineutrinos were monitored at two distances from the reactor core (37.9 m, 45.9 m). The detector system, well shielded against cosmic radiation, is based on the detection reaction upsilonsub(e)sup(c) + p->n + esup(*) and an alternating array of liquid scintillators and He wire chambers serves as positron and neutron detectors. As signature for a good event a time and position correlation of the detected neutron and positron is required. In addition the measured position energy spectrum directly reflects the incident neutrino energies. To analyze the data in terms of oscillations, either the spectra measured in each position are compared to theoretical predictions for different oscillation parameters or a relative comparison of both measurements is performed. Allowing in the analysis a variation of 2 standard deviations for the systematic uncertainties the following limits on the oscillation parameters are obtained in a combination of the data from both measuring positions: mixing angle: [large mass param.] sin2 20 2 2 (90% c.l.). (orig./HSI)

  5. Application of STAV5 code for the analysis of fission gas release in power reactor rods

    International Nuclear Information System (INIS)

    STAV5 is a design code for calculation of temperatures, fission gas release and rod pressure in BWR and PWR fuel rods. It includes the treatment of pellet cracks affecting conductivity and thermal expansion, gap closure by eccentric or relocated pellet fragments and oxide and crud build-up on the clad outer surface. The fission gas release model consists of two parts: High temperature release based on grain boundary saturation and low temperature release varying with fission rate of different isotopes. STAV5 has been benchmarked with a number of inpile thermal measurement experiments to as high burnup as 25 MWd/kg U. The main application of STAV5 is as a routine design tool for power reactor rods. It is also used to compare with PIE data. Examples are given from the analyses of fission gas release data from BWR rods from Oskarshamn 1 and Barsebeck 1 as well as PWR rods from Maine Yankee initial cores. The STAV5 evaluation show the importance of power histories, densification and the position in the assembly. (author)

  6. ACRR [Annular Core Research Reactor] fission product release tests: ST-1 and ST-2

    International Nuclear Information System (INIS)

    Two experiments (ST-1 and ST-2) have been performed in the Annular Core Research Reactor (ACER) at Sandia National Laboratories (SNLA) to obtain time-resolved data on the release of fission products from irradiated fuels under light water reactor (LWR) severe accident conditions. Both experiments were conducted in a highly reducing environment at maximum fuel temperatures of greater than 2400 K. These experiments were designed specifically to investigate the effect of increased total pressure on fission product release; ST-1 was performed at approximately 0.16 MPa and ST-2 was run at 1.9 MPa, whereas other parameters were matched as closely as possible. Release rate data were measured for Cs, I, Ba, Sr, Eu, Te, and U. The release rates were higher than predicted by existing codes for Ba, Sr, Eu, and U. Te release was very low, but Te did not appear to be sequestered by the zircaloy cladding; it was evenly distributed in the fuel. In addition, in posttest analysis a unique fuel morphology (fuel swelling) was observed which may have enhanced fission product release, especially in the high pressure test (ST-2). These data are compared with analytical results from the CORSOR correlation and the VICTORIA computer model. 8 refs., 8 figs., 2 tabs

  7. Ba isotopic signature for early differentiation between Cs and Ba in natural fission reactors

    Science.gov (United States)

    Hidaka, Hiroshi; Gauthier-Lafaye, François

    2008-08-01

    Ba isotopic studies of the Oklo and Bangombé natural fission reactors in east Gabon provide information on the geochemical behavior of radioactive Cs ( 135Cs and 137Cs) in a geological medium. Large isotopic deviations derived from fissiogenic Ba were found in chemical leachates of the reactor uraninites. The fissiogenic Ba isotopic patterns calculated by subtracting the non-fissiogenic component are classified into three types that show different magnifications of chemical fractionation between Cs and Ba. In addition, the isotopic signatures of fissiogenic 135Ba, 137Ba and 138Ba suggest an early differentiation between Cs and Ba of less than 20 years after the production of fissiogenic Cs and Ba. On the other hand, only small excesses of 135Ba ( ɛ < +1.8) and/or 137Ba ( ɛ < +1.3) were identified in some clay samples, which might have resulted from selective adsorption of 135Cs and 137Cs that migrated from the reactors by differentiation.

  8. Nuclear decay by emission of charged particle-superasymmetric fission process

    International Nuclear Information System (INIS)

    The macro-microscopic method, adapted for superasymmetric fission was applied to the alpha decay and other kinds of charged particles emission which are possible due to the nuclear shell structure. Three macroscopic models (the liquid drop model, the finite range of nuclear forces model and the Yukawa exponential model) are extended for nuclear systems with different charge densities. Various numerical methods for the computation of Coulomb and surface energy of a general shape nucleus are presented along with analytical results for some particular shapes. A phenomenological correction was used to obtain the experimental Q-value. This formalism was applied to the alpha decay from the ground state and from a fission isomeric state. A time dependent Hartree-Fock method is used to estimate the zero vibration energy. A new semiempirical formula giving the best estimates for the alpha decay lifetimes was derived and used to predict new alpha emitters. For this new mode of decay intermediate between alpha decay and the traditional fission, larger probabilities are obtained for the combinations of parent-nucleus-heavy cluster leading to a magic daughter nuclei or not too far from it

  9. Hydraulic stud-tensioning machines in reactor technology

    International Nuclear Information System (INIS)

    Hydraulic multiple stud tensioner (MST) for the simultaneous prestressing of all the stud bolts is make it possible to achieve highly accurate prestress levels in the highly stressed bolts holding down the top head of reactor pressure vessels. These machines can remove and replace the nuts and studs, and can rotate these components upwards and downwards, during the operation of opening and closing the reactor pressure vessel. In order to reduce the radiation exposure of the service personnel, and also to reduce the time required for this work which may lie in the critical path of the refuelling time schedule, it is desirable to achieve complete mechanisation of these machines, including remote control and remote monitoring. The devices and components required for this purpose are without precedent in machine construction with respect to their functions and to the load range involved. The reported operating experience therefore also covers some points of general interest while the data on maintenance reflect the known status of the technology. (orig.)

  10. The effect of intermittent operation on local fission rate in the McMaster Nuclear Reactor

    International Nuclear Information System (INIS)

    The McMaster Nuclear Reactor operates on a 16-hr/day/5-day/week schedule causing cyclic loading of Xenon in the core and requiring compensation by the control systems to maintain operations. The constant control rod interaction affects local fission rates. This paper confirms the relationship between Xenon load and control rod movement and studies the relationship between local fission rate and control rod insertion. The results provide information related to analysis approximations used in depletion calculations. In addition, comparisons are made between the current MNR operation cycle and a proposed continuous operational approach. The results are further discussed in the context of proposed Molybdenum-99 production at MNR. (author)

  11. Determination of Nuclear Charge Distributions of Fission Fragments from ^{235}U (n_th, f) with Calorimetric Low Temperature Detectors

    Science.gov (United States)

    Grabitz, P.; Andrianov, V.; Bishop, S.; Blanc, A.; Dubey, S.; Echler, A.; Egelhof, P.; Faust, H.; Gönnenwein, F.; Gomez-Guzman, J. M.; Köster, U.; Kraft-Bermuth, S.; Mutterer, M.; Scholz, P.; Stolte, S.

    2016-08-01

    Calorimetric low temperature detectors (CLTD's) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of ^{235}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with ^{109}Ag and ^{127}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue-Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82le A le 132 and a systematic measurement of ^{92}Rb fission yields, as well as investigations of fission yields toward the symmetry region.

  12. EPRI Asilomar papers: on the possibility of advanced fuel fusion reactors, fusion-fission hybrid breeders, small fusion power reactors, Asilomar, California, December 15--17, 1976

    International Nuclear Information System (INIS)

    An EPRI Ad Hoc Panel met in Asilomar, California for a three day general discussion of topics of particular interest to utility representatives. The three main topics considered were: (1) the possibility of advanced fuel fusion reactors, (2) fusion-fission hybrid breeders, and (3) small fusion power reactors. The report describes the ideas that evolved on these three topics. An example of a ''neutron less'' fusion reactor using the p-11B fuel cycle is described along with the critical questions that need to be addressed. The importance to the utility industry of using fusion neutrons to breed fission fuel for LWRs is outlined and directions for future EPRI research on fusion-fission systems are recommended. The desirability of small fusion power reactors to enable the early commercialization of fusion and for satisfying users' needs is discussed. Areas for possible EPRI research to help achieve this goal are presented

  13. Fission of Multiply Charged Cesium and Potassium Clusters in Helium Droplets - Approaching the Rayleigh Limit

    CERN Document Server

    Renzler, Michael; Daxner, Matthias; Kranabetter, Lorenz; Kuhn, Martin; Scheier, Paul; Echt, Olof

    2016-01-01

    Electron ionization of helium droplets doped with cesium or potassium results in doubly and, for cesium, triply charged cluster ions. The smallest observable doubly charged clusters are $Cs_{9}^{2+}$ and $K_{11}^{2+}$; they are a factor two smaller than reported previously. The size of potassium dications approaches the Rayleigh limit nRay for which the fission barrier is calculated to vanish, i.e. their fissilities are close to 1. Cesium dications are even smaller than nRay, implying that their fissilities have been significantly overestimated. Triply charged cesium clusters as small as $Cs_{19}^{3+}$ are observed; they are a factor 2.6 smaller than previously reported. Mechanisms that may be responsible for enhanced formation of clusters with high fissilities are discussed.

  14. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy

  15. An experimental investigation of fission product release in SLOWPOKE-2 reactors

    International Nuclear Information System (INIS)

    Increasing radiation fields due to a release of fission products in the reactor container of several SLOWPOKE-2 reactors fuelled with a highly-enriched uranium (HEU) alloy core have been observed. It is believed that these increases are associated with the fuel fabrication where a small amount of uranium-bearing material is exposed to the coolant at the end-welds of the fuel element. To investigate this phenomenon samples of reactor water and gas from the headspace above the water have been obtained and examined by gamma spectrometry methods for reactors of various burnups at the University of Toronto, Ecole Polytechnique and Kanata Isotope Production Facility. An underwater visual examination of the fuel core at Ecole Polytechnique has also provided information on the condition of the core. This report (Volume 1) summarizes the equipment, analysis techniques and results of tests conducted at the various reactor sites. The data report is published as Volume 2. (author). 30 refs., 9 tabs., 20 figs

  16. Uraninite recrystallization and Pb loss in the Oklo and Bangombé natural fission reactors, Gabon

    Science.gov (United States)

    Evins, Lena Z.; Jensen, Keld A.; Ewing, Rodney C.

    2005-03-01

    The Oklo and Bangombé natural fossil fission reactors formed ca. 2 Ga ago in the Franceville basin, Gabon. The response of uraninite in the natural reactors to different geological conditions has implications for the disposal of the UO 2 in spent nuclear fuel. Uraninite and galena from two reactor zones, RZ16 at Oklo and RZB at Bangombé, were studied to clarify the chronology and effect of alteration events on the reactor zones. In addition, ion microprobe U-Pb analysis of zircons from a dolerite dyke in the Oklo deposit were completed to better constrain the age of the dyke, and thereby testing the link between the dyke and an important alteration event in the reactor zones. The analyzed uraninite from RZ16 and RZB contains ca. 6 wt% PbO, indicating a substantial loss of radiogenic Pb. Transmission electron microscopy showed that microscopic uraninite grains in the reactor zones consist of mainly defect-free nanocrystalline to microcrystalline aggregates. However, the nanocrystalline regions have elevated Si contents and lower Pb contents than coarser uraninite crystallites. Single stage model ages of large, millimeter-sized galena grains at both RZ16 and RZB correlate well with the age of the Oklo dolerite dyke, 860 ± 39 Ma (2σ). Thus, the first major Pb loss from uraninite occurred at both Oklo and Bangombé during regional extension and the intrusion of a dyke swarm in the Franceville basin, ˜860-890 Ma ago. Uraninite Pb isotopes from RZ16 and RZB give lower ages of ca. 500 Ma. These ages agree with the "chemical" ages of the uraninite, and show that an ancient Pb loss occurred after the intrusion of the dolerite dykes. The presence of nanocrystallites in the reactor uraninite indicates internal recrystallization, which may have occurred around 500 Ma, resulting in the 6wt% PbO uraninite. It is suggested that leaching by fluid interaction triggered by the Pan-African orogeny was important during this second Pb-loss event. Thus, there are indications that

  17. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  18. Tests on a prototype of the Passive Fission Gas Monitor for failed detection (PRISM reactor)

    International Nuclear Information System (INIS)

    The Passive Diffusion Fission Gas Monitor PDFGM is mounted on the PRISM reactor head and extends into the cover gas Region where it determines the presence of radioactive fission gases (Kr, Xe, and so on) released from failed fuel pins. It contains a steel diffusion column that is closed at the upper end but opened to the cover gas at its lower end. The upper portion of the column is located in the field of view of a collimated gamma detector which is shielded from the remainder of the cover gas and of the sodium pool below. Heaters are provided to obtain a uniform axial temperature in the gas column and to minimize the potential for natural convection currents. In this way, the molecular diffusion can be established based on the fission gas concentration gradients along the column length. This is an advanced solution in comparison with current devices based on active components (pumps, filters, and so on). The experimental results on a prototype of PDFGM and their interpretation will be presented in this paper. (author)

  19. Role of Fission Reactors and IFMIF in the Fusion Materials Programme

    International Nuclear Information System (INIS)

    In fusion power reactors, the plasma facing (first wall and divertor) and breeding blanket components will suffer irradiation by an intense flux of 14.1 MeV neutrons coming from the plasma. These fusion neutrons will produce nuclear transmutation reactions and atomic displacement cascades causing the presence of impurities and defects. Therefore, the chemical composition and the microstructure of the materials will change after irradiation, affecting its physical and mechanical properties. The study and evaluation of the changes in the material properties under irradiation is a top priority for the design of a fusion reactor. Key irradiation parameters include the accumulated damage, expressed in the number of displacements per atom or dpa, the damage rate in dpa/s, the rates of production of impurities (e.g. ppm(He)/dpa and ppm(H)/dpa ratios) and the temperature of the materials under irradiation. Unfortunately, at the moment, the existing sources of 14 MeV neutrons have very small intensity and do not allow us to get significant damage accumulation in a reasonable time. Therefore, it is necessary to simulate irradiation by fusion neutrons through the use of fission neutrons, high energy protons or heavy ions. Although the irradiation conditions provided by such particles are very different from those expected to occur in a fusion power reactor, especially in terms of damage rate and rates of production of impurities, relevant information can be obtained from present available fission reactors. In the paper a list with relevant experiments suitable for the fusion community is given, and the role of the future International Fusion Materials Irradiation Facility is discussed. (author)

  20. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  1. Startup of the Fission Converter Epithermal Neutron Irradiation Facility at the MIT Reactor

    International Nuclear Information System (INIS)

    A new epithermal neutron irradiation facility, based on a fission converter assembly placed in the thermal column outside the reactor core, has been put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). This facility was constructed to provide a high-intensity, forward-directed beam for use in neutron capture therapy with an epithermal flux of [approximately equal to]1010 n/cm2.s at the medical room entrance with negligible fast neutron and gamma-ray contamination. The fission converter assembly consists of 10 or 11 MITR fuel elements placed in an aluminum tank and cooled with D2O. Thermal-hydraulic criteria were established based on heat deposition calculations. Various startup tests were performed to verify expected neutronic and thermal-hydraulic behavior. Flow testing showed an almost flat flow distribution across the fuel elements with <5% bypass flow. The total reactivity change caused by operation of the facility was measured at 0.014 ± 0.002% δK/K. Thermal power produced by the facility was measured to be 83.1 ± 4.2 kW. All of these test results satisfied the thermal-hydraulic safety criteria. In addition, radiation shielding design measurements were made that verified design calculations for the neutronic performance

  2. Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    Science.gov (United States)

    Godfroy, Thomas; Dickens, Ricky; Houts, Michael; Pearson, Boise; Webster, Kenny; Gibson, Marc; Qualls, Lou; Poston, Dave; Werner, Jim; Radel, Ross

    2011-01-01

    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012.

  3. Fission reactor flux monitors based on single-crystal CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Almaviva, S.; Marinelli, M.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma ' ' Tor Vergata' ' , Via del Politecnico 1, 00133 Roma (Italy); INFN - Sezione Roma ' ' Tor Vergata' ' (Italy); Milani, E. [INFN - Sezione Roma ' ' Tor Vergata' ' (Italy); Angelone, M.; Lattanzi, D.; Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Via E. Fermi 45, 00144 Frascati (Roma) (Italy); Rosa, R. [Dipartimento Fusione e Presidio Nucleare ENEA C.R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy)

    2007-09-15

    Diamond based thermal neutron flux monitors have been fabricated using single crystal diamond films, grown by chemical vapour deposition. A 3 {mu}m thick {sup 6}LiF layer was thermally evaporated on the detector surface as a converting material for thermal neutron monitoring via the {sup 6}Li(n, {alpha}) T nuclear reaction. The detectors were tested in a fission nuclear reactor. One of them was positioned 80 cm above the core mid-plane, where the neutron flux is 2.2 x 10{sup 9} neutrons/cm{sup 2}s at 1 MW resulting in a device count rate of about 150000 cps. Good stability and reproducibility of the device output were proved over the whole reactor power range (up to 1 MW). During the irradiation, several pulse height spectra were recorded, in which both products of the {sup 6}Li(n,{alpha})T reaction, e.g. 2.73 MeV tritium and the 2.06 MeV {alpha}, were clearly identified, thus excluding a degradation of the detector response. A comparison with a reference fission chamber monitor pointed out a limitation of the adopted readout electronics at high count rates, due to multiple pile-up processes. However, once this effect is properly accounted for, a good linearity of the diamond flux monitor response is observed as a function of the fission chamber one, as well as an excellent agreement between the temporal behaviour of the two detector response. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Safety and economical requirements of conceptual fusion power reactors in co-existing advanced fission plants

    International Nuclear Information System (INIS)

    An EPR fission plant is expected to operate from 2010 to 2070. In this time range a new generation of advanced fission reactors and several stages of fusion reactors from ITER to DEMO will emerge. Their viability in the competitive socio-economic environment and also their possible synergy benefits are discussed in this paper. The studied cases involve the Finnish EPR, Generation IV, and the EFDA Power Plant Conceptual Study Models A-D. The main focus is on economic and safety assessments. Some cross-cutting issues of technologies are discussed. Concerning the economic potential of both conceptual fusion power plants and those of Generation IV candidates, we have used the present Finnish EPR as a reference. Comparisons using various pricing methods are made for fusion and Generation IV: mass flow analyses together with engineering, construction and financial margins form one method and another one is based on simple scaling relations between components or structures with common technology level. In all these studies fusion competitiveness has to be improved in terms of plant availability and internal power recirculation. At present the best fission plants have a plant availability close to 95% and an internal power recirculation of the order of 3-4%. The operation and maintenance solutions of Model C and D show the right way for fusion. A remarkable rise of the fuel costs of present LWRs would first make the Generation IV breeder options and thereafter the fusion plants more competitive. The costs of safety related components, such as the containment and the equipment for severe accident mitigation (e.g. the core catcher in a LWR), should be accounted for and the extent to which the inherent fusion safety features could compensate such expenses should be analysed. For an overall assessment of the various nuclear options both internal and external costs are considered. (author)

  5. Fission product chemistry in severe nuclear reactor accidents, specialists' meeting at JRC-Ispra, 15-17 January 1990

    International Nuclear Information System (INIS)

    A specialists' meeting was held at JRC-Ispra from 15 to 17 January 1990 to review the current understanding of fission-product chemistry during severe accidents in light water reactors. Discussions focussed on the important chemical phenomena that could occur across the wide range of conditions of a damaged nuclear plant. Recommendations for future chemistry work were made covering the following areas: (a) fuel degradation and fission-product release, (b) transport and attenuation processes in the reactor coolant system, (c) containment chemistry (iodine behaviour and core-concrete interactions). (author)

  6. Fault Diagnosis of Batch Reactor Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Sujatha Subramanian

    2014-01-01

    Full Text Available Fault diagnosis of a batch reactor gives the early detection of fault and minimizes the risk of thermal runaway. It provides superior performance and helps to improve safety and consistency. It has become more vital in this technical era. In this paper, support vector machine (SVM is used to estimate the heat release (Qr of the batch reactor both normal and faulty conditions. The signature of the residual, which is obtained from the difference between nominal and estimated faulty Qr values, characterizes the different natures of faults occurring in the batch reactor. Appropriate statistical and geometric features are extracted from the residual signature and the total numbers of features are reduced using SVM attribute selection filter and principle component analysis (PCA techniques. artificial neural network (ANN classifiers like multilayer perceptron (MLP, radial basis function (RBF, and Bayes net are used to classify the different types of faults from the reduced features. It is observed from the result of the comparative study that the proposed method for fault diagnosis with limited number of features extracted from only one estimated parameter (Qr shows that it is more efficient and fast for diagnosing the typical faults.

  7. Improving Nuclear Safety of Fast Reactors by Slowing Down Fission Chain Reaction

    Directory of Open Access Journals (Sweden)

    G. G. Kulikov

    2014-01-01

    Full Text Available Light materials with small atomic mass (light or heavy water, graphite, and so on are usually used as a neutron reflector and moderator. The present paper proposes using a new, heavy element as neutron moderator and reflector, namely, “radiogenic lead” with dominant content of isotope 208Pb. Radiogenic lead is a stable natural lead. This isotope is characterized by extremely low micro cross-section of radiative neutron capture (~0.23 mb for thermal neutrons, which is smaller than graphite and deuterium cross-sections. The reflector-converter for a fast reactor core is the structure capable of transforming some part of prompt neutrons leaked from the core into the reflected neutrons with properties similar to those of delayed neutrons, that is, sufficiently large contribution to reactivity at the level of effective fraction of delayed neutrons and relatively long lifetime, comparable with lifetimes of radionuclides-emitters of delayed neutrons. It is evaluated that the use of radiogenic lead makes it possible to slow down the chain fission reaction on prompt neutrons in the fast reactor. This can improve the fast reactor safety and reduce some requirements to the technologies used to fabricate fuel for the fast reactor.

  8. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    Science.gov (United States)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  9. Heterogeneity and alteration of uraninite from the natural fission reactor 10 at Oklo, Gabon

    International Nuclear Information System (INIS)

    A mineralogical study of uranium ore from reactor zone 10 revealed that uraninite in the natural reactors at Oklo, Gabon, has been altered through partial dissolution, Pb loss, and replacement by coffinite, USiO4.nH2O. The dissolution occurred during formation of the clay mantle surrounding the ore body and was probably caused by hydrothermal saline solutions under reducing conditions. The loss of lead (up to 11 wt%) from uraninite occurred approximately one billion years after the operation of the reactors. As a result, there are two generations of uraninite in the reactor zone that differ in chemical composition and unit cell parameters [a1 = 0.5495(2) and a2 = 0.5455(2) nm]. Minor coffinitization of uraninite has also occurred. Thus, the Oklo deposit has been altered since the event of nuclear criticality. This provides several distinct geochemical environments in which one may analyze the corrosion of uraninite and the subsequent retention or migration of fission products. (author). 20 refs., 3 figs., 1 tab

  10. Modelling and simulation the radioactive source-term of fission products in PWR type reactors

    International Nuclear Information System (INIS)

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  11. Natural fission reactors from Gabon. Contribution to the study of the conditions of stability of a natural radioactive wastes storage site (2 Ga)

    International Nuclear Information System (INIS)

    The natural fission reactors of Oklo consists of a core of uraninite (60%) with fission products, embedded in a pure clay matrix. Thus, the aim of geological, mineral, and geochemical studies of the Oklo Reactors is to assess the behaviour of fission products in an artificial waste depository. Previous studies have shown that Reactor Zone 10, located in the Oklo mine, represents an example for an exceptional confinement of fission products since 2 Ga. In reactor Zone 9, located in Oklo open pit, migrations are more important. Reactor ZOne 13 was influenced by a thermal event due to a doleritic intrusion, located some twenty meters far away, one Ga years after fission reaction operations. In this study,we characterized temperature and redox conditions of fluids by using stable isotopes of uraninites and clays. Moreover mineralogical and chemical characteristics were defined. (author)

  12. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  13. Computation of fission product distribution in core and primary circuit of a high temperature reactor during normal operation

    International Nuclear Information System (INIS)

    The fission product release during normal operation from the core of a high temperature reactor is well known to be very low. A HTR-Modul-reactor with a reduced power of 170 MWth is examined under the aspect whether the contamination with Cs-137 as most important nuclide will be so low that a helium turbine in the primary circuit is possible. The program SPTRAN is the tool for the computations and siumlations of fission product transport in HTRs. The program initially developed for computations of accident events has been enlarged for computing the fission product transport under the conditions of normal operation. The theoretical basis, the used programs and data basis are presented followed by the results of the computations. These results are explained and discussed; moreover the consequences and future possibilities of development are shown. (orig./HP)

  14. Concept of a BNCT line with in-pool fission converter at MARIA reactor in Swierk

    Science.gov (United States)

    Pytel, Krzysztof; Andrzejewski, Krzysztof; Golnik, Natalia; Osko, Jakub

    2009-01-01

    BNCT facility in the Institute of Atomic Energy in Otwock-Swierk is under construction at the horizontal channel H2 of the research reactor MARIA. Measurements of the neutron energy spectrum performed at the front of the H2 experimental channel, have shown that flux of epithermal neutrons (above 10 keV) at the BNCT irradiation port was below 109 n cm-2 s-1 i.e. it was too low to be directly used for the BNCT treatment. Therefore, a fission converter will be placed between the reactor core and the periphery of the graphite reflector of MARIA reactor. The uranium converter will be powered by the densely packed EK-10 fuel elements with 10% enrichment. Preliminary calculations have shown that the total neutron flux in the converter will be about 1013 n cm-2 s-1 and flux of epithermal neutrons at the entrance to the filter/moderator of the beam will be about 2·1013 n cm-2 s-1.

  15. Development and optimization of neutron measurement methods by fission chamber on experimental reactors - management, treatment and reduction of uncertainties

    International Nuclear Information System (INIS)

    The main objectives of this research thesis are the management and reduction of uncertainties associated with measurements performed by means of a fission-chamber type sensor. The author first recalls the role of experimental reactors in nuclear research, presents the various sensors used in nuclear detection (photographic film, scintillation sensor, gas ionization sensor, semiconducting sensor, other types of radiation sensors), and more particularly addresses neutron detection (activation sensor, gas filling sensor). In a second part, the author gives an overview of the state of the art of neutron measurement by fission chamber in a mock-up reactor (signal formation, processing and post-processing, associated measurements and uncertainties, return on experience of measurements by fission chamber on Masurca and Minerve research reactors). In a third part, he reports the optimization of two intrinsic parameters of this sensor: the thickness of fissile material deposit, and the pressure and nature of the filler gas. The fourth part addresses the improvement of measurement electronics and of post-processing methods which are used for result analysis. The fifth part deals with the optimization of spectrum index measurements by means of a fission chamber. The impact of each parameter is quantified. Results explain some inconsistencies noticed in measurements performed on the Minerve reactor in 2004, and allow the improvement of biases with computed values

  16. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.;

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...... factors that determine the level of fission gas release during a power bump. Release begins when gas bubbles on grain boundaries start o interlink. This occurred at r/r0 ~ 0.75. Release tunnels were fully developed at r/r0 ~ 0.55 with the result that gas release was 60–70% at this position....

  17. Dosimetry of fission neutrons in a 1-W reactor, UTR-KINKI

    CERN Document Server

    Endo, S; Yoshitake, Y

    2002-01-01

    The energy spectrum of fission neutrons in the biological irradiation field of the Kinki University reactor, UTR-KINKI, has been determined by a multi-foil activation analysis coupled with artificial neural network techniques and a Au-foil activation method. The mean neutron energy was estimated to be 1.26+-0.05 MeV from the experimentally determined spectrum. Based on this energy value and other information, the neutron dose rate was estimated to be 19.7+-1.4 cGy/hr. Since this dose rate agrees with that measured by a pair of ionizing chambers (21.4 cGy/hr), we conclude that the mean neutron energy could be estimated with reasonable accuracy in the irradiation field of UTR-KINKI. (author)

  18. Cavity Ring-Down Spectroscopy for Gaseous Fission Products Trace Measurements in Sodium Fast Reactors

    International Nuclear Information System (INIS)

    Safety and availability are key issues of the generation IV reactors. Hence, the three radionuclide confinement barriers, including fuel cladding, must stay tight during the reactor operation. During the primary gaseous failure, fission products xenon and krypton are released. Their fast and sensitive detection guarantees the first confinement barrier tightness. In the frame of the French ASTRID project, an optical spectroscopy technique - Cavity Ring Down Spectroscopy (CRDS) - is investigated for the gaseous fission products measurement. A dedicated CRDS set-up is needed to detect the rare gases with a commercial laser. Indeed, the CRDS is coupled to a glow discharge plasma, which generates a population of metastable atoms. The xenon plasma conditions are optimized to 110 Pa and 1.3 W (3 mA). The production efficiency of metastable Xe is then 0.8 %, stable within 0.5% during hours. The metastable number density is proportional to the xenon over argon molar fraction. The spectroscopic parameters of the strong 823.16 nm xenon transition are calculated and/or measured in order to optimize the fit of the experimental spectra and make a quantitative measurement of the metastable xenon. The CRDS is coupled to the discharge cell. The laser intensity inside the cavity is limited by the optical saturation process, resulting from the strong optical pumping of the metastable state. The resulting weak CRDS signal requires a fast and very sensitive photodetector. A 600 ppt xenon molar fraction was measured by CRDS. With the present set-up, the detection limits are estimated from the baseline noise to approximately 20 ppt for each even isotope, 60 ppt for the 131Xe and 55 ppt for the 129Xe. This sensitivity matches the specifications required for gaseous leak measurement; approximately 100 ppt for 133Xe (4 GBq/m3) and 10 ppb for stable isotopes. The odd isotopes are selectively measured, whereas the even isotopes overlap, a spectroscopic feature that applies for stable or

  19. Characteristics of mass and nuclear charge distributions of sup 229 Th(n sub th ,f). Implications for fission dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, J.P.; Faust, H.R. (Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)); Brissot, R. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires); Fowler, M.; Wilhelmy, J. (Los Alamos National Lab. (LANL), NM (USA). Isotope and Nuclear Chemistry Div.); Asghar, M.; Djebara, M. (Universite des Sciences et de la Technologie Houari Boumedienne, Algiers (Algeria))

    1990-01-01

    The mass and nuclear charge distributions of fission fragments from {sup 229}Th(n{sub th},f) have been measured at several kinetic energies with the mass spectrometer Lohengrin (ILL-Grenoble). The average proton e-o effect, which reaches 41%, induces large oscillations in the parameters of the isotopic charge distribution. A comparison of the data from different fissile nuclei shows the importance of the last stage of the process for intrinsic excitations. (orig.).

  20. Investigation of the fission yields of the fast neutron-induced fission of {sup 233}U; Mesure de la distribution en masse et en charge des produits de la fission rapide de l'{sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Galy, J

    1999-09-01

    As a stars, a survey of the different methods of investigations of the fission product yields and the experimental data status have been studied, showing advantages and shortcomings for the different approaches. An overview of the existing models for the fission product distributions has been as well intended. The main part of this thesis was the measurement of the independent yields of the fast neutron-induced fission of{sup 233}U, never investigated before this work. The experiment has been carried out using the mass separator OSIRIS (Isotope Separator On-Line). Its integrated ion-source and its specific properties required an analysis of the delay-parameter and ionisation efficiency for each chemical species. On the other hand, this technique allows measurement of independent yields and cumulative yields for elements from Cu to Ba, covering most of the fission yield distribution. Thus, we measured about 180 independent yields from Zn (Z=30) to Sr (Z=38) in the mass range A=74-99 and from Pd (Z=46) to Ba (Z=56) in the mass range A=113-147, including many isomeric states. An additional experiment using direct {gamma}-spectroscopy of aggregates of fission products was used to determine more than 50 cumulative yields of element with half-life from 15 min to a several days. All experimental data have been compared to estimates from a semi-empirical model, to calculated values and to evaluated values from the European library JEF 2.2. Furthermore, a study of both thermal and fast neutron-induced fission of {sup 233}U measured at Studsvik, the comparison of the OSIRIS and LOHENGRIN facilities and the trends in new data for the Reactors Physics have been discussed. (author)

  1. Influence of remaining fission products in low-decontaminated fuel on reactor core characteristics

    International Nuclear Information System (INIS)

    Design study of core, fuel and related fuel cycle system with low-decontaminated fuel has been performed in the framework of the feasibility study (F/S) on commercialized fast reactor cycle systems. This report summarizes the influence on core characteristics of remaining fission products (FPs) in low-decontaminated fuel related to the reprocessing systems nominated in F/S phase I. For simple treatment of the remaining FPs in core neutronics calculation the representative nuclide method parameterized by the FP equivalent coefficient and the FP volume fraction was developed, which enabled an efficient evaluation procedure. As a result of the investigation on the sodium cooled fast reactor with MOX fuel designed in fiscal year 1999, it was found that the pyrochemical reprocessing with molten salt (the RIAR method) brought the largest influence. Nevertheless, it was still within the allowable range. Assuming an infinite-times recycling, the alternations in core characteristics were evaluated as follows: increment of burnup reactivity by 0.5%Δk/kk', decrement of breeding ratio by 0.04, increment of sodium void reactivity by 0.1x10-2Δk/kk' and decrement of Doppler constant (in absolute value) by 0.7x10-3 Tdk/dT. (author)

  2. A Feasibility Study on a Clean Power Fusion Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Full text: In this paper, a design concept of fusion-fission hybrid reactor for the purpose of high level radioactive waste transmutation was investigated. A concept of fusion based trans-uranium isotope (TRU) burner reactor (FTBR) was based on a low power tokamak (150 MW max) and annular ring shaped TRU core with metallic fuel (TRU 60 w/o, Zr 40 w/o) and adjacent fission product (FP) zone. Composition data for TRU and FP are assumed to be the same with those in spent fuel from 1,000 MWe PWR with 10 years decay cooling. Calculation for blanket part were performed using MCNP-X 2.6. Irradiation (burn) cycle was chosen to be 1,100 days (3 years). The power level of TRU core was set to be 2,000 MW and keff at BOC was calculated as 0.97979 and at EOC 0.85049. Calculated TBR value was 1.49 representing a self-sufficiency of fusion fuel. TRU burning was analyzed by calculating TRU mass burned per full power year (MTRU/fpy), support ratio (SR) and percentage of TRU mass burned per year (%TRU/fpy). Same parameters were also used to analyze the FP transmutation. To account for the FP produced in TRU core the net MFP/fpy and net %FP/fpy was also calculated. For toxicity analysis of long lived TRU and FP the percentage reduction of long lived inhalation toxicity (LLIhT) and long lived ingestion toxicity (LLIgT) were also calculated. MTRU/fpy was 747.11 kg with 14.25 MT of initial TRU mass loading, %TRU/fpy was 5.24% and SR was 2.24. FP mass produced in TRU core per fpy was 162.25 kg. LLIhT and LLIgT of TRU's were reduced by 9% and 6% respectively over the burn cycle. FP depletion calculations were performed for two different thicknesses of FP zone 30 cm and 50 cm to evaluate the FP loading effect on FP transmutation performance. TRU transmutation performance of FTBR was also compared with Subcritical Advance Burner Reactor (SABR) design. The comparison showed good TRU transmutation performance of FTBR with a small scaled fusion facility but it still can be improved by

  3. A physical description of fission product behavior fuels for advanced power reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  4. Neutron Beam Analysis on Materials for Nuclear Applications, Being Irradiated in Fission Reactors and Having Radioactivity

    International Nuclear Information System (INIS)

    Extensive supports are given from the public sectors to the neutron beam analysis on advanced materials developed mainly in the framework of fundamental solid state physics, through the Japan Atomic Energy Agency and the Institute for Solid State physics in University of Tokyo. However, the related activities are mainly on non-radioactive materials with some limited exceptions, though the facilities for the neutron beam analysis are installed in the radiation controlled areas. Research activities in the field of nuclear related materials have concentrated their efforts for nano structural analysis into the other techniques of the post irradiation examinations, such as the high resolution transmission microscopy, the three dimensional atom probe tomography, and the positron annihilation techniques, than the neutron beam analysis. In the meantime, more detailed analysis on the radiation induced nanostructures are becoming more and more essential for the further understanding of the radiation effects in the materials which will be used in the advanced nuclear systems, such as the nuclear fusion reactors and the generation-IV nuclear fission reactors. Utilizing of the cutting edge techniques for the nanostructural analysis on materials irradiated by neutrons, all of which cannot be installed in the limited area of available hot laboratories, is urgently demanded, of course, satisfying the related legal restrictions and the safety demands. The present study was focused on as the realization of the neutron beam analysis on the nanostructural evolutions of the superconductive materials, which will be used in the ITER, the international thermonuclear experimental reactor, being under construction in Cadarache, France, and the glassy metals, which have some unique and advantageous features for the nuclear applications. (author)

  5. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    International Nuclear Information System (INIS)

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident

  6. Strengthening the fission reactor nuclear science and engineering program at UCLA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Okrent, D.

    1997-06-23

    This is the final report on DOE Award No. DE-FG03-92ER75838 A000, a three year matching grant program with Pacific Gas and Electric Company (PG and E) to support strengthening of the fission reactor nuclear science and engineering program at UCLA. The program began on September 30, 1992. The program has enabled UCLA to use its strong existing background to train students in technological problems which simultaneously are of interest to the industry and of specific interest to PG and E. The program included undergraduate scholarships, graduate traineeships and distinguished lecturers. Four topics were selected for research the first year, with the benefit of active collaboration with personnel from PG and E. These topics remained the same during the second year of this program. During the third year, two topics ended with the departure o the students involved (reflux cooling in a PWR during a shutdown and erosion/corrosion of carbon steel piping). Two new topics (long-term risk and fuel relocation within the reactor vessel) were added; hence, the topics during the third year award were the following: reflux condensation and the effect of non-condensable gases; erosion/corrosion of carbon steel piping; use of artificial intelligence in severe accident diagnosis for PWRs (diagnosis of plant status during a PWR station blackout scenario); the influence on risk of organization and management quality; considerations of long term risk from the disposal of hazardous wastes; and a probabilistic treatment of fuel motion and fuel relocation within the reactor vessel during a severe core damage accident.

  7. The Fission Converter-Based Epithermal Neutron Irradiation Facility at the Massachusetts Institute of Technology Reactor

    International Nuclear Information System (INIS)

    A new type of epithermal neutron irradiation facility for use in neutron capture therapy has been designed, constructed, and put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). A fission converter, using plate-type fuel and driven by the MITR, is used as the source of neutrons. After partial moderation and filtration of the fission neutrons, a high-intensity forward directed beam is available with epithermal neutron flux [approximately equal to]1010 n/cm2.s, 1 eV ≤ E ≤ 10 keV, at the entrance to the medical irradiation room, and epithermal neutron flux = 3 to 5 x 109 n/cm2.s at the end of the patient collimator. This is currently the highest-intensity epithermal neutron beam. Furthermore, the system is designed and licensed to operate at three times higher power and flux should this be desired. Beam contamination from unwanted fast neutrons and gamma rays in the aluminum, polytetrafluoroethylene, cadmium and lead-filtered beam is negligible with a specific fast neutron and gamma dose, Dγ,fn/φepi [less than or approximately equal] 2 x 10-13 Gy cm2/nepi. With a currently approved neutron capture compound, boronophenylalanine, the therapeutically advantageous depth of penetration is >9 cm for a unilateral beam placement. Single fraction irradiations to tolerance can be completed in 5 to 10 min. An irradiation control system based on beam monitors and redundant, high-reliability programmable logic controllers is used to control the three beam shutters and to ensure that the prescribed neutron fluence is accurately delivered to the patient. A patient collimator with variable beam sizes facilitates patient irradiations in any desired orientation. A shielded medical room with a large window provides direct viewing of the patient, as well as remote viewing by television. Rapid access through a shielded and automatically operated door is provided. The D2O cooling system for the fuel has been conservatively designed with excess

  8. Fission fragment charge and mass distributions in 239Pu(n ,f ) in the adiabatic nuclear energy density functional theory

    Science.gov (United States)

    Regnier, D.; Dubray, N.; Schunck, N.; Verrière, M.

    2016-05-01

    Background: Accurate knowledge of fission fragment yields is an essential ingredient of numerous applications ranging from the formation of elements in the r process to fuel cycle optimization for nuclear energy. The need for a predictive theory applicable where no data are available, together with the variety of potential applications, is an incentive to develop a fully microscopic approach to fission dynamics. Purpose: In this work, we calculate the pre-neutron emission charge and mass distributions of the fission fragments formed in the neutron-induced fission of 239Pu using a microscopic method based on nuclear density functional theory (DFT). Methods: Our theoretical framework is the nuclear energy density functional (EDF) method, where large-amplitude collective motion is treated adiabatically by using the time-dependent generator coordinate method (TDGCM) under the Gaussian overlap approximation (GOA). In practice, the TDGCM is implemented in two steps. First, a series of constrained EDF calculations map the configuration and potential-energy landscape of the fissioning system for a small set of collective variables (in this work, the axial quadrupole and octupole moments of the nucleus). Then, nuclear dynamics is modeled by propagating a collective wave packet on the potential-energy surface. Fission fragment distributions are extracted from the flux of the collective wave packet through the scission line. Results: We find that the main characteristics of the fission charge and mass distributions can be well reproduced by existing energy functionals even in two-dimensional collective spaces. Theory and experiment agree typically within two mass units for the position of the asymmetric peak. As expected, calculations are sensitive to the structure of the initial state and the prescription for the collective inertia. We emphasize that results are also sensitive to the continuity of the collective landscape near scission. Conclusions: Our analysis confirms

  9. 239Pu Prompt Fission Neutron Spectra Impact on a Set of Criticality and Experimental Reactor Benchmarks

    Science.gov (United States)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-04-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  10. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    Science.gov (United States)

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-01

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state. PMID:26732701

  11. Design and analysis on tritium system of multi-functional experimental fusion-fission hybrid reactor (FDS-MFX)

    Energy Technology Data Exchange (ETDEWEB)

    Ni Muyi, E-mail: nimuyi@mail.ustc.edu.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Song Yong [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026 (China); Jin Ming; Jiang Jieqiong [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Huang Qunying [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A concept of the tritium system was designed for the FDS-MFX. Black-Right-Pointing-Pointer The system parameters were presented and discussed in detail. Black-Right-Pointing-Pointer A theoretical analysis of tritium recovery system has been made on the operation condition. Black-Right-Pointing-Pointer Three step TEP system was design and its permeating capacity was estimated. Black-Right-Pointing-Pointer The model of three-column ISS and the SDS was also carried out. - Abstract: As early application of fusion technology, the fusion-fission hybrid systems/reactors could be used to transmute long-lived radioactive waste and produce fissile nuclear fuel. A fusion-fission hybrid reactor named FDS-MFX was designated for checking and validating the DEMO reactor blanket relevant technologies. The reactor design is based on easy-achieved plasma parameters extrapolated from the successful operation of tokamaks and the subcritical blanket is designed based on the well-developed technologies of fission reactors. In this contribution, a concept of the tritium system was designed for the FDS-MFX: the tritium was extracted from LiPb by the helium purge gas which contains a small amount of hydrogen gas, then the impurity gas was removed by cold trap, finally tritium was separated from hydrogen isotope by the cryogenic distillation and supply to reactor core. On the basis of data obtained by present design and experimental research, the system parameters were presented and discussed in detail. The results preliminarily demonstrated the engineering feasibility of the design.

  12. Design and analysis on tritium system of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    Highlights: ► A concept of the tritium system was designed for the FDS-MFX. ► The system parameters were presented and discussed in detail. ► A theoretical analysis of tritium recovery system has been made on the operation condition. ► Three step TEP system was design and its permeating capacity was estimated. ► The model of three-column ISS and the SDS was also carried out. - Abstract: As early application of fusion technology, the fusion–fission hybrid systems/reactors could be used to transmute long-lived radioactive waste and produce fissile nuclear fuel. A fusion–fission hybrid reactor named FDS-MFX was designated for checking and validating the DEMO reactor blanket relevant technologies. The reactor design is based on easy-achieved plasma parameters extrapolated from the successful operation of tokamaks and the subcritical blanket is designed based on the well-developed technologies of fission reactors. In this contribution, a concept of the tritium system was designed for the FDS-MFX: the tritium was extracted from LiPb by the helium purge gas which contains a small amount of hydrogen gas, then the impurity gas was removed by cold trap, finally tritium was separated from hydrogen isotope by the cryogenic distillation and supply to reactor core. On the basis of data obtained by present design and experimental research, the system parameters were presented and discussed in detail. The results preliminarily demonstrated the engineering feasibility of the design.

  13. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    International Nuclear Information System (INIS)

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs

  14. Fission product release from UO2 during irradiation. Diffusion data and their application to reactor fuel pins

    International Nuclear Information System (INIS)

    Release of fission product species from UO2, and to a limited extent from (U, Pu)02 was studied using small scale in-reactor experiments in which these interacting variables may be separated, as far as is possible, and their influences assessed. Experiments were at fuel ratings appropriate to water reactor fuel elements and both single crystal and poly-crystalline specimens were used. They employed highly enriched uranium such that the relative number of fissions occurring in plutonium formed by neutron capture was small. The surface to volume ratio (S/V) of the specimens was well defined thus reducing the uncertainties in the derivation of diffusion coefficients. These experiments demonstrate many of the important characteristics of fission product behaviour in UO2 during irradiation. The samples used for these experiments were small being always less than 1g with a fissile content usually between 2 and 5mg. Polycrystalline materials were taken from batches of production fuel prepared by conventional pressing and sintering techniques. The enriched single crystals were grown from a melt of sodium and potassium chloride doped with UO2 powder 20% 235U content. The irradiations were performed in the DIDO reactor at Harwell. The neutron flux at the specimen was 4x1016 neutrons m-2s-1 providing a heat rating within the samples of 34.5 MW/teU

  15. Water reactor fuel behaviour and fission products release in off-normal and accident conditions

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency upon the proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology and held at the IAEA Headquarters in Vienna from 10 to 13 November 1986. Thirty participants from 17 countries and an international organization attended the meeting. Eighteen papers were presented from 13 countries and one international organization. The meeting was composed of four sessions and covered subjects related to: physico-chemical properties of core materials under off-normal conditions, and their interactions up to and after melt-down (5 papers); core materials deformation, relocation and core coolability under (severe) accident conditions (4 papers); fission products release: including experience, mechanisms and modelling (5 papers); power plant experience (4 papers). A separate abstract was prepared for each of these 18 papers. Four working groups covering the above-mentioned topics were held to discuss the present status of the knowledge and to develop recommendations for future activities in this field. Refs, figs and tabs

  16. Modeling of constituent redistribution and fission product migration in fast reactor U-Pu-Zr fuel

    International Nuclear Information System (INIS)

    Radial constituent redistribution in a fast reactor U-Pu-Zr fuel is an important phenomenon that occurs because the fuel alloy has thermal gradients and poly-phase fields at the typical operation temperature. In a typical temperature range (500-700degC), Zr moves from the mid-radius region to the fuel center region and the fuel surface region. Because of this phenomenon, the homogeneous fuel at beginning of life turns into locally heterogeneous fuel. Most of the thermophysical properties change locally, as does fuel performance. Fuel constituent redistribution of U-Pu-Zr is modeled by treating Pu as sessile element and therefore by assuming a pseudo-binary system. Fission product lanthanides (LA) migrate to the fuel surface. LA migration appears to be due both to direct vapor transport and diffusion through the fuel matrix. Large pores at the low Zr zone and fuel periphery may support for LA precipitates. LA diffusion through Pu also contributes to observed LA migration. Because Pu is relatively sessile, however, LA migration by diffusion through the fuel matrix is relatively small. Upon migration to the fuel surface, LA and Pu react with Fe-base alloy cladding such as HT9 and D9 whereas U and Zr do not. The LA and Pu reaction with cladding is via interdiffusion. (author)

  17. Fission-product chemistry in severe reactor accidents: Review of relevant integral experiments

    International Nuclear Information System (INIS)

    The attenuation of the radioactive fission-product emission from a severe reactor accident will depend on a combination of chemical, physical and thermal-hydraulic effects. Chemical species stabilised under the prevailing conditions will determine the extent of aerosol formation and any subsequent interaction, so defining the magnitude and physical forms of the eventual release into the environment. While several important integral tests have taken place in recent years, these experiments have tended to focus on the generation of mass-balance and aerosol-related data to test and validate materials-transport codes rather than study the impact of important chemical phenomena. This emphasis on thermal hydraulics, fuel behaviour and aerosol properties has occurred in many test (e.g. PBF, DEMONA, Marviken-V, LACE and ACE). Nevertheless, the generation and reaction of the chemical species in all of these programmes determined the transport properties of the resulting vapours and aerosols. Chemical effects have been studied in measurements somewhat subsidiary to the main aims of the tests. This work has been reviewed in detail with respect to Marviken-V, LACE, ACE and Falcon. Specific issues remain to be addressed, and these are discussed in terms of the proposed Phebus-FB programme. (author). 58 refs, 9 figs, 1 tab

  18. Nuclear Data Requirements for the Production of Medical Isotopes in Fission Reactors and Particle Accelerators

    CERN Document Server

    Garland, M A; Talbert, R J; Mashnik, S G; Wilson, W B

    1999-01-01

    Through decades of effort in nuclear data development and simulations of reactor neutronics and accelerator transmutation, a collection of reaction data is continuing to evolve with the potential of direct applications to the production of medical isotopes. At Los Alamos the CINDER'90 code and library have been developed for nuclide inventory calculations using neutron-reaction (En < 20 MeV) and/or decay data for 3400 nuclides; coupled with the LAHET Code System (LCS), irradiations in neutron and proton environments below a few GeV are tractable; additional work with the European Activation File, the HMS-ALICE code and the reaction models of MCNPX (CEM95, BERTINI, or ISABEL with or without preequilibrium, evaporation and fission) have been used to produce evaluated reaction data for neutrons and protons to 1.7 GeV. At the Pacific Northwest National Laboratory, efforts have focused on production of medical isotopes and the identification of available neutron reaction data from results of integral measuremen...

  19. Charge Exchange Cross Sections Measured at Low Energies in Q-Machines

    DEFF Research Database (Denmark)

    Andersen, S. A.; Jensen, Vagn Orla; Michelsen, Poul

    1972-01-01

    A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%.......A new technique for measurements of charge exchange cross sections at low energies is described. The measurements are performed in a single‐ended Q machine. The resonance charge exchange cross section for Cs at 2 eV was found to be 0.6×10−13 cm2±20%....

  20. Evolutionary conservation of the WASH complex, an actin polymerization machine involved in endosomal fission

    OpenAIRE

    Derivery, Emmanuel; Gautreau, Alexis

    2010-01-01

    WASH is the Arp2/3 activating protein that is localized at the surface of endosomes, where it induces the formation of branched actin networks. This activity of WASH favors, in collaboration with dynamin, the fission of transport intermediates from endosomes, and hence regulates endosomal trafficking of several cargos. We have purified a novel stable multiprotein complex containing WASH, the WASH complex, and we examine here the evolutionary conservation of its seven subunits across diverse e...

  1. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  2. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  3. Overview of research by the fission group in Trombay

    Indian Academy of Sciences (India)

    R K Chourdhury

    2015-08-01

    Nuclear fission studies in Trombay began nearly six decades ago, with the commissioning of the APSARA research reactor. Early experimental work was based on mass, kinetic energy distributions, neutron and X-ray emission in thermal neutron fission of 235U, which were carried out with indigenously developed detectors and electronics instrumentation. With the commissioning of CIRUS reactor and the availability of higher neutron flux, advanced experiments were carried out on ternary fission, pre-scission neutron emission, fragment charge distributions, quarternary fission, etc. In the late eighties, heavy-ion beams from the pelletron-based medium energy heavy-ion accelerator were available, which provided a rich variety of possibilities in nuclear fission studies. Pioneering work on fragment angular distributions, fission time-scales, transfer-induced fission, -ray multiplicities and mass–energy correlations were carried out, providing important information on the dynamics of the fission process. More recently, work on fission fragment -ray spectroscopy has been initiated, to understand the nuclear structure aspects of the neutron-rich fission fragment nuclei. There have also been parallel efforts to carry out theoretical studies in the areas of shell effects, superheavy nuclei, fusion–fission dynamics, fragment angular distributions, etc. to complement the experimental studies. This paper will provide a glimpse of the work carried out by the fission group at Trombay in the above-mentioned topics.

  4. SOFIA, a Next-Generation Facility for Fission Yields Measurements and Fission Study. First Results and Perspectives

    Science.gov (United States)

    Audouin, L.; Pellereau, E.; Taieb, J.; Boutoux, G.; Béliera, G.; Chatillon, A.; Ebran, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Tassan-Got, L.; Jurado, B.; Alvarez-Pol, H.; Ayyad, Y.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Fernandez-Dominguez, B.; Paradela, C.; Rodriguez-Sanchez, J.-L.; Vargas, J.; Casarejos, E.; Heinz, A.; Kelic-Heil, A.; Kurz, N.; Nociforo, C.; Pietri, S.; Prochazka, A.; Rossi, D.; Schmidt, K.-H.; Simon, H.; Voss, B.; Weick, H.; Winfield, J. S.

    2015-10-01

    Fission fragments play an important role in nuclear reactors evolution and safety. However, fragments yields are poorly known : data are essentially limited to mass yields from thermal neutron-induced fissions on a very few nuclei. SOFIA (Study On FIssion with Aladin) is an innovative experimental program on nuclear fission carried out at the GSI facility, which aims at providing isotopic yields on a broad range of fissioning systems. Relativistic secondary beams of actinides and pre-actinides are selected by the Fragment Separator (FRS) and their fission is triggered by electromagnetic interaction. The resulting excitation energy is comparable to the result of an interaction with a low-energy neutron, thus leading to useful data for reactor simulations. For the first time ever, both fission fragments are completely identified in charge and mass in a new recoil spectrometer, allowing for precise yields measurements. The yield of prompt neutrons can then be deduced, and the fission mechanism can be ascribed, providing new constraints for fission models. During the first experiment, all the technical challenges were matched : we have thus set new experimental standards in the measurements of relativistic heavy ions (time of flight, position, energy loss).This communication presents a first series of results obtained on the fission of 238U; many other fissioning systems have also been measured and are being analyzed presently. A second SOFIA experiment is planned in September 2014, and will be focused on the measurement of the fission of 236U, the analog of 235U+n.

  5. Development of an evaluation method of fission product release fraction from High Temperature Gas-cooled Reactor fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Kazuhiro; Minato, Kazuo; Fukuda, Kousaku [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-11-01

    The High Temperature Gas-cooled Reactor (HTGR) uses coated particles as fuel. Current coated particle is a microsphere of fuel kernel with TRISO coatings. The TRISO coatings consist of a low-density, porous pyrolytic carbon (PyC) buffer layer adjacent to the spherical fuel kernel, followed by an inner isotropic PyC layer, a SiC layer and a final (outer) PyC layer. An evaluation method of fission product release behavior during the normal operation was developed. Key issues of fission gas release model were: (1) fission gas releases from matrix contamination uranium and through-coatings failed particle were separately modeled and (2) burnup and fast neutron irradiation effects were newly considered. For metallic fission product, fractional release of cesium from coated fuel particles was investigated by comparing measured data in an irradiation test which contained three kinds of fuel particles; artificially bored particles simulating through-coatings failed particles, as-manufactured SiC-failed particles and intact particles. Through the comparison of measured and calculated fractional releases, an equivalent diffusion coefficient of SiC layer in the SiC-failed particle was introduced. This report describes the developed model together with validation result of the release model. (author)

  6. Benchmark analysis of fission-rate distributions in a series of spherical depleted-uranium assemblies for hybrid-reactor design

    International Nuclear Information System (INIS)

    Highlights: • We do simulations using MCNP code and ENDF/B-V.0 library. • The fission rate distribution on depleted uranium assemblies was analyzed. • The calculations overestimate the measured fission rates. • The observed differences are discussed. - Abstract: The nuclear performance of a fission blanket in a hybrid reactor has been validated by analyzing fission-rate experiments with a series of spherical depleted-uranium assemblies. Calculations were made with the Monte–Carlo transport code MCNP5 and the ENDF/B-V.0 continuous-energy cross sections and compared to the measured results. The ratios of calculated to experimental values (C/E) for the fission rate and the fission-rate ratio of 238U to 235U are presented along with a discussion of the validation of the ENDF/B-V.0 library regarding its use in the design of the fission blanket. Overestimations are observed in the calculation of the 238U and 235U fission rates at all positions, except the ones near the outer surfaces of the assemblies, and the C/Es of the fission rate decreased as the thickness of the depleted-uranium (DU) layer increased, while most of the C/Es of the fission-rate ratio of 238U to 235U were close to unity, being within the range of 0.95–1.05

  7. Development of a high temperature, high sensitivity fission counter for liquid metal reactor in-vessel flux monitoring

    International Nuclear Information System (INIS)

    Advanced liquid metal reactor concepts such as the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Inherently Safe Module (PRISM) have relatively large pressure vessels that necessitate in-vessel placement of the neutron detectors to achieve adequate count rates during source range operations. It is estimated that detector sensitivities of 5 to 10 counts/center dot/s/center dot//sup /minus/1//center dot/[neutron/(cm2/center dot/s)]/sup /minus/1/ will be required for the initial core loading. The Instrumentation and Controls Division of Oak Ridge National Laboratory has designed and fabricated a fission counter to meet this requirement which is also capable of operating in uncooled instrument thimbles at primary coolant temperatures of 500 to 600/degree/C. Components are fabricated from Inconel-600, and high temperature alumina insulators are employed. The transmission line electrode configuration is utilized to minimize capacitive loading effects

  8. History and Actual State of Non-HEU Fission-Based Mo-99 Production with Low-Performance Research Reactors

    Directory of Open Access Journals (Sweden)

    S. Dittrich

    2013-01-01

    Full Text Available Fifty years ago, one of the worldwide first industrial production processes to produce fission-Mo-99 for medical use had been started at ZfK Rossendorf (now: HZDR, Germany. On the occasion of this anniversary, it is worth to mention that this original process (called LITEMOL now together with its target concept used at that time can still be applied. LITEMOL can be adapted very easily to various research reactors and applied at each site, which maybe still of interest for very small-scale producers. Besides this original process, two further and actually proven processes are suitable as well and recommended for small-scale LEU fission Mo-99 production also. They are known under the names KSA/KSS COMPACT and ROMOL LITE and will be described below.

  9. TRANCS, a computer code for calculating fission product release from high temperature gas-cooled reactor fuel, (2)

    International Nuclear Information System (INIS)

    This report describes the calculation procedure of the TRANCS code, which deals with fission product transport in fuel rod of high temperature gas-cooled reactor (HTGR). The fundamental equation modeled in the code is a cylindrical one-dimensional diffusion equation with generation and decay terms, and the non-stationary solution of the equation is obtained numerically by a finite difference method. The generation terms consist of the diffusional release from coated fuel particles, recoil release from outer-most coating layer of the fuel particle and generation due to contaminating uranium in the graphite matrix of the fuel compact. The decay term deals with neutron capture as well as beta decay. Factors affecting the computation error has been examined, and further extention of the code has been discussed in the fields of radial transport of fission products from graphite sleeve into coolant helium gas and axial transport in the fuel rod. (author)

  10. Practical limitations for the release of fission products during the operation of a research reactor: a case study of BR2

    International Nuclear Information System (INIS)

    Failure of the cladding of a fuel element is an event occurring from time to time while operating a research reactor. As a consequence, fission products are released in the primary circuit of the reactor. This contamination means no direct hazard for the workers or for the environment in case the reactor has a closed primary circuit. The operator can decide to continue the irradiation to finish a scientific experiment or a commercial isotope production program. However, the operator cannot prolong the cycle regardless the concentration fission products in the primary loop. Beside the limitations imposed by the regulatory authorities, ALARA considerations should be taken into account. An untimely stop of the reactor can have serious financial consequences and prolonged operation causes higher radiation doses. This paper gives an overview of decision process applied in case of detection of fission products in the primary circuit of BR2. (author)

  11. Practical limitations for the release of fission products during the operation of a research reactor: a case study of BR2

    Energy Technology Data Exchange (ETDEWEB)

    Joppen, F. [Health Physics and Safety Department, SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    Failure of the cladding of a fuel element is an event occurring from time to time while operating a research reactor. As a consequence, fission products are released in the primary circuit of the reactor. This contamination means no direct hazard for the workers or for the environment in case the reactor has a closed primary circuit. The operator can decide to continue the irradiation to finish a scientific experiment or a commercial isotope production program. However, the operator cannot prolong the cycle regardless the concentration fission products in the primary loop. Beside the limitations imposed by the regulatory authorities, ALARA considerations should be taken into account. An untimely stop of the reactor can have serious financial consequences and prolonged operation causes higher radiation doses. This paper gives an overview of decision process applied in case of detection of fission products in the primary circuit of BR2. (author)

  12. Modeling of a double fission chamber using MCNPX for power calibration at the zero-power teaching reactor CROCUS

    International Nuclear Information System (INIS)

    MCNPX-2.5 simulations and experiments were performed to improve the power prediction of the zero-power teaching reactor CROCUS at the Ecole Polytechnique Federale de Lausanne (EPFL) using a calibrated double fission chamber (DFC). The CROCUS facility is a zero-power critical reactor used for educational purposes. Traditionally, the core power is determined by irradiating thin gold foils placed along the core centre and by measuring the 411 keV γ-rays on HPGe detectors. The average 197Au(n,γ) self-shielded macroscopic cross-section obtained with the deterministic BOXER code (1σ - 10%) is employed to determine the flux and the reactor power. To benchmark the BOXER calculations, a DFC containing known amounts of enriched 235U and 239Pu deposits was installed within the reflector core and simulated with MCNPX-2.5/JEF-2.2. Particular care was taken to model the fissile deposits allowing to reduce the power uncertainty to 2% compared to the gold foil technique. A code-to-code comparison (BOXER vs. MCNPX) was performed and the results have shown a good agreement (2 to 5%) for most of the quantities calculated (flux, reaction rates). However, the normalization factor differed by 17% (flux-to-power ratio). Consequently, the core power was overestimated by 17% until now. Finally, the current investigations lead to an improved fission power determination and contribute to better core safety standard. (author)

  13. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  14. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  15. N-reactor charge-discharge system analysis

    International Nuclear Information System (INIS)

    This report documents an analysis of the existing systems in the N-Reactor fuel flow path. It recommends equipment improvements and changes in that path to allow the charge-discharge rates to be increased to 500 tubes per outage without increasing reactor outage time. The estimated program cost of $14 million is projected over an estimated 3-year period. It does not include costs detailed as part of the existing restoration program or any costs that are considered as normal maintenance. The recommendations contained in this report provide a direction and goal for every critical aspect of the fuel flow path. The way in which these recommendations are implemented may greatly affect the schedule and costs. Previous studies by UNC have shown that enhanced fuel element handling has the potential of increasing productivity by 33 days at a cost benefit estimated at $18 million per year. Enhanced fuel handling provides the greatest potential for productivity improvement of any of the areas considered in these studies

  16. Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, WA, USA

    CERN Document Server

    Leon, J Diaz; Knecht, A; Miller, M L; Robertson, R G H; Schubert, A G

    2011-01-01

    We report results of air monitoring started due to the recent natural catastrophe on March 11, 2011 in Japan and the severe ensuing damage to the Fukushima nuclear reactor complex. On March 17-18, 2011 we detected the first arrival of the airborne fission products 131-I, 132-I, 132-Te, 134-Cs, and 137-Cs in Seattle, WA, USA, by identifying their characteristic gamma rays using a germanium detector. The highest detected activity to date is <~32 mBq/m^3 of 131-I.

  17. The thermal column. A new irradiation position for fission-track dating in the University of Pavia Triga Mark II nuclear reactor

    International Nuclear Information System (INIS)

    In the present paper a new irradiation position arranged for fission-track dating in the Triga Mark II reactor of the University of Pavia is described. Fluence values determined using the NIST glass standard SRM 962a for fission-track dating and the traditional metal foils are compared. Relatively high neutron thermalization (cadmium ratio of 85.3 for gold and 643 for cobalt) and lack of significant fluence spatial gradients are very favorable factors for fission-track dating. Finally, international age standards (or putative age standards) irradiated in this new position yielded results consistent with independent reference ages. (author). 9 refs., 2 figs., 4 tabs

  18. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDUR 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    International Nuclear Information System (INIS)

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  19. Fission product release assessment for end fitting failure in Candu reactor loaded with CANFLEX-NU fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dirk Joo; Jeong, Chang Joon; Lee, Kang Moon; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Fission product release (FPR) assessment for End Fitting Failure (EFF) in CANDU reactor loaded with CANFLEX-natural uranium (NU) fuel bundles has been performed. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The total channel I-131 release at the end of transient for EFF accident is calculated to be 380.8 TBq and 602.9 TBq for the CANFLEX bundle and standard bundle channel cases, respectively. They are 4.9% and 7.9% of total inventory, respectively. The lower total releases of the CANFLEX bundle O6 channel are attributed to the lower initial fuel temperatures caused by the lower linear element power of the CANFLEX bundle compared with the standard bundle. 4 refs., 1 fig., 4 tabs. (Author)

  20. A Monte Carlo simulation of a simplified reactor by decomposition of the neutron spectrum into fission, intermediate and thermal distributions

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T. de, E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: vilhena@mat.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil). Grupo de Estudos Nucleares. Escola de Engenharia; Leite, Sergio Q. Bogado, E-mail: sbogado@eletronuclear.gov.br [Eletrobras Termonuclear S.A. (ELETRONUCLEAR), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In this paper the neutron spectrum of a simulated hypothetical nuclear reactor is decomposed as a sum of three probability distributions. Two of the distributions preserve shape with time but not necessarily the integral. One of the two distributions is due to fission, i.e. high neutron energies and the second a Maxwell-Boltzmann distribution for low (thermal) neutron energies. The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. This procedure is effective in attaining two objectives, the first is to include effects due to up-scattering of neutrons, and the second is to optimize computational time of the stochastic method (tracking and interaction). The simulation of the reactor is done with a Monte Carlo computer code with tracking and using continuous energy dependence. This code so far computes down-scattering, but the computation of up-scattering was ignored, since it increases significantly computational processing time. In order to circumvent this problem, one may recognize that up-scattering is dominant towards the lower energy end of the spectrum, where we assume that thermal equilibrium conditions for neutrons immersed in their environment holds. The optimization may thus be achieved by calculating only the interaction rate for neutron energy gain as well as loss and ignoring tracking, i.e. up-scattering is 'simulated' by a statistical treatment of the neutron population. For the fission and the intermediate part of the neutron spectrum tracking is taken into account explicitly, where according to the criticality condition the integral of the fission spectrum may depend on time. This simulation is performed using continuous energy dependence, and as a rst case to be studied we assume a recurrent regime. The three calculated distributions are then used in the Monte Carlo code to compute the subsequent Monte Carlo steps with subsequent updates

  1. Study of the emission of a light particle charged during the fission of 235U by thermal neutron

    International Nuclear Information System (INIS)

    In a first part, this research thesis discusses the existing theories of the mechanism of emission of light particles charged of tri-partition (tri-partition is defined as an event involving two big fragments of masses comparable with those obtained in binary fission, and a charged light particle). Then, the author presents and reports an experiment performed by suing nuclear emulsions. Another type of experiment is then presented which allows the measurement of masses and energies of tri-partition fragments. The author then presents theoretical calculations which have been performed in order to find again some characteristics of tri-partition. These calculations are mainly based on Coulomb repulsion between various fragments

  2. Human machine interaction research experience and perspectives as seen from the OECD Halden Reactor Project

    International Nuclear Information System (INIS)

    In this paper a short review is given on important safety issues in the field of human machine interaction as expressed by important nuclear organisations such as USNRC, IAEA and the OECD NEA. Further on, a presentation is offered of research activities at the OECD Halden Reactor Project in the field of human machine interaction aiming to clarify some of the issues outlined by the above mentioned organisations. The OECD Halden Reactor Project is a joint undertaking of national nuclear organisations in 19 countries sponsoring a jointly financed research programme under the auspices of the OECD - Nuclear Energy Agency. One of the research areas is the man-machine systems research addressing the operator tasks in a control room environment. The overall objective is to provide a basis for improving today's control rooms through introduction of computer-based solutions for effective and safe execution of surveillance and control functions in normal as well as off-normal plant situations. (author)

  3. Measurements of the effective cumulative fission yields of 143Nd, 145Nd, 146Nd, 148Nd and 150Nd for 235U in the PHENIX fast reactor

    Directory of Open Access Journals (Sweden)

    Privas Edwin

    2016-01-01

    Full Text Available The effective Neodymium cumulative fission yields for 235U have been measured in the fast reactor PHENIX relatively to the 235U fission cross-section. The data were derived from isotope-ratio measurements obtained in the frame of the PROFIL-1, PROFIL-2A and PROFIL-2B programs. The interpretations of the experimental programs were performed with the ERANOS code in association with the Joint Evaluated Fission and Fusion library JEFF-3.1.1. Final results for 143Nd, 145Nd, 146Nd, 148Nd and 150Nd were 5.61%, 3.70%, 2.83%, 1.64% and 0.66%, respectively. The relative uncertainties attached to each of the cumulative fission yields lie between 2.1% and 2.4%. The main source of uncertainty is due to the fluence scaling procedure (<2%. The uncertainties on the Neodymium capture cross-sections provide a contribution lower than 1%. The energy dependence of the fission yields was studied with the GEF code from the thermal energy to 20 MeV. Neutron spectrum average corrections, deduced from GEF calculations, were applied to our effective fission yields with the aim of estimating fission yields at 400 keV and 500 keV, as given in the International Evaluated Nuclear Data Files (JEFF, ENDF/B and JENDL. The neutron spectrum average correction calculated for the PROFIL results remains lower than 1.5%.

  4. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 2: Power from nuclear fission

    Science.gov (United States)

    Clement, J. D.

    1973-01-01

    Different types of nuclear fission reactors and fissionable materials are compared. Special emphasis is placed upon the environmental impact of such reactors. Graphs and charts comparing reactor facilities in the U. S. are presented.

  5. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    CERN Document Server

    Poujade, O; Poujade, Olivier; Lebrun, Alain

    1999-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-voltage characteristics (sensitivity and saturation plateau) of a fission chamber whose geometrical features are given, taking into account the neutron flux to be measured (spectrum and intensity). The proposed theoretical model describes electric field distortion resulting from charge collection effect. A computer code has been developed on this model basis. Its application to 3 kinds of fission chambers indicates excellent agreement between theoretical model and measured characteristics.

  6. Burnup calculations of light water-cooled pressure tube blanket for a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2014-06-15

    Highlights: • Detailed burnup calculations are performed on pressurized water cooled blankets with pressure tube assemblies. • The blanket is fueled with simple fuel, namely spent nuclear fuel discharged from light water reactors or natural uranium oxide. • The refueling strategies are proposed, and the uranium resource utilization rate can reach 5–6%. - Abstract: A fusion-fission hybrid reactor (FFHR) with pressure tube blanket has recently been proposed based on an ITER-type tokamak fusion neutron source and the well-developed pressurized water cooling technologies. In this paper, detailed burnup calculations are carried out on an updated blanket. Two different blankets respectively fueled with the spent nuclear fuel (SNF) discharged from light water reactors (LWRs) or natural uranium oxide is investigated. In the first case, a three-batch out-to-in refueling strategy is designed. In the second case, some SNF assemblies are loaded into the blanket to help achieve tritium self-sufficiency. And a three-batch in-to-out refueling strategies is adopted to realize direct use of natural uranium oxide fuel in the blanket. The results show that only about 80 tonnes of SNF or natural uranium are needed every 1500 EFPD (Equivalent Full Power Day) with a 3000 MWth output and tritium self-sufficiency (TBR > 1.15), while the required maximum fusion powers are lower than 500 MW for both the two cases. Based on the proposed refueling strategies, the uranium utilization rate can reach about 4.0%.

  7. Studies on short-lived fission products at the Mainz TRIGA reactor

    International Nuclear Information System (INIS)

    Neutron-rich nuclei of medium mass number are produced by thermal-neutron-induced fission of heavy elements, e.g., 235U, 239Pu, and 249Cf. Pulse irradiations lead to an enhancement of the ratio of short-lived activities to the accompanying longer-lived components. One approach for investigating the properties of short-lived nuclei consists in a combination of rapid chemical separations with higher-resolution gamma spectroscopy. This is demonstrated by the isolation of neutron-rich isotopes of niobium by sorption on glass and of ruthenium by solvent extraction. Other rapid separation procedures from aqueous solutions are briefly summarized and a few examples for their application in nuclear fission- and delayed neutron studies are given. Some experiments with an on-line mass separator of the ISOLDE-type, using chemical targets, are described. (U.S.)

  8. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima I reactor accident

    CERN Document Server

    MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

    2011-01-01

    We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  9. On-Line Fission Gas Release Monitoring System in the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    For HTR fuel irradiation tests in the HFR Petten a specific installation was designed and installed dubbed the 'Sweep Loop Facility' (SLF). The SLF is tasked with three functions, namely temperature control by gas mixture technique, surveillance of safety parameters (temperature, pressure, radioactivity etc.) and analysis of fission gas release for three individual capsules in two separate experimental rigs. The SLF enables continuous and independent surveillance of all gas circuits. The release of volatile fission products (FP) from the in-pile experiments is monitored by continuous gas purging. The fractional release of these FP, defined as the ratio between release rate of a gaseous fission isotope (measured) to its instantaneous birth rate (calculated), is a licensing-relevant test for HTR fuel. The developed gamma spectrometry station allows for higher measurement frequencies, thus enabling follow-up of rapid and massive release transients. The designed stand-alone system was tested and fully used through the final irradiation period of the HFR-EU1 experiment which was terminated on 18 February 2010. Its robustness allowed the set up to be used as extra safety instrumentation. This paper describes the gas activity measurement technique based on HPGe gamma spectrometry and illustrates how qualitative and quantitative analysis of volatile FP can be performed on-line. (authors)

  10. Investigations on the gettering of metallic fission products in the primary circuit of a high temperature reactor

    International Nuclear Information System (INIS)

    A new concept of gettering Ag-110 m and Cs-134 137 in the primary circuit of a High Temperature Reactor (HTR) is presented. It is based upon the known fact that the vapor pressure of metallic fission products in solid or liquid solutions is lower compared with that of the pure fission products. Although metallic additives were found not to influence the silver release from oxide fuel kernels, the effective diffusion coefficient of Ag-110 m in graphite matrix is reduced by about two orders of magnitude by small amounts of the metallic Cu, Ge, Sn or Au additions. However, these reduced silver diffusion coefficients are not sufficiently low in order to retain Ag-110 m in the fuel-free zone of spherical HTR fuel elements. On the other hand, metallic additives were found to be very efficient in gettering Ag-110 m from the gaseous pahse: During a contact time of only 0.15 seconds at 950sup(o)C more than 80%, at 850sup(o)C even more than 99% of the Ag-110 m could be absorbed from the streaming gas by using a metal-containing graphite filter. The best results were obtained by using Sn or Au additives. By optimizing the filter geometry further increase of the efficiency should be possible. (orig./HP)

  11. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  12. Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hikaru Hiruta; Gilles Youinou

    2013-09-01

    This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  13. Determination of burnup balance for nuclear reactor fuel on the basis of γ-spectrometric determination of fission products

    International Nuclear Information System (INIS)

    Results are given of experimental investigations in one of the versions of the method for determination of the balance of nuclear fuel burnup process by means of the γ-spectrometry of fission products. In the version being considered a balance of the burnup process was determined on the base of 106Ru, 134Cs.Activity was measured by means of a γ-spectrometer with Ge counter. Investigations were done on the natural uranium metal fuel from the heavy-water moderated reactor of the first Czechoslovakian nuclear power plant A1 in Yaslovske Bohunice. Possibility was checked of determination of the fuel burnup depth as well as of the isotope ratio and content of plutonium. Results were compared with the control data which had been obtained on the base of the mass-spectrometry of U, Pu and Nd. The reasors for deviations were estimated in the cases when they were greater tan error in the control data

  14. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    International Nuclear Information System (INIS)

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations

  15. Radioactive Beams from 252CF Fission Using a Gas Catcher and an ECR Charge Breeder at ATLAS

    CERN Document Server

    Pardo, Richard C; Hecht, Adam; Moore, Eugene F; Savard, Guy

    2005-01-01

    An upgrade to the radioactive beam capability of the ATLAS facility has been proposed using 252Cf fission fragments thermalized and collected into a low-energy particle beam using a helium gas catcher. In order to reaccelerate these beams an existing ATLAS ECR ion source will be reconfigured as a charge breeder source. A 1Ci 252Cf source is expected to provide sufficient yield to deliver beams of up to ~106 far from stability ions per second on target. A facility description, the expected performance and the expected performance will be presented in this paper. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract W-31-109-ENG-38.

  16. A MODEL FOR PREDICTING FISSION PRODUCT ACTIVITIES IN REACTOR COOLANT: APPLICATION OF MODEL FOR ESTIMATING I-129 LEVELS IN RADIOACTIVE WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Husain, A.

    2003-02-27

    A general model was developed to estimate the activities of fission products in reactor coolant and hence to predict a value for the I-129/Cs-137 scaling factor; the latter can be applied along with measured Cs-137 activities to estimate I-129 levels in reactor waste. The model accounts for fission product release from both defective fuel rods and uranium contamination present on in-core reactor surfaces. For simplicity, only the key release mechanisms were modeled. A mass balance, considering the two fuel source terms and a loss term due to coolant cleanup was solved to estimate fission product activity in the primary heat transport system coolant. Steady state assumptions were made to solve for the activity of shortlived fission products. Solutions for long-lived fission products are time-dependent. Data for short-lived radioiodines I-131, I-132, I-133, I-134 and I-135 were analyzed to estimate model parameters for I-129. The estimated parameter values were then used to determine I-1 29 coolant activities. Because of the chemical affinity between iodine and cesium, estimates of Cs-137 coolant concentrations were also based on parameter values similar to those for the radioiodines; this assumption was tested by comparing measured and predicted Cs-137 coolant concentrations. Application of the derived model to Douglas Point and Darlington Nuclear Generating Station plant data yielded estimates for I-129/I-131 and I-129/Cs-137 which are consistent with values reported for pressurized water reactors (PWRs) and boiling water reactors (BWRs). The estimated magnitude for the I-129/Cs-137 ratio was 10-8 - 10-7.

  17. Fission 2009 4. International Workshop on Nuclear Fission and Fission Product Spectroscopy - Compilation of slides

    International Nuclear Information System (INIS)

    This conference is dedicated to the last achievements in experimental and theoretical aspects of the nuclear fission process. The topics include: mass, charge and energy distribution, dynamical aspect of the fission process, nuclear data evaluation, quasi-fission and fission lifetime in super heavy elements, fission fragment spectroscopy, cross-section and fission barrier, and neutron and gamma emission. This document gathers the program of the conference and the slides of the presentations

  18. Comparison of various hours living fission products for absolute power density determination in VVER-1000 mock up in LR-0 reactor.

    Science.gov (United States)

    Košťál, Michal; Švadlenková, Marie; Koleška, Michal; Rypar, Vojtěch; Milčák, Ján

    2015-11-01

    Measuring power level of zero power reactor is a quite difficult task. Due to the absence of measurable cooling media heating, it is necessary to employ a different method. The gamma-ray spectroscopy of fission products induced within reactor operation is one of possible ways of power determination. The method is based on the proportionality between fission product buildup and released power. The (92)Sr fission product was previously preferred as nuclide for LR-0 power determination for short-time irradiation experiments. This work aims to find more appropriate candidates, because the (92)Sr, however suitable, has a short half-life, which limits the maximal measurable amount of fuel pins within a single irradiation batch. The comparison of various isotopes is realized for (92)Sr, (97)Zr, (135)I, (91)Sr, and (88)Kr. The comparison between calculated and experimentally determined (C/E-1 values) net peak areas is assessed for these fission products. Experimental results show that studied fission products, except (88)Kr, are in comparable agreement with (92)Sr results. Since (91)Sr has notably higher half-life than (92)Sr, (91)Sr seems to be more appropriate marker in experiments with a large number of measured fuel pins.

  19. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  20. A revaluation of helium/dpa ratios for fast reactor and thermal reactor data in fission-fusion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A.; Greenwood, L.R. [Pacific Northwest National Lab., Richland, WA (United States); Oliver, B.M.

    1996-10-01

    For many years it has been accepted that significant differences exist in the helium/dpa ratios produced in fast reactors and various proposed fusion energy devices. In general, the differences arise from the much larger rate of (n,{alpha}) threshold reactions occurring in fusion devices, reactions which occur for energies {ge} 6 MeV. It now appears, however, that for nickel-containing alloys in fast reactors the difference may not have been as large as was originally anticipated. In stainless steels that have a very long incubation period for swelling, for instance, the average helium concentration over the duration of the transient regime have been demonstrated in an earlier paper to be much larger in the FFTF out-of-core regions than first calculated. The helium/dpa ratios in some experiments conducted near the core edge or just outside of the FFTF core actually increase strongly throughout the irradiation, as {sup 59}Ni slowly forms by transmutation of {sup 58}Ni. This highly exothermic {sup 59}Ni(n,{alpha}) reaction occurs in all fast reactors, but is stronger in the softer spectra of oxide-fueled cores such as FFTF and weaker in the harder spectra of metal-fueled cores such as EBR-II. The formation of {sup 59}Ni also increases strongly in out-of-core unfueled regions where the reactor spectra softens with distance from the core.

  1. Eugene P. Wigner’s Visionary Contributions to Generations-I through IV Fission Reactors

    OpenAIRE

    Carré Frank

    2014-01-01

    Among Europe’s greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechan...

  2. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine

    Science.gov (United States)

    Sheng, Hanmin; Xiao, Jian

    2015-05-01

    The aim of this study is to estimate the state of charge (SOC) of the lithium iron phosphate (LiFePO4) battery pack by applying machine learning strategy. To reduce the noise sensitive issue of common machine learning strategies, a kind of SOC estimation method based on fuzzy least square support vector machine is proposed. By applying fuzzy inference and nonlinear correlation measurement, the effects of the samples with low confidence can be reduced. Further, a new approach for determining the error interval of regression results is proposed to avoid the control system malfunction. Tests are carried out on modified COMS electric vehicles, with two battery packs each consists of 24 50 Ah LiFePO4 batteries. The effectiveness of the method is proven by the test and the comparison with other popular methods.

  3. Nuclear Fission Reactor Safety Research in FP7 and future perspectives

    CERN Document Server

    Garbil, Roger

    2014-01-01

    The European Union (ЕU) has defined in the Europe 2020 strategy and 2050 Energy Roadmap its long-term vision for establishing a secure, sustainable and competitive energy system and setting up legally binding targets by 2020 for reducing greenhouse emissions, by increasing energy efficiency and the share of renewable energy sources while including a significant share from nuclear fission. Nuclear energy can enable the further reduction in harmful emissions and can contribute to the EU’s competitive energy system, security of supply and independence from fossil fuels. Nuclear fission is a valuable option for those 14 EU countries that promote its use as part of their national energy mix. The European Group on Ethics in Science and New Technologies (EGE) adopted its Opinion No.27 ‘An ethical framework for assessing research, production and use of energy’ and proposed an integrated ethics approach for the research, production and use of energy in the EU, seeking equilibrium among four criteria – access ...

  4. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle

    International Nuclear Information System (INIS)

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  5. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  6. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa–232U–233U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production

  7. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  8. Eugene P. Wigner’s Visionary Contributions to Generations-I through IV Fission Reactors

    Directory of Open Access Journals (Sweden)

    Carré Frank

    2014-01-01

    Full Text Available Among Europe’s greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  9. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    Science.gov (United States)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  10. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. Addendum 1. Alternate concepts. 12-month progress report addendum, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    During the course of the Mirror Hybrid Fusion-Fission Reactor study several alternate concepts were considered for various reactor components. Several of the alternate concepts do appear to exhibit features with potential advantage for use in the mirror hybrid reactor. These are described and should possibly be investigated further in the future

  11. Production of Fission Product 99Mo using High-Enriched Uranium Plates in Polish Nuclear Research Reactor MARIA: Technology and Neutronic Analysis

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Janusz

    2014-07-01

    Full Text Available The main objective of 235U irradiation is to obtain the 99mTc isotope, which is widely used in the domain of medical diagnostics. The decisive factor determining its availability, despite its short lifetime, is a reaction of radioactive decay of 99Mo into 99mTc. One of the possible sources of molybdenum can be achieved in course of the 235U fission reaction. The paper presents activities and the calculation results obtained upon the feasibility study on irradiation of 235U targets for production of 99Mo in the MARIA research reactor. Neutronic calculations and analyses were performed to estimate the fission products activity for uranium plates irradiated in the reactor. Results of dummy targets irradiation as well as irradiation uranium plates have been presented. The new technology obtaining 99Mo is based on irradiation of high-enriched uranium plates in standard reactor fuel channel and calculation of the current fission power generation. Measurements of temperatures and the coolant flow in the molybdenum installation carried out in reactor SAREMA system give online information about the current fission power generated in uranium targets. The corrective factors were taken into account as the heat generation from gamma radiation from neighbouring fuel elements as well as heat exchange between channels and the reactor pool. The factors were determined by calibration measurements conducted with aluminium mock-up of uranium plates. Calculations of fuel channel by means of REBUS code with fine mesh structure and libraries calculated by means of WIMS-ANL code were performed.

  12. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    Energy Technology Data Exchange (ETDEWEB)

    Ehud Greenspan

    2003-10-31

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity.

  13. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    Science.gov (United States)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  14. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  15. On the selfacting safe limitation of fission power and fuel temperature in innovative nuclear reactors

    International Nuclear Information System (INIS)

    Nuclear energy probably will not contribute significantly to the future worldwide energy supply until it can be made catastrophe-free. Therefore it has to be shown, that the consequences of even largest accidents will have no major impact to the environment of a power plant. In this paper one of the basic conditions for such a nuclear technology is discussed. Using mainly the modular pebble-bed high-temperature reactor as an example, the design principles, analytical methods and the level of knowledge as given today in controlling reactivity accidents by inherent safety features of innovative nuclear reactors are described. Complementary possibilities are shown to reach this goal with systems of different types of construction. Questions open today and resulting requirements for future activities are discussed. Today's knowledge credibly supports the possibility of a catastrophe-free nuclear technology with respect to reactivity events. (orig.)

  16. Energy storage and transfer with homopolar machine for a linear theta-pinch hybrid reactor

    International Nuclear Information System (INIS)

    This report describes the energy storage and transfer system for the compression coil system of a linear theta-pinch hybrid reactor (LTPHR). High efficiency and low cost are the principal requirements for the energy storage and transfer of 25 MJ/m or 25 GJ for a 1-km LTPHR. The circuit efficiency must be approximately 90 percent, and the cost for the circuit 5 to 6 cents/J. Scaling laws and simple relationships between circuit efficiency and cost per unit energy as a function of the half cycle time are presented. Capacitors and homopolor machines are considered as energy storage elements with both functioning basically as capacitors. The advantage of the homopolar machine in this application is its relatively low cost, whereas that of capacitors is better efficiency

  17. Applications: fission, nuclear reactors. Safety, its importance assertion and its implementation

    International Nuclear Information System (INIS)

    The various safety levels for nuclear reactors are reviewed: the first one is related to the quality of design, the second one to the assurance of quality during operation, the third one to the safety measures limiting the system and material failure consequences, the fourth one to the management of severe accidents, and the fifth one to the population safety measures. In parallel to these deterministic measures, probabilistic studies have been also undertaken in order to evaluate risks dealing with the core fusion, radioactive product release and effects on population. Safety is also concerned with material and electronic material ageing, software reliability, fire risks and diphasic thermohydraulics

  18. Security of supply for fission medical radio-isotopes based on optimal use of the test reactor network

    International Nuclear Information System (INIS)

    Nuclear Medicine relies to a large extend (80 % of the procedures) on radioisotopes produced by fission of uranium, on Mo99 /Tc99m for 28 million diagnoses made annually all over the world for tracking diseases in cancerology, cardiology, neurology ... and on I131 and Y90 for 3 million therapy procedures. The only four main producers (95 % of the world demand) are relying on 5 aging test reactors for irradiating HEU targets to be processed for extracting these short life isotopes before their conditioning as radiopharmaceuticals to be daily used in hospitals. Ensuring the security of supply has been a challenge for many years and if several shortages occurred in the past, the last crises in 2007 and 2008 revealed more than ever the weakness of the current situation despite the efforts and warning that have been devoted to facing many obstacles including possible technical failures, incidents, transport constraints and licensing issues, as well as political threat for the use of HEU. It is time for having all stakeholders drawing the lessons of the crisis and considering all possible serious and realistic improvements on technical and organisational issues without neglecting the resulting economical and safety aspects. (author)

  19. Economics analysis of fuel cycle cost of fusion–fission hybrid reactors based on different fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2015-01-15

    Highlights: • Economics analysis of fuel cycle cost of FFHRs is carried out. • The mass flows of different fuel cycle strategies are established based on the equilibrium fuel cycle model. • The levelized fuel cycle costs of different fuel cycle strategies are calculated, and compared with current once-through fuel cycle. - Abstract: The economics analysis of fuel cycle cost of fusion–fission hybrid reactors has been performed to compare four fuel cycle strategies: light water cooled blanket burning natural uranium (Strategy A) or spent nuclear fuel (Strategy B), sodium cooled blanket burning transuranics (Strategy C) or minor actinides (Strategy D). The levelized fuel cycle costs (LFCC) which does not include the capital cost, operation and maintenance cost have been calculated based on the equilibrium mass flows. The current once-through (OT) cycle strategy has also been analyzed to serve as the reference fuel cycle for comparisons. It is found that Strategy A and Strategy B have lower LFCCs than OT cycle; although the LFCC of Strategy C is higher than that of OT cycle when the uranium price is at its nominal value, it would become comparable to that of OT cycle when the uranium price reaches its historical peak value level; Strategy D shows the highest LFCC, because it needs to reprocess huge mass of spent nuclear fuel; LFCC is sensitive to the discharge burnup of the nuclear fuel.

  20. Neutronic evaluation of fissile fuel breeding blankets for the fission-suppressed Tandem-Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    A computational study was performed on the blanket design of the Lawrence Livermore National Laboratory (LLNL) fission-suppressed Tandem Mirror Hybrid Reactor (TMHR) to qualify the methods and data bases available at Oak Ridge National Laboratory (ORNL) for use in analyzing the neutronic performance of fissile fuel breeding blankets. The eventual goal of the study was to establish the capability for analysis and optimization of advanced fissile fuel production blanket designs. Discrete ordinates radiation transport calculations were performed in one-dimensional cylindrical geometry to obtain the blanket spatial distribution and energy spectra of the neutron and gamma-ray fluxes resulting from the monoenergetic (14.1 MeV) fusion first wall source. Key macroscopic cross sections of the blanket materials were then folded with the flux spectra to obtain reaction rates critical to evaluating blanket feasibility. Finally, a time-dependent depletion analysis was performed to evaluate the blanket performance during equilibrium cycle conditions. The results of the study are presented both as graphs and tables

  1. Measurement of fission product activity in the Peach Bottom Reactor primary coolant loop

    International Nuclear Information System (INIS)

    The distribution of gamma-emitting radionuclides deposited in the primary circuit of the Peach Bottom High-Temperature Gas-Cooled Reactor (HTGR) at end-of-life has been determined by in situ gamma scanning. The work was part of the Peach Bottom End-of-Life Program and was performed by the IRT Corporation under subcontract to General Atomic Company. The measurements were made to support a design method verification exercise. The specific activity on the ducts was measured by external scans at local points with a Ge(Li) detector and by internal scans with a travelling intrinsic germanium detector (after destructive removal of trepan samples); the activity on the steam generator tube bundle was determined by traversing selected tubes with travelling CdTe detectors from the water side. Calibration measurements on mockups allowed reduction of the spectra to specific activity

  2. Fission energy program of the US Department of Energy, FY 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Robert L.

    1980-03-01

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems.

  3. Fission energy program of the US Department of Energy, FY 1981

    International Nuclear Information System (INIS)

    Information is presented concerning the National Energy Plan and fission energy policy; fission energy program management; converter reactor systems; breeder reactor systems; and special nuclear evaluations and systems

  4. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo.

  5. Diversification of 99Mo/99mTc separation: non–fission reactor production of 99Mo as a strategy for enhancing 99mTc availability.

    Science.gov (United States)

    Pillai, Maroor R A; Dash, Ashutosh; Knapp, Furn F Russ

    2015-01-01

    This paper discusses the benefits of obtaining (99m)Tc from non-fission reactor-produced low-specific-activity (99)Mo. This scenario is based on establishing a diversified chain of facilities for the distribution of (99m)Tc separated from reactor-produced (99)Mo by (n,γ) activation of natural or enriched Mo. Such facilities have expected lower investments than required for the proposed chain of cyclotrons for the production of (99m)Tc. Facilities can receive and process reactor-irradiated Mo targets then used for extraction of (99m)Tc over a period of 2 wk, with 3 extractions on the same day. Estimates suggest that a center receiving 1.85 TBq (50 Ci) of (99)Mo once every 4 d can provide 1.48-3.33 TBq (40-90 Ci) of (99m)Tc daily. This model can use research reactors operating in the United States to supply current (99)Mo needs by applying natural (nat)Mo targets. (99)Mo production capacity can be enhanced by using (98)Mo-enriched targets. The proposed model reduces the loss of (99)Mo by decay and avoids proliferation as well as waste management issues associated with fission-produced (99)Mo. PMID:25537991

  6. Oklo natural fission reactor program. Progress report, April 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.B. (comp.)

    1980-12-01

    An interim report has been published on the redistribution of uranium, thorium, and lead in samples representing several million cubic meters of sandstone and metamorphosed sediments in the Athabasca Basin which is located in the northwest corner of the Canadian province of Saskatchewan. The region of study includes zones of uranium mineralization at Key Lake. Mineralization occurs at the unconformity between the Athabasca sandstone and the underlying metasediments and in fault zones within the metasediments. Lead isotopes record a radiometric age of 1300 +- 150 m.y. in samples from above and below the unconformity. This age probably reflects the time of deposition of the sandstones and an associated redistribution of uranium and/or lead in the underlying rocks. Many of the samples have been fractionated with respect to radiogenic lead and the actinide parent elements since that time. Sandstones and altered rocks from the region above the unconformity have been a transport path and are a repository for lead. In contrast, mineralized rocks are deficient in radiogenic lead and must be an important source of lead in the local geologic environment. Samples from Oklo reactor zone 9 and nearby host rocks have been prepared for isotopic analyses of ruthenium, molybdenum, uranium and lead.

  7. Tensile and electrical properties of copper alloys irradiated in a fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Laboratory, TN (United States)] [and others

    1996-04-01

    Postirradiation electrical sensitivity and tensile measurements have been completed on pure copper and copper alloy sheet tensile specimens irradiated in the SM-2 reactor to doses of {approx}0.5 to 5 dpa and temperatures between {approx}80 and 400{degrees}C. Considerable radiation hardening and accompanying embrittlement was observed in all of the specimens at irradiation temperature below 200{degrees}C. The radiation-induced electrical conductivity degradation consisted of two main components: solid transmutation effects and radiation damage (defect cluster and particle dissolution) effects. The radiation damage component was nearly constant for the doses in this study, with a value of {approx}1.2n{Omega}m for pure copper and {approx}1.6n{Omega}m for dispersion strengthened copper irradiated at {approx}100{degrees}C. The solid transmutation component was proportional to the thermal neutron flux, and became larger than the radiation damage component for fluences larger than {approx}5 10{sup 24} n.m{sup 2}. The radiation hardening and electrical conductivity degradation decreased with increasing irradiation temperature, and became negligible for temperatures above {approx}300{degrees}C.

  8. Calculational study on neutron kinetics and thermodynamics of a gaseous core fission reactor. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1992-01-01

    The aim of the authors' work was to investigate the static and dynamic properties of a GCFR with oscillating (moving) fuel gas. A simplified schematic diagram of such a GCFR, similar to the concept of Kistemaker (Kis78a), is shown. It consists of a graphite cylinder of, say, 2 m diameter and 10 m length, filled with a mixture of uranium and carbon fluorides (UCF) at high temperature in ionized state, in chemical and thermodynamical equilibrium with the graphite cylinder wall (Kis78a, Kis86, Kle87). The cylindrical gas space is divided into an active 'core' region, surrounded by an effective (thick) neutron reflector, and a so-called 'expander' region, surrounded by a much less effective (thinner or with neutron poison) neutron reflector. In operation, part of the fuel gas oscillates back and forth between core and expander region. The investigation requires the study of neutron statics, neutron kinetics, reactor gas thermodynamics and gas dynamics, resulting in a combined calculational model, containing these aspects. In order to achieve this the authors followed a step-by-step approach.

  9. Technologies for tritium control in fission reactors moderated with heavy water

    International Nuclear Information System (INIS)

    This study was done within a program one of whose objectives was to analyze the possible strategies and technologies, to be applied to HWR at Argentine nuclear power plants, for tritium control. The high contribution of tritium to the total dose has given rise to the need by the operators and/or designers to carry out developments and improvements to try to optimize tritium control technologies. Within a tritium control program, only that one which includes the heavy water detritiation will allow to reduce the tritium concentrations at optimum levels for safety and cost-effective power plant operation. The technology chosen to be applied should depend not only on the technical feasibility but also on the analysis of economic and juncture factors such as, among others, the quantity of heavy water to be treated. It is the authors' belief that AECL tendency concerning heavy water treatment in its future reactors would be to employ the CECE technology complemented with immobilization on titanium beds, with the 'on-line' detritiation in each nuclear power plant. This would not be of immediate application since our analysis suggests that AECL would assume that the process is under development and needs to be tested. (author). 21 refs

  10. Reappraisal of the limit on the variation in α implied by the Oklo natural fission reactors

    Science.gov (United States)

    Davis, Edward D.; Hamdan, Leila

    2015-07-01

    Background: A signature of many dynamical models of dark energy is that they admit variation in the fine structure constant α over cosmological time scales. Purpose: We reconsider the analysis of the sensitivity of neutron resonance energies Ei to changes in α with a view to resolving uncertainties that plague earlier treatments. Methods: We point out that with more appropriate choices of nuclear parameters, the standard estimate (from Damour and Dyson) of the sensitivity for resonances in Sm is increased by a factor of 2.5. We go on to identify and compute excitation, Coulomb, and deformation corrections. To this end, we use deformed Fermi density distributions fitted to the output of Hartree-Fock (HF) + BCS calculations (with both the SLy4 and SkM* Skyrme functionals), the energetics of the surface diffuseness of nuclei, and thermal properties of their deformation. We also invoke the eigenstate thermalization hypothesis, performing the requisite microcanonical averages with two phenomenological level densities which, via the leptodermous expansion of the level density parameter, include the effect of increased surface diffuseness. Theoretical uncertainties are assessed with the inter-model prescription of Dobaczewski et al. [J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014), 10.1088/0954-3899/41/7/074001]. Results: The corrections diminish the revised Sm sensitivity but not by more than 25%. Subject to a weak and testable restriction on the change in mq/Λ (relative to the change in α ) since the time when the Oklo reactors were active (mq is the average of the u and d current quark masses, and Λ is the mass scale of quantum chromodynamics), we deduce that | αOklo-αnow|Oklo bound on changes in α is reliable. It is one order of magnitude lower than the Oklo-based bound most commonly adopted in earlier attempts to identify phenomenologically successful models of α variation.

  11. Contamination of the air and other environmental samples of the Ulm region by radioactive fission products after the accident of the Chernobyl reactor

    International Nuclear Information System (INIS)

    Since April 30, 1986, the radioactivity of the fission products released by the accident of the Chernobyl reactor has been measured in the air of the city of Ulm. The airborne dust samples were collected with flow calibrated samplers on cellulose acetate membrane filters and counted with a high resolution gamma ray spectrometer. Later on, the radioactivity measurements were expanded to other relevant environmental samples contaminated by radioactive atmospheric precipitates including grass, spruce needles, mosses, lichens, various kinds of food, drinking water, asphalt and concrete surface layers, municipal sewage sludge and sewage sludge ash. This paper reports the obtained results. (orig.)

  12. Thermodynamics mechanisms of fission product retention in nuclear plants illustrated by the properties of the HTR reactor

    International Nuclear Information System (INIS)

    Starting from the first law of thermodynamics, the theoretical principles for the description of interactions between fission products and other materials are derived step by step, using fundamental terms such as phase equilibria, mixtures and solutions. Thereafter, the concepts of Onsager's theory of irreversible thermodynamics are introduced. They serve as an example of modelling fission product transport with special respect to thermochemical properties. In the last chapter real technical concepts for fission product retention are evaluated using thermodynamic criteria. A fine distinction is performed between barrier-, filter- and sinkmechanisms for retention-purposes. One important result is, that a barrier-concept alone doesn't meet the challenge of nuclear power operation without the probability of hazardous accidents. The work is finished by a proposal to improve the fission product retention capabilities of HTR fuel-elements in combination with a coating of the fuel-pebbles. (orig./DG)

  13. A Model to Reproduce the Response of the Gaseous Fission Product Monitor (GFPM) in a CANDU{sup R} 6 Reactor (An Estimate of Tramp Uranium Mass in a Candu Core)

    Energy Technology Data Exchange (ETDEWEB)

    Mostofian, Sara; Boss, Charles [AECL Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga Ontario L5K 1B2 (Canada)

    2008-07-01

    In a Canada Deuterium Uranium (Candu) reactor, the fuel bundles produce gaseous and volatile fission products that are contained within the fuel matrix and the welded zircaloy sheath. Sometimes a fuel sheath can develop a defect and release the fission products into the circulating coolant. To detect fuel defects, a Gaseous Fission Product Monitoring (GFPM) system is provided in Candu reactors. The (GFPM) is a gamma ray spectrometer that measures fission products in the coolant and alerts the operator to the presence of defected fuel through an increase in measured fission product concentration. A background fission product concentration in the coolant also arises from tramp uranium. The sources of the tramp uranium are small quantities of uranium contamination on the surfaces of fuel bundles and traces of uranium on the pressure tubes, arising from the rare defected fuel element that released uranium into the core. This paper presents a dynamic model that reproduces the behaviour of a GFPM in a Candu 6 plant. The model predicts the fission product concentrations in the coolant from the chronic concentration of tramp uranium on the inner surface of the pressure tubes (PT) and the surface of the fuel bundles (FB) taking into account the on-power refuelling system. (authors)

  14. Extraction of neutron-rich fission products from a nuclear reactor for ground state studies: commissioning of the online-coupling at TRIGA-SPEC

    International Nuclear Information System (INIS)

    The mass spectrometer TRIGA-TRAP and the laser spectroscopy TRIGA-LASER setup, forming the TRIGA-SPEC experiment, are installed at the research reactor TRIGA Mainz in order to perform high-precision measurements of the ground state properties of short-lived neutron-rich radionuclides. Such measurements allow testing the predictive power of nuclear mass models and support astrophysical nucleosynthesis calculations. The extraction of these nuclei for both experiment branches is achieved by using an aerosol-based gas-jet system to transport fission products from an actinide target located inside the reactor to an external high-temperature surface ion source. TRIGA-SPEC will shortly go online, already having recorded a cyclotron resonance of an ion produced in the source. The commissioning of the online-coupling involving a separator magnet, a radiofrequency quadrupole cooler/buncher, and a pulsed drift tube will be presented.

  15. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  16. Charge distribution studies in the fast-neutron-induced fission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 0 Pu and sup 2 sup 4 sup 4 Cm

    CERN Document Server

    Naik, H; Iyer, R H

    2003-01-01

    Charge distribution studies for heavy-mass fission products were carried out in the fast-neutron-induced fission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U, sup 2 sup 4 sup 0 Pu and sup 2 sup 4 sup 4 Cm using radiochemical and gamma-ray spectrometric techniques. The width parameter(sigma sub Z /sigma sub A), the most probable charge/mass (Z sub P /A sub P), the charge polarization (DELTA Z) and the slope of charge polarization [ delta(DELTA Z)/delta A sup '] as a function of the fragment mass (A sup ') were deduced. The average charge dispersion parameter (left angle sigma sub Z right angle) and proton odd-even effect (delta sub p) were also obtained for these fissioning systems. The left angle sigma sub Z right angle and delta sub p values in the fissioning systems sup 2 sup 4 sup 1 Pu sup * and sup 2 sup 4 sup 5 Cm sup * were determined for the first time. The delta(DELTA Z)/delta A sup ' value is also determined for the first time in the fissioning systems sup 2 sup 3 sup 9 U sup * , sup 2 sup 4 sup 1 Pu...

  17. Engineering and Economic Aspects of Mirror Machine Reactors with Direct Conversion

    International Nuclear Information System (INIS)

    Reactor design studies are presented based on the use of mirror confinement zones fed by neutral beam injectors and utilizing direct converters for charged-particle-energy recovery. Designs considered include Yin-Yang and axially symmetric coil configurations, D-T and D-3He fuel cycles, and net electrical outputs ranging from one hundred to one thousand megawatts, the latter being the base case. The operating power level of each reactor component is determined as a function of component efficiencies, Q (defined as the ratio of fusion power to trapped injected power), and other relevant variables. Then approximate cost-power scaling relationships are used to calculate component costs. Results for overall cost and system efficiency are presented as functions of Q for a variety of component efficiency sets. The results indicate that the D-T system with direct conversion is economically attractive for expected Q-values and component efficiencies. In comparison, the D-3He system is characterized by high sensitivity to system changes at expected Q-values, and very high component efficiencies are required in order to make it economical. The disadvantage of the D-T-system is that it is basically a heat engine and has little potential for overall system efficiencies greater than 45% at blanket temperatures usually considered. In contrast, D-3He has a potential for operating economically at system efficiencies greater than 80%. Such a system could be achieved if Q-values for D-3He near unity become possible and sufficient ingenuity in the design of efficient reactor components is exercised. (author)

  18. Thermal fission rates with temperature dependent fission barriers

    Science.gov (United States)

    Zhu, Yi; Pei, J. C.

    2016-08-01

    Background: The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. Purpose: We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective mass parameters. Methods: The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures has to incorporate the reflection above barriers. Results: Our results of spontaneous fission rates reasonably agree with other studies and experiments. The temperature dependencies of fission barrier heights and curvatures have been discussed. The temperature dependent behaviors of mass parameters have also been discussed. The thermal fission rates from low to high temperatures with a smooth connection have been given by different approaches. Conclusions: Since the temperature dependencies of fission barrier heights and curvatures, and the mass parameters can vary rapidly for different nuclei, the microscopic descriptions of thermal fission rates are very valuable. Our studies without free parameters provide a consistent picture to study various fissions such as that in fast-neutron reactors, astrophysical environments, and fusion reactions for superheavy nuclei.

  19. Fission Product Release Behavior of Individual Coated Fuel Particles for High-Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Postirradiation heating tests of TRISO-coated UO2 particles at 1700 and 1800degC were performed to understand fission product release behavior at accident temperatures. The inventory measurements of the individual particles were carried out before and after the heating tests with gamma-ray spectrometry to study the behavior of the individual particles. The time-dependent release behavior of 85Kr, 110mAg, 134Cs, 137Cs, and 154Eu were obtained with on-line measurements of fission gas release and intermittent measurements of metallic fission product release during the heating tests. The inventory measurements of the individual particles revealed that fission product release behavior of the individual particles was not uniform, and large particle-to-particle variations in the release behavior of 110mAg, 134Cs, 137Cs, and 154Eu were found. X-ray microradiography and ceramography showed that the variations could not be explained by only the presence or absence of cracks in the SiC coating layer. The SiC degradation may have been related to the variations

  20. Feasibility of conducting a dynamic helium charging experiment for vanadium alloys in the advanced test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Gomes, I.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1996-10-01

    The feasibility of conducting a dynamic helium charging experiment (DHCE) for vanadium alloys in the water-cooled Advanced Test Reactor (ATR) is being investigated as part of the U.S./Monbusho collaboration. Preliminary findings suggest that such an experiment is feasible, with certain constraints. Creating a suitable irradiation position in the ATR, designing an effective thermal neutron filter, incorporating thermocouples for limited specimen temperature monitoring, and handling of tritium during various phases of the assembly and reactor operation all appear to be feasible. An issue that would require special attention, however, is tritium permeation loss through the capsule wall at the higher design temperatures (>{approx}600{degrees}C). If permeation is excessive, the reduced amount of tritium entering the test specimens would limit the helium generation rates in them. At the lower design temperatures (<{approx}425{degrees}C), sodium, instead of lithium, may have to be used as the bond material to overcome the tritium solubility limitation.

  1. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  2. Detection of the weak neutral current using fission anti ν/sub e/ on deuterons with concurrent measurement of the charged current branch

    International Nuclear Information System (INIS)

    The target consists of 268 kg of extremely pure (99.85%) heavy water (D2O), contained in a cylindrical stainless steel tank 122 cm in height and 54 cm in diameter. This target is surrounded by a lead and cadmium shield and immersed in a 2200 liter liquid scintillator anticoincidence detector. This system is a well-shielded environment. The center of the detector is located 11 meters from the center of the reactor core in an electron antineutrino flux of 2.5 x 1013 anti ν/sub e//cm2-s. Immersed in the target are ten 5.08-cm-diameter 3He-filled gas proportional counters, which detect the neutron via the reaction 3He + n → p + 3H + 773 keV. The system has been determined to have an overall neutron detection efficiency of 0.32 +- 0.02. The data are taken with a combination of scalers, a pulse height analyzer, and oscilloscope traces. Single, double, and triple neutron capture events are recorded with the reactor on and off. Data have been accumulated for 104 live days reactor on, and 72 live days reactor off for the charged-current reaction and 52 live days reactor on and 34 live days reactor off for the neutral-current reaction. The measured neutral-current cross section is (5.0 +- 0.8) x 10-45cm2/anti ν/sub e/, consistent with the Weinberg-Salam model. The charged-current reaction cross section is (1.5 +- 0.4) x 10-45 cm2/ν/sub e/, in fair agreement with expectation. From the N.C. cross section a value of the square of the isovector axial-vector coupling constant is deduced to be β2 = 1.0 +- 0.15

  3. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  4. Determination of the fission-neutron averaged cross sections of some high-energy threshold reactions of interest for reactor dosimetry

    CERN Document Server

    Arribere, M A; Ribeiro-Guevara, S; Korochinsky, S; Blostein, J J

    2003-01-01

    For three high threshold reactions, we have measured the cross sections averaged over a sup 2 sup 3 sup 5 U fission neutron spectrum. The measured reactions, and corresponding averaged cross sections found, are: sup 1 sup 2 sup 7 I(n,2n) sup 1 sup 2 sup 6 I, (1.36+-0.12) mb; sup 9 sup 0 Zr(n,2n) sup 8 sup 9 sup m Zr, (13.86+-0.83) mu b; and sup 5 sup 8 Ni(n,d+np+pn) sup 5 sup 7 Co, (274+-15) mu b; all referred to the well known standard of (111+-3) mb for the sup 5 sup 8 Ni(n,p) sup 5 sup 8 sup m sup + sup g Co averaged cross section. The measured cross sections are of interest in nuclear engineering for the characterization of the fast neutron component in the energy distribution of reactor neutrons. (author)

  5. Expected Value of Finite Fission Chain Lengths of Pulse Reactors%脉冲堆有限裂变链长的数学期望值分析

    Institute of Scientific and Technical Information of China (English)

    刘建军; 邹志高; 张本爱

    2007-01-01

    讨论了在一个增殖系统引发一个持续裂变链所需要的平均中子数.在点堆模型基础上,考虑了在t0时刻系统引入一个源中子,在t时刻产生n个中子的概率ν(n,t0,t),推导了概率生成函数G(z;t0,t)所满足的偏微分方程,并得到了近似解.用近似解计算了Godiva-Ⅱ脉冲堆的有限裂变链长数学期望值,有限裂变链期望值反比于脉冲堆的反应性.%The average neutron population necessary for sponsoring a persistent fission chain in a multiplying system, is discussed. In the point reactor model, the probability functionν(n,t0,t) of a source neutron at time t0 leading to n neutrons at time t is dealt with. The non-linear partial differential equation for the probability generating function G(z;t0,t) is derived. By solving the equation, we have obtained an approximate analytic solution for a slightly prompt supercritical system. For the pulse reactor Godiva-Ⅱ, the mean value of finite fission chain lengths is estimated in this work and shows that the estimated value is reasonable for the experimental analysis.

  6. A Covariance Generation Methodology for Fission Product Yields

    Directory of Open Access Journals (Sweden)

    Terranova N.

    2016-01-01

    Full Text Available Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1 no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation, developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  7. A Covariance Generation Methodology for Fission Product Yields

    Science.gov (United States)

    Terranova, N.; Serot, O.; Archier, P.; Vallet, V.; De Saint Jean, C.; Sumini, M.

    2016-03-01

    Recent safety and economical concerns for modern nuclear reactor applications have fed an outstanding interest in basic nuclear data evaluation improvement and completion. It has been immediately clear that the accuracy of our predictive simulation models was strongly affected by our knowledge on input data. Therefore strong efforts have been made to improve nuclear data and to generate complete and reliable uncertainty information able to yield proper uncertainty propagation on integral reactor parameters. Since in modern nuclear data banks (such as JEFF-3.1.1 and ENDF/BVII.1) no correlations for fission yields are given, in the present work we propose a covariance generation methodology for fission product yields. The main goal is to reproduce the existing European library and to add covariance information to allow proper uncertainty propagation in depletion and decay heat calculations. To do so, we adopted the Generalized Least Square Method (GLSM) implemented in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation), developed at CEA-Cadarache. Theoretical values employed in the Bayesian parameter adjustment are delivered thanks to a convolution of different models, representing several quantities in fission yield calculations: the Brosa fission modes for pre-neutron mass distribution, a simplified Gaussian model for prompt neutron emission probability, theWahl systematics for charge distribution and the Madland-England model for the isomeric ratio. Some results will be presented for the thermal fission of U-235, Pu-239 and Pu-241.

  8. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  9. TRANCS, a computer code for calculating fission product release from high temperature gas-cooled reactor fuel, (1)

    International Nuclear Information System (INIS)

    The computer program, TRANCS, has been developed for evaluating the fractional release of long-lived fission products from coated fuel particles. This code numerically gives the non-stationary solution of the diffusion equation with birth and decay terms. The birth term deals with the fissile material in the fuel kernel, the contamination in the coating layers and the fission-recoil transfer from the kernel into the buffer layer; and the decay term deals with effective decay not only due to beta decay but also due to neutron capture, if appropriate input data are given. The code calculates the concentration profile, the release to birth rates (R/B), and the release and residual fractions in the coated fuel particle. Results obtained numerically have been in good agreement with the corresponding analytical solutions after the Booth model. Thus, the validity of the present code was confirmed, and further undate of the code has been discussed for extention of its computation scopes and models. (author)

  10. Two-Dimensional Mapping of the Calculated Fission Power for the Full-Size Fuel Plate Experiment Irradiated in the Advanced Test Reactor

    Science.gov (United States)

    Chang, G. S.; Lillo, M. A.

    2009-08-01

    The National Nuclear Security Administrations (NNSA) Reduced Enrichment for Research and Test Reactors (RERTR) program assigned to the Idaho National Laboratory (INL) the responsibility of developing and demonstrating high uranium density research reactor fuel forms to enable the use of low enriched uranium (LEU) in research and test reactors around the world. A series of full-size fuel plate experiments have been proposed for irradiation testing in the center flux trap (CFT) position of the Advanced Test Reactor (ATR). These full-size fuel plate tests are designated as the AFIP tests. The AFIP nominal fuel zone is rectangular in shape having a designed length of 21.5-in (54.61-cm), width of 1.6-in (4.064-cm), and uniform thickness of 0.014-in (0.03556-cm). This gives a nominal fuel zone volume of 0.482 in3 (7.89 cm3) per fuel plate. The AFIP test assembly has two test positions. Each test position is designed to hold 2 full-size plates, for a total of 4 full-size plates per test assembly. The AFIP test plates will be irradiated at a peak surface heat flux of about 350 W/cm2 and discharged at a peak U-235 burn-up of about 70 at.%. Based on limited irradiation testing of the monolithic (U-10Mo) fuel form, it is desirable to keep the peak fuel temperature below 250°C to achieve this, it will be necessary to keep plate heat fluxes below 500 W/cm2. Due to the heavy U-235 loading and a plate width of 1.6-in (4.064-cm), the neutron self-shielding will increase the local-to-average-ratio (L2AR) fission power near the sides of the fuel plates. To demonstrate that the AFIP experiment will meet the ATR safety requirements, a very detailed 2-dimensional (2D) Y-Z fission power profile was evaluated in order to best predict the fuel plate temperature distribution. The ability to accurately predict fuel plate power and burnup are essential to both the design of the AFIP tests as well as evaluation of the irradiated fuel performance. To support this need, a detailed MCNP Y

  11. Perspective on the fusion-fission energy concept

    International Nuclear Information System (INIS)

    A concept which has potential for near-term application in the electric power sector of our energy economy is combining fusion and fission technology. The fusion-fission system, called a hybrid, is distinguished from its pure fusion counterpart by incorporation of fertile materials (uranium or thorium) in the blanket region of a fusion machine. The neutrons produced by the fusion process can be used to generate energy through fission events in the blanket or produce fuel for fission reactors through capture events in the fertile material. The performance requirements of the fusion component of hybrids is perceived as being less stringent than those for pure fusion electric power plants. The performance requirements for the fission component of hybrids is perceived as having been demonstrated or could be demonstrated with a modest investment of research and development funds. This paper presents our insights and observations of this concept in the context of why and where it might fit into the picture of meeting our future energy needs. A bibliography of hybrid research is given

  12. Void Reactivity Effects in the Second Charge of the Halden Boiling Water Reactor

    International Nuclear Information System (INIS)

    The reactivity effect of voids caused by boiling inside the coolant channels in the second fuel charge of the Halden Boiling Heavy Water Reactor has been measured both in void-simulated zero-power experiments and under actual power conditions. The void-simulated experiments consisted of measuring the reactivity effect of introducing void columns inside thin-walled tubes to various depths. The tubes were placed at different positions between die stringers in a single 7-rod cluster element practically identical with the normal second-charge fuel elements. This experiment enables an investigation of the reactivity dependence upon void fraction, and also the reactivity dependence of steam-bubble position in the coolant channel. The experiment was carried out in the Norwegian zero-power facility NORA, with a core consisting of 36 second-charge elements and with a lattice geometry identical to the one in HBWR. The temperature dependence of the void effect was investigated in a zero-power experiment with the 100 fuel-element core of HBWR. In a single fuel element the water level inside the coolant channel was depressed to various depths, and the reactivity effect of this perturbation was measured at different temperatures in the temperature interval 50°C-220°C. The power void reactivity has been measured in HBWR as a function of nuclear power at different moderator temperatures between 150°C and 230°C at powers up to about 16 MW at the highest temperature. The power-void reactivity coefficient is an important quantity in determining the dynamic behaviour of a boiling- water reactor. The theoretical determination of this quantity is, however, complicated by the fact that knowledge about the void distribution in the core is required. The detailed power-void distribution is not easily amenable to experimental determination, and accordingly the void-simulated experiments represent a better case for testing the reactor physics calculation of void effects. Preliminary

  13. Microcomputer-based equipment-control and data-acquisition system for fission-reactor reactivity-worth measurements

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, W.P.; Bucher, R.G.

    1980-01-01

    Material reactivity-worth measurements are one of the major classes of experiments conducted on the Zero Power research reactors (ZPR) at Argonne National Laboratory. These measurements require the monitoring of the position of a servo control element as a sample material is positioned at various locations in a critical reactor configuration. In order to guarantee operational reliability and increase experimental flexibility for these measurements, the obsolete hardware-based control unit has been replaced with a microcomputer based equipment control and data acquisition system. This system is based on an S-100 bus, dual floppy disk computer with custom built cards to interface with the experimental system. To measure reactivity worths, the system accurately positions samples in the reactor core and acquires data on the position of the servo control element. The data are then analyzed to determine statistical adequacy. The paper covers both the hardware and software aspects of the design.

  14. Energy from nuclear fission(*

    Directory of Open Access Journals (Sweden)

    Ripani M.

    2015-01-01

    Full Text Available The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  15. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  16. FIssion Product Prompt γ-ray spectrometer: Development of an instrumented gas-filled magnetic spectrometer at the ILL

    Science.gov (United States)

    Blanc, A.; Chebboubi, A.; Faust, H.; Jentschel, M.; Kessedjian, G.; Köster, U.; Materna, T.; Panebianco, S.; Sage, C.; Urban, W.

    2013-12-01

    Accurate thermal neutron-induced fission data are important for applications in reactor physics as well as for fundamental nuclear physics. FIPPS is the new FIssion Product Prompt γ-ray Spectrometer being developed at the Institut Laue Langevin for neutron-induced fission studies. FIPPS is based on the combination of a large Germanium detector array surrounding a fission target, a Time-Of-Flight detector and a Gas-Filled Magnet (GFM) to identify mass, nuclear charge and kinetic energy of one of the fission fragments. The GFM will be instrumented with a Time-Projection Chamber (TPC) for individual 3D tracking of the fragments. A conceptual design study of the new spectrometer is presented.

  17. Deployment of a three-dimensional array of Micro-Pocket Fission Detector triads (MPFD3) for real-time, in-core neutron flux measurements in the Kansas State University TRIGA Mark-II Nuclear Reactor

    Science.gov (United States)

    Ohmes, Martin Francis

    A Micro-Pocket Fission Detector (MPFD) is a miniaturized type of fission chamber developed for use inside a nuclear reactor. Their unique design allows them to be located between or even inside fuel pins while being built from materials which give them an operational lifetime comparable to or exceeding the life of the fuel. While other types of neutron detectors have been made for use inside a nuclear reactor, the MPFD is the first neutron detector which can survive sustained use inside a nuclear reactor while providing a real-time measurement of the neutron flux. This dissertation covers the deployment of MPFDs as a large three-dimensional array inside the Kansas State University TRIGA Mark-II Nuclear Reactor for real-time neutron flux measurements. This entails advancements in the design, construction, and packaging of the Micro-Pocket Fission Detector Triads with incorporated Thermocouple, or MPFD3-T. Specialized electronics and software also had to be designed and built in order to make a functional system capable of collecting real-time data from up to 60 MPFD3-Ts, or 180 individual MPFDs and 60 thermocouples. Design of the electronics required the development of detailed simulations and analysis for determining the theoretical response of the detectors and determination of their size. The results of this research shows that MPFDs can operate for extended times inside a nuclear reactor and can be utilized toward the use as distributed neutron detector arrays for advanced reactor control systems and power mapping. These functions are critical for continued gains in efficiency of nuclear power reactors while also improving safety through relatively inexpensive redundancy.

  18. Technical Application of Nuclear Fission

    Science.gov (United States)

    Denschlag, J. O.

    The chapter is devoted to the practical application of the fission process, mainly in nuclear reactors. After a historical discussion covering the natural reactors at Oklo and the first attempts to build artificial reactors, the fundamental principles of chain reactions are discussed. In this context chain reactions with fast and thermal neutrons are covered as well as the process of neutron moderation. Criticality concepts (fission factor η, criticality factor k) are discussed as well as reactor kinetics and the role of delayed neutrons. Examples of specific nuclear reactor types are presented briefly: research reactors (TRIGA and ILL High Flux Reactor), and some reactor types used to drive nuclear power stations (pressurized water reactor [PWR], boiling water reactor [BWR], Reaktor Bolshoi Moshchnosti Kanalny [RBMK], fast breeder reactor [FBR]). The new concept of the accelerator-driven systems (ADS) is presented. The principle of fission weapons is outlined. Finally, the nuclear fuel cycle is briefly covered from mining, chemical isolation of the fuel and preparation of the fuel elements to reprocessing the spent fuel and conditioning for deposit in a final repository.

  19. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok

    1998-02-01

    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  20. Low-energy ternary fission

    International Nuclear Information System (INIS)

    With the detector system DIOGENES thermal neutron induced and spontaneous α particle associated fission and spontaneous nuclear tripartition into three fragments of similar masses has been investigated. DIOGENES is a concentric arrangement of toroidal angular position sensitive ionization chambers and proportional counters to measure the kinetic energies and relative angular distributions of the three reaction products of ternary fission. For α-particle accompanied fission some of the many possible α particle fission-fragment parameter correlations will be discussed. For nearly symmetric low-energy nuclear tripartition new upper limits are presented. Former experimental results which pretended evidence for so called true ternary fission could be explained by charged-particle associated fission with a light particle in the mass range of 13 < A < 23

  1. Study of the ruthenium fission-product behavior in the containment, in the case of a nuclear reactor severe accident

    International Nuclear Information System (INIS)

    Ruthenium tetroxide is an extremely volatile and highly radio-toxic species. During a severe accident with air ingress in the reactor vessel, ruthenium oxides may reach the reactor containment building in significant quantities. Therefore, a better understanding of the RuO4(g) behaviour in the containment atmosphere is of primary importance for the assessment of radiological consequences, in the case of potential releases of this species into the environment. A RuO4(g) decomposition kinetic law was determined. Steam seems to play a catalytic role, as well as the presence of ruthenium dioxide deposits. The temperature is also a key parameter. The nature of the substrate, stainless steel or paint, did not exhibit any chemical affinities with RuO4(g). This absence of reactivity was confirmed by XPS analyses, which indicate the presence of the same species in the Ru deposits surface layer whatever the substrates considered. It has been concluded that RuO4(g) decomposition corresponds to a bulk gas phase decomposition. The ruthenium re-volatilization phenomenon under irradiation from Ru deposits was also highlighted. An oxidation kinetic law was determined. The increase of the temperature and the steam concentration promote significantly the oxidation reaction. The establishment of Ru behavioural laws allowed making a modelling of the Ru source term. The results of the reactor calculations indicate that the values obtained for 106Ru source term are closed to the reference value considered currently by the IRSN, for 900 MWe PWR safety analysis. (author)

  2. Geochemical behavior of radionuclides in highly altered zircon above the Bangombé natural fission reactor, Gabon

    Science.gov (United States)

    Kikuchi, Makiko; Hidaka, Hiroshi; Horie, Kenji

    The isotopic compositions of rare earth elements (REE), Pb and U of highly altered zircons from the clay and black shale layers above the Bangombé natural reactor, Gabon, were determined by a sensitive high resolution ion microprobe (SHRIMP) to discuss the redistribution processes of elements into zircons under the supergene weathering. The clay layer trapped most of the fissiogenic Nd, Sm and Eu derived from the reactor and prevented them migrating into the black shale layer. On the other hand, only the Ce isotopic ratios of the clay and black shale layers have about 2 times larger variations than the other REE. This result suggests that a large chemical fractionation between Ce and other REE above the reactor occurred under the oxidizing condition. The U-Pb data of zircons suggest that the U-Pb system was largely disturbed by migration of chemically fractionated Pb and U from the 2.0 Ga-old uraninite in association with recent weathering.

  3. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nuclear fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fifieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty Years with Nuclear Fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent development in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicated a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two fully days of sessions (April 27 and 28) at the main site of the NIST in Gaithersburg, Maryland. The wide range of topics covered in this Volume 1 by this topical meeting included plenary invited, and contributed sessions entitled: Preclude to the First Chain Reaction -- 1932 to 1942; Early Fission Research -- Nuclear Structure and Spontaneous Fission; 50 Years of Fission, Science, and Technology; Nuclear Reactors, Secure Energy for the Future; Reactors 1; Fission Science 1; Safeguards and Space Applications; Fission Data; Nuclear Fission -- Its Various Aspects; Theory and Experiments in Support of Theory; Reactors and Safeguards; and General Research, Instrumentation, and By-Product. The individual papers have been cataloged separately

  4. Spontaneous fission

    International Nuclear Information System (INIS)

    Recent experimental results for spontaneous fission half-lives and fission fragment mass and kinetic-energy distributions and other properties of the fragments are reviewed and compared with recent theoretical models. The experimental data lend support to the existence of the predicted deformed shells near Z = 108 and N = 162. Prospects for extending detailed studies of spontaneous fission properties to elements beyond hahnium (element 105) are considered. (orig.)

  5. Study of Compatibility of Stainless Steel Weld Joints with Liquid Sodium-Potassium Coolants for Fission Surface Power Reactors for Lunar and Space Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, Martin [Univ. of Tennessee, Knoxville, TN (United States); Qualls, Louis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-07-31

    To make a manned mission to the surface of the moon or to Mars with any significant residence time, the power requirements will make a nuclear reactor the most feasible source of energy. To prepare for such a mission, NASA has teamed with the DOE to develop Fission Surface Power technology with the goal of developing viable options. The Fission Surface Power System (FSPS) recommended as the initial baseline design includes a liquid metal reactor and primary coolant system that transfers heat to two intermediate liquid metal heat transfer loops. Each intermediate loop transfers heat to two Stirling heat exchangers that each power two Stirling converters. Both the primary and the intermediate loops will use sodium-potassium (NaK) as the liquid metal coolant, and the primary loop will operate at temperatures exceeding 600°C. The alloy selected for the heat exchangers and piping is AISI Type 316L stainless steel. The extensive experience with NaK in breeder reactor programs and with earlier space reactors for unmanned missions lends considerable confidence in using NaK as a coolant in contact with stainless steel alloys. However, the microstructure, chemical segregation, and stress state of a weld leads to the potential for corrosion and cracking. Such failures have been experienced in NaK systems that have operated for times less than the eight year goal for the FSPS. For this reason, it was necessary to evaluate candidate weld techniques and expose welds to high-temperature, flowing NaK in a closed, closely controlled system. The goal of this project was to determine the optimum weld configuration for a NaK system that will withstand service for eight years under FSPS conditions. Since the most difficult weld to make and to evaluate is the tube to tube sheet weld in the intermediate heat exchangers, it was the focus of this research. A pumped loop of flowing NaK was fabricated for exposure of candidate weld specimens at temperatures of 600°C, the expected

  6. Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

    2007-10-01

    The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

  7. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    Science.gov (United States)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  8. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.

    1976-09-01

    Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600/sup 0/C. Beyond 600/sup 0/C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated.

  9. Chemical Production using Fission Fragments

    International Nuclear Information System (INIS)

    Some reactor design considerations of the use of fission recoil fragment energy for the production of chemicals of industrial importance have been discussed previously in a paper given at the Second United Nations International Conference on the Peaceful Uses of Atomic Energy [A/Conf. 15/P.76]. The present paper summarizes more recent progress made on this topic at AERE, Harwell. The range-energy relationship for fission fragments is discussed in the context of the choice of fuel system for a chemical production reactor, and the experimental observation of a variation of chemical effect along the length of a fission fragment track is described for the irradiation of nitrogen-oxygen mixtures. Recent results are given on the effect of fission fragments on carbon monoxide-hydrogen gas mixtures and on water vapour. No system investigated to date shows any outstanding promise for large-scale chemical production. (author)

  10. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  11. Hidden systematics of fission channels

    Directory of Open Access Journals (Sweden)

    Schmidt Karl-Heinz

    2013-12-01

    Full Text Available It is a common procedure to describe the fission-fragment mass distributions of fissioning systems in the actinide region by a sum of at least 5 Gaussian curves, one for the symmetric component and a few additional ones, together with their complementary parts, for the asymmetric components. These components have been attributed to the influence of fragment shells, e.g. in the statistical scission-point model of Wilkins, Steinberg and Chasman. They have also been associated with valleys in the potential-energy landscape between the outer saddle and the scission configuration in the multi-channel fission model of Brosa. When the relative yields, the widths and the mean mass-asymmetry values of these components are fitted to experimental data, the mass distributions can be very well reproduced. Moreover, these fission channels are characterised by specific values of charge polarisation, total kinetic energy and prompt-neutron yields. The present contribution investigates the systematic variation of the characteristic fission-channel properties as a function of the composition and the excitation energy of the fissioning system. The mean position of the asymmetric fission channels in the heavy fragment is almost constant in atomic number. The deformation of the nascent fragments at scission, which is the main source of excitation energy of the separated fission fragments ending up in prompt-neutron emission, is found to be a unique function of Z for the light and the heavy fragment of the asymmetric fission channels. A variation of the initial excitation energy of the fissioning system above the fission saddle is only seen in the neutron yield of the heavy fragment. The charge polarisation in the two most important asymmetric fission channels is found to be constant and to appreciably exceed the macroscopic value. The variation of the relative yields and of the positions of the fission channels as a function of the composition and excitation energy

  12. Nanocrystalline SiC and Ti3SiC2 Alloys for Reactor Materials: Diffusion of Fission Product Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-11-01

    MAX phases, such as titanium silicon carbide (Ti3SiC2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti3SiC2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti3SiC2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti3SiC2, SiC, and a dual-phase nanocomposite of Ti3SiC2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti3SiC2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti3SiC2 occurs during ion implantation at 873 K. Cs in Ti3SiC2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti3SiC2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.

  13. Minor actinide fission induced by multi-nucleon transfer reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Taieb J.

    2010-03-01

    Full Text Available In the framework of nuclear waste incineration and design of new generation nuclear reactors, experimental data on fission probabilities and on fission fragment yields of minor actinides are crucial to design prototypes. Transfer-induced fission has proven to be an efficient method to study fission probabilities of actinides which cannot be investigated with standard techniques due to their high radioactivity. We report on the preliminary results of an experiment performed at GANIL that investigates fission probabilities with multi-nucleon transfer reactions in inverse kinematics between a 238U beam on a 12C target. Actinides from U to Cm were produced with an excitation energy range from 0 to 30 MeV. In addition, inverse kinematics allowed to characterize the fission fragments in mass and charge. A key point of the analysis resides in the identification of the actinides produced in the different transfer channels. The new annular telescope SPIDER was used to tag the target-like recoil nucleus of the transfer reaction and to determine the excitation energy of the actinide. The fission probability for each transfer channel is accessible and the preliminary results for 238U are promising.

  14. Fifty years with nuclear fission

    International Nuclear Information System (INIS)

    The news of the discovery of nucler fission, by Otto Hahn and Fritz Strassmann in Germany, was brought to the United States by Niels Bohr in January 1939. Since its discovery, the United States, and the world for that matter, has never been the same. It therefore seemed appropriate to acknowledge the fiftieth anniversary of its discovery by holding a topical meeting entitled, ''Fifty years with nuclear fission,'' in the United States during the year 1989. The objective of the meeting was to bring together pioneers of the nuclear industry and other scientists and engineers to report on reminiscences of the past and on the more recent developments in fission science and technology. The conference highlighted the early pioneers of the nuclear industry by dedicating a full day (April 26), consisting of two plenary sessions, at the National Academy of Sciences (NAS) in Washington, DC. More recent developments in fission science and technology in addition to historical reflections were topics for two full days of sessions (April 27 and 28) at the main sites of the NIST in Gaithersburg, Maryland. The wide range of topics covered by Volume 2 of this topical meeting included plenary invited, and contributed sessions entitled, Nuclear fission -- a prospective; reactors II; fission science II; medical and industrial applications by by-products; reactors and safeguards; general research, instrumentation, and by-products; and fission data, astrophysics, and space applications. The individual papers have been cataloged separately

  15. Singlet exciton fission photovoltaics.

    Science.gov (United States)

    Lee, Jiye; Jadhav, Priya; Reusswig, Philip D; Yost, Shane R; Thompson, Nicholas J; Congreve, Daniel N; Hontz, Eric; Van Voorhis, Troy; Baldo, Marc A

    2013-06-18

    Singlet exciton fission, a process that generates two excitons from a single photon, is perhaps the most efficient of the various multiexciton-generation processes studied to date, offering the potential to increase the efficiency of solar devices. But its unique characteristic, splitting a photogenerated singlet exciton into two dark triplet states, means that the empty absorption region between the singlet and triplet excitons must be filled by adding another material that captures low-energy photons. This has required the development of specialized device architectures. In this Account, we review work to develop devices that harness the theoretical benefits of singlet exciton fission. First, we discuss singlet fission in the archetypal material, pentacene. Pentacene-based photovoltaic devices typically show high external and internal quantum efficiencies. They have enabled researchers to characterize fission, including yield and the impact of competing loss processes, within functional devices. We review in situ probes of singlet fission that modulate the photocurrent using a magnetic field. We also summarize studies of the dissociation of triplet excitons into charge at the pentacene-buckyball (C60) donor-acceptor interface. Multiple independent measurements confirm that pentacene triplet excitons can dissociate at the C60 interface despite their relatively low energy. Because triplet excitons produced by singlet fission each have no more than half the energy of the original photoexcitation, they limit the potential open circuit voltage within a solar cell. Thus, if singlet fission is to increase the overall efficiency of a solar cell and not just double the photocurrent at the cost of halving the voltage, it is necessary to also harvest photons in the absorption gap between the singlet and triplet energies of the singlet fission material. We review two device architectures that attempt this using long-wavelength materials: a three-layer structure that uses

  16. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  17. Progress in physics design of fusion-fission hybrid energy reactor%次临界能源堆物理设计进展

    Institute of Scientific and Technical Information of China (English)

    李茂生; 贾建平; 程和平; 蒋洁琼; 栗再新; 杨永伟; 吴宏春; 师学明; 刘荣; 鹿心鑫; 朱通华; 王新华; 余泳; 严钧; 唐涛

    2014-01-01

    聚变-裂变混合能源堆包括聚变中子源和次临界能源堆,主要目标是生产电能。回顾了国内外混合堆的发展历史,给出混合能源堆设计的边界条件和约束条件,说明次临界能源堆以铀锆合金为燃料、水为冷却剂的设计思想。利用输运燃耗耦合程序 MCORGS 计算了混合能源的燃耗,给出了中子有效增殖因数、能量放大倍数和氚增殖比等物理量随时间的变化。通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点。论述了混合堆的热工设计并进行了安全分析。对于燃耗数值模拟程序,通过多家对算,保证其计算结果的可信性。针对次临界能源堆的特点,利用贫铀球壳建立了贫铀聚乙烯装置和贫铀 LiH 装置,并且专门设计加工了天然铀装置,开展铀裂变率、造钚率、产氚率等中子学积分实验,验证了数值模拟的可靠性。%In this paper,we propose a preliminary design for a fusion-fission hybrid energy reactor (FFHER),based on cur-rent fusion science and technology and well-developed fission technology.Design rules are listed and a primary concept blanket with uranium alloy as fuel and water as coolant is put forward.The uranium fuel can be natural uranium,LWR spent fuel,or de-pleted uranium.The FFHER design can increase the utilization rate of uranium in a comparatively simple way to sustain the de-velopment of nuclear energy.The interaction between the fusion neutron and the uranium fuel with the aim of achieving greater energy multiplication and tritium sustainability is studied.Other concept hybrid reactor designs are also reviewed.Integral neu-tron experiments were carried out to verify the credibility of our proposed physical design.The combination of the physical design with the related thermal hydraulic design,alloy fuel manufacture,and nuclear fuel cycle programs provides the

  18. Investigations of the mass and charge distribution of fission products from the 238U(n14,f) reaction by direct Ge(Li) method

    International Nuclear Information System (INIS)

    The fission yields can be measured by the well-known activation method if it is taken into account that the fission process results in 5-6 nuclides in an isobaric chain. The method which is based only on the gamma-spectrometric measurement of the irradiated fissioning sample is referred to as the direct Ge(Li) method for fission yield measurement. The thesis contains detailed description of the direct Ge(Li) method. The method was tested by the measurement of cumulative yields of 47 fission products and independent yields of 7 products in the reaction of 238U(n14,f). These are the members of 37 mass chains in the A=83-149 mass number region. The half-lives of the studied products are in the range of Tsub(1/2)=102-109 s; the gamma spectrometric method was improved by extending its applicability to the measurement of short-lived products. Applying short irradiation time (5 min) the yields of 16 fission products with half-lives shorter than 1 hour could be measured. The lowest measured partial fission cross sections (yields) are in the order of 1 mb (0.1%). The accuracy of the yield measured by the direct Ge(Li) method is as high as or higher than that obtained radiochemically, especially for the products measured by many intensive gamma lines. (author)

  19. 基于参数的可视化裂变堆芯蒙特卡罗自动建模方法%Rapid parameter-based and visual Monte Carlo modeling method of fission reactor core

    Institute of Scientific and Technical Information of China (English)

    甘佺; 吴斌; 宋婧; 程梦云; 胡丽琴

    2016-01-01

    Background: The Monte Carlo (MC) method is widely used in fission reactor design, because of its strongergeometry adaptability and the precise calculation result.The high-fidelity full core simulation demands for detailed fission reactor models, which is hard to build by manual and the conventional Computer Aided Design (CAD)-based modeling method.Purpose:In order tosupport the rapid design offission reactor core with MC method, and generate the detailed MC calculation models,a parameter-based and visual MC modeling method was developed in this study.Method: The method can create the detailed CAD models and convert them into MC models in a high-efficiency way. Meanwhile, the huge amounts of models in fission reactor core can be managed by different segments for supporting smooth interactions.Result: Furthermore, the method was validated by the test of creating the Accelerator Driven Sub-critical System (ADS) reactor models, and the results were agree very well by comparing the reference models.Conclusion:Depending on the test, the detailed fission models were created more conveniently than conventional method andthe numerical calculation results proved the accuracy of the new method.%蒙特卡罗程序已经广泛应用在裂变反应堆设计和验证过程中,快速获得高效的计算模型可以有效缩短反应堆的设计周期。本研究提出并实现了一种裂变堆芯快速蒙特卡罗建模的方法,该方法基于参数可视化和层次化两种建模思想快速构建出精细裂变堆芯计算机辅助设计(Computer Aided Design, CAD)模型且将其快速转换成蒙特卡罗计算模型,同时采用一种新的堆芯分段管理方法实现了大规模裂变堆模型流畅交互。基于此方法快速构建了加速器驱动次临界反应堆(Accelerator Driven Sub-critical System, ADS)的精细堆芯模型,通过与蒙特卡罗程序计算的参考结果进行对比,证明了此建模方法的高效性和可靠性。

  20. Isotopic evidence for the retention of Sr-90 inferred from excess Zr-90 in the Oklo natural fission reactors: Implication for geochemical behaviour of fissiogenic Rb, Sr, Cs and Ba

    Science.gov (United States)

    Hidaka, Hiroshi; Sugiyama, Takeshi; Ebihara, Mitsuru; Holliger, Philippe

    1994-03-01

    In order to investigate the mobility of fissiogenic Sr-90 in the geological environment, the Zr isotopic compositions of seven samples from one of the newly formed Oklo natural reactor zones (i.e., reactor core and adjacent rocks (10, SF84)) in the Republic of Gabon were determined with an inductively coupled plasma mass spectrometer (ICP-MS). Zr isotopes in uraninite grains from different reactor zones were also measured by secondary ion mass spectrometry (SIMS). Fissiogenic Zr isotopic abundances of three samples from the reactor core have excess Zr-90, which has never before been formed in previous Oklo samples. In this paper, the geochemical behaviour of Zr-90 is discussed by making use of the relative retentivity inferred from the isotopic abundance of Sr. The excess in Zr-90 suggests dependence on the degree of retention/migration of Sr-90, the precursor of Zr-90 in the fission chain. In the aqueous phase, chemical fractionation between Sr and Zr could have occurred before radioactive Sr-90 decayed. Considering the halflife of Sr-90 (t(sub 1/2) = 29.1 y), considerable amounts of the latter have been produced during criticality. Sr and Zr (including Zr-90) could have been redistributed between the reactor core and its vicinity. The retentivity of fissiogenic Zr-90 in reactor core 10 is not homogeneous. In addition, the distributions of Rb, Cs and Ba is also heterogeneous.

  1. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    Science.gov (United States)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  2. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238PuO2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO2 plus PuO2, 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  3. Anomalous Xenon in the Precambrian Nuclear Reactor in Okelobondo (Gabon): A Possible Connection to the Fission Component in the Terrestrial Atmosphere

    Science.gov (United States)

    Meshik, A. P.; Kehm, K.; Hohenberg, C. M.

    1999-01-01

    Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.

  4. Fission Data and Nuclear Technology

    International Nuclear Information System (INIS)

    Accurate nuclear data for fissile nuclei are required not only by reactor designers, but also by reactor physicists for the interpretation of integral experiments, e.g. studies of the change of reactivity with irradiation. Some of the requests that have been made for such fission data, and the reasons behind them, are discussed, along with the progress that has been made towards their fulfilment. An attempt is made to outline those areas where better data are required. (author)

  5. Simultaneous Measurements of Flight Times and Energies of Fission Fragments

    International Nuclear Information System (INIS)

    In a companion paper the results of measuring the prompt neutron emission from individual fission fragments arising in thermal fission are reported. In that experiment a large volume liquid scintillation counter was .used to. record the fission neutrons, and fragment mass was identified by a gold silicon surface barrier counter.- arrangement. An alternative Way of measuring the prompt neutron emission is described here. Fragment time-of- flight apparatus is mounted in an evacuated tube that passes laterally through the thermal column of the 5-MW research reactor HERALD. A centrally positioned thin source produces 3 x 105 fissions s-1. Fragments travel distances of 180 cm and 300 cm respectively to the terminal detectors, and in passing through a VYNS film, positioned 180 cm from the source along the longer flight path, eject electrons that are used to form a reference time-signal. Essentially the times of flight of both fission fragments are measured simultaneously with the kinetic energy of one of the pair. This is achieved by using a surface barrier counter for the 300-cm detector. The difficulty of maintaining good timing and energy resolutions simultaneously is overcome by routing the pulse to the charge sensitive preamplifier through a delay line amplifier from which a fast timing pulse is derived. The collected data enables the fragment mass to be determined both before and after prompt neutrons have been emitted. Hence the experiment provides a means for studying the behaviour of neutron emission from individual fragments. The experimental uncertainties are those associated with the measurement of small differences, and an appraisal is made of the errors and calibrations that enter into the measurements. Of particular importance, the response of the surface barrier counter to fission fragments is obtained directly, from the collected data from events in which the neutron emission is low. These calibrations are used in the measurements of postneutron mass

  6. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    Science.gov (United States)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  7. Development of Fission Chamber Assembly

    Institute of Scientific and Technical Information of China (English)

    YANGJinwei; ZHANGWei; SONGXianying; LIXu

    2003-01-01

    The fission chambers which are gas counters with fissile material inside chamber,provide essential information for plasma opcharacteristics. In conjunction with the neutron flux monitor system these provide time-resolved measurements of the global neutron source strength and fusion power from thermal nuclear fusion reactor as ITER for all plasma conditions for which neutrons are produced.

  8. Ternary fission

    Indian Academy of Sciences (India)

    M Balasubramaniam; K R Vijayaraghavan; C Karthikraj

    2015-09-01

    We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary middle fragment and the two end fragments. The obtained results for the 16O accompanying ternary fission indicate that collinear configuration is preferred to equatorial configuration. Further, for all the possible third fragments, the potential energy surface (PES) is calculated corresponding to an arrangement in which the heaviest and the lightest fragments are considered at the end in a collinear configuration. The PES reveals several possible ternary modes including true ternary modes where the three fragments are of similar size. The complete mass distributions of Si and Ca which accompanied ternary fission of 236U is studied within a level density picture. The obtained results favour several possible ternary combinations.

  9. Fission modelling with FIFRELIN

    Energy Technology Data Exchange (ETDEWEB)

    Litaize, Olivier; Serot, Olivier; Berge, Leonie [CEA, DEN, DER, SPRC, Saint Paul Lez Durance (France)

    2015-12-15

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ, e{sup -}). The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for

  10. Fission modelling with FIFRELIN

    Science.gov (United States)

    Litaize, Olivier; Serot, Olivier; Berge, Léonie

    2015-12-01

    The nuclear fission process gives rise to the formation of fission fragments and emission of particles (n,γ , e-) . The particle emission from fragments can be prompt and delayed. We present here the methods used in the FIFRELIN code, which simulates the prompt component of the de-excitation process. The methods are based on phenomenological models associated with macroscopic and/or microscopic ingredients. Input data can be provided by experiment as well as by theory. The fission fragment de-excitation can be performed within Weisskopf (uncoupled neutron and gamma emission) or a Hauser-Feshbach (coupled neutron/gamma emission) statistical theory. We usually consider five free parameters that cannot be provided by theory or experiments in order to describe the initial distributions required by the code. In a first step this set of parameters is chosen to reproduce a very limited set of target observables. In a second step we can increase the statistics to predict all other fission observables such as prompt neutron, gamma and conversion electron spectra but also their distributions as a function of any kind of parameters such as, for instance, the neutron, gamma and electron number distributions, the average prompt neutron multiplicity as a function of fission fragment mass, charge or kinetic energy, and so on. Several results related to different fissioning systems are presented in this work. The goal in the next decade will be i) to replace some macroscopic ingredients or phenomenological models by microscopic calculations when available and reliable, ii) to be a support for experimentalists in the design of detection systems or in the prediction of necessary beam time or count rates with associated statistics when measuring fragments and emitted particle in coincidence iii) extend the model to be able to run a calculation when no experimental input data are available, iv) account for multiple chance fission and gamma emission before fission, v) account for the

  11. Fission dynamics with systems of intermediate fissility

    Indian Academy of Sciences (India)

    E Vardaci; A Di Nitto; P N Nadtochy; A Brondi; G La Rana; R Moro; M Cinausero; G Prete; N Gelli; E M Kozulin; G N Knyazheva; I M Itkis

    2015-08-01

    A 4 light charged particle spectrometer, called 8 LP, is in operation at the Laboratori Nazionali di Legnaro, Italy, for studying reaction mechanisms in low-energy heavy-ion reactions. Besides about 300 telescopes to detect light charged particles, the spectrometer is also equipped with an anular PPAC system to detect evaporation residues and a two-arm time-of-flight spectrometer to detect fission fragments. The spectrometer has been used in several fission dynamics studies using as a probe light charged particles in the fission and evaporation residues (ER) channels. This paper proposes a journey within some open questions about the fission dynamics and a review of the main results concerning nuclear dissipation and fission time-scale obtained from several of these studies. In particular, the advantages of using systems of intermediate fissility will be discussed.

  12. Modeling of the saturation current of a fission chamber taking into account the distorsion of electric field due to space charge effects

    OpenAIRE

    Poujade, Olivier; LEBRUN Alain

    2002-01-01

    Fission chambers were first made fifty years ago for neutron detection. At the moment, the French Atomic Energy Commission \\textsf{(CEA-Cadarache)} is developing a sub-miniature fission chamber technology with a diameter of 1.5 mm working in the current mode (Bign). To be able to measure intense fluxes, it is necessary to adjust the chamber geometry and the gas pressure before testing it under real neutron flux. In the present paper, we describe a theoretical method to foresee the current-vol...

  13. Studies of light charged particle emission from fission and ER reactions in the system 344 MeV 28Si+121Sb→149Tb (E*=240 MeV)

    International Nuclear Information System (INIS)

    Light charged particles (LCP) have been measured for the reaction 344 MeV 28Si+121Sb in singles and in coincidence with evaporation residues (ER), fusion-fission fragments (FF), and other LCP. A major feature of this experiment was the use of a gas-filled magnetic spectrometer in the forward direction to separate ER from the much more abundant yield of elastically scattered projectiles and projectile-like fragments. The dominant sources of evaporative 1H and 4He emission are the ER (approximately 75%), with the remainder being largely associated with fission reactions. For these latter reactions, most of the 1H and 4He can be well accounted for by evaporation from the composite system prior to fission and by evaporation from the postfission fragments. LCP emission cross sections were determined for each identified source, and a comparison has been made to previous studies. From this comparison, indications were found for significant entrance channel effects, with the more asymmetric channels exhibiting much larger LCP cross sections. Statistical model predictions for ER emissions are in good agreement with observed LCP energy spectra, angular distributions, and integrated inclusive and exclusive cross sections, with all calculations using the same unique set of model parameters. This result contrasts strongly with recent reports for light mass systems, where model calculations were unable to simultaneously reproduce all observables

  14. Development and Utilization of Space Fission Power Systems

    Science.gov (United States)

    Houts, Michael G.; Mason, Lee S.; Palac, Donald T.; Harlow, Scott E.

    2009-01-01

    Space fission power systems could enable advanced civilian space missions. Terrestrially, thousands of fission systems have been operated since 1942. In addition, the US flew a space fission system in 1965, and the former Soviet Union flew 33 such systems prior to the end of the Cold War. Modern design and development practices, coupled with 65 years of experience with terrestrial reactors, could enable the affordable development of space fission power systems for near-term planetary surface applications.

  15. Fission Spectrum

    Science.gov (United States)

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  16. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. (author)

  17. Z箍缩驱动聚变-裂变混合堆总体概念研究进展%Conceptual design of Z-pinch driven fusion-fission hybrid power reactor

    Institute of Scientific and Technical Information of China (English)

    李正宏; 周林; 黄洪文; 王真; 陈晓军; 祁建敏; 郭海兵; 马纪敏; 肖成建; 褚衍运

    2014-01-01

    The Z-pinch driven fusion-fission hybrid power reactor(Z-FFR)has remarkable advantages in nuclear security,e-conomy,permanence and environment-friendliness,it can promisingly be millennial energy source dealing effectively with future energy crisis and climate problem.This article introduces the status quo of the conceptual research on Z-FFR from aspects of fu-sion-target physics,low-repetitive Z-pinch driver development,sub-critical fission reactor design and fuel cycle analysis.%Z箍缩驱动聚变-裂变混合能源堆(Z-FFR)在核安全、经济、持久和环境友好等方面具有优良的品质,有望成为有效应对未来能源危机和环境、气候问题的新能源。从 Z箍缩驱动聚变方案与聚变靶设计、重复频率驱动器、次临界包层及产氚包层设计、燃料循环等关键问题方面,对Z-FFR工程概念总体研究情况进行了介绍。

  18. Conceptual design of Z-pinch driven fusion-fission hybrid power reactor%Z箍缩驱动聚变-裂变混合堆总体概念研究进展

    Institute of Scientific and Technical Information of China (English)

    李正宏; 周林; 黄洪文; 王真; 陈晓军; 祁建敏; 郭海兵; 马纪敏; 肖成建; 褚衍运

    2014-01-01

    Z箍缩驱动聚变-裂变混合能源堆(Z-FFR)在核安全、经济、持久和环境友好等方面具有优良的品质,有望成为有效应对未来能源危机和环境、气候问题的新能源。从 Z箍缩驱动聚变方案与聚变靶设计、重复频率驱动器、次临界包层及产氚包层设计、燃料循环等关键问题方面,对Z-FFR工程概念总体研究情况进行了介绍。%The Z-pinch driven fusion-fission hybrid power reactor(Z-FFR)has remarkable advantages in nuclear security,e-conomy,permanence and environment-friendliness,it can promisingly be millennial energy source dealing effectively with future energy crisis and climate problem.This article introduces the status quo of the conceptual research on Z-FFR from aspects of fu-sion-target physics,low-repetitive Z-pinch driver development,sub-critical fission reactor design and fuel cycle analysis.

  19. 聚变-裂变混合能源堆球模型参数敏感性分析%Sensitivity Analysis on Parameters of Spherical Model of Fusion-Fission Hybrid Energy Reactor

    Institute of Scientific and Technical Information of China (English)

    刘国明; 程和平; 邵增

    2012-01-01

    在聚变-裂变混合能源堆球模型基础上,使用蒙特卡罗方法中子学程序对中子源、铀水体积比、产氚区等相关参数进行了中子学的敏感性计算.分析了各参数对混合能源堆能量放大倍数M和氚增殖比TBR的影响,并总结其基本规律,为开展进一步的混合能源堆概念设计提供了重要参考.%The sensitivity analysis on neutronics parameters related to neutron source, uranium-water ratio and tritium breeding layers for spherical blanket model of fusion-fission hybrid reactor were presented. By using a Monte-Carlo method based neutron transport code, the effects of the parameters on energy multiplication factor M and tritium breeding ratio TBR were analyzed, and the general various laws of M and TBR were summarized, which were significant for the further conceptual design of fusion-fission hybrid energy reactor.

  20. Methodology for fission product release calculations during an ACR-1000 end-fitting failure event

    International Nuclear Information System (INIS)

    The ACR-1000® reactor enhances and retains the proven features of the CANDU® design such as the concept of the horizontal fuel channel core. At each end of a fuel channel, there is an end-fitting incorporating a feeder connection through which pressurized coolant enters and leaves the fuel channel, where 12 fuel bundles are inserted. The safety analysis cases include postulated end-fitting failure events to assess the fission product releases from all fuel bundles which would be ejected out of the channel and oxidized in the air-steam environment under decay power. This paper presents the methodology used in assessing the fuel behaviour and the fission product releases during a postulated end-fitting failure in an ACR-1000 reactor. After the end-fitting failure, the 12 fuel bundles are ejected out of the channel and drop onto the fuelling machine vault floor. The fuel bundles are likely heavily damaged by impact and would break into small clusters of elements or fragments. To calculate the fission product releases from an individual fragment, the transient fuel temperature is numerically solved by differential heat equations; the air oxidation model is chosen for the event accordingly; and the fission product inventory and releases are estimated by computer codes ORIGEN-S, CATHENA, ELESTRES and SOURCE-IST. Finally, the total fission product releases from all fragments into containment are calculated. This methodology has been developed for ACR-1000 safety analysis, which is also applicable to CANDU. With the new methodology, the transient releases from up to 150 fission products can be estimated as detail as in fragment. In this paper, a sample calculation is also provided to show the application of the methodology in ACR-1000 safety analysis for end-fitting failure. (author)

  1. Modelling and simulation the radioactive source-term of fission products in PWR type reactors; Modelagem e simulacao do termo-fonte radioativo de produtos de fissao em reatores nucleares do tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, Rogilson Nazare da Silva

    1996-07-01

    The source-term was defined with the purpose the quantify all radioactive nuclides released the nuclear reactor in the case of accidents. Nowadays the source-term is limited to the coolant of the primary circuit of reactors and may be measured or modelled with computer coders such as the TFP developed in this work. The calculational process is based on the linear chain techniques used in the CINDER-2 code. The TFP code considers forms of fission products release from the fuel pellet: Recoil, Knockout and Migration. The release from the gap to the coolant fluid is determined from the ratio between activity measured in the coolant and calculated activity in the gap. Considered the operational data of SURRY-1 reactor, the TFP code was run to obtain the source=term of this reactor. From the measured activities it was verified the reliability level of the model and the employed computational logic. The accuracy of the calculated quantities were compared to the measured data was considered satisfactory. (author)

  2. Cold fission studies using a double-ionization chamber

    International Nuclear Information System (INIS)

    An investigation on spontaneous fission of 252Cf is described. Both fission fragments are detected coincidentally with a double ionization chamber as a 4 π detector. Special techniques are demonstrated which allow the determination of nuclear masses and charges for cold fission fragments. Detector properties such as systematic errors and their correction are studied with the help of α particles. (orig.)

  3. Theoretical Description of the Fission Process

    Energy Technology Data Exchange (ETDEWEB)

    Witold Nazarewicz

    2003-07-01

    The main goals of the project can be summarized as follows: Development of effective energy functionals that are appropriate for the description of heavy nuclei. Our goal is to improve the existing energy density (Skyrme) functionals to develop a force that will be used in calculations of fission dynamics. Systematic self-consistent calculations of binding energies and fission barriers of actinide and trans-actinide nuclei using modern density functionals. This will be followed by calculations of spontaneous fission lifetimes and mass and charge divisions using dynamic adiabatic approaches based on the WKB approximation. Investigate novel microscopic (non-adiabatic) methods to study the fission process.

  4. The SOFIA experiment: Measurement of 236U fission fragment yields in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Grente L.

    2016-01-01

    Full Text Available The SOFIA (Studies On FIssion with Aladin experiment aims at measuring fission-fragments isotopic yields with high accuracy using inverse kinematics at relativistic energies. This experimental technique allows to fully identify the fission fragments in nuclear charge and mass number, thus providing very accurate isotopic yields for low energy fission of a large variety of fissioning systems. This report focuses on the latest results obtained with this set-up concerning electromagnetic-induced fission of 236U.

  5. Effectiveness of a Large Number of Control Rods in the Second Charge of the Halden Boiling Water Reactor

    International Nuclear Information System (INIS)

    The reactivity worth of various control-rod configurations has been measured in the second fuel charge of the Halden Boiling Heavy Water Reactor (HBWR) under low power conditions. The second fuel charge of HBWR consists of 7-rod UO2 cluster elements with 1.5% enrichment. A total of 30 control rods is placed in the open positions of the hexagonal fuel-lattice structure. In older to facilitate theoretical comparisons, measurements have been made on symmetrical control-rod configurations only. The experiment consisted of measuring the critical water level for the clean core and with the different rod configurations inserted to various distances from the bottom of the reactor. The temperature dependence of the reactivity worth was investigated by performing measurements, using a ring of 6 control rods, at the three different temperatures 34°C, 150°C and 220°C. Comparisons of the experimentally-determined critical water levels and the calculated critical water levels are presented. The critical water levels are calculated both by a method in which the control rods are homogenized together with fuel and moderator to form a control-rod zone, and also by a heterogeneous method in which the fuel elements and control rods are regarded as line sinks to thermal neutrons and the fuel elements are regarded as line sources of fast neutrons. (author)

  6. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  7. Preliminary Neutronics Design of Breed Blanket for Fusion-fission Hybrid Reactor%聚变-裂变增殖堆包层的初步中子学设计

    Institute of Scientific and Technical Information of China (English)

    赵奉超; 栗再新

    2012-01-01

    基于国际热核实验堆ITER的堆芯参数和套管结构,对聚变-裂变增殖堆包层进行了初步中子学设计.基于国际热核实验堆的堆芯参数提出了采用套管结构,以天然金属铀为燃料和硅酸锂为氚增殖剂的快裂变-增殖堆包层的初步中子学设计方案.使用FENDL 2.1核数据库及MCNP程序自带的核数据库,用MCNP程序对套管结构快裂变-增殖堆包层进行一维的方案筛选及三维中子学的计算分析.计算分析包层内的一维功率密度分布、产氚率、钚增殖率分布,通过优化设计分析给出合理的包层设计方案,并计算氚增殖率TBR、能量放大倍数M、有效增值系数(Keff)、裂变增殖比等参数.%A preliminary neutronics design of breed blanket for fusion-fission hybrid reactor has been carried out based on the plasma parameters of International Thermonuclear Experimental Reactor (ITER) and casing structure. In the design of fast-fission breed blanket, the natural Uranium pebble bed is used as fuel and neutron multiplication and the Lithium silicate pebble bed is used as tritium breed material. By using FENDL2.1 nuclear database cross section library with native cross section library of MCNP nuclear database, the calculation and analysis are carried out with MCNP program. Through one-dimension calculation and analysis on different design proposals, a proper design proposal has been screened and then the three-dimension calculation and analysis have been implemented with the parameters of ITER. The calculation shows that the TBR of fusion-fission hybrid reactor is 1.13, it indicates that the design of breed blanket is able to meet self-sustaining of tritium and the calculation also indicates that the energy enlargement of fusion-ission hybrid reactor is 6.5 and Polonium breeding rate is 1.35, it means that the reactor is able to also product large quantities energy and Polonium and they could be used by light water reactor. Meanwhile, fission

  8. Radiochemical studies on nuclear fission at Trombay

    Indian Academy of Sciences (India)

    Asok Goswami

    2015-08-01

    Since the discovery of nuclear fission in the year 1939, both physical and radiochemical techniques have been adopted for the study of various aspects of the phenomenon. Due to the ability to separate individual elements from a complex reaction mixture with a high degree of sensitivity and selectivity, a chemist plays a significant role in the measurements of mass, charge, kinetic energy, angular momentum and angular distribution of fission products in various fissioning systems. At Trombay, a small group of radiochemists initiated the work on radiochemical studies of mass distribution in the early sixties. Since then, radiochemical investigations on various fission observables have been carried out at Trombay in , , and heavy-ion-induced fissions. An attempt has been made to highlight the important findings of such studies in this paper, with an emphasis on medium energy and heavy-ion-induced fission.

  9. Secondary charged particle activation method for measuring the tritium production rate in the breeding blankets of a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rovni, Istvan, E-mail: rovni@reak.bme.hu [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111 Muegyetem rkp. 3-9 (Hungary); Szieberth, Mate; Feher, Sandor [Budapest University of Technology and Economics (BME), Institute of Nuclear Techniques, 1111 Muegyetem rkp. 3-9 (Hungary)

    2012-10-21

    In this work, a new passive technique has been developed for measuring the tritium production rate in ITER (International Thermonuclear Experimental Reactor) test blanket modules. This method is based on the secondary charged particle activation, in which the irradiated sample contains two main components: a tritium producing target ({sup 6}Li or {sup 7}Li) and an indicator nuclide, which has a relatively high cross-section for an incoming tritium particle (triton). During the neutron irradiation, the target produces a triton, which has sufficiently high energy to cause the so-called secondary charged particle activation on an indicator nuclide. If the product of this reaction is a radioactive nuclide, its activity must be proportional to the amount of generated tritium. A comprehensive set of irradiations were performed at the Training Reactor of the Budapest University of Technology and Economics. The following charged particle reactions were observed and investigated: {sup 27}Al(t,p){sup 29}Al; {sup 26}Mg(t,p){sup 28}Mg; {sup 26}Mg(t,n){sup 28}Al; {sup 32}S(t,n){sup 34m}Cl; {sup 16}O(t,n){sup 18}F; and {sup 18}O(t,{alpha}){sup 17}N. The optimal atomic ratio of the indicator elements and {sup 6}Li was also investigated. The reaction rates were estimated using calculations with the MCNPX Monte Carlo particle transport code. The trend of the measured and the simulated data are in good agreement, although accurate data for triton induced reaction cross-sections cannot be found in the literature. Once the technique is calibrated with a reference LSC (Liquid Scintillation Counting) measurement, a new passive method becomes available for tritium production rate measurements.

  10. Assessment of fissionable material behaviour in fission chambers

    Energy Technology Data Exchange (ETDEWEB)

    Cabellos, O., E-mail: oscar.cabellos@upm.e [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Fernandez, P. [Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Rapisarda, D. [Laboratorio Nacional de Fusion, EURATOM-CIEMAT, 28040 Madrid (Spain); Garcia-Herranz, N. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, 28006 Madrid (Spain); Department of Nuclear Engineering, Universidad Politecnica de Madrid, 28006 Madrid (Spain)

    2010-06-21

    A comprehensive study is performed in order to assess the pertinence of fission chambers coated with different fissile materials for high neutron flux detection. Three neutron scenarios are proposed to study the fast component of a high neutron flux: (i) high neutron flux with a significant thermal contribution such as BR2, (ii) DEMO magnetic fusion reactor, and (iii) IFMIF high flux test module. In this study, the inventory code ACAB is used to analyze the following questions: (i) impact of different deposits in fission chambers; (ii) effect of the irradiation time/burn-up on the concentration; (iii) impact of activation cross-section uncertainties on the composition of the deposit for all the range of burn-up/irradiation neutron fluences of interest. The complete set of nuclear data (decay, fission yield, activation cross-sections, and uncertainties) provided in the EAF2007 data library are used for this evaluation.

  11. Understanding of fission dynamics from fragment mass distribution studies

    International Nuclear Information System (INIS)

    Nuclear fission is a complex process involving large scale collective rearrangement of nuclear matter. The shape of the fissioning nucleus evolves in the multidimensional space of relative separation, neck opening, mass asymmetry and deformation of the fragments. Various types of nuclear shape deformation have been observed from the fission fragment spectroscopy studies, which provide crucial information in the understanding of the dynamics of the fission process. The fission fragment mass and charge distributions are decided during saddle to scission transition and are directly related to the scission configuration. Several nuclear models have been put forward to describe the fission fragment mass distribution as well as shape deformation of the fragments. The width of the fission fragment mass distribution is related to the fission process and provides information on the type of fission reactions

  12. Fission fusion hybrids- recent progress

    Science.gov (United States)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2012-03-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power, and can do this at a much lower level of technical development than a competitive fusion power plant- so it could be a nearer term application. For waste incineration, hybrids can burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs) with far fewer hybrid reactors than a comparable system within the realm of fission alone. For fuel production, hybrids can produce fuel for ˜4 times as many LWRs with NO fuel reprocessing. For both waste incineration or fuel production, the most severe kind of nuclear accident- runaway criticality- can be excluded, unlike either fast reactors or typical accelerator based reactors. The proliferation risks for hybrid fuel production are, we strongly believe, far less than any other fuel production method, including today's gas centrifuges. US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ˜ 2.5-3.5 m), which is made feasible by the super-X divertor.

  13. SABR Fusion-Fission Hybrid Studies

    Science.gov (United States)

    Stewart, Chris

    2012-03-01

    The Subcritical Advanced Burner Reactor (SABR) concept is a fast reactor comprised of a tokamak fusion neutron source based on ITER surrounded by an annular fission core adapted from Integral Fast Reactor designs. Previous work has examined SABR used to help close the nuclear fuel cycle by fissioning the transuranics from spent nuclear fuel. One focus of the present work is a SABR Breeder Reactor to achieve tritium self-sufficieny and a Pu breeding ratio significantly above 1 in order to provide fuel for SABR as well as for MOX-fueled LWR's and other fast reactors. Another focus of this research is the dynamic safety simulation of lloss-of-flow loss-of-heat-sink, loss-of-power, and positive reactivity accidents in the TRU fuel SABR burner reactor. The reactivity effect of thermal-induced bowing of fuel pins has been modeled, which is expected to provide passive safety.

  14. Titanium-Water Heat Pipe Radiator for Spacecraft Fission Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program will develop titanium/water heat pipes suitable for Spacecraft Fission Power. NASA is examining small fission power reactors for future space...

  15. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    Science.gov (United States)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  16. Fission product and aerosol behaviour within the containment

    International Nuclear Information System (INIS)

    Experimental studies have been undertaken to characterise the behaviour of fission products in the containment of a pressurised water reactor during a severe accident. The following aspects of fission product transport have been studied: (a) aerosol nucleation, (b) vapour transport processes, (c) chemical forms of high-temperature vapours, (d) interaction of fission product vapours with aerosols generated from within the reactor core, (e) resuspension processes, (f) chemistry in the containment. Chemical effects have been shown to be important in defining and quantifying fission product source terms in a wide range of accident sequences. Both the chemical forms of the fission product vapours and their interactions with reactor materials aerosols could have a major effect on the magnitude and physicochemical forms of the radioactive emission from a severe reactor accident. Only the main conclusions are presented in this summary document; detailed technical aspects of the work are described in separate reports listed in the annex

  17. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  18. Numerical investigation of the film uniformity during the surface coating of charged nanoparticles in a low pressure plasma reactor

    Science.gov (United States)

    Pourali, N.; Foroutan, G.

    2016-07-01

    The uniformity of film deposition on charged nanoparticles, trapped near the sheath of a capacitively coupled plasma reactor, is studied by numerical simulation of the multi-fluid plasma equations, surface deposition processes, and nanoparticle heating effects. It is found that the anisotropy in the ion flux onto the powered electrode may be hold responsible for the film nonuniformity. The nonuniformity increases with increasing of the particle radius, although small particles lose sphericity faster than the large particles. Because of the electron temperature dependence of the deposition rate and the incident ion flux, higher electron temperatures lead to more nonuniform film deposition. However, the uniformity is improved and the sphericity is restored by the increase in the background gas pressure and/or temperature.

  19. Simulation on advanced operation mode for the compact fusion-fission hybrid reactor%紧凑型聚变裂变混合堆先进运行模式的数值模拟

    Institute of Scientific and Technical Information of China (English)

    陈美霞; 刘成岳; 吴斌

    2012-01-01

    Reversed shear (RS) operation mode is simulated with Jsolver and TSC codes on some important issues, such as RS Plasma configuration, bootstrap current fraction and RS operation mode discharge simulation etc.. To some degree, the modeling results show that the RS operation mode is advanced and feasible for the compact Fusion-fission hybrid reactor.%使用Jsolver程序及托卡马克模拟程序TSC对紧凑型聚变裂变混合堆系统的反剪切平衡位形、自举电流份额及放电模拟进行数值模拟研究,以此探讨该混合堆的可行性和先进性.

  20. Fe-15Ni-13Cr austenitic stainless steels for fission and fusion reactor applications - Part 1: Effects of minor alloying elements on precipitate phases in melt products and implication in alloy fabrication

    Science.gov (United States)

    Lee, E. H.; Mansur, L. K.

    2000-01-01

    In an effort to develop alloys for fission and fusion reactor applications, 28Fe-15Ni-13Cr base alloys were fabricated by adding various combinations of the minor alloying elements, Mo, Ti, C, Si, P, Nb, and B. The results showed that a significant fraction of undesirable residual oxygen was removed as oxides when Ti, C, and Si were added. Accordingly, the concentrations of the latter three essential alloying elements were reduced also. Among these elements, Ti was the strongest oxide former, but the largest oxygen removal (over 80%) was observed when carbon was added alone without Ti, since gaseous CO boiled off during melting. This paper recommends an alloy melting procedure to mitigate solute losses while reducing the undesirable residual oxygen. In this work, 14 different types of precipitate phases were identified. Compositions of precipitate phases and their crystallographic data are documented. Finally, stability of precipitate phases was examined in view of Gibbs free energy of formation.

  1. Data management and communication networks for Man-Machine Interface System in Korea Advanced Liquid MEtal Reactor : its functionality and design requirements

    International Nuclear Information System (INIS)

    The DAta management and Communication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor(KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development and communication networks of KALIMER MMIS

  2. Data management and communication networks for man-machine interface system in Korea Advanced LIquid MEtal Reactor : Its functionality and design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Kyung Ho; Park, Gun Ok; Suh, Sang Moon; Kim, Jang Yeol; Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The DAta management and COmmunication NETworks(DACONET), which it is designed as a subsystem for Man-Machine Interface System of Korea Advanced LIquid MEtal Reactor (KALIMER MMIS) and advanced design concept is approached, is described. The DACONET has its roles of providing the real-time data transmission and communication paths between MMIS systems, providing the quality data for protection, monitoring and control of KALIMER and logging the static and dynamic behavioral data during KALIMER operation. The DACONET is characterized as the distributed real-time system architecture with high performance. Future direction, in which advanced technology is being continually applied to Man-Machine Interface System development of Nuclear Power Plants, will be considered for designing data management and communication networks of KALIMER MMIS. 9 refs., 1 fig. (Author)

  3. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    International Nuclear Information System (INIS)

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  4. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  5. Review of the safety concept for fusion reactor concepts and transferability of the nuclear fission regulation to potential fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Juergen; Weller, Arthur; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik (IPP), Garching (Germany); Jin, Xue Zhou; Boccaccini, Lorenzo V.; Stieglitz, Robert; Carloni, Dario [Karlsruher Institute fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany); Pistner, Christoph [Oeko-Institut e.V., Darmstadt (Germany); Herb, Joachim [Gesellschaft fuer Anlagen- und Reaktorsicherheit, Koeln (Germany)

    2016-01-15

    This paper summarizes the current state of the art in science and technology of the safety concept for future fusion power plants (FPPs) and examines the transferability of the current nuclear fission regulation to the concepts of future fusion power plants. At the moment there exist only conceptual designs of future fusion power plants. The most detailed concepts with regards to safety aspects were found in the European Power Plant Conceptual Study (PPCS). The plant concepts discussed in the PPCS are based on magnetic confinement of the plasma. The safety concept of fusion power plants, which has been developed during the last decades, is based on the safety concepts of installations with radioactive inventories, especially nuclear fission power plants. It applies the concept of defence in depth. However, there are specific differences between the implementations of the safety concepts due to the physical and technological characteristics of fusion and fission. It is analysed whether for fusion a safety concept is required comparable to the one of fission. For this the consequences of a purely hypothetical release of large amounts of the radioactive inventory of a fusion power plant and a fission power plant are compared. In such an event the evacuation criterion outside the plant is exceeded by several orders of magnitude for a fission power plant. For a fusion power plant the expected radiological consequences are of the order of the evacuation criterion. Therefore, a safety concept is also necessary for fusion to guarantee the confinement of the radioactive inventory. The comparison between the safety concepts for fusion and fission shows that the fundamental safety function ''confinement of the radioactive materials'' can be transferred directly in a methodical way. For a fusion power plant this fundamental safety function is based on both, physical barriers as well as on active retention functions. After the termination of the fusion

  6. Preliminary treatment of chlorinated streams containing fission products: mechanisms leading to crystalline phases in molten chloride media; Pretraitement pyrochimique de flux charges en produits de fission: mecanismes conduisant a l'obtention de phases cristallines en milieux chlorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hudry, D

    2008-10-15

    The world of the nuclear power gets ready for profound modifications so that 'the atom' can aspire in conformance with long-lasting energy: it is what we call the development of generation IV nuclear systems. So, the new pyrochemical separation processes for the spent fuel reprocessing are currently being investigated. Techniques in molten chloride media generate an ultimate flow (with high chlorine content) which cannot be incorporated in conventional glass matrices. This flow is entirely water-soluble and must be conditioned in a chemical form which is compatible with a long-term disposal. This work of thesis consists in studying new ways for the management of the chlorinated streams loaded with fission products (FP). To do it, a strategy of selective FP extraction via the in situ formation of crystalline phases was retained. The possibility of extracting rare earths in the eutectic LiCl-KCl was demonstrated via the development of a new way of synthesis of rare earth phosphates (TRPO{sub 4}). As regards alkaline earths, the conversion of strontium and barium chlorides to the corresponding tungstates or molybdates was studied in different solvents. Mechanisms leading to the crystalline phases in molten chloride media were studied via the coupling of NMR and XRD techniques. First of all, it has been shown that these mechanisms are dependent on the stability of the used precursors. So in the case of the formation of rare earth phosphates the solvent is chemically active. On the other hand, in the case of the formation of alkaline earth tungstates it would seem that the solvent plays the role of structuring agent which can control the ability to react of chlorides. (author)

  7. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  8. 1D Burnup Calculation of Fusion-Fission Hybrid Energy Reactor%聚变-裂变混合能源堆一维计算模型燃耗分析

    Institute of Scientific and Technical Information of China (English)

    李茂生; 师学明; 伊炜伟

    2012-01-01

    Fusion-fission hybrid energy reactor is driven by Tokamak fusion source for energy production. Its subcritical zone uses the natural uranium as fuel and water as coolant. The neutron multiplication constant keff, energy multiplication factor M and tritium breeding ratio TBR of the ID hybrid energy reactor model were calculated by transport burnup code MCORGS. The neutron spectrum and nuclear density changing as a function of time show the characteristics of the hybrid energy reactors, which differs from the hybrid reactor for breed nuclear fuel and for spent fuel transmutation. The definition and results may be a reference to the other conceptual analysis.%聚变-裂变混合能源堆包括聚变中子源和以天然铀为燃料、水为冷却剂的次临界包层,主要目标是生产电力.利用输运燃耗耦合程序系统MCORGS计算了混合能源堆一维模型的燃耗,给出了中子有效增殖因数keff、能量放大倍数M、氚增殖比TBR等物理量随时间的变化.通过分析能谱和重要核素随燃耗时间的变化,说明混合能源堆与核燃料增殖、核废料嬗变混合堆的不同特点.本文给出的结果可作为混合堆中子输运、燃耗分析程序校验的参考数据,为混合堆概念研究提供了基础数据.

  9. Overview of experimental programs on core melt progression and fission product release behaviour

    International Nuclear Information System (INIS)

    An overview of experimental programs that have been conducted to better understand core melt progression phenomena and fission product behaviour during severe reactor accidents in water reactors is presented. This discussion principally focuses on the melting and liquefaction of core materials at different temperatures, materials oxidation and relocation, hydrogen generation behaviour, and the release and transport of fission products and aerosols. A comparison of fission product release results from annealing and in-reactor experiments is also presented. (author)

  10. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  11. Neutron emission prior to fission

    International Nuclear Information System (INIS)

    In recent years, many groups have measured neutrons and light charged particles in coincidence with fission fragments in heavy ion reactions. In most cases, particles emitted with an energy spectrum and angular distribution characteristic of that of compound nucleus evaporation have been measured in excess of statistical model predictions. They have chosen to investigate this effect in detail by studying neutron emission in the 158Er composite system. The advantage of this system is that it can be produced by a variety of projectile target combinations. They have chosen four combinations which form 158Er with similar critical angular momenta but varying excitation energy. The rationale is to form the same system with different neutron emission times; if the enhanced neutrons are being emitted during the fission process, the different emission time scales might possibly be used to time the fission process. In addition, they impose an additional constraint - that they have a significant fission barrier for most of the partial waves involved in the fission process. The reactions they have selected are 16O + 142Nd (207 MeV beam energy), 24Mg + 134Ba (180 MeV), 32S + 126Te (180 MeV), 50Ti + 108Pd (216 MeV)

  12. Geometrical and statistical factors in fission of small metal clusters

    OpenAIRE

    Obolensky, O. I.; Lyalin, A. G.; Solov'yov, A. V.; Greiner, W.

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fissi...

  13. Analysis of Cold Leg LBLOCA for Fusion-fission Hybrid Reactor%聚变-裂变混合堆冷管段大破口失水事故分析

    Institute of Scientific and Technical Information of China (English)

    喻章程; 解衡

    2014-01-01

    将非能动堆芯冷却系统(PXS)应用于聚变-裂变混合堆,使用RELAP5对混合堆一回路、部分二回路和PXS进行了建模,对冷管段双端剪切断裂大破口失水事故进行了瞬态计算和分析研究。计算结果显示:破口发生后出现两次燃料温度峰值,均发生在外包层,第1次峰值温度发生在约11 s ,为938.2 K ;第2次峰值温度发生在约50 s ,为608.7 K。两次燃料温度峰值均低于燃料U-10Zr的熔点,在可接受范围内。随着瞬态过程的深入,安注箱、堆芯补水箱及安全壳内储水箱的冷却水开始注入包层,使内外包层的坍塌液位开始回升,最终重新淹没堆芯。表明PXS在冷管段双端剪切断裂大破口失水事故下能保证混合堆堆芯的安全,将其应用于聚变-裂变混合堆是可行的。%The passive core cooling system (PXS) was applied to fusion-fission hybrid reactor and a RELAP5 model was developed to represent the primary loop , partial secondary loop and the PXS components .The transient calculation and analysis were conducted for the double ended rupture LBLOCA on cold leg .The results show that two peak fuel temperatures appear in the outer blanket during the transient duration after the break happens .The first peak fuel temperature is 938.2 K at about 11 s and the second is 608.7 K at about 50 s ,but both are below the melting point of U-10Zr and within the acceptable range .With the transient process developing ,the coolant in ACC , CM T and IWST was injected to the blanket and the collapsed liquid level in the blanket started to rise ,and finally the reactor core was covered by injected coolant again .The results indicate that the PXS can ensure the safety of fusion-fission hybrid reactor in the double ended rupture LBLOCA on cold leg and it is feasible to apply the PXS to fusion-fission hybrid reactor .

  14. 聚变-裂变混合堆冷管段大破口失水事故分析%Analysis of Cold Leg LBLOCA for Fusion-fission Hybrid Reactor

    Institute of Scientific and Technical Information of China (English)

    喻章程; 解衡

    2014-01-01

    将非能动堆芯冷却系统(PXS)应用于聚变-裂变混合堆,使用RELAP5对混合堆一回路、部分二回路和PXS进行了建模,对冷管段双端剪切断裂大破口失水事故进行了瞬态计算和分析研究。计算结果显示:破口发生后出现两次燃料温度峰值,均发生在外包层,第1次峰值温度发生在约11 s ,为938.2 K ;第2次峰值温度发生在约50 s ,为608.7 K。两次燃料温度峰值均低于燃料U-10Zr的熔点,在可接受范围内。随着瞬态过程的深入,安注箱、堆芯补水箱及安全壳内储水箱的冷却水开始注入包层,使内外包层的坍塌液位开始回升,最终重新淹没堆芯。表明PXS在冷管段双端剪切断裂大破口失水事故下能保证混合堆堆芯的安全,将其应用于聚变-裂变混合堆是可行的。%The passive core cooling system (PXS) was applied to fusion-fission hybrid reactor and a RELAP5 model was developed to represent the primary loop , partial secondary loop and the PXS components .The transient calculation and analysis were conducted for the double ended rupture LBLOCA on cold leg .The results show that two peak fuel temperatures appear in the outer blanket during the transient duration after the break happens .The first peak fuel temperature is 938.2 K at about 11 s and the second is 608.7 K at about 50 s ,but both are below the melting point of U-10Zr and within the acceptable range .With the transient process developing ,the coolant in ACC , CM T and IWST was injected to the blanket and the collapsed liquid level in the blanket started to rise ,and finally the reactor core was covered by injected coolant again .The results indicate that the PXS can ensure the safety of fusion-fission hybrid reactor in the double ended rupture LBLOCA on cold leg and it is feasible to apply the PXS to fusion-fission hybrid reactor .

  15. Power reactors and sub-critical blanket systems with lead and lead-bismuth as coolant and/or target material. Utilization and transmutation of actinides and long lived fission products

    International Nuclear Information System (INIS)

    High level radioactive waste disposal is an issue of great importance in the discussion of the sustainability of nuclear power generation. The main contributors to the high radioactivity are the fission products and the minor actinides. The long lived fission products and minor actinides set severe demands on the arrangements for safe waste disposal. Fast reactors and accelerator driven systems (ADS) are under development in Member States to reduce the long term hazard of spent fuel and radioactive waste, taking advantage of their incineration and transmutation capability. Important R and D programmes are being undertaken in many Member States to substantiate this option and advance the basic knowledge in this innovative area of nuclear energy development. The conceptual design of the lead cooled fast reactor concept BREST-OD-300, as well as various other conceptual designs of lead/lead-bismuth cooled fast reactors have been developed to meet enhanced safety and non-proliferation requirements, aiming at both energy production and transmutation of nuclear waste. Some R and D studies indicate that the use of lead and lead-bismuth coolant has some advantages in comparison with existing sodium cooled fast reactor systems, e.g.: simplified design of fast reactor core and BOP, enhanced inherent safety, and easier radwaste management in related fuel cycles. Moreover, various ADS conceptual designs with lead and lead-bismuth as target material and coolant also have been pursued. The results to date are encouraging, indicating that the ADS has the potential to offer an option for meeting the challenges of the back end fuel cycle. During the last decade, there have been substantial advances in several countries with their own R and D programme in the fields of lead/lead-bismuth cooled critical and sub-critical concepts. coolant technology, and experimental validation. In this context, international exchange of information and experience, as well as international

  16. Possible origin of transition from symmetric to asymmetric fission

    Science.gov (United States)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-09-01

    The charged distributions of fragments produced in the electromagnetic-induced fission of the even-even isotopes of Rn, Ra, Th, and U are described within an improved scission-point model and compared with the available experimental data. The three-equal-peaked charge distributions are predicted for several fissioning nuclei with neutron number N = 136. The possible explanation of the transition from a symmetric fission mode to an asymmetric one around N ∼ 136 is presented. The excitation energy dependencies of the asymmetric and symmetric fission modes are anticipated.

  17. A revised calculational model for fission

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)

  18. Spontaneous fission of 256Rf, new data

    Science.gov (United States)

    Svirikhin, A. I.; Yeremin, A. V.; Izosimov, I. N.; Isaev, A. V.; Kuznetsov, A. N.; Malyshev, O. N.; Popeko, A. G.; Popov, Yu. A.; Sokol, E. A.; Chelnokov, M. L.; Chepigin, V. I.; Andel, B.; Asfari, M. Z.; Gall, B.; Yoshihiro, N.; Kalaninova, Z.; Mullins, S.; Piot, J.; Stefanova, E.; Tonev, D.

    2016-07-01

    Spontaneous fission properties of the short-lived neutron-deficient 256Rf nucleus produced in the complete fusion reaction with a beam of multiply charged heavy 50Ti ions from the U-400 cyclotron (FLNR, JINR) are experimentally investigated. Its half-life and decay branching ratio are measured. The average number of neutrons per spontaneous fission of 256Rf (bar v = 4.47 ± 0.09) is determined for the first time.

  19. Compact fission counter for DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF{sub 2} crystals with equal solid-angle coverage. DANCE is a 4{pi} {gamma}-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed {gamma}-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture {gamma} rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to {alpha} particles, which is important for experiments with {alpha}-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from {alpha}'s. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed

  20. Compact fission counter for DANCE

    International Nuclear Information System (INIS)

    The Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 BF2 crystals with equal solid-angle coverage. DANCE is a 4π γ-ray calorimeter and designed to study the neutron-capture reactions on small quantities of radioactive and rare stable nuclei. These reactions are important for the radiochemistry applications and modeling the element production in stars. The recognition of capture event is made by the summed γ-ray energy which is equivalent of the reaction Q-value and unique for a given capture reaction. For a selective group of actinides, where the neutron-induced fission reaction competes favorably with the neutron capture reaction, additional signature is needed to distinguish between fission and capture γ rays for the DANCE measurement. This can be accomplished by introducing a detector system to tag fission fragments and thus establish a unique signature for the fission event. Once this system is implemented, one has the opportunity to study not only the capture but also fission reactions. A parallel-plate avalanche counter (PPAC) has many advantages for the detection of heavy charged particles such as fission fragments. These include fast timing, resistance to radiation damage, and tolerance of high counting rate. A PPAC also can be tuned to be insensitive to α particles, which is important for experiments with α-emitting actinides. Therefore, a PPAC is an ideal detector for experiments requiring a fast and clean trigger for fission. A PPAC with an ingenious design was fabricated in 2006 by integrating amplifiers into the target assembly. However, this counter was proved to be unsuitable for this application because of issues related to the stability of amplifiers and the ability to separate fission fragments from α's. Therefore, a new design is needed. A LLNL proposal to develop a new PPAC for DANCE was funded by NA22 in FY09. The design goal is to minimize the mass for the proposed counter and still be able to maintain a stable

  1. 瞬发和缓发γ射线对堆内构件释热率影响的研究%Study on the influence of prompt fission γ-ray and delayed γ-ray on reactor internals heating rate

    Institute of Scientific and Technical Information of China (English)

    苏耿华; 石秀安; 蔡德昌; 李雷

    2012-01-01

    To improve the accuracy of the calculated reactor internals heating rate in the design of nuclear power plants, this paper studied the contribution of prompt fission γ to the reactor internals heating rate based on the original method of MCNP external neutron source model. The results revealed that the reactor internals heating rate increased by 9% ~38% with prompt fission γ taken into account and the internals nearer to the core had a lager increment. In addition, it is believed after analysis that the contribution of the delayed γ on reactor internals heating rate is similar to the prompt fission γ. Therefore, when calculating reactor internals heating rate, in addition to the neutron source and neutron capture γ, prompt fission γ and delayed γ should also be considered.%为提高核电设计中反应堆堆内构件释热率计算的准确性,本文在原来MCNP外中子源模型计算方法的基础上,计算分析瞬发裂变γ对堆内构件释热率的贡献.计算结果显示,考虑瞬发裂变γ使得堆内构件的释热率增加9%~38%,离堆芯越近的堆内构件的增加值越大.另外,分析认为缓发γ对堆内构件释热率的贡献与瞬发裂变γ相当.因而反应堆堆内构件释热率计算中除了考虑中子及中子俘获所生γ的贡献,还应该考虑瞬发裂变γ和缓发γ的贡献.

  2. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    International Nuclear Information System (INIS)

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment

  3. World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)

  4. Aerosols and fission product transport

    International Nuclear Information System (INIS)

    A survey is presented of current knowledge of the possible role of aerosols in the consequences of in- and out-of-core LOCAs and of end fitting failures in CANDU reactors. An extensive literature search has been made of research on the behaviour of aerosols in possible accidents in water moderated and cooled reactors and the results of various studies compared. It is recommended that further work should be undertaken on the formation of aerosols during these possible accidents and to study their subsequent behaviour. It is also recommended that the fission products behaviour computer code FISSCON II should be re-examined to determine whether it reflects the advances incorporated in other codes developed for light water reactors which have been extensively compared. 47 refs

  5. Neutron measurements performed with miniature fission chambers

    International Nuclear Information System (INIS)

    This research aims at proposing solutions regarding instruments to perform neutron flow measurements in nuclear power reactors and to perform measurements of the reaction rates of highly radioactive transuranic fissile elements in experimental reactors. This research is also part of a program aimed at the adjustment of the Cadarache cross section set. The report defines the instrumentation, recalls the operation of fission chambers, discusses the implemented instrumentation, and discusses the obtained measurements

  6. Energy from nuclear fission an introduction

    CERN Document Server

    De Sanctis, Enzo; Ripani, Marco

    2016-01-01

    This book provides an overview on nuclear physics and energy production from nuclear fission. It serves as a readable and reliable source of information for anyone who wants to have a well-balanced opinion about exploitation of nuclear fission in power plants. The text is divided into two parts; the first covers the basics of nuclear forces and properties of nuclei, nuclear collisions, nuclear stability, radioactivity, and provides a detailed discussion of nuclear fission and relevant topics in its application to energy production. The second part covers the basic technical aspects of nuclear fission reactors, nuclear fuel cycle and resources, safety, safeguards, and radioactive waste management. The book also contains a discussion of the biological effects of nuclear radiation and of radiation protection, and a summary of the ten most relevant nuclear accidents. The book is suitable for undergraduates in physics, nuclear engineering and other science subjects. However, the mathematics is kept at a level that...

  7. Protactinium-231 as a new fissionable material for nuclear reactors that can produce nuclear fuel with stable neutron-multiplying properties

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, Anatoly N.; Kulikov, Gennady G.; Kulikov, Evgeny G.; Apse, Vladimir A. [National Research Nuclear Univ. MEPHI, Moscow (Russian Federation). Moscow Engineering Physics Inst.

    2016-03-15

    Main purpose of the study is justifying doping of protactinium-231 into fuel compositions of advanced nuclear reactors with the ultimate aim to improve their operation safety and economic efficiency. Protactinium-231 could be generated in thorium blankets of hybrid thermonuclear facilities. The following results were obtained: 1. Protactinium-231 has some favorable features for its doping into nuclear fuel; 2. Protactinium containing fuel compositions can be characterized by the higher values of fuel burn-up, the longer values of fuel lifetime and the better proliferation resistance; 3. as protactinium-231 is the stronger neutron absorber than uranium-238, remarkably lower amounts of protactinium-231 may be doped into fuel compositions. The free space could be occupied by materials which are able to improve heat conductivity and refractoriness of fuel. As a consequence, operation safety of nuclear reactors could be upgraded.

  8. Results of fission products β decay properties measurement performed with a total absorption spectrometer

    Directory of Open Access Journals (Sweden)

    Zakari-Issoufou A.-A.

    2014-03-01

    Full Text Available β-decay properties of fission products are very important for applied reactor physics, for instance to estimate the decay heat released immediately after the reactor shutdown and to estimate the ν¯$\\bar \

  9. Innovative High Temperature Heat Pipes for Spacecraft Nuclear Fission Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn is examining small fission reactors for future space transportation and surface power applications. The reactors would have an 8 to 15 year design life...

  10. A transferable model for singlet-fission kinetics.

    Science.gov (United States)

    Yost, Shane R; Lee, Jiye; Wilson, Mark W B; Wu, Tony; McMahon, David P; Parkhurst, Rebecca R; Thompson, Nicholas J; Congreve, Daniel N; Rao, Akshay; Johnson, Kerr; Sfeir, Matthew Y; Bawendi, Moungi G; Swager, Timothy M; Friend, Richard H; Baldo, Marc A; Van Voorhis, Troy

    2014-06-01

    Exciton fission is a process that occurs in certain organic materials whereby one singlet exciton splits into two independent triplets. In photovoltaic devices these two triplet excitons can each generate an electron, producing quantum yields per photon of >100% and potentially enabling single-junction power efficiencies above 40%. Here, we measure fission dynamics using ultrafast photoinduced absorption and present a first-principles expression that successfully reproduces the fission rate in materials with vastly different structures. Fission is non-adiabatic and Marcus-like in weakly interacting systems, becoming adiabatic and coupling-independent at larger interaction strengths. In neat films, we demonstrate fission yields near unity even when monomers are separated by >5 Å. For efficient solar cells, however, we show that fission must outcompete charge generation from the singlet exciton. This work lays the foundation for tailoring molecular properties like solubility and energy level alignment while maintaining the high fission yield required for photovoltaic applications. PMID:24848234

  11. Actinide and fission product partitioning and transmutation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  12. Actinide and fission product partitioning and transmutation

    International Nuclear Information System (INIS)

    The third international information exchange meeting on actinide and fission product partitioning and transmutation, took place in Cadarache France, on 12-14 December 1994. The proceedings are presented in six sessions : an introduction session, the major programmes and international cooperation, the systems studies, the reactors fuels and targets, the chemistry and a last discussions session. (A.L.B.)

  13. Fuel rod internal chemistry and fission products behaviour

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency upon the proposal of the members of the International Working Group on Water Reactor Fuel Performance and Technology. Forty-six participants representing fourteen countries and two international organizations attended the meeting. Twenty-one presentations were discussed in four sessions: thermodynamics of fission products (six papers); fission products migration and release (seven papers); fission product release in transients or accident conditions (four papers); fission products to cladding interaction - stress corrosion cracking (five papers). A separate abstract was prepared for all twenty-one papers

  14. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  15. Activation Energy for Fission

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1952-08-29

    The experimentally determined exponential dependence of spontaneous fission rate on Z{sup 2}/A has been used to derive an expression for the dependence of the fission activation energy on Z{sup 2}/A. This expression has been used to calculate the activation energy for slow neutron induced fission and photofission. The correlation with the experimental data on these types of fission seems to be quite good.

  16. To fission or not to fission

    CERN Document Server

    Pomorski, Krzysztof; Ivanyuk, Fedir A

    2016-01-01

    The fission-fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and the mass-asymmetry mode. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using the Woods-Saxon single-particle levels. The four dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within the cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining that final fragment mass distribution.

  17. The distribution and behavior of fission products inside the containment

    International Nuclear Information System (INIS)

    Following accident scenarios resulting in core melt and failure of reactor pressure vessel, the molten core debris will be ejected from the vessel by the process of high pressure melt ejection or relocation by gravity to the reactor cavity. After the ejection of the fission products laden molten core debris, the fission products will be released and distributed to the containment atmosphere. Noble gases and other high-volatile fission products, such as Xe, I, Cs, and Te, contained in the molten core debris will be released completely to the containment, while the more refractory fission products, which include lanthanides and actinides (Sr, Ba, Ru, La) will be partially released. Fission products are distributed in the containment atmosphere in the forms of gases, aerosols, particles, and deposition on surfaces and water pools

  18. 面向Z箍缩驱动聚变能源需求的超高功率重复频率驱动器技术%Super-power repetitive Z-pinch driver for fusion-fission reactor

    Institute of Scientific and Technical Information of China (English)

    邓建军; 陈林; 夏明鹤; 计策; 袁建强; 宋盛义; 黄显宾; 彭先觉; 王勐; 谢卫平; 周良骥; 邹文康; 郭帆; 章乐; 李逢; 丰树平

    2014-01-01

    According to the demands of Z-pinch driven fusion-fission reactor(Z-FFR),several possible technical schemes are analyzed and evaluated.A novel technical scheme named mixed-mode LTD is proposed.A conceptual design of Z-FFR driver is presented based on mixed-mode LTD scheme.The main directions for key technologies development are pointed out.A road-map is proposed for the super-power Z-pinch driver development.%针对Z箍缩驱动聚变裂变混合能源系统对驱动器的总体要求,对可能的技术路线进行了分析评述,结合当前在单脉冲超高功率Z箍缩驱动器和重复频率脉冲功率技术方面的研究基础,提出了混合模式直线变压驱动器概念设计思想,分析了主要的技术难点,明确了相应的关键技术攻关方向,同时对 Z 箍缩驱动器的总体发展计划提出了建议。

  19. Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials

    International Nuclear Information System (INIS)

    This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H2/5 Pa CO/5 Pa CH4/2O (500 μatm H2/50 μatm CO/50 μatm CH4/2O) at 9000C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables

  20. Dynamic problems of power reactors and analogic devices; Les problemes dynamiques du reacteur de puissance et les machines analogiques

    Energy Technology Data Exchange (ETDEWEB)

    Braffort, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The raise of the nuclear physics came with heavy mathematical developments. The analogical installations became especially useful for precise calculations of parameters which depend the running of a reactor. They permit between other to study of kinetic problems and especially ''cybernetics'' of nuclear reactors. It doesn't make a doubt that their use will become widespread, not only in the calculations laboratories, in services for servo-mechanisms study, but also in the control panels of the reactors themselves. (M.B.) [French] L'essor de la physique nucleaire s'est accompagne de lourds developpements mathematiques. Les montages analogiques sont devenus particulierement utiles pour les calculs precis des parametres dont depend le fonctionnement d'un reacteur. Elles permettent entre autre l'etude des problemes cinetiques et surtout ''cybernetiques'' des reacteurs nucleaires. Il ne fait pas de doute que leur usage se generalisera, non seulement dans les laboratoires de calculs, les services d'etudes de servomecanismes, mais aussi pres des tableaux de commande des reacteurs eux-memes. (M.B.)

  1. Metal cluster fission: jellium model and Molecular dynamics simulations

    DEFF Research Database (Denmark)

    Lyalin, Andrey G.; Obolensky, Oleg I.; Solov'yov, Ilia;

    2004-01-01

    Fission of doubly charged sodium clusters is studied using the open-shell two-center deformed jellium model approximation and it ab initio molecular dynamic approach accounting for all electrons in the system. Results of calculations of fission reactions Na_10^2+ --> Na_7^+ + Na_3^+ and Na_18^2+ ...

  2. Nuclear data for neutron emission in the fission process

    International Nuclear Information System (INIS)

    This document contains the proceedings of the IAEA Consultants' Meeting on Nuclear Data for Neutron Emission in the Fission Process, Vienna, 22 - 24 October 1990. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers provide a review of the status of experimental and theoretical data on neutron emission in spontaneous and neutron induced fission with reference to the data needs for reactor applications oriented towards actinide burner studies. The specific topics covered are the following: experimental measurements and theoretical predictions and evaluations of fission neutron energy spectra, average prompt fission neutron multiplicity, correlation in neutron emission from complementary fragments, neutron emission during acceleration of fission fragments, statistical properties of neutron rich nuclei by study of emission spectra of neutrons from the excited fission fragments, integral qualification of nu-bar for the major fissile isotopes, nu-bar total of 239Pu and 235U, and related problems. Refs figs and tabs

  3. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Goo, In Soo; Kim, Jang Yyul; Kim, Jung Soo; Kim, Chang Hoi; Na, Nan Joo; Park, Keun Ok; Park, Won Man; Park, Jae Chang; Suh, Sang Moon; Oh, In Suk; Lee, Dong Young; Lee, Yong Hee; Cha, Kyung Ho; Chun, Se Woo; Hur, Sup [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Jung, Kyung Hoon [Korea Electric Power Co., Seoul (Korea, Republic of); Park, Yeon Sik; Lee, Bum Joo [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of)

    1995-02-01

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs.

  4. Function analysis of nuclear power plants for developing of man-machine interface system for Korean next generation reactor

    International Nuclear Information System (INIS)

    In this study, we developed the methodology and implementation plant of function analysis and performed function analysis, which is one of the major activities for the development of Man-Machine Interface System of the KNGR. Identifying the functions of existing plants followed by structuring the functions, we established functions structured at the conceptual and middle levels. This structure was further checked if it would satisfy regulatory requirements and developed to include the aspects of plant performance and other plant features to emphasize its practicality for the application to the design. (Author) 13 refs., 8 figs., 4 tabs

  5. An analysis of the estimated capital cost of a fusion reactor

    International Nuclear Information System (INIS)

    The cost of building a fusion reactor similar to the Culham Conceptual Tokamak reactor Mark IIB is assessed and compared with other published capital costs of fusion and fission reactors. It is concluded that capital-investment and structure-renewal costs for a typical fusion reactor as presently conceived are likely to be higher than for thermal-fission reactors. (author)

  6. Analysis of the DHCE experiment in the position A10 of the ATR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, I.C.; Smith, D.L.; Tsai, H. [Argonne National Lab., IL (United States)

    1997-08-01

    Calculations were performed to assess the possibility of performing DHCE experiments in mixed spectrum fission reactors. Calculated values of key parameters were compared with limit values for each quantity. The values calculated were: He-4 production from the {sup 6}Li(n,t){sup 4}He reaction, tritium leakage, required tritium concentration in lithium, initial tritium charge per capsule, and helium to dpa ratio after 10 dpa of irradiation.

  7. Analysis of the DHCE experiment in the position A10 of the ATR reactor

    International Nuclear Information System (INIS)

    Calculations were performed to assess the possibility of performing DHCE experiments in mixed spectrum fission reactors. Calculated values of key parameters were compared with limit values for each quantity. The values calculated were: He-4 production from the 6Li(n,t)4He reaction, tritium leakage, required tritium concentration in lithium, initial tritium charge per capsule, and helium to dpa ratio after 10 dpa of irradiation

  8. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    Science.gov (United States)

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature.

  9. Chromosome aberrations induced in human lymphocytes by U-235 fission neutrons: I. Irradiation of human blood samples in the "dry cell" of the TRIGA Mark II nuclear reactor.

    Science.gov (United States)

    Fajgelj, A; Lakoski, A; Horvat, D; Remec, I; Skrk, J; Stegnar, P

    1991-11-01

    A set-up for irradiation of biological samples in the TRIGA Mark II research reactor in Ljubljana is described. Threshold activation detectors were used for characterisation of the neutron flux, and the accompanying gamma dose was measured by TLDs. Human peripheral blood samples were irradiated "in vitro" and biological effects evaluated according to the unstable chromosomal aberrations induced. Biological effects of two types of cultivation of irradiated blood samples, the first immediately after irradiation and the second after 96 h storage, were studied. A significant difference in the incidence of chromosomal aberrations between these two types of samples was obtained, while our dose-response curve fitting coefficients alpha 1 = (7.71 +/- 0.09) x 10(-2) Gy-1 (immediate cultivation) and alpha 2 = (11.03 +/- 0.08) x 10(-2) Gy-1 (96 h delayed cultivation) are in both cases lower than could be found in the literature. PMID:1962281

  10. Power Flattening and Rejuvenation of PWR Spent Fuel Blanket for Hybrid Fusion-Fission Reactor%功率展平的压水堆乏燃料发电包层中子学初步研究

    Institute of Scientific and Technical Information of China (English)

    马续波; 陈义学; 王继亮; 王悦; 韩静茹; 陆道纲

    2011-01-01

    The hybrid fusion-fission reactor has advantages of breeding of the nuclear fuel and transmutation of the long-life nuclear waste and having inherent safety. Meanwhile, the engineering and technological demand of hybrid reactor is significantly reduced comparing with that of pure fusion reactor. A generating electricity blanket concept using the PWR spent fuel directly was proposed, which was based on ITER parameter level achieved. Different volume fractions of the fuel in blanket enabled to realize a power flattening in the fissile zone. The results show that the peak-to-average power factor becomes less than no power flattening, and the output power of the fuel zone raises more than 21. 7%. At the end of the operation, the maximum fuel enrichment is 5. 23%. The blanket is feasible from the neutronics viewpoint.%聚变裂变混合堆在增殖核燃料、嬗变长寿命核废料及固有安全性等方面具有较大优势,同时,它比纯聚变堆在工程及技术方面要求低,因此较聚变堆更易实现.本工作基于目前国际聚变实验堆(ITER)所能达到的技术水平,提出一种直接利用乏燃料进行发电的聚变裂变混合堆包层概念,利用在不同位置放置不同乏燃料体积分数的方法对燃料增殖区实现了功率展平.计算结果表明:功率展平后的包层功率不均匀系数更小,且包层中燃料区的能量输出要比不展平情况下的能量输出高约21.7%.燃料富集度到运行末期最大可达5.23%.从中子学角度初步论证了该包层的可行性.

  11. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进∗%Modified uniform-fission-site algorithm in Monte Carlo simulation of reactor criticality problem

    Institute of Scientific and Technical Information of China (English)

    上官丹骅; 李刚; 邓力; 张宝印; 李瑞; 付元光

    2015-01-01

    在反应堆pin-by-pin精细建模及蒙特卡罗模拟计算研究中,由于不同栅元的功率密度差异较大,导致蒙特卡罗方法临界计算的样本在不同栅元之间的分配不均衡,由此引起栅元内的各种计数的统计误差差异较大。为使大部分栅元内计数的统计误差降至一个合理的水平,单纯增加总样本已不是一个高效的解决方法。通过在特定临界计算迭代算法的基础上改进并实现均匀裂变源算法的思想,对大亚湾压水堆pin-by-pin模型取得了具有较高效率的数值结果。本工作为具有自主知识产权的蒙特卡罗粒子输运模拟软件JMCT最终达到反应堆pin-by-pin模型(包括一系列国际基准模型)的模拟性能要求提供了一个有效的工具。%Because of a very non-uniform power distribution in core region, a very non-uniform distribution of relative un-certainties exists for tallies in Monte Carlo criticality calculations of pin-by-pin reactor model. To make a large part of cells obtain small enough relative uncertainties with reasonable time costs, increasing the total sample scale is not a good choice. By realizing a modified uniform-fission-site algorithm on the basis of source iteration algorithm of parallel Monte Carlo transport code JMCT, we obtain higher efficiencies for tallies in the calculations of pin-by-pin model of the Dayawang reactor plant. This work supplies a useful tool for matching the goal of simulating the benchmark pin-by-pin reactor models with a pre-described standard(the so called Kord-Smith challenge).

  12. Delayed Fission Neutrons. Proceedings of a Panel

    International Nuclear Information System (INIS)

    Proceedings of a panel organized by the IAEA and held in Vienna, 24-27 April 1967. The increasing sophistication in reactor design and, in particular, the advent of fast reactors have shown that delayed fission neutrons play a major role in considerations of operational stability and safety. Fourteen leading scientists from nine Member States made vital new data available and defined areas of investigation for future experimental and theoretical work. The data are summarized in an Annex at the end of the Proceedings. The contents include papers on the importance of delayed neutron data in reactor design, on which fission products should be considered as precursors, and on experimental methods for separating and determining the precursors. Each paper is in its original language (11 English, 1 French, 2 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. The summarized discussions, summary and Annex are in English. (author)

  13. Conceptual study of a straight field line mirror hybrid reactor

    International Nuclear Information System (INIS)

    A hybrid reactor based on the straight field line mirror (SFLM) with magnetic expanders at the ends is proposed as a compact device for transmutation of nuclear waste and power production. Compared to a fusion reactor, plasma confinement demands can be relaxed if there is a strong energy multiplication by the fission reactions, i.e. Qr=Pfission/Pfusion>>1. The values of Qr is primarily restricted by fission reactor safety requirements. For the SFLM, computations suggest that values of Qr ranging up to 150 are consistent with reactor safety. In a mirror hybrid device with Qr >100, the lower bound on the electron temperature for power production can then be estimated to be around 400 eV, which may be achievable for a mirror machine. The SFLM with its quadrupolar stabilizing fields does not rely on plasma flow into the expanders for MHD stability, and a scenario with plasma density depletion in the expanders is a possibility to increase the electron temperature. Efficient power production is predicted with a fusion Q = 0.15 and an electron temperature around 500 eV. A fusion power of 10 MW could then be amplified to 1.5 GW fission power in a compact 25 m long hybrid mirror machine. Beneficial features are that all sensitive equipment can be located outside the neutron rich region and a steady state power production seems possible. Self circulation of the lead coolant, which is useful for heat removal if coolant pumps cease to operate, could be arranged by orienting the magnetic axis vertically. Results from studies on plasma equilibrium and stability, coil designing, RF heating and neutron computations are presented.

  14. Fission neutron statistical emission

    International Nuclear Information System (INIS)

    The statistical model approach FINESSE (FIssion NEutronS' Statistical Emission) for the description of fission neutron multiplicities, energy spectra and angular distributions is described. Based on an extended Weisskopf ansatz and on a realistic temperature distribution it provides a fragment mass number dependent description of fission neutron data. Model parameters (optical potential, n/γ competition) were fixed on the basis of the 252Cf(sf) (nuclear data standard). Combined with a phenomenological fission model for predicting relevant fragment data as function of asymmetry. FINESSE can be applied to any fission reaction of actinides in the Th-Cf region without further parameter adjustment. Results are presented for 252Cf(sf) and neutron induced fission of 235U, 239Pu, 232Th. Effects of multiple-chance fission are discussed for 232Th(n,xnf) reacation. (author). 46 refs, 11 figs

  15. Singlet Fission of Non-polycyclic Aromatic Molecules in Organic Photovoltaics.

    Science.gov (United States)

    Kawata, So; Pu, Yong-Jin; Saito, Ayaka; Kurashige, Yuki; Beppu, Teruo; Katagiri, Hiroshi; Hada, Masaki; Kido, Junji

    2016-02-24

    Singlet fission of thienoquinoid compounds in organic photovoltaics is demonstrated. The escalation of the thienoquinoid length of the compounds realizes a suitable packing structure and energy levels for singlet fission. The magnetic-field dependence of the photocurrent and the external quantum efficiency of the devices reveal singlet fission of the compounds and dissociation of triplet excitons into charges.

  16. Application of Ceramic Material in Nuclear Fission Reactor%裂变核反应堆中的陶瓷材料应用概述

    Institute of Scientific and Technical Information of China (English)

    施涵; 谭寿洪

    2011-01-01

    This paper introduces the application of ceramic materials in the nuclear industry, including the nu- clear fuel, absorber and moderator as well as the structure material of first wall and tritium - breeding materials used in fusion reactors and discusses the basic characteristics, relevant capacities, irradiation effect and main manufacture process of each ceramic component so as to meet the increasing requirement due to the development of nuclear industry.%文章系统地介绍了陶瓷材料在核工业方面的主要应用,包括裂变堆中的核燃料、吸收棒吸收体和幔化剂,并着重阐述了各个材料的基本性质、相关性能、辐照效应和主要制备方法,以适应满足日益增长的核工业发展的需求

  17. Clusters in true ternary fission in the 252Cf (Sf) reaction

    International Nuclear Information System (INIS)

    In the paper effect of the formation of clusters on production of the true ternary fission at simultaneous fission of 2'52Cf is investigated. Unlike conventional ternary fission with the emission of the alpha particle and binary fission, in true ternary fission reaction products are observed with the comparable masses and charges. By studying the potential energy surface calculated for the ternary system before splitting, charge and mass distributions of the nascent products at the spontaneous fission of 252Cf are estimated. Probabilities of the true ternary fission products will be greater where the potential energy surface has minima deeper. Results showed that the products of true ternary fission with magical numbers 20, 28, 50 and 82 for protons and neutrons are formed with a high probability. (authors)

  18. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  19. Proceedings of the specialists' meeting on physics and engineering of fission and spallation, 1989

    International Nuclear Information System (INIS)

    The third meeting was held on August 1, and the fourth meeting was held on December 12, 1989. The reports of the international conferences on 50 years research on nuclear fission in Germany and USA, and the reports on the nuclear data of fission-produced nuclei for evaluating reactor decay heat, the atomic mass formula considering proton-neutron interaction and unstable nuclei, research on short life fission fragments by on-line isotope separation process, the reactor physics on waste annihilation disposal and fuel breeding with an accelerator, the double differential cross section of back neutrons in nuclear spallation reaction, measurement of fission cross section and fission neutron spectra with fast neutrons, U-235 fission spectra by unfolding activation foil data and production mechanisms of intermediate mass fragments from hot nuclei-emission of complex and fission fragments for 84Kr+27Al at 10.6 MeV/u were made. (K.I.)

  20. Fission Matrix Capability for MCNP Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Carney, Sean E. [Los Alamos National Laboratory; Brown, Forrest B. [Los Alamos National Laboratory; Kiedrowski, Brian C. [Los Alamos National Laboratory; Martin, William R. [Los Alamos National Laboratory

    2012-09-05

    In a Monte Carlo criticality calculation, before the tallying of quantities can begin, a converged fission source (the fundamental eigenvector of the fission kernel) is required. Tallies of interest may include powers, absorption rates, leakage rates, or the multiplication factor (the fundamental eigenvalue of the fission kernel, k{sub eff}). Just as in the power iteration method of linear algebra, if the dominance ratio (the ratio of the first and zeroth eigenvalues) is high, many iterations of neutron history simulations are required to isolate the fundamental mode of the problem. Optically large systems have large dominance ratios, and systems containing poor neutron communication between regions are also slow to converge. The fission matrix method, implemented into MCNP[1], addresses these problems. When Monte Carlo random walk from a source is executed, the fission kernel is stochastically applied to the source. Random numbers are used for: distances to collision, reaction types, scattering physics, fission reactions, etc. This method is used because the fission kernel is a complex, 7-dimensional operator that is not explicitly known. Deterministic methods use approximations/discretization in energy, space, and direction to the kernel. Consequently, they are faster. Monte Carlo directly simulates the physics, which necessitates the use of random sampling. Because of this statistical noise, common convergence acceleration methods used in deterministic methods do not work. In the fission matrix method, we are using the random walk information not only to build the next-iteration fission source, but also a spatially-averaged fission kernel. Just like in deterministic methods, this involves approximation and discretization. The approximation is the tallying of the spatially-discretized fission kernel with an incorrect fission source. We address this by making the spatial mesh fine enough that this error is negligible. As a consequence of discretization we get a

  1. 聚变-裂变混合能源堆球模型中子学对算研究%Comparative Study on Spherical Model of Fusion-Fission Hybrid Energy Reactor

    Institute of Scientific and Technical Information of China (English)

    邵增; 程和平; 刘国明

    2012-01-01

    利用蒙特卡罗程序和自主开发的蒙特卡罗-燃耗耦合程序MOCouple-s,对北京应用物理与计算数学研究所提出的聚变-裂变混合能源堆球模型进行了对算研究.对初始时刻及各燃耗时刻下的有效增殖因数、能量倍增因子、氚增殖比、中子源强度等堆芯参数进行了比较,结果总体符合较好.对寿期末重要核素的成分进行了详细比较,除个别核素外,偏差很小,表明所采用的计算程序与核参数库一致性良好.对核参数库的选择、铀水体积比等对燃耗计算结果的影响进行敏感性分析,并对外中子源驱动的次临界堆芯的燃耗计算进行详细讨论,提出可行的燃耗计算基准.%The comparative study on fusion-fission hybrid spherical model proposed by the Institute of Applied Physics and Computational Mathematics was performed with Monte-Carlo code and MOCouple-s code. Comparisons of reactor parameters, such as neutron effective multiplication factor, energy multiplication factor, tritium breeding ratio and neutron source intensity, were made. The results agree well with the reference as a whole. The concentrations of important isotopes were also compared in detail. Most of the biases are very small except a tiny fraction of the iotopes. It proves that both codes and nuclear data library have very good consistency. In calculation of the model used, the burnup sensitivity of nuclear data and uranium-water ratio employed in the simulation model were analyzed. For such a fixed external source driven subcritical reactor core, detailed discussion was made about the burnup calculation method, and a feasible burnup calculation benchmark was proposed.

  2. Fission Enhanced diffusion of uranium in zirconia

    CERN Document Server

    Bérerd, N; Moncoffre, N; Sainsot, P; Faust, H; Catalette, H

    2005-01-01

    This paper deals with the comparison between thermal and Fission Enhanced Diffusion (FED) of uranium into zirconia, representative of the inner face of cladding tubes. The experiments under irradiation are performed at the Institut Laue Langevin (ILL) in Grenoble using the Lohengrin spectrometer. A thin $^{235}UO\\_2$ layer in direct contact with an oxidized zirconium foil is irradiated in the ILL high flux reactor. The fission product flux is about 10$^{11}$ ions cm$^{-2}$ s$^{-1}$ and the target temperature is measured by an IR pyrometer. A model is proposed to deduce an apparent uranium diffusion coefficient in zirconia from the energy distribution broadening of two selected fission products. It is found to be equal to 10$^{-15}$ cm$^2$ s$^{-1}$ at 480$\\circ$C and compared to uranium thermal diffusion data in ZrO$\\_2$ in the same pressure and temperature conditions. The FED results are analysed in comparison with literature data.

  3. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  4. Fission product yields

    International Nuclear Information System (INIS)

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235U, 239Pu, 241Pu and for fast fission (approximately 1 MeV) of 235U, 238U, 239Pu, 241Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  5. Civacuve analysis software for mis machine examination of pressurized water reactor vessels; Civacuve logiciel d'analyse des controles mis des cuves de reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Ph.; Gagnor, A. [Intercontrole, 94 - Rungis (France)

    2001-07-01

    The product software CIVACUVE is used by INTERCONTROLE for the analysis of UT examinations, for detection, performed by the In-Service Inspection Machine (MIS) of the vessels of nuclear power plants. This software is based on an adaptation of an algorithm of SEGMENTATION (CEA CEREM), which is applied prior to any analysis. It is equipped with tools adapted to industrial use. It allows to: - perform image analysis thanks to advanced graphic tools (Zooms, True Bscan, 'contour' selection...), - backup of all data in a database (complete and transparent backup of all informations used and obtained during the different analysis operations), - connect PC to the Database (export of Reports and even of segmented points), - issue Examination Reports, Operating Condition Sheets, Sizing curves... - and last, perform a graphic and numerical comparison between different inspections of the same vessel. Used in Belgium and France on different kind of reactor vessels, CIVACUVE has allowed to show that the principle of SEGMENTATION can be adapted to detection exams. The use of CIVACUVE generates a important time gain as well as the betterment of quality in analysis. Wide data opening toward PC's allows a real flexibility with regard to client's requirements and preoccupations.

  6. Thermal fission rates with temperature dependent fission barriers

    OpenAIRE

    Zhu, Yi; Pei, Junchen

    2016-01-01

    The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and collective ...

  7. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory

    CERN Document Server

    Winterberg, Friedwardt

    2009-01-01

    The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

  8. Advanced binary search pattern for impedance spectra classification for determining the state of charge of a lithium iron phosphate cell using a support vector machine

    Science.gov (United States)

    Jansen, Patrick; Vollnhals, Michael; Renner, Daniel; Vergossen, David; John, Werner; Götze, Jürgen

    2016-09-01

    Further improvements on the novel method for state of charge (SOC) determination of lithium iron phosphate (LFP) cells based on the impedance spectra classification are presented. A Support Vector Machine (SVM) is applied to impedance spectra of a LFP cell, with each impedance spectrum representing a distinct SOC for a predefined temperature. As a SVM is a binary classifier, only the distinction between two SOC can be computed in one iteration of the algorithm. Therefore a search pattern is necessary. A balanced tree search was implemented with good results. In order to further improvements of the SVM method, this paper discusses two new search pattern, namely a linear search and an imbalanced tree search, the later one based on an initial educated guess. All three search pattern were compared under various aspects like accuracy, efficiency, tolerance of disturbances and temperature dependancy. The imbalanced search tree shows to be the most efficient search pattern if the initial guess is within less than ±5 % SOC of the original SOC in both directions and exhibits the best tolerance for high disturbances. Linear search improves the rate of exact classifications for almost every temperature. It also improves the robustness against high disturbances and can even detect a certain number of false classifications which makes this search pattern unique. The downside is a much lower efficiency as all impedance spectra have to be evaluated while the tree search pattern only evaluate those on the tree path.

  9. Entrance channel dependence of fission fragment anisotropies - a direct experimental signature of fission before equilibration

    International Nuclear Information System (INIS)

    In several cases of heavy ion induced fusion-fission reactions, the fission fragment angular distributions exhibit much larger anisotropies than predicted by the standard Halpern-Strutinsky theory. Several explanations have been put forward to interpret these anomalous angular distributions. One of them is that a characteristic signature of fission before full K-equilibration will be an entrance channel dependence of the fragment anisotropies for target-projectile combinations across the Businaro-Gallone ridge in the mass/charge asymmetry degree of freedom. To look for any such entrance channel dependence of fragment anisotropies, we have carried out measurements of fragment angular distributions in fission induced by boron, carbon, oxygen ions on thorium and neptunium targets and by fluorine ions on neptunium target at above barrier energies. (author). 7 refs., 1 fig

  10. Fission fragment formation and fission yields in the model of octupole neutron-proton oscillations

    Directory of Open Access Journals (Sweden)

    Yavshits S.

    2010-03-01

    Full Text Available The fission fragment formation is considered as a result of neck instability in the process of octupole oscillations of neutrons and protons near the scission point. To describe such a phenomenon the potential surface of fissionning nucleus with neck radius about 1 fm was calculated with shell correction approach. The new version of smooth liquid drop part of deformation energy is proposed. The liquid drop part is formulated in a double folding model with n-n, p-p, and n-p Yukawa interaction potential. Fission fragment mass and charge distributions correspond approximately to isoscalar and isovector modes of vibrations and are defined by wave functions of oscillations. The preliminary calculation results have shown a rather good description of main integral fission yield observables.

  11. Breeder Reactors, Understanding the Atom Series.

    Science.gov (United States)

    Mitchell, Walter, III; Turner, Stanley E.

    The theory of breeder reactors in relationship to a discussion of fission is presented. Different kinds of reactors are characterized by the cooling fluids used, such as liquid metal, gas, and molten salt. The historical development of breeder reactors over the past twenty-five years includes specific examples of reactors. The location and a brief…

  12. Locally Broken Crystal Symmetry Facilitates Singlet Exciton Fission.

    Science.gov (United States)

    Petelenz, Piotr; Snamina, Mateusz

    2016-05-19

    Photovoltaic yield is normally limited to at most two charge carriers per photon. In solid pentacene this limit may be potentially bypassed owing to singlet exciton fission into a pair of triplets. The process occurs via a superexchange mechanism mediated by charge-transfer (CT) configurations and is sensitive to their energies. As demonstrated recently, these strongly depend on the local environment of the two molecules on which the charges reside. Using a multiscale model, here we show that in the crystal bulk approximate local symmetry affects CT state energetics in a way unfavorable for fission, so that at the places where this symmetry is broken the fission probability is enhanced by up to an order of magnitude. These fission-favorable locations entail the vicinity of vacancies, specific impurities, and interfaces, such as crystallite boundaries. Hence, photovoltaic yield might be substantially increased by using nanoscopically disordered pentacene rather than highly ordered specimens. PMID:27152577

  13. Methodology and experimental setup for measuring short-lives fission product yields in actinides induced fission by charged particles; Metodologia e montagem experimental para a medicao de rendimentos de produtos de fissao de meia vida curta na fissao de actinideos por particulas carregadas

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, A.V.

    1995-07-01

    The theoretical principles and the laboratory set-up for the fission products yields measurements are described. The procedures for the experimental determinations are explain in detail. (author). 43 refs., 5 figs.

  14. Propagation of a constant velocity fission wave

    Science.gov (United States)

    Deinert, Mark

    2011-10-01

    The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.

  15. Proceedings of the Second Fusion-Fission Energy Systems Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-11-02

    The agenda of the meeting was developed to address, in turn, the following major areas: specific problem areas in nuclear energy systems for application of fusion-fission concepts; current and proposed fusion-fission programs in response to the identified problem areas; target costs and projected benefits associated with fusion-fission energy systems; and technical problems associated with the development of fusion-fission concepts. The greatest emphasis was placed on the characteristics of and problems, associated with fuel producing fusion-fission hybrid reactors.

  16. Direct Simulation Monte Carlo exploration of charge effects on aerosol evolution

    Science.gov (United States)

    Palsmeier, John F.

    Aerosols are potentially generated both during normal operations in a gas cooled Generation IV nuclear reactor and in all nuclear reactors during accident scenarios. These aerosols can become charged due to aerosol generation processes, radioactive decay of associated fission products, and ionizing atmospheres. Thus the role of charge on aerosol evolution, and hence on the nuclear source term, has been an issue of interest. There is a need for both measurements and modeling to quantify this role as these effects are not currently accounted for in nuclear reactor modeling and simulation codes. In this study the role of charge effects on the evolution of a spatially homogenous aerosol was explored via the application of the Direct Simulation Monte Carlo (DSMC) technique. The primary mechanisms explored were those of coagulation and electrostatic dispersion. This technique was first benchmarked by comparing the results obtained from both monodisperse and polydisperse DSMC evolution of charged aerosols with the results obtained by respectively deterministic and sectional techniques. This was followed by simulation of several polydisperse charged aerosols. Additional comparisons were made between the evolutions of charged and uncharged aerosols. The results obtained using DSMC in simple cases were comparable to those obtained from other techniques, without the limitations associated with more complex cases. Multicomponent aerosols of different component densities were also evaluated to determine the charge effects on their evolution. Charge effects can be significant and further explorations are warranted.

  17. Muon-induced fission

    International Nuclear Information System (INIS)

    A review of recent experimental results on negative-muon-induced fission, both of 238U and 232Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238U. (author)

  18. Thermal fission rates with temperature dependent fission barriers

    CERN Document Server

    Zhu, Yi

    2016-01-01

    \\item[Background] The fission processes of thermal excited nuclei are conventionally studied by statistical models which rely on inputs of phenomenological level densities and potential barriers. Therefore the microscopic descriptions of spontaneous fission and induced fission are very desirable for a unified understanding of various fission processes. \\item[Purpose] We propose to study the fission rates, at both low and high temperatures, with microscopically calculated temperature-dependent fission barriers and mass parameters. \\item[Methods] The fission barriers are calculated by the finite-temperature Skyrme-Hartree-Fock+BCS method. The mass parameters are calculated by the temperature-dependent cranking approximation. The thermal fission rates can be obtained by the imaginary free energy approach at all temperatures, in which fission barriers are naturally temperature dependent. The fission at low temperatures can be described mainly as a barrier-tunneling process. While the fission at high temperatures ...

  19. Fission product release and thermal behaviour

    International Nuclear Information System (INIS)

    Release of fission products from the fuel matrix is an important aspect in relation to performance and safety evaluations. Of particular importance amongst fission products are the isotopes of iodine for radiological considerations and the isotopes of xenon and krypton for fuel thermal behaviour. It is believed that the main mechanism for fission gas release is diffusion but the magnitudes of the relevant diffusion coefficients, which exhibit strong temperature dependences, are not well established. The conductivity of the main gaseous fission product, xenon, is much lower than that of the fill gas helium and hence fission gas release may lead to a deterioration of the fill gas conductivity resulting in higher fuel temperatures and consequently higher fission product release. The two effects, thermal response of fuel to fill gas composition and fission gas/product release are thus intimately connected and have been investigated in a number of instrumented fuel assemblies in the Halden reactor. In such an assembly, the instrumentation includes fuel centre thermocouples, pressure sensors and neutron detectors. In addition pins in the assembly may be swept, whilst at power, with various gases, for example Xe, He or Ar or mixtures thereof. A gamma spectrometer is incorporated into the gas circuit to facilitate the performance of on-line fission product release measurements. At various stages in the lifetime of the assembly thermal tests and fission product release measurements have been made. At low operating temperatures and up to moderate burn-ups, no major fuel restructuring phenomena have been observed and consequently the fission product release has remained at low level dictated by the exposed surfaces of the fuel. Axial gas flow measurements indicate that fuel cracking and irreversible relocation occurred as early as the first ramps to power. The processes have continued throughout life and an absence of any change in response pressurization tests indicates that

  20. Fission Measurements with Dance

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Clement, R. R.; Couture, A.; O'Donnell, J. M.; Haight, R. C.; Keksis, A. L.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Agvaanluvsan, U.; Dashdorj, D.; Macri, R. A.; Parker, W. E.; Wilk, P. A.; Wu, C. Y.; Becker, J. A.; Angell, C. T.; Tonchev, A. P.; Baker, J. D.

    2008-08-01

    Neutron capture cross section measurements on actinides are complicated by the presence of neutron-induced fission. An efficient fission tagging detector used in coincidence with the Detector for Advanced Neutron Capture Experiments (DANCE) provides a powerful tool in undertaking simultaneous measurements of (n,γ) and (n,f) cross sections. Preliminary results on 235U(n,γ) and (n,f) and 242mAm(n,f) cross sections measured with DANCE and a custom fission-tagging parallel plate avalanche counter (PPAC) are presented. Additional measurements of γ-ray cluster multiplicity distributions for neutron-induced fission of 235U and 242mAm and spontaneous fission of 252Cf are shown, as well as γ-ray energy and average γ-ray energy distributions.

  1. Antiproton Induced Fission and Fragmentation of Nuclei

    CERN Multimedia

    2002-01-01

    The annihilation of slow antiprotons with nuclei results in a large highly localized energy deposition primarily on the nuclear surface. \\\\ \\\\ The study of antiproton induced fission and fragmentation processes is expected to yield new information on special nuclear matter states, unexplored fission modes, multifragmentation of nuclei, and intranuclear cascades.\\\\ \\\\ In order to investigate the antiproton-nucleus interaction and the processes following the antiproton annihilation at the nucleus, we propose the following experiments: \\item A)~Measurement of several fragments from fission and from multifragmentation in coincidence with particle spectra, especially neutrons and kaons. \\item B)~Precise spectra of $\\pi$, K, n, p, d and t with time-of-flight techniques. \\item C)~Installation of the Berlin 4$\\pi$ neutron detector with a 4$\\pi$ Si detector placed inside for fragments and charged particles. This yields neutron multiplicity distributions and consequently distributions of thermal excitation energies and...

  2. Measurement of MA fission cross sections at YAYOI

    Energy Technology Data Exchange (ETDEWEB)

    Ohkawachi, Yasushi; Ohki, Shigeo; Wakabayashi, Toshio [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    Fission cross section ratios of minor actinide nuclides (Am-241, Am-243) relative to U-235 in the fast neutron energy region have been measured using a back-to-back (BTB) fission chamber at YAYOI fast neutron source reactor. A small BTB fission chamber was developed to measure the fission cross section ratios in the center of the core at YAYOI reactor. Dependence of the fission cross section ratios on neutron spectra was investigated by changing the position of the detector in the reactor core. The measurement results were compared with the fission cross sections in the JENDL-3.2, ENDF/B-VI and JEF-2.2 libraries. It was found that calculated values of Am-241 using the JENDL-3.2, ENDF/B-VI and JEF-2.2 data are lower by about 15% than the measured value in the center of the core (the neutron average energy is 1.44E+6(eV)). And, good agreement can be seen the measured value and calculated value of Am-243 using the JENDL-3.2 data in the center of the core (the neutron average energy is 1.44E+6)(eV), but calculated values of Am-243 using the ENDF/B-VI and JEF-2.2 data are lower by 11% and 13% than the measured value. (author)

  3. Geometrical and statistical factors in fission of small metal clusters

    CERN Document Server

    Obolensky, O I; Solovyov, A V; Greiner, W

    2005-01-01

    Fission of metastable charged univalent metal clusters has been studied on example of Na_{10}^{2+} and Na_{18}^{2+} clusters by means of density functional theory methods. Energetics of the process, i.e. dissociation energies and fission barriers, as well as its dynamics, i.e. fission pathways, have been analyzed. The dissociation energies and fission barriers have been calculated for the full range of fission channels for the Na_{10}^{2+} cluster. The impact of cluster structure on the fission process has been elucidated. The calculations show that the geometry of the smaller fragment and geometry of its immediate neighborhood in the larger fragment play a leading role in defining the fission barrier height. The present study demonstrates importance of rearrangement of the cluster structure during fission. It may include forming a neck between the two fragments or fissioning via another isomer state of the parent cluster; examples of such processes are given. For several low-lying isomers of Na_{10}^{2+} clu...

  4. Laser Inertial Fusion-based Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    OpenAIRE

    Kramer, Kevin James

    2010-01-01

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by ...

  5. A Time Projection Chamber for High Accuracy and Precision Fission Cross Section Measurements

    CERN Document Server

    Heffner, M; Baker, R G; Baker, J; Barrett, S; Brune, C; Bundgaard, J; Burgett, E; Carter, D; Cunningham, M; Deaven, J; Duke, D L; Greife, U; Grimes, S; Hager, U; Hertel, N; Hill, T; Isenhower, D; Jewell, K; King, J; Klay, J L; Kleinrath, V; Kornilov, N; Kudo, R; Laptev, A B; Leonard, M; Loveland, W; Massey, T N; McGrath, C; Meharchand, R; Montoya, L; Pickle, N; Qu, H; Riot, V; Ruz, J; Sangiorgio, S; Seilhan, B; Sharma, S; Snyder, L; Stave, S; Tatishvili, G; Thornton, R T; Tovesson, F; Towell, D; Towell, R S; Watson, S; Wendt, B; Wood, L; Yao, L

    2014-01-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4$\\pi$ acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  6. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  7. Fission reactor critical experiments and analysis

    International Nuclear Information System (INIS)

    Work accomplished in support of nonweapons programs by LASL Group Q-14 is described. Included are efforts in basic critical measurements, nuclear criticality safety, a plasma core critical assembly, and reactivity coefficient measurements

  8. Studies of light charged particle emission from fission and ER reactions in the system 344 MeV sup 2 sup 8 Si+ sup 1 sup 2 sup 1 Sb-> sup 1 sup 4 sup 9 Tb (E sup * =240 MeV)

    CERN Document Server

    Kaplan, M; De Young, P A; Gilfoyle, G J; Karol, P J; Moses, D J; Parker, W E; Rehm, K E; Sarafa, J; Vardaci, E

    2001-01-01

    Light charged particles (LCP) have been measured for the reaction 344 MeV sup 2 sup 8 Si+ sup 1 sup 2 sup 1 Sb in singles and in coincidence with evaporation residues (ER), fusion-fission fragments (FF), and other LCP. A major feature of this experiment was the use of a gas-filled magnetic spectrometer in the forward direction to separate ER from the much more abundant yield of elastically scattered projectiles and projectile-like fragments. The dominant sources of evaporative sup 1 H and sup 4 He emission are the ER (approximately 75%), with the remainder being largely associated with fission reactions. For these latter reactions, most of the sup 1 H and sup 4 He can be well accounted for by evaporation from the composite system prior to fission and by evaporation from the postfission fragments. LCP emission cross sections were determined for each identified source, and a comparison has been made to previous studies. From this comparison, indications were found for significant entrance channel effects, with ...

  9. Energy dissipation in the cold fission of 252Cf

    International Nuclear Information System (INIS)

    The conversion of energy of collective nuclear motion into internal single particle excitation energy is one of the modes of nuclear energy dissipation. Dissipation and its relation to pair breaking is one of the challenges in nuclear field. A characteristic of low energy fission is odd-even effect. Odd-even staggering in the mass or charge yields and in the total kinetic energies will be of useful to analyze dissipation energy. The odd even effects in the charge distribution of cold fission fragments can be analysed to extract information on the energy dissipation during the passage from the first potential well towards the scission point through the fission barrier. The Q value during a fission process is decomposed into the total kinetic and excitation energies (TKE and TXE)

  10. Double-energy double-velocity measurement system for fission fragments and its application

    International Nuclear Information System (INIS)

    A new system of double-energy double-velocity (DEDV) measurement for fission fragments has been developed. In this system, the energies of fission fragments are measured by silicon surface barrier detectors (SSB) and the velocities by the time-of-flight (TOF) method utilizing thin film detectors (TFD) as start detectors and SSBs as stop detectors of TOF. Theoretical and experimental studies on TFDs and SSBs have been performed before the construction of the DEDV measurement system. The TFD consists of a thin plastic scintillator film and light guide. The author proposes a new model of the luminescence production in a scintillator film. This model takes into account the thickness of the scintillator film and uses only one parameter. The calculated TFD response to charged particles shows good agreement with other experiments. The dependence of the TFD response to the thickness of the scintillator film has been studied experimentally and analyzed by the luminescence production model. The results of this analysis shows the validity of the luminescence production model. The time resolution of the DEDV measurement system using TFDs and SSBs was 133 ps. As an application of this system, the DEDV measurement for the thermal neutron-induced fission of 233U has been carried out at the super mirror neutron guide tube facility of Kyoto University Reactor (KUR). The energy and velocity of each fission fragment have been stored on magnetic disk event by event in a list mode. The analyzed results of masses, energies and velocities of light and heavy fragments agree well with other authors' works. The value of the total neutron emission number is 2.53 and shows good agreement within experimental error, with the JENDL-2 value, 2.49. The light fragment shows a slightly greater number of neutrons emitted than the other works. This suggests the possibility of larger deformation of light fragments at the scission point. (author)

  11. Preliminary three-dimensional neutronics design and analysis of helium-cooled blanket for a multi-functional experimental fusion-fission hybrid reactor%多功能聚变裂变混合实验堆FDS-MFX氦冷包层三维中子学初步设计与分析

    Institute of Scientific and Technical Information of China (English)

    刘金超; FDS团队; 金鸣; 王明煌; 蒋洁琼; 王国忠; 邱岳峰; 宋婧; 邹俊; 吴宜灿

    2011-01-01

    FDS-MFX(Multi-Functional eXperimental fusion-fission hybrid reactor)是一个基于现实可行技术的多功能聚变裂变混合实验堆概念,分3个阶段相继开展实验研究,分别采用纯氚增殖包层、铀燃料包层和乏燃料包层.本文重点对其中铀燃料包层后期阶段中高浓缩铀模块的摆放方式和尺寸进行优化,给出一个区平均最大功率密度约为100 MW/m3,235U装料量约为1 t,氚增殖率为1.05的三维初步中子学方案.%A multi-functional experimental fusion-fission hybrid reactor concept named FDS-MFX , which is based on viable fusion and fission technologies, has been proposed. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this paper,the design optimization for the layout and the size of high enriched uranium modules inlater stage of uranium-fueled blanket has been performed.Finally,proposing a preliminarythree-dimension neutronies design with maximum average Power Density(Pdmax)100 MW/m3,loaded mass of the 235U 1 000 kg and TBR(Tritium Breeding Ratio)1.05.

  12. Role of energy cost in the yield of cold ternary fission of 252Cf

    Indian Academy of Sciences (India)

    P V Kunhikrishnan; K P Santhosh

    2013-01-01

    The energy costs in the cold ternary fission of 252Cf for various light charged particle emission are calculated by includingWong's correction for Coulomb potential. Energy cost is found to be higher in cold fission than in normal fission. It is found that energy cost always increases with decrease in experimental yield in all the light charged particle emissions. The higher ground state deformation of the fragments, the odd–even effect and the enhanced yield in the octupole region observed in cold fission are found to be consistent with the concept of energy cost.

  13. Distribution of fission products in graphite sleeves and blocks of the eleventh and twelfth OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    The 11th and 12th fuel assemblies were irradiated in an in-pile gas loop, OGL-1, installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Distribution of fission products in the graphite sleeves and blocks of the assemblies was measured by gamma-ray spectrometry. The 11th fuel assembly was aimed at testing the irradiation performance of mass product fuels in trial manufacturing of the first charge fuel for the High Temperature Engineering Test Reactor (HTTR) in relatively short irradiation, and the 12th assembly in long-term irradiation. The 12th assembly attained a burnup approximately as high as that of the HTTR driver fuel design. In the graphite sleeve of the 11th assembly, high concentration peaks of fission products were found in the axial distribution. Exposure of failed fuel particles was not detected on the surface of fuel compacts, while fissures of graphite matrix at overcoat boundaries were observed on the surface. These results led to a presumption that fission products, which were released from failed particles located inside of the fuel compact, was easily transported through the fissures of the matrix to the inner surface of the sleeve. In the graphite sleeve of the 12th assembly, 110mAg was detected together with other fission products of 137Cs, 134Cs etc. Silver-110m showed characteristic distribution: this nuclides was less concentrated at the region with highly concentrated 60Co which is presumed to have been transported from melted sheath material of thermocouples to the graphite sleeve. It was inferred from the distribution that the transport behavior of 110mAg had been influenced by co-sorption or by pore structure change in the graphite material of the sleeve, which had been induced by metallic elements including cobalt. (author)

  14. Distribution of fission products in graphite sleeves and blocks of the eleventh and twelfth OGL-1 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kimio; Fukuda, Kousaku; Kikuchi, Teruo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuruta, Harumichi

    1994-06-01

    The 11th and 12th fuel assemblies were irradiated in an in-pile gas loop, OGL-1, installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Distribution of fission products in the graphite sleeves and blocks of the assemblies was measured by gamma-ray spectrometry. The 11th fuel assembly was aimed at testing the irradiation performance of mass product fuels in trial manufacturing of the first charge fuel for the High Temperature Engineering Test Reactor (HTTR) in relatively short irradiation, and the 12th assembly in long-term irradiation. The 12th assembly attained a burnup approximately as high as that of the HTTR driver fuel design. In the graphite sleeve of the 11th assembly, high concentration peaks of fission products were found in the axial distribution. Exposure of failed fuel particles was not detected on the surface of fuel compacts, while fissures of graphite matrix at overcoat boundaries were observed on the surface. These results led to a presumption that fission products, which were released from failed particles located inside of the fuel compact, was easily transported through the fissures of the matrix to the inner surface of the sleeve. In the graphite sleeve of the 12th assembly, {sup 110m}Ag was detected together with other fission products of {sup 137}Cs, {sup 134}Cs etc. Silver-110m showed characteristic distribution: this nuclides was less concentrated at the region with highly concentrated {sup 60}Co which is presumed to have been transported from melted sheath material of thermocouples to the graphite sleeve. It was inferred from the distribution that the transport behavior of {sup 110m}Ag had been influenced by co-sorption or by pore structure change in the graphite material of the sleeve, which had been induced by metallic elements including cobalt. (author).

  15. Microscopic description of Cf-252 cold fission yields

    OpenAIRE

    Mirea, M.; Delion, D. S.; Sandulescu, A.

    2009-01-01

    We investigate the cold fission of 252Cf within the two center shell model to compute the potential energy surface. The fission yields are estimated by using the semiclassical penetration approach. It turns out that the inner cold valley of the total potential energy is strongly connected with Z=50 magic number. The agreement with experimental values is very much improved only by considering mass and charge asymmetry degrees of freedom. Thus, indeed cold fission of 252Cf is a Sn-like radioact...

  16. Systematic Characteristics of Fast Neutron Fission Cross Sections for Actinide Nuclei

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The neutron fission cross sections of actinide nuclei are important data for the design of nuclear reactor and nuclear engineering, and so on. So far, there has been a certain amount of experimental data for the fission cross sections of actinide nuclei. However,

  17. Reactor vessel stud cleaning machine

    International Nuclear Information System (INIS)

    A device is described for cleaning and decontaminating an elongate member having a three dimensional surface topography comprising: an enclosure; means for rotatingly supporting the elongate member proximate the ends thereof within the enclosure; means for driving the elongate member supporting means, to rotate the elongate member; a supply tank for holding water; a spray nozzle connected to the supply tank and disposed within the enclosure operable to move transversely with respect to the elongate member for spraying a cleaning agent comprising high pressure water and abrasive grit against the rotating elongate member; a self-contained means for supplying the cleaning agent to the spray nozzle and removing spent cleaning agent from the enclosure, the self-contained means including the supply tank and means for disposing of any contaminated solids in the spent cleaning agent. The means for disposing further comprises means for removing spent cleaning agent from the enclosure, means for removing solid particles from the spent cleaning agent and means for recycling water from the spent cleaning agent back to the spray nozzle; and a control system for selectively controlling at least one of the rate of rotation of the elongate member and rate of trasversal of the elongate member and by the spray nozzle in accordance with the topography of the elongate member

  18. Prompt Neutrons from Fission

    International Nuclear Information System (INIS)

    A survey is given of the present state of knowledge of the spectrum, angular distribution and number of prompt fission neutrons, as functions of incident neutron energy and individual fragment mass, for low-energy fission. The energy spectrum of prompt neutrons has been found to be of the same form (nearly Maxwellian) for many different types of fission. It has been shown that this type of spectrum is to be expected on the basis of evaporation from moving fragments, and theoretical predictions of the spectrum agree very accurately with experimental data. Some data are now available on the variation of the neutron spectrum with fragment mass and angle of emission. Only recently has it become possible to take accurate data on the angular distribution of the neutrons. It appears that the neutrons have the angular distribution to be expected if emitted almost isotropically from the moving fragments, with a possibility that some small fraction are not emitted in this way, but directly from the fissioning nuclide. Much work has been done on the variation of fission neutron number v with incident neutron energy for neutron-induced fission. The neutron number increases roughly linearly with energy, with a slope of about 0.15 n/MeV. There is now evidence that this slope changes somewhat with energy. This change must be associated with other changes in the-fission process. The most interesting recent discovery concerning fission neutrons is the strong dependence of neutron number on individual fragment mass. The data are being rapidly improved by means of the newer techniques of determining fragment mass yields from velocity and pulse-height data, and of determining neutron yields from cumulative mass yields. There is evidence of similar dependence of neutron yield on fragment mass in a number of cases. It has been suggested that this property is directly connected with the deformability of the fragments, and in particular with the near-spherical shapes of magic

  19. TMI-2 (Three Mile Island) fission product inventory program: FY-85 status report

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S; Croney, S T; Akers, D W; Russell, M L

    1986-11-01

    This report presents the status of the TMI-2 fission product inventory program through May 1985. The fission product inventory program is an assessment of the location of fission products distributed in the plant as a result of the TMI-2 accident. Included in this report are principal results of samples from the reactor building where most of the mobile fission products (i.e., radiocesium and iodine) are expected to be found. The data are now complete enough for most reactor components; therefore, it is possible to direct the balance of the examination and sampling program to areas and components where it is likely to be most productive. Those areas are the reactor core and the reactor building basement, with emphasis on the currently unsampled portions of the core.

  20. A Two-Phase Cooling Loop for Fission Surface Power Waste Heat Transport Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current lunar-based Fission Surface Power (FSP) Systems that will support sustained surface outposts consist of a nuclear reactor with power converters, whose waste...

  1. Accurate fission data for nuclear safety

    CERN Document Server

    Solders, A; Jokinen, A; Kolhinen, V S; Lantz, M; Mattera, A; Penttila, H; Pomp, S; Rakopoulos, V; Rinta-Antila, S

    2013-01-01

    The Accurate fission data for nuclear safety (AlFONS) project aims at high precision measurements of fission yields, using the renewed IGISOL mass separator facility in combination with a new high current light ion cyclotron at the University of Jyvaskyla. The 30 MeV proton beam will be used to create fast and thermal neutron spectra for the study of neutron induced fission yields. Thanks to a series of mass separating elements, culminating with the JYFLTRAP Penning trap, it is possible to achieve a mass resolving power in the order of a few hundred thousands. In this paper we present the experimental setup and the design of a neutron converter target for IGISOL. The goal is to have a flexible design. For studies of exotic nuclei far from stability a high neutron flux (10^12 neutrons/s) at energies 1 - 30 MeV is desired while for reactor applications neutron spectra that resembles those of thermal and fast nuclear reactors are preferred. It is also desirable to be able to produce (semi-)monoenergetic neutrons...

  2. Molten-Salt Depleted-Uranium Reactor

    OpenAIRE

    Dong, Bao-Guo; Dong, Pei; Gu, Ji-Yuan

    2015-01-01

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results...

  3. Fission gas release from uranium dioxide in high temperature transients

    International Nuclear Information System (INIS)

    The experiments described in this thesis investigate the kinetics and mechanisms for release of inert fission gases from irradiated fuel (uranium dioxide) during temperature transients, occuring in AGR type and PWR type reactors. A description is given of the fundamental physical properties of uranium dioxide with particular emphasis placed on the effects of irradiation damage and the build-up of fission product concentrations. A brief review is given of the principle mechanisms by which gases are thought to be released, covering both thermal and irradiation induced processes. The main design features of the Civil Advanced Gas Cooled Reactor (CAGR) and Pressurised Water Reactor (PWR) systems, concentrating on the specifications and normal operating conditions of the uranium dioxide fuel. This is followed by a brief description of the conditions anticipated during postulated reactor malfunctions. Two classes of fault are considered, in which the fuel temperature increases through loss of coolant efficiency or a rise in heat generation rate. (author)

  4. Initial Back-to-Back Fission Chamber Testing in ATRC

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Chase; Troy Unruh; Joy Rempe

    2014-06-01

    Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

  5. Structural materials for fission & fusion energy

    Directory of Open Access Journals (Sweden)

    Steven J. Zinkle

    2009-11-01

    Full Text Available Structural materials represent the key for containment of nuclear fuel and fission products as well as reliable and thermodynamically efficient production of electrical energy from nuclear reactors. Similarly, high-performance structural materials will be critical for the future success of proposed fusion energy reactors, which will subject the structures to unprecedented fluxes of high-energy neutrons along with intense thermomechanical stresses. Advanced materials can enable improved reactor performance via increased safety margins and design flexibility, in particular by providing increased strength, thermal creep resistance and superior corrosion and neutron radiation damage resistance. In many cases, a key strategy for designing high-performance radiation-resistant materials is based on the introduction of a high, uniform density of nanoscale particles that simultaneously provide good high temperature strength and neutron radiation damage resistance.

  6. Fast reactor programme

    International Nuclear Information System (INIS)

    This progress report summarises the fast reactor research carried out at the Netherlands Energy Research Centre during the year 1981. The neutron and fission product cross sections of various isotopes have been evaluated. In the fuel performance programme, some preliminary results are given and irradiation facilities described. Creep experiments on various stainless steel components are reported

  7. Experimental determination of the antineutrino spectrum of the fission products of {sup 238}U

    Energy Technology Data Exchange (ETDEWEB)

    Haag, Nils-Holger

    2013-10-09

    Fission of {sup 238}U contributes about 10 % to the antineutrino emission of a pressurized water reactor. In the present thesis, the beta spectrum of the fission products of {sup 238}U was determined in an experiment at the neutron source FRM II. This beta spectrum was subsequently converted into an antineutrino spectrum. This first measurement of the antineutrino spectrum supports all current and future reactor antineutrino experiments.

  8. Simultaneous Evaluation of Fission Cross Sections for Cm Isotopes

    Directory of Open Access Journals (Sweden)

    Lee Y.-O.

    2010-03-01

    Full Text Available Fission Cross Sections for a complete set of Cm-isotopes, 240-250Cm, have been calculated in the incident energy range from above resonance region to 20 MeV. This work aims at providing the fission cross sections with consistent set of model parameters for Cm isotopes, as a part of a complete evaluation including covariance files for several minor actinides which play a great role in the Advanced Fuel Cycle (AFC design and applications as well as the design of new generation of nuclear reactors (GEN-IV. This was accomplished by means of computational analyses carried out with the nuclear model code EMPIRE-2.19 which is the modular system of nuclear reaction codes. A Fission model of this work took into account transmission derived in the WKB approximation within an optical model through a double-humped fission barrier.

  9. Fission product release from highly irradiated LWR fuel

    International Nuclear Information System (INIS)

    A series of experiments was conducted with highly irradiated light-water reactor fuel rod segments to investigate fission products released in steam in the temperature range 500 to 12000C. (Two additional release tests were conducted in dry air.) The primary objectives were to quantify and characterize fission product release under conditions postulated for a spent-fuel transportation accident and for a successfully terminated loss-of-coolant accident (LOCA). In simulated, controlled LOCA-type tests, release at the time of rupture proved to be more significant than the diffusional release that followed. Comparison of the release data for the dry-air tests with the release data of similarly conducted tests in steam indicated significant increases in the releases of iodine, ruthenium, and cesium in air. Various parameters that affect fission product release are discussed, and experimental observations and analysis of the chemical behavior of releasable fission products in inert, steam, and dry-air atmospheres are examined

  10. Solar vs. Fission Surface Power for Mars

    Science.gov (United States)

    Rucker, Michelle A.; Oleson, Steve; George, Pat; Landis, Geoffrey A.; Fincannon, James; Bogner, Amee; Jones, Robert E.; Turnbull, Elizabeth; Martini, Michael C.; Gyekenyesi, John Z.; Colozza, Anthony J.; Schmitz, Paul C.; Packard, Thomas W.

    2016-01-01

    crewed expedition mission. Unlike the demonstration mission, a lengthy power outage due to the global dust storms that are known to occur on Mars would pose a safety hazard to a crewed mission. A similar fission versus solar power trade study performed by NASA in 2007 concluded that fission power was more reliable-with a much lower mass penalty-than solar power for this application. However, recent advances in solar cell and energy storage technologies and changes in operational assumptions prompted NASA to revisit the analysis. For the purpose of this exercise a particular landing site at Jezero Crater, located at 18o north latitude, was assumed. A fission power system consisting of four each 10 kW Kilopower fission reactors was compared to a distributed network of Orion-derived Ultraflex solar arrays and Lithium ion batteries mounted on every lander. The team found that a solar power system mass of about 9,800 kg would provide the 22 kilowatts (kW) keep-alive power needed to survive a dust storm lasting up to 120-days at average optical depth of 5, and 35 kW peak power for normal operations under clear skies. Although this is less than half the mass estimated during the 2007 work (which assumed latitudes up to 30o) it is still more than the 7,000 kg mass of the fission system which provides full power regardless of dust storm conditions.

  11. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions

  12. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  13. Comparison of Fission Product Yields and Their Impact

    Energy Technology Data Exchange (ETDEWEB)

    S. Harrison

    2006-02-01

    This memorandum describes the Naval Reactors Prime Contractor Team (NRPCT) Space Nuclear Power Program (SNPP) interest in determining the expected fission product yields from a Prometheus-type reactor and assessing the impact of these species on materials found in the fuel element and balance of plant. Theoretical yield calculations using ORIGEN-S and RACER computer models are included in graphical and tabular form in Attachment, with focus on the desired fast neutron spectrum data. The known fission product interaction concerns are the corrosive attack of iron- and nickel-based alloys by volatile fission products, such as cesium, tellurium, and iodine, and the radiological transmutation of krypton-85 in the coolant to rubidium-85, a potentially corrosive agent to the coolant system metal piping.

  14. FALSTAFF: A new tool for fission studies

    Directory of Open Access Journals (Sweden)

    Dore D.

    2013-12-01

    Full Text Available The future NFS installation will produce high intensity neutron beams from hundreds of keV up to 40 MeV. Taking advantage of this facility, data of particular interest for the nuclear community in view of the development of the fast reactor technology will be measured. The development of an experimental setup called FALSTAFF for a full characterization of actinide fission fragments has been undertaken. Fission fragment isotopic yields and associated neutron multiplicities will be measured as a function of the neutron energy. Based on time-of-flight and residual energy technique, the setup will allow the simultaneous measurement of the complementary fragments velocity and energy. The performances of TOF detectors of FALSTAFF will be presented and expected resolutions for fragment masses and neutron multiplicities, based on realistic simulations, will be shown.

  15. Data summary report for fission product release test VI-4

    International Nuclear Information System (INIS)

    This was the fourth in a series of high-temperature fission product release tests in a vertical test apparatus. The test specimen, a 15.2-cm-long section of a fuel rod from the BR3 reactor in Belgium, had been irradiated to a burnup of 47 MWd/kg. In simulation of a severe accident in a light-water reactor, it was heated in hydrogen in a hot cell-mounted test apparatus to a maximum test temperature of 2400 K for a period of 20 min. The released fission products were collected on components designed to facilitate sampling and analysis. On-line radioactivity measurements and posttest inspection revealed that the fuel had partially collapsed at about the time the cladding melted. Based on fission product inventories measured in the fuel or calculated by ORIGEN2, analyses of test components showed total releases from the fuel of 85% for 85Kr, 106Ru, 3.9% for 125Sb, 96% for both 134Cs and 137Cs, and 13% for 154Eu. Large fractions of the released fission products (up to 96% of the 154Eu) were retained in the furnace. Small release fractions for several other fission products -- Rb, Br, Sr, Te, I, and Ba -- were detected also. In addition, very small amounts of fuel material -- uranium and plutonium -- were released. Total mass release from the furnace to the collection system, which included fission products, fuel material, and structural materials, was 0.40g, with 40% of this material being deposited as vapor and 60% of it being collected as aerosols. The results from this test were compared with previous tests in this series and with an in-pile test at similar conditions at Sandia National Laboratories. There was no indication that the mode of heating (fission heat vs radiant heat) significantly affected fission product release. 24 refs., 25 figs., 14 tabs

  16. Waste treatment of fission product solutions containing aluminium nitrate

    International Nuclear Information System (INIS)

    In the Rossendorf molybdenum-99 production facility AMOR short-term irradiated aluminium clad fuel elements from the Rossendorf Research Reactor are reprocessed. Following extractive recovery of the enriched uranium the facility system has to be disposed of the fission product-Al(NO3)3 solution. Investigations on waste conditioning of such solutions are presented. (author)

  17. Final report on ARPA fission yield project work at Battelle-Northwest, April 1970--April 1973

    International Nuclear Information System (INIS)

    The overall objective has been to measure the independent and cumulative fission yields of selected halogen and rare gas nuclides for application to characterization of underground nuclear detonations. The studies have included fission yield measurements for thermal, fission spectrum, and 15 MeV neutron-induced fission events. Target materials included 235U, 238U and 239Pu. The research effort was divided into two basic parts. In one part, the nuclides of interest were separated radiochemically and determined by gamma-ray spectrometry. This approach provides information on the independent and cumulative yields of nuclides with half-lives of a few seconds or greater. The second part of our effort involved the use of on-line mass separation techniques. This approach yields information on independent fission yields of nuclides with half-lives ranging down to fractions of a second and provides data on all significant isotopes of a given fission product element in one set of measurements. The main effort in the radiochemistry program was centered on measurements of the cumulative fission yield of 89Kr. Cumulative fission yields of 89Kr were measured for thermal-neutron fission of 239Pu and for fission-spectrum and 15-MeV neutron fission of 235U, 238U and 239Pu. In addition, cumulative fission yields of the other rare gas radionuclides, /sup 85m/Kr, 87Kr, 88Kr, 137Xe, 138Xe, were measured for the same fission type events. Fractional independent yields of 89Rb and 138Cs were also measured for a limited number of fission systems. On-line mass spectrometer facilities were established at a Van de Graaff accelerator and at a nuclear reactor. Measurements were made of relative independent fission yields of rubidium isotopes of masses 89 through 97 and of cesium isotopes of masses 139 through 145.(U.S.)

  18. Current position on fission product behavior

    International Nuclear Information System (INIS)

    The following phenomena are treated and modeled: fission product release from fuel, both in-vessel and ex-vessel; fission product deposition in the primary system, fission product deposition in the containment, and fission product revolatization

  19. New Burnup Calculation System for Fusion-Fission Hybrid System

    International Nuclear Information System (INIS)

    Investigation of nuclear waste incineration has positively been carried out worldwide from the standpoint of environmental issues. Some candidates such as ADS, FBR are under discussion for possible incineration technology. Fusion reactor is one of such technologies, because it supplies a neutron-rich and volumetric irradiation field, and in addition the energy is higher than nuclear reactor. However, it is still hard to realize fusion reactor right now, as well known. An idea of combination of fusion and fission concepts, so-called fusion-fission hybrid system, was thus proposed for the nuclear waste incineration. Even for a relatively lower plasma condition, neutrons can be well multiplied by fission in the nuclear fuel, tritium is thus bred so as to attain its self-sufficiency, enough energy multiplication is then expected and moreover nuclear waste incineration is possible. In the present study, to realize it as soon as possible with the presently proven technology, i.e., using ITER model with the achieved plasma condition of JT60 in JAEA, Japan, a new calculation system for fusion-fission hybrid reactor including transport by MCNP and burnup by ORIGEN has been developed for the precise prediction of the neutronics performance. The author's group already has such a calculation system developed by them. But it had a problem that the cross section libraries in ORIGEN did not have a cross section library, which is suitable specifically for fusion-fission hybrid reactors. So far, those for FBR were approximately used instead in the analysis. In the present study, exact derivation of the collapsed cross section for ORIGEN has been investigated, which means it is directly evaluated from calculated track length by MCNP and point-wise nuclear data in the evaluated nuclear data file like JENDL-3.3. The system realizes several-cycle calculation one time, each of which consists of MCNP criticality calculation, MCNP fixed source calculation with a 3-dimensional precise

  20. Multipurpose research reactors

    International Nuclear Information System (INIS)

    The international symposium on the utilization of multipurpose research reactors and related international co-operation was organized by the IAEA to provide for information exchange on current uses of research reactors and international co-operative projects. The symposium was attended by about 140 participants from 36 countries and two international organizations. There were 49 oral presentations of papers and 24 poster presentations. The presentations were divided into 7 sessions devoted to the following topics: neutron beam research and applications of neutron scattering (6 papers and 1 poster), reactor engineering (6 papers and 5 posters), irradiation testing of fuel and material for fission and fusion reactors (6 papers and 10 posters), research reactor utilization programmes (13 papers and 4 posters), neutron capture therapy (4 papers), neutron activation analysis (3 papers and 4 posters), application of small reactors in research and training (11 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  1. When Machines Design Machines!

    DEFF Research Database (Denmark)

    2011-01-01

    Until recently we were the sole designers, alone in the driving seat making all the decisions. But, we have created a world of complexity way beyond human ability to understand, control, and govern. Machines now do more trades than humans on stock markets, they control our power, water, gas...... depend, all are now largely designed by machines. So what of us - will be totally usurped, or are we looking at a new symbiosis with human and artificial intelligences combined to realise the best outcomes possible. In most respects we have no choice! Human abilities alone cannot solve any of the major...... problems that confront our species, and machine intelligence is now an imperative. To get the very best results we have to use computer modelling, visualisation and decision support. This also turns out to be a route to new materials, processing, production and thinking that promises to revitalise our...

  2. Charge exchange system

    Science.gov (United States)

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  3. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    L Satpathy; S K Patra; R K Choudhury

    2008-01-01

    The fission decay of highly neutron-rich uranium isotopes is investigated which shows interesting new features in the barrier properties and neutron emission characteristics in the fission process. 233U and 235U are the nuclei in the actinide region in the beta stability valley which are thermally fissile and have been mainly used in reactors for power generation. The possibility of occurrence of thermally fissile members in the chain of neutron-rich uranium isotopes is examined here. The neutron number = 162 or 164 has been predicted to be magic in numerous theoretical studies carried out over the years. The series of uranium isotopes around it with = 154-172 are identified to be thermally fissile on the basis of the fission barrier and neutron separation energy systematics; a manifestation of the close shell nature of = 162 (or 164). We consider here the thermal neutron fission of a typical representative 249U nucleus in the highly neutron-rich region. Semiempirical study of fission barrier height and width shows that 250U nucleus is stable against spontaneous fission due to increase in barrier width arising out of excess neutrons. On the basis of the calculation of the probability of fragment mass yields and the microscopic study in relativistic mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neutron fission (multi-fragmentation fission) whereby a number of prompt scission neutrons are expected to be simultaneously released along with the two heavy fission fragments. Such properties will have important implications in stellar evolution involving -process nucleosynthesis.

  4. Fission dynamics of hot nuclei

    Indian Academy of Sciences (India)

    Santanu Pal; Jhilam Sadhukhan

    2014-04-01

    Experimental evidence accumulated during the last two decades indicates that the fission of excited heavy nuclei involves a dissipative dynamical process. We shall briefly review the relevant dynamical model, namely the Langevin equations for fission. Statistical model predictions using the Kramers’ fission width will also be discussed.

  5. Discoveries of isotopes by fission

    Indian Academy of Sciences (India)

    M Thoennessen

    2015-09-01

    Of the about 3000 isotopes presently known, about 20% have been discovered in fission. The history of fission as it relates to the discovery of isotopes as well as the various reaction mechanisms leading to isotope discoveries involving fission are presented.

  6. Compilation of fission product yields Vallecitos Nuclear Center

    International Nuclear Information System (INIS)

    This document is the ninth in a series of compilations of fission yield data made at Vallecitos Nuclear Center in which fission yield measurements reported in the open literature and calculated charge distributions have been utilized to produce a recommended set of yields for the known fission products. The original data with reference sources, as well as the recommended yields are presented in tabular form for the fissionable nuclides U-235, Pu-239, Pu-241, and U-233 at thermal neutron energies; for U-235, U-238, Pu-239, and Th-232 at fission spectrum energies; and U-235 and U-238 at 14 MeV. In addition, U-233, U-236, Pu-240, Pu-241, Pu-242, Np-237 at fission spectrum energies; U-233, Pu-239, Th-232 at 14 MeV and Cf-252 spontaneous fission are similarly treated. For 1979 U234F, U237F, Pu249H, U234He, U236He, Pu238F, Am241F, Am243F, Np238F, and Cm242F yields were evaluated. In 1980, Th227T, Th229T, Pa231F, Am241T, Am241H, Am242Mt, Cm245T, Cf249T, Cf251T, and Es254T are also evaluated

  7. Progress of China Experimental Fast Reactor in 2011

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    1 Background Fast reactor is the reactor which realized the chain fission with fast neutron.As an optional type of generation Ⅳ reactor,fast reactor has three characters:1) It can change 238U to 239Pu and raise the uranium resource utilization

  8. Fission product data library

    International Nuclear Information System (INIS)

    A library is described of data for 584 isotopes of fission products, including decay constants, branching ratios (both burn-up and decay), the type of emitted radiation, relative and absolute yields, capture cross sections for thermal neutrons, and resonance integrals. When a detailed decay scheme is not known, the mean energies of beta particles and neutrino and gamma radiations are given. In the ZVJE SKODA system the library is named BIBFP and is stored on film No 49 of the NE 803 B computer. It is used in calculating the inventory of fission products in fuel elements (and also determining absorption cross sections for burn-up calculations, gamma ray sources, heat generation) and in solving radioactivity transport problems in the primary circuit. It may also be used in the spectrometric method for burn-up determination of fuel elements. The library comprises the latest literary data available. It serves as the basis for library BIBGRFP storing group constants of fission products with independent yields of isotopes from fission. This, in turn, forms the basis for the BIBDN library collecting data on the precursors of delayed neutron emitters. (author)

  9. Characteristics of diallyl phthalate resin as a fission track detector

    CERN Document Server

    Tsuruta, T

    1999-01-01

    Diallyl phthalate (DAP) resin plates were irradiated with fission fragments, and then etched in aqueous solution of KOH. Etched tracks were observed and counted by using an optical microscope. The detection efficiency of fission fragments was about 100% for both perpendicular and random incidence. DAP plates were insensitive to alpha particles and fast neutrons. These characteristics are suitable for detecting selected fission fragments, which coexist with alpha particles or fast neutrons. DAP plates are valuable for quantitative analysis of fissionable materials and neutron dosimetry. DAP and allyl diglycol carbonate (CR-39) were formed into copolymers in various ratios. The copolymers showed intermediate characteristics between DAP and CR-39. The fabrication of the copolymers made it possible to control the discrimination level for detection of heavy charged particles.

  10. Prompt Emission in Fission Induced with Fast Neutrons

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Halipré, P.; Oberstedt, S.; Oberstedt, A.

    Prompt gamma-ray and neutron emission data in fission integrates a large amount of information on the fission process and can shed light on the partition of energy. Measured emission spectra, average energies and multiplicities also provide important information for energy applications. While current reactors mostly use thermal neutron spectra, the future reactors of Generation IV will use fast neutron spectra for which little experimental prompt emission data exist. Initial investigations on prompt emission in fast neutron induced fission have recently been carried out at the LICORNE facility at the IPN Orsay, which exploits inverse reactions to produce naturally collimated, intense beams of neutrons. We report on first results with LICORNE to measure prompt fission gamma-ray spectra, average energies and multiplicities for 235U and 238U. Current improvements and upgrades being carried out on the LICORNE facility will also be described, including the development of a H2 gas target to reduce parasitic backgrounds and increase intensities, and the deployment of 11B beams to extend the effective LICORNE neutron energy range up to 12 MeV. Prospects for future experimental studies of prompt gamma-ray and neutron emission in fast neutron induced fission will be presented.

  11. Dynamical features of nuclear fission

    Indian Academy of Sciences (India)

    Santanu Pal

    2015-08-01

    It is now established that the transition-state theory of nuclear fission due to Bohr and Wheeler underestimates several observables in heavy-ion-induced fusion–fission reactions. Dissipative dynamical models employing either the Langevin equation or equivalently the Fokker–Planck equation have been developed for fission of heavy nuclei at high excitations (T ∼1 MeV or higher). Here, we first present the physical picture underlying the dissipative fission dynamics. We mainly concentrate upon the Kramers’ prescription for including dissipation in fission dynamics. We discuss, in some detail, the results of a statistical model analysis of the pre-scission neutron multiplicity data from the reactions 19F+194,196,198Pt using Kramers’ fission width. We also discuss the multi-dimensional Langevin equation in the context of kinetic energy and mass distribution of the fission fragments.

  12. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  13. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  14. Modification of apparent fission yields by Chemical Fractionation following Fission (CFF)

    Science.gov (United States)

    Hohenberg, Charles; Meshik, Alex

    2008-04-01

    Grain-by-grain studies of the 2 billion year old Oklo natural reactor, using laser micro-extraction^1,2, yield detailed information about Oklo, a water-moderated pulsed reactor, cycle times, total neutron fluence and duration, but it also demonstrates Chemical Fractionation following Fission. In the CFF process, members of an isobaric yield chain with long half-lives are subject to migration before decay can occur. Of particular interest is the 129 isobar where 17 million ^129I can migrate out of the host grain before decay, and iodine compounds are water soluble. This is amply demonstated by the variation of Xe spectra between micron-sized uranium-bearing minerals and adjacent uranium-free minerals. Fission 129 yields for the spontaneous fission of ^238U generally come from measured ^129Xe in pitchblend^2, ores emplaced by aqueous activity, and are incorrect due to the CFF process. ^238U yields for the 131 and 129 chains, reported in Hyde^3, as 0.455 +- .02 and < 0.012, respectively, the latter being anomalously low. ^1A Meshik, C Hohenberg and O Pravdivtesva, PRL 93, 182302 (2004); A Meshik Sci. Am. Nov (2005), 55; ^2E K Hyde, Nucl Prop of Heavy Elements III (1964).

  15. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235U or 239Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  16. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    Directory of Open Access Journals (Sweden)

    Hambsch F.-J.

    2016-01-01

    Full Text Available In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL of the OECD/Nuclear Energy Agency (NEA. In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC. Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  17. Fission cross-sections, prompt fission neutron and γ-ray emission in request for nuclear applications

    Science.gov (United States)

    Hambsch, F.-J.; Salvador-Castiñeira, P.; Oberstedt, S.; Göök, A.; Billnert, R.

    2016-06-01

    In recent years JRC-IRMM has been investigating fission cross-sections of 240,242Pu in the fast-neutron energy range relevant for innovative reactor systems and requested in the High Priority Request List (HPRL) of the OECD/Nuclear Energy Agency (NEA). In addition to that, prompt neutron multiplicities are being investigated for the major isotopes 235U, 239Pu in the neutron-resonance region using a newly developed scintillation detector array (SCINTIA) and an innovative modification of the Frisch-grid ionisation chamber for fission-fragment detection. These data are highly relevant for improved neutron data evaluation and requested by the OECD/Working Party on Evaluation Cooperation (WPEC). Thirdly, also prompt fission γ-ray emission is investigated using highly efficient lanthanide-halide detectors with superior timing resolution. Again, those data are requested in the HPRL for major actinides to solve open questions on an under-prediction of decay heat in nuclear reactors. The information on prompt fission neutron and γ-ray emission is crucial for benchmarking nuclear models to study the de-excitation process of neutron-rich fission fragments. Information on γ-ray emission probabilities is also useful in decommissioning exercises on damaged nuclear power plants like Fukushima Daiichi to which JRC-IRMM is contributing. The results on the 240,242Pu fission cross section, 235U prompt neutron multiplicity in the resonance region and correlations with fission fragments and prompt γ-ray emission for several isotopes will be presented and put into perspective.

  18. Notifiable events in facilities for fission of nuclear fuels in the Federal Republic of Germany. Nuclear power plants and research reactors with a maximum continuous thermal output of more than 50 kW. Third quarterly report 1997

    International Nuclear Information System (INIS)

    The report presents the survey and the scenarios of events reported from nuclear power plant and research reactors with a rated thermal output above 50 kW, covering the 3rd quarter of 1997. (orig./CB)

  19. TRIGA research reactors

    International Nuclear Information System (INIS)

    TRIGA (Training, Research, Isotope production, General-Atomic) has become the most used research reactor in the world with 65 units operating in 24 countries. The original patent for TRIGA reactors was registered in 1958. The success of this reactor is due to its inherent level of safety that results from a prompt negative temperature coefficient. Most of the neutron moderation occurs in the nuclear fuel (UZrH) because of the presence of hydrogen atoms, so in case of an increase of fuel temperature, the neutron spectrum becomes harder and neutrons are less likely to fission uranium nuclei and as a consequence the power released decreases. This inherent level of safety has made this reactor fit for training tool in university laboratories. Some recent versions of TRIGA reactors have been designed for medicine and industrial isotope production, for neutron therapy of cancers and for providing a neutron source. (A.C.)

  20. Fission fragment angular distributions

    International Nuclear Information System (INIS)

    Recently a Letter appeared (Phys. Rev. Lett., 522, 414(1984)) claiming that the usual expression for describing the angula distribution of fission fragments from compound nuclear decay is not a necessarily valid limit of a more general expression. In this comment we wish to point out that the two expressions arise from distinctly different models, and that the new expression as used in the cited reference is internally inconsistent

  1. The indigenisation of Lubriplate 630-2 and development of Servo-Nuclease-2 grease for the fuelling machine of pressurised heavy water power reactors

    International Nuclear Information System (INIS)

    A new grease of NLGI-2 consistency was developed for application in nuclear environments. The evaluation consisted of both static tests employing a cobalt-60 γ-ray source and dynamic tests carried out on specially designed rigs in Fuelling Machine Vaults of RAPS. (auth.)

  2. Safe Affordable Fission Engine-(SAFE-) 100a Heat Exchanger Thermal and Structural Analysis

    Science.gov (United States)

    Steeve, B. E.

    2005-01-01

    A potential fission power system for in-space missions is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, a heat exchanger (HX) transfers the heat of the reactor core to the Brayton gas. The Safe Affordable Fission Engine- (SAFE-) 100a is a test program designed to thermally and hydraulically simulate a 95 Btu/s prototypic heat pipe-cooled reactor using electrical resistance heaters on the ground. This Technical Memorandum documents the thermal and structural assessment of the HX used in the SAFE-100a program.

  3. Resuspension of fission products from sump water

    International Nuclear Information System (INIS)

    Resuspension of fission products from the boiling sump in the container has long been known as a source of airborne radioactivity. Since this source is very weak, however, not much attention had been paid to it as long as radiological source terms were governed by stronger sources. Recently, the continuous reduction of source terms and the introduction of accident management measures led to a situation where weak but longlasting sources of radioactivity may become important, either as a contribution to the radiological sources term or as an impact to accident filtration systems. Existing data on resuspension from boiling contaminated water all suffered from two deficiencies: they were measured under conditions unlike those in a reactor accident and they scattered over more than two orders of magnitude. In a precursor study this uncertainty was considered to be too large to use the data for source term calculations. A later experimental research programme REST (REsuspension Source Term) was carried out at the Laboratorium fuer Aerosolphysik und Filtertechnik (LAF), Kernforschungszentrum Karlsruhe (KfK). The programme was supported by the Commission of the European Communities Ispra, under Contract No 3009-86-07 ELISPD in the framework of the shared-cost action programme on reactor safety. The investigations started in 1987 and ended in 1990. The objectives of the REST programme were to measure resuspension source characteristics under simulated accident conditions such that an application of the data in fission product transport and depletion models is possible

  4. Assessment of failed fuel and tramp uranium based on the activity of fission products in the primary circuit

    International Nuclear Information System (INIS)

    We have proposed a model for the nuclear fuel state of the operating power reactor from the physical characteristics of nuclear fission products which have been produced by nuclear reaction between neutron and uranium-235. The model equation for nuclear fission products release has been split into size independent steps: 1) calculation of the fission products generation inside the solid nuclear fuel, 2) release from the fuel to the fuel surface in three different ways, 3) release between the fuel surface and gap, 4) release from the defective nuclear fuel to the reactor coolant, 5) mass balance in the coolant taking into account the purification rate, 6) separation of fission products sources with two parts, i.e. fuel and tramp uranium. We have solved the equation of the model, calculated the activity of fission products released from the defected fuel to coolant and put the experimental activity data of the nuclear fission products in the primary coolant to determine the number of defective fuel and amount of tramp uranium by using the computer. The measurement and analysis of nuclear fission products in the primary coolant of nuclear power reactors have been carried out at the pressurized water reactor, Korea Nuclear Unit 2, 7 and 8. We have used the iodine isotopes among the nuclides of fission products. The analysis results have been well agreed with the results of diffusion model and of kinetics model. (author). 7 refs, 2 figs, 8 tabs

  5. Preliminary calculations of medium-energy fission cross sections and spectra

    International Nuclear Information System (INIS)

    Nucleon-induced fission cross sections determined from a statistical preequilibrium model are used in conjunction with a new scission-point model of fission fragment mass, charge and excitation energy distributions to produce evaporation model calculations of particle and gamma spectra and multiplicities from fission. Comparisons are made to experiment for the 14.5-MeV neutron-induced fission of 238U. In addition, calculated particle and gamma spectra will be compared with the ENDF/B library for 2- and 5-MeV neutron-induced fission of 235U and 238U, respectively. Initial predictions for these same quantities for proton-induced fission reactions at energies up to 100 MeV will be presented and discussed. 6 refs., 3 figs

  6. Results of fission products β decay properties measurement performed with a total absorption spectrometer

    Science.gov (United States)

    Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Agramunt, J.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Estévez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2014-03-01

    β-decay properties of fission products are very important for applied reactor physics, for instance to estimate the decay heat released immediately after the reactor shutdown and to estimate the bar ν flux emitted. An accurate estimation of the decay heat and the bar ν emitted flux from reactors, are necessary for purposes such as reactors operation safety and non-proliferation. In order to improve the precision in the prediction for these quantities, the bias due to the Pandemonium effect affecting some important fission product data has to be corrected. New measurements of fission products β-decay, not sensitive to this effect, have been performed with a Total Absorption Spectrometer (TAS) at the JYFL facility of Jyväskylä. An overview of the TAS technique and first results from the 2009 campaign will be presented.

  7. Economic implications of fusion-fission energy systems

    International Nuclear Information System (INIS)

    The principal conclusions that can be made based on the estimated costs reported in this paper are twofold. First, hybrid reactors operating symbiotically with conventional fission reactors are a potentially attractive supply alternative. Estimated hybrid energy system costs are slightly greater than estimated costs of the most attractive alternatives. However, given the technological, economic, and institutional uncertainties associated with future energy supply, differences of such magnitude are of little significance. Second, to be economically viable, hybrid reactors must be both fuel producers and electricity producers. A data point representing each hybrid reactor driver-blanket concept is plotted as a function of net electrical production efficiency and annual fuel production. The plots illustrate that the most economically viable reactor concepts are those that produce both fuel and electricity

  8. Proton-induced fission of heavy nuclei at intermediate energies

    CERN Document Server

    Deppman, A; Guimaraes, V; Karapetyan, G S; Balabekyan, A R; Demekhina, N A

    2013-01-01

    The intermediate energy proton-induced fission of 241Am, 238$U and 237$Np is studied. The inelastic interactions of protons and heavy nuclei are described by a CRISP model, in which the reaction proceeds in two steps. The first one corresponds fast cascade, where a series of individual particle-particle collisions occurs within the nucleus. It leaves a highly excited cascade residual nucleus, assumed to be in thermal equilibrium. Subsequently, in the second step the excited nucleus releases its energy by evaporation of neutrons and light charged particles as well. Both the symmetric and asymmetric fission are regarded, and the fission probabilities are obtained from CRISP code calculations, by means of statistical weighting factors. The fission cross sections, the fissility of the fissioning nuclei, and the number of nucleons lost by the target - before and after fission - are calculated and compared to experiments for 660 MeV protons incident on 241Am, 238$U and 237$Np. Some of the model predictions are in f...

  9. Phebus FP: fission product behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Lewi, J.; Schwarz, M. [Inst. de Protection et de Surete Nucleaire (IPSN), Dept. de Recherche en Securite, Saint Paul les Durance (France); Hardt, P. von der [European Commission, Joint Research Center, Inst. for Systems, Informatics and Safety (Isis), Saint Paul les Durance (France)

    1998-02-01

    The ongoing Phebus FP programme is the centrepiece of a wide international co-operation investigating, through a series of six integral in-pile experiments, key-phenomena involved in the progression of a postulated severe accident in a Light Wate Reactor (LWR). The Phebus facility offers the capability to study the degradation of real core material, from the early phase of cladding oxidation and hydrogen production up to the late phase of melt progression and molten pool formation. The subsequent release of fission products and structural materials is also experimentally studied, including their transport in the cooling system, and their deposition in the containment, under representative physicochemical conditions. The volatility of iodine in the containment is in particular receiving a special interest in the first experiments, as large uncertainties related to its modelling subsist. FPT-0 and FPT-1, performed respectively in December 1993 and July 1996, have reached very advanced states of degradation, comparable to what was observed in TMI-2, and generated a wealth of results on core degradation and fission product behaviour in particular, pool formation was obtained for a temperature well below the melting point of (U, Zr) O{sub 2} and volatile forms of iodine were detected in the containment much earlier than expected. The resulting database is used to develop and validate the computer codes used to assess the safety of the currently operating plants, to check the efficiency of accident management procedures and also support the design of future plants as EPR. (orig.) [Deutsch] Das laufende Phebus-FP-Programm ist das Herzstueck einer weiten internationalen Zusammenarbeit, durch eine Serie von sechs realitaetsnahen Experimenten die Schluesselphaenomene zu erforschen, die fuer die Ausbreitung eines unterstellten schweren Unfalls in einem Leichtwasserreaktor (LWR) verantwortlich sind. Die Phebus-Anlage in Cadarache ermoeglicht die Untersuchung der Veraenderung

  10. BR2 Reactor: Introduction

    International Nuclear Information System (INIS)

    The irradiations in the BR2 reactor are in collaboration with or at the request of third parties such as the European Commission, the IAEA, research centres and utilities, reactor vendors or fuel manufacturers. The reactor also contributes significantly to the production of radioisotopes for medical and industrial applications, to neutron silicon doping for the semiconductor industry and to scientific irradiations for universities. Along the ongoing programmes on fuel and materials development, several new irradiation devices are in use or in design. Amongst others a loop providing enhanced cooling for novel materials testing reactor fuel, a device for high temperature gas cooled fuel as well as a rig for the irradiation of metallurgical samples in a Pb-Bi environment. A full scale 3-D heterogeneous model of BR2 is available. The model describes the real hyperbolic arrangement of the reactor and includes the detailed 3-D space dependent distribution of the isotopic fuel depletion in the fuel elements. The model is validated on the reactivity measurements of several tens of BR2 operation cycles. The accurate calculations of the axial and radial distributions of the poisoning of the beryllium matrix by 3He, 6Li and 3T are verified on the measured reactivity losses used to predict the reactivity behavior for the coming decades. The model calculates the main functionals in reactor physics like: conventional thermal and equivalent fission neutron fluxes, number of displacements per atom, fission rate, thermal power characteristics as heat flux and linear power density, neutron/gamma heating, determination of the fission energy deposited in fuel plates/rods, neutron multiplication factor and fuel burn-up. For each reactor irradiation project, a detailed geometry model of the experimental device and of its neighborhood is developed. Neutron fluxes are predicted within approximately 10 percent in comparison with the dosimetry measurements. Fission rate, heat flux and

  11. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  12. Fission in Rapidly Rotating Nuclei

    Directory of Open Access Journals (Sweden)

    A. K. Rhine Kumar

    2014-02-01

    Full Text Available We study the effect of rotation in fission of the atomic nucleus 256Fm using an independent-particle shell model with the mean field represented by a deformed Woods-Saxon potential and the shapes defined through the Cassinian oval parametrization. The variations of barrier height with increasing angular momentum, appearance of double hump in fission path are analysed. Our calculations explain the appearance of double hump in fission path of 256Fm nucleus. The second minimum vanishes with increase in angular momentum which hints that the fission barrier disappears at large spin.

  13. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  14. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  15. Fission approach to cluster radioactivity

    Indian Academy of Sciences (India)

    D N Poenaru; R A Gherghescu

    2015-09-01

    Fission theory is used to explain decay. Also, the analytical superasymmetric fission (ASAF) model is successfully employed to make a systematic search and to predict, with other models, cluster radioactivity. The macroscopic–microscopic method is illustrated for the superheavy nucleus 286Fl. Then a few results of the theoretical approach of decay (ASAF, UNIV and semFIS models), cluster decay (ASAF and UNIV) and spontaneous fission dynamics are described with Werner–Wheeler and cranking inertia. UNIV denotes universal curve and semFIS the fission-based semiempirical formula.

  16. Improved calculation of the prompt fission neutron spectrum from the spontaneous fission of /sup 252/Cf: Preliminary results

    International Nuclear Information System (INIS)

    An improved calculation is presented for the prompt fission neutron spectrum N(E) from the spontaneous fission of /sup 252/Cf. In this calculation the fission-spectrum model of Madland and Nix is used, but with several improvements leading to a physically more accurate representation of the spectrum. Specifically, the contributions to N(E) from the entire fission-fragment mass and charge distributions will be calculated instead of calculating on the basis of a seven- point approximation to the peaks of these distributions as has been done in the past. Therefore, values of the energy release in fission, fission-fragment kinetic energy, and compound nucleus cross section for the inverse process will be considered on a point-by-point basis over the fragment yield distributions instead of considering averages of these quantities over the peaks of the distributions. Preliminary results will be presented and compared with a measurement, an earlier calculation, and a recent evaluation of the spectrum. 14 refs., 4 figs

  17. Evaluation and compilation of fission product yields 1993

    International Nuclear Information System (INIS)

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993

  18. Evaluation and compilation of fission product yields 1993

    Energy Technology Data Exchange (ETDEWEB)

    England, T.R.; Rider, B.F.

    1995-12-31

    This document is the latest in a series of compilations of fission yield data. Fission yield measurements reported in the open literature and calculated charge distributions have been used to produce a recommended set of yields for the fission products. The original data with reference sources, and the recommended yields axe presented in tabular form. These include many nuclides which fission by neutrons at several energies. These energies include thermal energies (T), fission spectrum energies (F), 14 meV High Energy (H or HE), and spontaneous fission (S), in six sets of ten each. Set A includes U235T, U235F, U235HE, U238F, U238HE, Pu239T, Pu239F, Pu241T, U233T, Th232F. Set B includes U233F, U233HE, U236F, Pu239H, Pu240F, Pu241F, Pu242F, Th232H, Np237F, Cf252S. Set C includes U234F, U237F, Pu240H, U234HE, U236HE, Pu238F, Am241F, Am243F, Np238F, Cm242F. Set D includes Th227T, Th229T, Pa231F, Am241T, Am241H, Am242MT, Cm245T, Cf249T, Cf251T, Es254T. Set E includes Cf250S, Cm244S, Cm248S, Es253S, Fm254S, Fm255T, Fm256S, Np237H, U232T, U238S. Set F includes Cm243T, Cm246S, Cm243F, Cm244F, Cm246F, Cm248F, Pu242H, Np237T, Pu240T, and Pu242T to complete fission product yield evaluations for 60 fissioning systems in all. This report also serves as the primary documentation for the second evaluation of yields in ENDF/B-VI released in 1993.

  19. Study on the effect factor of the absolute fission rates measured by depleted uranium fission chamber

    International Nuclear Information System (INIS)

    The absolute fission rates was measured by the depleted uranium fission chamber. The efficiency of the fission fragments recorded in the fission chamber was analyzed. The factor influencing absolute fission rates was studied in the experiment, including the disturbing effect between detectors and the effect of the structural material of the fission chamber, etc

  20. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.