WorldWideScience

Sample records for charged phosphate groups

  1. Structural Isosteres of Phosphate Groups in the Protein Data Bank.

    Science.gov (United States)

    Zhang, Yuezhou; Borrel, Alexandre; Ghemtio, Leo; Regad, Leslie; Boije Af Gennäs, Gustav; Camproux, Anne-Claude; Yli-Kauhaluoma, Jari; Xhaard, Henri

    2017-03-27

    We developed a computational workflow to mine the Protein Data Bank for isosteric replacements that exist in different binding site environments but have not necessarily been identified and exploited in compound design. Taking phosphate groups as examples, the workflow was used to construct 157 data sets, each composed of a reference protein complexed with AMP, ADP, ATP, or pyrophosphate as well other ligands. Phosphate binding sites appear to have a high hydration content and large size, resulting in U-shaped bioactive conformations recurrently found across unrelated protein families. A total of 16 413 replacements were extracted, filtered for a significant structural overlap on phosphate groups, and sorted according to their SMILES codes. In addition to the classical isosteres of phosphate, such as carboxylate, sulfone, or sulfonamide, unexpected replacements that do not conserve charge or polarity, such as aryl, aliphatic, or positively charged groups, were found.

  2. The variable charge of andisols as affected by nanoparticles of rock phosphate and phosphate solubilizing bacteria

    Science.gov (United States)

    Arifin, M.; Nurlaeny, N.; Devnita, R.; Fitriatin, B. N.; Sandrawati, A.; Supriatna, Y.

    2018-02-01

    Andisols has a great potential as agriculture land, however, it has a high phosphorus retention, variable charge characteristics and high value of zero net charge or pH0. The research is aimed to study the effects of nanoparticles of rock phosphate (NPRP) and biofertilizer (phosphate solubilizing bacteria/PSB) on soil pH, pHo (zero point of charge, ZPC) and organic-C in one subgroup of Andisols, namely Acrudoxic Durudands, Ciater Region West Java. The research was conducted from October 2016 to February 2017 in Soil Physics Laboratory and Laboratory of Soil Chemistry and Fertility, Soil Science Department, Faculty of Agriculture, Universitas Padjadjaran. This experiment used a completely randomized factorial design, consisting of two factors and three replications. The first factor was nanoparticles of rock phosphate consist of 4 doses 0; 25; 50 and 75 g/1 kg soil and the second factor was biofertilizer dose consist of g/1 kg soil and without biofertilizer. Total treatment combinations were 8 with 3 replications, so there were 24 experimental plots. The results showed that in general NPRR and biofertilizer will decrease the value of soil pH throughout the incubation periods. There is an interaction between nanoparticles of rock phosphate and biofertilizer in decreasing pHo in the first month of incubation, but after 4-month incubation period, NPRP increased. Interaction between 75 g nanoparticles of rock phosphate with 1 g biofertilizer/1 kg soil in fourth months of incubation decreased soil organic-C to 3.35%.

  3. Geometry, charge distribution, and surface speciation of phosphate on goethite.

    NARCIS (Netherlands)

    Rahnemaie, R.; Hiemstra, T.; Riemsdijk, van W.H.

    2007-01-01

    The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in

  4. Characterization, Leaching, and Filtration Testing for Bismuth Phosphate Sludge (Group 1) and Bismuth Phosphate Saltcake (Group 2) Actual Waste Sample Composites

    International Nuclear Information System (INIS)

    Lumetta, Gregg J.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn; Edwards, Matthew K.; Fiskum, Sandra K.; Hallen, Richard T.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Sinkov, Sergey I.; Snow, Lanee A.

    2009-01-01

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan.() The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. Two of the eight defined groups - bismuth phosphate sludge (Group 1) and bismuth phosphate saltcake (Group 2) - are the subjects of this report. The Group 1 waste was anticipated to be high in phosphorus and was implicitly assumed to be present as BiPO4 (however, results presented here indicate that the phosphate in Group 1 is actually present as amorphous iron(III) phosphate). The Group 2 waste was also anticipated to be high in phosphorus, but because of the relatively low bismuth content and higher aluminum content, it was anticipated that the Group 2 waste would contain a mixture of gibbsite, sodium phosphate, and aluminum phosphate. Thus, the focus of the Group 1 testing was on determining the behavior of P removal during caustic leaching, and the focus of the Group 2 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467

  5. Protein complexation with DNA phosphates as a cause for DNA duplex destabilization : a thermodynamic model

    NARCIS (Netherlands)

    Genderen, van M.H.P.; Buck, H.M.

    1989-01-01

    Complexation of positively charged sites in a protein with the negative DNA phosphate groups shields the phosphate charges. This diminishes interstrand electrostatic repulsions, which stabilizes the duplex. When phosphate shidlding is present in one DNA strand only, the conformation of this strand

  6. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  7. Charge transfer luminescence of Yb3+ ions in LiY1-xYbxP4O12 phosphates

    International Nuclear Information System (INIS)

    Stryganyuk, G; Zazubovich, S; Voloshinovskii, A; Pidzyrailo, M; Zimmerer, G; Peters, R; Petermann, K

    2007-01-01

    Spectral-kinetic studies have been performed for LiY 1-x Yb x P 4 O 12 (x = 0; 0.1; 0.9) phosphates at T = 8-320 K using synchrotron radiation for excitation within the 5-17 eV energy range. Mechanisms for the excitation of Yb 3+ charge transfer and f-f luminescence are discussed. The quasimolecular character of Yb 3+ charge transfer luminescence (CTL) is pointed out. The central Yb 2+ ion and hole delocalized over the surrounding ligands are proposed for consideration as a 'charge transfer cluster' (Yb 2+ CT cluster). Possible mechanisms of Yb 3+ CTL quenching are presumed

  8. Influence of protonation or alkylation of the phosphate group on the e. s. r. spectra and on the rate of phosphate elimination from 2-methoxyethyl phosphate 2-yl radicals. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, G; Koltzenburg, G; Ritter, A; Schulte-Frohlinde, D [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany, F.R.). Inst. fuer Strahlenchemie

    1978-02-01

    The e.s.r. spectra of l-yl, 2-yl and 3'-yl methoxethyl phosphate radicals derived from CH/sub 3/OCH/sub 2/CH/sub 2/-OPO/sub 3/H/sub 2/ by hydrogen abstraction have been measured in aqueous solutions and the hyperfine constants determined. The coupling constants vary strongly with protonation or alkylation of the phosphate group. The 2-yl radicals eliminate phosphate. The rate-constants for the elimination (ksub(e)) have been estimated by e.s.r. measurements and by product studies as a function of pH using /sup 60/Co ..gamma..-radiolysis. The ksub(e) values vary from approximately 0.3 s/sup -1/ for the CH/sub 3/OCHCH/sub 2/OPO/sub 3//sup - -/ radical and approximately 10/sup 3/s/sup -1/ for CH/sub 3/OCHCH/sub 2/OPO/sub 3/H/sup -/, to approximately 3 x 10/sup 6/s/sup -1/ for CH/sub 3/OCHCH/sub 2/OPO/sub 3/H/sub 2/. Alkylation of the phosphate group increased the elimination rate-constant to a similar extent as protonation. The results support a recent mechanism which described the OH-radical-induced single-strand breaks of DNA in aqueous solution starting from the C-4' radical of the sugar moiety. It is further concluded the C-4' radical of DNA eliminates the 3'-phosphate group faster than the 5'-phosphate group.

  9. Probing the origins of catalytic discrimination between phosphate and sulfate monoester hydrolysis: comparative analysis of alkaline phosphatase and protein tyrosine phosphatases.

    Science.gov (United States)

    Andrews, Logan D; Zalatan, Jesse G; Herschlag, Daniel

    2014-11-04

    Catalytic promiscuity, the ability of enzymes to catalyze multiple reactions, provides an opportunity to gain a deeper understanding of the origins of catalysis and substrate specificity. Alkaline phosphatase (AP) catalyzes both phosphate and sulfate monoester hydrolysis reactions with a ∼10(10)-fold preference for phosphate monoester hydrolysis, despite the similarity between these reactions. The preponderance of formal positive charge in the AP active site, particularly from three divalent metal ions, was proposed to be responsible for this preference by providing stronger electrostatic interactions with the more negatively charged phosphoryl group versus the sulfuryl group. To test whether positively charged metal ions are required to achieve a high preference for the phosphate monoester hydrolysis reaction, the catalytic preference of three protein tyrosine phosphatases (PTPs), which do not contain metal ions, were measured. Their preferences ranged from 5 × 10(6) to 7 × 10(7), lower than that for AP but still substantial, indicating that metal ions and a high preponderance of formal positive charge within the active site are not required to achieve a strong catalytic preference for phosphate monoester over sulfate monoester hydrolysis. The observed ionic strength dependences of kcat/KM values for phosphate and sulfate monoester hydrolysis are steeper for the more highly charged phosphate ester with both AP and the PTP Stp1, following the dependence expected based on the charge difference of these two substrates. However, the dependences for AP were not greater than those of Stp1 and were rather shallow for both enzymes. These results suggest that overall electrostatics from formal positive charge within the active site is not the major driving force in distinguishing between these reactions and that substantial discrimination can be attained without metal ions. Thus, local properties of the active site, presumably including multiple positioned dipolar

  10. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  11. Casein Aggregates Built Step-by-Step on Charged Polyelectrolyte Film Surfaces Are Calcium Phosphate-cemented*

    Science.gov (United States)

    Nagy, Krisztina; Pilbat, Ana-Maria; Groma, Géza; Szalontai, Balázs; Cuisinier, Frédéric J. G.

    2010-01-01

    The possible mechanism of casein aggregation and micelle buildup was studied in a new approach by letting α-casein adsorb from low concentration (0.1 mg·ml−1) solutions onto the charged surfaces of polyelectrolyte films. It was found that α-casein could adsorb onto both positively and negatively charged surfaces. However, only when its negative phosphoseryl clusters remained free, i.e. when it adsorbed onto a negative surface, could calcium phosphate (CaP) nanoclusters bind to the casein molecules. Once the CaP clusters were in place, step-by-step building of multilayered casein architectures became possible. The presence of CaP was essential; neither Ca2+ nor phosphate could alone facilitate casein aggregation. Thus, it seems that CaP is the organizing motive in the casein micelle formation. Atomic force microscopy revealed that even a single adsorbed casein layer was composed of very small (in the range of tens of nanometers) spherical forms. The stiffness of the adsorbed casein layer largely increased in the presence of CaP. On this basis, we can imagine that casein micelles emerge according to the following scheme. The amphipathic casein monomers aggregate into oligomers via hydrophobic interactions even in the absence of CaP. Full scale, CaP-carrying micelles could materialize by interlocking these casein oligomers with CaP nanoclusters. Such a mechanism would not contradict former experimental results and could offer a synthesis between the submicelle and the block copolymer models of casein micelles. PMID:20921229

  12. Proton migration along the membrane surface in the absence of charged or titratable groups

    International Nuclear Information System (INIS)

    Springer, A.

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. For example, proton diffusion along membrane surfaces is considered to be the dominant mechanism of proton exchange between membrane sites of high and low proton concentrations. For the investigation of this mechanism, kinetic experiments on proton diffusion are evaluated to determine the ability of lipid membranes to retain protons on their surfaces. Experiments on different lipid bilayer membranes (DPhPC, DPhPE and GMO) are performed under the influence of two types of mobile buffer molecules (Capso, NH4CL). During these experiments the surface diffusion of photolytically released protons is visualized in terms of fluorescence changes of a lipid bound pH-sensitive dye (DHPE +fluorescein). The protons under investigation are released by flash photolysis of a hydrophobic caged compound (DMCM, caged diethyl phosphate). The experimental data confirm the existence of an energy barrier, which prevents the protons from escaping into the bulk. So far this effect was attributed to the proton binding to titrateable groups (e.g. ethanolamine) or electrostatic forces created by charged moieties (e.g. phosphate groups) on the membrane/water interface. However, upon removal of the titrateable groups and charged moieties from the membrane surface, a significant energy barrier remained as indicated by the experiments with glycerol monooleate (GMO) bilayers. To estimate the size of the barrier a semi-analytical model is presented that describes the two and three dimensional proton diffusion and the related physical and chemical processes. Common models describe surface proton diffusion as a series of subsequent hopping processes between membrane-anchored buffer molecules. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites s by fluorescence

  13. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kurobori, Toshio, E-mail: kurobori@staff.kanazawa-u.ac.jp [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Yanagida, Yuka [Oarai Research Center, Chiyoda Technol Corporation, Oarai-machi, Ibaraki 311-1313 (Japan); Kodaira, Satoshi [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shirao, Taichi [Nikon Instech Co., Ltd., Tanakanishi, Sakyo-ku, Kyoto 606-8221 (Japan)

    2017-05-21

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  14. Fluorescent nuclear track images of Ag-activated phosphate glass irradiated with photons and heavy charged particles

    International Nuclear Information System (INIS)

    Kurobori, Toshio; Yanagida, Yuka; Kodaira, Satoshi; Shirao, Taichi

    2017-01-01

    In this paper we report about the demonstration of the nuclear track imaging capabilities of Ag-activated phosphate glass. A 375 nm laser and confocal laser scanning microscopy (CLSM) were respectively used for track excitation and detection. Specifically, the blue and orange radiophotoluminescent (RPL) tracks and dose distributions observed after irradiation with soft X-rays, gamma rays and heavy charged particles (HCPs) are examined. In addition, the origins of the reductions in RPL efficiency for high-dose X-ray irradiation and for irradiation with HCPs with high linear energy transfer (LET) values are investigated via a CLSM and a conventional fluorescent reader and discussed. - Highlights: • 3D track images are demonstrated using a confocal laser microscopy. • Fluorescent track detectors are based on RPL Ag-doped phosphate glass. • The dose distributions are examined for X-ray, gamma ray and HCP irradiations. • The origins of the reduction in RPL efficiency are investigated and discussed.

  15. Uranium disequilibrium dating of phosphate deposits from the Lau Group, Fiji

    International Nuclear Information System (INIS)

    Roe, K.K.; Burnett, W.C.

    1983-01-01

    A determination of the absolute age of two phosphate deposits in the Lau Group, Fiji by uranium-series disequilibrium techniques is reported. These measurements were undertaken in order to assist in the evaluation of their origin in terms of known palaeoclimatic information. (U.K.)

  16. Turn-on fluorescence probes based on pyranine/viologen charge-transfer complexes for the determination of nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Schäferling, Michael, E-mail: Michael.schaeferling@utu.fi; Lang, Thomas; Schnettelker, Annette

    2014-10-15

    The formation of ground state charge-transfer complexes between pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) and viologen (paraquat) derivatives is utilized for the design of novel fluoroionophores for the determination of phosphate species, particularly of nucleotides. The strong quenching of the pyranine fluorescence by viologen-type charge transfer acceptors can be countermanded if these are functionalized with triethylammonium groups that serve as recognition elements for phosphate anions. We report on the fluorogenic responses of these water-soluble molecular probes in presence of different phosphates. Absorbance measurements give additional information on the charge transfer complex formation and the interaction with nucleotides. The experimental data show that these aggregates form attractive, simple and versatile fluorescence turn-on probes for nucleoside triphosphates. The reversibility of the fluorescence response is demonstrated by means of an enzymatic model assay using ATPase for the decomposition of adenosine triphosphate. - Highlights: • Pyranine/viologen charge-transfer complexes as molecular probe for ATP recognition. • Fluorescence turn on mechanism. • Selective compared to other nucleotides and phosphate anions. • Fast and reversible response applicable to monitor enzymatic reactions.

  17. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  18. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira

    2016-02-01

    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  19. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  20. Aminopropyl-functionalized mesoporous carbon (APTMS-CMK-3) as effective phosphate adsorbent

    Science.gov (United States)

    Yang, Yanju; Wang, Juanjuan; Qian, Xiaoqing; Shan, Yuhua; Zhang, Haipeng

    2018-01-01

    Excess phosphate discharge into water bodies can lead to severe eutrophication. Adsorption has been considered as one of the most effective approaches for phosphate removal and recovery. A new aminopropyl-functionalized mesoporous carbon CMK-3 (denoted as APTMS-CMK-3) was prepared and the materials were used as adsorbents for the removal of phosphate in water. The structure, functional groups and surface charge of the materials were characterized by X-ray powder diffraction, transmission electron microscope, N2 adsorption-desorption, elemental analysis, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and zeta potential measurements. The effects of contact time, initial phosphate concentration, solution pH, coexisting anions and dissolved humic acid were studied. The adsorption capacity of APTMS-CMK-3 was 38.09 mg g-1 at the equilibrium concentration of 49.06 mg L-1, and the adsorption data were well fitted with the Freundlich model. As for the reuse of APTMS-CMK-3, a relatively stable adsorption performance was observed after five adsorption-desorption cycles. Therefore, the way of grafting aminopropyl groups on the CMK-3 efficiently enhanced the capability for phosphate adsorption, indicating that it could be used as potential adsorbents for the removal of phosphate in water.

  1. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  2. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  3. THERMODINAMIC PARAMETERS ON THE SORPTION OF PHOSPHATE IONS BY MONTMORILLONITE

    Directory of Open Access Journals (Sweden)

    Ikhsan Jaslin

    2016-04-01

    Full Text Available The sorption of phosphate by montmorillonite at 10, 30, and 50 oC were investigated aiming to mainly determine thermodynamic parameters for the formation of surface complexes in the adsorption of phosphate ions by montmorillonite. Data were collected by adsorption edge experiments investigating the effect of pH, adsorption isotherms enabling the effect of sorbate concentration, and acid-base titration calculating protons released or taken up by adsorption process. Data analysis was carried out using surface complexation model to fit the data collected in this study using the parameters obtained from previous study, as well as to calculate the values of ΔH and ΔS. Previous study reported that phosphate ions formed two outer-sphere surface complexes with active sites of montmorillonite through hydrogen bonding. In the first complex,  [(XH0– H2L─]─, the phosphate was held to permanent-charge X─ sites on the tetrahedral siloxane faces, and the second complex, [[(SO─(SOH]– – [H2L]─] 2─ was formed through the interaction between the phosphate and variable charge surface hydroxyl groups at the edges of montmorillonite crystals and on the octahedral alumina faces. The values of ΔH for the first and second reactions are 39.756 and 3.765x10-7 kJ mol‒1 respectively. Since both reactions have positive enthalpy values, it can be concluded that the reactions are endothermic. Large energy for the first reaction is needed by X─  sites (permanent negatively charge sites of montmorillonite to be partially desolvated, on which K+ or other surface cations are replaced by H+ ions in the surface protonated process, and are then ready to interact phosphate ions in the solution. Small values of ΔH for the second reactions indicates that hydrogen bonds formed by phosphate and SOH sites in the second reaction are easily broken out, and the phosphate can easily desorbed from the surface. The values of ΔS for the first and second reactions are

  4. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  5. TSDC and impedance spectroscopy measurements on hydroxyapatite, β-tricalcium phosphate and hydroxyapatite/β-tricalcium phosphate biphasic bioceramics

    Science.gov (United States)

    Prezas, P. R.; Melo, B. M. G.; Costa, L. C.; Valente, M. A.; Lança, M. C.; Ventura, J. M. G.; Pinto, L. F. V.; Graça, M. P. F.

    2017-12-01

    Bone grafting and surgical interventions related with orthopaedic disorders consist in a big business, generating large revenues worldwide every year. There is a need to replace the biomaterials that currently still dominate this market, i.e., autografts and allografts, due to their disadvantages, such as limited availability, need for additional surgeries and diseases transmission possibilities. The most promising replacement materials are biomaterials with bioactive properties, such as the calcium phosphate-based bioceramics group. The bioactivity of these materials, i.e., the rate at which they promote the growth and directly bond with the new host biological bone, can be enhanced through their electrical polarization. In the present work, the electrical polarization features of pure hydroxyapatite (Hap), pure β-tricalcium phosphate (β-TCP) and biphasic hydroxyapatite/β-tricalcium phosphate composites (HTCP) were analyzed by measuring thermally stimulated depolarization currents (TSDC). The samples were thermoelectrically polarized at 500 °C under a DC electric field with a magnitude of 5 kV/cm. The biphasic samples were also polarized under electric fields with different magnitudes: 2, 3, 4 and 5 kV/cm. Additionally, the depolarization processes detected in the TSDC measurements were correlated with dielectric relaxation processes observed in impedance spectroscopy (IS) measurements. The results indicate that the β-TCP crystalline phase has a considerable higher ability to store electrical charge compared with the Hap phase. This indicates that it has a suitable composition and structure for ionic conduction and establishment of a large electric charge density, providing great potential for orthopaedic applications.

  6. An improved PNGV modeling and SOC estimation for lithium iron phosphate batteries

    Science.gov (United States)

    Li, Peng

    2017-11-01

    Because lithium iron phosphate battery has many advantages, it has been used more and more widely in the field of electric vehicle. The lithium iron phosphate battery, presents the improved PNGV model, and the batteries charge discharge characteristics and pulse charge discharge experiments, identification of parameters of the battery model by interpolation and least square fitting method, to achieve a more accurate modeling of lithium iron phosphate battery, and the extended Calman filter algorithm (EKF) is completed state nuclear power battery (SOC) estimate.

  7. Impact Of Low Grade Uranium Ores On The Echo System and the Workers of Phosphate Industry

    International Nuclear Information System (INIS)

    Anwar, S.M.

    1999-01-01

    The present study aims to investigate the influence of uranium present in phosphate rocks as an environmental factor in the ccho system and on the workers of Abu-Zaabal Phosphate Company subjected to the inhalation of big quantities of rock phosphate dust during the benefication of the ore and the production of the fertilizers. Besides. extra amount of uranium reach the workers also through two path ways.The first is direct through eating contaminated planted grown in the near by area.The second is indirect through eating animals fed with contaminated plants. The uranium content is estimated in the soil samples at different depths, water (irrigation and drainage), air samples and plant samples (shoot and root) in Berseem from the four directions, urine samples from twenty workers in charge of the processing of phosphate compared to twenty volunteers far from the contaminated area.The results showed an elevated values for phosphorus and uranium in the air, water. soil and plant (Berseem) around Abu Zaabal Factory and extending to about 2 km from all directions. Urine may be considered as a biological indicator medium for the uptake of uranium in uranium miners and the workers in charge of ore processing and can represent the major route of excretion for the absorbed metal. Significant differences were shown between the uranium level in the urine of workers group and the control group

  8. Quantitative Mechanistic Description of Natural Radionuclide and Iron Sorption on phosphate Fertilizer Materials

    International Nuclear Information System (INIS)

    Kamel, N.H.M.

    2008-01-01

    The mean activity values of the radionuclide 226 Ra, 238 U and 232 Th decay series, and the radioactive isotopes of 40 K in Bq/kg dry weight of the phosphate ore (Pho-ore), single super phosphate granules, (SSP-G), single super phosphate powder (SSP-P), triple super phosphate (TSP), and phosphogypsum (CaSO 4 ) samples were determined. CaSO 4 sample was found to contain, 300 Bq/kg of radioactive 238 U which is less than the values found in other studied phosphate samples. CaSO 4 sample was found to contain the highest amount of 226 Ra concentration value of 850 Bq/kg. Phosphate fertilizer components are acidic character, therefore, the solid surfaces will in general acquire a surface electric charge when contact with polar solvent such as water. The net electric charge obtained through uptake or release of potential determining ions (e.g, H + or OH - ). Thus the solid surfaces tend to adsorb and/or release of different ions to maintain neutral. The aim of this study is to determine the electric charge and the surface electric potential at the phosphate fertilizer materials

  9. Effects of education on low-phosphate diet and phosphate binder intake to control serum phosphate among maintenance hemodialysis patients: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Eunsoo Lim

    2018-03-01

    Full Text Available Background : For phosphate control, patient education is essential due to the limited clearance of phosphate by dialysis. However, well-designed randomized controlled trials about dietary and phosphate binder education have been scarce. Methods : We enrolled maintenance hemodialysis patients and randomized them into an education group (n = 48 or a control group (n = 22. We assessed the patients' drug compliance and their knowledge about the phosphate binder using a questionnaire. Results : The primary goal was to increase the number of patients who reached a calcium-phosphorus product of lower than 55. In the education group, 36 (75.0% patients achieved the primary goal, as compared with 16 (72.7% in the control group (P = 0.430. The education increased the proportion of patients who properly took the phosphate binder (22.9% vs. 3.5%, P = 0.087, but not to statistical significance. Education did not affect the amount of dietary phosphate intake per body weight (education vs. control: -1.18 ± 3.54 vs. -0.88 ± 2.04 mg/kg, P = 0.851. However, the dietary phosphate-to-protein ratio tended to be lower in the education group (-0.64 ± 2.04 vs. 0.65 ± 3.55, P = 0.193. The education on phosphate restriction affected neither the Patient-Generated Subjective Global Assessment score (0.17 ± 4.58 vs. -0.86 ± 3.86, P = 0.363 nor the level of dietary protein intake (-0.03 ± 0.33 vs. -0.09 ± 0.18, P = 0.569. Conclusion : Education did not affect the calcium-phosphate product. Education on the proper timing of phosphate binder intake and the dietary phosphate-to-protein ratio showed marginal efficacy.

  10. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-01-01

    charges per phosphate group. Three different phosphoinositide phosphates (mono-, di-, and triphosphorylated inositides), a phosphatidic acid, a phosphatidylcholine, a phosphatidylethanolamine, and a phosphatidylglycerol were investigated. The intensities obtained in positive ion-mode of phosphoinositide...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...

  11. Metal cation controls phosphate release in the myosin ATPase.

    Science.gov (United States)

    Ge, Jinghua; Huang, Furong; Nesmelov, Yuri E

    2017-11-01

    Myosin is an enzyme that utilizes ATP to produce a conformational change generating a force. The kinetics of the myosin reverse recovery stroke depends on the metal cation complexed with ATP. The reverse recovery stroke is slow for MgATP and fast for MnATP. The metal ion coordinates the γ phosphate of ATP in the myosin active site. It is accepted that the reverse recovery stroke is correlated with the phosphate release; therefore, magnesium "holds" phosphate tighter than manganese. Magnesium and manganese are similar ions in terms of their chemical properties and the shell complexation; hence, we propose to use these ions to study the mechanism of the phosphate release. Analysis of octahedral complexes of magnesium and manganese show that the partial charge of magnesium is higher than that of manganese and the slightly larger size of manganese ion makes its ionic potential smaller. We hypothesize that electrostatics play a role in keeping and releasing the abstracted γ phosphate in the active site, and the stronger electric charge of magnesium ion holds γ phosphate tighter. We used stable myosin-nucleotide analog complex and Raman spectroscopy to examine the effect of the metal cation on the relative position of γ phosphate analog in the active site. We found that in the manganese complex, the γ phosphate analog is 0.01 nm further away from ADP than in the magnesium complex. We conclude that the ionic potential of the metal cation plays a role in the retention of the abstracted phosphate. © 2017 The Protein Society.

  12. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    Science.gov (United States)

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite.

    Science.gov (United States)

    Lin, Jianwei; Zhang, Zhe; Zhan, Yanhui

    2017-05-01

    A zirconium-modified zeolite (ZrMZ) was prepared, and then, humic acid (HA) was immobilized on the ZrMZ surface to prepare HA-loaded ZrMZ (HA-ZrMZ). The obtained ZrMZ and HA-ZrMZ were characterized by energy dispersive X-ray spectroscopy, elemental analyzer, N 2 adsorption/desorption isotherms, pH at the point of zero charge, and X-ray photoelectron spectroscopy. The adsorption characteristics of phosphate on ZrMZ and HA-ZrMZ were comparatively investigated in batch mode. The adsorption mechanism of phosphate on ZrMZ and HA-ZrMZ was investigated by ionic strength effect and 31 P nuclear magnetic resonance. The mechanism for phosphate adsorption onto ZrMZ was the formation of inner-sphere phosphate complexes at the solid/solution interface. The preloading of HA on ZrMZ reduced the phosphate adsorption capacity, and the more the HA loading amount, the lower the phosphate adsorption capacity. However, the preloading of HA on ZrMZ did not change the phosphate adsorption mechanism; i.e., the formation of inner-sphere phosphate surface complexes was still responsible for the adsorption of phosphate on HA-ZrMZ. The decreased phosphate adsorption capacity for ZrMZ after HA coating could be attributed to the fact that the coating of HA on ZrMZ reduced the amount of binding active sites available for phosphate adsorption, changed the adsorbent surface charges, and reduced the specific surface areas and pore volumes of ZrMZ.

  15. Analysis of Electrochemical Porosity of Phosphatized Coatings on Galvanized Steel Substrate

    Directory of Open Access Journals (Sweden)

    Ponte Haroldo de Araújo

    2002-01-01

    Full Text Available This work refers to the application of a Voltammetric Anodic Dissolution (VAD Technique in the analysis of coating discontinuities, focusing on pores and cracks that exposed the substrate. An evaluation was made of the influence of several parameters, such as the concentration of the passivation solution and sweep rate (SR, on the substrate passivation process and on the porosity indexes of tricationic phosphate coatings of Fe/Zn/Mn. The phosphatization process used was a commercial tricationic Fe/Zn/Mn phosphate bath applied on a galvanized steel (GS substrate. Once the best experimental conditions for the use of the VAD technique had been defined, the grain size and layer weight were related to porosity indexes. The porosity was found to show a tendency to decrease with increasing grain size. The VAD technique consists of the anodic polarization of the substrate/coating system and measurement of the charge density involved in the substrate passivation process. A quantitative porosity index was obtained by comparing the passivation charge density of the substrate without coating (standard passivation charge density and the passivation charge of the coated substrate.

  16. Mechanism of calcium phosphates precipitation in liquid crystals; Mecanisme de precipitation de phosphates de calcium dans des cristaux liquides

    Energy Technology Data Exchange (ETDEWEB)

    Prelot, B.; Zemb, T

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m{sup 2}/g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  17. Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries

    Science.gov (United States)

    Cui, Yanhui; Zhang, Qi; Wu, Junwei; Liang, Xiao; Baker, Andrew P.; Qu, Deyang; Zhang, Hui; Zhang, Huayu; Zhang, Xinhe

    2018-02-01

    Carbon matrix (CM) derived from biomass is low cost and easily mass produced, showing great potential as sulfur host for lithium sulfur batteries. In this paper we report on a dihydrogen phosphate modified CM (PCM-650) prepared from luffa sponge (luffa acutangula) by phosphoric acid treatment. The phosphoric acid not only increases the surface area of the PCM-650, but also introduces dihydrogen phosphate onto PCM-650 (2.28 at% P). Sulfur impregnated (63.6 wt%) PCM-650/S, in comparison with samples with less dihydrogen phosphate LPCM-650/S, shows a significant performance improvement. XPS analysis is conducted for sulfur at different stages, including sulfur (undischarged), polysulfides (discharge to 2.1 V) and short chain sulfides (discharge to 1.7 V). The results consistently show chemical shifts for S2p in PCM-650, suggesting an enhanced adsorption effect. Furthermore, density functional theory (DFT) calculations is used to clarify the molecular binding: carbon/sulfur (0.86 eV), carbon/Li2S (0.3 eV), CH3-O-PO3H2/sulfur (1.24 eV), and CH3-O-PO3H2/Li2S (1.81 eV). It shows that dihydrogen phosphate group can significantly enhance the binding with sulfur and sulfide, consistent with XPS results. Consequently a CM functionalised with dihydrogen phosphate shows great potential as the sulfur host in a Li-S battery.

  18. Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.

    Science.gov (United States)

    Moguš-Milanković, Andrea; Sklepić, Kristina; Mošner, Petr; Koudelka, Ladislav; Kalenda, Petr

    2016-04-28

    Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition.

  19. Natural Arsenic in the Miocene Hawthorn Group, Florida: Wide Ranging Implications for ASR, Phosphate Mining, Private Well

    Science.gov (United States)

    Lazareva, O. V.; Pichler, T.

    2004-12-01

    In order to understand the mineralogical association and distribution of arsenic (As) in the Hawthorn Group we examined in detail the chemical and mineralogical composition of 370 samples that were collected from 16 cores in central Florida. In our study area the Hawthorn group consists primarily of a basal carbonate unit (the Arcadia Formation) and an upper siliciclastic unit (The Peace River Formation). The Peace River Formation contains appreciable amounts of phosphate and is currently being exploited for phosphate ore. Samples were taken for each Formation at intervals of 25ft. In addition to the interval samples we also took samples that contained visible pyrite crystals, iron oxides, green clays, phosphatic and organic material. These additional samples were collected because of their potential of high As concentrations. Arsenic concentrations were determined by hydride generation - atomic fluorescence spectrometry (HG-AFS) after digestion with aqua regia (3:1 HCl and HNO3). The elements Fe, Na, Al, Si, Mg, Ca, S, P, and K were measured on the same solutions by inductively coupled plasma optical emission spectrometry (ICP-OES). The identification of discrete minerals was aided by scanning electron microscopy (SEM) and chemical compositions were obtained by electron-probe microanalyses (EMPA). Our study indicates that the average As concentrations significantly change from 9.0 ppm in the Peace River Formation to 3.0 ppm in the Tampa Member of the Arcadia Formation. As concentrations for all Hawthorn samples vary from 0.07 to 68.98 ppm ( μ = 5.6, σ = 7.1). Our detailed mineralogical and geochemical study demonstrates that: (1) The As in the Hawthorn group varies from the formation to formation and is mostly concentrated in trace minerals, such as pyrite; (2) Concentrations of the As in pyrite crystals can vary drastically from a minimum of 0 ppm to a maximum of 8260 ppm; (3) Pyrite is an unevenly distributed throughout the Hawthorn Group; (4) Phosphate and

  20. Mechanism of the Topotactic Formation of gamma-Zirconium Phosphate Covalently Pillared with Diphosphonate Groups.

    Science.gov (United States)

    Alberti, G.; Giontella, E.; Murcia-Mascarós, S.; Vivani, R.

    1998-09-07

    The topotactic reaction of gamma-ZrPO(4)[O(2)P(OH)(2)].2H(2)O (gamma-ZrP) with benzenediphosphonic acid was examined in water and in acetone-water mixtures. This reaction was found to take place in water only on the external surface of the microcrystals, and pillared compounds were never obtained, even after very long reaction times. On the contrary, covalently pillared compounds were quickly obtained in acetone-water mixtures. The mechanism of the latter topotactic reaction was investigated by determining the rate of the phosphate groups released and the rate of the benzenediphosphonates taken up by gamma-ZrP over a long time (50 days). These data showed that pillared derivatives of gamma-ZrP can be obtained because colloidal dispersions of exfoliated lamellae are formed in acetone-water mixtures. The diphosphonate group acts initially as a monovalent species, replacing only one dihydrogen phosphate group on the surface of the exfoliated gamma-lamellae. The colloidal and partially derivatized lamellae thus formed can interact with each other by forming polylamellar pillared systems. When the number of pillared lamellae exceeds a given value (usually 5-6), flocculation of the colloidal gamma-ZrP takes place. Topotactic reactions between packets of pillared lamellae may also continue in the flocculated system. Therefore, the average number of the pillared lamellae slowly increases over time.

  1. Adsorption and release of amino acids mixture onto apatitic calcium phosphates analogous to bone mineral

    Science.gov (United States)

    El Rhilassi, A.; Mourabet, M.; El Boujaady, H.; Bennani-Ziatni, M.; Hamri, R. El; Taitai, A.

    2012-10-01

    Study focused on the interaction of adsorbate with poorly crystalline apatitic calcium phosphates analogous to bone mineral. Calcium phosphates prepared in water-ethanol medium at physiological temperature (37 °C) and neutral pH, their Ca/P ratio was between 1.33 and 1.67. Adsorbate used in this paper takes the mixture form of two essential amino acids L-lysine and DL-leucine which have respectively a character hydrophilic and hydrophobic. Adsorption and release are investigated experimentally; they are dependent on the phosphate type and on the nature of adsorbate L-lysine, DL-leucine and their mixture. Adsorption of mixture of amino acids on the apatitic calcium phosphates is influenced by the competition between the two amino acids: L-lysine and DL-leucine which exist in the medium reaction. The adsorption kinetics is very fast while the release kinetics is slow. The chemical composition of apatite has an influence on both adsorption and release. The interactions adsorbate-adsorbent are electrostatic type. Adsorption and release reactions of the amino acid mixture are explained by the existence of the hydrated surface layer of calcium phosphate apatite. The charged sbnd COOsbnd and sbnd NH3+ of adsorbates are the strongest groups that interact with the surface of apatites, the adsorption is mainly due to the electrostatic interaction between the groups sbnd COOsbnd of amino acids and calcium Ca2+ ions of the apatite. Comparative study of interactions between adsorbates (L-lysine, DL-leucine and their mixture) and apatitic calcium phosphates is carried out in vitro by using UV-vis and infrared spectroscopy IR techniques.

  2. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness.

    Science.gov (United States)

    Haghgou, En Hr; Haghgoo, Roza; Roholahi, Mohamad R; Ghorbani, Zahra

    2017-07-01

    This study aims to investigate the effect of casein phos-phopeptide-amorphous calcium phosphate and three calcium phosphate (CPP-ACP and TCP) on increasing the microhardness of human enamel after induction of erosion. A total of 26 healthy human-impacted third molar teeth were chosen, and their hardness measured using a microhardness testing machine. The samples were immersed in Coca Cola (pH = 4.7) for 8 minutes. Then, micro-hardness was measured again, and these samples were randomly divided into four groups (two control groups and two experimental groups). (1) Negative control group: Artificial saliva was used for 10 minutes, (2) positive control group: Fluoride gel was used for 10 minutes, (3) β-TCP group: TCP was used for 10 minutes, (4) CCP-ACP group: CCP-ACP was used for 10 minutes. The final microhardness of those samples was measured, and the changes in microhardness of teeth within group and between groups were analyzed using the paired and analysis of variance tests respectively. Results were considered statistically significant at a level of p < 0.05. No significant difference was observed in microhard-ness between CPP-ACP group and TCP group (p = 0.368) during the time microhardness significantly dropped after soaking in soda. Casein phosphopeptide-amorphous calcium phosphate and TCP increased the microhardness of teeth. The increase in hardness in the TCP group was higher than in the CPP-ACP group, but this difference was not significant (p = 0.36). Casein phosphopeptide-amorphous calcium phosphate and TCP can affect the remineralization of erosive lesions.

  3. Mechanism of calcium phosphates precipitation in liquid crystals

    International Nuclear Information System (INIS)

    Prelot, B.; Zemb, T.

    2004-04-01

    The possibility of using as a precursor an easily wet meso-porous powder would be a breakthrough in the preparation of nuclear waste storage ceramics. A concentrated solution containing ions to be stored would wet a dry powder and then, subjected to mild compression, lead to a micro-crystalline matrix of calcium phosphate at acceptable temperatures. Since no porous calcium phosphate different from calcined bone (patented) is described as porous precursor, we have compared the different synthesis routes towards meso-porous ceramics. First, we considered homogeneous precipitation of slats in water: using initially off-stoichiometry in reaction, micron-sized hydroxyapatite particles are produced with a specific surface up to 100 m 2 /g. Then, we consider the classical route of precipitation of an hybrid material in the miscibility gap of a phase diagram, when an hexagonal liquid crystal is used a matrix for precipitation. The surfactant family consists in single chain surfactants containing phosphates as head-group to poison the growing surface of calcium phosphate nano-domains. Since the reaction is still too brutal, we considered using a cat-anionic precursor material of controllable surface charge. For certain concentrations and molar ratios, a new structure not yet described in surfactant precipitation literature is observed: since the periodicity is lower than twice the chain length, a disordered constant curvature monolayer (instead of the classical cylinder of twice chain length diameter) of surfactant is implied. Finally, we have investigated synthesis routes implying slow dissolution of pre-formed calcium phosphate in an already existing hexagonal matrix. For all these routes of synthesis, micro-structural determinations using SAXS, WARS and BET are performed, with a special attention to comparison of the precipitation material, the matrix obtained with all elements present, and also the material obtained after calcinations. (authors)

  4. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  5. Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions.

    Science.gov (United States)

    Sugimoto, Takuya; Cao, Tianchi; Szilagyi, Istvan; Borkovec, Michal; Trefalt, Gregor

    2018-08-15

    Electrophoretic mobility and time resolved light scattering are used to measure the effect on charging and aggregation of amidine and sulfate latex particles of different oxyanions namely, phosphate, arsenate, sulfate, and selenate. In the case of negatively charged sulfate latex particles oxyanions represent the coions, while they represent counterions in the case of the positively charged amidine latex. Repulsive interaction between the sulfate latex surface and the coions results in weak ion specific effects on the charging and aggregation. On the other hand the interaction of oxyanions with the amidine latex surface is highly specific. The monovalent dihydrogen phosphate ion strongly adsorbs to the positively charged surface and reverses the charge of the particle. This charge reversal leads also to the restabilization of the amidine latex suspension at the intermediate phosphate concentrations. In the case of dihydrogen arsenate the adsorption to amidine latex surface is weaker and no charge reversal and restabilization occurs. Similar differences are seen between the sulfate and selenate analogues, where selenate adsorbs more strongly to the surface as compared to the sulfate ion and invokes charge reversal. The present results indicate that ion specificity is much more pronounced in the case of counterions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Working Group 2 summary: Space charge effects in bending systems

    International Nuclear Information System (INIS)

    Bohn, C.L.; Emma, P.J.

    2000-01-01

    At the start of the Workshop, the authors asked the Working Group 2 participants to concentrate on three basic goals: (1) survey the status of how comprehensively the physics concerning space-charge effects in bends is understood and how complete is the available ensemble of analytic and computational tools; (2) guided by data from experiments and operational experience, identify sources of, and cures for, beam degradation; and (3) review space-charge physics in rings and the limitations it introduces. As the Workshop unfolded, the third goal naturally folded into the other two goals, and these goals, they believe, were fulfilled in that the Working Group was able to compile an end product consisting of a set of recommendations for potentially fruitful future work. This summary constitutes an overview of the deliberations of the Working Group, and it is their hope that the summary clarifies the motivation for the recommended work listed at the end. The summary is organized according to the two aforementioned goals, and the prime topics of discussion appear as subsections under these goals

  7. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi

    2016-11-01

    A new three-electrode electrocoagulation reactor was investigated to increase the rate of removal of phosphate from domestic wastewater. Initially, two electrodes (graphite plate and air cathode) were connected with 0.5 V of voltage applied for a short charging time (∼10 s). The direction of the electric field was then reversed, by switching the power supply lead from the anode to the cathode, and connecting the other lead to a sacrificial aluminum mesh anode for removal of phosphate by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed up to 98% of phosphate in 15 min (inert electrode working time of 10 s, current density of 1 mA/cm2, and 15 min total electrocoagulation time), which was 6% higher than that of the control (no inert electrode). The energy demand varied from 0.05 kWh/m3 for 85% removal in 5 min, to 0.14 kwh/m3 for 98% removal in 15 min. These results indicate that the REAEC can reduce the energy demands and treatment times compared to conventional electrocoagulation processes for phosphate removal from wastewater.

  8. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electrochemical Sensing of Casein Based on the Interaction between Its Phosphate Groups and a Ruthenium(III) Complex.

    Science.gov (United States)

    Inaba, Iku; Kuramitz, Hideki; Sugawara, Kazuharu

    2016-01-01

    A reaction to casein, along with β-lactoglobulin, is a main cause of milk allergies, and also is a useful indicator of protein in allergic analyses. In the present study, a simple casein sensor was developed based on the interaction between a phosphate group of casein and electroactive [Ru(NH3)6](3+). We evaluated the voltammetric behavior of a casein-[Ru(NH3)6](3+) complex using a glassy carbon electrode. When the ruthenium(III) complex was combined with the phosphate groups of casein, the structure of the casein was changed. Since the hydrophobicity of casein was increased due to the binding, the casein was adsorbed onto the electrode. Furthermore, we modified an electrode with a ruthenium(III) ions/collagen film. When the sensor was applied to the detection of the casein contained in milk, the values coincided with those indicated by the manufacturer. Accordingly, this electrode could be a powerful sensor for the determination of casein in several foods.

  10. A confining and asymptotically free solution for the renormalization group invariant charge

    International Nuclear Information System (INIS)

    Kellett, B.H.

    1978-01-01

    The central role of the invariant charge in applications of the renormalization group to quantum chromodynamics is discussed. The general structure of the invariant charge is examined, and it is shown to be a non-singular function of q 2 for all finite non-zero q 2 . At q 2 = 0 and q 2 = +or- infinity shows that QCD is asymptotically free. Some applications of these general results are discussed

  11. Macroporous poly(vinyl alcohol) microspheres bearing phosphate groups as a new adsorbent for low-density lipoprotein apheresis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weichao; Xie Hui; Ou Lailiang; Wang Lianyong; Yu Yaoting; Kong Deling [Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071 (China); Sun Lisha, E-mail: wly@nankai.edu.c, E-mail: kongdeling@nankai.edu.c [General Hospital, Tianjin Medical University, Tianjin 300052 (China)

    2009-12-15

    A new low-density lipoprotein (LDL) adsorbent with phosphate groups as the ligand was prepared in this study. Macroporous poly(vinyl acetate-co-triallyl isocyanurate) microspheres were prepared using a free-radical suspension polymerization method. A hydrolysis reaction in sodium hydroxide/methanol changed the materials into poly(vinyl alcohol) (PVA) microspheres. Further reaction with phosphorus oxychloride in anhydrous DMF led to the LDL adsorbent PVA-phosphate microspheres. The preparation conditions such as reaction time, temperature and the amount of phosphorus oxychloride were optimized. The adsorption of plasma lipoproteins was examined by in vitro adsorption assays. The influence of adsorption time, plasma volume and ionic strength on the adsorption capacity was investigated. The circulation adsorption showed that the pathogenic lipoproteins in the plasma such as total cholesterol (TC), LDL and triglyceride (TG) could be removed markedly, in which the removal percentages were 42.9%, 45.0% and 44.74%, respectively. However, the reduction of high-density lipoprotein (HDL) and other normal plasma components was very slight. For in vivo experiment, rabbits were fed with high-cholesterol food to develop a hyperlipidemia model and treated by extracorporeal blood perfusion using the PVA-phosphate columns. Eight hyperlipidemia rabbits were treated with the PVA-phosphate adsorbent, and the removal of TC, LDL and TG was 45.03 +- 6.64%, 48.97 +- 9.92% and 35.42 +- 14.17%, respectively. The sterilization and storage tests showed that the adsorbent was chemically and functionally stable. It could be easily sterilized by a common method and stored for months without loss of adsorption capacity. Therefore, this new PVA-phosphate-based LDL adsorbent may have potential for application in LDL apheresis.

  12. Macroporous poly(vinyl alcohol) microspheres bearing phosphate groups as a new adsorbent for low-density lipoprotein apheresis

    International Nuclear Information System (INIS)

    Wang Weichao; Xie Hui; Ou Lailiang; Wang Lianyong; Yu Yaoting; Kong Deling; Sun Lisha

    2009-01-01

    A new low-density lipoprotein (LDL) adsorbent with phosphate groups as the ligand was prepared in this study. Macroporous poly(vinyl acetate-co-triallyl isocyanurate) microspheres were prepared using a free-radical suspension polymerization method. A hydrolysis reaction in sodium hydroxide/methanol changed the materials into poly(vinyl alcohol) (PVA) microspheres. Further reaction with phosphorus oxychloride in anhydrous DMF led to the LDL adsorbent PVA-phosphate microspheres. The preparation conditions such as reaction time, temperature and the amount of phosphorus oxychloride were optimized. The adsorption of plasma lipoproteins was examined by in vitro adsorption assays. The influence of adsorption time, plasma volume and ionic strength on the adsorption capacity was investigated. The circulation adsorption showed that the pathogenic lipoproteins in the plasma such as total cholesterol (TC), LDL and triglyceride (TG) could be removed markedly, in which the removal percentages were 42.9%, 45.0% and 44.74%, respectively. However, the reduction of high-density lipoprotein (HDL) and other normal plasma components was very slight. For in vivo experiment, rabbits were fed with high-cholesterol food to develop a hyperlipidemia model and treated by extracorporeal blood perfusion using the PVA-phosphate columns. Eight hyperlipidemia rabbits were treated with the PVA-phosphate adsorbent, and the removal of TC, LDL and TG was 45.03 ± 6.64%, 48.97 ± 9.92% and 35.42 ± 14.17%, respectively. The sterilization and storage tests showed that the adsorbent was chemically and functionally stable. It could be easily sterilized by a common method and stored for months without loss of adsorption capacity. Therefore, this new PVA-phosphate-based LDL adsorbent may have potential for application in LDL apheresis.

  13. Light-Induced Surface Reactions at the Bismuth Vanadate/Potassium Phosphate Interface.

    Science.gov (United States)

    Favaro, Marco; Abdi, Fatwa F; Lamers, Marlene; Crumlin, Ethan J; Liu, Zhi; van de Krol, Roel; Starr, David E

    2018-01-18

    Bismuth vanadate has recently drawn significant research attention as a light-absorbing photoanode due to its performance for photoelectrochemical water splitting. In this study, we use in situ ambient pressure X-ray photoelectron spectroscopy with "tender" X-rays (4.0 keV) to investigate a polycrystalline bismuth vanadate (BiVO 4 ) electrode in contact with an aqueous potassium phosphate (KPi) solution at open circuit potential under both dark and light conditions. This is facilitated by the creation of a 25 to 30 nm thick electrolyte layer using the "dip-and-pull" method. We observe that under illumination bismuth phosphate forms on the BiVO 4 surface leading to an increase of the surface negative charge. The bismuth phosphate layer may act to passivate surface states observed in photoelectrochemical measurements. The repulsive interaction between the negatively charged surface under illumination and the phosphate ions in solution causes a shift in the distribution of ions in the thin aqueous electrolyte film, which is observed as an increase in their photoelectron signals. Interestingly, we find that such changes at the BiVO 4 /KPi electrolyte interface are reversible upon returning to dark conditions. By measuring the oxygen 1s photoelectron peak intensities from the phosphate ions and liquid water as a function of time under dark and light conditions, we determine the time scales for the forward and reverse reactions. Our results provide direct evidence for light-induced chemical modification of the BiVO 4 /KPi electrolyte interface.

  14. High Charge Mobility of a Perylene Bisimide Dye with Hydrogen-bond Formation Group

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A perylene bisimide dye covalently bonded with a hydrogen-bond formation group of 1,3, 5-triazine-2, 4-diamine has been synthesized. Its casting films show a charge carrier mobility over 10-3 cm2/Vs, which is in the range of the highest values found for other promising charge transport materials suitable for solution processable technique.

  15. Naturally occurring arsenic in the Miocene Hawthorn Group, southwestern Florida: Potential implication for phosphate mining

    International Nuclear Information System (INIS)

    Lazareva, Olesya; Pichler, Thomas

    2007-01-01

    To understand the mineralogical association, concentration, and distribution of arsenic (As) in the Hawthorn Group, the chemical and mineralogical composition of 362 samples that were collected from 16 cores in southwestern Florida were examined in detail. In the study area, the Hawthorn Group consisted primarily of a basal carbonate unit (the Arcadia Formation) and an upper siliciclastic unit (The Peace River Formation). The Peace River Formation contains appreciable amounts of phosphate and is currently being exploited for phosphate ore. Samples were taken from cores of each formation at intervals of 7.5 m. In addition, to the interval samples, sections likely to have high As concentrations, such as zones with pyrite crystals, hydrous ferric oxides, green clays, and organic material, were collected and analyzed. Bulk As concentrations were determined by hydride generation-atomic fluorescence spectrometry (HG-AFS) after digestion with aqua regia (3:1 HCl and HNO 3 ). The elements Fe, Al, Si, Mg, Ca, S, and P were measured on the same solutions by inductively coupled plasma optical emission spectrometry (ICP-OES). The identification of discrete minerals was aided by scanning electron microscopy (SEM) and chemical compositions within the sample matrix and in individual minerals were obtained by electron-probe microanalysis (EMPA). This detailed mineralogical and geochemical study demonstrated that: (1) As in the Hawthorn Group varied from formation to formation and was mostly concentrated in trace minerals, such as pyrite; (2) average As concentrations significantly changed from 8.8 mg/kg (σ = 8.6 mg/kg) in the Peace River Formation to 3.0 mg/kg (σ = 3.7 mg/kg) in the Tampa Member of the Arcadia Formation. Arsenic concentrations for all Hawthorn samples varied from 0.1 to 69.0 mg/kg; (3) pyrite, with one exception, occurred as framboids and was unevenly distributed throughout the Hawthorn Group; (4) pyrite framboids were located inside a francolite (carbonate

  16. Tight ceramic UF membrane as RO pre-treatment: the role of electrostatic interactions on phosphate rejection.

    Science.gov (United States)

    Shang, Ran; Verliefde, Arne R D; Hu, Jingyi; Zeng, Zheyi; Lu, Jie; Kemperman, Antoine J B; Deng, Huiping; Nijmeijer, Kitty; Heijman, Sebastiaan G J; Rietveld, Luuk C

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can potentially be adopted as an effective process for RO pre-treatment in order to constrain biofouling by phosphate limitation. This paper focuses on electrostatic interactions during tight UF filtration. Despite the larger pore size, the 3 kDa ceramic membrane exhibited greater phosphate rejection than the 1 kDa membrane, because the 3 kDa membrane has a greater negative surface charge and thus greater electrostatic repulsion against phosphate. The increase of pH from 6 to 8.5 led to a substantial increase in phosphate rejection by both membranes due to increased electrostatic repulsion. At pH 8.5, the maximum phosphate rejections achieved by the 1 kDa and 3 kDa membrane were 75% and 86%, respectively. A Debye ratio (ratio of the Debye length to the pore radius) is introduced in order to evaluate double layer overlapping in tight UF membranes. Threshold Debye ratios were determined as 2 and 1 for the 1 kDa and 3 kDa membranes, respectively. A Debye ratio below the threshold Debye ratio leads to dramatically decreased phosphate rejection by tight UF membranes. The phosphate rejection by the tight UF, in combination with chemical phosphate removal by coagulation, might accomplish phosphate-limited conditions for biological growth and thus prevent biofouling in the RO systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Study of phosphatic nodules as a possible source of uranium mineralization in warcha sandstone of nilawahan group salt range using SSNTD technique

    International Nuclear Information System (INIS)

    Qureshi, A.A.; Ullah, K.; Ullah, N.; Mohammad, A.

    2004-07-01

    The strong in the sedimentary depositional characteristics between the Warcha Sandstone of Nilawahan Group in the Salt Range and the uranium bearing sandstones of Siwalik Group in the foot hills of Himalaya and Sulaiman Ranges tempted the geologists to investigate the former group for the occurrence of any uranium deposits in it. Like volcanic ash beds in Siwaliks, phosphatic nodules may be a possible source of uranium mineralization in Warcha Sandstone of Nilawahan Group. Samples of phosphatic nodules occurring in the Sandstone of Nilawahan Group Salt Range were analyzed using Solid State Nuclear Track Detention Technique (SSNTD) for the determination of their uranium concentration. The results obtained are quite encouraging and favour the idea of exploring the area in detail for any possible occurrence of uranium deposit. Uranium concentration in these samples ranges from (434 + - 39) ppm to (964+ -81)ppm with and average concentration of (699 + - 62) ppm. (author)

  18. Tight ceramic UF membrane as RO pre-treatment: The role of electrostatic interactions on phosphate rejection

    NARCIS (Netherlands)

    Shang, R.; Verliefde, A.R.D.; Hu, J.; Zeng, Z; Lu, L.; Lu, L.; Kemperman, Antonius J.B.; Deng, H.; Nijmeijer, Dorothea C.; Heijman, S.G.J.; Rietveld, L.C.

    2014-01-01

    Phosphate limitation has been reported as an effective approach to inhibit biofouling in reverse osmosis (RO) systems for water purification. The rejection of dissolved phosphate by negatively charged TiO2 tight ultrafiltration (UF) membranes (1 kDa and 3 kDa) was observed. These membranes can

  19. Vibrational Properties of the Phosphate Group Investigated by Molecular Dynamics and Density Functional Theory

    Czech Academy of Sciences Publication Activity Database

    Andrushchenko, Valery; Benda, Ladislav; Páv, Ondřej; Dračínský, Martin; Bouř, Petr

    2015-01-01

    Roč. 119, č. 33 (2015), s. 10682-10692 ISSN 1520-6106 R&D Projects: GA ČR GA13-26526S; GA ČR GAP208/11/0105; GA ČR GA13-03978S; GA ČR GA15-09072S Grant - others:GA AV ČR(CZ) M200550902; GA MŠk(CZ) LM2010005; GA MŠk(CZ) ED3.2.00/08.0144 Institutional support: RVO:61388963 Keywords : DNA phosphate group * vibrational spectroscopy * spectra simulations * MD/DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.187, year: 2015

  20. Positron study of negative charge states in order-disorder ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Troev, T.; Berovsky, K.; Peneva, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy

    2001-07-01

    The positive positron charge opens the possibility for determining the changes in charge states in technologically important order-disorder ferroelectrics. Here we show that dipole polarization disordering within domains affects the positron annihilation mechanism. The positron lifetime parameters in triglycine sulphate (TGS) (NH{sub 3}CH{sub 2}COOH){sub 3}H{sub 2}SO{sub 4}, Rochelle salt (RS) NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O and Potassium dihydrogen phosphate (KDP) KH{sub 2}PO{sub 4}, at different temperatures and gamma-irradiation doses depend on the charge point defects. The increase of the positron long lifetime component {tau}{sub 2} is proportional to the temperature and gamma-irradiation dose. In gamma irradiated TGS positrons are trapped in defect electron states of oxigen ions of two radicals CH{sub 2}COO{sup -} and NH{sub 3}CHCOO{sup -}. In RS positrons are trapped also in defect electron states of oxygen ions and OH groups. (orig.)

  1. Overexpression, crystallization and preliminary X-ray analysis of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from Bifidobacterium breve

    International Nuclear Information System (INIS)

    Suzuki, Ryuichiro; Kim, Byung-Jun; Shibata, Tsuyoshi; Iwamoto, Yuki; Katayama, Takane; Ashida, Hisashi; Wakagi, Takayoshi; Shoun, Hirofumi; Fushinobu, Shinya; Yamamoto, Kenji

    2010-01-01

    Xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from B. breve was overexpressed and crystallized. The crystals belonged to the tetragonal space group I422 and diffracted to beyond 1.7 Å resolution. The xylulose-5-phosphate/fructose-6-phosphate phosphoketolase gene from Bifidobacterium breve was cloned and overexpressed in Escherichia coli. The enzyme was purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method. Crystals were obtained at 293 K using 0.05 mM thiamine diphosphate, 0.25 mM MgCl 2 , 24%(w/v) PEG 6000 and 0.1 M Bicine pH 9.0. The crystals belonged to the tetragonal space group I422, with unit-cell parameters a = b = 174.8, c = 163.8 Å, and diffracted to beyond 1.7 Å resolution

  2. Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery

    International Nuclear Information System (INIS)

    Deng, Zhongwei; Yang, Lin; Cai, Yishan; Deng, Hao; Sun, Liu

    2016-01-01

    The key technology of a battery management system is to online estimate the battery states accurately and robustly. For lithium iron phosphate battery, the relationship between state of charge and open circuit voltage has a plateau region which limits the estimation accuracy of voltage-based algorithms. The open circuit voltage hysteresis requires advanced online identification algorithms to cope with the strong nonlinear battery model. The available capacity, as a crucial parameter, contributes to the state of charge and state of health estimation of battery, but it is difficult to predict due to comprehensive influence by temperature, aging and current rates. Aim at above problems, the ampere-hour counting with current correction and the dual adaptive extended Kalman filter algorithms are combined to estimate model parameters and state of charge. This combination presents the advantages of less computation burden and more robustness. Considering the influence of temperature and degradation, the data-driven algorithm namely least squares support vector machine is implemented to predict the available capacity. The state estimation and capacity prediction methods are coupled to improve the estimation accuracy at different temperatures among the lifetime of battery. The experiment results verify the proposed methods have excellent state and available capacity estimation accuracy. - Highlights: • A dual adaptive extended Kalman filter is used to estimate parameters and states. • A correction term is introduced to consider the effect of current rates. • The least square support vector machine is used to predict the available capacity. • The experiment results verify the proposed state and capacity prediction methods.

  3. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, X-ray crystal structures, and phosphate ester cleavage properties of bis(2-pyridylmethyl)amine copper(II) complexes with guanidinium pendant groups.

    Science.gov (United States)

    Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone

    2008-10-06

    Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.

  5. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  6. Effect of phosphate supplementation on oxygen delivery at high altitude

    Science.gov (United States)

    Jain, S. C.; Singh, M. V.; Rawal, S. B.; Sharma, V. M.; Divekar, H. M.; Tyagi, A. K.; Panwar, M. R.; Swamy, Y. V.

    1987-09-01

    In the present communication, effect of low doses of phosphate supplementation on short-term high altitude adaptation has been examined. Studies were carried out in 36 healthy, male, sea-level residents divided in a double blind fashion into drug and placebo treated groups. 3.2 mmol of phosphate were given orally to each subject of the drug treated group once a day for 4 days on arrival at an altitude of 3,500 m. Sequential studies were done in the subjects in both groups on the 3rd, 7th, 14th and 21st day of their altitude stay. Haemoglobin, haematocrit, erythrocyte and reticulocyte counts increased to the similar extent in both groups. Blood pH, pO2 and adenosine tri-phosphate (ATP) did not differ between the two groups. On 3rd day of the altitude stay, inorganic phosphate and 2,3-diphosphoglycerate (2,3 DPG) levels in the drug treated group increased significantly as compared to the placebo group. No significant difference in inorganic phosphate and 2,3 DPG was observed later on in the two groups. Psychological and clinical tests also indicated that the drug treated subjects felt better as compared to the placebo treated subjects. The present study suggests that low doses of phosphate increases circulating 2,3-DPG concentration which in turn brings about beneficial effect towards short term high altitude adaptation.

  7. Study of the tributyl phosphate - 30% dodecane solvent; Etude du solvant phosphate tributylique - 30 % dodecane

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses. Centre d' Etudes Nucleaires, 92 (France)

    1967-07-01

    This study, originating mainly from a literature survey, gives the principal chemical and physical features of the tributyl-phosphate (TBP) agent diluted at 30 volumes per cent in dodecane. The mixture is a very commonly used extractant in nuclear fuel processing. In this paper, the main following points are reported: -) the components (TBP and diluents) -) the TBP-diluents systems (non-loaded), -) the TBP-diluents-water systems, -) TBP-diluents-water-nitric acid systems, and -) industrial solvents. (author) [French] Cette etude, d'origine bibliographique, regroupe les caracteristiques physico-chimiques essentielles du phosphate tributylique (TBP) dilue a 30% en volume dans du dodecane. Ce melange constitue un agent d'extraction tres utilise dans le traitement des combustibles nucleaires. Les principaux points traites sont les suivants: -) les constituants (TBP et diluants), -) les systemes TBP-diluants non charges, -) les systemes TBP-diluants-eau, -) les systemes TBP-diluants-eau-acide nitrique, et -) les solvants industriels. (auteur)

  8. Geochemical exploration for phosphate in the State of Acre

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de; Santos, A.J.M. dos

    1989-01-01

    The geochemical prospecting conducted for phosphates in Acre which could explain the good fertility of the region was charged to discover this material. The phosphates are strictly built of all the bone structures and coprolites of the several fragments of vertebrate fossils, which are widespread in the region. The phosphatic fossils are bedded in the Solimoes Formation, especially its basal to intermediary conglomeratic bed. The fossils are constituted of low crystallinity apatite, and their matrix sediments include quartz, feldspars, smectite, halloysite and calcite. The P 2 O 5 content reaches up to 5% in the sediments and up to 32% in the fragments. The fossils are enriched in U 3 O 8 and rare earth elements. There is no perspect of classic or mineral deposits but the geological knowlwdge will permit the improvement of the use of the soils in Acre. (author) [pt

  9. Human triose-phosphate isomerase deficiency: a single amino acid substitution results in a thermolabile enzyme.

    Science.gov (United States)

    Daar, I O; Artymiuk, P J; Phillips, D C; Maquat, L E

    1986-10-01

    Triose-phosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketol-isomerase, EC 5.3.1.1) deficiency is a recessive disorder that results in hemolytic anemia and neuromuscular dysfunction. To determine the molecular basis of this disorder, a TPI allele from two unrelated patients homozygous for TPI deficiency was compared with an allele from a normal individual. Each disease-associated sequence harbors a G X C----C X G transversion in the codon for amino acid-104 and specifies a structurally altered protein in which a glutamate residue is replaced by an aspartate residue. The importance of glutamate-104 to enzyme structure and function is implicated by its conservation in the TPI protein of all species that have been characterized to date. The glutamate-to-aspartate substitution results in a thermolabile enzyme as demonstrated by assays of TPI activity in cultured fibroblasts of each patient and cultured Chinese hamster ovary (CHO) cells that were stably transformed with the mutant alleles. Although this substitution conserves the overall charge of amino acid-104, the x-ray crystal structure of chicken TPI indicates that the loss of a side-chain methylene group (-CH2CH2COO- ---- -CH2COO-) is sufficient to disrupt the counterbalancing of charges that normally exists within a hydrophobic pocket of the native enzyme.

  10. Recovery of uranium from the Syrian phosphate by solid-liquid method using alkaline solutions

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Uranium concentrations were analyzed in the Syrian phosphate deposits. Mean concentrations were found between 50 and 110 ppm. As a consequence, an average phosphate dressing of 22 kg/ha phosphate would charge the soil with 5-20 g/ha uranium when added as a mineral fertilizer. Fine grinding phosphate produced at the Syrian mines was used for uranium recovery by carbonate leaching. The formation of the soluble uranyl tricarbonate anion UO 2 (CO 3 ) 3 4- permits use of alkali solutions of sodium carbonate and sodium bicarbonate salts for the nearly selective dissolution of uranium from phosphate. Separation of iron, aluminum, titanium, etc., from the uranium during leaching was carried out. Formation of some small amounts of molybdates, vanadates, phosphates, aluminates, and some complexes metal was investigated. This process could be used before the manufacture of TSP fertilizer, and the final products would contain smaller uranium quantities. (author)

  11. An efficient method for qualitative screening of phosphate-solubilizing bacteria.

    Science.gov (United States)

    Mehta, S; Nautiyal, C S

    2001-07-01

    An efficient protocol was developed for qualitative screening of phosphate-solubilizing bacteria, based upon visual observation. Our results indicate that, by using our formulation containing bromophenol blue, it is possible to quickly screen on a qualitative basis the phosphate-solubilizing bacteria. Qualitative analysis of the phosphate solubilized by various groups correlated well with grouping based upon quantitative analysis of bacteria isolated from soil, effect of carbon, nitrogen, salts, and phosphate solubilization-defective transposon mutants. However, unlike quantitative analysis methods that involve time-consuming biochemical procedures, the time for screening phosphate-solubilizing bacteria is significantly reduced by using our simple protocol. Therefore, it is envisaged that usage of this formulation based upon qualitative analysis will be salutary for the quick screening of phosphate-solubilizing bacteria. Our results indicate that the formulation can also be used as a quality control test for expeditiously screening the commercial bioinoculant preparations, based on phosphate solubilizers.

  12. Corrosion control of galvanized steel using a phosphate/calcium ion inhibitor mixture

    International Nuclear Information System (INIS)

    Zin, I.M.; Lyon, S.B.; Pokhmurskii, V.I.

    2003-01-01

    The corrosion inhibition of galvanized steel was studied in artificial acid rain solution using extracts of pigments normally used in organic coatings for corrosion control. It was established that a combination of zinc phosphate/molybdate and calcium ion exchange silica has a significant synergetic anticorrosion effect in the acid rain solution compared to the pigments used alone. Further, the charge transfer resistance of galvanized steel in acid rain solution saturated by the above pigment blend approaches that of strontium chromate in artificial acid rain solution. Use of the pigment blend was found to lead to development of a protective film, which is thought to be a complex mixture of calcium phosphates and zinc phosphate

  13. Effect of shelf life on compressive strength of zinc phosphate cement

    Science.gov (United States)

    Dwiputri, D. R.; Damiyanti, M.; Eriwati, Y. K.

    2017-08-01

    Usage of zinc phosphate cements with no account of the shelf life left before the expiry date can affect its compressive strength. The aim of this study is to determine the different compressive strength values of zinc phosphate cement with different shelf lives before expiry. Three groups of zinc phosphate cement (GC Elite cement 100) with different expiry dates were tested for compressive strength using a universal testing machine (crosshead speed 1 mm/min: load cell of 250 kgF). The results showed that there was a significant difference (p<0.05) between the compressive strengths of zinc phosphate cement in group III (2 months before expiry date), group I (2 years and 5 months before expiry date), and group II (11 months before expiry date). It can be concluded that there is a significant decrease in compressive strength of zinc phosphate cement near its expiry date.

  14. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Hosseini, Rahim; Jamehbozorg, Bahman

    2008-01-01

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied

  15. Effect of sodium phosphate salts on the thermodynamic properties of aqueous solutions of poly(ethylene oxide) 6000 at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)], E-mail: rahsadeghi@yahoo.com; Hosseini, Rahim; Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2008-09-15

    Precise density, sound velocity, water activity, and phase diagram measurements have been carried out on polyethylene oxide (PEO) in aqueous solutions of sodium di-hydrogen phosphate, di-sodium hydrogen phosphate, and tri-sodium phosphate over a range of temperatures at atmospheric pressure. The experimental density and sound velocity data are used to calculate the apparent specific volume and isentropic compressibility as a function of temperature and concentration. It was found that both of the apparent specific volume and isentropic compressibility of PEO in aqueous solutions increase by increasing temperature and charge on the anion of electrolytes. The results show that the slope of constant water activity lines increased with increasing the temperature and charge on the anion of electrolytes and the vapour pressure depression for an aqueous (PEO + sodium phosphate) system is more than the sum of those for the corresponding binary solutions. Furthermore, the effect of temperature and type of anion of salt on the salting-out effect of polyethylene oxide by sodium phosphate salts has been studied.

  16. [Topography structure and flocculation mechanism of polymeric phosphate ferric sulfate (PPFS)].

    Science.gov (United States)

    Zheng, Huai-li; Zhang, Hui-qin; Jiang, Shao-jie; Li, Fang; Jiao, Shi-jun; Fang, Hui-li

    2011-05-01

    Characteristics of polymeric phosphate ferric sulfate (PPFS) were investigated using FTIR (Fourier transform infrared spectrometer), XRD (X-ray diffraction) and SEM (scanning electron microscope) in the present study. The formed PPFS structure and morphology were stereo meshwork, which was clustered and close to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role in the coagulation beaker test and the zeta potential proved that PPFS was largely affected by bridging and netting sweep. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging and netting sweep mechanisms.

  17. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    International Nuclear Information System (INIS)

    Dai, De-Chang; Stojkovic, Dejan; Freese, Katherine

    2009-01-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10 11 GeV–10 16 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes

  18. The effect of charged groups on hydrophilic monolithic stationary phases on their chromatographic properties.

    Science.gov (United States)

    Li, Haibin; Liu, Chusheng; Wang, Qiqin; Zhou, Haibo; Jiang, Zhengjin

    2016-10-21

    In order to investigate the effect of charged groups present in hydrophilic monolithic stationary phases on their chromatographic properties, three charged hydrophilic monomers, i.e. N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine (SPDA), [2-(acryloyloxy)ethyl]trimethylammonium chloride (AETA), and 3-sulfopropyl acrylate potassium salt (SPA) were co-polymerized with the crosslinker N,N'-methylenebisacrylamide (MBA), respectively. The physicochemical properties of the three resulting charged hydrophilic monolithic columns were evaluated using scanning electron microscopy, ζ-potential analysis and micro-HPLC. High column efficiency was obtained on the three monolithic columns at a linear velocity of 1mm/s using thiourea as test compound. Comparative characterization of the three charged HILIC phases was then carried out using a set of model compounds, including nucleobases, nucleosides, benzoic acid derivatives, phenols, β-blockers and small peptides. Depending on the combination of stationary phase/mobile phase/solute, both hydrophilic interaction and other potential secondary interactions, including electrostatic interaction, hydrogen-bonding interaction, molecular shape selectivity, could contribute to the over-all retention of the analytes. Because of the strong electrostatic interaction provided by the quaternary ammonium groups in the poly (AETA-co-MBA) monolith, this cationic HILIC monolith exhibited the strongest retention for benzoic acid derivatives and small peptides with distorted peak shapes and the weakest retention for basic β-blockers. The sulfonyl groups on the poly (SPA-co-MBA) hydrophilic monolith could provide strong electrostatic attraction and hydrogen bonding for positively charged analytes and hydrogen-donor/acceptor containing analytes, respectively. Therefore, basic drugs, nucleobases and nucleotides exhibited the strongest retention on this anionic monolith. Because of the weak but distinct cation exchange properties of

  19. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Towards Phosphate Detection in Hydroponics Using Molecularly Imprinted Polymer Sensors.

    Science.gov (United States)

    Storer, Christopher S; Coldrick, Zachary; Tate, Daniel J; Donoghue, Jack Marsden; Grieve, Bruce

    2018-02-10

    An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N -allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate, and trimethyl phosphate. A cross-interference study between phosphate, nitrate, and sulfate was carried out for the MIP materials using an inductance, capacitance, and resistance (LCR) meter. Capacitance measurements were taken by applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

  1. U-Pb, Pb-Pb, and K-Ar isotopic study and petrography of uraniferous phosphate-bearing rocks in the Thelon Formation, Dubawnt Group, Northwest Territories, Canada

    International Nuclear Information System (INIS)

    Miller, A.R.; Cumming, G.L.; Krstic, D.

    1989-01-01

    The Thelon Formation, uppermost unit of the Dubawnt Group, overlies a regionally extensive paleoweathered zone developed on a wide range of lithochronological units including formations in the lower Dubawnt Group. Authigenic uraniferous phosphate minerals, fluorapatite and goyazite, cementing Thelon conglomerate - sandstone and filling fractures in the underlying paleoweathered zone, were dated in an attempt to better constrain the age of Thelon sedimentation and diagenesis. The oldest age, 1720 ± 6 Ma, derived from phosphate-cemented sediments, is interpreted as a minimum age for diagenesis and therefore brackets initial Thelon sedimentation between emplacement of fluorite-bearing granites at 1753 Ma and authigenic phosphate cementation at 1720 Ma. Additional ages of 1685 ± 4 and 1647 Ma are interpreted as remobilization or subsequent cementation events. K-Ar ages on illite, 1386 ± 37 and 1266 ± 31 Ma, from the paleoweathered zone and basal conglomerate, respectively, are significantly younger than ages derived from coexisting phosphate. These K-Ar ages recorded hydrothermal events that may be related to processes associated with unconformity-type uranium mineralization at approximately 1400-1300 Ma. Ages from the Thelon Basin permit geochronologic correlations with the Athabasca and Hornby basins, long correlated on the basis of similarities in sedimentation, stratigraphy, and tectonic setting

  2. Gibbs free energy of transfer of a methylene group on {UCON + (sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects

    International Nuclear Information System (INIS)

    Silverio, Sara C.; Rodriguez, Oscar; Teixeira, Jose A.; Macedo, Eugenia A.

    2010-01-01

    The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH 2 ) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 o C, in three different tie-lines of the biphasic systems: (UCON + K 2 HPO 4 ), (UCON + potassium phosphate buffer, pH 7), (UCON + KH 2 PO 4 ), (UCON + Na 2 HPO 4 ), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH 2 PO 4 ). The Gibbs free energy of transfer of CH 2 units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.

  3. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    Energy Technology Data Exchange (ETDEWEB)

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the

  4. Characterization, Leaching, and Filtration Testing for Tributyl Phosphate (TBP, Group 7) Actual Waste Sample Composites

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matthew K.; Billing, Justin M.; Blanchard, David L.; Buck, Edgar C.; Casella, Amanda J.; Casella, Andrew M.; Crum, J. V.; Daniel, Richard C.; Draper, Kathryn E.; Fiskum, Sandra K.; Jagoda, Lynette K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.; Swoboda, Robert G.

    2009-03-09

    .A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. The actual waste-testing program included homogenizing the samples by group, characterizing the solids and aqueous phases, and performing parametric leaching tests. The tributyl phosphate sludge (TBP, Group 7) is the subject of this report. The Group 7 waste was anticipated to be high in phosphorus as well as aluminum in the form of gibbsite. Both are believed to exist in sufficient quantities in the Group 7 waste to address leaching behavior. Thus, the focus of the Group 7 testing was on the removal of both P and Al. The waste-type definition, archived sample conditions, homogenization activities, characterization (physical, chemical, radioisotope, and crystal habit), and caustic leaching behavior as functions of time, temperature, and hydroxide concentration are discussed in this report. Testing was conducted according to TP-RPP-WTP-467.

  5. Osteoinduction of calcium phosphate biomaterials in small animals

    International Nuclear Information System (INIS)

    Cheng, Lijia; Shi, Yujun; Ye, Feng; Bu, Hong

    2013-01-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca 3 (PO 4 ) 2 , CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation

  6. Osteoinduction of calcium phosphate biomaterials in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lijia; Shi, Yujun [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Ye, Feng [Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China); Bu, Hong, E-mail: hongbu@scu.edu.cn [Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu (China); Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610041 (China)

    2013-04-01

    Although osteoinduction mechanism of calcium phosphate (CP) ceramics is still unclear, several essential properties have been reported, such as chemical composition, pore size and porosity, etc. In this study, calcium phosphate powder (Ca{sub 3}(PO{sub 4}){sub 2}, CaP, group 1), biphasic calcium phosphate ceramic powder (BCP, group 2), and intact BCP rods (group 3) were implanted into leg muscles of mice and dorsal muscles of rabbits. One month and three months after implantation, samples were harvested for biological and histological analysis. New bone tissues were observed in 10/10 samples in group 1, 3/10 samples in group 2, and 9/10 samples in group 3 at 3rd month in mice, but not in rabbits. In vitro, human mesenchymal stem cells (hMSCs) were cultured with trace CaP and BCP powder, and osteogenic differentiation was observed at day 7. Our results suggested that chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation. - Highlights: ► Intrinsic osteoinduction of calcium phosphate biomaterials was observed implanted in muscles of mice. ► Biomaterials powder also has osteoinduction property. ► Osteogenic genes and protein could be detected by RT-PCR and Western blot in implanted biomaterials. ► Osteogenic phenomenon could be observed by electron microscopy. ► The chemical composition is the prerequisite in osteoinduction, and pore structure would contribute to more bone formation.

  7. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    International Nuclear Information System (INIS)

    Cao Feng; Li Dongxu

    2010-01-01

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe 3+ , which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  8. Biotemplate synthesis of monodispersed iron phosphate hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Cao Feng; Li Dongxu, E-mail: dongxuli@njut.edu.c [College of Materials Science and Engineering, Nanjing University of Technology, Jiangsu Nanjing 210009 (China)

    2010-03-15

    Monodispersed iron phosphate hollow microspheres with a high degree of crystallization were prepared through a facile in situ deposition method using rape pollen grains as a biotemplate. The functional group on the surface of the pollen grains could adsorb Fe{sup 3+}, which provided the nucleation sites for growth of iron phosphate nanoparticles. After being sintered at 600 deg. C for 10 h, the pollen grains were removed and iron phosphate hollow microspheres were obtained. A scanning electron microscope and x-ray diffraction were applied to characterize the morphology and crystalline structure of the pollen grains, iron phosphate-coated pollen grains and iron phosphate hollow microspheres. Differential scanning calorimetry and thermogravity analyses were performed to investigate the thermal behavior of the iron phosphate-coated pollen grains during the calcinations. Energy dispersive spectroscopy and Fourier transform infrared spectroscopy were utilized to investigate the interaction between the pollen grains and iron phosphate. The effect of the pollen wall on the surface morphology of these iron phosphate hollow microspheres was also proven in this work.

  9. Modelling phosphate adsorption to the soil: Application of the non-ideal competitive adsorption model

    International Nuclear Information System (INIS)

    Abou Nohra, Joumana S.; Madramootoo, Chandra A.; Hendershot, William H.

    2007-01-01

    Phosphorus (P) transport in subsurface runoff has increased despite the limited mobility of P in soils. This study investigated the ability of the non-ideal competitive adsorption (NICA) model to describe phosphate (PO 4 ) adsorption for soils in southern Quebec (Canada). We measured the surface charge and PO 4 adsorption capacity for 11 agricultural soils. Using the experimental data and a nonlinear fitting function, we derived the NICA model parameters. We found that the NICA model described accurately the surface charge of these soils with a mean R 2 > 0.99, and described the adsorption data with a mean R 2 = 0.96. We also found that the variable surface charge was distributed over the two binding sites with the low pH sites demonstrating a stronger binding energy for hydroxyl and PO 4 ions. We established that the NICA model is able to describe P adsorption for the soils considered in this study. - The NICA model accurately described the adsorption of phosphate to some southern Quebec soils

  10. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  11. Phosphate removal from water using lithium intercalated gibbsite.

    Science.gov (United States)

    Wang, Shan-Li; Cheng, Chia-Yi; Tzou, Yu-Min; Liaw, Ren-Bao; Chang, Ta-Wei; Chen, Jen-Hshuan

    2007-08-17

    In this study, lithium intercalated gibbsite (LIG) was investigated for its effectiveness at removing phosphate from water and the mechanisms involved. LIG was prepared through intercalating LiCl into gibbsite giving a structure of [LiAl2(OH)6]+ layers with interlayer Cl- and water. The results of batch adsorption experiments showed that the adsorption isotherms at various pHs exhibited an L-shape and could be fitted well using the Langmuir model. The Langmuir adsorption maximum was determined to be 3.0 mmol g(-1) at pH 4.5 and decreased with increasing pH. The adsorption of phosphate was mainly through the displacement of the interlayer Cl- ions in LIG. In conjunction with the anion exchange reaction, the formation of surface complexes or precipitates could also readily occur at lower pH. The adsorption decreased with increasing pH due to decreased H(2)PO(4)(-)/HPO4(2-) molar ratio in solution and positive charges on the edge faces of LIG. Anion exchange is a fast reaction and can be completed within minutes; on the contrary, surface complexation is a slow process and requires days to reach equilibrium. At lower pH, the amount of adsorbed phosphate decreased significantly as the ionic strength was increased from 0.01 to 0.1M. The adsorption at higher pH showed high selectivity toward divalent HPO4(2-) ions with an increase in ionic strength having no considerable effect on the phosphate adsorption. These results suggest that LIG may be an effective scavenger for removal of phosphate from water.

  12. Phosphate removal from water using lithium intercalated gibbsite

    International Nuclear Information System (INIS)

    Wang, S.-L.; Cheng, C.-Y.; Tzou, Y.-M.; Liaw, R.-B.; Chang, T.-W.; Chen, J.-H.

    2007-01-01

    In this study, lithium intercalated gibbsite (LIG) was investigated for its effectiveness at removing phosphate from water and the mechanisms involved. LIG was prepared through intercalating LiCl into gibbsite giving a structure of [LiAl 2 (OH) 6 ] + layers with interlayer Cl - and water. The results of batch adsorption experiments showed that the adsorption isotherms at various pHs exhibited an L-shape and could be fitted well using the Langmuir model. The Langmuir adsorption maximum was determined to be 3.0 mmol g -1 at pH 4.5 and decreased with increasing pH. The adsorption of phosphate was mainly through the displacement of the interlayer Cl - ions in LIG. In conjunction with the anion exchange reaction, the formation of surface complexes or precipitates could also readily occur at lower pH. The adsorption decreased with increasing pH due to decreased H 2 PO 4 - /HPO 4 2- molar ratio in solution and positive charges on the edge faces of LIG. Anion exchange is a fast reaction and can be completed within minutes; on the contrary, surface complexation is a slow process and requires days to reach equilibrium. At lower pH, the amount of adsorbed phosphate decreased significantly as the ionic strength was increased from 0.01 to 0.1 M. The adsorption at higher pH showed high selectivity toward divalent HPO 4 2- ions with an increase in ionic strength having no considerable effect on the phosphate adsorption. These results suggest that LIG may be an effective scavenger for removal of phosphate from water

  13. Phosphate additives in food--a health risk.

    Science.gov (United States)

    Ritz, Eberhard; Hahn, Kai; Ketteler, Markus; Kuhlmann, Martin K; Mann, Johannes

    2012-01-01

    Hyperphosphatemia has been identified in the past decade as a strong predictor of mortality in advanced chronic kidney disease (CKD). For example, a study of patients in stage CKD 5 (with an annual mortality of about 20%) revealed that 12% of all deaths in this group were attributable to an elevated serum phosphate concentration. Recently, a high-normal serum phosphate concentration has also been found to be an independent predictor of cardiovascular events and mortality in the general population. Therefore, phosphate additives in food are a matter of concern, and their potential impact on health may well have been underappreciated. We reviewed pertinent literature retrieved by a selective search of the PubMed and EU databases (www.zusatzstoffe-online.de, www.codexalimentarius.de), with the search terms "phosphate additives" and "hyperphosphatemia." There is no need to lower the content of natural phosphate, i.e. organic esters, in food, because this type of phosphate is incompletely absorbed; restricting its intake might even lead to protein malnutrition. On the other hand, inorganic phosphate in food additives is effectively absorbed and can measurably elevate the serum phosphate concentration in patients with advanced CKD. Foods with added phosphate tend to be eaten by persons at the lower end of the socioeconomic scale, who consume more processed and "fast" food. The main pathophysiological effect of phosphate is vascular damage, e.g. endothelial dysfunction and vascular calcification. Aside from the quality of phosphate in the diet (which also requires attention), the quantity of phosphate consumed by patients with advanced renal failure should not exceed 1000 mg per day, according to the guidelines. Prospective controlled trials are currently unavailable. In view of the high prevalence of CKD and the potential harm caused by phosphate additives to food, the public should be informed that added phosphate is damaging to health. Furthermore, calls for labeling

  14. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Lin, E-mail: denglinlyn@126.com; Shi, Zhou, E-mail: 369329062@qq.com

    2015-07-15

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L{sup −1}. The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g{sup −1} at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO{sub 4}{sup 2−} > NO{sub 3}{sup −} > Cl{sup −}. A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO{sub 3}{sup −} ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in

  15. Synthesis and characterization of a novel Mg–Al hydrotalcite-loaded kaolin clay and its adsorption properties for phosphate in aqueous solution

    International Nuclear Information System (INIS)

    Deng, Lin; Shi, Zhou

    2015-01-01

    Highlights: • Kaolin clay was coalesced with Mg–Al hydrotalcite to form composite adsorbent (MKC). • MKC was synthesized through modified co-precipitation method. • MKC gave high adsorption of phosphate over a wide pH range of 2.5–9.5. • MKC is an economical and environmentally friendly adsorbent for phosphate removal and recycling. - Abstract: The mesoporous modified kaolin clay (MKC) was synthesized by loading Mg–Al hydrotalcite onto kaolin clay through coprecipitation method and applied for adsorption of phosphate from aqueous solution. Several techniques, including Brunauer–Emmett–Teller (BET), thermal analysis (TG–DTA), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the adsorbents. The effects of adsorbent dosage, solution pH, initial phosphate concentration, contact time, temperature, and coexistent anions on phosphate adsorption have been investigated. MKC exhibited a strong uptake affinity to phosphate in a wide pH range of 2.5–9.5, with the maximum adsorptive removal of 98.03%, at adsorbent dosage of 0.2 g/50 mL, pH 7.5, and initial phosphate concentration 25 mg L −1 . The adsorption kinetics followed the pseudo-second-order kinetic model. The Langmuir isothermal model well described the adsorption isotherm data, showing a maximum adsorption capacity for phosphate up to 11.92 mg g −1 at 298 K. The obtained thermodynamic parameters revealed that the adsorption of phosphate onto MKC was an exothermic and spontaneous process. Coexistent chloride, nitrate, and sulfate ions displayed an adverse effect on phosphate adsorption following the order of SO 4 2− > NO 3 − > Cl − . A mechanism of adsorption that involved (i) electrostatic attraction of hydroxyl groups of the adsorbent with negatively charged phosphate ions, and (ii) anion exchange of NO 3 − ions that were associated with the surface or interlayer of the adsorbent with anionic phosphate ions in solution, was proposed

  16. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish; (UAB)

    2009-06-08

    The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate

  17. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish

    2009-02-01

    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  18. Serum phosphate and cognitive function in older men.

    Science.gov (United States)

    Slinin, Yelena; Vo, Tien; Taylor, Brent C; Murray, Anne M; Schousboe, John; Langsetmo, Lisa; Ensrud, Kristine

    2018-01-01

    Determine whether serum phosphate is associated with concurrent cognitive impairment and subsequent cognitive decline in older men independent of demographic covariates and atherosclerotic risk factors. In a prospective study of 5529 men enrolled in the Osteoporotic Fractures in Men study, we measured baseline serum phosphate, baseline cognitive function, and change in cognitive function between baseline and follow-up exams an average of 4.6 years later using the Modified Mini-Mental State (3MS) Examination and Trails B. There was no association between serum phosphate and odds of cognitive impairment as assessed by baseline 3MS score or risk of cognitive decline as assessed by longitudinal change in 3MS score. Higher baseline serum phosphate was associated with higher odds of poor executive function as assessed by Trails B with fully adjusted odds ratios 1.12 (95% confidence interval: 0.83-1.52), 1.31 (0.97-1.77), and 1.45 (1.08-1.94) for men in the second, third, and fourth versus the bottom quartile (referent group) of serum phosphate (p-trend 0.007). However, higher phosphate level was not associated with risk of decline in executive function as assessed by longitudinal change in Trails B score with fully adjusted odds ratios 0.94 (95% confidence interval 0.69-1.28), 0.96 (0.70-1.32), and 1.21 (0.89-1.66) for men in the second, third, and fourth versus the bottom quartile (referent group) of serum phosphate (p-trend 0.22). Higher serum phosphate in older men was associated with a higher likelihood of poor executive function, but not with impaired global cognitive function or decline in executive or global cognition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. A randomised study to compare salivary pH, calcium, phosphate and calculus formation after using anticavity dentifrices containing Recaldent(®) and functionalized tri-calcium phosphate.

    Science.gov (United States)

    Sharma, Ena; Vishwanathamurthy, Ramesh Alampalli; Nadella, Manjari; Savitha, A N; Gundannavar, Gayatri; Hussain, M Ahad

    2012-10-01

    The aim of this study was to estimate the pH of saliva, concentration of calcium and inorganic phosphate, and calculus formation before and after usage of Recaldent(®) (GC Tooth Mousse Plus™), Functionalized Tricalcium Phosphate (3M ESPE ClinPro™ Tooth Crème) and standard dentifrice (Colgate dental cream). Randomized double-blind study. A total of 50 subjects were recruited, the subjects were assessed at their first visit, on the 21(st) day and on the 42(nd) day. At the first visit, scaling was carried out and oral hygiene instructions were given. After 21 days, the subjects were given coded dentifrices where the operator and the subjects both were unaware of the type of dentifrice. Clinical parameters assessed were Plaque index, Gingival index, and Calculus index. Salivary samples were obtained to measure calcium, phosphate levels, and pH at 21(st) day and 42(nd) day. ANOVA test, t-test, Mann-Whitney test, Kruskal-Wallis test. The mean salivary calcium level and mean salivary phosphate level were higher in Group III (functionalized tricalcium phosphate (3M ESPE ClinPro™ Tooth Creme) as compared to Group II (Recaldent(®) GC Tooth Mousse Plus™) and Group I (Colgate dental cream) on the 42(nd) day after using dentifrices, which was statistically significant. This showed that the usage of remineralizing dentifrices led to an increase in the salivary calcium, phosphate, and pH but it did not reach the level of super saturation of the ions caused by elevated pH which could lead to calculus formation. Thought here was a statistically significant increase in salivary calcium and phosphate level in all three groups from baseline to 42(nd) day, there was no calculus formation.

  20. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  1. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    Science.gov (United States)

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  2. A Novel Framework Antimony (III) Phosphate: Synthesis and Structure of NaSb 3O 2(PO 4) 2

    Science.gov (United States)

    Adair, Brian A.; de Delgado, Graciela Díaz; Miguel Delgado, J.; Cheetham, Anthony K.

    2000-04-01

    The antimony (III) phosphate, NaSb3O2(PO4)2, is a framework structure built from SbIII and PV centers; orthorhombic, space group Pca21 (No. 29), a=13.944(3), b=6.6822(13), c=20.886(4) Å, V=1946.1(7) Å3, Z=8. Stereochemically active lone pairs of electrons associated with SbIIIO5 and SbIIIO4 polyhedra point into eight-ring channels, approximately 5×7 Å2, which dominate the architecture of the title compound. Charge-compensating sodium cations occupy the remaining space in the channels.

  3. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  4. Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate

    International Nuclear Information System (INIS)

    Rui, Yukui; Zhang, Peng; Zhang, Yanbei; Ma, Yuhui; He, Xiao; Gui, Xin; Li, Yuanyuan; Zhang, Jing; Zheng, Lirong; Chu, Shengqi; Guo, Zhi; Chai, Zhifang; Zhao, Yuliang; Zhang, Zhiyong

    2015-01-01

    Transformation is a critical factor that affects the fate and toxicity of manufactured nanoparticles (NPs) in the environment and living organisms. This paper aims to investigate the effect of phosphate on the transformation of CeO 2 NPs in hydroponic plants. Cucumber seedlings were treated with 2000 mg/L CeO 2 NPs in nutrient solutions with or without adding phosphate (+P or –P) for 3 weeks. Large quantities of needle-like CePO 4 was found outside the epidermis in the +P group. While in the –P group, CePO 4 only existed in the intercellular spaces and vacuole of root cells. X-ray absorption near edge spectroscopy (XANES) indicates that content and percentage of Ce-carboxylates in the shoots of –P group (418 mg/kg, 67.5%) were much higher than those in the +P group (30.1 mg/kg, 21%). The results suggest that phosphate might influence the transformation process of CeO 2 NPs in plants and subsequently their ultimate fate in the ecosystem. - Highlights: • We compared the transformation of CeO 2 NPs in cucumber plants with and without phosphate in nutrient solutions. • Results of TEM and STXM show that CePO 4 located differently in roots between +P and –P group. • The chemical species distributions of Ce in shoots were different between +P and –P group by XANES. • Phosphate significantly affected the transformation of CeO 2 NPs in plants. - CeO 2 NPs can be partially transformed to CePO 4 and Ce carboxylates in hydroponic plants. Phosphate significantly affected the transformation of CeO 2 NPs and subsequent translocation of Ce species

  5. Conditions promoting and restraining agronomic effectiveness of water-insoluble phosphate sources, in particular phosphate rock (PR): I. Indices of phosphate rock use opportunity (PRUOIS) and of phosphate rock suitability for direct use (PRSIDU)

    International Nuclear Information System (INIS)

    Borlan, Z.; Gavriluta, I.; Soare, M.; Stefanescu, D.; Alexandrescu, A.

    2002-01-01

    Several issues of phosphate rock (PR) use are discussed in this paper. Maize for green fodder (Zea mays L) and ryegrass (Lolium multiflorum Lam.) were grown in 7 kg of dry soil and in small pots of 1.25 kg dry soil capacity, respectively, on several base unsaturated soils belonging to Hapludoll and Hapludalf soil groups. The amount of phosphate rock (PR) to apply was based on experimental data considering soil adsorbed acidity (Ah), humus content (H 2 ), cation exchange capacity (T), sum of exchangeable bases (SEB) and mobile (easily soluble) phosphate content (P A L) in the soil. The factors were combined in a rock phosphate use, opportunity index of the soil (PRUOIS): PRUOIS=(A h *H 2 *100)/SEB*10 0.0245*P AL Rock phosphate suitability for direct use was evaluated by means of the rate of PR-P dissolution (PRPRS) in a 0.6% ammonium heptamolybdate in 0.01M calcium chloride solution (ppm P) and by carbonate content (%CaCO 3 ) in PR. Both of these parameters combined provided a phosphate rock suitability index for direct use (PRSIDU): PRSIDU [ppmP/min]=PRPRS*(1-0.03*CaCO 3 ) Water insoluble P sources studied were PR from Kola-Russia, Morocco, Kneifiss-Siria, El Hassa-Jordan, Gafsa- Tunisia, North-Carolina (USA), and Arad-Israel. All PRs were compared with TSP applied at the same rate of P. Neither PRUOIS or PRSIDU considered separately could satisfactorily explain the variance of PR efficiency. An index obtained by multiplicative combination of PRUOIS x PRSIDU did correlate significantly with indices on the agronomic efficiency of PR. (author)

  6. Characterization of cement calcium phosphate for use dental

    International Nuclear Information System (INIS)

    Barros, C.M.B.; Oliveira, S.V.; Silva, M.C.; Marques, J.B.; Fook, M.V.L.

    2011-01-01

    Calcium phosphates are interesting biological and medical attention due to its occurrence in different animal species and humans. Ceramics based on calcium phosphate in the form of implants or porous particulate materials, have proven to be suitable replacements for bone tissue when they are only subjected to small mechanical stresses. Was obtained research laboratory DEMA/UFCG a calcium phosphate phase. The goal is to characterize the material by X-ray diffraction (XRD) in order to analyze what the phases and infrared spectroscopy (FTIR) to identify the absorption bands of the bonding characteristic. Was identified by XRD phase present in the sample is hydroxyapatite Ca/P 1.67. In infrared spectroscopy has absorption bands characteristic of the phosphate group at 1032 cm1 region. (author)

  7. Metal Phosphates as Intermediate Temperature Proton Conducting Electrolytes

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Q.F.; Pan, Chao

    2012-01-01

    A series of metal phosphates were synthesized and screened as potential proton conductor electrolytes for fuel cells and electrolysers operational at intermediate temperatures. Among the selected, niobium and bismuth phosphates exhibited a proton conductivity of 10-2 and 10-7 S cm-1, respectively......, under the anhydrous atmosphere at 250 °C, showing close correlation with the presence of hydroxyl groups in the phosphate phases. At the water partial pressure of above 0.6 atm, both phosphates possessed a proton conductivity to a level of above 3 x 10-2 S cm-1. Reasonable stability of the proton...... conductivity was observed under either a constant low water partial pressure or under a humidity cycling test within a period of more than 80 hours....

  8. National trends of incidence, treatment, and hospital charges of isolated C-2 fractures in three different age groups.

    Science.gov (United States)

    Kukreja, Sunil; Kalakoti, Piyush; Murray, Richard; Nixon, Menarvia; Missios, Symeon; Guthikonda, Bharat; Nanda, Anil

    2015-04-01

    Incidence of C-2 fracture is increasing in elderly patients. Patient age also influences decision making in the management of these fractures. There are very limited data on the national trends of incidence, treatment interventions, and resource utilization in patients in different age groups with isolated C-2 fractures. The aim of this study is to investigate the incidence, treatment, complications, length of stay, and hospital charges of isolated C-2 fracture in patients in 3 different age groups by using the Nationwide Inpatient Sample (NIS) database. The data were obtained from NIS from 2002 to 2011. Data on patients with closed fractures of C-2 without spinal cord injury were extracted using ICD-9-CM diagnosis code 805.02. Patients with isolated C-2 fractures were identified by excluding patients with other associated injuries. The cohort was divided into 3 age groups: 80 years. Incidence, treatment characteristics, inpatient/postoperative complications, and hospital charges (mean and total annual charges) were compared between the 3 age groups. A total of 10,336 patients with isolated C-2 fractures were identified. The majority of the patients were in the very elderly age group (> 80 years; 42.3%) followed by 29.7% in the 65- to 80-year age group and 28% in age group. From 2002 to 2011, the incidence of hospitalization significantly increased in the 65- to 80-year and > 80-year age groups (p age group (p = 0.287). Overall, 21% of the patients were treated surgically, and 12.2% of the patients underwent nonoperative interventions (halo and spinal traction). The rate of nonoperative interventions significantly decreased over time in all age groups (p age groups had a greater risk of inpatient/postoperative complications, nonroutine discharges, and longer hospitalization. The mean hospital charges were significantly higher in older age groups (p age groups. Simultaneously, there has been a steadily decreasing trend in the preference for nonoperative

  9. Solubility and transport measurements as tools for the speciation of f-elements at tracer-scale amounts; application to Eu and Th in phosphate media

    International Nuclear Information System (INIS)

    Fourest, B.; David, F.; Lagarde, G.; Lindecker, C.; Du, J.F. Le; Tarapcik, P.; Trskova, R.

    1998-01-01

    The speciation of f-elements can be examined by methods which are based either on the distribution of the radionuclide of interest between two phases (solubility measurements) or on its moving in solution (capillary diffusion and migration). Predictive curves giving the variation of the mobility and the concentration of Europium as a function of pH and/or phosphate concentration can be proposed from selected literature data. Capillary electrophoresis experiments show that the mobility decrease due to hydrolysis occurs at a pH value lower than expected. The peak intensity is correspondingly smaller, but this observation cannot be simply related to a change in the charge of the migrating species because of sorption and precipitation phenomena on the capillary walls. Diffusion coefficient measurements by the 'open end capillary' method confirm the formation of larger and/or less charged species starting at a similar pH value. In the presence of phosphate anions, both transport methods should indicate the presence in solution of species having a larger size than expected, which could be polynuclear. Solubility measurements give more information but require the synthesis of a well-defined labelled phosphate compound. The total concentration of f-elements detected in the solutions equilibrated with such compounds allow to deduce, by varying only one parameter in the solution (pH or phosphate concentration), the form and the charge of the different species prevailing in the solution. The solubility method appears particularly interesting in the case of concentrated phosphate media

  10. Unsymmetrical phosphate as extractant for the extraction of nitric acid

    International Nuclear Information System (INIS)

    Gaikwad, R.H.; Jayaram, R.V.

    2016-01-01

    Tri-n-butyl phosphate (TBP) was first used as an extractant in 1944, during Manhattan project for the separation of actinides and further explored by Warf in 1949 for the extraction of Ce(IV) from aqueous nitric acid. TBP was further used as an extractant in the Plutonium Uranium Recovery by Extraction (PUREX) process. To meet the stringent requirements of the nuclear industry TBP has been extensively investigated. In spite of its wide applicability, TBP suffers from various disadvantages such as high aqueous solubility, third phase formation, chemical and radiation degradation leading to the formation of undesired products. It also suffers from incomplete decontamination of the actinides from fission products. Various attempts have been made to overcome the problems associated with TBP by way of using higher homologues of TBP such as Tri-iso amyl phosphate (TiAP), Tri-secondary butyl phosphate (TsBP), Tri amyl phosphate (TAP). It was found that in some cases the results were considerably better than those obtained with TBP for uranium/thorium extraction. The extraction of nitric acid by TBP and its higher homologues which are symmetrical are well documented. However, no solvent has emerged clearly superior than TBP. Here in we report the extraction of nitric acid with neutral unsymmetrical phosphates and study them as extractants for the extraction of nitric acid. Dibutyl secbutyl phosphate, dibutyl pentyl phosphate and dibutyl heptyl phosphate were synthesised for this purpose and the extraction of nitric acid was studied in n-dodecane. The results indicate that the substitution of one of the alkyl groups of the symmetrical phosphate adjacent to the phosphoryl (P=O) group of the phosphate does not have any pronounced effect on the extraction capacity of nitric acid. (author)

  11. Contribution to the study of the substitution of the thiol group of cysteine in presence of pyridoxal or pyridoxal phosphate; Contribution a l'etude de la substitution du groupe thiol de la cysteine en presence de pyridoxal ou de phosphate de pyridoxal

    Energy Technology Data Exchange (ETDEWEB)

    Ratsisalovanina-Rajaonarivelo, Olga

    1960-11-15

    This academic work shows that the detachment of SH{sup -}, OH{sup -} and OPO{sub 3}H{sub 2}{sup -}, respectively from cysteine, serine and phosphoserine can occur with its substitution by a sulphur-containing group. The author first shows the ability of pyridoxal and of pyridoxal phosphate to catalyse the exchange between the sulphur of the cysteine thiol group and the sulphur of the mineral sulphide, and to catalyse the cysteine synthesis from serine or phosphoserine in presence of mineral sulphur. Then, she studied various parameters of the synthesis reaction: influence of concentrations, of temperature, of reaction time, of metal nature, of oxygen presence, and of pH on efficiency in terms of cysteic acid.

  12. Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils

    International Nuclear Information System (INIS)

    Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Naidu, Ravi

    2013-01-01

    Highlights: ► Demonstrates the nexus between sorption and bioavailability of As and Cd in variable-charge soils. ► Liming variable-charge soils increase negative charge, thereby decreasing Cd bioavailability. ► Ageing of As and Cd increases their immobilization, thereby decreasing bioavailability. ► Phosphate enhances desorption and phytoavailability of As from sheep dip soil. ► Metal(loid)s transfer to food chain can be managed by controlling sorption reactions. -- Abstract: In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of

  13. Sorption–bioavailability nexus of arsenic and cadmium in variable-charge soils

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, Nanthi, E-mail: Nanthi.Bolan@unisa.edu.au [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA (Australia); CRC for Contamination Assessment and Remediation in the Environment, University of South Australia, Mawson Lakes, SA (Australia); Mahimairaja, Santiago [Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu (India); Kunhikrishnan, Anitha [Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do 441-707 (Korea, Republic of); Naidu, Ravi [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA (Australia); CRC for Contamination Assessment and Remediation in the Environment, University of South Australia, Mawson Lakes, SA (Australia)

    2013-10-15

    Highlights: ► Demonstrates the nexus between sorption and bioavailability of As and Cd in variable-charge soils. ► Liming variable-charge soils increase negative charge, thereby decreasing Cd bioavailability. ► Ageing of As and Cd increases their immobilization, thereby decreasing bioavailability. ► Phosphate enhances desorption and phytoavailability of As from sheep dip soil. ► Metal(loid)s transfer to food chain can be managed by controlling sorption reactions. -- Abstract: In this work, the nexus between sorption and bioavailability of arsenic (As) and cadmium (Cd) as affected by soil type, soil pH, ageing, and mobilizing agents were examined. The adsorption of As and Cd was examined using a number of allophanic and non-allophanic soils which vary in their charge components. The effect of pH and ageing on the bioavailability of As and Cd was examined using spiked soils in a plant growth experiment. The effect of phosphate (P)-induced mobility of As on its bioavailability was examined using a naturally contaminated sheep dip soil. The results indicated that the adsorption of both As and Cd varied amongst the soils, and the difference in Cd adsorption is attributed to the difference in surface charge. An increase in soil pH increased net negative charge by an average of 45.7 mmol/kg/pH thereby increasing cation (Cd) adsorption; whereas, the effect of pH on anion (As) adsorption was inconsistent. The bioavailability of As and Cd decreased by 3.31- and 2.30-fold, respectively, with ageing which may be attributed to increased immobilization. Phosphate addition increased the mobility and bioavailability of As by 4.34- and 3.35-fold, respectively, in the sheep dip soil. However, the net effect of P on As phytoavailability depends on the extent of P-induced As mobilization in soils and P-induced competition for As uptake by roots. The results demonstrate the nexus between sorption and bioavailability of As and Cd in soils, indicating that the effects of

  14. Charged Particle Tracking and Vertex Detection Group summary report

    International Nuclear Information System (INIS)

    Hanson, G.; Meyer, D.

    1984-09-01

    Charged particle tracking is essential in order to investigate the new physics expected at the SSC. The Tracking Group studied radiation damage and rate limitations to tracking devices, vertex detectors, and central tracking. The Group concluded that silicon strips and large wire tracking chambers with small cells can probably survive at the design luminosity of 10 33 cm -2 sec -1 ; however, the presently designed electronics for silicon strip vertex detectors can withstand a luminosity of only 10 31 cm -2 sec -1 . Wire chambers at a radius of less than about 25 cm can withstand a luminosity of less than or equal to 10 32 cm -2 sec -1 only. Actual tracking and pattern recognition in central tracking chambers at a luminosity of 10 33 cm -2 sec -1 will be very difficult because of multiple interactions within the resolving time of the chambers; detailed simulations are needed in order to decide whether tracking is indeed possible at this luminosity. Scintillating glass fibers are an interesting possibility both for vertex detectors and for central trackers, but much research and development is still needed both on the fibers themselves and on the readout

  15. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios

    International Nuclear Information System (INIS)

    Gokcekaya, Ozkan; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2015-01-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca + Ag)/P and Ag/(Ca + Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca + Ag) atomic ratio in solution and was lower than the charged Ag/(Ca + Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019–0.0061 (Ag/(Ca + Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). - Highlights: • The HA powders with Ag nanoparticles were synthesized by a precipitation method. • Metallic Ag particles were detected with the HA phase after sintering. • The distribution of Ag in β-TCP was homogeneous after sintering. • The addition of Ag stabilized the β-ΤCP phase. • β-TCP exhibited higher solubility of Ag than HA and β-CPP

  16. Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios

    Energy Technology Data Exchange (ETDEWEB)

    Gokcekaya, Ozkan, E-mail: gokcekaya@dc.tohoku.ac.jp [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ueda, Kyosuke; Narushima, Takayuki [Department of Materials Processing, Tohoku University, 6-6-02 Aza Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Ergun, Celaletdin [Faculty of Mechanical Engineering, Istanbul Technical University, 65 Inonu Street, Gumussuyu, Istanbul 34437 (Turkey)

    2015-08-01

    Ag-containing calcium phosphate (CaP) powders were synthesized by a precipitation method using aqueous solutions of calcium nitrate, silver nitrate, and ammonium phosphate. The powders were sintered at temperatures ranging from 1173 to 1473 K. The charged atomic ratios of (Ca + Ag)/P and Ag/(Ca + Ag) in solution were varied from 1.33 to 1.67 and from 0 to 0.30, respectively. The Ag content in the as-precipitated CaP powders increased with the charged Ag/(Ca + Ag) atomic ratio in solution and was lower than the charged Ag/(Ca + Ag) value. The as-precipitated CaP powders consisted of hydroxyapatite (HA) as the main phase. Ag nanoparticles were observed on the as-precipitated HA particles under all conditions of Ag addition. After the sintering, HA, β-TCP (tricalcium phosphate), α-TCP, and β-CPP (calcium pyrophosphate) were mainly detected as CaPs on the basis of the Ca/P atomic ratio of the as-precipitated powders. The addition of Ag stabilized the β-TCP phase, and the distribution of Ag in β-TCP was homogeneous. A metallic Ag phase coexisted with HA. The solubility of Ag in HA was estimated to be 0.0019–0.0061 (Ag/(Ca + Ag)) atomic ratio, which was lower than that in β-TCP (higher than 0.0536) and higher than that of β-CPP (below the detection limit of analyses). - Highlights: • The HA powders with Ag nanoparticles were synthesized by a precipitation method. • Metallic Ag particles were detected with the HA phase after sintering. • The distribution of Ag in β-TCP was homogeneous after sintering. • The addition of Ag stabilized the β-ΤCP phase. • β-TCP exhibited higher solubility of Ag than HA and β-CPP.

  17. Chitosan–Zinc(II Complexes as a Bio-Sorbent for the Adsorptive Abatement of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance

    Directory of Open Access Journals (Sweden)

    Maryam Roza Yazdani

    2017-12-01

    Full Text Available This study examines zinc(II–chitosan complexes as a bio-sorbent for phosphate removal from aqueous solutions. The bio-sorbent is prepared and is characterized via Fourier Transform Infrared Spectroscopy (FT-IR, Scanning Electron Microscopy (SEM, and Point of Zero Charge (pHPZC–drift method. The adsorption capacity of zinc(II–chitosan bio-sorbent is compared with those of chitosan and ZnO–chitosan and nano-ZnO–chitosan composites. The effect of operational parameters including pH, temperature, and competing ions are explored via adsorption batch mode. A rapid phosphate uptake is observed within the first three hours of contact time. Phosphate removal by zinc(II–chitosan is favored when the surface charge of bio-sorbent is positive/or neutral e.g., within the pH range inferior or around its pHPZC, 7. Phosphate abatement is enhanced with decreasing temperature. The study of background ions indicates a minor effect of chloride, whereas nitrate and sulfate show competing effect with phosphate for the adsorptive sites. The adsorption kinetics is best described with the pseudo-second-order model. Sips (R2 > 0.96 and Freundlich (R2 ≥ 0.95 models suit the adsorption isotherm. The phosphate reaction with zinc(II–chitosan is exothermic, favorable and spontaneous. The complexation of zinc(II and chitosan along with the corresponding mechanisms of phosphate removal are presented. This study indicates the introduction of zinc(II ions into chitosan improves its performance towards phosphate uptake from 1.45 to 6.55 mg/g and provides fundamental information for developing bio-based materials for water remediation.

  18. EFFECTS OF SODIUM PHOSPHATE LOADING ON AEROBIC POWER AND CAPACITY IN OFF ROAD CYCLISTS

    Directory of Open Access Journals (Sweden)

    Scott Woska

    2009-12-01

    Full Text Available The main aim of this paper was to evaluate the effects of short- term (6 days phosphate loading, as well as prolonged (21 days intake of sodium phosphate on aerobic capacity in off-road cyclists. Nineteen well-trained cyclists were randomly divided into a supplemental (S and control group (C. Group S was supplemented for 6 days with tri-sodium phosphate, in a dose of 50 mg·kg-1 of FFM/d, while a placebo was provided for the C group. Additionally, group S was further subjected to a 3-week supplementation of 25 mg·kg-1 FFM/d, while group C received 2g of glucose. The results indicate a significant (p < 0.05 increase in VO2max, VEmax, and O2/HR, due to sodium phosphate intake over 6 days. Also a significant (p < 0.05 decrease in HRrest and HRmax occurred. The supplementation procedure caused a significant increase (p < 0.05 in Pmax and a shift of VAT towards higher loads. There were no significant changes in the concentration of 2,3-DPG, acid-base balance and lactate concentration, due to phosphate salt intake

  19. Nature-Inspired Design of Artificial Solar-to-Fuel Conversion Systems based on Copper Phosphate Microflowers.

    Science.gov (United States)

    Wang, Jing; Zhu, Ting; Ho, Ghim Wei

    2016-07-07

    Phosphates play significant roles in plant photosynthesis by mediating electron transportation and furnishing energy for CO2 reduction. Motivated by this, we demonstrate herein an artificial solar-to-fuel conversion system, involving versatile copper phosphate microflowers as template and titanium dioxide nanoparticles as host photocatalyst. The elaborate flowerlike architectures, coupled with a unique proton-reduction cycle from interchangeability of different species of orthophosphate ions, not only offer a 2D nanosheet platform for an optimal heterostructure interface but also effectively augment charge-carrier transfer, thereby contributing to enhanced photoactivity and hydrogen generation. These nature-inspired, phosphate-derived nanocomposites advance the synthesis of a large variety of functional materials, which holds great potential for photochemical, photoelectric and catalytic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hyperpolarised Organic Phosphates as NMR Reporters of Compartmental pH

    DEFF Research Database (Denmark)

    Jensen, Pernille Rose; Meier, Sebastian

    2016-01-01

    Organic phosphate metabolites contain functional groups withpKa values near the physiologic pH range, yielding pH-dependet 13C chemical shift changes of adjacent quaternary carbon sites.Whenformed in defined cellular compartmentsfrom exogenoushyperpolarised13Csubstrates,metabolites thuscanyieldlo......Organic phosphate metabolites contain functional groups withpKa values near the physiologic pH range, yielding pH-dependet 13C chemical shift changes of adjacent quaternary carbon sites.Whenformed in defined cellular compartmentsfrom exogenoushyperpolarised13Csubstrates...

  1. Selective flotation of phosphate minerals with hydroxamate collectors

    Science.gov (United States)

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  2. High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes

    International Nuclear Information System (INIS)

    Paul, Sanhita; Kumari, Spriha; Raj, Satyabrata

    2016-01-01

    Highlights: • Electronic structure of potassium and phosphate tungsten bronzes. • Origin of transport anomalies in bronzes. • Flat segments of Fermi surfaces are connected by a nesting vector, q. • Nesting driven charge-density wave is responsible for the anomalies. - Abstract: We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional ab initio theoretical calculation to study the electronic structure of potassium (K_0_._2_5WO_3) and phosphate (P_4W_1_2O_4_4) tungsten bronzes. We have experimentally determined the band dispersions and Fermi surface topology of these bronzes and compared with our theoretical calculations and a fair agreement has been seen between them. Our experimental as well as theoretical investigation elucidates the origin of transport anomalies in these bronzes. The Fermi surfaces of these bronzes consist of flat patches, which can be connected with each other by a constant nesting wave vector, q. The scattering wave vectors found from diffraction measurements match with these nesting vectors and the anomalies in the transport properties of these bronzes can be well explained by the evolution of charge-density wave with a partial nesting between the flat segments of the Fermi surfaces.

  3. Zirconium-based metal organic frameworks: Highly selective adsorbents for removal of phosphate from water and urine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kun-Yi Andrew, E-mail: linky@nchu.edu.tw [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Chen, Shen-Yi [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan (China); Jochems, Andrew P. [New Mexico Bureau of Geology & Mineral Resources and New Mexico Institute of Mining & Technology, Socorro, NM (United States)

    2015-06-15

    Phosphate is one of the most concerning compounds in wastewater streams and a main nutrient that causes eutrophication. To eliminate the phosphate pollution, Metal Organic Frameworks (MOFs) are proposed in this study as adsorbents to remove phosphate from water. The zirconium-based MOF, UiO-66, was selected as representative MOF given its exceptional stability in water. To investigate the effect of an amine functional group, UiO-66-NH2 was also prepared using an amine-substituted ligand. The adsorption kinetics and isotherm reveal that UiO-66-NH2 exhibited higher adsorption capacities than UiO-66 possibly due to the amine group. However, the interaction between phosphate and zirconium sites of UiO MOFs might be the primary factor accounting for the phosphate adsorption to UiO MOFs. UiO MOFs also exhibited a high selectivity towards phosphate over other anions such as bromate, nitrite and nitrate. Furthermore, UiO MOFs were found to adsorb phosphate and to completely remove diluted phosphate in urine. We also found that UiO MOFs could be easily regenerated and re-used for phosphate adsorption. These findings suggest that UiO MOFs can be effective and selective adsorbents to remove phosphate from water as well as urine. - Highlights: • UiO-66 as the first type of MOFs was used to remove phosphate from water and urine. • The amine group in UiO MOFs was found to enhance the phosphate adsorption. • UiO-66 exhibited a high adsorption selectivity towards phosphate over other anions. • UiO-66 could be easily regenerated and re-used with 85% regeneration efficiency.

  4. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  5. From energy-rich phosphate compounds to warfare agents: A review on the chemistry of organic phosphate compounds

    Directory of Open Access Journals (Sweden)

    Luciano Albino Giusti

    2008-12-01

    Full Text Available The chemistry of the phosphorus-oxygen bond is widely used in biological systems in many processes, such as energy transduction and the storage, transmission and expression of genetic information, which are essential to living beings in relation to a wide variety of functions. Compounds containing this bond have been designed for many purposes, ranging from agricultural defense systems, in order to increase food production, to nerve agents, for complaining use in warfare. In this review, features related to the chemistry of organic phosphate compounds are discussed, with particular emphasis on the role of phosphate compounds in biochemical events and in nerve agents. To this aim, the energy-rich phosphate compounds are focused, particularly the mode of their use as energy currency in cells. Historical and recent studies carried out by research groups have tried to elucidate the mechanism of action of enzymes responsible for energy transduction through the use of biochemical studies, enzyme models, and artificial enzymes. Finally, recent studies on the detoxification of nerve agents based on phosphorous esters are presented, and on the utilization of chromogenic and fluorogenic chemosensors for the detection of these phosphate species.

  6. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drozdova, Maria G., E-mail: drozdovamg@gmail.com [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Zaytseva-Zotova, Daria S. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Akasov, Roman A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation); Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Trubetskaya str., 8/2, Moscow 119048 (Russian Federation); Golunova, Anna S.; Artyukhov, Alexander A. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Udartseva, Olga O.; Andreeva, Elena R. [Institute of Biomedical Problems of Russian Academy of Sciences, Khoroshevskoe Shosse 76a, Moscow 123007 (Russian Federation); Lisovyy, Denis E.; Shtilman, Michael I. [D. Mendeleyev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047 (Russian Federation); Markvicheva, Elena A. [Polymers for Biology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow 117997 (Russian Federation)

    2017-06-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  7. Macroporous modified poly (vinyl alcohol) hydrogels with charged groups for tissue engineering: Preparation and in vitro evaluation

    International Nuclear Information System (INIS)

    Drozdova, Maria G.; Zaytseva-Zotova, Daria S.; Akasov, Roman A.; Golunova, Anna S.; Artyukhov, Alexander A.; Udartseva, Olga O.; Andreeva, Elena R.; Lisovyy, Denis E.; Shtilman, Michael I.; Markvicheva, Elena A.

    2017-01-01

    Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA). To enhance cell affinity, charged groups were introduced to the hydrogel composition. For this purpose, Acr-PVA was copolymerized with either negatively charged acrylic acid (AA) or positively charged 2-(diethylamino) ethyl methacrylate (DEAEMA) monomers. A surface charge of the obtained hydrogels was found to be in function of the co-monomer type and content. Confocal microscopy observations confirmed that adhesion and spreading of both mouse fibroblasts (L929) and human mesenchymal stem cells (hMSC) on the modified Acr-PVA-AA and Acr-PVA-DEAEMA hydrogels were better than those on the non-modified Acr-PVA hydrogel. The increase of DEAEMA monomer content from 5 to 15 mol% resulted in the enhancement of cell viability which was 1.5-fold higher for Acr-PVA-DEAEMA-15 hydrogel than that of the non-modified Acr-PVA hydrogel sample. - Highlights: • To enhance cell affinity, acrylated PVA hydrogel was modified with AA or DEAEMA monomers. • Cell adhesion and spreading were found to depend on the co-monomer type and content. • Proliferation of L929 fibroblasts and stem cells increased on the modified hydrogels.

  8. On calculation of the electrostatic potential of a phosphatidylinositol phosphate-containing phosphatidylcholine lipid membrane accounting for membrane dynamics.

    Directory of Open Access Journals (Sweden)

    Jonathan C Fuller

    Full Text Available Many signaling events require the binding of cytoplasmic proteins to cell membranes by recognition of specific charged lipids, such as phosphoinositol-phosphates. As a model for a protein-membrane binding site, we consider one charged phosphoinositol phosphate (PtdIns(3P embedded in a phosphatidylcholine bilayer. As the protein-membrane binding is driven by electrostatic interactions, continuum solvent models require an accurate representation of the electrostatic potential of the phosphoinositol phosphate-containing membrane. We computed and analyzed the electrostatic potentials of snapshots taken at regular intervals from molecular dynamics simulations of the bilayer. We observe considerable variation in the electrostatic potential of the bilayer both along a single simulation and between simulations performed with the GAFF or CHARMM c36 force fields. However, we find that the choice of GAFF or CHARMM c36 parameters has little effect on the electrostatic potential of a given configuration of the bilayer with a PtdIns(3P embedded in it. From our results, we propose a remedian averaging method for calculating the electrostatic potential of a membrane system that is suitable for simulations of protein-membrane binding with a continuum solvent model.

  9. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  10. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    Science.gov (United States)

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  11. Bone regeneration of calvarial defect using marine calcareous-derived beta-tricalcium phosphate macrospheres

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    2014-02-01

    Full Text Available The aim of this study was to examine the bone regeneration properties of beta-tricalcium phosphate hydrothermally converted from foraminifera carbonate exoskeleton in the repair of rat calvarial defect. These natural materials possess unique interconnected porous network with uniform pore size distribution, which can be potentially advantageous. In total, 20 adult male Wistar rats received full-thickness calvarial defect with a diameter of 5 mm. The rate of newly formed bone was measured radiologically by X-ray and micro-computed tomography and by histologic examination. After 2 weeks, the beta-tricalcium phosphate group exhibited full closure of the defect site, while control group remained unrestored at the end of the 6-week experimentation. It was observed that the newly regenerated bone thickened over the course of the experiment in the beta-tricalcium phosphate group. No soft tissue reaction was observed around the beta-tricalcium phosphate implant and the rats remained healthy. These results showed that repair of the calvarial defect can be achieved by biomimetic beta-tricalcium phosphate macrospheres, which hold potential for application as bone grafts for bone augmentation surgeries.

  12. Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations

    International Nuclear Information System (INIS)

    Casacuberta, N.; Masque, P.; Garcia-Orellana, J.; Bruach, J.M.; Anguita, M.; Gasa, J.; Villa, M.; Hurtado, S.; Garcia-Tenorio, R.

    2009-01-01

    Potentially harmful phosphate-based products derived from the wet acid digestion of phosphate rock represent one of the most serious problems facing the phosphate industry. This is particularly true for dicalcium phosphate (DCP), a food additive produced from either sulphuric acid or hydrochloric acid digestion of raw rock material. This study determined the natural occurring radionuclide concentrations of 12 DCP samples and 4 tricalcium phosphate (TCP) samples used for animal and human consumption, respectively. Metal concentrations (Al, Fe, Zn, Cd, Cr, As, Hg, Pb and Mg) were also determined. Samples were grouped into three different clusters (A, B, C) based on their radionuclide content. Whereas group A is characterized by high activities of 238 U, 234 U (∼10 3 Bq kg -1 ), 210 Pb (2 x 10 3 Bq kg -1 ) and 210 Po (∼800 Bq kg -1 ); group B presents high activities of 238 U, 234 U and 230 Th (∼10 3 Bq kg -1 ). Group C was characterized by very low activities of all radionuclides ( -1 ). Differences between the two groups of DCP samples for animal consumption (groups A and B) were related to the wet acid digestion method used, with group A samples produced from hydrochloric acid digestion, and group B samples produced using sulphuric acid. Group C includes more purified samples required for human consumption. High radionuclide concentrations in some DCP samples (reaching 2 x 10 3 and 10 3 Bq kg -1 of 210 Pb and 210 Po, respectively) may be of concern due to direct or indirect radiological exposure via ingestion. Our experimental results based on 210 Pb and 210 Po within poultry consumed by humans, suggest that the maximum radiological doses are 11 ± 2 μSv y -1 . While these results suggest that human health risks are small, additional testing should be conducted.

  13. [Tetany secondary to phosphate enema toxicity, case report].

    Science.gov (United States)

    Núñez Sánchez, María José; Leighton Swaneck, Sofía; Díaz, Franco

    2017-06-01

    Phosphate enemas are frequently used in the treatment of constipation. Errors in dosage and administration can lead to severe complications. To report a case of severe toxicity of phosphate enemas in a child with no risk factors. 2 years old female, with functional constipation, was brought to emergency department because abdominal pain. She was diagnosed with fecal impaction and received half a bottle of Fleet Adult® (Laboratorio Synthon, Chile) two times, with no clinical resolution, deciding to start proctoclisis in pediatric ward. Soon after admission, she presented painful tetany, but alert and oriented. Patient was transferred to PICU where severe hyperphosphatemia and secondary hypocalcemia were confirmed. Her treatment included electrolyte correction; removal of residual phosphate enema and hyperhydration. Tetany resolved over 2 hours after admission and no other complications. Proctoclisis was performed and patient was discharged three days after admission with pharmacological management of constipation. Phosphate enemas may cause serious complications in children with no risk factors. Errors in dosage, administration and removal of the enema are causes of toxicity in this group. Pediatricians and health personnel must be aware of risks and signs of toxicity of phosphate enema.

  14. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Intravenous immunoglobulin to treat hyperbilirubinemia in neonates with isolated Glucose-6-Phosphate dehydrogenase deficiency

    Directory of Open Access Journals (Sweden)

    Wadah Khriesat

    2017-04-01

    Full Text Available Background Glucose-6-phosphate dehydrogenase deficiency alone or concomitant with ABO isoimmunisation is a widespread indication for neonatal exchange transfusion. Aims To evaluate the effectiveness of Intravenous Immunoglobulin in the treatment of neonatal hyperbilirubinemia due to glucose-6-phosphate dehydrogenase deficiency. Methods A retrospective cohort study was conducted between 2006 and 2014 at the Jordan University of Science and technology. The medical records of 43 infants admitted to the neonatal intensive care unit for isolated glucose-6- phosphate dehydrogenase deficiency hemolytic disease of the newborns were reviewed. Patients were divided into two groups. Group I, a historical cohort, included newborns born between 2006 and 2010, Treatment included phototherapy and exchange transfusion. Group II included newborns born between 2011 and 2014, where, in addition to phototherapy, intravenous immunoglobulin was administered. The duration of phototherapy and number of exchange transfusions were evaluated. Results Of 412 newborns that were admitted with neonatal hyperbilirubinemia, Glucose-6-phosphate dehydrogenase deficiency was present in 43. Of these, 22, did not receive intravenous immunoglobulin and served as a control group. The other 21 newborns received intravenous immunoglobulin. There was no difference in the demographic characteristics between the two groups. Infants in the control group were significantly more likely to receive exchange blood transfusion than infants in the immunoglobulin treatment group, but were significantly less likely to need phototherapy. Conclusion Intravenous immunoglobulin is an effective alternative to exchange transfusion in infants with glucose-6-phosphate dehydrogenase deficiency hemolytic disease of the newborn. It is suggested that intravenous immunoglobulin may be beneficial as a prophylaxis for infants with hyperbilirubinemia.

  16. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  17. Phosphate-a poison for humans?

    Science.gov (United States)

    Komaba, Hirotaka; Fukagawa, Masafumi

    2016-10-01

    Maintenance of phosphate balance is essential for life, and mammals have developed a sophisticated system to regulate phosphate homeostasis over the course of evolution. However, due to the dependence of phosphate elimination on the kidney, humans with decreased kidney function are likely to be in a positive phosphate balance. Phosphate excess has been well recognized as a critical factor in the pathogenesis of mineral and bone disorders associated with chronic kidney disease, but recent investigations have also uncovered toxic effects of phosphate on the cardiovascular system and the aging process. Compelling evidence also suggests that increased fibroblastic growth factor 23 and parathyroid hormone levels in response to a positive phosphate balance contribute to adverse clinical outcomes. These insights support the current practice of managing serum phosphate in patients with advanced chronic kidney disease, although definitive evidence of these effects is lacking. Given the potential toxicity of excess phosphate, the general population may also be viewed as a target for phosphate management. However, the widespread implementation of dietary phosphate intervention in the general population may not be warranted due to the limited impact of increased phosphate intake on mineral metabolism and clinical outcomes. Nonetheless, the increasing incidence of kidney disease or injury in our aging society emphasizes the potential importance of this issue. Further work is needed to more completely characterize phosphate toxicity and to establish the optimal therapeutic strategy for managing phosphate in patients with chronic kidney disease and in the general population. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  18. Determination of inositol phosphate ester in lake sediments

    International Nuclear Information System (INIS)

    Weimer, W.C.; Armstrong, D.E.

    1977-01-01

    A procedure for the determination of the total inositol polyphosphate content of lake sediments is presented and evaluated. This technique involves extraction with NaOH, cleanup of the extract, and isolation and identification of two groups of inositol phosphate esters by ion-exchange chromatography. Radioisotope dilution is employed to correct for losses during the extraction, cleanup and isolation steps. Recoveries of the radiotracer inositol phosphates have averaged 85% during the analysis of approximately 40 calcareous and non-calcareous sediment samples and more than 20 soil samples

  19. Reaction mechanisms of phosphate with Al(OH)3 and a sandy soil

    NARCIS (Netherlands)

    Riemsdijk, van W.H.

    1979-01-01

    Al(OH) 3 is a very effective sorbent for orthophosphate especially at low pH. At low phosphate concentration c p , phosphate is adsorbed by an exchange mechanism with singly coordinated OH(H) groups residing on the surface of the Al(OH)

  20. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  1. Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides in phosphate rocks and phosphate fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Komura, K; Yanagisawa, M; Sakurai, J; Sakanoue, M

    1985-10-01

    Uranium, thorium and potassium contents and radioactive equilibrium states of the uranium and thorium series nuclides have been studied for 2 phosphate rocks and 7 phosphate fertilizers. Uranium contents were found to be rather high (39-117 ppm) except for phosphate rock from Kola. The uranium series nuclides were found to be in various equilibration states, which can be grouped into following three categories. Almost in the equilibrium state, 238U approximately 230Th greater than 210Pb greater than 226Ra and 238U greater than 230Th greater than 210Pb greater than 226Ra. Thorium contents were found to be, in general, low and appreciable disequilibrium of the thorium series nuclides was not observed except one sample. Potassium contents were also very low (less than 0.3% K2O) except for complex fertilizers. Based on the present data, discussions were made for the radiation exposure due to phosphate fertilizers.

  2. Structure and spectroscopy of rare earth – Doped lead phosphate glasses

    International Nuclear Information System (INIS)

    Pisarski, Wojciech A.; Żur, Lidia; Goryczka, Tomasz; Sołtys, Marta; Pisarska, Joanna

    2014-01-01

    Highlights: • Lead phosphate glasses doped with rare earth ions were prepared. • The local structure was examined using X-ray diffraction and spectroscopic methods. • Different structural phosphate groups are present in lead phosphate glasses. • The electron–phonon coupling strength and phonon energy of the glass host was determined. • Several observed emission bands are due to 4f–4f electronic transitions of rare earth ions. -- Abstract: Lead–gallium phosphate glasses doped with rare the earth ions (Eu 3+ , Dy 3+ , Tb 3+ , Er 3+ ) were synthesized. The structure of obtained glasses was examined by means of use: X-ray diffraction (XRD), nuclear magnetic resonance ( 207 Pb and 31 P NMR), fourier transform infrared (FT-IR) and Raman spectroscopy. In contrast to fully amorphous Ln-doped samples (Ln = Eu, Dy, Tb), in Er-doped sample the GaPO 4 crystalline phase was identified. It was found from the NMR, FT-IR and Raman spectroscopic techniques that, different structural phosphate groups were present in lead phosphate glasses. Based on absorption measurements, the UV–VIS cut-off wavelength for lead phosphate glass was determined and its value is close to 305 nm. Excitation and emission spectra of rare earths were also detected. From excitation spectra of Eu 3+ the electron–phonon coupling strength and phonon energy of the glass host were determined. Due to 4f 6 –4f 6 (Eu 3+ ), 4f 8 –4f 8 (Tb 3+ ), 4f 9 –4f 9 (Dy 3+ ) and 4f 11 –4f 11 (Er 3+ ) electronic transitions of trivalent rare earth ions several luminescence bands were stated

  3. Investigation into kinetics of sorption of some radionuclides by mixed sorbents based on amorphous niobium phosphate

    International Nuclear Information System (INIS)

    Belkina, R.M.; Sukharev, Yu.I.; Egorov, Yu.V.; Plotnikov, V.I.

    1977-01-01

    A study has been made of kinetics of sorption of radionuclides 110 Ag, 60 Co, and 51 Cr by samples of amorphous stoichiometric niobium (5) phosphate. Ratios of the concentration conductivity to the mean radius of sorbent particles were calculated which are proportional to diffusivities. Increased specificity towards Cr 3+ ions of samples of ion exchangeable niobium phosphate containing cerium and treated with 0.1N HCl was established. This effect was explained by formation and subsequent destruction of the copolymer oxo-ol matrix of niobium and cerium, as a result of which a gel is formed with mosaic structure being favourable for sorption of three-charged ions

  4. Radiotracer study of phosphate exchange between whey and casein micelles in cow's milk

    International Nuclear Information System (INIS)

    Kolar, Z.I.; Verburg, T.G.; Dijk, H.J.M. van

    1998-01-01

    Radiotracer method has been applied to study exchange of calcium ions between the whey calcium salts and micellar calcium phosphate (MCP). The present paper deals with a similar study pertaining to phosphate ions. 32 P-labelled Na 2 HPO 4 was used as the radiotracer for inorganic phosphates of milk. After addition of the radiotracer to skimmed-milk, samples were taken regularly for 700 hours. In the samples casein micelles were separated from whey by ultracentrifugation and finally the radiotracer quantity i.e. 32 P-concentration in the whey samples was measured using a Liquid Scintillation Counter. Compartmental analysis and modelling were used to evaluate the thus obtained time curves for radiotracer quantity in whey. This analysis revealed the presence of three phosphate compartments i.e. exchangeable phosphate entities; one being the whey phosphate. The other two are associated with the exchangeable phosphates of MCP. The mean residence times of phosphate in the latter two compartment differ considerably pointing at two distinctly different embeddings of phosphate groups in the structure of the micellar calcium phosphate of the cow's milk casein. The obtained results are in fair agreement with the mentioned model of MCP

  5. Effect of protonation on the mechanism of phosphate monoester hydrolysis and comparison with the hydrolysis of nucleoside triphosphate in biomolecular motors.

    Science.gov (United States)

    Hassan, Hammad Ali; Rani, Sadaf; Fatima, Tabeer; Kiani, Farooq Ahmad; Fischer, Stefan

    2017-11-01

    Hydrolysis of phosphate groups is a crucial reaction in living cells. It involves the breaking of two strong bonds, i.e. the O a H bond of the attacking water molecule, and the PO l bond of the substrate (O a and O l stand for attacking and leaving oxygen atoms). Mechanism of the hydrolysis reaction can proceed either by a concurrent or a sequential mechanism. In the concurrent mechanism, the breaking of O a H and PO l bonds occurs simultaneously, whereas in the sequential mechanism, the O a H and PO l bonds break at different stages of the reaction. To understand how protonation affects the mechanism of hydrolysis of phosphate monoester, we have studied the mechanism of hydrolysis of protonated and deprotonated phosphate monoester at M06-2X/6-311+G**//M06-2X/6-31+G*+ZPE level of theory (where ZPE stands for zero point energy). Our calculations show that in both protonated and deprotonated cases, the breaking of the water O a H bond occurs before the breaking of the PO l bond. Because the two events are not separated by a stable intermediate, the mechanism can be categorized as semi-concurrent. The overall energy barrier is 41kcalmol -1 in the unprotonated case. Most (5/6th) of this is due to the initial breaking of the water O a H bond. This component is lowered from 34 to 25kcalmol -1 by adding one proton to the phosphate. The rest of the overall energy barrier comes from the subsequent breaking of the PO l bond and is not sensitive to protonation. This is consistent with previous findings about the effect of triphosphate protonation on the hydrolysis, where the equivalent protonation (on the γ-phosphate) was seen to lower the barrier of breaking the water O a H bond and to have little effect on the PO l bond breaking. Hydrolysis pathways of phosphate monoester with initial breaking of the PO l bond could not be found here. This is because the leaving group in phosphate monoester cannot be protonated, unlike in triphosphate hydrolysis, where protonation of the

  6. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  7. Novel selenium containing boro-phosphate glasses: preparation and structural study.

    Science.gov (United States)

    Ciceo-Lucacel, R; Radu, T; Ponta, O; Simon, V

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P2O7(4-) dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO3(-) middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ3 or BØ2O(-) units. A small contribution of BØ4(-) units was also detected from the FT-IR spectra of glasses. For SeO2 content higher than 5mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  9. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism.

    Science.gov (United States)

    Ezawa, Tatsuhiro; Saito, Katsuharu

    2018-04-27

    Contents Summary I. Introduction II. Foraging for phosphate III. Fine-tuning of phosphate homeostasis IV. The frontiers: phosphate translocation and export V. Conclusions and outlook Acknowledgements References SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan

    Directory of Open Access Journals (Sweden)

    Matiullah Khan

    2012-05-01

    Full Text Available Phosphorus deficiency is wide spread in soils of Pakistan. It is imperative to explore the potential and economics of indigenous Hazara rock phosphate for preparation of single super phosphate fertilizer. For the subject study rock phosphate was collected from Hazara area ground at 160 mesh level with 26% total P2O5 content for manual preparation of single super phosphate fertilizer. The rock phosphate was treated with various concentrations of sulfuric acid (98.9%, diluted or pure in the field. The treatments comprised of 20 and 35% pure acid and diluted with acid-water ratios of 1:5, 1:2, 1:1 and 2:1 v/v for acidulation at the rate of 60 liters 100 kg-1 rock phosphate. The amount was prior calculated in the laboratory for complete wetting of rock phosphate. A quantity of 150 kg rock phosphate was taken as treatment. The respective amount of acid was applied with the spray pump of stainless steel or poured with bucket. After proper processing, chemical analysis of the products showed a range of available P2O5 content from 9.56 to 19.24% depending upon the amount of acid and its dilution. The results reveal at that 1:1 dilutions gave the highest P2O5 content (19.24%, lowest free acid (6 % and 32% weight increase. The application of acid beyond or below this combination either pure or diluted gave hygroscopic product and higher free acids. The cost incurred upon the manual processing was almost half the prevailing rates in the market. These results lead to conclude that application of sulfuric acid at the rate of 60 liters 100 kg-1 with the dilution of 50% (v/v can yield better kind of SSP from Hazara rock phosphate at lower prices.

  11. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  12. Role of Phosphate Transport System Component PstB1 in Phosphate Internalization by Nostoc punctiforme.

    Science.gov (United States)

    Hudek, L; Premachandra, D; Webster, W A J; Bräu, L

    2016-11-01

    In bacteria, limited phosphate availability promotes the synthesis of active uptake systems, such as the Pst phosphate transport system. To understand the mechanisms that facilitate phosphate accumulation in the cyanobacterium Nostoc punctiforme, phosphate transport systems were identified, revealing a redundancy of Pst phosphate uptake systems that exists across three distinct operons. Four separate PstB system components were identified. pstB1 was determined to be a suitable target for creating phenotypic mutations that could result in the accumulation of excessive levels of phosphate through its overexpression or in a reduction of the capacity to accumulate phosphate through its deletion. Using quantitative real-time PCR (qPCR), it was determined that pstB1 mRNA levels increased significantly over 64 h in cells cultured in 0 mM added phosphate and decreased significantly in cells exposed to high (12.8 mM) phosphate concentrations compared to the level in cells cultured under normal (0.8 mM) conditions. Possible compensation for the loss of PstB1 was observed when pstB2, pstB3, and pstB4 mRNA levels increased, particularly in cells starved of phosphate. The overexpression of pstB1 increased phosphate uptake by N. punctiforme and was shown to functionally complement the loss of PstB in E. coli PstB knockout (PstB - ) mutants. The knockout of pstB1 in N. punctiforme did not have a significant effect on cellular phosphate accumulation or growth for the most part, which is attributed to the compensation for the loss of PstB1 by alterations in the pstB2, pstB3, and pstB4 mRNA levels. This study provides novel in vivo evidence that PstB1 plays a functional role in phosphate uptake in N. punctiforme IMPORTANCE: Cyanobacteria have been evolving over 3.5 billion years and have become highly adept at growing under limiting nutrient levels. Phosphate is crucial for the survival and prosperity of all organisms. In bacteria, limited phosphate availability promotes the

  13. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhang [Department of Restorative Dentistry, Faculty of Dentistry, National University of Singapore, 5 Lower Kent Ridge Road 119074, Singapore (Singapore); Neoh, Koon Gee [Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 119260, Singapore (Singapore); Kishen, Anil, E-mail: anil.kishen@utoronto.ca [Discipline of Endodontics, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON (Canada)

    2010-07-20

    Objective: The aim of this study is to induce mineralization of collagen by introducing phosphate groups onto type I collagen from eggshell membrane (ESM) by treating with sodium trimetaphosphate (STMP). This strategy is based on the hypothesis that phosphate groups introduced on collagen can mimic the nucleating role of phosphorylated non-collagenous proteins bound to collagen for inducing mineralization in natural hard tissue. Method: The collagen membrane was phosphorylated by treating it with a solution of STMP and saturated calcium hydroxide. The phosphorylated collagen was subsequently exposed to a mineralization solution and the pattern of mineralization on the surface of phosphorylated collagen substrate was analyzed. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and microhardness test were used to characterize the collagen substrate and the pattern of minerals formed on the collagen surface. Results: The FTIR and EDX results indicated that the phosphate groups were incorporated onto the collagen surface by treatment with STMP. During the mineralization process, the plate-like mineral, octacalcium phosphate (OCP), which was initially formed on the surface of ESM, was later transformed into needle-like hydroxyapatite (HAP) as indicated by the SEM, FESEM, EDX and XRD findings. The microhardness test displayed significant increase in the Knoop hardness number of the mineralized collagen. Conclusions: Phosphate groups can be introduced onto type I collagen surface by treating it with STMP and such phosphorylated collagen can induce the mineralization of type I collagen.

  14. Efficacy and tolerance of sodium phosphates oral solution after diet liberalization.

    Science.gov (United States)

    Scott, Sherrie R; Raymond, Patricia L; Thompson, William O; Galt, Deborah J B

    2005-01-01

    Bowel cleansing regimens commonly require adherence to liquid diets for 24 to 48 hours before examination, which often leads to poor compliance, reduced cleansing, and ultimately inadequate examinations. The authors investigated the efficacy and tolerability of diet liberalization before bowel cleansing with sodium phosphates oral solution. Two hundred patients were randomized into two treatment groups. One group received the standard light breakfast followed by clear liquids the day before colonoscopy; the second had a normal breakfast followed by a low-residue lunch the day before colonoscopy. Both groups had the same bowel preparation with sodium phosphates oral solution (2 x 45-mL, 7 p.m./6 a.m.). There was no difference in clinical efficacy between the two diet regimens (excellent/good in 93% standard, 95% low-residue). Fewer patients receiving the low-residue diet reported hunger, and more patients receiving the low-residue regimen reported energy to perform usual activities. This study supports offering patients a regular breakfast and a low-residue lunch before bowel cleansing with sodium phosphates oral solution.

  15. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  16. Activity of Escherichia coli, Aspergillus niger, and Rye Phytase toward Partially Phosphorylated myo-Inositol Phosphates.

    Science.gov (United States)

    Greiner, Ralf

    2017-11-08

    Kinetic parameters for the dephosphorylation of sodium phytate and a series of partially phosphorylated myo-inositol phosphates were determined at pH 3.0 and pH 5.0 for three phytase preparations (Aspergillus niger, Escherichia coli, rye). The enzymes showed lower affinity and turnover numbers at pH 3 compared to pH 5 toward all myo-inositol phosphates included in the study. The number and distribution of phosphate groups on the myo-inositol ring affected the kinetic parameters. Representatives of the individual phytate dephosphorylation pathways were identified as the best substrates of the phytases. Within the individual phytate dephosphorylation pathways, the pentakisphosphates were better substrates compared to the tetrakisphosphates or phytate itself. E. coli and rye phytase showed comparable activities at both pH values toward the tetrakis- and trisphosphate, whereas A. niger phytase exhibited a higher activity toward the tetrakisphosphate. A myo-inositol phosphate with alternate phosphate groups was shown to be not significantly dephosphorylated by the phytases.

  17. Charge transfer through amino groups-small molecules interface improving the performance of electroluminescent devices

    Science.gov (United States)

    Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Kus, Mahmut; Okur, Salih; Demic, Şerafettin; Demirak, Kadir; Kurt, Mustafa; Icli, Sıddık

    2016-05-01

    A carboxylic group functioned charge transporting was synthesized and self-assembled on an indium tin oxide (ITO) anode. A typical electroluminescent device [modified ITO/TPD (50 nm)/Alq3 (60 nm)/LiF (2 nm)/(120 nm)] was fabricated to investigate the effect of the amino groups-small molecules interface on the characteristics of the device. The increase in the surface work function of ITO is expected to facilitate the hole injection from the ITO anode to the Hole Transport Layer (HTL) in electroluminescence. The modified electroluminescent device could endure a higher current and showed a much higher luminance than the nonmodified one. For the produced electroluminescent devices, the I-V characteristics, optical characterization and quantum yields were performed. The external quantum efficiency of the modified electroluminescent device is improved as the result of the presence of the amino groups-small molecules interface.

  18. Investigation of chromosomal aberrations in human lymphocytes of syrian phosphate miners

    Energy Technology Data Exchange (ETDEWEB)

    Alachkar, W; Othman, M [Radio - Biology and Health Dept. Syrian Atomic Energy Commission, (Syrian Arab Republic)

    1995-10-01

    The aim of thus study is to investigate the risk of exposure to Uranium and its radioactive products in Syrian phosphate miners (Khneefees and Al-sharkia). Chromosomal aberrations have been estimated in peripheral blood lymphocytes of miners using whole blood cultures `in vitro` for 48 hrs. The control group has been the normal population in damascus 180 km far from khneefees and 210 km from Al-sharkia. Our results have shown a significant difference between the miners and our control group; however there was no significant difference between the two miners groups. These results show an accumulative biological effect induced by environmental contamination in the Syrian phosphate mines. 3 figs., 3 tabs.

  19. Comparison of the postoperative analgesic effects of paracetamol–codeine phosphate and naproxen sodium–codeine phosphate for lumbar disk surgery

    Directory of Open Access Journals (Sweden)

    Reyhan Polat

    2015-09-01

    Full Text Available The aim of this study was to compared the efficacy of paracetamol–codeine phosphate and naproxen sodium–codeine phosphate on postoperative pain and tramadol consumption during the first 24 hours after a lumbar disk surgery. After Ethics Committee approval and informed consent had been obtained, 64 patients were allocated into three groups. Patients received oral paracetamol–codeine (300 mg + 30 mg; Group P, naproxen sodium–codeine (550 mg + 30 mg; Group N, or placebo tablets (Group C 30 minutes prior to induction of anesthesia. Patient-controlled analgesia was supplied postoperatively using tramadol. Pain intensity, tramadol consumption, and side effects were recorded every 1 hour, 2 hours, 6 hours, 12 hours, and 24 hours after surgery. Whole study period pain intensity (visual analogue scale scores was lower in Group P (p = 0.007 and Group N (p = 0.001, compared with Group C, however, there was no statistically significant difference between Group P and Group N regarding pain intensity (p > 0.05. Tramadol consumption was lower in Group P and Group N, compared with Group C (p < 0.001, and in turn the lowest incidence of tramadol consumption was detected in Group P compared with Group N (p < 0.001 and Group C (p < 0.001. Side effects were similar between the groups. Preemptive administration of paracetamol–codeine and naproxen sodium–codeine combination significantly reduced tramadol consumption and provided more effective analgesia compared with placebo. The paracetamol–codeine combination was superior to naproxen sodium–codeine with regard to tramadol consumption.

  20. Characterisation of phosphate rocks at kurun mountain, Sudan

    International Nuclear Information System (INIS)

    Abdelgader, G. A. M.

    2014-08-01

    This main objective of this study was to characterise some Sudanese phosphate raw materials collected from Jebel Kurun, located in the eastern part of Nuba Mountain, Western Sudan. The study also aimed to investigate the association between uranium and phosphate and to determine the concentration of some essential elements and trace elements in the phosphate rock. A total of 30 samples were collected from Karun's eastran mountains, near Abujibiha City and have been analyzed for the selected elements using x-ray fluorescence. The obtained results showed that the average concentration of elements was Ca (11.3) and Fe (1.7) as a percentage, while it was Cu (1617.7), Ni (258.4), Pb (185.9), Ti (27.62), V (3779.9), U (160.9), Zn (152.8) and Mn (776.3) in ppm. The average total phosphorus content (analyzed as P O5 %) using UV-visible spectrometer was found to be 30.54%. This could be considered is acceptable percentage for phosphate to be 30.54%. This could be considered is acceptable percentage for phosphate to be used in industrial fertilizers and phosphoric acid production. The average total calcium carbonate was 15.7%. For the elements distribution, uranium found to be more concentrated in the summit of Jebel Kurun, and it displayed a correlation with lead. Furthermore, four groups of association have been noticed, based on elements concentrations.(Author)

  1. Effectiveness and cost-efficiency of phosphate binders in hemodialysis

    Directory of Open Access Journals (Sweden)

    Zsifkovits, Johannes

    2009-06-01

    Full Text Available Health political background: In 2006, the prevalence of chronic renal insufficiency in Germany was 91,718, of which 66,508 patients were on dialysis. The tendency is clearly growing. Scientific background: Chronic renal insufficiency results in a disturbance of the mineral balance. It leads to hyperphosphataemia, which is the strongest independent risk factor for mortality in renal patients. Usually, a reduction in the phosphate intake through nutrition and the amount of phosphate filtered out during dialysis are not sufficient to reduce the serum phosphate values to the recommended value. Therefore, phosphate binders are used to bind ingested phosphate in the digestive tract in order to lower the phosphate concentration in the serum. Four different groups of phosphate binders are available: calcium- and aluminium salts are the traditional therapies. Sevelamer and Lanthanum are recent developments on the market. In varying doses, all phosphate binders are able to effectively lower phosphate concentrations. However, drug therapies have achieved recommended phosphate levels in only 50 percent of patients during the last years. Research questions: How effective and efficient are the different phosphate binders in chronic renal insufficient patients? Methods: The systematic literature search yielded 1,251 abstracts. Following a two-part selection process with predefined criteria 18 publications were included in the assessment. Results: All studies evaluated conclude that serum phosphate, serum calcium and intact parathyroid hormone can be controlled effectively with all phosphate binders. Only the number of episodes of hypercalcaemia is higher when using calcium-containing phosphatebinders compared to Sevelamer and Lanthanum. Regarding the mortality rate, the cardiovascular artery calcification and bone metabolism no definite conclusions can be drawn. In any case, the amount of calcification at study start seems to be crucial for the further

  2. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  3. Phosphate transporter mediated lipid accumulation in Saccharomyces cerevisiae under phosphate starvation conditions.

    Science.gov (United States)

    James, Antoni W; Nachiappan, Vasanthi

    2014-01-01

    In the current study, when phosphate transporters pho88 and pho86 were knocked out they resulted in significant accumulation (84% and 43%) of triacylglycerol (TAG) during phosphate starvation. However in the presence of phosphate, TAG accumulation was only around 45% in both pho88 and pho86 mutant cells. These observations were confirmed by radio-labeling, fluorescent microscope and RT-PCR studies. The TAG synthesizing genes encoding for acyltransferases namely LRO1 and DGA1 were up regulated. This is the first report for accumulation of TAG in pho88Δ and pho86Δ cells under phosphate starvation conditions. Copyright © 2013. Published by Elsevier Ltd.

  4. Effects of Inulin and Sodium Carbonate in Phosphate-Free Restructured Poultry Steaks

    Science.gov (United States)

    Öztürk, B.; Serdaroğlu, M.

    2017-09-01

    Recently inorganic phosphates used in meat product formulations have caused negative impact on consumers due to their potential health risks. Therefore, utilization of natural ingredients as phosphate replacers has come into prominence as a novel research topic to meet consumer demands for clean-label trends. In this study, we objected to investigate the effects of inulin utilization either in the powder or gelled form, alone or in combination with sodium carbonate on quality of phosphate-free restructured chicken steaks. Total moisture, protein, lipid and ash values of the trial groups were in the range of 71.54-75.46%, 22.60-24.31%, 0.94-1.70% and 1.45-2.13%, respectively. pH of the samples was between 6.18-6.39, significant increments were recorded in samples containing inulin with sodium carbonate. L*, a* and b* values were recorded as 78.92-81.05, 1.76-3.05 and 10.80-11.94, respectively, where use of gelled inulin resulted in changes of L* and a* values. Utilization of inulin in combination with sodium carbonate decreased cook loss and enhanced product yield. Sensory scores in control group with phosphate showed a similar pattern to sensory scores in groups with inulin and sodium carbonate. During storage, purge loss and lipid oxidation rate were similar in control and inulin + sodium carbonate samples. The results showed that use of inulin in combination with sodium carbonate provided equivalent physical, chemical and sensory quality to phosphates in restructured chicken steaks.

  5. Effect of submarine groundwater discharge containing phosphate on coral calcification

    Science.gov (United States)

    Yasumoto, J.; Yasumoto, K.; Iijima, M.; Nozaki, M.; Asai, K.; Yasumoto, M. H.

    2017-12-01

    It is well known that the anthropogenic eutrophication enriched with various substances including phosphate in coastal waters has resulted in coral degradation. However, to the best of our knowledge, the phosphate threshold value to inhibit the coral calcification has been unclear, due to the unknown mechanisms involved in the inhibition of the calcification by phosphate. In island regions, groundwater is one of the most important clues to transport the nutrients contained in livestock or agricultural wastewaters. However, the actual conditions of coastal pollution with such nutrients have not been understood because of unperceived submarine groundwater discharge (SGD). In this study, to quantify of extremely rapid and localized SGD from Ryukyu limestone aquifer, we investigated the rate and concentration of phosphate of SGD using automated seepage mater in Yoron Island, which is located southern part of Japan. And, to elucidate the inhibition mechanisms for phosphate against coral calcification, we examined its effect on the bottom skeleton formation in primary polyps of Acropora digitifera by using the fluorescence derivatizing reagent having phosphate group (FITC-AA). As a result, the SGD was found to contain 1 to 2 µM of phosphate as much as the concentration in the coastal ground water under agricultural land. Moreover, the amount of phosphate contained in the surface layers of bottom calcareous sands close to the region of SGD were about 5 µmol/g. When the primary polyps were treated with 50 µM of FITC-AA, the bottom skeleton of the primary polyps showed the fluorescence from FITC-AA within a few minutes, suggesting the phosphate binding. Furthermore, when the polyps were treated with 10 µM of FITC-AA, irregular patterns of the elongated skeleton were observed. These results led us to conclude that phosphate is transported via a paracellular pathway to the subcalicoblastic extracellular calcifying medium. These results indicate that the phosphate adsorbed

  6. A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyu Li

    2015-07-01

    Full Text Available This paper presents a novel grouping method for lithium iron phosphate batteries. In this method, a simplified electrochemical impedance spectroscopy (EIS model is utilized to describe the battery characteristics. Dynamic stress test (DST and fractional joint Kalman filter (FJKF are used to extract battery model parameters. In order to realize equal-number grouping of batteries, a new modified K-means clustering algorithm is proposed. Two rules are designed to equalize the numbers of elements in each group and exchange samples among groups. In this paper, the principles of battery model selection, physical meaning and identification method of model parameters, data preprocessing and equal-number clustering method for battery grouping are comprehensively described. Additionally, experiments for battery grouping and method validation are designed. This method is meaningful to application involving the grouping of fresh batteries for electric vehicles (EVs and screening of aged batteries for recycling.

  7. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  8. [Osteogenic activity of porous calcium phosphate ceramics fabricated by rapid prototyping].

    Science.gov (United States)

    He, Chenguang; Zhao, Li; Lin, Liulan; Gu, Huijie; Zhou, Heng; Cui, Lei

    2010-07-01

    Calcium phosphate bioceramics has a broad application prospect because of good biocompatibility, but porous scaffolds with complex shape can not be prepared by the traditional methods. To fabricate porous calcium phosphate ceramics by rapid prototyping and to investigate the in vitro osteogenic activities. The porous calcium phosphate ceramics was fabricated by rapid prototyping. The bone marrow mesenchymal stem cells (BMSCs) were isolated from bone marrow of Beagle canine, and the 3rd passage BMSCs were seeded onto the porous ceramics. The cell/ceramics composite cultured in osteogenic medium were taken as the experimental group (group A) and the cell/ceramics composite cultured in growth medium were taken as the control group (group B). Meanwhile, the cells seeded on the culture plate were cultured in osteogenic medium or growth medium respectively as positive control (group C) or negative control (group D). After 1, 3, and 7 days of culture, the cell proliferation and osteogenic differentiation on the porous ceramics were evaluated by DNA quantitative analysis, histochemical staining and alkaline phosphatase (ALP) activity. After DiO fluorescent dye, the cell adhesion, growth, and proliferation on the porous ceramics were also observed by confocal laser scanning microscope (CLSM). DNA quantitative analysis results showed that the number of BMSCs in all groups increased continuously with time. Plateau phase was not obvious in groups A and B, but it was clearly observed in groups C and D. The CLSM observation indicated that the activity of BMSCs was good and the cells spread extensively, showing good adhesion and proliferation on the porous calcium phosphate ceramics prepared by rapid prototyping. ALP quantitative analysis results showed that the stain of cells on the ceramics became deeper and deeper with time in groups A and B, the staining degree in group A were stronger than that in group B. There was no significant difference in the change of the ALP activity

  9. Treatment of cows with parturient paresis using intravenous calcium and oral sodium phosphate.

    Science.gov (United States)

    Braun, U; Grob, D; Hässig, M

    2016-09-01

    The goal of this study was to investigate whether intravenous infusion of 1000 ml 40% calcium borogluconate combined with the oral adminstration of 500 g sodium phosphate leads to a better cure rate and longer-lasting normocalcaemia and normophosphataemia than standard intravenous treatment with 500 ml calcium borogluconate in cows with parturient paresis. Forty recumbent cows with hypocalcaemia and hypophosphataemia were alternately allocated to group A or B. Cows of both groups were treated intravenously with 500 ml 40% calcium borogluconate, and cows of group B additionally received another 500 ml calcium borogluconate via slow intravenous infusion and 500 g sodium phosphate administered via an orogastric tube. Thirty-two cows stood within 8 hours after the start of treatment and 8 did not; of the 32 cows that stood, 18 belonged to group A and 14 to group B (90% of group A vs. 70% of group B; P = 0.23). Seven cows relapsed; of these and the 8 that did not respond to initial treatment, 10 stood after two standard intravenous treatments. Downer cow syndrome occurred in 5 cows, 3 of which recovered after aggressive therapy. The overall cure rate did not differ significantly between groups A and B. Twelve (60%) cows of group A and 14 (70%) cows of group B were cured after a single treatment and of the remaining 14, 11 were cured after two or more treatments. Two downer cows were euthanized and one other died of heart failure during treatment. Serum calcium concentrations during the first eight hours after the start of treatment were significantly higher in group B than in group A, and oral sodium phosphate caused a significant and lasting increase in inorganic phosphate. More cows of group B than group A were cured after a single treatment (P > 0.05). These findings, although not statistically significant, are promising and should be verified using a larger number of cows.

  10. Electrochemical impedance study of copper in phosphate buffered solution

    International Nuclear Information System (INIS)

    Salimon, J.; Mohamad, M.; Yamin, B.M.; Kalaji, M.

    2003-01-01

    The processes occurring on the copper electrode surface in phosphate buffered solution were investigated using the Electrochemical Impedance Spectroscopy. The electrochemical behaviors of copper through their charge transfer resistance and double-layer capacitance at the onset of the hydrogen evolution region and the anodic passivation layer formation and diffusion of copper species at anodic potential regions are discussed. The specific adsorption of anions (hydroxide and/or H/sub 2/PO/sub 4/) occurred at potential less negative than -0.9V. Adsorbed hydrogen appeared at hydrogen evolution region at potential range of -1.5 to -1.0 V. The deposition of insoluble copper species occurred at anodic potential regions. (author)

  11. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    Science.gov (United States)

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Gadolinium-hydrogen ion exchange of zirconium phosphate

    Science.gov (United States)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  13. Uranium Sequestration by Aluminum Phosphate Minerals in Unsaturated Soils

    International Nuclear Information System (INIS)

    Jerden, James L. Jr.

    2007-01-01

    A mineralogical and geochemical study of soils developed from the unmined Coles Hill uranium deposit (Virginia) was undertaken to determine how phosphorous influences the speciation of uranium in an oxidizing soil/saprolite system typical of the eastern United States. This paper presents mineralogical and geochemical results that identify and quantify the processes by which uranium has been sequestered in these soils. It was found that uranium is not leached from the saturated soil zone (saprolites) overlying the deposit due to the formation of a sparingly soluble uranyl phosphate mineral of the meta-autunite group. The concentration of uranium in the saprolites is approximately 1000 mg uranium per kg of saprolite. It was also found that a significant amount of uranium was retained in the unsaturated soil zone overlying uranium-rich saprolites. The uranium concentration in the unsaturated soils is approximately 200 mg uranium per kg of soil (20 times higher than uranium concentrations in similar soils adjacent to the deposit). Mineralogical evidence indicates that uranium in this zone is sequestered by a barium-strontium-calcium aluminum phosphate mineral of the crandallite group (gorceixite). This mineral is intimately inter-grown with iron and manganese oxides that also contain uranium. The amount of uranium associated with both the aluminum phosphates (as much as 1.4 weight percent) has been measured by electron microprobe micro-analyses and the geochemical conditions under which these minerals formed has been studied using thermodynamic reaction path modeling. The geochemical data and modeling results suggest the meta-autunite group minerals present in the saprolites overlying the deposit are unstable in the unsaturated zone soils overlying the deposit due to a decrease in soil pH (down to a pH of 4.5) at depths less than 5 meters below the surface. Mineralogical observations suggest that, once exposed to the unsaturated environment, the meta-autunite group

  14. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  15. Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan

    International Nuclear Information System (INIS)

    Adam, Abdel Majid A.; Eltayeb, Mohamed Ahmed H.

    2012-01-01

    Multivariate statistical techniques are efficient ways to display complex relationships among many objects. An attempt was made to study the radioactive data in two types of Sudanese phosphate deposits; Kurun and Uro phosphate, using several multivariate statistical methods. Pearson correlation coefficient revealed that a U-238 distribution in Kurun phosphate is controlled by the variation of K-40 concentration, whereas in Uro phosphate it is controlled by the variation of U-235 and U-234 concentration. Histograms and normal Q–Q plots clearly show that the radioactive variables did not follow a normal distribution. This non-normality feature observed may be attributed to complicating influence of geological factors. The principal components analysis (PCA) gives a model of five components for representing the acquired data from Kurun phosphate, where 89.5% of the total variance is explained. A model of four components was sufficient to represent the acquired data from Uro phosphate, where 87.5% of the total data variance is explained. The hierarchical cluster analysis (HCA) indicates that U-238 behaves in the same manner in the two types of phosphates; it associated with a group of four radionuclides; U-234, Po-210, Ra-226, Th-230, which the most abundant radionuclides, and all belong to the uranium-238 decay series. Two parameters have been adapted for the direct differentiate between the two phosphates. Firstly, U-238 in Uro phosphate have shown higher degree of mobility (CV% = 82.6) than that in Kurun phosphate (CV% = 64.7), and secondly, the activity ratio of Th-230/Th-232 in Uro phosphate is nine times than that in Kurun phosphate. - Highlights: ► Multivariate statistical techniques were used to characterize radioactive data. ► U-238 in Uro phosphate shows higher degree of mobility (CV% = 82.6). ► U-238 in Kurun phosphate shows lower degree of mobility (CV% = 64.7). ► The radioactive variables did not follow a normal distribution. ► The ratio of Th

  16. Investigation of chromosomal aberrations in human lymphocytes of Syrian phosphate mine workers

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Osman, M.

    1994-04-01

    The aim of this study is to investigate the exposure risk to Uranium and its radioactive products in Syrian phosphate miners (Khneefees and Al-Sharkia). Chromosomal aberrations have been estimated in peripheral blood lymphocytes of miners using whole blood cultures 'in vitro' for 48 hrs. The control group has been the normal population in Damascus 180 km far from Khneefees and 210 Km from Al-Sharkia. Our results have shown a significant difference between the miners and our control group. However there was no significant difference between the two miners groups. These results show an accumulative biological effect induced by environmental contamination in the Syrian phosphate mines. (author). 21 refs., 8 figs., 5 tabs

  17. Complex formation of uranium(VI) with fructose and glucose phosphates

    International Nuclear Information System (INIS)

    Koban, A.; Geipel, G.; Bernhard, G.; Fanghaenel, T.

    2002-01-01

    The uptake of heavy metals into plants is commonly quantified by the soil-plant transfer factor. Up to now little is known about the chemical speciation of actinides in plants. To compare the obtained spectroscopic data of uranium complexes in plants with model compounds, we investigate the complexation of uranium with relevant bioligands of various functionalities. A very important class of ligands consists of phosphate esters, which serve as phosphate group and energy transmitters as well as energy storage media in biological systems. Heavy metal ions bound to the phosphate esters can be transported into living cells and then deposited. Therefore, in our study we present the results of uranium complexation with glucose-6-phosphate (G6P), and fructose-6-phosphate (F6P) obtained by time-resolved laser-induced fluorescence spectroscopy (TRLFS). The experiments were performed at a fixed uranyl concentration (10 -5 M) as a function of the ligand concentrations (10 -5 to 10 -3 M) in a pH range from 2 to 4.5. For the glucose phosphate system we observed, using increasing ligand concentrations, a decrease in the fluorescence intensity and a small red shift of the emission bands. From this we conclude that the complexed uranyl glucose phosphate species show only minor or no fluorescence properties. The TRLFS spectra of the glucose phosphate samples indicated the presence of a single species with fluorescence properties. This species has a lifetime of approximately 1.5 μs and was identified as the free uranyl ion. An opposite phenomenon was observed for the fructose phosphate system: there was no decrease in fluorescence intensity. However, a strong red shift of the spectra was observed, illustrating the fluorescence properties of the uranyl fructose phosphate complex. The TRLFS spectra of the fructose phosphate system showed a second lifetime ( 2 2+ UO 2 (lig) x (2-y)+ + y H + (lig = sugar phosphate). Applying the mass action law and transformation to the logarithmic

  18. Sub-group Analyses from a Trial of a Fixed Combination of Clindamycin Phosphate 1.2% and Benzoyl Peroxide 3.75% Gel for the Treatment of Moderate-to-severe Acne Vulgaris

    Science.gov (United States)

    Korotzer, Andrew

    2015-01-01

    Background: Acne vulgaris is commonplace and can be difficult to manage. Providing an effective and well-tolerated treatment may lead to improved adherence, increased patient satisfaction, and improved clinical outcomes. Methods: A review of efficacy, safety, and cutaneous tolerability of clindamycin phosphate 1.2%-benzoyl peroxide 3.75% gel in 498 patients with moderate-to-severe acne vulgaris enrolled in a multicenter Phase III study randomized to receive active or vehicle once daily for 12 weeks, including the most recent post-hoc analyses. Results: Significantly superior reductions in lesion counts were observed with clindamycin phosphate 1.2%-benzoyl peroxide 3.75% gel from Week 4, with median percent reductions in inflammatory and noninflammatory lesions from baseline of 68.4 and 57.9 percent, respectively (bothpacne vulgaris patients treated with clindamycin phosphate 1.2%-benzoyl peroxide 3.75% gel achieved ≥2-grade improvement from baseline in their Evaluator’s Global Severity Score, and almost a third of the adolescent acne vulgaris patients (32.4%) achieved at least a marked improvement in their acne vulgaris as early as Week 2. In adult female acne overall treatments success was achieved in 52.7 percent of patients treated with clindamycin phosphate 1.2%-benzoyl peroxide 3.75% gel. Overall, and in the specific subpopulations, clindamycin phosphate 1.2%-benzoyl peroxide 3.75% gel was well-tolerated with a similar adverse event profile to vehicle. Limitations: Post-hoc analyses from a single clinical trial with demographic imbalances that could potentially confound the results. Conclusion: Clindamycin phosphate 1.2%-benzoyl peroxide 3.75% gel appears to be effective in treating acne across various clinically relevant sub-groups. PMID:26705445

  19. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria.

    Science.gov (United States)

    Tao, Yuqiang; Li, Wei; Xue, Bin; Zhong, Jicheng; Yao, Shuchun; Wu, Qinglong

    2013-10-15

    Due to the large surface area and high organic carbon content of cyanobacteria, organic contaminants can be readily sorbed on cyanobacteria during algal blooms, and then be transferred to the food web. This process is likely to be affected by the coexisting metals and nutrients, however, the possible impacts remain unclear. Effects of Cu(2+), Cd(2+), and phosphate on the sorption of phenanthrene on cyanobacterial biomass collected from an algal bloom were therefore studied. Continuous decrease in phenanthrene sorption was observed in the presence of low concentrations of Cu(2+), and Cd(2+) (phosphate concentration. Phosphate blocked the binding sites, modified the cell morphology, and increased the negative charge as well as the hydrophilicity of the cyanobacterial surface, thereby suppressing phenanthrene sorption. This study indicates that sorption of aromatic organic compounds by cyanobacteria could be significantly alerted by concentrations and properties of the coexisting transition metals and phosphates, which may subsequently affect their transfer to the food web in eutrophic waters. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Thermally Induced Lateral Motion of α-Zirconium Phosphate Layers Intercalated with Hexadecylamines

    Science.gov (United States)

    Char, Kookheon

    2005-03-01

    Well-defined intercalated structure, either interdigitated layers or bilayers, of hexadecylamines (HDAs) in a confined space of a highly-functionalized layered material, α- zirconium phosphate (α-ZrP), was prepared and these two distinct intercalated structures can serve as model systems to investigate the interaction of the two monolayers whose amphiphilic tails are adjacent to each other. Acidic functional groups (-POH) on the α-ZrP are in well-ordered array and the number of functional group is quite high (i.e., cationic exchange capacity (CEC) = 664 mmole/100 g, area per one charge site = 0.24 nm^2) enough to realize the bilayers (i.e., discrete two monolayers) of HDAs within the α-ZrP interlayer. We employed the two-step intercalation mechanism for the preparation of well- ordered interdigitated layers as well as the bilayers of alkyl chains attached to both sides of the α-ZrP intergallery. An intriguing lateral motion of the α-ZrP sheets was observed with in-situ SAXS measurements for the interdigitated layer during heating and cooling cycle and verified with TEM. This lateral motion is believed to be due to the transition from the tilted to the untilted conformation of the interdigitated HDA chains and this transition is found to be thermally reversible.

  1. Effect of Fluoride, Casein Phosphopeptide–Amorphous Calcium Phosphate and Casein Phosphopeptide–Amorphous Calcium Phosphate Fluoride on Enamel Surface Microhardness After Microabrasion: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadi Zenouz

    2016-03-01

    Full Text Available Objectives: This study aimed to assess the effect of applying casein phosphopeptide–amorphous calcium phosphate (CPP-ACP paste, casein phosphopeptide–amorphous calcium phosphate fluoride (CPP-ACPF paste and sodium fluoride gel on surface microhardness of enamel after microabrasion.Materials and Methods: Thirty freshly extracted human premolars were selected. All samples were subjected to hardness indentations made with the Vickers hardness machine and the average value was recorded as the initial surface microhardness. The specimens were then randomly divided into three groups (n=10 of CPP-ACPF, fluoride and CPP-ACP. The teeth were micro-abraded with Opalustre. Microhardness test was performed to assess the post-abrasion hardness. Three remineralization modalities were performed on samples of each group. The enamel surface microhardness measurements were performed. To compare the difference between groups, the rehardening and softening values were defined. One-way ANOVA and Tukey’s post hoc test at a significance level of 5% were used for statistical analysis.Results: The mean microhardness value (MMV had a significant decrease after microabrasion from baseline. The MMV had a significant increase after remineralization in all groups. The MMV of CPP-ACPF group was significantly more than that of fluoride group (P=0.027. The rehardening value of fluoride group was significantly more than that of other groups (P<0.001.Conclusion: All the remineralizing agents were effective for rehardening the enamel after microabrasion. The CPP-ACP and CPP-ACPF pastes are effective, but to a lesser extent than neutral sodium fluoride gel in remineralizing enamel surface. Incorporation of fluoride to CPP-ACP formulation does not provide any additional remineralizing potential.Keywords: Casein phosphopeptide-amorphous calcium phosphate nanocomplex; Enamel Microabrasion; Hardness; Sodium Fluoride

  2. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems

    Science.gov (United States)

    Young, M.B.; McLaughlin, K.; Kendall, C.; Stringfellow, W.; Rollog, M.; Elsbury, K.; Donald, E.; Paytan, A.

    2009-01-01

    The oxygen isotopic composition of dissolved inorganic phosphate (δ18Op) in many aquatic ecosystems is not in isotopic equilibrium with ambient water and, therefore, may reflect the source δ18Op. Identification of phosphate sources to water bodies is critical for designing best management practices for phosphate load reduction to control eutrophication. In order for δ18O p to be a useful tool for source tracking, the δ18Op of phosphate sources must be distinguishable from one another; however, the δ18Op of potential sources has not been well characterized. We measured the δ18O p of a variety of known phosphate sources, including fertilizers, semiprocessed phosphorite ore, particulate aerosols, detergents, leachates of vegetation, soil, animal feces, and wastewater treatment plant effluent. We found a considerable range of δ18Op values (from +8.4 to +24.9‰) for the various sources, and statistically significant differences were found between several of the source types. δ18Op measured in three different fresh water systems was generally not in equilibrium with ambient water. Although there is overlap in δ18Op values among the groups of samples, our results indicate that some sources are isotopically distinct and δ18Op can be used for identifying phosphate sources to aquatic systems.

  3. Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model

    International Nuclear Information System (INIS)

    Omar, Noshin; Monem, Mohamed Abdel; Firouz, Yousef; Salminen, Justin; Smekens, Jelle; Hegazy, Omar; Gaulous, Hamid; Mulder, Grietus; Van den Bossche, Peter; Coosemans, Thierry; Van Mierlo, Joeri

    2014-01-01

    Highlights: • Extended life cycle tests. • Investigation of the battery life cycle at different working conditions. • Investigation of the impact fast charging on the battery performances. • Extraction all required relationship for development of a cycle life model. • Development of a new life cycle model. - Abstract: This paper represents the evaluation of ageing parameters in lithium iron phosphate based batteries, through investigating different current rates, working temperatures and depths of discharge. From these analyses, one can derive the impact of the working temperature on the battery performances over its lifetime. At elevated temperature (40 °C), the performances are less compared to at 25 °C. The obtained mathematical expression of the cycle life as function of the operating temperature reveals that the well-known Arrhenius law cannot be applied to derive the battery lifetime from one temperature to another. Moreover, a number of cycle life tests have been performed to illustrate the long-term capabilities of the proposed battery cells at different discharge constant current rates. The results reveal the harmful impact of high current rates on battery characteristics. On the other hand, the cycle life test at different depth of discharge levels indicates that the battery is able to perform 3221 cycles (till 80% DoD) compared to 34,957 shallow cycles (till 20% DoD). To investigate the cycle life capabilities of lithium iron phosphate based battery cells during fast charging, cycle life tests have been carried out at different constant charge current rates. The experimental analysis indicates that the cycle life of the battery degrades the more the charge current rate increases. From this analysis, one can conclude that the studied lithium iron based battery cells are not recommended to be charged at high current rates. This phenomenon affects the viability of ultra-fast charging systems. Finally, a cycle life model has been developed, which

  4. The efficiency of child formula dentifrices containing different calcium and phosphate compounds on artificial enamel caries.

    Science.gov (United States)

    Rirattanapong, Praphasri; Vongsavan, Kadkao; Saengsirinavin, Chavengkiat; Khumsub, Ploychompoo

    2016-01-01

    Fluoride toothpaste has been extensively used to prevent dental caries. However, the risk of fluorosis is concerning, especially in young children. Calcium phosphate has been an effective remineralizing agent and is present in commercial dental products, with no risk of fluorosis to users. This in vitro study aimed to compare the effects of different calcium phosphate compounds and fluoride-containing dentifrices on artificial caries in primary teeth. Fifty sound primary incisors were coated with nail varnish, leaving two 1 mm 2 windows on the labial surface before immersion in demineralizing solution for 96 hours to produce artificial enamel lesions. Subsequently, one window from each tooth was coated with nail varnish, and all 50 teeth were divided into five groups ( n = 10); group A - deionized water; group B - casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste (Tooth Mousse); group C - 500 ppm F (Colgate Spiderman ® ); group D - nonfluoridated toothpaste with triple calcium phosphate (Pureen ® ); and group E - tricalcium phosphate (TCP). Polarized light microscopy and Image-Pro ® Plus software were used to evaluate lesions. After a 7-day pH-cycle, mean lesion depths in groups A, B, C, D, and E had increased by 57.52 ± 10.66%, 33.28 ± 10.16%, 17.04 ± 4.76%, 32.51 ± 8.99%, and 21.76 ± 8.15%, respectively. All data were processed by the Statistical Package for the Social Sciences (version 16.0) software package. Comparison of percentage changes using one-way analysis of variance and Fisher's least squares difference tests at a 95% level of confidence demonstrated that group A was significantly different from the other groups ( P < 0.001). Lesions in groups B and D had a significant lesion progression when compared with groups C and E. All toothpastes in this study had the potential to delay the demineralization progression of artificial enamel caries in primary teeth. The fluoride 500 ppm and TCP toothpastes were equal in the deceleration of

  5. Reduced CSF leak in complete calvarial reconstructions of microvascular decompression craniectomies using calcium phosphate cement.

    Science.gov (United States)

    Eseonu, Chikezie I; Goodwin, C Rory; Zhou, Xin; Theodros, Debebe; Bender, Matthew T; Mathios, Dimitrios; Bettegowda, Chetan; Lim, Michael

    2015-12-01

    Calcium phosphate cement provides a biomaterial that can be used for calvarial reconstruction in a retrosigmoid craniectomy for microvascular decompression (MVD). This study evaluates the outcomes of postoperative CSF leak and wound infection for patients undergoing a complete cranioplasty using calcium phosphate cement versus incomplete cranioplasty using polyethylene titanium mesh following a retrosigmoid craniectomy for MVD. The authors evaluated 211 cases involving patients who underwent first-time retrosigmoid craniectomies performed by a single attending surgeon fortrigeminal neuralgia from October 2008 to June 2014. From this patient population, 111 patients underwent calvarial reconstruction after retrosigmoid craniectomy using polyethylene titanium mesh, and 100 patients had reconstructions using calcium phosphate cement. A Pearson's chi-square test was used to compare postoperative complications of CSF leak and wound infection in these 2 types of cranioplasties. The polyethylene titanium mesh group included 5 patients (4.5%) with postoperative CSF leak or pseudomeningocele and 3 patients (2.7%) with wound infections. In the calcium phosphate cement group, no patients had a CSF leak, and 2 patients (2%) had wound infections. This represented a statistically significant reduction of postoperative CSF leak in patients who underwent calcium phosphate reconstructions of their calvarial defect compared with those who underwent polyethylene titanium mesh reconstructions (p = 0.03). No significant difference was seen between the 2 groups in the number of patients with postoperative wound infections. Calcium phosphate cement provides a viable alternative biomaterial for calvarial reconstruction of retrosigmoid craniectomy defects in patients who have an MVD. The application of this material provides a biocompatible barrier that reduces the incidence of postoperative CSF leaks.

  6. Radioactivity of phosphate ores from Karatas-Mazidag phosphate deposit of Turkey

    International Nuclear Information System (INIS)

    Akyuez, T.; Varinlioglu, A.; Kose, A.; Akyuez, S.

    2000-01-01

    The specific activities of 238 U, 226 Ra, 232 Th and 40 K in the composite samples of phosphate ores of type I (grey-coloured ore, with high P 2 O 5 (21-35%) and low calcite content) and of type II (grey coloured calcite ore, with low P 2 O 5 content (5-17%)) of Karatas-Mazidag phosphate deposit, Turkey, have been determined by gamma spectrometry together with phosphatic animal feed ingredients. The concentrations of 238 U, 226 Ra, 232 Th and 40 K were found to be up to 557, 625, 26 and 297 Bq x kg -1 , respectively. Radium equivalent activities of samples were calculated and compared with those given in the literature. Uranium concentration of the individual phosphate samples, from which composite samples of ores of type I and II have been prepared, were found to show and increasing trend with increasing P 2 O 5 and F concentrations. (author)

  7. Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate

    International Nuclear Information System (INIS)

    Chrysochoou, Maria; Dermatas, Dimitris; Grubb, Dennis G.

    2007-01-01

    Phosphate treatment has emerged as a widely accepted approach to immobilize Pb in contaminated soils and waste media, relying on the formation of the highly insoluble mineral pyromorphite as solubility-controlling phase for Pb. As such, phosphate treatment has been proposed as a Best Management Practice (BMP) for firing ranges where Pb occurs in its metallic forms and several other phases (carbonates, oxides). While pyromorphite thermodynamically has the potential to control Pb solubility at low levels, its formation is kinetically controlled by pH, the solubility of the phosphate source, and the solubility of Pb species. Treatability studies have shown that excess quantities of soluble and acidic phosphate sources, such as phosphoric acid, are necessary for successful in situ treatment. Even under these conditions, Extended X-ray Absorption Fine Structure (EXAFS), the only reliable method to identify and quantify Pb speciation, showed that Pb conversion to pyromorphite in in situ treated soils was less than 45% after 32 months. Furthermore, the use of lime (CaO) to restore soil pH in acidified soil treatments inhibited further conversion. Additionally, phosphate treatment is known to reduce bioavailability through pyromorphite formation in the intestinal tract, and the phytoaccumulation of Pb; both desirable effects for Pb-impacted areas. Given the costs of phosphate treatment, the use of biogenic phosphate sources, such as bone meal, may be a more environmentally sustainable approach toward this end. In the many studies focusing on phosphate treatment, the attendant P leaching and eutrophication have been largely overlooked, along with other issues such as the enhanced leaching of oxyanionic contaminants, such as Se, As and W. The success and sustainability of applying phosphate as a BMP in firing range soils therefore remain questionable

  8. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle; Van Wambeke, F.; Lebaron, P.; Moutin, T.

    2015-01-01

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg'1) but variable cellular rates (6.6 ± 9.3 amol P cellg'1 hg'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg'1) and high cellular uptake rates (up to 40 and 402 amol P cellg'1 hg'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg'1 hg'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  9. Vertical partitioning of phosphate uptake among picoplankton groups in the low Pi Mediterranean Sea

    KAUST Repository

    Talarmin, Agathe Anne Gaelle

    2015-02-26

    Microbial transformations are key processes in marine phosphorus cycling. In this study, we investigated the contribution of phototrophic and heterotrophic groups to phosphate (Pi) uptake fluxes in the euphotic zone of the low-Pi Mediterranean Sea and estimated Pi uptake kinetic characteristics. Surface soluble reactive phosphorus (SRP) concentrations were in the range of 6-80 nmol Lg\\'1 across the transect, and the community Pi turnover times, assessed using radiolabeled orthophosphate incubations, were longer in the western basin, where the highest bulk and cellular rates were measured. Using live cell sorting, four vertical profiles of Pi uptake rates were established for heterotrophic prokaryotes (Hprok), phototrophic picoeukaryotes (Pic) and Prochlorococcus (Proc) and Synechococcus (Syn) cyanobacteria. Hprok cells contributed up to 82% of total Pi uptake fluxes in the superficial euphotic zone, through constantly high abundances (2.7-10.2 × 105 cells mLg\\'1) but variable cellular rates (6.6 ± 9.3 amol P cellg\\'1 hg\\'1). Cyanobacteria achieved most of the Pi uptake (up to 62%) around the deep chlorophyll maximum depth, through high abundances (up to 1.4 × 105 Proc cells mLg\\'1) and high cellular uptake rates (up to 40 and 402 amol P cellg\\'1 hg\\'1, respectively for Proc and Syn cells). At saturating concentrations, maximum cellular rates up to 132 amol P cellg\\'1 hg\\'1 were measured for Syn at station (St.) C, which was 5 and 60 times higher than Proc and Hprok, respectively. Pi uptake capabilities of the different groups likely contribute to their vertical distribution in the low Pi Mediterranean Sea, possibly along with other energy limitations.

  10. Magnesium modifies the association between serum phosphate and the risk of progression to end-stage kidney disease in patients with non-diabetic chronic kidney disease.

    Science.gov (United States)

    Sakaguchi, Yusuke; Iwatani, Hirotsugu; Hamano, Takayuki; Tomida, Kodo; Kawabata, Hiroaki; Kusunoki, Yasuo; Shimomura, Akihiro; Matsui, Isao; Hayashi, Terumasa; Tsubakihara, Yoshiharu; Isaka, Yoshitaka; Rakugi, Hiromi

    2015-10-01

    It is known that magnesium antagonizes phosphate-induced apoptosis of vascular smooth muscle cells and prevents vascular calcification. Here we tested whether magnesium can also counteract other pathological conditions where phosphate toxicity is involved, such as progression of chronic kidney disease (CKD). We explored how the link between the risk of CKD progression and hyperphosphatemia is modified by magnesium status. A post hoc analysis was run in 311 non-diabetic CKD patients who were divided into four groups according to the median values of serum magnesium and phosphate. During a median follow-up of 44 months, 135 patients developed end-stage kidney disease (ESKD). After adjustment for relevant clinical factors, patients in the lower magnesium-higher phosphate group were at a 2.07-fold (95% CI: 1.23-3.48) risk for incident ESKD and had a significantly faster decline in estimated glomerular filtration rate compared with those in the higher magnesium-higher phosphate group. There were no significant differences in the risk of these renal outcomes among the higher magnesium-higher phosphate group and both lower phosphate groups. Incubation of tubular epithelial cells in high phosphate and low magnesium medium in vitro increased apoptosis and the expression levels of profibrotic and proinflammatory cytokine; these changes were significantly suppressed by increasing magnesium concentration. Thus, magnesium may act protectively against phosphate-induced kidney injury.

  11. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia.

    Science.gov (United States)

    Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang

    2018-02-23

    Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.

  12. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    International Nuclear Information System (INIS)

    Yu, Zhigang; Zhang, Chang; Zheng, Zuhong; Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming

    2017-01-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe n+ but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe n+ was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where phosphate

  13. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhigang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zheng, Zuhong [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei Province (China); Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-05-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe{sup n+} but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe {sup n+} was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where

  14. Method of stripping plutonium from tributyl phosphate solution which contains dibutyl phosphate-plutonium stable complexes

    International Nuclear Information System (INIS)

    Ochsenfeld, W.; Schmieder, H.

    1976-01-01

    Fast breeder fuel elements which have been highly burnt-up are reprocessed by extracting uranium and plutonium into an organic solution containing tributyl phosphate. The tributyl phosphate degenerates at least partially into dibutyl phosphate and monobutyl phosphate, which form stable complexes with tetravalent plutonium in the organic solution. This tetravalent plutonium is released from its complexed state and stripped into aqueous phase by contacting the organic solution with an aqueous phase containing tetravalent uranium. 6 claims, 1 drawing figure

  15. Preliminary X-ray crystallographic analysis of the d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis

    International Nuclear Information System (INIS)

    Petrareanu, Georgiana; Balasu, Mihaela C.; Zander, Ulrich; Scheidig, Axel J.; Szedlacsek, Stefan E.

    2010-01-01

    The expression, purification, preliminary crystallization and crystallographic analysis of phosphoketolase from L. lactis ssp. lactis (strain IL 1403) are reported. Phosphoketolases are thiamine diphosphate-dependent enzymes which play a central role in the pentose-phosphate pathway of heterofermentative lactic acid bacteria. They belong to the family of aldehyde-lyases and in the presence of phosphate ion cleave the carbon–carbon bond of the specific substrate d-xylulose 5-phosphate (or d-fructose 6-phosphate) to give acetyl phosphate and d-glyceraldehyde 3-phosphate (or d-erythrose 4-phosphate). Structural information about phosphoketolases is particularly important in order to fully understand their mechanism as well as the steric course of phosphoketolase-catalyzed reactions. Here, the purification, preliminary crystallization and crystallographic characterization of d-xylulose 5-phosphate phosphoketolase from Lactococcus lactis are reported. The presence of thiamine diphosphate during purification was essential for the enzymatic activity of the purified protein. The crystals belonged to the monoclinic space group P2 1 . Diffraction data were obtained to a resolution of 2.2 Å

  16. Contribution to the study of uranyl salts in butyl phosphate solutions; Contribution a l'etude des solutions de sels d'uranyle dans les phosphates butyliques

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, A [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from {approx} 1270 cm{sup -1} to {approx} 1180 cm{sup -1}. A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [French] Une etude spectroscopique dans l'infrarouge moyen portant sur les associations: - phosphates trialcoyliques (tributylique - triethylique - trimethylique) - sels d'uranyle (nitrate, chlorure, acetate) a confirme l'existence d'une interaction entre le groupement phosphoryle et l'atome d'uranium, se manifestant par un deplacement de la bande d'absorption de la vibration de valence P = 0 de {approx} 1270 cm{sup -1} a {approx} 1180 cm{sup -1}. Une etude preparative, analytique et spectroscopique des solides obtenus par precipitation de sels d'uranyle par les phosphates butyliques acides a ete effectuee. La spectrophotomerie infrarouge met en evidence l'association, anterieure a toute introduction d'uranium, des phosphates tributylique et dibutylique dans des diluants non polaires. L'extraction de sels d'uranyle, d'une solution aqueuse acide par un melange dilue de phosphates tributylique et dibutylique, s'effectue suivant des processus differents a la nature de l'anion (nitrate ou chlorure). (auteur)

  17. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  18. Synthesis, characterization, vibrational spectroscopy, and factor group analysis of partially metal-doped phosphate materials

    Science.gov (United States)

    Sronsri, Chuchai; Boonchom, Banjong

    2018-04-01

    A simple precipitating method was used to synthesize effectively a partially metal-doped phosphate hydrate (Mn0.9Mg0.1HPO4·3H2O), whereas the thermal decomposition process of the above hydrate precursor was used to obtain Mn1.8Mg0.2P2O7 and LiMn0.9Mg0.1PO4 compounds under different conditions. To separate the overlapping thermal decomposition peak, a deconvolution technique was used, and the separated peak was applied to calculate the water content. The factor group splitting analysis was used to exemplify their vibrational spectra obtained from normal vibrations of HPO42-, H2O, P2O74- and PO43- functional groups. Further, the deconvoluted bending mode of water was clearly observed. Mn0.9Mg0.1HPO4·3H2O was observed in the orthorhombic crystal system with the space group of Pbca (D2h15). The formula units per unit cell were found to be eight (Z = 8), and the site symmetric type of HPO42- was observed as Cs. For the HPO42- unit, the correlation filed splitting analysis of type C3v - Cs - D2h15 was calculated and had 96 internal modes, whereas H2O in the above hydrate was symbolized as C2v - Cs - D2h15 and had 24 modes. The symbol C2v - Cs - C2h3 was used for the correlation filed splitting analysis of P2O74- in Mn1.8Mg0.2P2O7 (monoclinic, C2/m (C2h3), Z = 2, and 42 modes). Finally, the symbol Td - Cs - D2h16 was used for the correlation filed splitting analysis of PO43- in LiMn0.9Mg0.1PO4 (orthorhombic, Pnma (D2h16), Z = 4, and 36 modes).

  19. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  20. Uranium-phosphate relationship in phosphated chalks of the Mons and Picardie Bassins

    Energy Technology Data Exchange (ETDEWEB)

    Quinif, Y; Charlet, J M; Dupuis, C; Robaszynski, F [Faculte Polytechnique de Mons (Belgium)

    1981-11-30

    The lithological and geochemical conditions relative to the ''Senonian'' phosphatic chalks are relatively simple in the Basins of Mons (Belgium) and of Picardy (France). Their characteristics permit us to study chiefly the uranium-phosphate relation. It appears a very good linear correlation between the phosphate and the uranium. The coefficient U/P/sub 2/O/sub 5/ remains a constant from the bottom to the top of the same section, but changes in space for synchronic formations (lateral variation of geochemical facies) and in time for two separated basins.

  1. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  2. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  3. Contribution to the study of uranyl salts in butyl phosphate solutions

    International Nuclear Information System (INIS)

    Coulon, A.

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from ∼ 1270 cm -1 to ∼ 1180 cm -1 . A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [fr

  4. Comparison of xenogenic bone bioimplant and calcium phosphate granules on experimental femoral bone defect healing in rabbits

    Directory of Open Access Journals (Sweden)

    GH Mousavi

    2012-05-01

    Full Text Available Rebuilding and renovation of lost bone whether because of physiologic or pathologic factors was one of the surgeons’ motivations from the past. Osteogenesis of decalcified bone induced by growth factors contained in it. This study is to assay probability effect of decalcified bone and calcium phosphate granules on osteogenesis which is made in experimental flaw and it is as a laboratory pattern in rabbit femur.This experimental study is made on 15 male rabbits. Animals were divided randomly into 3 groups (control and treatments.After induction of general anesthesia, 2 holes in size of 2 mm in diameter was made using a dental bit in femur width to medullary channel. After surgery, the control group left untreated and decalcified bones was placed in group 2 and calcium phosphate granules were placed in group 3. Histopathological and histomorphometrical studies for evaluation of bone healing were carried out in experimental rats, which were euthanized after 45 days of the experiment using hematoxylin-eosin (H&E staining method.In control group, defect seemed to be filled with woven bone and bone marrow spaces and in spite of a poor osteogenic activity. In calcium phosphate group, young bone trabeculas increased in number and bone trabeculas more organized. Histomorphometric results, observed that calcium phosphate granules has significant effect on bone healing than decalcified and control groups.

  5. Influence of pulse ratio on codeposition of copper species with calcium phosphate coatings on titanium by means of electrochemically assisted deposition.

    Science.gov (United States)

    Wolf-Brandstetter, Cornelia; Oswald, Steffen; Bierbaum, Susanne; Wiesmann, Hans-Peter; Scharnweber, Dieter

    2014-01-01

    Aim of this study was to combine the well-known biocompatibility and ostoeconductivity of thin calcium phosphate coatings on titanium with proangiogenic signals from codeposited copper species. Copper species could be integrated in mineral layers based on hydroxyapatite by means of electrochemically assisted deposition from electrolytes containing calcium, phosphate, and copper ions. Different combinations of duration and intensity of galvanostatic pulses result in different amounts of deposited calcium phosphate and of copper species even for the same applied total charge. Absolute amounts of copper varied between 2.1 and 6.9 μg/cm², and the copper was distributed homogeneously as shown by EDX mapping. The presence of copper did not change the crystalline phase of deposited calcium phosphate (hydroxyapatite) but provoked a significant decrease in deposited amounts by factor 3 to 4. The copper was deposited mainly as Cu(I) species with a minor fraction of basic copper phosphates. Reduction of copper occurred not only at the surface of titanium but also within the hydroxyapatite coating due to the reaction with hydrogen produced by the electrolysis of water during the cathodic polarization of the substrate. Copyright © 2013 Wiley Periodicals, Inc.

  6. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  7. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Ciceo-Lucacel, R.; Radu, T., E-mail: teodora.radu@phys.ubbcluj.ro; Ponta, O.; Simon, V.

    2014-06-01

    We synthesized a new boro-phosphate glass system with different %mol SeO{sub 2} content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P{sub 2}O{sub 7}{sup 4−} dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO{sub 3}{sup −} middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ{sub 3} or BØ{sub 2}O{sup −} units. A small contribution of BØ{sub 4}{sup −} units was also detected from the FT-IR spectra of glasses. For SeO{sub 2} content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P{sub 2}O{sub 5}-CaO-B{sub 2}O{sub 3}-SeO{sub 2} glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system.

  8. Novel selenium containing boro-phosphate glasses: Preparation and structural study

    International Nuclear Information System (INIS)

    Ciceo-Lucacel, R.; Radu, T.; Ponta, O.; Simon, V.

    2014-01-01

    We synthesized a new boro-phosphate glass system with different %mol SeO 2 content by conventional melt quenching technique. All samples were obtained in a glassy state with the vitreous structure confirmed by X-ray diffraction analysis. Scanning electron microscopy (SEM) revealed some non-homogeneous domains on the glasses surface, and their tendency to link each other once the selenium oxide content increases. Energy-dispersive X-ray analysis (EDAX) indicated similar elemental composition in different regions of each sample. X-ray photoelectron spectroscopy (XPS) was used to determine the nature of chemical bonding and the elemental composition at the sample surfaces, and Fourier transform infrared (FT-IR) spectroscopy was used to determine the structural groups in the obtained glass structure. Based on FT-IR results, the glass structure at short range order consists mainly of small phosphate units such as pyrophosphate (i.e. P 2 O 7 4− dimmers or terminating groups at the end of phosphate chains) and some metaphosphate (i.e. PO 3 − middle groups in the phosphate chains) units. The boron atoms are mainly placed in three-coordinated sites in BØ 3 or BØ 2 O − units. A small contribution of BØ 4 − units was also detected from the FT-IR spectra of glasses. For SeO 2 content higher than 5 mol%, the modifier role of selenium ions is strongly reflected on the local structure dominated in this case by pyrophosphate units. - Highlights: • New P 2 O 5 -CaO-B 2 O 3 -SeO 2 glasses synthesized by conventional melt quenching method. • Evidences for the Se ions modifier role in the local structure by FT-IR and XPS. • Significant advances in understanding the structural properties of the new system

  9. Partition of rare-earths in phosphates laterites from Maicuru, Brazil - PA

    International Nuclear Information System (INIS)

    Lemos, V.P.; Costa, M.L. da.

    1987-01-01

    The phosphatic laterites of Maicuru-Para are formed of aluminium phosphates, mainly of the crandallite group, followed by wardite, augellite and senegallite. The crandallite group is represented in the form of the solid solution goyazite-florencite-crandallite, in variable proportions. In three samples, the florencite occurs as the predominant member, while in the others crandallite is the main mineral. The unit-cell dimension of florencites, in two samples, measured are the same as those of the florencites from other deposits. The rare earths occur mainly in this mineral group with predominance of the light rare earth elements. This is well observed in the condrite normalized REE patterns. These enrichments are not regular. The geochemical characteristics of the rare earth distribution in the crandallites of Maicuru, leads tho suggest this mineral was formed from distinct lithologies. (author) [pt

  10. Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers

    International Nuclear Information System (INIS)

    El-Bahi, S.M.; Sroor, A.; Mohamed, Gehan Y.; El-Gendy, N.S.

    2017-01-01

    In this study, the activity concentrations of the natural radionuclides in phosphate rocks and its products were measured using a high- purity germanium detector (HPGe). The obtained activity results show remarkable wide variation in the radioactive contents for the different phosphate samples. The average activity concentration of "2"3"5U, "2"3"8U, "2"2"6Ra, "2"3"2Th and "4"0K was found as (45, 1031, 786, 85 and 765 Bq/kg) for phosphate rocks, (28, 1234, 457, 123 and 819 Bq/kg) for phosphate fertilizers, (47, 663, 550, 79 and 870 Bq/kg) for phosphogypsum and (25, 543, 409, 54 and 897 Bq/kg) for single super phosphate respectively. Based on the measured activities, the radiological parameters (activity concentration index, absorbed gamma dose rate in outdoor and indoor and the corresponding annual effective dose rates and total excess lifetime cancer risk) were estimated to assess the radiological hazards. The total excess lifetime cancer risk (ELCR) has been calculated and found to be high in all samples, which related to high radioactivity, representing radiological risk for the health of the population. - Highlights: • Level of radioactivity of phosphate rocks and by-products samples. • The radiological health hazard parameters. • Radiological risk to the health of the population. • The excess lifetime cancer risk factor.

  11. Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells

    NARCIS (Netherlands)

    Vermeer, J.E.M.; Thole, J.M.; Goedhart, J.; Nielsen, E.; Munnik, T.; Gadella, T.W.J.

    2009-01-01

    Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant

  12. Kinetics of dissolution of calcium phosphate (Ca-P bioceramics

    Directory of Open Access Journals (Sweden)

    Lukas Brazda

    2008-06-01

    Full Text Available Hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP are widely used bioceramics for surgical or dental applications. This paper is dealing with dissolution kinetics of synthetically prepared β-TCP and four types of HAp granules. Two groups of HAp, treated at different temperatures, each of them with two different granule sizes, were tested. Three corrosive solutions with different pH and simulated body fluid (SBF were used for immersing of the samples. Changes in concentrations of calcium and phosphate ions, pH level and weight changes of the samples were observed. It was found that presence of TRIS buffer enhanced dissolution rate of the β-TCP approximately two times. When exposed to SBF solution, calcium phosphate (most probably hydroxyapatite precipitation predominates over β-TCP dissolution. Results from HAp samples dissolution showed some unexpected findings. Neither heat treatment nor HAp particle size made any major differences in dissolution rate of the same mass of each HAp sample.

  13. Calcium phosphates: what is the evidence?

    Science.gov (United States)

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  14. Permeability of cartilage to neutral and charged polysaccharides

    International Nuclear Information System (INIS)

    Haselton, F.R.; Fishman, A.P.; Sampson, P.M.

    1986-01-01

    The authors investigated macromolecular transport through a negatively charged membrane made from articular cartilage. Sections (150-1000 μ) of cartilage obtained at autopsy from a horse fetlock were clamped between two 15 ml chambers containing .15 M sodium chloride in pH 7.4, .004 M phosphate. Tracers were introduced into chamber A and transport was determined by radiolabel transferred to chamber B over time. Structural integrity was preserved as shown by histological staining. In three experiments, size selectivity was measured using polydisperse uncharged 3 H-dextran. The authors determined the elution patterns from a calibrated Sephadex S300 column of samples from each chamber. The relative transport of molecules over the size range of 1.0 to 10.0 nm was determined by comparing the two elution patterns. They found a sharp cutoff at an effective molecular radius of 2.5 nm. In an additional three experiments, charge selectivity was investigated by comparing the simultaneous transport of 3 H-inulin and 14 C-carboxy inulin. Both tracers have an effective molecular radius of 1.1 nm. The negatively charged carboxy inulin was transferred 15% faster than the uncharged inulin. They conclude: a) there is a maximum effective radius for uncharged dextrans that can be transferred across this membrane which is smaller than that reported for proteins and b) negatively charged cartilagenous membranes do not retard the transport of negatively charged inulin

  15. Charge asymmetry of the purple membrane measured by uranyl quenching of dansyl fluorescence. [Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Renthal, R.; Cha, C.H.

    1984-05-01

    Purple membrane was covalently labeled with 5-(dimethylamino) naphthalene-1-sulfonyl hydrazine (dansyl hydrazine) by carbodiimide coupling to the cytoplasmic surface (carboxyl-terminal tail: 0.7 mol/mol bacteriorhodopsin) or by periodate oxidation and dimethylaminoborane reduction at the extracellular surface (glycolipids: 1 mol/mol). In 2 mM acetate buffer, pH 5.6, micromolar concentrations of UO/sub 2//sup 2 +/ were found to quench the dansyl groups on the cytoplasmic surface (maximum = 26%), while little quenching was observed at the extracellular surface (maximum = 4%). Uranyl ion quenched dansyl hydrazine in free solution at much higher concentrations. Uranyl also bound tightly to unmodified purple membrane, (apparent dissociation constant = 0.8 ..mu..M) as measured by a centrifugation assay. The maximum stoichiometry was 10 mol/mol of bacteriorhodopsin, which is close to the amount of phospholipid phosphorus in purple membrane. The results were analyzed on the assumptions that UO/sub 2//sup 2 +/ binds in a 1:1 complex with phospholipid phosphate and that the dansyl distributon and quenching mechanisms are the same at both surfaces. This indicates a 9:1 ratio of phosphate between the cytoplasmic and extracellular surfaces. Thus, the surface change density of the cytoplasmic side of the membrane is more negative than - 0.010 charges/A/sup 2/.

  16. Comparison of three calcium phosphate bone graft substitutes from biomechanical, histological, and crystallographic perspectives using a rat posterolateral lumbar fusion model

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ming-Hsien [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Department of Orthopedic Surgery, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Pei-Yuan [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Orthopedics, Show-Chwan Memorial Hospital, Changhua 50544, Taiwan (China); Chen, Wen-Cheng, E-mail: wincheng0925@yahoo.com.tw [Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Hu, Jin-Jia, E-mail: jjhu@mail.ncku.edu.tw [Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China)

    2014-12-01

    This study evaluated the effectiveness of three calcium phosphate bone graft substitutes with different chemical compositions on spinal fusion using a rat posterolateral lumbar fusion model. Specifically, two recently developed non-dispersive tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cements (CPCs), namely a CPC consisting of equimolar amounts of the two compounds (nd-CPC) and a CPC consisting of a two-fold greater amount of dicalcium phosphate anhydrous (DCP-rich CPC), were compared with a commercial calcium phosphate bone graft (c-CPG) consisting of hydroxyapatite (60%) and β-tricalcium phosphate (40%). Single-level posterolateral lumbar fusion was performed at the L4–L5 vertebrae in fifteen adult rats (n = 5 for each group). Spinal fusion was evaluated with radiographs, manual palpation, mechanical testing, micro-CT, and histology 8 weeks post-surgery. In particular, the crystallographic phases in the three substitutes were identified before and 8 weeks after their implantation. Manual palpation revealed stable constructs in nearly all of the spine specimens. The stiffness and bending load of fused spines in the two CPC groups were comparable to those in the c-CPG group. The radiographs specifically revealed implant resorption and bone remodeling in the DCP-rich CPC group. Analysis of 3D micro-CT images revealed that the bone volume ratio in the DCP-rich CPC group was significantly greater than those in the nd-CPC and c-CPG groups. Histology showed that the DCP-rich CPC group exhibited the highest degree of bone regeneration and osseointegration. Notably, DCP-rich CPC led to a pronounced phase transformation, generating the greatest amount of poorly crystalline apatite among the three groups, which together with adequate resorption may explain the aforementioned positive findings. We therefore conclude that of the bone graft substitutes considered, DCP-rich CPC has the greatest potential to be used in spinal fusion

  17. A bench-scale study on the removal and recovery of phosphate by hydrous zirconia-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Fang, Wenkan; Xing, Mingchao; Wu, Deyi, E-mail: dywu@sjtu.edu.cn

    2017-02-15

    Owing to the easy magnetic separation from water for reuse, magnetic nanoparticles have drawn great interest as adsorbents. Herein hydrous zirconia-coated magnetite nanoparticles (Fe{sub 3}O{sub 4}@ZrO{sub 2}) were created by a facile method and a bench–scale study was undertaken to evaluate its effectiveness and mechanism to remove phosphate at low concentrations. Results indicated that phosphate removal by Fe{sub 3}O{sub 4}@ZrO{sub 2} was fast (95% of phosphate removal within 10 min) and nearly complete removal could be achieved at the adsorbent dosage >0.6 g/L. In tap water or wastewater where competitive anions coexist, regulation of pH was found to be quite effective to augment the performance of phosphate removal. In pH–lowered adsorption systems, phosphate removal followed a good pattern similarly to pure water, i.e., a continuous high efficiency removal followed by a rapid saturation. Adsorption–desorption–regeneration studies showed that Fe{sub 3}O{sub 4}@ZrO{sub 2} could be repeatedly used for phosphate removal and adsorbed phosphate could be stripped for recovery. The fractionation of adsorbed phosphorus suggested that NaOH-P fraction was dominant. We also found that the adsorption reaction of phosphate with Fe{sub 3}O{sub 4}@ZrO{sub 2} shifted the isoelectric point of Fe{sub 3}O{sub 4}@ZrO{sub 2} from ~9.0 to ~3.0. FTIR measurements further showed the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. The formation of the monodentate (ZrO)PO{sub 2}(OH) complex was proposed. - Highlights: • Hydrous zirconia–coated magnetite was used for phosphate capture. • Regulation of pH was able to enhance P removal in the presence of coexisting ions. • Phosphate was coordinated onto zirconium by replacement of hydroxyl groups. • The material could be easily separated from water for reuse by a magnet. • Desorption of phosphate from the material could be achieved with NaOH treatment.

  18. Chemical and structural characterization of natural phosphate of ...

    African Journals Online (AJOL)

    Powder X-ray diffraction fitting results confirm that compound belongs to the apatite family crystallising in the hexagonal system, space group P63/m. The cell parameters are: a = 9.3547(5) Å; c = 6.8929(4) Å. KEY WORDS: Natural phosphate, Fluoroapatite, Infrared, X-Ray diffraction, Rietveld structure refinement. Bull. Chem ...

  19. Phosphate analysis of natural sausage casings preserved in brines with phosphate additives as inactivating agent - Method validation.

    Science.gov (United States)

    Wijnker, J J; Tjeerdsma-van Bokhoven, J L M; Veldhuizen, E J A

    2009-01-01

    Certain phosphates have been identified as suitable additives for the improvement of the microbial and mechanical properties of processed natural sausage casings. When mixed with NaCl (sodium chloride) and used under specific treatment and storage conditions, these phosphates are found to prevent the spread of foot-and-mouth disease and classical swine fever via treated casings. The commercially available Quantichrom™ phosphate assay kit has been evaluated as to whether it can serve as a reliable and low-tech method for routine analysis of casings treated with phosphate. The outcome of this study indicates that this particular assay kit has sufficient sensitivity to qualitatively determine the presence of phosphate in treated casings without interference of naturally occurring phosphate in salt used for brines in which casings are preserved.

  20. Characterization of a calcium phosphate cement based on alpha-tricalcium phosphate obtained by wet precipitation process

    International Nuclear Information System (INIS)

    Thurmer, M.B.; Diehl, C.E.; Vieira, R.S.; Coelho, W.T.G.; Santos, L.A.

    2012-01-01

    There are several systems of calcium phosphate cements being studied. Those based on alpha-tricalcium phosphate are of particular interest. After setting they produce calcium deficient hydroxyapatite similar to bone like hydroxyapatite. This work aims to obtain alpha-tricalcium phosphate powders by the wet precipitation process, using calcium nitrate and phosphoric acid as reagents. This powder was characterized by infrared spectroscopy, X-ray diffraction and particle size distribution. In order to prepare the calcium phosphate cement, the powder was mixed with an accelerator in an aqueous solution. The mechanical properties of the cement were assessed and it was evaluated by means of apparent density, X-ray diffraction and scanning electron microscopy. The described method produced crystalline alpha-tricalcium phosphate as the major phase. The calcium phosphate cement showed high values of compression strength (50 MPa). The soaking of the cement in a simulated body fluid (SBF) formed a layer of hydroxyapatite like crystals in the surface of the samples. (author)

  1. Surface Modification of LiMn2O4 for Lithium Batteries by Nanostructured LiFePO4 Phosphate

    Directory of Open Access Journals (Sweden)

    B. Sadeghi

    2012-01-01

    Full Text Available LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectroscopy (EDX. The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4 phosphate layer on surfaces of LiMn2O4 cathode particles.

  2. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  3. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  4. Pretreatment of Raw Biochar and Phosphate Removal Performance of Modified Granular Iron/Biochar

    Institute of Scientific and Technical Information of China (English)

    Jing Ren; Nan Li; Lin Zhao; Lei Li

    2017-01-01

    Biochar is a potential carrier for nutrients due to its porous nature and abundant functional groups. However, raw biochar has a limited or even negative capacity to adsorb phosphate. To enhance phosphate removal and reduce phos-phate releases, acidic, alkaline, and surfactant pretreatments, followed by granulation and ferric oxide loading, were applied to raw biochar powder (Bp). The alkaline pretreatment proved to be the most effective method and exhibited significant pore expansion and surface oxidation. Bg-OH-FO showed the highest phosphate removal efficiency at 99.2%(initial phos-phate concentration of 20 mg/L) after granulation and ferric oxide loading. Static adsorption results indicated that a pH value of 4 was the most suitable for phosphate adsorption because of the surface properties of Bg-OH-FO and the dis-tribution of P (V) in water. Higher temperatures and a larger initial phosphate concentration led to better adsorption;the adsorption capacity of Bg-OH-FO was 1.91 mg/g at 313 K with an initial phosphate concentration of 50 mg/L. The Bg-OH-FO adsorption process was endothermic in nature. The Freundlich model seemed to be the optimum isotherm model for Bg-OH-FO. Under continuous adsorption, the flow rate and bed depth were changed to optimize the operation con-ditions. The results indicate that a slow flow rate and high bed depth helped increase the removal efficiency (η) of the fixed bed. The breakthrough curves fitted well with the Yoon–Nelson model.

  5. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  6. A randomized prospective triaI comparing oral sodium phosphate with magnesium citrate in preparing of patients for double contrast barium enema

    International Nuclear Information System (INIS)

    Lee, Eun Joo; Lee, Sung Woo; Lee, Hyeon Kyeong; Yang, Chang Hun; Kim, Soon; Oh, Yoen Hee; Kim, Seung Hyeon

    2004-01-01

    The purpose of this study was to compare two bowel preparation agents, sodium phosphate solution with magnesium citrate solution. A total of 94 subjects that underwent a double-contrast barium enema were included in this study. Bowel preparation before performing the barium study was done by using a sodium phosphate solution in 47 subjects and by using a magnesium citrate solution in the other 47 subjects. We evaluated the presence or absence of side effects when using these bowel preparation agents. Two radiologist who were blinded to the type of bowel preparation evaluated the quality of bowel preparation at the colonic segments (ascending, descending, and sigmoid colon) on the radiographs obtained by double-contrast barium enema, with regard to stool cleansing, water retention, barium coating and bubble formation. The side effects, such as abdominal clamping pain, nausea, hunger pain and chill occurred more frequently in the sodium phosphate group than in the magnesium citrate group (p< 0.001). Stool retention was more frequently found in the magnesium citrate group (p< 0.001). However, no statistical difference was noted on the status of water retention and barium coating between two groups. Gas bubble formation was more commonly seen in the sodium phosphate group (p< 0.001). The sodium phosphate solution appeared to be more effective in cleansing the right colon (p=0.001). Sodium phosphate solution appears to be more effective for colonic cleansing, with a lower incidence of side effects, than when using magnesium citrate solution

  7. Phosphate and phosphate fertilizer sector: structure and future prospects. [Uranium recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zenaidi, B

    1981-12-01

    A statement of the past evolution of this sector's structure is given. Various prospective studies which have been made are reviewed and lead to the precision of the phosphate requirement in the year 2000 which is between 200 and 250 Mt. Only a small section p. 696-697 is devoted to recovery of uranium contained in phosphate and prospects in this field are given.

  8. Nano-scale study of the nucleation and growth of calcium phosphate coating

    NARCIS (Netherlands)

    Barrère, F.; Snel, M.M.E.; van Blitterswijk, Clemens; de Groot, K.; Layrolle, Pierre

    2004-01-01

    The nucleation and growth of a calcium phosphate (Ca-P) coating deposited on titanium implants from simulated body fluid was investigated by using atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM). Forty titanium alloy plates were assigned into two groups. One group

  9. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation

    Science.gov (United States)

    Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang

    2018-01-01

    The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.

  10. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries.

    Science.gov (United States)

    Rajesh, K S; Zareena; Hegde, Shashikanth; Arun Kumar, M S

    2015-01-01

    This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group.

  11. Assessment of salivary calcium, phosphate, magnesium, pH, and flow rate in healthy subjects, periodontitis, and dental caries

    Directory of Open Access Journals (Sweden)

    K S Rajesh

    2015-01-01

    Full Text Available Aim: This study was conducted to estimate and compare inorganic salivary calcium, phosphate, magnesium, salivary flow rate, and pH of unstimulated saliva and oral hygiene status of healthy subjects, subjects with periodontitis and dental caries, and to correlate salivary calcium level with number of intact teeth. Materials and Methods: The study population consisted of 48 systemically healthy subjects in the age group of 18-55 years, which was further divided into three groups: healthy, periodontitis, and dental caries. Oral hygiene index-simplified, probing pocket depth, clinical attachment level, the number of intact teeth, and active carious lesions were recorded. Estimation of inorganic salivary calcium, phosphate, and magnesium was performed spectrophotometrically using Vitros 5.1 FS. Statistical analysis was performed using the one-way analysis of variance test at 5% significance level. Results: There was a statistically significant increase in inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene status in periodontitis group compared to dental caries and healthy group. Conclusion: Subjects with increased inorganic salivary calcium, phosphate, pH, flow rate, and poor oral hygiene are at a higher risk of developing periodontitis. Since there is increased remineralization potential, these subjects have more number of intact teeth compared to the dental caries group.

  12. Better prospects for phosphate production

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The extraction of uranium as a by product of phosphate production is discussed. Techniques being commercially developed are described. The trend towards the wet process, in which sulphuric acid is used to dissolve the phosphate, producing phosphoric acid, is also the preferred method for uranium recovery. Recovery from a wet process phosphoric acid stream, integrated with phosphate fertilizer manufacture, is becoming increasingly commercially viable for the production of yellow-cake.

  13. Monopole charges in unified gauge theories

    CERN Document Server

    Chan Hong Mo

    1981-01-01

    Monopole charges, being global quantities, depend on the gauge group of a theory, which in turn is determined by the representations of all its fields. For example, chromodynamics in its present form when combined with electrodynamics has as its gauge group not SU(3)*U(1) but a 'smaller' group U(3). The specification of monopole charges for a theory can thus be quite intricate. The authors report the result of an investigation in several current gauge theories. Of particular interest is the possible existence in some theories of monopoles carrying multiplicative charges. As a by-product, some earlier assertions seem to be incorrect, are clarified. (16 refs).

  14. The Oxygen Isotopic Composition of Phosphate: A Tracer for Phosphate Sources and Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, University of California, CA (United States); Young, M. B.; Paytan, A.; Kendall, C. [U.S. Geological Survey, University of California, CA (United States)

    2013-05-15

    Phosphorus (P) is a limiting macro-nutrient for primary productivity and anthropogenic P-loading to aquatic ecosystems is one of the leading causes of eutrophication in many ecosystems throughout the world. Because P has only one stable isotope, traditional isotope techniques are not possible for tracing sources and cycling of P in aquatic systems. However, much of the P in nature is bonded to four oxygen (O) atoms as orthophosphate (PO{sub 4}{sup 3-}). The P-O bonds in orthophosphate are strongly resistant to inorganic hydrolysis and do not exchange oxygen with water without biological mediation (enzyme-mediated recycling). Thus, the oxygen isotopic composition of dissolved inorganic phosphate ({delta}{sup 18}O{sub p}) may be used as a tracer for phosphate sources and cycling in aquatic ecosystems. Recently, several studies have been conducted utilizing {delta}{sup 18}O{sub p} as a tracer for phosphate sources and cycling in various aquatic environments. Specifically, work to date indicates that {delta}{sup 18}O{sub p} is useful for determining sources of phosphate to aquatic systems if these sources have unique isotopic signatures and phosphate cycling within the system is limited compared to input fluxes. In addition, because various processes imprint specific fractionation effects, the {delta}{sup 18}O{sub p} tracer can be utilized to determine the degree of phosphorous cycling and processing through the biomass. This chapter reviews several of these studies and discusses the potential to utilize the {delta}{sup 18}O{sub p} of phosphate in rivers and streams. (author)

  15. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  16. PHOSPHATE CRYSTALLURIA IN VARIOUS FORMS OF UROLITHIASIS AND POSSIBILITIES OF ITS PROGNOSTICATION IN PATIENTS WITH PHOSPHATE STONES

    Directory of Open Access Journals (Sweden)

    O. V. Konstantinova

    2017-01-01

    Full Text Available Purpose. Definition of types of crystalluria in various forms of urolithiasis and biochemical signs of phosphate crystals in the urine, while phosphate urolithiasis (infectious origin.Patients and methods. The study involved 144 patients with recurrent urolithiasis — 75 women and 69 men. Of these, 46 — diagnosed calculi with uric acid, 44 — calcium oxalate or mixed with a prevalence of calcium oxalate, in 54 — phosphate rocks (carbonate-apatite and/or struvite. The age of patients ranged from 21 to 74 years. 93 people have been under long-term, within 2–15 years, outpatient observation. The examination included the collection of anamnesis, general and microbiological analysis of urine, biochemical blood serum and urine on 10 indicators, reflecting renal function, state of the protein, water and electrolyte metabolism, uric acid metabolism, the chemical composition of the stone analysis.Results. It was found that in patients with calcium oxalate stones phosphaturia has been diagnosed in 2% of cases. And, along with calcium phosphate crystals they had oxalate crystals. In patients with phosphate urolithiasis phosphaturia observed in 96% of patients, in two patients (4% they determined except phosphates also oxalate salt in urine sediment. Patients with phosphate urolithiasis at occurrence of phosphate crystalluria have metabolic state changes: increased serum uric acid concentration from 0.322 ± 0.009 to 0.367 ± 0.018 mmol/l daily renal excretion of inorganic phosphate 23.94 ± 2.93 mmol/day to 32.12 ± 4.39 mmol/day, and reduced total calcium content in urine 6.61 ± 0.94 mmol/day to 3.37 ± 0.89 mmol/day. The results led to the following conclusion.Conclusion. Biochemical signs of occurrence of phosphate crystalluria in patients with stones of infectious origin can be: the approaching level of excretion in the urine of inorganic phosphates to 32,12 ± 4,39 mmol/day, serum uric acid concentration to 0,367 ± 0,018 mmol/l, and the

  17. Exploratory study of nuclear reaction data utility framework of Japan charged particle reaction data group (JCPRG)

    International Nuclear Information System (INIS)

    Masui, Hiroshi; Ohnishi, Akira; Kato, Kiyoshi; Ohbayasi, Yosihide; Aoyama, Shigeyoshi; Chiba, Masaki

    2002-01-01

    Compilation, evaluation and dissemination are essential pieces of work for the nuclear data activities. We, Japan charged particle data group, have researched the utility framework for the nuclear reaction data on the basis of recent progress of computer and network technologies. These technologies will be not only for the data dissemination but for the compilation and evaluation assistance among the many corresponding researchers of all over the world. In this paper, current progress of our research and development is shown. (author)

  18. Actinides and rare earths complexation with adenosine phosphate nucleotides

    International Nuclear Information System (INIS)

    Mostapha, Sarah

    2013-01-01

    Organophosphorus compounds are important molecules in both nuclear industry and living systems fields. Indeed, several extractants of organophosphorus compounds (such as TBP, HDEHP) are used in the nuclear fuel cycle reprocessing and in the biological field. For instance, the nucleotides are organophosphates which play a very important role in various metabolic processes. Although the literature on the interactions of actinides with inorganic phosphate is abundant, published studies with organophosphate compounds are generally limited to macroscopic and / or physiological approaches. The objective of this thesis is to study the structure of several organophosphorus compounds with actinides to reach a better understanding and develop new specific buildings blocks. The family of the chosen molecules for this procedure consists of three adenine nucleotides mono, bi and triphosphate (AMP, adenosine monophosphate - ADP, adenosine diphosphate - ATP, adenosine triphosphate) and an amino-alkylphosphate (AEP O-phosphoryl-ethanolamine). Complexes synthesis was conducted in aqueous and weakly acidic medium (2.8-4) for several lanthanides (III) (Lu, Yb, Eu) and actinides (U (VI), Th (IV) and Am (III)). Several analytical and spectroscopic techniques have been used to describe the organization of the synthesized complexes: spectrometric analysis performed by FTIR and NMR were used to identify the functional groups involved in the complexation, analysis by ESI-MS and pH-metric titration were used to determine the solution speciation and EXAFS analyzes were performed on Mars beamline of the SOLEIL synchrotron, have described the local cation environment, for both solution and solid compounds. Some theoretical approaches of DFT were conducted to identify stable structures in purpose of completing the experimental studies. All solid complexes (AMP, ADP, ATP and AEP) have polynuclear structures, while soluble ATP complexes are mononuclear. For all synthesized complexes, it has been

  19. on association of trialkyl phosphates

    International Nuclear Information System (INIS)

    Petkovic, D.M.; Maksimovic, Z.B.

    1976-01-01

    The association constants of tri-n-butyl (TBP), tri-n-propyl (TPP) and triethyl phosphate (TEP) with chloroform, carbon tetrachloride and benzene were determined by dielectric constant, proton magnetic resonance and vapor pressure measurements. Correlation of the trialkyl phosphate-chloroform association constants, using the Hammett equation, showed their increase with the number of carbon atoms in the aliphatic radicals. The change of trialkyl phosphate reactivity with temperature was used to determine the thermodynamic quantities. (author)

  20. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  1. c-function and central charge of the sine-Gordon model from the non-perturbative renormalization group flow

    Directory of Open Access Journals (Sweden)

    V. Bacsó

    2015-12-01

    Full Text Available In this paper we study the c-function of the sine-Gordon model taking explicitly into account the periodicity of the interaction potential. The integration of the c-function along trajectories of the non-perturbative renormalization group flow gives access to the central charges of the model in the fixed points. The results at vanishing frequency β2, where the periodicity does not play a role, are retrieved and the independence on the cutoff regulator for small frequencies is discussed. Our findings show that the central charge obtained integrating the trajectories starting from the repulsive low-frequencies fixed points (β2<8π to the infra-red limit is in good quantitative agreement with the expected Δc=1 result. The behavior of the c-function in the other parts of the flow diagram is also discussed. Finally, we point out that including also higher harmonics in the renormalization group treatment at the level of local potential approximation is not sufficient to give reasonable results, even if the periodicity is taken into account. Rather, incorporating the wave-function renormalization (i.e. going beyond local potential approximation is crucial to get sensible results even when a single frequency is used.

  2. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  3. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  4. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    3Department of Genetics and Plant Breeding, College of Agriculture, Lembucherra, Tripura 799 ... vated in soil like red and lateritic or acid, with low soluble phosphate content. ..... activation of genes involved in the adaptation of Arabidopsis to.

  5. Monolithic All-Phosphate Solid-State Lithium-Ion Battery with Improved Interfacial Compatibility.

    Science.gov (United States)

    Yu, Shicheng; Mertens, Andreas; Tempel, Hermann; Schierholz, Roland; Kungl, Hans; Eichel, Rüdiger-A

    2018-06-22

    High interfacial resistance between solid electrolyte and electrode of ceramic all-solid-state batteries is a major reason for the reduced performance of these batteries. A solid-state battery using a monolithic all-phosphate concept based on screen printed thick LiTi 2 (PO 4 ) 3 anode and Li 3 V 2 (PO 4 ) 3 cathode composite layers on a densely sintered Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte has been realized with competitive cycling performance. The choice of materials was primarily based on the (electro-)chemical and mechanical matching of the components instead of solely focusing on high-performance of individual components. Thus, the battery utilized a phosphate backbone in combination with tailored morphology of the electrode materials to ensure good interfacial matching for a durable mechanical stability. Moreover, the operating voltage range of the active materials matches with the intrinsic electrochemical window of the electrolyte which resulted in high electrochemical stability. A highly competitive discharge capacity of 63.5 mAh g -1 at 0.39 C after 500 cycles, corresponding to 84% of the initial discharge capacity, was achieved. The analysis of interfacial charge transfer kinetics confirmed the structural and electrical properties of the electrodes and their interfaces with the electrolyte, as evidenced by the excellent cycling performance of the all-phosphate solid-state battery. These interfaces have been studied via impedance analysis with subsequent distribution of relaxation times analysis. Moreover, the prepared solid-state battery could be processed and operated in air atmosphere owing to the low oxygen sensitivity of the phosphate materials. The analysis of electrolyte/electrode interfaces after cycling demonstrates that the interfaces remained stable during cycling.

  6. Plasmodium falciparum dolichol phosphate mannose synthase represents a novel clade

    International Nuclear Information System (INIS)

    Shams-Eldin, Hosam; Santos de Macedo, Cristiana; Niehus, Sebastian; Dorn, Caroline; Kimmel, Juergen; Azzouz, Nahid; Schwarz, Ralph T.

    2008-01-01

    Dolichol phosphate mannose synthase (DPM) catalyzes the reaction between dolichol phosphate (Dol-P) and guanosine diphosphate mannose (GDP-Man) to form dolichol-phosphate-mannose (Dol-P-Man). This molecule acts as mannose donor for N-glycosylation and glycosylphosphatidylinositol (GPI) biosynthesis. The Plasmodium falciparum DPM1 (Pfdpm1) possesses a single predicted transmembrane region near the N-, but not the C-terminus. Here we show that the cloned Pfdpm1 gene failed to complement a Saccharomyces cerevisiae mutant indicating that the parasite gene does not belong to the baker's yeast group, as was previously assumed. Furthermore, Pfdpm1 was unable to complement a mouse mutant deficient in DPM but efficiently complements the Schizosaccharomyces pombe fission yeast mutant, indicating a difference between fission yeast and mammalian DPM genes. Therefore, we reanalyzed the hydrophobicity scales of all known DPMs and consequently reclassify the DPM clade into six major novel subgroups. Furthermore, we show that Pfdpm1 represents a unique enzyme among these subgroups

  7. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  8. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    International Nuclear Information System (INIS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-01-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  9. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio.

    Science.gov (United States)

    Watanabe, Marcela T; Araujo, Raphael M; Vogt, Barbara P; Barretti, Pasqual; Caramori, Jacqueline C T

    2016-08-01

    Hyperphosphatemia is common in patients with chronic kidney disease (CKD) stages IV and V because of decreased phosphorus excretion. Phosphatemia is closely related to dietary intake. Thus, a better understanding of sources of dietary phosphate consumption, absorption and restriction, particularly inorganic phosphate found in food additives, is key to prevent consequences of this complication. Our aims were to investigate the most commonly consumed processed foods by patients with CKD on hemodialysis, to analyze phosphate and protein content of these foods using chemical analysis and to compare these processed foods with fresh foods. We performed a cross-sectional descriptive analytical study using food frequency questionnaires to rank the most consumed industrialized foods and beverages. Total phosphate content was determined by metavanadate colorimetry, and nitrogen content was determined by the Kjeldahl method. Protein amounts were estimated from nitrogen content. The phosphate-to-protein ratio (mg/g) was then calculated. Processed meat protein and phosphate content were compared with the nutritional composition of fresh foods using the Brazilian Food Composition Table. Phosphate measurement results were compared with data from the Food Composition Table - Support for Nutritional Decisions. An α level of 5% was considered significant. Food frequency questionnaires were performed on 100 patients (mean age, 59 ± 14 years; 57% male). Phosphate additives were mentioned on 70% of the product labels analyzed. Proteins with phosphate-containing additives provided approximately twice as much phosphate per gram of protein compared with that of fresh foods (p processed foods are higher than those of fresh foods, as well as phosphate-to-protein ratio. A better understanding of phosphate content in foods, particularly processed foods, may contribute to better control of phosphatemia in patients with CKD. Copyright © 2016 European Society for Clinical Nutrition and

  10. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  11. Calcium phosphate bioceramics prepared from wet chemically precipitated powders

    Directory of Open Access Journals (Sweden)

    Kristine Salma

    2010-03-01

    Full Text Available In this work calcium phosphates were synthesized by modified wet chemical precipitation route. Contrary to the conventional chemical precipitation route calcium hydroxide was homogenized with planetary mill. Milling calcium oxide and water in planetary ball mill as a first step of synthesis provides a highly dispersed calcium hydroxide suspension. The aim of this work was to study the influence of main processing parameters of wet chemical precipitation synthesis product and to control the morphology, phase and functional group composition and, consequently, thermal stability and microstructure of calcium phosphate bioceramics after thermal treatment. The results showed that it is possible to obtain calcium phosphates with different and reproducible phase compositions after thermal processing (hydroxyapatite [HAp], β-tricalcium phosphate [β-TCP] and HAp/β-TCP by modified wet-chemical precipitation route. The β-TCP phase content in sintered bioceramics samples is found to be highly dependent on the changes in technological parameters and it can be controlled with ending pH, synthesis temperature and thermal treatment. Pure, crystalline and highly thermally stable (up to 1300°C HAp bioceramics with homogenous grainy microstructure, grain size up to 200–250 nm and high open porosity can be successfully obtained by powder synthesized at elevated synthesis temperature of 70°C and stabilizing ending pH at 9.

  12. Pentose phosphates in nucleoside interconversion and catabolism.

    Science.gov (United States)

    Tozzi, Maria G; Camici, Marcella; Mascia, Laura; Sgarrella, Francesco; Ipata, Piero L

    2006-03-01

    Ribose phosphates are either synthesized through the oxidative branch of the pentose phosphate pathway, or are supplied by nucleoside phosphorylases. The two main pentose phosphates, ribose-5-phosphate and ribose-1-phosphate, are readily interconverted by the action of phosphopentomutase. Ribose-5-phosphate is the direct precursor of 5-phosphoribosyl-1-pyrophosphate, for both de novo and 'salvage' synthesis of nucleotides. Phosphorolysis of deoxyribonucleosides is the main source of deoxyribose phosphates, which are interconvertible, through the action of phosphopentomutase. The pentose moiety of all nucleosides can serve as a carbon and energy source. During the past decade, extensive advances have been made in elucidating the pathways by which the pentose phosphates, arising from nucleoside phosphorolysis, are either recycled, without opening of their furanosidic ring, or catabolized as a carbon and energy source. We review herein the experimental knowledge on the molecular mechanisms by which (a) ribose-1-phosphate, produced by purine nucleoside phosphorylase acting catabolically, is either anabolized for pyrimidine salvage and 5-fluorouracil activation, with uridine phosphorylase acting anabolically, or recycled for nucleoside and base interconversion; (b) the nucleosides can be regarded, both in bacteria and in eukaryotic cells, as carriers of sugars, that are made available though the action of nucleoside phosphorylases. In bacteria, catabolism of nucleosides, when suitable carbon and energy sources are not available, is accomplished by a battery of nucleoside transporters and of inducible catabolic enzymes for purine and pyrimidine nucleosides and for pentose phosphates. In eukaryotic cells, the modulation of pentose phosphate production by nucleoside catabolism seems to be affected by developmental and physiological factors on enzyme levels.

  13. Effects of Surface Charge and Functional Groups on the Adsorption and Binding Forms of Cu and Cd on Roots of indica and japonica Rice Cultivars

    Directory of Open Access Journals (Sweden)

    Zhao-Dong Liu

    2017-08-01

    Full Text Available This work was designed to understand the mechanisms of adsorption of copper (Cu and cadmium (Cd on roots of indica and japonica varieties of rice. Six varieties each of indica and japonica rice were grown in hydroponics and the chemical properties of the root surface were analyzed, including surface charges and functional groups (-COO- groups as measured by the streaming potential and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. Binding forms of heavy metals adsorbed on rice roots were identified using sequential extraction methods. In rice roots exposed to Cu and Cd solutions, Cu existed mainly in both exchangeable and complexed forms, whereas Cd existed mainly in the exchangeable form. The amounts of exchangeable Cu and Cd and total adsorbed metal cations on the roots of indica varieties were significantly greater than those on the roots of japonica varieties, and the higher negative charges and the larger number of functional groups on the roots of indica varieties were responsible for their higher adsorption capacity and greater binding strength for Cu and Cd. Surface charge and functional groups on roots play an important role in the adsorption of Cu and Cd on the rice roots.

  14. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups

    Directory of Open Access Journals (Sweden)

    Ricardo Infante-Castillo

    2012-01-01

    Full Text Available This work presents a new quantitative model to predict the heat of explosion of nitroaromatic compounds using the natural bond orbital (NBO charge and 15N NMR chemical shifts of the nitro groups (15NNitro as structural parameters. The values of the heat of explosion predicted for 21 nitroaromatic compounds using the model described here were compared with experimental data. The prediction ability of the model was assessed by the leave-one-out cross-validation method. The cross-validation results show that the model is significant and stable and that the predicted accuracy is within 0.146 MJ kg−1, with an overall root mean squared error of prediction (RMSEP below 0.183 MJ kg−1. Strong correlations were observed between the heat of explosion and the charges (R2 = 0.9533 and 15N NMR chemical shifts (R2 = 0.9531 of the studied compounds. In addition, the dependence of the heat of explosion on the presence of activating or deactivating groups of nitroaromatic explosives was analyzed. All calculations, including optimizations, NBO charges, and 15NNitro NMR chemical shifts analyses, were performed using density functional theory (DFT and a 6-311+G(2d,p basis set. Based on these results, this practical quantitative model can be used as a tool in the design and development of highly energetic materials (HEM based on nitroaromatic compounds.

  15. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: a prospective cohort study.

    Science.gov (United States)

    Leung, Simon; McCormick, Brendan; Wagner, Jessica; Biyani, Mohan; Lavoie, Susan; Imtiaz, Rameez; Zimmerman, Deborah

    2015-12-09

    Removal of phosphate by peritoneal dialysis is insufficient to maintain normal serum phosphate levels such that most patients must take phosphate binders with their meals. However, phosphate 'counting' is complicated and many patients are simply prescribed a specific dose of phosphate binders with each meal. Therefore, our primary objective was to assess the variability in meal phosphate content to determine the appropriateness of this approach. In this prospective cohort study, adult patients with ESRD treated with peritoneal dialysis and prescribed phosphate binder therapy were eligible to participate. Participants were excluded from the study if they were unable to give consent, had hypercalcemia, were visually or hearing impaired or were expected to receive a renal transplant during the time of the study. After providing informed consent, patients kept a 3-day diet diary that included all foods and beverages consumed in addition to portion sizes. At the same time, patients documented the amount of phosphate binders taken with each meal. The phosphate content of the each meal was estimated using ESHA Food Processor SQL Software by a registered dietitian. Meal phosphate and binder variability were estimated by the Intra Class Correlation Coefficient (ICC) where 0 indicates maximal variability and 1 indicates no variability. Seventy-eight patients consented to participate in the study; 18 did not complete the study protocol. The patients were 60 (± 17) years, predominately male (38/60) and Caucasian (51/60). Diabetic nephropathy was the most common cause of end stage kidney disease. The daily phosphate intake including snacks ranged from 959 ± 249 to 1144 ± 362 mg. The phosphate ICC by meal: breakfast 0.63, lunch 0.16; supper 0.27. The phosphate binder ICC by meal: breakfast 0.68, lunch 0.73, supper 0.67. The standard prescription of a set number of phosphate binders with each meal is not supported by the data; patients do not appear to be adjusting their

  16. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis.

    Science.gov (United States)

    Kim, Jeong-Woo; Shin, Yong Cheol; Lee, Jin-Ju; Bae, Eun-Bin; Jeon, Young-Chan; Jeong, Chang-Mo; Yun, Mi-Jung; Lee, So-Hyoun; Han, Dong-Wook; Huh, Jung-Bo

    2017-08-08

    This study was conducted to evaluate the effect of biphasic calcium phosphate (BCP) coated with reduced graphene oxide (rGO) as bone graft materials on bone regeneration. The rGO-coated BCP bone graft material was fabricatied by mixing rGO and BCP at various concentrations. The surface charge of rGO-coated BCP was measured to be -14.43 mV, which formed a static electrostatic interaction. Cell viabilities were significantly diminished at higher concentrations of ≥100 μg/mL. The calvarial defects of 48 rats were implanted rGO-coated BCPs at a weight ratio of 2:1000 (rGO2), 4:1000 (rGO4), and 10:1000 (rGO10), repectively. BCP was used as a control group. The micro-CT and histological analysis were performed to evaluate new bone formation at 2 and 8 weeks after surgery. The results showed that the new bone volume (mm³) was significantly higher in the experimental groups than in the control group. Histological analysis showed that new bone areas (%) were significantly higher in the rGO2 and rGO10 than in the control, and significantly higher in rGO4 than in the rGO2 and rGO10. Conclusively, the rGO-coated BCP was found to be effective on osteogenesis and the concentration of the composite was an important factor.

  17. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.

    Science.gov (United States)

    Morimoto, Shinji; Anada, Takahisa; Honda, Yoshitomo; Suzuki, Osamu

    2012-08-01

    The present study was designed to investigate the extent to which calcium phosphate bone substitute materials, including osteoconductive octacalcium phosphate (OCP), display cytotoxic and inflammatory responses based on their dissolution in vitro. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) ceramics, which are clinically used, as well as dicalcium phosphate dihydrate (DCPD) and synthesized OCP were compared. The materials were well characterized by chemical analysis, x-ray diffraction and Fourier transform infrared spectroscopy. Calcium and phosphate ion concentrations and the pH of culture media after immersion of the materials were determined. The colony forming rate of Chinese hamster lung fibroblasts was estimated with extraction of the materials. Proliferation of bone marrow stromal ST-2 cells and inflammatory cytokine TNF-α production by THP-1 cells grown on the material-coated plates were examined. The materials had characteristics that corresponded to those reported. DCPD was shown to dissolve the most in the culture media, with a marked increase in phosphate ion concentration and a reduction in pH. ST-2 cells proliferated well on the materials, with the exception of DCPD, which markedly inhibited cellular growth. The colony forming capacity was the lowest on DCPD, while that of the other calcium phosphates was not altered. In contrast, TNF-α was not detected even in cells grown on DCPD, suggesting that calcium phosphate materials are essentially non-inflammatory, while the solubility of the materials can affect osteoblastic and fibroblastic cellular attachment. These results indicate that OCP is biocompatible, which is similar to the materials used clinically, such as HA. Therefore, OCP could be clinically used as a biocompatible bone substitute material.

  18. Analyses of uranium in some phosphate commercial products

    International Nuclear Information System (INIS)

    Kamel, N.H.M.; Sohsah, M.; Mohammad, H.M.; Sadek, M.

    2005-01-01

    The raw materials used in manufacturing of phosphate fertilizer products were derived from rocks. Rocks contain a remarkable of natural radioactivity. Uranium and phosphorous were originally initiated at the same time of the initiated rocks. The purpose of this research is to investigate solubility of uranium phosphate species at the phosphate fertilizer samples, samples including; raw phosphate material, single super phosphates (SSP) granules and powdered, triple super phosphates (TSP) and phosphogypsum samples were obtained from Abu-Zabal factory in Egypt. Solubility of uranium phosphate species was estimated. It was found that, less than half of the uranium phosphate species are soluble in water. The soluble uranium may be enter into the food chains by plant. Therefore, restriction should be done in order to limit contamination of land and the public

  19. Evolutionary Profiling of Group II Pyridoxal-Phosphate-Dependent Decarboxylases Suggests Expansion and Functional Diversification of Histidine Decarboxylases in Tomato

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    2016-03-01

    Full Text Available Pyridoxal phosphate (PLP-dependent enzymes are one of the most important enzymes involved in plant N metabolism. Here, we explored the evolution of group II PLP-dependent decarboxylases (PLP_deC, including aromatic L-amino acid decarboxylase, glutamate decarboxylase, and histidine decarboxylase in the plant lineage. Gene identification analysis revealed a higher number of genes encoding PLP_deC in higher plants than in lower plants. Expression profiling of PLP_deC orthologs and syntelogs in (L. Heynh., pepper ( L., and tomato ( L. pointed toward conserved as well as distinct roles in developmental processes such as fruit maturation and ripening and abiotic stress responses. We further characterized a putative promoter of tomato ripening-associated gene ( operating in a complex regulatory circuit. Our analysis provides a firm basis for further in-depth exploration of the PLP_deC gene family, particularly in the economically important Solanaceae family.

  20. Phosphate Reduction in Emulsified Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics.

    Science.gov (United States)

    Glorieux, Seline; Goemaere, Olivier; Steen, Liselot; Fraeye, Ilse

    2017-09-01

    Phosphate reduction is of important industrial relevance in the manufacturing of emulsified meat products because it may give rise to a healthier product. The effect of seven different phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP) and sodium tripolyphosphate (STPP) increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had little effect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06% TSPP was sufficient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsified meat products can be significantly reduced with minimal loss of product quality.

  1. Structural investigations on zirconium phosphate-phosphite and on its n-butylamine intercalate

    International Nuclear Information System (INIS)

    Rajeh, A.O.; Szirtes, L.

    1995-01-01

    Zirconium phosphate-phosphite have various structure belonging to the drying heat of the sample. While sample dried above sat. NaCl solution had interlayer distance of 1.30 nm (result from d 1 =0.74 nm and d 2 =0.56 nm for phosphite layer), the sample dried under IR lamp on air having interlayer spacing d=0.74 nm charactderistic for α-Zr(HPO 4 ) 2 H 2 O containing little amount of phosphite groups. The compositions of the first sample can be characterized by chemical formula, as Zr(HPO 4 ) 0 .7 (HPO 3 ) 1.3 0.5H 2 O. The X-ray powder diffraction data of n-butylamine intercalate suggest that in the process take place only the phosphate ,region of zirconium phosphate-phosphite (ZrPP). (author). 13 refs., 5 figs

  2. Niobium phosphates as an intermediate temperature proton conducting electrolyte for fuel cells

    DEFF Research Database (Denmark)

    Huang, Yunjie; Li, Qingfeng; Jensen, Annemette Hindhede

    2012-01-01

    A new proton conductor based on niobium phosphates was synthesized using niobium pentoxide and phosphoric acid as precursors. The existence of hydroxyl groups in the phosphates was confirmed and found to be preserved after heat treatment at 500 °C or higher, contributing to an anhydrous proton co...... are of high interest as potential proton conducting electrolytes for fuel cells operational in an intermediate temperature range....... conductivity of 1.6 × 10−2 S cm−1 at 250 °C. The conductivity increased with water content in the atmosphere and reached 5.8 × 10−2 S cm−1 under pure water vapour at the same temperature. The conductivity showed good stability in the low water partial pressure range of up to 0.05 atm. The metal phosphates...

  3. Nuclear magnetic resonance studies of the binding of nitroaromatic electron acceptors to lecithin

    International Nuclear Information System (INIS)

    Sidorowicz, A.

    1980-01-01

    It was found from the chemical shifts measurements of carbon-13 and proton resonances, that the phosphate group of lecithin forms charge-transfer complex with 2,4,6-trinitrophenol, but not with s-trinitrobenzene. The conclusion is, that hydrogen bond formed between phenolic OH proton and phosphate group of lecithin facilitates electron transfer process. (orig.)

  4. The potential of species-specific tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group for galactose reduction in fermented dairy foods.

    Science.gov (United States)

    Wu, Qinglong; Shah, Nagendra P

    2017-04-01

    Residual lactose and galactose in fermented dairy foods leads to several industrial and health concerns. There is very little information pertaining to manufacture of fermented dairy foods that are low in lactose and galactose. In the present study, comparative genomic survey demonstrated the constant presence of chromosome-encoded tagatose-6-phosphate (T6P) pathway in Lactobacillus casei group. Lactose/galactose utilization tests and β-galactosidase assay suggest that PTS Gal system, PTS Lac system and T6P pathway are major contributors for lactose/galactose catabolism in this group of organisms. In addition, it was found than lactose catabolism by Lb. casei group accumulated very limited galactose in the MRS-lactose medium and in reconstituted skim milk, whereas Streptococcus thermophilus and Lb. delbrueckii subsp. bulgaricus (Lb. bulgaricus) strains secreted high amount of galactose extracellularly. Moreover, co-culturing Lb. casei group with Str. thermophilus showed significant reduction in galactose content, while co-culturing Lb. casei group with Lb. bulgaricus showed significant reduction in lactose content but significant increase in galactose content in milk. Overall, the present study highlighted the potential of Lb. casei group for reducing galactose accumulation in fermented milks due to its species-specific T6P pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Phosphate-solubilizing activity of aerobic methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  6. Effects of intermittent feeding of tylosin phosphate during the finishing period on feedlot performance, carcass characteristics, antimicrobial resistance, and incidence and severity of liver abscesses in steers.

    Science.gov (United States)

    Müller, H C; Van Bibber-Krueger, C L; Ogunrinu, O J; Amachawadi, R G; Scott, H M; Drouillard, J S

    2018-04-27

    Liver abscesses (LA) are a source of economic loss for feedlot cattle feedlots, and the 2017 veterinary feed directive has restricted further use of tylosin phosphate to prevention and control of LA. Our objective was to evaluate effects of intermittent tylosin phosphate feeding on incidence and severity of liver abscesses in feedlot cattle and presence of total antimicrobial resistant Enterococcus spp. Steers (n=312, 411.4 ± 6.71 kg) were blocked by initial BW and randomly assigned to a treatment group. Treatments included a negative control group (no tylosin phosphate throughout the finishing period), a positive control group (tylosin phosphate fed continuously throughout the finishing period), and a group that received tylosin phosphate off-label by feeding the drug on a repeated intermittent basis (1 week on, 2 weeks off). Steers were housed in 24 soil-surfaced pens with 13 steers per pen. Bodyweights of cattle were obtained every 28 d and at the end of 119 d the steers were weighed and harvested at a commercial abattoir. Fecal samples were collected on day 0, 21, and 118 to characterize antimicrobial resistant Enterococcus spp. Total LA percentage was greater (P = 0.012) for the no tylosin phosphate treatment compared to the other treatments, but did not differ between the continuous tylosin phosphate treatment and the intermittently fed tylosin phosphate treatment (P = 0.716). No difference was observed among treatments for ADG (P = 0.21), DMI (P = 0.28), or G:F (P = 0.75). Marbling score was lower (P = 0.022) for tylosin phosphate treatment when compared both to intermittent treatment and continuous tylosin phosphate treatment. Enterococcus spp. bacterial counts did not differ by treatment group over time (P > 0.05); however, there was a strong period effect for macrolide resistance among all groups (P feeding period. We conclude that feeding tylosin phosphate intermittently during the finishing phase decreases the total percentage of LA and maintains

  7. Isolation and identification of a phosphate solubilising fungus from soil of a phosphate mine in Chaluse, Iran

    Directory of Open Access Journals (Sweden)

    Raheleh Jamshidi

    2016-07-01

    Full Text Available Microbial solubilisation of phosphorus from insoluble phosphates is an environmental friendly and cost effective approach in sustainable soil management. Introducing the indigenous microorganisms to soil requires shorter adaptation period and causes fewer ecological distortions than exogenous microorganisms. This study was conducted to isolate and identify the indigenous fungi for phosphate solubilisation in Mazandaran, Iran. A potent phosphate solubilising fungus was isolated from an Iranian phosphate mine and selected for solubilisation of rock phosphate (RP. The identified fungus was characterised by calmodulin-based polymerase chain reaction method as Aspergillus tubingensis SANRU (Sari Agricultural Sciences and Natural Resources University. The phosphate solubilisation ability of the fungal strain was carried out in shake-flask leaching experiments containing various concentrations of RP (1%, 2%, 4%, or 8% w/v. The maximum P solubilisation rate of 347 mg/l was achieved at 1% of RP concentration on day 9. The regression analysis indicated that the P solubilised mainly through acidification. This study shows the possibility of using A. tubingensis SANRU for application in the management of P fertilisation.

  8. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  9. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  10. Physicochemical and Spectroscopic Characterization of Biofield Treated Triphenyl Phosphate

    OpenAIRE

    Trivedi, Mahendra

    2015-01-01

    Triphenyl phosphate (TPP) is a triester of phosphoric acid and phenol. It is commonly used as a fire-retarding agent and plasticizer for nitrocellulose and cellulose acetate. The present study was an attempt to evaluate the impact of biofield treatment on physicochemical and spectroscopic properties of TPP. The study was carried out in two groups i.e. control and treatment. The treatment group was subjected to Mr. Trivedi's biofield treatment. The control and treated samples of TPP were chara...

  11. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  12. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  13. Contribution to the study of uranyl salts in butyl phosphate solutions; Contribution a l'etude des solutions de sels d'uranyle dans les phosphates butyliques

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, A. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-06-01

    A spectroscopic study in the normal infrared region and involving the following associations: tri-alkyl phosphates (tri-butyl, tri-ethyl, tri-methyl), uranyl salts (nitrate, chloride, acetate) has confirmed the existence of an interaction between the phosphoryl group and the uranium atom, as shown by a movement of absorption band for the valency P = 0 from {approx} 1270 cm{sup -1} to {approx} 1180 cm{sup -1}. A study of the preparation, analysis and spectroscopy of the solids obtained by the precipitation of uranyl salts by acid butyl phosphates has been carried out. By infrared spectrophotometry it has been shown that the tri-butyl and di-butyl phosphates are associated in non-polar diluents even before the uranium is introduced. The extraction of uranyl salts from acid aqueous solutions by a diluted mixture of tri-butyl and di-butyl phosphates proceeds by different mechanisms according to the nature of the ion (nitrate or chloride). (author) [French] Une etude spectroscopique dans l'infrarouge moyen portant sur les associations: - phosphates trialcoyliques (tributylique - triethylique - trimethylique) - sels d'uranyle (nitrate, chlorure, acetate) a confirme l'existence d'une interaction entre le groupement phosphoryle et l'atome d'uranium, se manifestant par un deplacement de la bande d'absorption de la vibration de valence P = 0 de {approx} 1270 cm{sup -1} a {approx} 1180 cm{sup -1}. Une etude preparative, analytique et spectroscopique des solides obtenus par precipitation de sels d'uranyle par les phosphates butyliques acides a ete effectuee. La spectrophotomerie infrarouge met en evidence l'association, anterieure a toute introduction d'uranium, des phosphates tributylique et dibutylique dans des diluants non polaires. L'extraction de sels d'uranyle, d'une solution aqueuse acide par un melange dilue de phosphates tributylique et dibutylique, s'effectue suivant des processus differents a la

  14. Nephrotic syndrome induced by dibasic sodium phosphate injections for twenty-eight days in rats.

    Science.gov (United States)

    Tsuchiya, Noriko; Torii, Mikinori; Narama, Isao; Matsui, Takane

    2009-04-01

    Sprague-Dawley rats received once daily tail-vein injections of 360 mM dibasic sodium phosphate solution at 8 mL/kg for fourteen or twenty-eight days. Clinical examination revealed persistent proteinuria from three days after the first dosing and thereafter severe proteinuria from eight days or later in the phosphate-treated groups. Proteinuria developed without remission even after fourteen-day withdrawal in the fourteen-day dosed group. Phosphate-treated animals developed lipemia, hypercholesterolemia, anemia, higher serum fibrinogen levels, and lower serum albumin/globulin ratios on day 29. Renal weight increased significantly compared with control animals, and the kidneys appeared pale and enlarged with a rough surface. Histopathologically, glomerular changes consisted of mineralization in whole glomeruli, glomerular capillary dilatation, partial adhesion of glomerular tufts to Bowman's capsule, and mesangiolysis. Ultrastructural lesions such as an increased number of microvilli, effacement of foot processes, and thickening of the glomerular basement membrane, and immunocytochemical changes in podocytes, mainly decreased podoplanin-positive cells and increased desmin expression, were also conspicuous in the phosphate-treated rats for twenty-eight days. Marked tubulointerstitial lesions were tubular regeneration and dilatation, protein casts, mineralization in the basement membrane, focal interstitial inflammation, and fibrosis in the cortex. These clinical and morphological changes were similar to features of human nephrotic syndrome.

  15. Characteristics of the groups of charged particles in bar pp,pp and K-p interactions at 32 GeV/c

    International Nuclear Information System (INIS)

    Bogolubsky, M.Yu.; Levitsky, M.S.; Maksimov, V.V.

    1995-01-01

    In the clan model, a method is developed for determining the following characteristics of the groups of charged particles: group multiplicity in an interval, particle multiplicity in a group, and width distribution of groups. Distribution densities are obtained for particles originating from clans produced at a given rapidity point with given width in bar pp, K - p, and pp interactions at 32 GeV/c. It is shown that the differences in the rate of growth of factorial moments in bar pp and K - p interactions are due to a difference in the relative contributions of small-width clans. 12 refs., 13 figs., 2 tabs

  16. Safety and Efficacy of Cortisol Phosphate in Hyaluronic Acid Vehicle in the Treatment of Dry Eye in Sjogren Syndrome.

    Science.gov (United States)

    Rolando, Maurizio; Vagge, Aldo

    2017-06-01

    Evaluation of 0.3% cortisol phosphate eye drops in hyaluronic acid vehicle in the treatment of dry eye in Sjogren Syndrome. This prospective, single-center, masked (single blind), randomized controlled study included 40 female patients divided into 2 groups, group 1 treated with Idracemi, 0.3% cortisol phosphate eye drops twice a day, and group 2 treated with Cortivis, 0.3% cortisol phosphate in hyaluronic acid vehicle, with the same posology. Screening (day -7), randomization (day 0), follow-up (day 7), and termination (day 28) visits were conducted. Symptoms (VAS) questionnaire, tear film breakup time, corneo-conjunctival stain, intraocular pressure (IOP) measurement, and fundus examination were performed at each visit. Conjunctival impression cytology for human leukocyte antigen-DR (HLA-DR) expression at visit 1 and 4 was also performed. No changes in IOP or fundus examination were observed in either group at each time point. Group 1 showed at day 28 a statistically significant amelioration of symptoms and reduction of HLA-DR expression. Group 2 showed at day 7 statistically significant improvement of corneal and conjunctival stain versus baseline and versus group 1; the symptom score was statistically significantly better than baseline and versus group 1 after 28 days too. The HLA-DR expression and the epithelial cell area were statistically significantly reduced versus baseline and versus group 1 at the same time. Cortisol phosphate proved to be safe and effective in treating dry eye in Sjogren Syndrome patients in both formulations. However, the formula with hyaluronic acid vehicle proved to be more effective. Both formulations were very well tolerated.

  17. A clinical study of serum phosphate and magnesium in type II diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Revathi.R, Julius Amaldas

    2014-11-01

    Full Text Available To assess serum phosphate and magnesium level in type-2 diabetic patients in comparison with those of control subjects. Methodology: There were 100 diabetic patients and 100 age matched non-diabetic (control subjects included in this study. Serum phosphate, serum magnesium and fasting and postprandial blood sugar measured among the diabetic and control groups using SPSS version 16.0 for analysis. Results: Serum phosphate level was significantly lower in diabetic patients (2.92 ± 0.75 as compared to control subjects (3.38 ± 0.49. Serum magnesium levels were significantly lower in diabetic patients (0.9 ± 0.15 compared to controls (2.75 ± 0.46 Conclusion: The study reveals that hyperglycemia may reduce serum levels of magnesium and phosphorus.

  18. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  19. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  20. Transfer of Some Major and Trace Elements From Phosphate Rock to Super-Phosphate Fertilizers

    International Nuclear Information System (INIS)

    El-Reefya, H.I.; Bin-Jaz, A.A.; Zaied, M.E.; Badran, H.M.; Badran, H.M.

    2014-01-01

    This study assesses the transfer of some major and trace elements from phosphate rock (PR) to single (SSP) and triple (TSP) superphosphate fertilizers. Samples from a fertilizer plant and local market were collected and analyzed using inductively coupled plasma spectrometer. Cluster analysis indicated that the inner-relationship among the concentration of the elements in PR, SSP, and TSP are different. Only one element (Mo) has concentration in SSP higher than phosphate rock. The production process of these two types of superphosphate leads to transfer higher portion of Mn, B, Cu, Mo, Sr, and V present in the phosphate rock to SSP than TSP. The potentially hazardous element Cd is also transmitted more to SSP than TSP, and Cr is equally transferred to both types. The mean elemental concentrations normalized to the percentage of P 2 O 5 demonstrate that for most elements they are the higher concentrations in SSP are linked to the phosphate contents

  1. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  2. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    Science.gov (United States)

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; hide

    2012-01-01

    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  3. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7

    Czech Academy of Sciences Publication Activity Database

    Doroshenko, I.; Žurková, J.; Moravec, Z.; Bezdička, Petr; Pinkas, J.

    2015-01-01

    Roč. 26, SEP (2015), s. 157-162 ISSN 1350-4177 Institutional support: RVO:61388980 Keywords : Uranium * Phosphates * Sonochemistry * Nuclear waste * Trimethyl phosphate * Triethyl phosphate Subject RIV: CA - Inorganic Chemistry Impact factor: 4.556, year: 2015

  4. Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters

    Science.gov (United States)

    Wang, Jing; Liu, Hai; Yang, Shaokun; Zhang, Jian; Zhang, Chenglu; Wu, Haiming

    2014-10-01

    Five alkyl phosphate triesters (APTEs), including trimethyl phosphate (TMP), triethyl phosphate (TEP), triisopropyl phosphate (TPP), tributyl phosphate (TBP) and trioctyl phosphate (TOP), were used as activating agents for preparing activated carbons (AC-APTEs) with high surface acidity and metal ion sorption capacity. N2 adsorption/desorption isotherms, surface morphologies, elemental compositions, results of Boehm's titration and sorption capacities of heavy metal ions of the carbons were investigated. AC-APTEs contained much more acidic groups and exhibited much less surface area (phosphoric acid activation. For the AC-APTEs, AC-TOP had the highest surface area (488 m2/g), AC-TMP showed the highest yield (41.1%), and AC-TBP possessed the highest acidic groups (2.695 mmol/g), oxygen content (47.0%) and metal ion sorption capacities (40.1 mg/g for Ni(II) and 53.5 mg/g for Cd(II)). For the carbons, AC-APTEs showed much larger Ni(II) and Cd(II) sorption capacities than AC-PPA, except AC-TPP. The differences of the carbons in the physicochemical and sorption properties suggested surface chemistry of the carbons was the main factor influencing their sorption capacities whereas the pore structure played a secondary role.

  5. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    International Nuclear Information System (INIS)

    Akana, J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common (β/α) 8 -barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn 2+ which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn 2+ and inactive apoenzyme cannot be prepared, the affinity for Zn 2+ is decreased by alanine substitutions for the two histidine residues that coordinate the Zn 2+ ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn 2+ . The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn 2+ that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn 2+ and participate as acid/base catalysts are not conserved. We conclude that only the phosphate

  6. D-Ribulose 5-Phosphate 3-Epimerase: Functional and Structural Relationships to Members of the Ribulose-Phosphate Binding (beta/alpha)8-Barrel Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Akana,J.; Federov, A.; Federov, E.; Novak, W.; Babbitt, P.; Almo, S.; Gerlt, J.

    2006-01-01

    The 'ribulose phosphate binding' superfamily defined by the Structural Classification of Proteins (SCOP) database is considered the result of divergent evolution from a common ({beta}/{alpha}){sub 8}-barrel ancestor. The superfamily includes D-ribulose 5-phosphate 3-epimerase (RPE), orotidine 5'-monophosphate decarboxylase (OMPDC), and 3-keto-L-gulonate 6-phosphate decarboxylase (KGPDC), members of the OMPDC suprafamily, as well as enzymes involved in histidine and tryptophan biosynthesis that utilize phosphorylated metabolites as substrates. We now report studies of the functional and structural relationships of RPE to the members of the superfamily. As suggested by the results of crystallographic studies of the RPEs from rice and Plasmodium falciparum, the RPE from Streptococcus pyogenes is activated by Zn{sup 2+} which binds with a stoichiometry of one ion per polypeptide. Although wild type RPE has a high affinity for Zn{sup 2+} and inactive apoenzyme cannot be prepared, the affinity for Zn{sup 2+} is decreased by alanine substitutions for the two histidine residues that coordinate the Zn{sup 2+} ion (H34A and H67A); these mutant proteins can be prepared in an inactive, metal-free form and activated by exogenous Zn{sup 2+}. The crystal structure of the RPE was solved at 1.8 Angstroms resolution in the presence of D-xylitol 5-phosphate, an inert analogue of the D-xylulose 5-phosphate substrate. This structure suggests that the 2,3-enediolate intermediate in the 1,1-proton transfer reaction is stabilized by bidentate coordination to the Zn{sup 2+} that also is liganded to His 34, Asp 36, His 67, and Asp 176; the carboxylate groups of the Asp residues are positioned also to function as the acid/base catalysts. Although the conformation of the bound analogue resembles those of ligands bound in the active sites of OMPDC and KGPDC, the identities of the active site residues that coordinate the essential Zn{sup 2+} and participate as acid/base catalysts

  7. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    Science.gov (United States)

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  8. Precaecal phosphorus digestibility of inorganic phosphate sources in male broilers

    Science.gov (United States)

    Bikker, P.; Spek, J. W.; Van Emous, R. A.; Van Krimpen, M. M.

    2016-01-01

    Abstract The aim of this study, comprising two experiments, was (1) to determine in Experiment 1 the relationship of incremental dietary P (phosphorus) content on precaecal digestible P in male broilers and (2) to determine in Experiment 2 the precaecal P digestibility of various inorganic P sources at marginal levels of P supply.In Experiment 1, a total of 260 male Ross 308 broilers were divided into groups of 10 birds per pen resulting in 8 replicates for treatment 1 and 6 replicates for treatments 2–4. Experimental diets were formulated to contain 4 incremental concentrations of digestible P by means of increasing concentrations of monocalcium phosphate (MCP). In the second experiment, 480-d-old male Ross 308 broilers were divided in groups of 12 birds per pen resulting in 16 replicates for the basal diet and 6 replicates for each test diet. A total of 4 inorganic P sources, MCP, monodicalcium phosphate (MDCP), dicalcium phosphate (DCP) and defluorinated phosphate (DFP) were added to the basal diet to determine the precaecal P digestibility. Three of the 4 inorganic P sources (MCP, MDCP and DCP) represented a mix of batches from different producers. At the end of both experiments, the chyme of the posterior part of the small intestine was collected. Digestibility of P and Ca was determined using titanium dioxide as indigestible marker.In Experiment 1, a reduction in precaecal digestibility of P was observed above an estimated precaecal digestible dietary P concentration of 4.8 g/kg.The precaecal P digestibility of the tested inorganic P sources in Experiment 2 was 78.3% for MCP, 59.0% for DCP, 70.7% for MDCP and 31.5% for DFP. PMID:27635437

  9. Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution.

    Science.gov (United States)

    Yun, Hui-Jun; Kang, Seok-Ju; Xu, Yong; Kim, Seul Ong; Kim, Yun-Hi; Noh, Yong-Young; Kwon, Soon-Ki

    2014-11-19

    A record-breaking high electron mobility of 7.0 cm(2) V(-1) s(-1) for n-channel polymer OFETs is reported. By the incorporation of only one nitrile group as an electron-withdrawing function in the vinyl linkage of the DPP-based copolymer, a dramatic inversion of majority charge-carriers from holes to electrons is achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Salt Solubility Products of Diprenorphine Hydrochloride, Codeine and Lidocaine Hydrochlorides and Phosphates – Novel Method of Data Analysis Not Dependent on Explicit Solubility Equations

    Directory of Open Access Journals (Sweden)

    Gergely Völgyi

    2013-12-01

    Full Text Available A novel general approach was described to address many of the challenges of salt solubility determination of drug substances, with data processing and refinement of equilibrium constants encoded in the computer program pDISOL-XTM. The new approach was illustrated by the determinations of the solubility products of diprenorphine hydrochloride, codeine hydrochloride and phosphate, lidocaine hydrochloride and phosphate at 25 oC, using a recently-optimized saturation shake-flask protocol.  The effects of different buffers (Britton-Robinson universal and Sörensen phosphate were compared. Lidocaine precipitates were characterized by X-ray powder diffraction (XRPD and polarization light microscopy. The ionic strength in the studied systems ranged from 0.25 to 4.3 M. Codeine (and possibly diprenorphine chloride were less soluble than the phosphates for pH > 2. The reverse trend was evident with lidocaine.  Diprenorphine saturated solutions showed departure from the predictions of the Henderson-Hasselbalch equation in alkaline (pH > 9 solutions, consistent with the formation of a mixed-charge anionic dimer.

  11. Cerebrospinal Fluid Phosphate in Delirium after Hip Fracture

    Directory of Open Access Journals (Sweden)

    Ane-Victoria Idland

    2017-09-01

    Full Text Available Aims: Phosphate is essential for neuronal activity. We aimed to investigate whether delirium is associated with altered phosphate concentrations in cerebrospinal fluid (CSF and serum. Methods: Seventy-seven patients with hip fracture were assessed for delirium before and after acute surgery. Prefracture dementia was diagnosed by an expert panel. Phosphate was measured in CSF obtained immediately before spinal anesthesia (n = 77 and in serum (n = 47. CSF from 23 cognitively healthy elderly patients undergoing spinal anesthesia was also analyzed. Results: Hip fracture patients with prevalent delirium had higher CSF phosphate concentrations than those without delirium (median 0.63 vs. 0.55 mmol/L, p = 0.001. In analyses stratified on dementia status, this difference was only significant in patients with dementia. Serum phosphate was ∼1 mmol/L; there was no association between serum phosphate concentration and delirium status. CSF phosphate did not correlate with serum levels. Conclusion: Patients with delirium superimposed on dementia have elevated phosphate levels.

  12. Radical-induced dephosphorylation of fructose phosphates in aqueous solution

    International Nuclear Information System (INIS)

    Zegota, H.; Sonntag, C. von

    1981-01-01

    Oxygen free N 2 O-saturated aqueous solutions of D-fructose-1-phosphate and D-fructose-6-phosphate were γ-irradiated. Inorganic phosphate and phosphate free sugars (containing four to six carbon atoms) were identified and their G-values measured. D-Fructose-1-phosphate yields (G-values in parentheses) inorganic phosphate (1.6), hexos-2-ulose (0.12), 6-deoxy-2,5-hexodiulose (0.16), tetrulose (0.05) and 3-deoxytetrulose (0.15). D-Fructose-6-phosphate yields inorganic phosphate (1.7), hexos-5-ulose (0.1), 6-deoxy-2,5-hexodiulose (0.36), 3-deoxy-2,5-hexodiulose and 2-deoxyhexos-5-ulose (together 0.18). On treatment with alkaline phosphatase further deoxy sugars were recognized and in fructose-1-phosphate G(6-deoxy-2,5-hexodiulose) was increased to a G-value of 0.4. Dephosphorylation is considered to occur mainly after OH attack at C-5 and C-1 in fructose-1-phosphate and at C-5 and C-6 in fructose-6-phosphate. Reaction mechanisms are discussed. (orig.)

  13. Evaluation of the availability of phosphorus from decalcium phosphate and rock phosphates from Patos de Minas, Tapira and Finos de Tapira for sheep, by the isotope dilution technique

    International Nuclear Information System (INIS)

    Vitti, D.M.S.S.

    1989-01-01

    'In vitro' and 'in vivo' assays were carried out to determine the phosphorus availability from dicalcium phosphate and rock phosphates from Patos de Minas, Tapira and Finos de Tapira. Twenty four male sheep, with 40 kg live weight, were assigned to three groups of eight animals each. The animals were housed individually in metabolism cages and received a diet containing cassava meal, urea, molasses, soybean meal and mineral mixture. Phosphate sources were added to give 4 g of phosphorus per animal per day. After two weeks on the experimental diet each sheep was injected intravenously with 200 μCi of 32 P (Na 2 HPO 4 ). Blood samples were collected from the jugular vein at 24 hs intervals for 8 days. The daily fecal outputs were collected for 8 days and sampled. The specific activities of plasma and feces were determined and the fecal endogenous loss and true phosphorus absorption were calculated. For 'in vitro' assay, rumen samples were collected from a fistulated steer and aliquots were incubated with 0.1 μCi 32 P (Na 2 HPO 4 ) in a medium containing the phosphorus sources. After centrifugation microorganisms were separated and phosphorus incorporation determined. The true absorption values were 58.92; 50.85; 47.99 and 42.72% for dicalcium phosphate, Finos de Tapira, Tapira and Patos, respectively. Dicalcium phosphate showed higher availability (P [pt

  14. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  15. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  16. Preparation of calcium phosphate paste

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Norzita Yaacob; Idris Besar; Che Seman Mahmood; Rusnah Mustafa

    2010-01-01

    Calcium phosphate paste were prepared by mixing between calcium sodium potassium phosphate, Ca 2 NaK (PO 4 ) 2 (CSPP) and monocalcium phosphate monohydrate, Ca(H 2 PO 4 ) 2 .H 2 O (MCPM). CSPP were obtained by reaction between calcium hydrogen phosphate (CaHPO 4 ), potassium carbonate (K 2 CO 3 ) and sodium carbonate (Na 2 CO 3 ) in solid state sintering process followed by quenching in air at 1000 degree Celsius. The paste was aging in simulated body fluid (SBF) for 0.5, 1, 3, 6, 12, 24, 48 hrs, 3, 7 and 14 days. The morphological investigation indicated the formation of apatite crystal were first growth after 24 hours. The obvious growth of apatite crystal was shown at 3 days. The obvious growth of apatite crystal was shown in 7 and 14 days indicated the prediction of paste would have rapid reaction with bone after implantation. (author)

  17. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  18. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  19. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  20. Preparation and characterization of zirconia-loaded lignocellulosic butanol residue as a biosorbent for phosphate removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Enmin [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Liu, Xiaohuan, E-mail: liuxiaohuancaf@163.com [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Jiang, Jinhua [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000 (China); Fu, Shenyuan [School of Engineering, National Engineering and Technology Research Center of Wood-Based Resources Comprehensive Utilization, and Key Laboratory of Wood Science and Technology of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, Lin’an 311300 (China); Chu, Fuxiang [Institute of Chemical Industry of Forestry Products, CAF, Nanjing 210037 (China)

    2016-11-30

    Highlights: • LBR-Zr was evaluated as a novel biosorbent for phosphate removal. • Effects of process factors on phosphate adsorption were studied in detail. • LBR-Zr showed markedly enhanced phosphate adsorption compared to LBR. • The underlying mechanism for phosphate adsorption of LBR-Zr was fully investigated. - Abstract: Zirconium(IV) loaded lignocellulosic butanol residue (LBR-Zr) used for the adsorption of phosphate (P) ions from aqueous solution was synthesized and evaluated. The adsorption isotherms were fitted well with the Freundlich and Temkin modes. Thermodynamic analyses indicated that phosphate adsorption on the LBR-Zr increased with increasing temperature from 298 to 338 K. The kinetic datas were described better by the pseudo-second-order adsorption kinetic rate model. Increasing pH suppressed phosphate adsorption. Coexisting anions study exhibited that the incorporation of CO{sub 3}{sup 2−} anion had the largest influence on the phosphate adsorption capacity. The mechanism of adsorption process on LBR-Zr was analyzed by FTIR (Fourier transform infrared spectroscopy), scanning electron microscope (SEM) with an EDX (energy dispersive X-ray) and X-ray photoelectron spectroscopy (XPS) technologies, respectively. The above results confirmed that surface hydroxyl groups on biosorbent LBR-Zr were replaced by phosphate. The LBR-Zr with good specific affinity towards phosphate was a promising biosorbent for phosphate removal from aqueous solution. The research would be beneficial for developing a promising, eco-friendly phosphate biosorbent from plentiful lignocellulosic butanol residue.

  1. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    Science.gov (United States)

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  2. Impaired Phosphate Tolerance Revealed With an Acute Oral Challenge.

    Science.gov (United States)

    Turner, Mandy E; White, Christine A; Hopman, Wilma M; Ward, Emilie C; Jeronimo, Paul S; Adams, Michael A; Holden, Rachel M

    2018-01-01

    Elevated serum phosphate is consistently linked with cardiovascular disease (CVD) events and mortality in the setting of normal and impaired kidney function. However, serum phosphate does not often exceed the upper limit of normal until glomerular filtration rate (GFR) falls below 30 mL/min/m 2 . It was hypothesized that the response to an oral, bioavailable phosphate load will unmask impaired phosphate tolerance, a maladaptation not revealed by baseline serum phosphate concentrations. In this study, rats with varying kidney function as well as normo-phosphatemic human subjects, with inulin-measured GFR (13.2 to 128.3mL/min), received an oral phosphate load. Hormonal and urinary responses were evaluated over 2 hours. Results revealed that the more rapid elevation of serum phosphate was associated with subjects and rats with higher levels of kidney function, greater responsiveness to acute changes in parathyroid hormone (PTH), and significantly more urinary phosphate at 2 hours. In humans, increases in urinary phosphate to creatinine ratio did not correlate with baseline serum phosphate concentrations but did correlate strongly to early increase of serum phosphate. The blunted rise in serum phosphate in rats with CKD was not the result of altered absorption. This result suggests acute tissue deposition may be altered in the setting of kidney function impairment. Early recognition of impaired phosphate tolerance could translate to important interventions, such as dietary phosphate restriction or phosphate binders, being initiated at much higher levels of kidney function than is current practice. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  3. Phosphate Reduction in Emulsifi ed Meat Products: Impact of Phosphate Type and Dosage on Quality Characteristics

    Directory of Open Access Journals (Sweden)

    Seline Glorieux

    2017-01-01

    Full Text Available Phosphate reduction is of important industrial relevance in the manufacturing of emulsifi ed meat products because it may give rise to a healthier product. The eff ect of seven diff erent phosphate types was tested on the physicochemical and quality characteristics to select the most promising phosphate type for further cooked sausage manufacturing. Next, phosphate mass fraction was gradually reduced. Tetrasodium di- or pyrophosphate (TSPP and sodium tripolyphosphate (STPP increased pH, reduced structural properties, resulted in the highest emulsion stability, lowest cooking loss and had litt le eff ect on hardness. Based on the viscoelastic properties, a minimum mass fraction of 0.06 % TSPP was suffi cient to obtain an acceptable quality product. Rheology proved to be a very useful tool to evaluate the quality of meat products, as it gives insight in the structure of the meat product and especially the functional properties of meat proteins. Based on the obtained results, it can be concluded that the current amount of phosphate added to emulsifi ed meat products can be signifi cantly reduced with minimal loss of product quality.

  4. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  5. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  6. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    International Nuclear Information System (INIS)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E.

    2008-01-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2 1 ; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3 2 . The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP

  7. Modeling cell membrane transport: interaction of guanidinylated poly(propylene imine) dendrimers with a liposomal membrane consisting of phosphate-based lipids.

    Science.gov (United States)

    Tsogas, Ioannis; Tsiourvas, Dimitris; Nounesis, George; Paleos, Constantinos M

    2006-12-19

    Mixed anionic liposomes consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol were employed as model systems for assessing the ability of a series of functionalized dendrimers, bearing a varying number of guanidinium groups at their surface, to translocate across the liposomal bilayers. At low guanidinium/phosphate molar ratios or when weakly guanidinylated dendrimeric derivatives were employed, the dendrimeric derivative acted as a kind of "molecular glue" leading to a simple adhesion of the liposomes. Liposomal fusion occurred to a certain extent at high guanidinium/phosphate molar ratios or when highly guanidinylated dendrimeric derivatives were employed. Furthermore, translocation of these dendrimeric derivatives to the liposomal core was observed for low to medium guanidinylation and at low guanidinium/phosphate molar ratios which was, however, enhanced when the lipid bilayer was in its fluid liquid-crystalline phase. Thus, an optimum balance is required between the binding strength of guanidinium with the phosphate groups and the degree of hydrophilicity of the guanidinylated dendrimers for the transport of the latter to the liposomal core to occur.

  8. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  9. 2,3-diphosphoglycerate, nucleotide phosophate, and organic and inorganic phosphate levels during the early phases of diabetic ketoacidosis.

    Science.gov (United States)

    Kanter, Y; Gerson, J R; Bessman, A N

    1977-05-01

    The relation between serum and red blood cell (RBC) inorganic phosphate levels, RBC 2,3-diphosphoglycerate (2,3-DPG) levels, RBC nucleotide phosphate (Pn), and RBC total phosphate (Pt) levels were studied during the early phases of treatment and recovery from diabetic ketoacidosis (DKA). A steady drop in serum inorganic phosphate was found during the first 24 hours of insulin treatment and was most profound at 24 hours. No statistically significant changes (P less than 0.05) were found in red cell inorganic phosphate or nucleotide phosphate levels during the 24-hour study period. The levels of total red cell phosphate were lower in this group of patients than in nonacidotic diabetic subjects and decreased slightly after 24 hours of treatment. The red cell 2,3-DPG levels were low at the initiation of therapy and remained low during the 24-hour study period. Glucose, bicarbonate, lactate, and ketone levels fell in linear patterns with treatment. In view of the current evidence for the effects of low 2,3-DPG on oxygen delivery and the relation of low serum phosphate levels to RBC glycolysis and 2,3-DPG formation, this study reemphasizes the need for phosphate replacement during the early phases of treatment of DKA.

  10. Isolation of phosphatase-producing phosphate solubilizing bacteria from Loriya hot spring: Investigation of phosphate solubilizing in the presence of different parameters

    Directory of Open Access Journals (Sweden)

    Maryam Parhamfar

    2014-04-01

    Full Text Available Introduction: Biofertilizers are the microorganisms that can convert useless nutrient to usable compounds. Unlike fertilizer, cost of biofertilizer production is low and doesn’t produce ecosystem pollution. Phosphate fertilizers can be replaced by phosphate biofertilizer to produce improvement. So, it is necessary to screen the climate-compatible phosphate solubilizing bacteria. Materials and methods: In this project samples were picked up from Loriya hot spring, which are located in Jiroft. Samples were incubated in PKV medium for 3 days. Screening of phosphate solubilizing bacteria was performed on the specific media, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Phosphate solubilizing activity of this strain was considered in different carbon, nitrogen, phosphate and pH sources. Results: Sequence alignment and phylogenetic tree results show that B. sp. LOR033 is closely related to Bacillus licheniformis, with 97% homology. In addition, results show that maximum enzyme production was performed after 2 days that incubation pH was decreased simultaneously when the time was increased. Carbon sources investigation show that glucose is the most appropriate in enzyme production and phosphate releasing. Furthermore, results show that the optimum initial pH for phytase production was pH5.0. Different phosphate sources show that tricalcium phosphate has the suitable effect on enzyme activity in three days of incubation. Discussion and conclusion: Phosphatase enzyme production capacity, growth in acidic pH and phosphate solubilizing potential in different salt and phosphate sources show that this strain has considerable importance as biofertilizers.

  11. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  12. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  13. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    Science.gov (United States)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  14. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions of...

  15. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b...

  16. The increasing of enamel calcium level after casein phosphopeptideamorphous calcium phosphate covering

    Directory of Open Access Journals (Sweden)

    Widyasri Prananingrum

    2012-06-01

    Full Text Available Background: Caries process is characterized by the presence of demineralization. Demineralization is caused by organic acids as a result of carbohydrate substrate fermentation. Remineralization is a natural repair process for non-cavitated lesions. Remineralization occurs if there are Ca2+ and PO43- ions in sufficient quantities. Casein-amorphous calcium phosphate phosphopeptide (CPP-ACP is a paste material containing milk protein (casein, that actually contains minerals, such as calcium and phosphate. The casein ability to stabilize calcium phosphate and enhance mineral solubility and bioavailability confers upon CPP potential to be biological delivery vehicles for calcium and phosphate. Purpose: The aim of this study was to determine the calcium levels in tooth enamel after being covered with CPP-ACP 2 times a day for 3, 14 and 28 days. Methods: Sample were bovine incisors of 3 year old cows divided into 4 groups, namely group I as control group, group II, III and IV as treatment groups covered with CPP-ACP 2 times a day. All of those teeth were then immersed in artificial saliva. Group II was immersed for 3 days, while group III was immersed for 14 days, and group IV was immersed for 28 days. One drop of CPP-ACP was used to cover the entire labial surface of teeth. The measurement of the calcium levels was then conducted by using titration method. All data were analyzed by One- Way ANOVA test with 5% degree of confidence. Results: The results showed significant difference of the calcium levels in tooth enamel of those groups after covered with CPP-ACP 2 times a day for 3, 14 and 28 days (p = 0.001. There is also significant difference of the calcium levels in tooth enamel of those treatment groups and the control group (p = 0.001. Conclusion: The calcium levels of tooth enamel are increased after covered with CPP-ACP 2 times a day for 3, 14 and 28 days.Latar belakang: Proses terjadinya karies gigi ditandai oleh adanya demineralisasi

  17. Interaction of adsorption of reactive yellow 4 from aqueous solutions onto synthesized calcium phosphate

    Directory of Open Access Journals (Sweden)

    H. El Boujaady

    2017-01-01

    Full Text Available The interaction of reactive yellow 4 with Apatitic Tricalcium Phosphate (PTCa has been investigated in aqueous medium to understand the mechanism of adsorption and explore the potentiality of this phosphate toward controlling pollution resulting from textile dyes. Transmission electron microscopy (TEM analysis demonstrates that the adsorbent is composed of needle-like nanoparticles and the SAED pattern exhibits spotted sharp and continuous rings that evidence polycrystalline grains. X-ray diffraction results showed that, the crystallinity of the dye decreased after interaction with RY4 indicatating incorporation of the dye into the micropores and macropores of the adsorbent. The results of Fourier transform infrared (FTIR spectroscopy indicate that the adsorption is due to the electrostatic interaction between the –SO3- groups of dye and the surface of the Phosphate. The desorption efficiency was very high at about 99.4%. The presence of calcium ions favored the adsorption of the dye, while the phosphate ions inhibited it.

  18. One-step synthesis of magnetite core/zirconia shell nanocomposite for high efficiency removal of phosphate from water

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Xing, Mingchao; Fang, Wenkan; Wu, Deyi, E-mail: dywu@sjtu.edu.cn

    2016-03-15

    Graphical abstract: - Highlights: • Magnetite core/zirconia shell nanocomposite was prepared by one-step method. • Fe/Zr molar ratio of 4/1 allowed high magnetization and high adsorption capacity. • The nanocomposite had good selectivity towards phosphate. • Ligand exchange was the adsorption mechanism of phosphate. • Desorption of adsorbed phosphate could be achieved by NaOH treatment. - Abstract: A self-assembled magnetite core/zirconia shell (Fe{sub 3}O{sub 4}@ZrO{sub 2}) nanoparticle material was fabricated by the one-step co-precipitation method to capture phosphate from water. Fe{sub 3}O{sub 4}@ZrO{sub 2} with different Fe/Zr molar ratios were obtained and characterized by XRD, TEM, BET surface area and magnetization. It was shown that, with the decreasing of Fe/Zr molar ratio, magnetization decreased whereas surface area and adsorption capacity of phosphate increased. Fe{sub 3}O{sub 4}@ZrO{sub 2} with the ratio of higher than 4:1 had satisfactory magnetization property (>23.65 emu/g), enabling rapid magnetic separation from water and recycle of the spent adsorbent. The Langmuir adsorption capacity of Fe{sub 3}O{sub 4}@ZrO{sub 2} reached 27.93–69.44 mg/g, and the adsorption was fast (90% of phosphate removal within 20 min). The adsorption decreases with increasing pH, and higher ionic strength caused slight increase in adsorption at pH > about 5.5. The presence of chloride, nitrate and sulfate anions did not bring about significant changes in adsorption. As a result, Fe{sub 3}O{sub 4}@ZrO{sub 2} performed well to remove phosphate from real wastewater. These results were interpreted by the ligand exchange mechanism, i.e., the direct coordination of phosphate onto zirconium by replacement of hydroxyl groups. Results suggested that phosphate reacted mainly with surface hydroxyl groups but diffusion into interior of zirconia phase also contributed to adsorption. The adsorbed phosphate could be desorbed with a NaOH treatment and the regenerated Fe

  19. Arginine-phosphate salt bridges between histones and DNA: Intermolecular actuators that control nucleosome architecture

    Science.gov (United States)

    Yusufaly, Tahir I.; Li, Yun; Singh, Gautam; Olson, Wilma K.

    2014-10-01

    Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.

  20. Ab Initio Calculations of 31P NMR Chemical Shielding Anisotropy Tensors in Phosphates: Variations Due to Ring Formation

    Directory of Open Access Journals (Sweden)

    Todd M. Alam

    2002-08-01

    Full Text Available Abstract: Ring formation in phosphate systems is expected to influence both the magnitude and orientation of the phosphorus (31P nuclear magnetic resonance (NMR chemical shielding anisotropy (CSA tensor. Ab initio calculations of the 31P CSA tensor in both cyclic and acyclic phosphate clusters were performed as a function of the number of phosphate tetrahedral in the system. The calculation of the 31P CSA tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO method at the Hartree-Fock (HF level. It is shown that both the 31P CSA tensor anisotropy, and the isotropic chemical shielding can be used for the identification of cyclic phosphates. The differences between the 31P CSA tensor in acyclic and cyclic phosphate systems become less pronounced with increasing number of phosphate groups within the ring. The orientation of the principal components for the 31P CSA tensor shows some variation due to cyclization, most notably with the smaller, highly strained ring systems.

  1. Photogeneration of free charge carriers in .pi.-conjugated polymers with bulky side groups

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Jex, M.; Pfleger, Jiří; Jung, J.

    2012-01-01

    Roč. 404, 24 August (2012), s. 48-55 ISSN 0301-0104 R&D Projects: GA ČR(CZ) GAP205/10/2280; GA MŠk(CZ) OC10007 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : photogeneration of free charge carriers * charge transfer states * localized excitation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.957, year: 2012

  2. The effect of organic ligands on the crystallinity of calcium phosphate

    Science.gov (United States)

    van der Houwen, Jacqueline A. M.; Cressey, Gordon; Cressey, Barbara A.; Valsami-Jones, Eugenia

    2003-03-01

    Calcium phosphate phases precipitated under critical supersaturation were identified and studied in detail using X-ray powder diffraction, electron probe microanalysis, infrared spectroscopy (IR) and transmission electron microscopy. These synthetic calcium phosphates formed by spontaneous precipitation at pH 7, 25°C and 0.1 M ionic strength (NaCl as the background electrolyte). The combination of several methods allowed detailed characterisation of the calcium phosphates. The purpose of the work was to assess the influence of carboxylate ligands, specifically acetate and citrate, on the quality of the calcium phosphate precipitate. All precipitates were identified as non-stoichiometric, calcium-deficient hydroxylapatites (HAPs), containing carbonate, HPO 42-, sodium and chloride impurities. No other phases were found to be present in any of the precipitates. The presence of citrate resulted in a decrease in crystal size and a higher degree of apatite lattice imperfection in the precipitated HAP. Furthermore, IR spectroscopy showed a higher amount of carbonate present in that HAP, compared with the ones formed in the control and acetate experiments. An additional absorption band, in the infrared spectrum of the HAP formed in the presence of citrate, was observed at 1570 cm -1; this is interpreted as carboxyl groups bound to HAP.

  3. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    Science.gov (United States)

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  4. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  5. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  6. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  7. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    Ulrich, Andrea E.; Schnug, Ewald; Prasser, Horst-Michael; Frossard, Emmanuel

    2014-01-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  8. Phosphate Salts

    Science.gov (United States)

    ... body. They are involved in cell structure, energy transport and storage, vitamin function, and numerous other processes ... Phosphate-containing foods and beverages include cola, wine, beer, whole grain cereals, nuts, dairy products and some ...

  9. Synthesis of amorphous acid iron phosphate nanoparticles

    International Nuclear Information System (INIS)

    Palacios, E.; Leret, P.; Fernández, J. F.; Aza, A. H. De; Rodríguez, M. A.

    2012-01-01

    A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.

  10. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  11. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    Science.gov (United States)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  12. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of use...

  13. Degradation of bis- p -nitrophenyl phosphate using zero-valent iron nanoparticles

    International Nuclear Information System (INIS)

    Valle-Orta, Maiby; Guerrero, Rubén Saldivar; Díaz, David; Dubé, Inti Zumeta; Quiñonez, José Luis Ortiz

    2017-01-01

    Phosphate esters are employed in some agrochemical formulations and have long life time in the Environment. They are neurotoxic to mammals and it is very difficult to hydrolyze them. It is easy to find papers in the literature dealing with transition metal complexes used in the hydrolysis processes of organophosphorous compounds. However, there are few reports related with degradation of phosphate esters with inorganic nanoparticles. In this work bis-4-nitrophenyl phosphate (BNPP) was used as an agrochemical agent model. The BNPP interaction with zero-valent iron nanoparticles (ZVI NPs), in aqueous media, was searched. The concentration of BNPP was 1000 times higher than the ZVI NPs concentration. The average size of the used iron nanoparticles was 10.2 ± 3.2 nm. The BNPP degradation process was monitored by means of UV-visible method. Initially, the BNPP hydrolysis happens through the P-O bonds breaking-off under the action of the ZVI NPs. Subsequently, the nitro groups were reduced to amine groups. The overall process takes place in 10 minutes. The reaction products were identified employing standard substances in adequate concentrations. The iron by-products were isolated and characterized by X-RD. These iron derivatives were identified as magnetite (Fe 3 O 4 ) and/or maghemite (γ-Fe 2 O 3 ) and lepidocrocite (γ-FeOOH). A suggested BNPP degradation mechanism will be discussed. (paper)

  14. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  15. The effect of two bleaching agents on the phosphate concentration of the enamel evaluated by Raman spectroscopy: An ex vivo study

    Directory of Open Access Journals (Sweden)

    Sokkalingam Mothilal Venkatesan

    2012-01-01

    Full Text Available Aim : The aim of this ex vivo study was to evaluate the effect of in-office bleaching agents,-35% and 38% hydrogen peroxide containing bleaching agents, on the phosphate concentration of the enamel evaluated by Raman spectroscopy. Materials and Methods : Forty noncarious, craze-free human maxillary incisors, extracted for periodontal reasons, were used in this study. Baseline Raman spectra from each specimen were obtained before the application of the bleaching agent to assess the phosphate content present in the teeth. The teeth were divided into two groups: Group A - bleached with pola office bleach (35% hydrogen peroxide, potassium nitrate (light activated. Group B - bleached with opalescence Xtra bleach (38% hydrogen peroxide potassium nitrate and fluoride (chemical activated. After the bleaching procedure, the treated specimens were taken to obtain Raman spectra to assess the phosphate loss after bleaching treatment. Results : The results showed that the chemically activated bleaching agent showed less phosphate loss when compared with the light activated bleaching agent. Conclusion : Within the limitations of this study, it can be concluded that the chemically activated bleaching agent showed minimal phosphate loss when compared to light activated bleaching agent. The chemically activated bleaching agent was better than the light activated bleaching agent when values were evaluated statistically.

  16. The effect on the bones of condensed phosphate when used as food additives: Its Importance in Relation to Preventive Medicine.

    Science.gov (United States)

    Omoto, M; Imai, T; Seki, K; Nomura, R; Otahara, Y

    1997-10-01

    Based on the fact that chemical products such as binding agents are produced by mixing three kinds of phosphates with different ratios, we mixed metaphosphate, polyphosphate and pyrophosphate. Each was made to Na-phosphate, K-phosphate, and Ca-phosphate and each was mixed with commercial feeds so that the content of P would be approximately 0.1, 0.15, 0.3, 0.4, 0.6 and 1.0%. The prepared pellets were given to ICR, CF # 1 and AKR strains of mice at 29 days of age for 680 days and observations were made through this experimental period at different stages. The observations were also carried out on the mice administered with the experimental feeds for 1.5 months from 9 to 10.5 months of age. The observations were compared with those of the control group at all times. As a result, plasma 1 α, 25 (OH)(2) D(3) and P levels were always significantly higher in the phosphate administered groups relative to the control. Urine P and Fe increased while urine Ca decreased in the phosphate-treated groups.The effect of phosphates on the bones was studied taking soft X-ray pictures of hind legs and applying microdensitometry to them. Through these observations we recognized thinning of the cortex of bones, reduction of marrow trabecules and development of osteophyte. Histological observations disclosed that changes in knee joint tissues were apparent; that is, a decrease in or an irregular loss of the number of cells in superficial, intermediate, and radial strata of the joint cartilage, proliferation of subchondral bone, and the development of osteophytes were noted. As for muscles, diameters of musclar fibers became smaller; in particular, type II fibers showed greater shrinkage. Regarding kidneys, swelling and atrophy of glomerular capillaries, proliferation of mesangial cells, nephroselerosis, swelling, thinning, and loss of tubular epithelium, interstitial tissue inflammation, development of cylindruria, and deposition of calcium were observed. All these changes seem to be a

  17. Post-adsorption process of Yb phosphate nano-particle formation by Saccharomyces cerevisiae

    Science.gov (United States)

    Jiang, MingYu; Ohnuki, Toshihiko; Tanaka, Kazuya; Kozai, Naofumi; Kamiishi, Eigo; Utsunomiya, Satoshi

    2012-09-01

    functional groups but also as a substrate inducing the nucleation of phosphate nanoparticles. Stable nano-sized Yb phosphate precipitates formed on yeast cell surfaces in the present study, which implies that this post-adsorption nano-particle formation process caused by microbial cells should be one of the important processes governing the long-term migration of heavy rare earth elements and presumably trivalent actinides in geological repository.

  18. Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre.

    Science.gov (United States)

    Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V

    2011-11-01

    The smallest phototrophic protists (protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (Pprotists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... patterns. Four insoluble phosphate sources; purulia rock phosphate (PRP), mussourie rock phosphate. (MRP) ... community composition analysis (Garland, 1996a) and ..... the threshold level that enabled only a few species to.

  20. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase

    International Nuclear Information System (INIS)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose

    2008-01-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  1. Study of the action of blast deck charge in rocky soils

    Directory of Open Access Journals (Sweden)

    Boiko V.V.

    2017-04-01

    Full Text Available Blasting (B in the industry, including the mining extraction of minerals, are carried out mostly with the use of blasthole charges that systematically distributed on the block that is undermined, by individual groups. The latter are blasted according to the scheme of short-delay firing (SDF through the intervals that are accepted not less than 20 Ms. Thus, the seismic effect of group charge explosion, consisting of individual blasthole charges and that actually is a group located charge determined by the formula of concentrated charge. Blast deck charges are effectively used in the driving of the trenches in the mining, formation of screens and cracks near the security objects. Only this method of performing blasting allows to define seismic effect in the transition from one diameter of a charge to another, as well as to determine the actual number of detonated charges in one group, which may differ from the calculated in drilling and blasting project. The work analyzes the physical essence of processes happened while blasting of blast deck charges. The effect of the orientation of the seismic action of blasting of blast deck charges towards the allocation line of charges is investigated. The results of generalized dependence of the speed of the displacement of the ground by the blast parameters and epicentral distance are obtained. We demonstrate with specific examples that blast deck charges that blasting simultaneously make a major chain of the career massive explosions at mining. Keywords: seismic fluctuations; the number of charges; the interaction of charges; the distance between the charges; the coefficients of the seismicity and the attenuation of the intensity of the waves; the unit charge; blast deck and blasthole charges; phase shifting; effective charge.

  2. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    Science.gov (United States)

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  3. Comparison of the postoperative analgesic effects of naproxen sodium and naproxen sodium-codeine phosphate for arthroscopic meniscus surgery

    Directory of Open Access Journals (Sweden)

    Cagla Bali

    2016-04-01

    Full Text Available ABSTRACT BACKGROUND AND OBJECTIVES: Nonsteroidal anti-inflammatory drugs (NSAIDs are frequently used to control arthroscopic pain. Addition of oral effective opioid "codeine" to NSAIDs may be more effective and decrease parenteral opioid consumption in the postoperative period. The aim of this study was to compare the efficacy and side effects of naproxen sodium and a new preparation naproxen sodium-codeine phosphate when administered preemptively for arthroscopic meniscectomy. METHODS: Sixty-one patients were randomized into two groups to receive either oral naproxen sodium (Group N or naproxen sodium-codeine phosphate (Group NC before surgery. The surgery was carried out under general anesthesia. Intravenous meperidine was initiated by patient-controlled analgesia (PCA for all patients. The primary outcome measure was pain score at the first postoperative hour assessed by the Visual Analogue Scale (VAS. Sedation assessed by Ramsey Sedation Scale, first demand time of PCA, postoperative meperidine consumption, side effects and hemodynamic data were also recorded. RESULTS: The groups were demographically comparable. Median VAS scores both at rest and on movement were significantly lower in Group NC compared with Group N, except 18th hour on movement (p 0.05. CONCLUSIONS: The combination of naproxen sodium-codeine phosphate provided more effective analgesia than naproxen sodium and did not increase side effects.

  4. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  5. Tracking degradation in lithium iron phosphate batteries using differential thermal voltammetry

    Science.gov (United States)

    Shibagaki, Toshio; Merla, Yu; Offer, Gregory J.

    2018-01-01

    Diagnosing the state-of-health of lithium ion batteries in-operando is becoming increasingly important for multiple applications. We report the application of differential thermal voltammetry (DTV) to lithium iron phosphate (LFP) cells for the first time, and demonstrate that the technique is capable of diagnosing degradation in a similar way to incremental capacity analysis (ICA). DTV has the advantage of not requiring current and works for multiple cells in parallel, and is less sensitive to temperature introducing errors. Cells were aged by holding at 100% SOC or cycling at 1C charge, 6D discharge, both at an elevated temperature of 45 °C under forced air convection. Cells were periodically characterised, measuring capacity fade, resistance increase (power fade), and DTV fingerprints. The DTV results for both cells correlated well with both capacity and power, suggesting they could be used to diagnose SOH in-operando for both charge and discharge. The DTV peak-to-peak capacity correlated well with total capacity fade for the cycled cell, suggesting that it should be possible to estimate SOC and SOH from DTV for incomplete cycles within the voltage hysteresis region of an LFP cell.

  6. Biosynthesis and characterization of layered iron phosphate

    International Nuclear Information System (INIS)

    Zhou Weijia; He Wen; Wang Meiting; Zhang Xudong; Yan Shunpu; Tian Xiuying; Sun Xianan; Han Xiuxiu; Li Peng

    2008-01-01

    Layered iron phosphate with uniform morphology has been synthesized by a precipitation method with yeast cells as a biosurfactant. The yeast cells are used to regulate the nucleation and growth of layered iron phosphate. The uniform layered structure is characterized by small-angle x-ray diffraction (SAXD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages in organic–inorganic hybrid iron phosphate. The likely synthetic mechanism of nucleation and oriented growth is discussed. The electrical conductivity of hybrid iron phosphate heat-treated at different temperatures is presented

  7. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  8. Method of decomposing treatment for radioactive organic phosphate wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1985-01-01

    Purpose: To decompose the organic phosphoric-acid ester wastes containing radioactive material, which is produced from spent fuel reprocessing facilities, into inorganic materials using a simple device, under moderate conditions and at high decomposing ratio. Method: Radioactive organic phosphate wates are oxidatively decomposed by H 2 O 2 in an aqueous phosphoric-acid solution of metal phosphate salts. Copper phosphates are used as the metal phosphate salts and the decomposed solution of the radioactive organic phosphate wastes is used as the aqueous solution of the copper phosphate. The temperature used for the oxidizing decomposition ranges from 80 to 100 0 C. (Ikeda, J.)

  9. Monte Carlo Simulations of Phosphate Polyhedron Connectivity in Glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    1999-12-21

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  10. The CHARGE Association: Implications for Teachers.

    Science.gov (United States)

    Jones, Thomas W.; Dunne, Michele T.

    1988-01-01

    CHARGE association is described as a diagnostic label for a group of congenital malformations, including coloboma, heart defects, atresia choanae, retarded postnatal growth/central nervous system defects, genital hypoplasia, and ear deformities. Etiology and characteristics of the CHARGE association are discussed, along with implications for…

  11. The effect of different phosphate ion concentrations and ph of the phosphate buffer on lipase bioproduction by rhizopus oligosporus

    International Nuclear Information System (INIS)

    Haq, I.; Ali, S.; Awan, U.F.; Javed, W.; Mirza, S.

    2005-01-01

    In the present investigation, we report the effect of phosphate ion concentration and different ph of the phosphate buffer (as diluent) on lipase bioproduction by Rhizopus oligosporus. For this purpose, solid state fermentation was employed. Different agricultural by-products such as wheat bran, rice husk, almond meal, soybean meal and sunflower meal were used as substrate. The maximum lipase activity (72.60 U/g) was observed with the almond meal. Addition of phosphate ions (K/sub 2/HPO/sub 4/) influenced the lipase production. The ph of the phosphate buffer (7.0) was found to be effective for higher yield of lipase. (author)

  12. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.

    Science.gov (United States)

    Hoemann, Caroline D; Hurtig, Mark; Rossomacha, Evgeny; Sun, Jun; Chevrier, Anik; Shive, Matthew S; Buschmann, Michael D

    2005-12-01

    Microfracture is a surgical procedure that is used to treat focal articular cartilage defects. Although joint function improves following microfracture, the procedure elicits incomplete repair. As blood clot formation in the microfracture defect is an essential initiating event in microfracture therapy, we hypothesized that the repair would be improved if the microfracture defect were filled with a blood clot that was stabilized by the incorporation of a thrombogenic and adhesive polymer, specifically, chitosan. The objectives of the present study were to evaluate (1) blood clot adhesion in fresh microfracture defects and (2) the quality of the repair, at six months postoperatively, of microfracture defects that had been treated with or without chitosan-glycerol phosphate/blood clot implants, using a sheep model. In eighteen sheep, two 1-cm2 full-thickness chondral defects were created in the distal part of the femur and treated with microfracture; one defect was made in the medial femoral condyle, and the other defect was made in the trochlea. In four sheep, microfracture defects were created bilaterally; the microfracture defects in one knee received no further treatment, and the microfracture defects in the contralateral knee were filled with chitosan-glycerol phosphate/autologous whole blood and the implants were allowed to solidify. Fresh defects in these four sheep were collected at one hour postoperatively to compare the retention of the chitosan-glycerol phosphate/blood clot with that of the normal clot and to define the histologic characteristics of these fresh defects. In the other fourteen sheep, microfracture defects were made in only one knee and either were left untreated (control group; six sheep) or were treated with chitosan-glycerol phosphate/blood implant (treatment group; eight sheep), and the quality of repair was assessed histologically, histomorphometrically, and biochemically at six months postoperatively. In the defects that were examined

  13. Structural study and physical properties of a new phosphate KCuFe(PO4)2

    International Nuclear Information System (INIS)

    Badri, Abdessalem; Hidouri, Mourad; Lopez, Maria Luisa; Pico, Carlos; Wattiaux, Alain; Ben Amara, Mongi

    2011-01-01

    Single crystals of a new phosphate KCuFe(PO 4 ) 2 have been prepared by the flux method and its structural and physical properties have been investigated. This compound crystallizes in the monoclinic system with the space group P2 1 /n and its parameters are: a=7.958(3) A, b=9.931(2) A, c=9.039(2) A, β=115.59(3) o and Z=4. Its structure consists of FeO 6 octahedra sharing corners with Cu 2 O 8 units of edge-sharing CuO 5 polyhedra to form undulating chains extending infinitely along the b-axis. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the K + ions are located. The Moessbauer spectroscopy results confirm the exclusive presence of octahedral Fe 3+ ions. The magnetic measurements show the compound to be antiferromagnetic with C m =5.71 emu K/mol and θ=-156.5 K. The derived experimental effective moment μ ex =6.76μ B is somewhat higher than the theoretical one of μ th =6.16μ B , calculated taking only into account the spin contribution for Fe 3+ and Cu 2+ cations. Electrical measurements allow us to obtain the activation energy (1.22 eV) and the conductivity measurements suggest that the charge carriers through the structure are the potassium cations. -- Graphical abstract: A projection along the [101] direction of the structure showing the six-edged tunnels, occupied by the K + ions. Display Omitted Highlights: → The reported structure is of a new type. → The structural model is supported by a Moessbauer spectroscopy study. → The magnetic susceptibility results are reported. → The electrical properties are discussed.

  14. Investigation into the role of NaOH and calcium ions in the synthesis of calcium phosphate nanoshells

    Directory of Open Access Journals (Sweden)

    C. H. Yeo

    2012-03-01

    Full Text Available Calcium phosphate (CaP nanoshells were prepared using negatively charged liposomes (1,2-dioleoyl-sn-glycero-3-phosphate sodium salt (DOPA as a template by base titration synthesis at various concentrations of NaOH and calcium ions. The elemental composition, morphology, particle size, particle size distribution and zeta potential of the products were determined via various characterisation techniques, such as energy-dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, dynamic light scattering (DLS, laser Doppler velocimetry (LDV and Fourier transform infrared spectroscopy (FTIR. The best results showed that stable spherical CaP nanoshells with a mean particle size of 197.5 ± 5.8 nm and a zeta potential of -34.5 ± 0.6 mV were successfully formed when 0.100 M sodium hydroxide (NaOH and 0.100 M calcium ions were used. Moreover, an optimal pH of 10.52 and a final Ca/P molar ratio of 0.97 were achieved under these conditions.

  15. Availability of phosphorus from ground phosphate rocks for rape (Brassica napus L.)

    International Nuclear Information System (INIS)

    Zhu Yongyi; Yang Juncheng; Chen Jingjian; Liu Delin; Zhu Zhaomin; Wu Ming

    1996-09-01

    The availability of phosphorus from the ground phosphate rock, which is provided by Kaiyang mining plant, Guizhou Province of China, is investigated in pot experiment with acid red soil for rape (Brassica napus L. No. 13 Xingyou, Chinese Olive Group) by 32 P indirect labelling method. The results show that the yield increased significantly by applying ground phosphate rock (GPR) and the efficiency of GPR is equal to 17.1% of that from calcium superphosphate. It is calculated as that the fertilizer efficiency of 1 kg of calcium superphosphate is the same as that of 8.53 kg ground phosphate rock in Guizhou Province of China. The effect on the grain yield is evaluated by pot and field microplot experiments, and it is found that the main effect is to increase the pod number. The fertilizer efficiency in field experiment is the same as that in pot experiment. (9 refs., 1 fig., 7 tabs.)

  16. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  17. The EIS investigation of powder polyester coatings on phosphated low carbon steel: The effect of NaNO2 in the phosphating bath

    International Nuclear Information System (INIS)

    Jegdic, B.V.; Bajat, J.B.; Popic, J.P.; Stevanovic, S.I.; Miskovic-Stankovic, V.B.

    2011-01-01

    Highlights: → The effect of NaNO 2 on surface morphology of iron-phosphate coatings were determined. → Better corrosion stability of polyester coating on phosphated steel without NaNO 2 . → EIS results and microscopic examinations correlate well with adhesion measurements. - Abstract: The effect of different type of iron-phosphate coatings on corrosion stability and adhesion characteristic of top powder polyester coating on steel was investigated. Iron-phosphate coatings were deposited on steel in the novel phosphating bath with or without NaNO 2 as an accelerator. The corrosion stability of the powder polyester coating was evaluated by electrochemical impedance spectroscopy (EIS), adhesion by pull-off and NMP test, while surface morphology of phosphate coatings were investigated by atomic force microscopy (AFM). The adhesion and corrosion stability of powder polyester coatings were improved with pretreatment based on iron-phosphate coating deposited from NaNO 2 -free bath.

  18. The pH behavior of a 2-aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations

    Science.gov (United States)

    Myller, A. T.; Karhe, J. J.; Haukka, M.; Pakkanen, T. T.

    2013-02-01

    In this study a bifunctional 2-aminoethyl dihydrogen phosphate (AEPH2) was 1H and 31P NMR characterized in a pH range of 1-12 in order to determine the zwitterion properties in different pH regions in H2O and D2O solutions. NMR was also used to determine the pH range where AEPH2 exists as a zwitterion. The phosphate group has two deprotonation points, around pH 1 and 6, while the amino group deprotonates at pH 11. The zwitterion form of AEPH2 (NH3+sbnd CHsbnd CHsbnd OPOH) exists as the main ion between pH 1 and 6 in water solutions and also in the solid state.

  19. Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    Science.gov (United States)

    Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-05-01

    Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.

  20. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  1. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.; Regan, John M.

    2015-01-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  2. Changes in phosphorylation of adenosine phosphate and redox state of nicotinamide-adenine dinucleotide (phosphate) in Geobacter sulfurreducens in response to electron acceptor and anode potential variation

    KAUST Repository

    Rose, Nicholas D.

    2015-12-01

    © 2015 Elsevier B.V. Geobacter sulfurreducens is one of the dominant bacterial species found in biofilms growing on anodes in bioelectrochemical systems. The intracellular concentrations of reduced and oxidized forms of nicotinamide-adenine dinucleotide (NADH and NAD+, respectively) and nicotinamide-adenine dinucleotide phosphate (NADPH and NADP+, respectively) as well as adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) were measured in G. sulfurreducens using fumarate, Fe(III)-citrate, or anodes poised at different potentials (110, 10, -90, and -190mV (vs. SHE)) as the electron acceptor. The ratios of CNADH/CNAD+ (0.088±0.022) and CNADPH/CNADP+ (0.268±0.098) were similar under all anode potentials tested and with Fe(III)-citrate (reduced extracellularly). Both ratios significantly increased with fumarate as the electron acceptor (0.331±0.094 for NAD and 1.96±0.37 for NADP). The adenylate energy charge (the fraction of phosphorylation in intracellular adenosine phosphates) was maintained near 0.47 under almost all conditions. Anode-growing biofilms demonstrated a significantly higher molar ratio of ATP/ADP relative to suspended cultures grown on fumarate or Fe(III)-citrate. These results provide evidence that the cellular location of reduction and not the redox potential of the electron acceptor controls the intracellular redox potential in G. sulfurreducens and that biofilm growth alters adenylate phosphorylation.

  3. Radiological impact of use of phosphate fertilizers

    International Nuclear Information System (INIS)

    Shukla, V.K.; Chinnaesakki, S.; Sartandel, S.J.; Shanbhag, A.A.; Puranik, V.D.

    2003-01-01

    The paper describes the results of gamma spectrometric measurements of 238 U, 233 Th, 226 Ra and 40 K in rock phosphates and various types of phosphate fertilizers and by-products. The increase in soil natural radioactivity has been assessed for major Indian crops. No significant increase in soil natural radioactivity is expected due to the application of phosphate fertilizers for agricultural productions. (author)

  4. From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport

    KAUST Repository

    Bilić, Ante; Gale, Julian D.; Sanvito, Stefano

    2011-01-01

    A class of molecular ribbons, with almost-ideal charge transmission, that is weakly dependent on the anchoring structure or electrode crystalline orientation and easy to synthesize has been identified. Charge transport through two sets of aromatic nanoribbons, based on the pyrene and perylene motifs, has been investigated using density functional theory combined with the nonequilibrium Green's function method. The effects of wire length and multiple terminal thiolate groups at the junction with gold leads have been examined. For the oligopyrene series, an exponential drop in the conductance with the increase of the wire length is found. In contrast, the oligoperylene series of nanoribbons, with dual thiolate groups, exhibits no visible length dependence, indicating that the contacts are the principal source of the resistance. Between the Au(001) leads, the transmission spectra of the oligoperylenes display a continuum of highly conducting channels and the resulting conductance is nearly independent of the bias. The predictions are robust against artefacts from the exchange-correlation potential, as evidenced from the self-interaction corrected calculations. Therefore, oligoperylene nanoribbons show the potential to be the almost-ideal wires for molecular circuitry. © 2011 American Physical Society.

  5. From fused aromatics to graphene-like nanoribbons: The effects of multiple terminal groups, length and symmetric pathways on charge transport

    KAUST Repository

    Bilić, Ante

    2011-11-17

    A class of molecular ribbons, with almost-ideal charge transmission, that is weakly dependent on the anchoring structure or electrode crystalline orientation and easy to synthesize has been identified. Charge transport through two sets of aromatic nanoribbons, based on the pyrene and perylene motifs, has been investigated using density functional theory combined with the nonequilibrium Green\\'s function method. The effects of wire length and multiple terminal thiolate groups at the junction with gold leads have been examined. For the oligopyrene series, an exponential drop in the conductance with the increase of the wire length is found. In contrast, the oligoperylene series of nanoribbons, with dual thiolate groups, exhibits no visible length dependence, indicating that the contacts are the principal source of the resistance. Between the Au(001) leads, the transmission spectra of the oligoperylenes display a continuum of highly conducting channels and the resulting conductance is nearly independent of the bias. The predictions are robust against artefacts from the exchange-correlation potential, as evidenced from the self-interaction corrected calculations. Therefore, oligoperylene nanoribbons show the potential to be the almost-ideal wires for molecular circuitry. © 2011 American Physical Society.

  6. Exploring plant factors for increasing phosphorus utilization from rock phosphates and native soil phosphates in acidic soils

    International Nuclear Information System (INIS)

    Feng Guanglin; Xiong Liming

    2002-01-01

    Six plant species with contrasting capacity in utilizing rock phosphates were compared with regard to their responses to phosphorus starvation in hydroponic cultures. Radish, buckwheat and oil rapeseed are known to have strong ability to use rock phosphates while ryegrass, wheat and sesbania are less efficient. Whereas other plants acidified their culture solution under P starvation (-P), radish plants make alkaline the solution. When neutralizing the pH of the solutions cultured with plants under either -P or + P conditions, solutions with P starved buckwheat, rapeseed, and radish had a higher ability to solubilize Al and Fe phosphates than did those cultured with sesbania, ryegrass and wheat. Characterization of organic ligands in the solutions identified that citrate and malate were the major organic anions exuded by rapeseed and radish. Besides citrate and malate, buckwheat exuded a large amount of tartrate under P starvation. In contrast, ryegrass, wheat and sesbania secreted only a limited amount of oxalic acid, regardless of P status. Changes in activities of phosphoenolpyruvate carboxylase, acid phosphatase, and nitrate reductase in these plants were also compared under P- sufficient or -deficient conditions. The results indicated that plant ability to use rock phosphates or soil phosphates is closely related to their responses toward P starvation. The diversity of P starvation responses was discussed in the context of co-evolution between plants and their environment. Approaches to use plant factors to enhance the effectiveness of rock phosphates were also discussed. (author)

  7. Flotation separation of strontium via phosphate precipitation.

    Science.gov (United States)

    Thanh, Luong H V; Liu, J C

    2017-06-01

    Flotation separation of strontium (Sr) from wastewater via phosphate precipitation was investigated. While 37.33% of Sr precipitated at highly alkaline pH in the absence of PO 4 3- , it completely precipitated as Sr 3 (PO 4 ) 2 at a molar ratio ([PO 4 3- ]:[Sr 2+ ]) of 0.62 at a lower pH value. The presence of Ca 2+ hindered Sr precipitation, yet it could be overcome by increasing the PO 4 3- dose. Sodium dodecyl sulfate (SDS) was a better collector for dispersed air flotation of Sr 3 (PO 4 ) 2 than cetyl trimethyl ammonium bromide, or mixed collector systems of SDS and saponin. The highest separation efficiency of 97.5% was achieved at an SDS dose of 40 mg/L. The main mechanism in the precipitate flotation is adsorption of anionic SDS on the positively charged surface of colloidal Sr 3 (PO 4 ) 2 via electrostatic interaction. SDS enhanced the aggregation of Sr 3 (PO 4 ) 2 precipitates as the size increased from 1.65 to 28.0 μm, which was beneficial to separation as well.

  8. Antimicrobial activity of polyhexamethylene guanidine phosphate in comparison to chlorhexidine using the quantitative suspension method.

    Science.gov (United States)

    Vitt, A; Sofrata, A; Slizen, V; Sugars, R V; Gustafsson, A; Gudkova, E I; Kazeko, L A; Ramberg, P; Buhlin, K

    2015-07-17

    Polyhexamethylene guanidine phosphate (PHMG-P) belongs to the polymeric guanidine family of biocides and contains a phosphate group, which may confer better solubility, a detoxifying effect and may change the kinetics and dynamics of PHMG-P interactions with microorganisms. Limited data regarding PHMG-P activity against periodontopathogenic and cariogenic microorganisms necessitates studies in this area. Aim is to evaluate polyhexamethylene guanidine phosphate antimicrobial activity in comparison to chlorhexidine. Quantitative suspension method was used enrolling Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida albicans, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Streptococcus mutans and Lactobacillus acidophilus. Both tested antiseptics at their clinically-used concentrations, of 0.2% (w/v) and 1% (w/v), correspondingly provided swift bactericidal effects against S. aureus, P. aeruginosa, E. coli and C. albicans, A. actinomycetemcomitans and P. gingivalis with reduction factors higher than 6.0. Diluted polyhexamethylene guanidine phosphate and chlorhexidine to 0.05% continued to display anti-bacterial activity and decreased titers of standard quality control, periopathogens to below 1.0 × 10(3) colony forming units/ml, albeit requiring prolonged exposure time. To achieve a bactericidal effect against S. mutans, both antiseptics at all concentrations required a longer exposure time. We found that a clinically-used 1% of polyhexamethylene guanidine phosphate concentration did not have activity against L. acidophilus. High RF of polyhexamethylene guanidine phosphate and retention of bactericidal effects, even at 0.05%, support the use of polyhexamethylene guanidine phosphate as a biocide with sufficient anti-microbial activity against periopathogens. Polyhexamethylene guanidine phosphate displayed bactericidal activity against periopathogens and S. mutans and could potentially be applied in the management of oral

  9. The phosphate balance : current developments and future outlook

    NARCIS (Netherlands)

    Enk, van R.J.; Vee, van der G.; Acera, L.K.; Schuiling, R.; Ehlert, P.A.I.

    2011-01-01

    Phosphate is essential for agricultural production and therefore plays a key role in the global production of food and biofuels. There are no agricultural alternatives for phosphate, and a substantial fraction of our annual phosphate consumption is dispersed into the environment where it is largely

  10. The phosphate balance : Current developments and future outlook

    NARCIS (Netherlands)

    Enk, R.J. van; Acera, L.K.; Schuiling, R.D.; Ehlert, P.; de Wilt, J.G.; van Haren, R.J.F.

    2011-01-01

    Phosphate is essential for agricultural production and therefore plays a key role in the global production of food and biofuels. There are no agricultural alternatives for phosphate, and a substantial fraction of our annual phosphate consumption is dispersed into the environment where it is largely

  11. Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry

    DEFF Research Database (Denmark)

    Thingholm, Tine E; Jensen, Ole N

    2009-01-01

    The combination of immobilized metal affinity chromatography (IMAC) and mass spectrometry is a widely used technique for enrichment and sequencing of phosphopeptides. In the IMAC method, negatively charged phosphate groups interact with positively charged metal ions (Fe3+, Ga3+, and Al3...

  12. Radiological impacts of uranium recovery in the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.

    1981-01-01

    This article characterizes the occupational and public radiological health impacts associated with phosphate mining and milling. These impacts are related to the phosphate industry's uranium production potential and are compared with those associated with conventional uranium mining and milling. The radiological impacts resulting from occupational and nonoccupational exposures are assessed. Occupational exposures in phosphate facilities are compared to background exposures and radiological population dose assessments, which characterize important radionuclides and exposure pathways. The following conclusions were reached: (1) public consequences of phosphate mining will occur whether or not uranium is recovered as a by-product, (2) radiological consequences of phosphate mining may be comparable to those associated with uranium mining and milling per unit uranium production, (3) radiological impacts via surface waterways and crops fertilized with uranium-bearing phosphates are of minor consequence, and (4) major radiological public health problems associated with phosphate mining are related to radon and radon progeny exposures in structures built on reclaimed lands or with phosphate mining residues, although the magnitudes of these impacts are difficult to evaluate with current data

  13. Physico-chemical characterization of Ogun and Sokoto phosphate ...

    African Journals Online (AJOL)

    Gypsum, calcite and lime were associated with both rock phosphates indicating their liming potential in the soil. ORP was more soluble in water, probably because it ... fertilizers and direct application in crop production. Keywords: Phosphorus, apatite, crop production, fertilizer, Ogun rock phosphate, Sokoto rock phosphate ...

  14. Investigation of Phosphate Retention in some Allophanic and Non-Allophanic Nano-Clays from Karaj Formation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Monajjem

    2017-02-01

    Full Text Available Introduction: Nanoclays, due to their high specific surface area (SSA chemical and mechanical stabilities, and a variety of surface and structural properties are widely applied. Some of their applications are using them as nano composite polymers, heavy metal ions absorbents, catalysts, photochemical reaction fields, ceramics, paper fillings and coatings, sensors and biosensors. Nano clays and Clays are the most important components constructing soil ecosystems. The physical and chemical properties of soils are mainly depending on the type and amount their clay fraction pertaining to considerable nanoclays. Nano clays have been frequently used to eliminate environmental contaminants from soil and water. Nano clays have also an effective role in the phosphate sorption and desorption from soil solution. Phosphate retention is highly affected by the chemical bonds of the materials, cristalographic properties and pH. In clay size particles there are different structures of nano particles such as alominosilicates with nano ball and nano tube construction. Soils with andic properties have amorphous clay minerals such as allophone. Allophane has a diameter of 3 to 5 nano meter under a transmission electron microscope (TEM and its atomic Si/Al ratio ranges between 0.5 and 1. Allophane shows variable charge characteristics and high selectivity for divalent cations, and is highly reactive with phosphate. Materials and Methods: The objective of this research was to inspect the effect of soil components particularly clay and nanoclay on the sorption of phosphate. To achieve this goal, we studied the amount of phosphate sorption by the natural nanoclays. Samples with andic and vitric properties which were previously formed on volcanic ash in Karaj were chosen in 5 pedons as two Andic ( > 5 percent volcanic glass, > 25 percent P retention, pH NaF > 8.6 and Alo +½ Feo > 0.4 and non Andic soils.. After removal of organic materials, soluble salts, carbonates

  15. Bactericidal and Hemocompatible Coating via the Mixed-Charged Copolymer.

    Science.gov (United States)

    Fan, Xiao-Li; Hu, Mi; Qin, Zhi-Hui; Wang, Jing; Chen, Xia-Chao; Lei, Wen-Xi; Ye, Wan-Ying; Jin, Qiao; Ren, Ke-Feng; Ji, Jian

    2018-03-28

    Cationic antibacterial coating based on quaternary ammonium compounds, with an efficient and broad spectrum bactericidal property, has been widely used in various fields. However, the high density of positive charges tends to induce weak hemocompatibility, which hinders the application of the cationic antibacterial coating in blood-contacting devices and implants. It has been reported that a negatively charged surface can reduce blood coagulation, showing improved hemocompatibility. Here, we describe a strategy to combine the cationic and anionic groups by using mixed-charged copolymers. The copolymers of poly (quaternized vinyl pyridine- co- n-butyl methacrylate- co-methacrylate acid) [P(QVP- co- nBMA- co-MAA)] were synthesized through free radical copolymerization. The cationic group of QVP, the anionic group of MAA, and the hydrophobic group of nBMA were designed to provide bactericidal capability, hemocompatibility, and coating stability, respectively. Our findings show that the hydrophilicity of the copolymer coating increased, and its zeta potential decreased from positive charge to negative charge with the increase of the anionic/cationic ratio. Meanwhile, the bactericidal property of the copolymer coating was kept around a similar level compared with the pure quaternary ammonium copolymer coating. Furthermore, the coagulation time, platelet adhesion, and hemolysis tests revealed that the hemocompatibility of the copolymer coating improved with the addition of the anionic group. The mixed-charged copolymer combined both bactericidal property and hemocompatibility and has a promising potential in blood-contacting antibacterial devices and implants.

  16. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, B.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2004-01-01

    The article describes the potential and limitations for recovery of phosphate from secondary materials in the production process for white phosphorus. This thermal process involves the feeding of phosphate rock, cokes and pebbles to a furnace. The reducing conditions in the furnace promote the

  17. Optical and structural characterization of rare earth doped niobium phosphate glasses

    International Nuclear Information System (INIS)

    Sene, F.F.; Martinelli, J.R.; Gomes, L.

    2004-01-01

    Phosphate glasses containing up to 45mol% of niobium were obtained. X-ray diffraction, infrared, Raman, and optical absorption spectroscopy were used to analyze those materials. The refractive index varies from 1.70 to 1.85 as the amount of Nb increases. Niobium phosphate glasses with optical transparence in the (400-2500nm) range were produced. The cut off varied from 342nm to 378nm as a function of the Nb concentration. The cut off is due to the charge transfer O 2 ->Nb 5+ . Glasses containing 10mol% of Nb 2 O 5 are the most promising materials to be used as rare-earth ions hosts because they are chemically resistant, and show optical transparency in the spectral range of visible to infrared. Doping the glasses with 1-5mol% of Er, Ho, Pr, and Yb ions does not change the glass structure, as measured by X-ray diffraction, infrared, and Raman spectroscopy. The fluorescence lifetimes were determined for Nd, Yb, and Er, and the absorption cross-section were determined for all ions. The energy transfer in co-doped Yb-Er system was measured, and the lifetime of excited states and the luminescence efficiency were determined to be 91% for the Er 4 I 11/2 level, in the Yb-Er co-doped glasses

  18. Standard characterization of phosphate rock samples from the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Binh, Truong; Zapata, F.

    2002-01-01

    Phosphate rocks (PR) are phosphate-bearing minerals that vary widely in their inherent characteristics and consequently their agronomic potential. In the framework of a FAO/IAEA networked research project, the evaluation of the agronomic effectiveness of natural and modified PR products under a variety of soil climate and crop management conditions was carried out. The characterization of phosphate rocks is the first and essential step in evaluating their suitability for direct application. If several PR sources are utilized, standardized methods should be used for comparison purposes to determine their agronomic potential. This paper describes the standard characterization of phosphate rock products utilized in the project, in particular the mineralogical and crystallographic analyses, physical analyses, chemical composition and solubility in conventional reagents. A total of 28 phosphate rock samples from 15 countries were collected and analyzed in specialized laboratories. The data on mineralogy, chemical composition and solubility in conventional reagents are closely interrelated. An arbitrary classification of the reactivity of the PR samples was made based on the solubility indices in conventional reagents. On another hand, the results of the crystallographic parameters, calculated indices of absolute solubility, specific surface and porosity reflect the variability of the physical state and the sample pre-conditioning treatment of the analyzed products. A proper characterization of phosphate rock samples should provide the maximum of basic information that can be obtained in a cost-effective manner in normal chemical laboratories. Based on the results of this characterization, the following determinations are recommended: a description of the sample, major elemental (total P, Ca, Mg) composition, solubility in conventional reagents (neutral ammonium citrate, citric and formic acid) and particle size analysis. The classification of PR samples for direct

  19. Effect of Various Feed Phosphates on Biochemical Indices of Blood and Mineral Composition of Bones in Finishing Pigs

    Directory of Open Access Journals (Sweden)

    Zbigniew Dobrzański

    2010-01-01

    Full Text Available The aim of this study was to evaluate the effect of three different chemical feed phosphates on the blood biochemical indicators and the content of main minerals of bones in finishing pigs. Over a period of 85 days of fattening, monocalcium (MCP, Finnish product, dicalcium (DCP, Polish product and calcium-sodium (CSP, Russian product phosphates were used in fattener feeding. The feeding was based on standard mixtures of starter, grower and finisher type. Dicalcium phosphate was produced according to the new, pro-ecological technology based on phosphoric acid. The content of Ca, Na, P, solubility of P in citric acid, and the concentration of undesirable substances (As, Cd, F, Hg and Pb were determined in feed phosphates. At the end of the fattening period, blood was collected from 36 finishing pigs (12 from each group and the following biochemical indicators were determined in the serum: enzymatic activity of aspartate aminotransferase (AST, alanine aminotransferase (ALT, γ-glutamyltransferase (GGT, creatine kinase (CK, lactic dehydrogenase (LDH, lactic acid (LA; the concentration of total protein, albumins, glucose, urea, creatinine, content of triglycerides, cholesterol and its high density lipoproteins (HDL and low density lipoproteins (LDL fractions, and mineral components concentration (Ca, Cl, Cu, Fe, K, Mg, Na, P, Zn. Basic macroelement content (Ca, Mg, P was determined in the thigh bones from 30 pigs (10 from each group. Significant differences (p < 0.05 between groups were observed only in some biochemical indicators, i.e. CK, LDH and LA. The highest content of Ca, Mg and P was found in the bones of pigs fed mixtures supplemented with DCP which indicates improved bioavailability of main macroelements from that phosphate.

  20. Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects.

    Science.gov (United States)

    Fiyaz, Mohamed; Ramesh, Amitha; Ramalingam, Karthikeyan; Thomas, Biju; Shetty, Sucheta; Prakash, Prashanth

    2013-07-01

    This study was designed to compare inorganic salivary calcium, phosphate, flow rate and pH of un-stimulated saliva and oral hygiene of healthy subjects, patients with periodontitis and dental caries and to correlate salivary calcium level with the number of intact teeth. The present study consisted of 90 patients aged between 18 and 55 years and were divided into three groups, periodontitis, dental caries and controls. Oral hygiene index-simplified, probing pocket depth, clinical attachment level and number of teeth present, teeth with active carious lesions were recorded. Salivary flow rate and pH was recorded and subjected to biochemical investigation. Estimation of inorganic calcium and phosphate was performed by colorimetric method. Results showed statistically significant increase in salivary inorganic calcium and phosphate levels, poor oral hygiene status, pH and salivary flow rate in patients with periodontitis when compared with dental caries group and controls. Individuals who have increased salivary inorganic calcium, phosphate, pH, flow rate and maintain poor oral hygiene could be at a higher risk for developing periodontitis and may have less dental caries and more number of intact teeth.

  1. Complexation of neptunium(V) by salicylate, phthalate and citrate ligands in a pH 7.5 phosphate buffered system

    International Nuclear Information System (INIS)

    Rees, T.F.; Daniel, S.R.

    1984-01-01

    Conditional stability constants, enthalpies and entropies of complexation at pH 7.5 and ionic strength 0.1 have been determined for neptunium(V) complexes of phosphate, salicylate, phthalate and citrate. Results are given and discussed. At pH 7.5 salicylate does not form a complex with neptunium(V) due to the low charge density of the NpO 2 + ion and incomplete ionization of the salicylate ion. In all cases, only 1:1 complexes were identified. (U.K.)

  2. Radio phosphorus kinetics in the blood of sheep supplemented with dicalcium phosphate, mono ammonium phosphate, triple superphosphate and Tapira rock phosphate

    International Nuclear Information System (INIS)

    Abdalla, A.L.

    1992-01-01

    With the aim to study the kinetics of radio phosphorus ( 32 P) in the blood of animals supplemented with dicalcium phosphate (BIC), mono ammonium phosphate (MAP), triple superphosphate (SPT) and Tapira rock phosphate (TAP), 32 male sheep were kept in metabolic cages at the Animal Science Section / CENA - USP. Plasma was obtained by centrifugation and the specific activity, rate of disappearance and half life of 32 P in plasma were determined. In the red blood cells were determined the uptake rate of the radioisotope, the rate of disappearance and half life of 32 P up taken. It was observed a statistical significant difference (p 32 P in the plasma and erythrocytes. The specific activity and half life of 32 P in the plasma were statistically different (p<0,10) among sheep receiving the different phosphorus sources; the same was observed in respect to the red blood cells. It was concluded that the supplemented phosphorus source given in the diet of sheep may affect the kinetics of the radio phosphorus in the blood after been intravenously injected. (author)

  3. Expression, purification and preliminary crystallographic analysis of sucrose phosphate synthase (SPS) from Halothermothrix orenii

    International Nuclear Information System (INIS)

    Huynh, Frederick; Tan, Tien-Chye; Swaminathan, Kunchithapadam; Patel, Bharat K. C.

    2004-01-01

    The first crystallographic study of a sucrose phosphate synthase from H. orenii, an organism that is both thermophilic and halophilic, is reported. The protein crystal diffracts X-rays to 3.01 Å. This is the first report of the crystallization of a sucrose phosphate synthase (SPS; EC 2.4.1.14). It also constitutes the first study of a sucrose phosphate synthase from a non-photosynthetic thermohalophilic anaerobic bacterium, Halothermothrix orenii. The purified recombinant spsA protein has been crystallized in the monoclinic space group C2, with unit-cell parameters a = 154.2, b = 47.9, c = 72.3 Å, β = 103.16°, using the hanging-drop vapour-diffusion method. The crystal diffracts X-rays to a resolution limit of 3.01 Å. Heavy-metal and halide-soaking trials are currently in progress to solve the structure

  4. Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus.

    Directory of Open Access Journals (Sweden)

    Milan Žižić

    Full Text Available The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+ on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC, and polyphosphates, UDPG and ATP (31P NMR was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+, indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.

  5. PA21, a novel phosphate binder, improves renal osteodystrophy in rats with chronic renal failure.

    Science.gov (United States)

    Yaguchi, Atsushi; Tatemichi, Satoshi; Takeda, Hiroo; Kobayashi, Mamoru

    2017-01-01

    The effects of PA21, a novel iron-based and non-calcium-based phosphate binder, on hyperphosphatemia and its accompanying bone abnormality in chronic kidney disease-mineral and bone disorder (CKD-MBD) were evaluated. Rats with adenine-induced chronic renal failure (CRF) were prepared by feeding them an adenine-containing diet for four weeks. They were also freely fed a diet that contained PA21 (0.5, 1.5, and 5%), sevelamer hydrochloride (0.6 and 2%) or lanthanum carbonate hydrate (0.6 and 2%) for four weeks. Blood biochemical parameters were measured and bone histomorphometry was performed for femurs, which were isolated after drug treatment. Serum phosphorus and parathyroid hormone (PTH) levels were higher in the CRF rats. Administration of phosphate binders for four weeks decreased serum phosphorus and PTH levels in a dose-dependent manner and there were significant decreases in the AUC0-28 day of these parameters in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups compared with that in the CRF control group. Moreover, osteoid volume improved significantly in 5% of the PA21 group, and fibrosis volume and cortical porosity were ameliorated in 5% PA21, 2% sevelamer hydrochloride, and 2% lanthanum carbonate hydrate groups. These results suggest that PA21 is effective against hyperphosphatemia, secondary hyperparathyroidism, and bone abnormalities in CKD-MBD as sevelamer hydrochloride and lanthanum carbonate hydrate are, and that PA21 is a new potential alternative to phosphate binders.

  6. Issues of natural radioactivity in phosphates

    International Nuclear Information System (INIS)

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-01-01

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs

  7. A phosphate-starvation-inducible outermembrane protein of Pseudomonas fluorescens Ag1 as an immunological phosphate-starvation marker

    DEFF Research Database (Denmark)

    Leopold, Kristine; Jacobsen, Susanne; Nybroe, Ole

    1997-01-01

    A phosphate-starvation-inducible outer-membrane protein of Pseudomonas fluorescens Ag1, expressed at phosphate concentrations below0.08-0.13 mM, was purified and characterized. The purification method involved separation of outer-membrane proteins by SDS-PAGE andextraction of the protein from...... nitrocellulose or PVDF membranes after electrotransfer of proteins to the membranes. The N-terminal amino acidsequence of the purified protein, called Psi1, did not show homology to any known proteins, and in contrast to the phosphate-specific porin OprP ofP. aeruginosa its mobility in SDS-PAGE was not affected...

  8. Isolation of phosphate solubiliser fungi from Araza rhizosphere

    International Nuclear Information System (INIS)

    Vera, Diana Fernanda; Perez, Hernando; Valencia Hernando

    2002-01-01

    Araza is an eatable plant, original from the Amazon region, which has been described as a promising species for commercialization (Quevedo 1995). This plant has high productivity even in low content phosphate soil but the presence of phosphate solubilizing microorganisms may contribute to increase this element availability. In this study we report the isolation and characterization of solubilizing fungi processed using the soil washing method, from soil samples were araza is cultivated at two regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizing phosphate were obtained from 2 different sources. The most important species that solubilized phosphate from calcium were Trichoderma aureoviride, Aspergillus aculeatus, Trichoderma strain 1 y Trichoderma strain 2 and for phosphate from iron: Aspergillus oryzae, Paecilomyces strain 3, Gongronella butleri and Fusarium oxysporum

  9. Dielectric aluminium phosphate thin films. Couches minces dielectriques de phosphate d'aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Daviero, S. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France)); Avinens, C. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France)); Ibanez, A. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France)); Giuntini, J.C. (Lab. Physicochimie des Materiaux Solides, 34 -Montpellier (France)); Philippot, E. (Lab. Physicochimie des Materiaux Solides, 34 - Montpellier (France))

    1993-04-01

    Aluminium phosphate thin films on silicium substrate have been carried out from tributylphosphate and aluminium acetylacetonate precursors in solution through the ''pyrosol'' process. It can be observed a large range of chemical analysis in terms of experimental conditions. These thin films have been characterized by X-ray diffraction and infrared spectrometry. Their electrical characteristics, defined from direct current and alternative current measurements, are quite different to those of the crystallized phosphate and can be explained by P-O and Al-O ''dangling bond'' existence. (orig.).

  10. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the

  11. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2013-01-01

    Full Text Available A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB and organic acids (oxalic & malic on phosphate (P solubilization from phosphate rock (PR and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM, and PSB strain (Bacillus sp. were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1, plant P uptake (0.78 P pot−1, and plant biomass (33.26 mg. Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1 compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.

  12. Charge splitters and charge transport junctions based on guanine quadruplexes

    Science.gov (United States)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  13. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    Science.gov (United States)

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  14. The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid

    OpenAIRE

    Jorjani, Esmaeil; Shahbazi, Malek

    2016-01-01

    In this study, solvent extraction and precipitation stripping were used to produce rare earth elements (REEs). Tributyl phosphate (TBP) was used to extract yttrium, lanthanum, cerium, and neodymium from an aqueous solution produced by nitric acid leaching of apatite concentrate. In the extraction stage, the effects of TBP concentration, pH, contact time, temperature, and phase ratio were investigated. The results show that about 95%, 90%, 87% and 80% of neodymium, cerium, lanthanum, and yttri...

  15. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells

    Directory of Open Access Journals (Sweden)

    Igor A. Khlusov

    2018-06-01

    Full Text Available Mesenchymal stem cells (MSCs and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP surfaces and their electrical potential (EP at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs or prenatal stromal cells from the human lung (HLPSCs were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.

  16. Photoelectron spectroscopy of phosphites and phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Findley, G.L.; McGlynn, S.P.

    1981-01-01

    The ultraviolet photoelectron spectra (UPS) of trimethyl and triethyl phosphite, trimethyl and triethyl phosphate and four substituted phosphates are presented. Assignments are based on analogies to the UPS of phosphorus trichloride and phosphoryl trichloride and are substantiated by CNDO/2 computations. The mechanisms of P-O (axial) bond formation is discussed.

  17. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    Science.gov (United States)

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.

  18. Phosphate uptake kinetics for four species of submerged freshwater macrophytes measured by a 33P phosphate radioisotope technique

    DEFF Research Database (Denmark)

    Christiansen, Nina Høj; Andersen, Frede Østergaard; Jensen, Henning S.

    2016-01-01

    Phosphate (Pi) uptake kinetics were determined in shoot and root tissues for four freshwater macrophyte species, Littorella uniflora, Potamogeton perfoliatus, Myriophyllum alterniflorum and Elodea canadensis, using a radioactive 33P phosphate technique. Collection of plant material in the oligotr...

  19. Phosphate barrier on pore-filled cation-exchange membrane for blocking complexing ions in presence of non-complexing ions

    Science.gov (United States)

    Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.

    2018-06-01

    In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.

  20. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  1. Uranyl phosphate mineral in Gapyeong area

    International Nuclear Information System (INIS)

    Chung, S.J.

    1980-01-01

    An uranyl phosphate crystal from Gapeong area is studied by means of single crystal x-ray diffraction and electron microscopic qualitative analysis of chemical contents. The crystal is identified as meta-ankoleite which has a unit cell of super structure with a=b=6.99 A, c=17.69 A and space group P4 2 22. There exists some indication in the total fluorescent spectrum of the sample that potassium may be partially substituted by calcium. The chemical formula of this meta-ankoleite may be expressed by Ksub(1-2x)Casub(x)(UO 2 PO 4 ) (H 2 O)sub(3-x). (Author)

  2. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  3. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  4. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    Science.gov (United States)

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  5. Availability of native and added phosphates for the soil

    International Nuclear Information System (INIS)

    Scivittaro, W.B.; Boaretto, A.E.; Muraoka, T.

    1995-01-01

    In superficial composite samples of two Red-Yellow Latosols with different physical and chemical properties, analyses were carried out on inorganic form of phosphorus as well as the availability of native and added phosphates. The method applied was soil phosphorus fractionation associated with isotopic dilution technique ( 32 P). The samples were taken from pots containing soils incubated for a month with fluid phosphatic fertilizers (phosphoric acid and 10-30-00 suspension) and solid phosphatic fertilizers (mono ammonium phosphate and triple superphosphate), at the rate of 210 mg P 2 O 5 /kg of soil. A control treatment was included. In both soils the availability of inorganic phosphorus fractions decreased at the following order: H 2 O-P > Al-P > Fe-P > CA-P > occluded-P. The water soluble and aluminium phosphates represented the main source of available P for the newly fertilizer, the iron phosphates were also an important source of available phosphorus. The soil phosphorus fixing capacity influenced the availability of native and added phosphates. (author). 17 refs, 3 tabs

  6. Theoretical studies on the effect of benzene and thiophene groups on the charge transport properties of Isoindigo and its derivatives

    Science.gov (United States)

    Jia, Xu-Bo; Wei, Hui-Ling; Shi, Ya-Ting; Shi, Ya-Rui; Liu, Yu-Fang

    2017-12-01

    In this work, the charge transport properties of Isoindigo (II) and its derivatives which have the same hexyl chain were theoretically investigated by the Marcus-Hush theory combined with density functional theory (DFT). Here we demonstrate that the changes of benzene and thiophene groups in molecular structure have an important influence on the charge transport properties of organic semiconductor. The benzene rings of II are replaced by thiophenes to form the thienoisoindigo (TII), and the addition of benzene rings to the TII form the benzothienoisoindigo (BTII). The results show that benzene rings and thiophenes change the chemical structure of crystal molecules, which lead to different molecule stacking, thus, the length of hydrogen bond was changed. A shorter intermolecular hydrogen bond lead to tighter molecular stacking, which reduces the center-to-center distance and enhances the ability of charge transfer. At the same time, we theoretically demonstrated that II and BTII are the ambipolar organic semiconductor. BTII has better carrier mobility. The hole mobility far greater than electron mobility in TII, which is p-type organic semiconductor. Among all hopping path, we find that the distance of face-to-face stacking in II is the shortest and the electron-transport electronic coupling Ve is the largest, but II has not a largest anisotropic mobility, because the reorganization energy has a greater influence on the mobility than the electronic coupling. This work is helpful for designing ambipolar organic semiconductor materials with higher charge transport properties by introducing benzene ring and thiophene.

  7. Regularities in Low-Temperature Phosphatization of Silicates

    Science.gov (United States)

    Savenko, A. V.

    2018-01-01

    The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.

  8. Geology, mineralogy, geochemistry and origin of phosphates from Jandia, Cansa Perna, Itacupim (Para) and Pirocaua and Trauira (Maranhao)

    International Nuclear Information System (INIS)

    Costa, M. L. da.

    1980-01-01

    The phosphate occurrences of Northeastern Para and Northwestern Maranhao were formed by strong lateritic weathering of phosphorus-rich Precambrian rocks. The rock formation affected by those processes were phyllites and schists of the Gurupi Group in Cansa Perna and Pirocaua, a complex of felsic to mafic and ultramafic rocks metamorphosed in the greenschist facies in Itacupim and Trauira and probably phosphoritic sandstone in Jandia. The geology, the mineralogy of phosphates, oxides, hydroxides and silicates, the geochemistry of element distribution (aluminium, silicon, iron, calcium, etc) and trace elements distribution (strontium, rubidium, barium, rare earths, zirconium, niobium uranium, thorium, etc) and the phosphates origin are studied. (C.G.C.)

  9. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  10. Improved Interaction Potentials for Charged Residues in Proteins

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self-consistent, exper......Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self......, TIP4P or TIP3P; i.e., each water model requires specific water-charged molecule interaction potentials. New models (models 1 and 3) are thus described for both water models. Uncertainties in relative free energies of charged residues are ~2 kcal/mol with the new parameters, due to variations in system...

  11. Cell response of calcium phosphate based ceramics, a bone substitute material

    Directory of Open Access Journals (Sweden)

    Juliana Marchi

    2013-01-01

    Full Text Available The aim of this study was to characterize calcium phosphate ceramics with different Ca/P ratios and evaluate cell response of these materials for use as a bone substitute. Bioceramics consisting of mixtures of hydroxyapatite (HAp and β-tricalcium phosphate (β-TCP powders in different proportions were pressed and sintered. The physical and chemical properties of these bioceramics were then characterized. Characterization of the biological properties of these materials was based on analysis of cell response using cultured fibroblasts. The number of cells attached to the samples was counted from SEM images of samples exposed to cell culture solution for different periods. These data were compared by analysis of variance (ANOVA complemented by the Tukey's test. The TCP sample had higher surface roughness and lower density. The adherence and growth of FMM1 cells on samples from all groups was studied. Even though the different calcium based ceramics exhibited properties which made them suitable as bone substitutes, those with higher levels of β-TCP revealed improved cell growth on their surfaces. These observations indicated two-phase calcium phosphate based materials with a β-TCP surface layer to be a promising bone substitute.

  12. Alpha-tocopheryl phosphate: a novel, natural form of vitamin E.

    Science.gov (United States)

    Gianello, Robert; Libinaki, Roksan; Azzi, Angelo; Gavin, Paul D; Negis, Yesim; Zingg, Jean-Marc; Holt, Phillip; Keah, Hooi-Hong; Griffey, Annike; Smallridge, Andrew; West, Simon M; Ogru, Esra

    2005-10-01

    We have detected alpha-tocopheryl phosphate in biological tissues including liver and adipose tissue, as well as in a variety of foods, suggesting a ubiquitous presence in animal and plant tissue. Alpha-tocopheryl phosphate is a water-soluble molecule that is resistant to both acid and alkaline hydrolysis, making it undetectable using standard assays for vitamin E. A new method was therefore developed to allow the extraction of both alpha-tocopheryl phosphate and alpha-tocopherol from a single specimen. We used ESMS to detect endogenous alpha-tocopheryl phosphate in biological samples that also contained alpha-tocopherol. Due to the significance of these findings, further proof was required to unequivocally demonstrate the presence of endogenous alpha-tocopheryl phosphate in biological samples. Four independent methods of analysis were examined: HPLC, LCMS, LCMS/MS, and GCMS. Alpha-tocopherol phosphate was identified in all instances by comparison between standard alpha-tocopheryl phosphate and extracts of biological tissues. The results show that alpha-tocopheryl phosphate is a natural form of vitamin E. The discovery of endogenous alpha-tocopheryl phosphate has implications for the expanding knowledge of the roles of alpha-tocopherol in biological systems.

  13. P contribution derived from phosphate solubilizing microorganism activity, rock phosphate and SP-36 determination by isotope "3"2P technique

    International Nuclear Information System (INIS)

    Anggi Nico Flatian; Iswandi Anas; Atang Sutandi; Ishak

    2016-01-01

    The "3"2P isotope technique has been used to trace P nutrients in the soil and soil-plant systems. The use of the isotope "3"2P has made it possible to differentiate the P contribution derived from phosphate solubilizing microorganism activity and the fertilizer P in the soil. The aims of the study were to obtain the quantitative data of P contribution derived from phosphate-solubilizing microorganism activity (Aspergillus niger and Burkholderia cepacia), rock phosphate and SP-36 through P uptake by the plants using isotope "3"2P technique and also to study the effects on growth and production of corn plants. The results were showed that phosphate-solubilizing microorganism, rock phosphate and SP-36 was produced specific activity ("3"2P) lower than control. The results were indicated that all treatments could contribute P for the plants. The lower specific activity was caused by supply P from rock phosphate and SP-36, and also was caused by solubilized of unavailable "3"1P from PSM activity, which decreased specific activity on labeled soil. The combination of phosphate-solubilizing microorganism and SP-36 treatments produced the highest P contribution, significantly higher than control and SP-36 only. Phosphate derived from combination of microorganism and SP-36 treatments ranging from 56.06% - 68.54% after 50 days planting, after 35 days planting, 51.96% - 59.65% on stover, 46.33% - 47.70% on grain and 53.02% - 59.87% on corn cob. In addition, the treatments could significantly support the plant growth and yield. It is expressed by increased number of leave at 35 days after planting, dry weight of leave at 35 days after planting and dry weight of grain. (author)

  14. Physicochemical Properties of Calcium Phosphate Based Coating on Gutta-Percha Root Canal Filling

    Directory of Open Access Journals (Sweden)

    Afaf Al-Haddad

    2015-01-01

    Full Text Available Dental Gutta-percha (GP is a polymer based standard root canal filling material that has been widely used in dentistry. However, it has an inadequate sealing ability and adhesion to root dentin. The aim of this study is to coat GP with a bioactive material to enhance its sealing ability and adhesion to the root sealer and subsequently to the root dentin. The choice of coating method is limited by the nature of GP as it requires a technique that is not governed by high temperatures or uses organic solvents. In this study, biomimetic coating technique using 1.5 Tas-simulated body fluids (SBF was employed to coat the treated GP cones. The coated samples were characterized using Fourier transform infrared spectroscopy (FTIR, X-ray Diffraction (XRD, and field emission scanning electron microscope (FESEM. The presence of hydroxyl, carbonate, and phosphate groups was detected by FTIR while the formation of hydroxyapatite (HA/calcium phosphate was confirmed with XRD. FESEM revealed uniform, thin, and crystalline HA calcium phosphate coating. The adhesion of the coating to the GP substrate was assessed with microscratch technique. It was viable with cohesive failure mode. In conclusion, Tas-SBF is able to coat pretreated GP cones with a crystalline apatitic calcium phosphate layer.

  15. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei

    International Nuclear Information System (INIS)

    Kim, Mi-Sun; Shin, Dong Hae

    2009-01-01

    Sedoheptulose-7-phosphate isomerase (GmhA) from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9 Å resolution. The crystal belonged to the primitive orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.3, b = 84.2, c = 142.3 Å. A full structural determination is under way in order to provide insights into the structure–function relationships of this protein

  16. Clinical usefulness of scintigraphy with 99mTechnetium phosphates in rhabdomyolysis

    International Nuclear Information System (INIS)

    Aizawa, Nobuyuki; Hara, Yoshikuni; Suzuki, Yutaka; Akashi, Tsunehiro; Kamei, Tetsumasa; Uchiyama, Fujio; Mitsui, Tamito; Yamazaki, Yuki.

    1990-01-01

    We performed bone scans with 99m Technetium phosphates in 15 cases of clinically suspected rhabdomyolysis admitted to Chigasaki Tokushukai Hospital. Whole body scans were performed within 5 days from the onset of illness or admission. Accumulation of the radioactivity in the skeletal muscle was revealed in 13 of the 15 cases and the involved muscle groups were visualized vividly. Etiologies of rhabdomyolysis were diverse, ranging from malignant syndrome to sepsis. Myocardial concentration was absent in all of the cases. Renal concentration of the isotope was seen in cases where the degree of rhabdomyolysis was higher and renal impairment was present. We conclude that 99m Technetium phosphate bone scan is useful in clinically suspected rhabdomyolysis as a diagnostic test and as a test to localize and quantitate the muscular involvement. (author)

  17. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  18. Reduction of nucleotides by ionizing radiation: uridine 5' phosphate, and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1974-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x irradiated at 4.2 0 K. The hyperfine coupling tensor for the C 6 -H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92 and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 -H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98 and -14.68 MHz. (U.S.)

  19. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  20. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  1. A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis.

    Science.gov (United States)

    Nguyen, Thanh Trung; Nguyen, Minh Hung; Nguyen, Huy Thuan; Nguyen, Hoang Anh; Le, Thi Hoi; Schweder, Thomas; Jürgen, Britta

    2016-08-28

    The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.

  2. Phosphate rock costs, prices and resources interaction.

    Science.gov (United States)

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    Science.gov (United States)

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  4. Cyanotoxins: a poison that frees phosphate.

    Science.gov (United States)

    Raven, John A

    2010-10-12

    Autotrophic organisms obtain phosphorus from the environment by secreting alkaline phosphatases that act on esters, resulting in inorganic phosphate that is then taken up. New work shows that the cyanobacterium Aphanizomenon ovalisporum obtains inorganic phosphate by secreting the cyanotoxin cylindrospermopsin, which induces alkaline phosphatase in other phytoplankton species. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  6. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  7. Development and characteristics of children with Usher syndrome and CHARGE syndrome.

    Science.gov (United States)

    Dammeyer, Jesper

    2012-09-01

    Individuals with Usher syndrome or CHARGE syndrome are faced with a number of difficulties concerning hearing, vision, balance, and language development. The aim of the study is to describe the developmental characteristics of children with Usher syndrome and CHARGE syndrome, respectively. Data about the developmental characteristics of 26 children with Usher syndrome and 17 children with CHARGE syndrome was obtained. Associations between deafblindness (dual sensory loss), motor development (age of walking), language abilities, and intellectual outcome of these children were explored for each group independently. Both groups of children face a number of difficulties associated with vision, hearing, language, balance and intellectual outcome. Intellectual disability and/or language delay was found among 42% of the children with Usher syndrome and among 82% of the children with CHARGE syndrome. Intellectual disability was associated with language delay and age of walking for both groups. Even though Usher and CHARGE are two different genetic syndromes, both groups are challenged with a number of similar developmental delays. Clinicians need to be aware of several developmental issues in order to offer adequate support to children with Usher or CHARGE syndrome. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Global radiological impact of the phosphate fertilizers

    International Nuclear Information System (INIS)

    Morales, Rudnei Karam; Alves, Rex Nazare

    1996-01-01

    About ninety percent of the products obtained in the phosphate industry are directly used in agriculture as fertilizers. The uranium, thorium and radium content in phosphate fertilizers pollute the soil, water and air, creating risks due to associated natural radiation. This work shows the concentration of radionuclides present in various products of the national and American phosphate fertilizers industry, and compared them with worldwide mean values. The radiological impact of the products on the environment is evaluated and suggestions are presented in order to minimize the risks due to radioactivity. (author)

  9. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Science.gov (United States)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  10. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  11. Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel [NAPTISA Research Support Center “Technology and Innovation for a Sustainable Agriculture”, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000, Piracicaba SP (Brazil); Santos, Dario [Federal University of São Paulo, R. Prof. Artur Riedel 275, 09972-270, Diadema SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [NAPTISA Research Support Center “Technology and Innovation for a Sustainable Agriculture”, Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário 303, 13416-000, Piracicaba SP (Brazil)

    2014-07-01

    A validated method for quantitative determination of Cd, Cr, and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy (LIBS) is presented. Laboratory samples were comminuted and homogenized by cryogenic or planetary ball milling, pressed into pellets and analyzed by LIBS. The experimental setup was designed by using a Q-switched Nd:YAG at 1064 nm with 10 Hz repetition rate, and the intensity signals from Cd II 214.441 nm, Cr II 267.716 nm and Pb II 220.353 nm emission lines were measured by using a spectrometer furnished with an intensified charge-coupled device. LIBS parameters (laser fluence, lens-to-sample distance, delay time, integration time gate, number of sites and number of laser pulses per site) were chosen after univariate experiments with a pellet of NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer). Calibration and validation were carried out with 30 fertilizer samples from single superphosphate, triple superphosphate, monoammonium phosphate, and NPK mixtures. Good results were obtained by using 30 pulses of 50 J cm{sup −2} (750 μm spot size), 2.0 μs delay time and 5.0 μs integration time gate. No significant differences between Cd, Cr, and Pb mass fractions determined by the proposed LIBS method and by ICP OES after microwave-assisted acid digestion (AOAC 2006.03 Official Method) were found at 95% confidence level. The limits of detection of 1 mg kg{sup −1} Cd, 2 mg kg{sup −1} Cr and 15 mg kg{sup −1} Pb and the precision (coefficients of variation of results ranging from 2% to 15%) indicate that the proposed LIBS method can be recommended for the determination of these analytes in phosphate fertilizers. - Highlights: • First LIBS application for quantitative Cd, Cr and Pb determination in fertilizers. • LIBS method was validated for analysis of phosphate fertilizers pressed pellets. • LIBS sample throughput is remarkably better than already existing methods.

  12. Determination of radioactivity in Chinese phosphate rock and fertilizer

    International Nuclear Information System (INIS)

    Chen Jingjian; Zhu Yongyi; Yang Juncheng

    1993-01-01

    The presented paper reported the radioactivity of U-238, Ra-226, Th-232 and K-40 in Chinese phosphate rocks by gamma spectrographic analysis during 1985-1990. The results showed that the decay chain of U-238-Ra-226 was the main source of radionuclides in phosphate rocks. The radionuclides in phosphate fertilizer differed from the forms of phosphate fertilizer. U-238 was the most important radionuclide in phosphoric compound fertilizer. The transfer rate of radionuclides was also estimated. (2 figs., 1 tab.)

  13. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  14. Understanding colloidal charge renormalization from surface chemistry: Experiment and theory

    Science.gov (United States)

    Gisler, T.; Schulz, S. F.; Borkovec, M.; Sticher, H.; Schurtenberger, P.; D'Aguanno, B.; Klein, R.

    1994-12-01

    In this paper we report on the charging behavior of latex particles in aqueous suspensions. We use static light scattering and acid-base titrations as complementary techniques to observe both effective and bare particle charges. Acid-base titrations at various ionic strengths provide the pH dependent charging curves. The surface chemical parameters (dissociation constant of the acidic carboxylic groups, total density of ionizable sites and Stern capacitance) are determined from fits of a Stern layer model to the titration data. We find strong evidence that the dissociation of protons is the only specific adsorption process. Effective particle charges are determined by fits of integral equation calculations of the polydisperse static structure factor to the static light scattering data. A generalization of the Poisson-Boltzmann cell model including the dissociation of the acidic surface groups and the autodissociation of water is used to predict effective particle charges from the surface chemical parameters determined by the titration experiments. We find that the light scattering data are best described by a model where a small fraction of the ionizable surface sites are sulfate groups which are completely dissociated at moderate pH. These effective charges are comparable to the predictions by a basic cell model where charge regulation is absent.

  15. Structure investigations on zirconium phosphate preparates by means of DTA, ETA, and TG

    International Nuclear Information System (INIS)

    Herbell, J.D.; Specht, S.; Born, H.J.

    1976-01-01

    The simultanous DTA, ETA and TG inorganic ion exchanger based on zirconium phosphate enables the clear interpretation of the effects occuring. In particular it can be seen that the fast transition in amorphous preparates at high temperature of a badly defined form of pyrophosphate into the cubic crystalline substances, however a measurable energy release by means of DTA is not observed due to the slight mobility of the atoms in the crystal lattice. This effect on the other hand may be seen using ETA. In addition, an exothermal reaction occuring in some preparates, especially in cation charged ones, was traced back to the forming of part-crystalline structures which could be especially fast and sensitively characterized using DTA. (orig.) [de

  16. Phosphate and Cardiovascular Disease beyond Chronic Kidney Disease and Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Sinee Disthabanchong

    2018-01-01

    Full Text Available Phosphate is essential for life but its accumulation can be detrimental. In end-stage renal disease, widespread vascular calcification occurs as a result of chronic phosphate load. The accumulation of phosphate is likely to occur long before the rise in serum phosphate above the normal range since several observational studies in both general population and early-stage CKD patients have identified the relationship between high-normal serum phosphate and adverse cardiovascular outcomes. Consumption of food high in phosphate increases both fasting and postprandial serum phosphate and habitual intake of high phosphate diet is associated with aging, cardiac hypertrophy, endothelial dysfunction, and subclinical atherosclerosis. The decline in renal function and dietary phosphate load can increase circulating fibroblast growth factor-23 (FGF-23 which may have a direct impact on cardiomyocytes. Increased FGF-23 levels in both CKD and general populations are associated with left ventricular hypertrophy, congestive heart failure, atrial fibrillation, and mortality. Increased extracellular phosphate directly affects endothelial cells causing cell apoptosis and vascular smooth muscle cells (VSMCs causing transformation to osteogenic phenotype. Excess of calcium and phosphate in the circulation can promote the formation of protein-mineral complex called calciprotein particles (CPPs. In CKD, these CPPs contain less calcification inhibitors, induce inflammation, and promote VSMC calcification.

  17. "How much will I get charged for this?" Patient charges for top ten diagnoses in the emergency department.

    Directory of Open Access Journals (Sweden)

    Nolan Caldwell

    Full Text Available We examined the charges, their variability, and respective payer group for diagnosis and treatment of the ten most common outpatient conditions presenting to the Emergency department (ED.We conducted a cross-sectional study of the 2006-2008 Medical Expenditure Panel Survey. Analysis was limited to outpatient visits with non-elderly, adult (years 18-64 patients with a single discharge diagnosis.We studied 8,303 ED encounters, representing 76.6 million visits. Median charges ranged from $740 (95% CI $651-$817 for an upper respiratory infection to $3437 (95% CI $2917-$3877 for a kidney stone. The median charge for all ten outpatient conditions in the ED was $1233 (95% CI $1199- $1268, with a high degree of charge variability. All diagnoses had an interquartile range (IQR greater than $800 with 60% of IQRs greater than $1550.Emergency department charges for common conditions are expensive with high charge variability. Greater acute care charge transparency will at least allow patients and providers to be aware of the emergency department charges patients may face in the current health care system.

  18. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

    Directory of Open Access Journals (Sweden)

    Mónica Del Pilar López Ortega

    2013-07-01

    Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

  19. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    International Nuclear Information System (INIS)

    Naus, Dan J.; Mattus, Catherine H.; Dole, Leslie Robert

    2007-01-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a 'primer' on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a 'bench-scale' laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the 'primer,' a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures

  20. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  1. EFFECT OF SODIUM PHOSPHATES ON SELECTED FOOD GRADE BACTERIA

    Directory of Open Access Journals (Sweden)

    Stanislav Kráčmar

    2011-04-01

    Full Text Available The aim of this study was to examine the inhibitory effect in vitro of selected sodium phosphates (under the corporate names Hexa 68, Hexa 70, Trikrystal, FST, Pyro 52, KPS, Didi on selected gram-positive and gram-negative bacteria. Seven different concentrations of each phosphate were used. Sensitivity of the bacterial strains to phosphates was observed in broth supplemented with salts. In vitro was showed a negative effect of various phosphates on growth of selected gram-positive bacteria. Orthophosphates and diphosphates (pyrophosphates did not have significant inhibitory effect on tested bacteria at neutral pH. With the exception of phosphate Trikrystal has not been found in vitro significant inhibitory effects on gram-negative bacteria.doi:10.5219/141

  2. Reagentless phosphate ion sensor system for environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Kurata, H.; Inoue, Y.; Shin, H. [Kyushu Institute of Technology, Fukuoka (Japan). Faculty of computer Science and Systems; Kubo, I. [Soka University, Tokyo (Japan). Faculty of Engineering; Nakamura, H.; Ikebukuro, K.; Karube, I. [The University of Tokyo, Tokyo (Japan). Research Center for Advanced Science and Technology

    1998-06-05

    Phosphate ion sensor system using an electrochemical detector was developed by the use of recombinant pyruvate oxidase (PyOD) from Lactobacillus plantarum, which needs no addition of thiamine pyrophosphate and flavin adenine dinucleotide for reaction. This system could detect 2 nM hydrogen peroxide. Response time for phosphate ion was 80 s and total measurement time for one sample was 3 min. Citrate buffer solution (pH 6.3) was most suitable for the measurement and optimum flow rate was 0.6 ml/min. Under these optimum conditions minimum detection limit of phosphate ion was 15 nM, which was enough for the determination of phosphate ion in dam-lake. 6 refs., 5 figs., 1 tab.

  3. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  4. Aluminum phosphate shows more adjuvanticity than Aluminum hydroxide in recombinant hepatitis –B vaccine formulation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Background: Although a number of investigation have been carried out to find alternative adjuvants to aluminum salts in vaccine formulations, they are still extensively used due to their good track record of safety, low cost and proper adjuvanticity with a variety of antigens. Adsorption of antigens onto aluminum compounds depends heavily on electrostatic forces between adjuvant and antigen. Commercial recombinant protein hepatitis B vaccines containing aluminum hydroxide as adjuvant is facing low induction of immunity in some sections of the vaccinated population. To follow the current global efforts in finding more potent hepatitis B vaccine formulation, adjuvanticity of aluminum phosphate has been compared to aluminum hydroxide. Materials and methods: The adjuvant properties of aluminum hydroxide and aluminum phosphate in a vaccine formulation containing a locally manufactured hepatitis B (HBs surface antigen was evaluated in Balb/C mice. The formulations were administered intra peritoneally (i.p. and the titers of antibody which was induced after 28 days were determined using ELISA technique. The geometric mean of antibody titer (GMT, seroconversion and seroprotection rates, ED50 and relative potency of different formulations were determined. Results: All the adjuvanicity markers obtained in aluminum phosphate formulation were significantly higher than aluminum hydroxide. The geometric mean of antibody titer of aluminum phosphate was approximately three folds more than aluminum hydroxide. Conclusion: Aluminum phosphate showed more adjuvanticity than aluminum hydroxide in hepatitis B vaccine. Therefore the use of aluminum phosphate as adjuvant in this vaccine may lead to higher immunity with longer duration of effects in vaccinated groups.

  5. Change in concentration of inorganic phosphate and phosphocreatine in the rat diaphragm under the influence of whole-body gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M A; Gaber, M; Abdel-Fatah, K I

    1987-01-01

    The influence of irradiation on the concentration of creatine phosphate and inorganic phosphate in the diaphragm muscle were studied in rats exposed to 400 rad and 800 rad whole-body gamma radiation. The results showed that on the first day of post-exposure with 400 rad, the creatine phosphate concentration significantly increased, while the level significantly decreased on the third up to the fourteenth days of post exposure. In animals exposed to 800 rad, the diaphragm phosphocreatine showed a significant decrease on the first up to the ninth day post-irradiation as compared with the control group.

  6. Change in concentration of inorganic phosphate and phosphocreatine in the rat diaphragm under the influence of whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Gaber, M.; Abdel-Fatah, K.I.

    1987-01-01

    The influence of irradiation on the concentration of creatine phosphate and inorganic phosphate in the diaphragm muscle were studied in rats exposed to 400 rad and 800 rad whole-body gamma radiation. The results showed that on the first day of post-exposure with 400 rad, the creatine phosphate concentration significantly increased, while the level significantly decreased on the third up to the fourteenth days of post exposure. In animals exposed to 800 rad, the diaphragm phosphocreatine showed a significant decrease on the first up to the ninth day post-irradiation as compared with the control group

  7. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won, E-mail: sewonsuh@snu.ac.kr [Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2006-02-01

    Erythronate-4-phosphate dehydrogenase from P. aeruginosa was crystallized and X-ray diffraction data were collected to 2.20 Å resolution. The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B{sub 6} (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.64 Å{sup 3} Da{sup −1} and a solvent content of 66%.

  8. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-01-01

    Erythronate-4-phosphate dehydrogenase from P. aeruginosa was crystallized and X-ray diffraction data were collected to 2.20 Å resolution. The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-α-ketobutyrate. It belongs to the d-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B 6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 Å from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 Å. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (V M ) of 3.64 Å 3 Da −1 and a solvent content of 66%

  9. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  10. Overexpression, crystallization and preliminary X-ray crystallographic analysis of erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Ha, Jun Yong; Lee, Ji Hyun; Kim, Kyoung Hoon; Kim, Do Jin; Lee, Hyung Ho; Kim, Hye-Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-02-01

    The enzyme erythronate-4-phosphate dehydrogenase catalyses the conversion of erythronate-4-phosphate to 3-hydroxy-4-phospho-hydroxy-alpha-ketobutyrate. It belongs to the D-isomer-specific 2-hydroxyacid dehydrogenase family. It is essential for de novo biosynthesis of vitamin B6 (pyridoxine). Erythronate-4-phosphate dehydrogenase from Pseudomonas aeruginosa, a homodimeric enzyme consisting of two identical 380-residue subunits, has been overexpressed in Escherichia coli with a C-terminal purification tag and crystallized at 297 K using 0.7 M ammonium dihydrogen phosphate, 0.4 M ammonium tartrate, 0.1 M sodium citrate pH 5.6 and 10 mM cupric chloride. X-ray diffraction data were collected to 2.20 A from a crystal grown in the presence of NADH. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 84.77, b = 101.28, c = 142.58 A. A dimeric molecule is present in the asymmetric unit, giving a crystal volume per protein weight (VM) of 3.64 A3 Da(-1) and a solvent content of 66%.

  11. Biochemical and cytochemical evaluation of heterozygote individuals with glucose-6-phosphate dehydrogenase deficiency

    NARCIS (Netherlands)

    Gurbuz, Nilgun; Aksu, Tevfik Aslan; van Noorden, Cornelis J. F.

    2005-01-01

    The aim of this study was to diagnose heterozygous glucose-6-phosphate dehydrogenase (G6PD) deficient females by an inexpensive cytochemical G6PD staining method that is easy to perform, allowing diagnosis of G6PD deficiency without cumbersome genetic analysis. Three subject groups were included in

  12. Structural and thermochemical properties of sodium magnesium phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Oueslati Omrani, Refka [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Kaoutar, Abdeltif; El Jazouli, Abdelaziz [LCMS, URAC 17, Faculté des Sciences Ben M’Sik, UH2MC, Casablanca (Morocco); Krimi, Saida [LPCMI, Faculté des Sciences Aïn Chok, UH2C, Casablanca (Morocco); Khattech, Ismail, E-mail: ismail.khattech@fst.rnu.tn [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Jemal, Mohamed [Université de Tunis El Manar, Faculté des Sciences de Tunis, Chemistry Department, LR01SE10 Applied Thermodynamics Laboratory, 2092 Tunis (Tunisia); Videau, Jean-Jacques [ICMCB, Institut de Chimie de la matière condensée, Université de Bordeaux 1 (France); Couzi, Michel [Institut des Sciences Moléculaires, CNRS-Université de Bordeaux 1 (France)

    2015-05-25

    Highlights: • Phosphate glasses were prepared by met quenching technique. • Structural study is investigated using FTIR, Raman and {sup 31}PNMR spectroscopy. • A 4.5% weight of H{sub 3}PO{sub 4} solution has use for glass dissolution. • Dissolution is endothermic for lower MgO content and becomes exothermic when x rises. - Abstract: Ternary phosphate based glasses with the general formula (50−x/2)Na{sub 2}O–xMgO–(50−x/2)P{sub 2}O{sub 5} (0 ⩽ x ⩽ 42.8 mol%), where the O/P ratio was varied from 3 to 3.75, have been prepared using a conventional melt quenching technique. Samples were investigated by means of density measurements, Fourier-transformed infrared (FTIR), Raman and {sup 31}P solid state magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopies, differential scanning calorimetry (DSC), inductively coupled plasma atomic emission spectroscopy (ICP/AES) analysis and calorimetric dissolution. The depolymerization of metaphosphate chains are described by the decrease of Q{sup 2} tetrahedral sites allowing the formation of pyrophosphate groups (Q{sup 1}) revealed by spectroscopic investigations. As a result, the increase of density and glass transition temperature when x rises. Calorimetric study shows that the dissolution phenomenon is endothermic for a lower MgO content and becomes exothermic when magnesium oxide is gradually incorporated, suggesting the disruption of phosphate chains with increasing O/P ratio.

  13. Preparation and Characterization of Porous Calcium Phosphate Bioceramics

    Institute of Scientific and Technical Information of China (English)

    Honglian Dai; Xinyu Wang; Yinchao Han; Xin Jiang; Shipu Li

    2011-01-01

    β-tricalcium phosphate (β-TCP) powder and Na2O-CaO-MgO-P2O5 glass binder were synthesized and mixed, and then the biodegradable porous calcium phosphate ceramics were successfully prepared by foaming and sintering at 850℃. The as-prepared ceramics possess a high porosity with partial three-dimension interconnected macro- and micro-pores. As in vitro experiment testified, the calcium phosphate ceramics (CPCs) has good degradability.

  14. Titrimetric determination of uranium in tributyl phosphate

    International Nuclear Information System (INIS)

    Sobkowska, A.

    1978-01-01

    The titrimetric method involving the reduction of U(VI) to uranium(IV) by iron(II) in phosphoric acid, selective oxidation of the excess of iron(II) and potentiometric titration with dichromate was directly used for the determination of uranium in tributyl phosphate mixtures. The procedure was applied to solutions containing more than 2 mg of uranium in the sample but the highest precision and accuracy were obtained in the range from 20 to 200 mg of uranium. Dibutyl phosphate and monobutyl phosphate as well as the other radiolysis products of TBP had no influence on the results of determinations. (author)

  15. Fibroblast Growth Factor 23 (FGF23 and Disorders of Phosphate Metabolism

    Directory of Open Access Journals (Sweden)

    Tasuku Saito

    2009-01-01

    Full Text Available Derangements in serum phosphate level result in rickets/osteomalacia or ectopic calcification indicating that healthy people without these abnormalities maintain serum phosphate within certain ranges. These results indicate that there must be a regulatory mechanism of serum phosphate level. Fibroblast growth factor 23 (FGF23 was identified as the last member of FGF family. FGF23 is produced by bone and reduces serum phosphate level by suppressing phosphate reabsorption in proximal tubules and intestinal phosphate absorption through lowering 1,25-dihydroxyvitamin D level. It has been shown that excess and deficient actions of FGF23 result in hypophosphatemic rickets/osteomalacia and hyperphosphatemic tumoral calcinosis, respectively. These results indicate that FGF23 works as a hormone, and several disorders of phosphate metabolism can be viewed as endocrine diseases. It may become possible to treat patients with abnormal phosphate metabolism by pharmacologically modifying the activity of FGF23.

  16. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun; Han, Jung-Suk

    2006-01-01

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O 2 and H 2 O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O 2 ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH - groups. Polycrystalline hydroxyapatite films can be deposited in a H 2 O ambient because a sufficient supply of OH - groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  17. Influences of ambient gases on the structure and the composition of calcium phosphate films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hye-Lee; Kim, Young-Sun; Kim, Dae-Joon; Lee, Won-Jun [Sejong University, Seoul (Korea, Republic of); Han, Jung-Suk [Seoul National University, Seoul (Korea, Republic of)

    2006-11-15

    Calcium phosphate films were prepared by using a pulsed KrF-laser deposition (PLD) method with a hydroxyapatite target in various ambient gases, such as Ar, O{sub 2} and H{sub 2}O. The influence of the ambient gas on the properties of the deposited films was investigated. The chamber pressure and the substrate temperature were fixed at 0.25 Torr and 600 .deg. C, respectively. Calcium-rich amorphous calcium phosphate films were deposited with a low density in Ar due to the preferential resputtering of phosphorus from the growing film. In an O{sub 2} ambient, the density and the Ca/P ratio of the films were similar to those of the target. However, the deposited film was amorphous calcium phosphate and did not contain OH{sup -} groups. Polycrystalline hydroxyapatite films can be deposited in a H{sub 2}O ambient because a sufficient supply of OH{sup -} groups from the ambient gas is essential for the growth of a hydroxyapatite film.

  18. Phosphate limitation induces sporulation in the chytridiomycete Blastocladiella emersonii.

    Science.gov (United States)

    Bongiorno, Vagner Alexandre; Ferreira da Cruz, Angela; Nunis da Silva, Antonio; Corrêa, Luiz Carlos

    2012-09-01

    The cell cycle is controlled by numerous mechanisms that ensure correct cell division. If growth is not possible, cells may eventually promote autophagy, differentiation, or apoptosis. Microorganisms interrupt their growth and differentiate under general nutrient limitation. We analyzed the effects of phosphate limitation on growth and sporulation in the chytridiomycete Blastocladiella emersonii using kinetic data, phase-contrast, and laser confocal microscopy. Under phosphate limitation, zoospores germinated and subsequently formed 2-4 spores, regardless of the nutritional content of the medium. The removal of phosphate at any time during growth induced sporulation of vegetative cells. If phosphate was later added to the same cultures, growth was restored if the cells were not yet committed to sporulation. The cycles of addition and withdrawal of phosphate from growth medium resulted in cycles of germination-growth, germination-sporulation, or germination-growth-sporulation. These results show that phosphate limitation is sufficient to interrupt cell growth and to induce complete sporulation in B. emersonii. We concluded that the determination of growth or sporulation in this microorganism is linked to phosphate availability when other nutrients are not limiting. This result provides a new tool for the dissection of nutrient-energy and signal pathways in cell growth and differentiation.

  19. A study of the inhibiton of copper corrosion by triethyl phosphate and triphenyl phosphate self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    HOUYI MA

    2006-02-01

    Full Text Available Two kinds of phosphates, triethyl phosphate (TEP and triphenyl phosphate (TPP, were used to form self-assembled monolayers for the inhibition of the corrosion of copper in 0.2 mol dm–3 NaCl solution. Electrochemical impedance spectroscopy (EIS was applied to investigate the inhibition effects. The results showed that their inhibition ability first increased with increasing immersion time in ethanolic solutions of the corresponding compounds. However, when the immersion time was increased over some critical point, the inhibition effect decreased. For the same immersion time, the inhibition effect of the TPP monolayer was more pronounced than that of the TEP monolayer. Thus, ab initio calculations were used to interpret the relationship between the inhibition effects and the structures of the compounds.

  20. Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents.

    Science.gov (United States)

    Kurzbaum, Eyal; Raizner, Yasmin; Cohen, Oded; Rubinstein, Guy; Bar Shalom, Oded

    2017-06-01

    Adsorption has been suggested as an effective method for removing phosphates from agricultural wastewater effluents that contain relatively high phosphate concentrations. The present study focused on the use of a bentonite-lanthanum clay (Phoslock ® ) for reducing the dissolved phosphate concentration in fishpond effluents. Batch experiments with synthetic phosphate-spiked solutions and with fishpond effluents were performed in order to determine adsorption equilibrium isotherms and kinetics as well as to determine the efficiency of Phoslock ® in removing phosphate from these solutions. In the synthetic phosphate-spiked solution, the mean maximum phosphate adsorption capacity was 92 mg Phoslock ® /mg phosphate removal. A ratio of 50, 100, and 200 mg Phoslock ® /mg phosphate removal was found for complete phosphate removal from the fishpond effluents, where higher doses of Phoslock ® led to a faster removal rate (94% removal within the first 150 min). These results show that bentonite-lanthanum clay can be employed for designing a treatment process for efficient phosphate removal from fishpond effluents.

  1. Color-charge algebras in Adler's chromodynamics

    International Nuclear Information System (INIS)

    Cvitanovic, P.; Gonsalves, R.J.; Neville, D.E.

    1978-01-01

    We show that the color-charge algebra in the three-quark sector generated by the matrices of the fundamental representation of U(n) does not have the trace properties required in Adler's extension of chromodynamics. We also discuss a diagrammatic representation of algebras generated by quark and antiquark charges in general, and an embedding of the N-quark algebra in the symmetric group S/sub N/+1

  2. Prevention of radioactive contamination in the manufacture of phosphate fertilizers

    International Nuclear Information System (INIS)

    Romero G, E.T.

    1995-01-01

    In this work was studied the separation of uranium from the phosphate rock to decrease the level of radioactivity in the phosphate fertilizers, this prevents the redistribution of uranium in the environment. The uranium leaching conditions from phosphate rock were estimated using alkaline solutions. The changes in the natural phosphate rock after leaching were studied. The amenability to separate the uranium from phosphate rock with ammonium carbonate / bicarbonate solution was determined. The uranium extraction was approximately 40%. The leaching conditions showed high selectivity for uranium without changes in the ore structure. The bulk ore was not dissolved. (Author)

  3. Phosphate removal from digested sludge supernatant using modified fly ash.

    Science.gov (United States)

    Xu, Ke; Deng, Tong; Liu, Juntan; Peng, Weigong

    2012-05-01

    The removal of phosphate in digested sludge supernatant by modified coal fly ash was investigated in this study. Modification of the fly ash by the addition of sulfuric acid could significantly enhance its immobilization ability. The experimental results also showed that adsorption of phosphate by the modified fly ash was rapid with the removal percentage of phosphate reaching an equilibrium of 98.62% in less than 5 minutes. The optimum pH for phosphate removal was 9 and the removal percentage increased with increasing adsorbent dosage. The effect of temperature on phosphate removal efficiency was not significant from 20 to 40 degrees C. X-ray diffraction and scanning electron microscope analyses showed that phosphate formed an amorphous precipitate with water-soluble calcium, aluminum, and iron ions in the modified fly ash.

  4. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Nikita Agrawal

    2014-01-01

    Full Text Available Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP paste, 1.23% acidulated phosphate fluoride (APF gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM. Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks.

  5. Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide

    International Nuclear Information System (INIS)

    Liao, Xiaolin; Zheng, Xiongwen; Chen, Jiawei; Huang, Ziyu; Xu, Mengqing; Xing, Lidan; Liao, Youhao; Lu, Qilun; Li, Xiangfeng; Li, Weishan

    2016-01-01

    Highlights: • TMSP is effective for self-discharge suppression of the charged NCM under 4.5 V. • TMSP oxidizes preferentially forming protective cathode interface film on NCM. • The film suppresses electrolyte decomposition and prevents NCM destruction. - Abstract: Application of layered nickel cobalt manganese oxide as cathode under higher potential than conventional 4.2 V yields a significant improvement in energy density of lithium ion battery. However, the cathode fully charged under high potential suffers serious self-discharge, in which the interaction between the cathode and electrolyte proceeds without potential limitation. In this work, we use tris(trimethylsilyl)phosphate (TMSP) as an electrolyte additive to solve this problem. A representative layered nickel cobalt manganese oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , is considered. The effect of TMSP on self-discharge behavior of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is evaluated by physical and electrochemical methods. It is found that the self-discharge of charged LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be suppressed significantly by using TMSP. TMSP is oxidized preferentially in comparison with the standard electrolyte during initial charging process forming a protective cathode interface film, which avoids the interaction between cathode and electrolyte at any potential and thus prevents electrolyte decomposition and protects LiNi 1/3 Co 1/3 Mn 1/3 O 2 from structure destruction.

  6. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    Science.gov (United States)

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  7. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    Science.gov (United States)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  8. DIETARY PROTEIN INTAKE IS INDEPENDENTLY ASSOCIATED WITH THE URINARY EXCRETION OF PHOSPHATE

    Directory of Open Access Journals (Sweden)

    Vladimir Dobronravov

    2012-06-01

    Full Text Available Decrease of urinary phosphate (P excretion and P retention triggers activation of phosphotonins and subsequent development of secondary hyperparathyroidism in progressing of chronic kidney disease (CKD. The main source of P is dietary protein. No large studies are presented to-date to evaluate the relationship between dietary protein intake and parameters of P metabolism in CKD patients. This was a goal of the cross-sectional cohort study .11315 CKD patients were entered (males 43%. Median (10th-90th percentile of age and estimated glomerular filtration rate (GFR were 46 (24-69 and 64 (24-104. The analyzed data were: age, gender, body mass index (BMI serum albumin, creatinine, calcium and phosphate; 24-h urine creatinine, phosphate (P,proteinuria (DP. Estimated parameters includes: eGFR, fractional P excretion (FEP, 24-h P excretion (24-h UP, and P clearance (CP. Dietary protein intake (DPI was based on 24-h urinary urea excretion. No significant differences in serum phosphate were found in groups with various DPI. FEP, 24-h UP and CP were significantly higher in higher DPI range. DPI was positively associated with 24-h UP (β=0,287, p<0.000001 in multivariate model adjusted for age, gender, DP, eGFR, serum P, FEP, BMI, and Ca. Thus, DPI is considered to be the independent factor influencing urinary P excretion and hence contributing to progression of mineral and bone disease in renal dysfunction.

  9. The role of phosphate in a multistep enzymatic reaction: reactions of the substrate and intermediate in pieces.

    Science.gov (United States)

    Kholodar, Svetlana A; Allen, C Leigh; Gulick, Andrew M; Murkin, Andrew S

    2015-02-25

    Several mechanistically unrelated enzymes utilize the binding energy of their substrate's nonreacting phosphoryl group to accelerate catalysis. Evidence for the involvement of the phosphodianion in transition state formation has come from reactions of the substrate in pieces, in which reaction of a truncated substrate lacking its phosphorylmethyl group is activated by inorganic phosphite. What has remained unknown until now is how the phosphodianion group influences the reaction energetics at different points along the reaction coordinate. 1-Deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR), which catalyzes the isomerization of DXP to 2-C-methyl-D-erythrose 4-phosphate (MEsP) and subsequent NADPH-dependent reduction, presents a unique opportunity to address this concern. Previously, we have reported the effect of covalently linked phosphate on the energetics of DXP turnover. Through the use of chemically synthesized MEsP and its phosphate-truncated analogue, 2-C-methyl-D-glyceraldehyde, the current study revealed a loss of 6.1 kcal/mol of kinetic barrier stabilization upon truncation, of which 4.4 kcal/mol was regained in the presence of phosphite dianion. The activating effect of phosphite was accompanied by apparent tightening of its interactions within the active site at the intermediate stage of the reaction, suggesting a role of the phosphodianion in disfavoring intermediate release and in modulation of the on-enzyme isomerization equilibrium. The results of kinetic isotope effect and structural studies indicate rate limitation by physical steps when the covalent linkage is severed. These striking differences in the energetics of the natural reaction and the reactions in pieces provide a deeper insight into the contribution of enzyme-phosphodianion interactions to the reaction coordinate.

  10. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    Science.gov (United States)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of

  11. Evaluation methods used for phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    This work aimed to evaluate the different selection methods and select inorganic phosphorus-solubilizing bacteria as potential plant-growth promoters. Bacterial isolates obtained from sugarcane roots and soil were tested using solid growth media containing bicalcium phosphate and Irecê Apatite ground rock phosphate as ...

  12. Preparation and Characterization of Apatitic Biphasic Calcium Phosphate

    International Nuclear Information System (INIS)

    Thin Thin Nwe; Kyaw Naing; Khin Mar Tun; Nyunt Wynn

    2005-09-01

    The apatitic biphasic calcium phosphate (ABcp) consisting of hydroxyapatite (HA) and -tricalcium phosphate ( -Tcp) has been prepared by precipitation technique using slaked lime and orthophosphoric acid. The X-ray diffraction analysis of the product I (hydroxyapatite) revealed that ABcp was partially crystalline state. However, on heating at 800 C for 8 hrs, XRD pattern indicated a perfectly crystalline form of ABcp. This observation was supported by FT-IR measurement. The change in morphology regarding in the functional nature was infered by the shift in the FT-IR frequency. The optimization of the apatitic biphasic calcium phosphate was done by the variation of disodium hydrogen phosphate concentration, setting time, hardening time as well as compressive strength. The perpared cement may be used as an artificial substitution bone

  13. Immobilization of fission products in phosphate ceramic waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D.; Wagh, A. [Argonne National Lab., IL (United States)

    1997-10-01

    Chemically bonded phosphate ceramics (CBPCs) have several advantages that make them ideal candidates for containing radioactive and hazardous wastes. In general, phosphates have high solid-solution capacities for incorporating radionuclides, as evidenced by several phosphates (e.g., monazites and apatites) that are natural analogs of radioactive and rare-earth elements. The phosphates have high radiation stability, are refractory, and will not degrade in the presence of internal heating by fission products. Dense and hard CBPCs can be fabricated inexpensively and at low temperature by acid-base reactions between an inorganic oxide/hydroxide powder and either phosphoric acid or an acid-phosphate solution. The resulting phosphates are extremely insoluble in aqueous media and have excellent long-term durability. CBPCs offer the dual stabilization mechanisms of chemical fixation and physical encapsulation, resulting in superior waste forms. The goal of this task is develop and demonstrate the feasibility of CBPCs for S/S of wastes containing fission products. The focus of this work is to develop a low-temperature CBPC immobilization system for eluted {sup 99}Tc wastes from sorption processes.

  14. A novel biphasic calcium phosphate derived from fish otoliths

    Science.gov (United States)

    Montañez-Supelano, N. D.; Sandoval-Amador, A.; Estupiñan-Durán, H. A.; Y Peña-Ballesteros, D.

    2017-12-01

    Calcium phosphates are bioceramics that have been widely used as bone substitutes because they encourage the formation of bone on their surface and can improve the healing of the bone. Hydroxyapatite HA (calcium/phosphorus ratio of 1.67) and tricalcium phosphate TCP (calcium/phosphorus ratio of 1.50) are the most common calcium phosphates. Natural materials have begun to be tested to make HA or TCP such as shells of cardiidae (family of mollusks) and eggshells. The calcium phosphate obtained has a high ability to precipitate apatite. In this work, the mixed phase ceramic of beta-Tri-calcium phosphate / hydroxyapatite (β-TCP/HA) was synthesized by aqueous precipitation from fish otoliths, which are monomineralic species composed of aragonite. Otoliths of the specie Plagioscion squamosissimus, commonly called the river croaker, were used. Techniques such as DRX, Raman spectroscopy and SEM-EDS were used to characterize the raw material and the obtained material. X-ray diffraction analysis revealed the presence of two crystalline phases of calcium phosphates with 86.2% crystallinity. SEM micrographs showed agglomeration of particles with porous structure and submicron particle sizes.

  15. Metal complex derivatives of hydrogen uranyl phosphate

    International Nuclear Information System (INIS)

    Grohol, D.; Blinn, E.L.

    1994-01-01

    Derivatives of hydrogen uranyl phosphate were prepared by incorporating transition metal complexes into the uranyl phosphate matrix. The transition metal complexes employed include bis(ethylenediamine)copper(II), bis(1,3-propanediamine)copper(II) chloride, (triethylenetetramine)copper(II), (1,4,8,11-tetraazacyclotetradecane)copper(II), (1,4,8,12-tetraazacyclopentadecane)copper(II), (1,4,8,11-tetraazacyclotetradecane)nickel(II) chloride, (triethylenetetramine)nickel(II) and others. The chemical analyses of these derivatives indicated that the incorporation of the transition metal complexes into the uranyl phosphate matrix via ion exchange was not stoichiometric. The extent of ion exchange is dependent on the size and structure of the transition metal complex. All complexes were characterized by X-ray powder diffractometry, electronic and infrared spectra, thermal analyses and chemical analysis. An attempt was made to correlate the degree of quenching of the luminescence of the uranyl ion to the spacing between the uranyl phosphate layers in the derivatives

  16. Effective Adsorption and Removal of Phosphate from Aqueous Solutions and Eutrophic Water by Fe-based MOFs of MIL-101.

    Science.gov (United States)

    Xie, Qiying; Li, Yan; Lv, Zhaoling; Zhou, Hang; Yang, Xiangjun; Chen, Jing; Guo, Hong

    2017-06-12

    Although many efforts have been devoted to the adsorptive removal of phosphate from aqueous solutions and eutrophic water, it is still highly desirable to develop novel adsorbents with high adsorption capacities. In this study, Fe-based metal-organic frameworks (MOFs), MIL-101 and NH 2 -MIL-101, are fabricated through a general facile strategy. Their performance as an adsorbent for phosphate removal is investigated. Experiments are performed to study the effects of various factors on the phosphate adsorption, including adsorbent dosage, contact time and co-existing ions. Both MIL-101(Fe) and NH 2 -MIL-101(Fe) show highly effective removal of phosphates from aqueous solutions, and the concentration of phosphates decrease sharply from the initial 0.60 mg·L -1 to 0.045 and 0.032 mg·L -1 , respectively, within just 30 min of exposure. The adsorption kinetics and adsorption isotherms reveal that NH 2 -MIL-101(Fe) has higher adsorption capacity than MIL-101(Fe) possibly due to the amine group. Furthermore, the Fe-based MOFs also exhibit a high selectivity towards phosphate over other anions such as chloride, bromide, nitrate and sulfate. Particularly, the prepared Fe-based MIL-101 materials are also capable of adsorbing phosphate in an actual eutrophic water sample and display better removal effect.

  17. Evaluation of raw rock phosphate as substitute for bone meal in diet ...

    African Journals Online (AJOL)

    Experiment was conducted to determine the optimal replacement level of Raw Rock Phosphate (RRP) for bone meal in layers diet. A total of 144, 55 week-old shavers X Hubbard cross-strain laying hens were used for the study. Triplicate groups of 12 hens per replicate were placed on four test diets containing 0, 1, 1.5 and ...

  18. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  19. Cloning and expression of pineapple sucrose- phosphate synthase ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... phosphate; EDTA, ethylene diamine tetraacetic acid; Ivr, invertase; SS .... phenolics, tannins and artifacts due to differences of tissue composition ..... Banana sucrose-phosphate synthase gene expression during fruit ripening.

  20. The reduction of nucleotides by ionizing radiation: uridine 5' phosphate and cytidine 3' phosphate

    International Nuclear Information System (INIS)

    Box, H.C.; Potter, W.R.; Budzinski, E.E.

    1975-01-01

    Anions formed by the addition of an electron to the uracil base were observed in single crystals of the barium salt of uridine 5' phosphate x-irradiated at 4.2 degreeK. The hyperfine coupling tensor for the C 6 --H proton was deduced from ENDOR measurements; the principal values are -59.12, -32.92, and -16.24 MHz. Similar measurements were made on single crystals of cytidine 3' phosphate. The principal values for the C 6 --H proton hyperfine coupling in the anion formed on the cytosine base are -59.26, -33.98, and -14.68 MHz

  1. Efficacy Of Trichloro-acetic Acid Peel Alone Versus Combined Topical Magnesium Ascorbyl Phosphate For Epidermal Melasma

    International Nuclear Information System (INIS)

    Murtaza, F.; Noor, S. M.; Bangash, A. R.

    2016-01-01

    Objective: To compare the efficacy in terms of reduction in melasma area and severity index (MASI) score by more than 10 of a combination of 20% trichloro-acetic acid peel plus 5% topical magnesium ascorbyl phosphate versus 20 percent trichloroacetic acid peel alone in the treatment of epidermal melasma. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Dermatology, Lady Reading Hospital (LRH), Peshawar, from May 2012 to May 2013. Methodology: Patients aged 18 - 65 years, with Fitzpatrick skin type III-V were divided into two equal groups having 74 patients each. Detailed history was taken and Wood's lamp examination done to rule out mixed and dermal melasma. Melasma area and severity index (MASI) score was calculated for every patient. Priming was done for all patients with tretinoin cream applied once daily at night for 2 weeks, and to use a broad spectrum sun block cream before sun exposure. Patients in group A were subjected to combined treatment, i.e. trichloro-acetic acid peel 20 percent (weekly) plus magnesium ascorbyl phosphate cream (applied once daily), while patients in group B were subjected to trichloro-acetic acid peel 20 percent (weekly) alone. Treatment was continued for 6 weeks. After completion of treatment, MASI score was recalculated. Proportion of patients with significant MASI score reduction was compared using chi-square test with significance at p < 0.05. Results: Male and female patients were 11 (14.9 percent) and 63 (85.1 percent), respectively in group A, whereas 13 (17.6 percent) and 61 (82.4 percent) in group B. The mean age in group A was 30.28±8.08 years, and 29.36±6.84 years in group B. Significant MASI score reduction in group A was seen in 60 (81.1 percent) patients and in group B 49 (66.2 percent, p= 0.040). Conclusion: Combination of trichloro-acetic acid peel and topical magnesium ascorbyl phosphate cream was significantly more effective than trichloro-acetic acid peel alone in

  2. Charge reversal at a planar boundary between two dielectrics

    Science.gov (United States)

    Wang, Zhi-Yong

    2016-01-01

    Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.

  3. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... glycolytic pathway; in this step, a molecule called glucose-6-phosphate is converted to another molecule called fructose-6-phosphate. When GPI remains a single molecule (a monomer) it is involved in the development and maintenance of nerve cells ( neurons ). In this context, it is often known as ...

  4. Immobilization of radioactive strontium in contaminated soils by phosphate treatment

    International Nuclear Information System (INIS)

    Kim, K.H.; Ammons, J.T.

    1990-01-01

    The feasibility of in situ phosphate- and metal- (calcium, aluminum, and iron) solution treatment for 90 Sr immobilization was investigated. Batch and column experiments were performed to find optimum conditions for coprecipitation of 90 Sr with Ca-, Al-, and Fe-phosphate compounds in contaminated soils. Separate columns were packed with artificially 85 Sr-contaminated acid soil as well as 90 Sr-contaminated soil from the Oak Ridge Reservation. After metal-phosphate treatment, the columns were then leached successively with either tapwater or 0.001 M CaCl 2 solution. Most of the 85 Sr coprecipitated with the metal phosphate compounds. Immobilization of 85 Sr and 90 Sr was affected by such factors as solution pH, metal and phosphate concentration, metal-to-phosphate ratio, and soil characteristics. Equilibration time after treatments also affected 85 Sr immobilization. Many technology aspects still need to be investigated before field applications are feasible, but these experiments indicate that phosphate-based in situ immobilization should prevent groundwater contamination and will be useful as a treatment technology for 90 Sr-contaminated sites. 15 refs., 3 figs., 1 tab

  5. Modeling and analysis of LiFePO4/Carbon battery considering two-phase transition during galvanostatic charging/discharging

    International Nuclear Information System (INIS)

    Li, Xueyan; Xiao, Meng; Choe, Song-Yul; Joe, Won Tae

    2015-01-01

    Highlights: • Reduced order model for LiFePO 4 particles considering two-phase transition • Model validation with experimental results of current and voltage • Analysis of two-phase transition and path dependence - Abstract: Batteries with lithium iron phosphate (LFP) cathode and carbon anode have shown various advantages over those with other chemistries, but the plateau and path dependence caused by the two-phase transition taking place during charging and discharging make it difficult to estimate the states of battery. Thus, based on electrochemical principles we propose a new reduced order model that has been validated against experimental data obtained during galvanostatic charging/discharging. The mechanism of the two-phase transition during lithiation and delithiation in LFP particles is approximated using a shrinking corewith a moving interface between the two phases and is described by modified diffusion equations that take into account multiple layers formed within LFP particles. The shrinking core model is integrated into a cell model developed previously, which is used to analyze the path dependence at different load profiles. The results show that the model is capable of representing the characteristics of the plateau and path dependence. Particularly, the available charge at a certain State of Charge (SOC) varies dependent upon paths to reach the SOC. When an initial SOC is reached by discharging, the cell can accept more charges during charging, while when an initial SOC is reached by charging, more charge will be available during discharging

  6. Clinical usefulness of scintigraphy with sup 99m Technetium phosphates in rhabdomyolysis

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Nobuyuki; Hara, Yoshikuni (Shonan Kamakura Hospital, Kanagawa (Japan)); Suzuki, Yutaka; Akashi, Tsunehiro; Kamei, Tetsumasa; Uchiyama, Fujio; Mitsui, Tamito; Yamazaki, Yuki

    1990-08-01

    We performed bone scans with {sup 99m}Technetium phosphates in 15 cases of clinically suspected rhabdomyolysis admitted to Chigasaki Tokushukai Hospital. Whole body scans were performed within 5 days from the onset of illness or admission. Accumulation of the radioactivity in the skeletal muscle was revealed in 13 of the 15 cases and the involved muscle groups were visualized vividly. Etiologies of rhabdomyolysis were diverse, ranging from malignant syndrome to sepsis. Myocardial concentration was absent in all of the cases. Renal concentration of the isotope was seen in cases where the degree of rhabdomyolysis was higher and renal impairment was present. We conclude that {sup 99m}Technetium phosphate bone scan is useful in clinically suspected rhabdomyolysis as a diagnostic test and as a test to localize and quantitate the muscular involvement. (author).

  7. Silicon effect on the composition and structure of nanocalcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Tomoaia, Gheorghe [Orthophedics and Traumatology Department, Iuliu Hatieganu University of Medicine and Pharmacy, 47 Traian Mosoiu Str., Cluj-Napoca 400132 (Romania); Mocanu, Aurora [Department of Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str., Cluj-Napoca 400028 (Romania); Vida-Simiti, Ioan; Jumate, Nicolae [Department of Materials Science and Engineering, Technical University of Cluj-Napoca, 103-105 Muncii Bd., Cluj-Napoca 400641 (Romania); Bobos, Liviu-Dorel [Department of Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str., Cluj-Napoca 400028 (Romania); Soritau, Olga [Oncology Institute of Cluj-Napoca, 34-36 Republicii Str., 400015 Cluj-Napoca (Romania); Tomoaia-Cotisel, Maria, E-mail: mtcotisel.ubbcluj@yahoo.ro [Department of Chemical Engineering, Babes-Bolyai University of Cluj-Napoca, 11 Arany J. Str., Cluj-Napoca 400028 (Romania)

    2014-04-01

    Nanostructured calcium phosphates, such as nanohydroxyapatite (HAP) and HAP with silicon content (HAP-Si) of 0.47 wt.% (1% SiO{sub 2}), 2.34 wt.% (5% SiO{sub 2}) and 4.67 wt.% (10% SiO{sub 2}) in the final product, were synthesized by aqueous precipitation, freeze dried and then calcined at 650, 950 and 1150 °C. The obtained materials were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging. From the analysis of the XRD patterns, the HAP and β-tricalcium phosphate (β-TCP) phases were identified and their amounts in the samples were estimated. The size of HAP and β-TCP crystallites was estimated to be in the nanocrystalline domain. FTIR spectra showed the presence of characteristic vibrations for P–O, H–O and Si–O groups and their modification with Si content and calcination temperature. TEM, SEM and AFM images also revealed the morphology of the particles and of their aggregates. These materials have been used to manufacture scaffolds which were tested for their influence on adhesion and proliferation of cells, in human osteoblast culture, considering their further use in bone reconstruction. It was found that an appropriate addition of silicon in nanocalcium phosphate scaffolds leads to an enhanced adhesion and proliferation of cells in osteoblasts in vitro. - Highlights: • Nanostructured calcium phosphates with different silicon contents were synthesized. • Scaffolds made from hydroxyapatites with Si were used in human osteoblast cultures. • All scaffolds proved to be biocompatible to human osteoblasts in vitro. • Cell adhesion and proliferation were improved for scaffolds with 0.47 and 2.34% Si.

  8. Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping.

    Science.gov (United States)

    Chueh, William C; El Gabaly, Farid; Sugar, Joshua D; Bartelt, Norman C; McDaniel, Anthony H; Fenton, Kyle R; Zavadil, Kevin R; Tyliszczak, Tolek; Lai, Wei; McCarty, Kevin F

    2013-03-13

    The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.

  9. Phosphate-rich sedimentary rocks: significance for organic facies and petroleum exploration

    Energy Technology Data Exchange (ETDEWEB)

    Waples, D W

    1982-03-01

    Phosphorus-bearing rocks and sediments can be divided into two genetically distinct classes: phosphatic shales or limestones and phosphorites. Phosphatic shales are primary sediments in which phosphate nodules or micronodules have formed diagenetically by precipitation of calcium phosphates derived mainly from organic phosphorus. The nodules form in reducing environments at shallow depths within the sediments, where loss of phosphate by diffusion to the overlying water column is minimized. Highly biogenic sediments containing large amounts of organic matter and some fine clastic debris provide ideal environments for the formation of phosphate nodules. Phosphorites, in contrast, represent concentrated accumulations of reworked phosphate nodules which originated in phosphatic shales or limestones. Currents, wave action, recrystallization, and erosion and resedimentation are important mechanisms in the concentration process. Phosphatic shales and limestones may become excellent oil source rocks if thermal maturity is achieved. They are useful facies indicators for anoxic or nearly anoxic depositional environments, and are often associated with restricted basins, or, during certain geologic periods, with broad shelves developed during transgressions. Phosphorites, in contrast, are often correlated with sea-level regressions or uplifts. They are modest source rocks because of their low organic carbon contents and the fact that they were reworked under oxidizing conditions. Nevertheless, because phosphorites are derived from, and often grade into, phosphatic shales, they also are of potential utility in the search for oil source beds.

  10. Adhesive bonding of super-elastic titanium-nickel alloy castings with a phosphate metal conditioner and an acrylic adhesive.

    Science.gov (United States)

    Matsumura, H; Tanoue, N; Yanagida, H; Atsuta, M; Koike, M; Yoneyama, T

    2003-06-01

    The purpose of the current study was to evaluate the bonding characteristics of super-elastic titanium-nickel (Ti-Ni) alloy castings. Disk specimens were cast from a Ti-Ni alloy (Ti-50.85Ni mol%) using an arc centrifugal casting machine. High-purity titanium and nickel specimens were also prepared as experimental references. The specimens were air-abraded with alumina, and bonded with an adhesive resin (Super-Bond C & B). A metal conditioner containing a phosphate monomer (Cesead II Opaque Primer) was also used for priming the specimens. Post-thermocycling average bond strengths (MPa) of the primed groups were 41.5 for Ti-Ni, 30.4 for Ti and 19.5 for Ni, whereas those of the unprimed groups were 21.6 for Ti, 19.3 for Ti-Ni and 9.3 for Ni. Application of the phosphate conditioner elevated the bond strengths of all alloy/metals (P elastic Ti-Ni alloy castings can be achieved with a combination of a phosphate metal conditioner and a tri-n-butylborane-initiated adhesive resin.

  11. Dental Composites with Calcium / Strontium Phosphates and Polylysine.

    Directory of Open Access Journals (Sweden)

    Piyaphong Panpisut

    Full Text Available This study developed light cured dental composites with added monocalcium phosphate monohydrate (MCPM, tristrontium phosphate (TSrP and antimicrobial polylysine (PLS. The aim was to produce composites that have enhanced water sorption induced expansion, can promote apatite precipitation and release polylysine.Experimental composite formulations consisted of light activated dimethacrylate monomers combined with 80 wt% powder. The powder phase contained a dental glass with and without PLS (2.5 wt% and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM. The commercial composite, Z250, was used as a control. Monomer conversion and calculated polymerization shrinkage were assessed using FTIR. Subsequent mass or volume changes in water versus simulated body fluid (SBF were quantified using gravimetric studies. These were used, along with Raman and SEM, to assess apatite precipitation on the composite surface. PLS release was determined using UV spectroscopy. Furthermore, biaxial flexural strengths after 24 hours of SBF immersion were obtained.Monomer conversion of the composites decreased upon the addition of phosphate fillers (from 76 to 64% but was always higher than that of Z250 (54%. Phosphate addition increased water sorption induced expansion from 2 to 4% helping to balance the calculated polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 μm after 4 weeks. The novel composites showed a burst release of PLS (3.7% followed by diffusion-controlled release irrespective of phosphate addition. PLS and phosphates decreased strength from 154 MPa on average by 17% and 18%, respectively. All formulations, however, had greater strength than the ISO 4049 requirement of > 80 MPa.The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation. These properties are expected to help compensate polymerization shrinkage and

  12. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  13. Results of bone regenerate study after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants in experimental femoral neck fractures (experimental study

    Directory of Open Access Journals (Sweden)

    K. S. Kazanin

    2015-01-01

    Full Text Available Objective - to analyze the results of X-ray, cytomorphometric and immunohistochemistry experimental studies of bone regenerates after osteosynthesis with bioinert and calcium phosphate-coated bioactive implants. Material and methods. The study was conducted on experimental femoral neck fractures in rabbit males. Reparative osteogenesis processes were studied in groups of bioinert titanium implant osteosynthesis and calcium phosphate-coated bioactive titanium implant osteosynthesis. The animals were clinically followed-up during the postoperative period. X-ray, cytomorphometric and immunohistochemistry studies of samples extracted from femoral bones were conducted over time on days 1, 7, 14, 30 and 60. The animal experiments were kept and treated according to recommendations of international standards, Helsinki Declaration on animal welfare and approved by the local ethics committee. All surgeries were performed under anesthesia, and all efforts were made to minimize the suffering of the animals. Results. In the animal group without femoral neck fracture osteosynthesis, femoral neck pseudoarthrosis was observed at the end of the experiment. The results of cytomorphometric and immunohistochemistry studies conducted on day 60 of the experiment confirmed that the cellular composition of the bone regenerate in the group of calcium phosphate-coated bioactive titanium implants corresponded to a more mature bone tissue than in the group of bioinert titanium implants. Conclusion. The results of the statistical analysis of cytomorphometric and immunohistochemistry data show that the use of calcium phosphate-coated bioactive titanium implants allows to achieve significantly earlier bone tissue regeneration.

  14. Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits

    Directory of Open Access Journals (Sweden)

    Živadinović Milka

    2016-01-01

    Full Text Available Background/Aim. The mechanism of impaired bone healing in diabetes mellitus includes different tissue and cellular level activities due to micro- and macrovascular changes. As a chronic metabolic disease with vascular complications, diabetes affects a process of bone regeneration as well. The therapeutic approach in bone regeneration is based on the use of osteoinductive autogenous grafts as well as osteoconductive synthetic material, like a β-tricalcium phosphate. The aim of the study was to determine the quality and quantity of new bone formation after the use of autogenous bone and β-tricalcium phosphate in the model of calvarial critical-sized defect in rabbits with induced diabetes mellitus type I. Methods. The study included eight 4-month-old Chincilla rabbits with alloxan-induced diabetes mellitus type I. In all animals, there were surgically created two calvarial bilateral defects (diameter 12 mm, which were grafted with autogenous bone and β-tricalcium phosphate (n = 4 or served as unfilled controls (n = 4. After 4 weeks of healing, animals were sacrificed and calvarial bone blocks were taken for histologic and histomorphometric analysis. Beside descriptive histologic evaluation, the percentage of new bone formation, connective tissue and residual graft were calculated. All parameters were statistically evaluated by Friedman Test and post hock Wilcoxon Singed Ranks Test with a significance of p < 0.05. Results. Histology revealed active new bone formation peripherally with centrally located connective tissue, newly formed woven bone and well incorporated residual grafts in all treated defects. Control samples showed no bone bridging of defects. There was a significantly more new bone in autogeonous graft (53% compared with β-tricalcium phosphate (30%, (p < 0.030 and control (7%, (p < 0.000 groups. A significant difference was also recorded between β-tricalcium phosphate and control groups (p < 0.008. Conclusion. In the present

  15. True absorption of phosphorus from di calcium phosphate, mono ammonium phosphate, triple superphosphate and urea-phosphate in bovine by the radio phosphorus dilution technique

    International Nuclear Information System (INIS)

    Silva Filho, J.C. da.

    1990-01-01

    With the aim to study the utilization of alternative sources of phosphorus by ruminants. Twenty four males steers, with 250 Kg live weight and 18 months of age, were allocated in four groups of six animals each. The animals were housed in individual pens and received a diet containing chopped hay, corn and soybean meal, urea and mineral mixtures. The phosphate sources were added to supply 10 g of phosphorus per animal daily. The animals were injected intravenously and individually with 37 MBq of P-32 (N A 2 H P O 4 ) at the 20 th day of the experimental trial into the jugular vein. Blood and faces were collected and sampled at 24 hours intervals, for 8 days. Based on the specific activities in plasma and faces, the fecal endogenous loss and true phosphorus absorption were determined. (author)

  16. (13)C metabolic flux analysis in neurons utilizing a model that accounts for hexose phosphate recycling within the pentose phosphate pathway.

    Science.gov (United States)

    Gebril, Hoda M; Avula, Bharathi; Wang, Yan-Hong; Khan, Ikhlas A; Jekabsons, Mika B

    2016-02-01

    Glycolysis, mitochondrial substrate oxidation, and the pentose phosphate pathway (PPP) are critical for neuronal bioenergetics and oxidation-reduction homeostasis, but quantitating their fluxes remains challenging, especially when processes such as hexose phosphate (i.e., glucose/fructose-6-phosphate) recycling in the PPP are considered. A hexose phosphate recycling model was developed which exploited the rates of glucose consumption, lactate production, and mitochondrial respiration to infer fluxes through the major glucose consuming pathways of adherent cerebellar granule neurons by replicating [(13)C]lactate labeling from metabolism of [1,2-(13)C2]glucose. Flux calculations were predicated on a steady-state system with reactions having known stoichiometries and carbon atom transitions. Non-oxidative PPP activity and consequent hexose phosphate recycling, as well as pyruvate production by cytoplasmic malic enzyme, were optimized by the model and found to account for 28 ± 2% and 7.7 ± 0.2% of hexose phosphate and pyruvate labeling, respectively. From the resulting fluxes, 52 ± 6% of glucose was metabolized by glycolysis, compared to 19 ± 2% by the combined oxidative/non-oxidative pentose cycle that allows for hexose phosphate recycling, and 29 ± 8% by the combined oxidative PPP/de novo nucleotide synthesis reactions. By extension, 62 ± 6% of glucose was converted to pyruvate, the metabolism of which resulted in 16 ± 1% of glucose oxidized by mitochondria and 46 ± 6% exported as lactate. The results indicate a surprisingly high proportion of glucose utilized by the pentose cycle and the reactions synthesizing nucleotides, and exported as lactate. While the in vitro conditions to which the neurons were exposed (high glucose, no lactate or other exogenous substrates) limit extrapolating these results to the in vivo state, the approach provides a means of assessing a number of metabolic fluxes within the context of hexose phosphate recycling in the PPP from a

  17. The Changes of P-fractions and Solubility of Phosphate Rock in Ultisol Treated by Organic Matter and Phosphate Rock

    Directory of Open Access Journals (Sweden)

    Heru Bagus Pulunggono

    2012-09-01

    Full Text Available Phosphorus (P is one of the essential elements for plant, however, its availability is mostly very low in acid soils. It is well documented that application of phosphate rock and organic matter are able to change the level of availability of P-form in acid soils. The objective of the research were to evaluate the changes of P-fractions ( resin-P, NaHCO3-Pi, and NaHCO3-Po and phosphate rock dissolution which were induced by application of organic matter (Imperata cylindrica, Pueraria javanica, dan Colopogonium mucunoides and phosphate rock in Utisol Lampung. The experiment was designed in a completely randomized design with three factors and three replications. The first factor was the types of organic matter (I. cylindrica, P. javanica, and C. mucunoides, the second factor was the rate of organic matter (0, 2.5, and 5%, and the third factor was the rate of phosphate rock (0, 40, and 80 mg P kg-1. The results showed that in the rate of 0 and 1% organic matter, the type of organic matter did not affect P-fraction of NaHCO3-Pi, but in the rate of 2.5 and 5%, NaHCO3-Pi due to application of P. javanica, and C. mucunoides higher than due to application of I. cylindrica. However, the increasing rate of organic matter increased NaHCO3-Pi. Then, P-fraction of Resin-Pi was affected by the type of organic matter, the rate of organic matter, and the rate of phosphate rock, respectively. P-fraction of resin-Pi due to application of P. javanica, and C. mucunoides was higher than due to application of I. cylindrica, but the effect of P. javanica, and C. mucunoides was not different. Increasing the rate of organic matter and phosphate rock increased P-fraction of resin-Pi and NaHCO3-Pi, but P-fraction of NaHCO3-Po was not affected by all treatments. Meanwhile, dissolution of phosphate rock was affected by the kind of organic matter and soil reaction. In the rate of 5% organic matter, dissolution of phosphate rock by application of I. cylindrica (70% was higher

  18. Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses.

    Science.gov (United States)

    Kim, Ha Ryong; Lee, Kyuhong; Park, Chang We; Song, Jeong Ah; Shin, Da Young; Park, Yong Joo; Chung, Kyu Hyuck

    2016-03-01

    Polyhexamethylene guanidine (PHMG) phosphate was used as a disinfectant for the prevention of microorganism growth in humidifiers, without recognizing that a change of exposure route might cause significant health effects. Epidemiological studies reported that the use of humidifier disinfectant containing PHMG-phosphate can provoke pulmonary fibrosis. However, the pulmonary toxicity of PHMG-phosphate aerosol particles is unknown yet. This study aimed to elucidate the toxicological relationship between PHMG-phosphate aerosol particles and pulmonary fibrosis. An in vivo nose-only exposure system and an in vitro air-liquid interface (ALI) co-culture model were applied to confirm whether PHMG-phosphate induces inflammatory and fibrotic responses in the respiratory tract. Seven-week-old male Sprague-Dawley rats were exposed to PHMG-phosphate aerosol particles for 3 weeks and recovered for 3 weeks in a nose-only exposure chamber. In addition, three human lung cells (Calu-3, differentiated THP-1 and HMC-1 cells) were cultured at ALI condition for 12 days and were treated with PHMG-phosphate at set concentrations and times. The reactive oxygen species (ROS) generation, airway barrier injuries and inflammatory and fibrotic responses were evaluated in vivo and in vitro. The rats exposed to PHMG-phosphate aerosol particles in nanometer size showed pulmonary inflammation and fibrosis including inflammatory cytokines and fibronectin mRNA increase, as well as histopathological changes. In addition, PHMG-phosphate triggered the ROS generation, airway barrier injuries and inflammatory responses in a bronchial ALI co-culture model. Those results demonstrated that PHMG-phosphate aerosol particles cause pulmonary inflammatory and fibrotic responses. All features of fibrogenesis by PHMG-phosphate aerosol particles closely resembled the pathology of fibrosis that was reported in epidemiological studies. Finally, we expected that PHMG-phosphate infiltrated into the lungs in the form of

  19. The reactivity of CysF9[93]β sulphydryl group of des- HisHC3[146]β ...

    African Journals Online (AJOL)

    Administrator

    2011-10-31

    Oct 31, 2011 ... This is because the electrostatic environment of the sulphydryl group has been screened off. A similar obser- vation was obtained when organic phosphate, inositol hexakisphosphate, was added. This organic phosphate is known to bind to haemoglobin at the amino acid groups,. ValNA1[1]β, HisNA2[2]β, ...

  20. Adsorption of the Inflammatory Mediator High-Mobility Group Box 1 by Polymers with Different Charge and Porosity

    Directory of Open Access Journals (Sweden)

    Carla Tripisciano

    2014-01-01

    Full Text Available High-mobility group box 1 protein (HMGB1 is a conserved protein with a variety of biological functions inside as well as outside the cell. When released by activated immune cells, it acts as a proinflammatory cytokine. Its delayed release has sparked the interest in HMGB1 as a potential therapeutic target. Here, we studied the adsorption of HMGB1 to anionic methacrylate-based polymers as well as to neutral polystyrene-divinylbenzene copolymers. Both groups of adsorbents exhibited efficient binding of recombinant HMGB1 and of HMGB1 derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The adsorption characteristics depended on particle size, porosity, accessibility of the pores, and charge of the polymers. In addition to these physicochemical parameters of the adsorbents, modifications of the molecule itself (e.g., acetylation, phosphorylation, and oxidation, interaction with other plasma proteins or anticoagulants (e.g., heparin, or association with extracellular microvesicles may influence the binding of HMGB1 to adsorbents and lead to preferential depletion of HMGB1 subsets with different biological activity.