WorldWideScience

Sample records for charged particles spectrometer

  1. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.)

  2. A composite bolometer as a charged-particle spectrometer

    International Nuclear Information System (INIS)

    An improved version of a He-cooled composite diamond bolometer with a monolithic germanium thermistor, for use as a charged-particle spectrometer, is described. The performance of the bolometer was tested using 5-6 MeV α particles, and a full-width-at-half-maximum of 36 keV was obtained at 1.3 K. (U.K.)

  3. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  4. High efficiency charged-particle spectrometer using gridded ionization chamber for fast-neutron induced reactions

    International Nuclear Information System (INIS)

    A high efficiency charged particle spectrometer for fast neutron induced reactions has been developed using a gridded-ionization chamber taking advantage of its large solid angle and capability of energy-angle determination. It is characterized by high stopping-power and low background to be applicable for alpha-particles emitted by 15 MeV neutrons and protons for MeV incident neutrons. The spectrometer has been applied successfully for (n, alpha) and (n, p) reactions. (orig.)

  5. Hardware and software for ground tests of onboard charged particle spectrometers

    International Nuclear Information System (INIS)

    The article presents a hardware and software complex for ground tests of onboard charged particle spectrometers that are designed at the National Research Nuclear University MEPhI for monitoring of nuclear-physical factors of space weather and can be installed in a wide class of satellites. The structural scheme and operating principles of component parts are discussed. The main algorithm and software features are presented. The technique of ground spectrometer tests and calibrations in various measurement modes at atmospheric cosmic particle flows, both in autonomous laboratories and in interface tests as part of a satellite, is also described

  6. Hardware and software for ground tests of onboard charged particle spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Batischev, A. G., E-mail: Alexey-Batischev@mail.ru; Galper, A. M. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Grishin, S. A. [Academy of Sciences of Belarus, Stepanov Institute of Physics, National (Belarus); Naumov, P. Yu. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Niadvetski, N. S. [Academy of Sciences of Belarus, Stepanov Institute of Physics, National (Belarus)

    2015-12-15

    The article presents a hardware and software complex for ground tests of onboard charged particle spectrometers that are designed at the National Research Nuclear University MEPhI for monitoring of nuclear-physical factors of space weather and can be installed in a wide class of satellites. The structural scheme and operating principles of component parts are discussed. The main algorithm and software features are presented. The technique of ground spectrometer tests and calibrations in various measurement modes at atmospheric cosmic particle flows, both in autonomous laboratories and in interface tests as part of a satellite, is also described.

  7. A three dimensional method to reconstruct the charged particle tracks in the forward spectrometer

    International Nuclear Information System (INIS)

    A new three dimensional constrained method to reconstruct the charged particle tracks for the forward spectrometers is introduced. Using the method of least squares to solve the equation, the parameters of the tracks can be obtained. In order to reduce the computing time, the two-dimensional x-line is used as the starting points. The authors generated some Monte-Carlo data and compare the results with the data by different methods. It is shown that this method has good resolution and accuracy

  8. A time of flight mass spectrometer with field free interaction region for low energy charged particle-molecule collision studies

    International Nuclear Information System (INIS)

    A new design of a linear time of flight mass spectrometer (ToFMS) is implemented that gives nearly field-free interaction region without compromising on the mass resolution. The design addresses problems that would arise in a conventional Wiley-McLaren type of ToFMS: (i) field leakages into the charged particle-molecule interaction region from various components of the mass spectrometer, including that through the high transparency mesh used to obtain evenly distributed electric fields; (ii) complete collection and transportation of the ions produced in the interaction region to the detector, which is essential for high sensitivity and cross section measurements. This ToFMS works over a wide range of masses from H+ to a few hundred Daltons and would be the most suitable for low energy charged particle-molecule interaction studies. Performance of the ToFMS has been tested by measuring the partial ionization cross sections for electron impact on CF4.

  9. Design of an electronic charged particle spectrometer to measure (ρR), yield, and implosion symmetry on the OMEGA Upgrade

    International Nuclear Information System (INIS)

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes (∼10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 106 single-hit detectors, giving the spectrometer a dynamic range of 1 - 105 particles/shot. For example, in the case of a DT yield of 109 neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow ρR's up to 0.15 g/cm2 to be measured (for a 1 keV plasma), or 0.3 g/cm22 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine ρR up to 0.3 g/cm2. Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility

  10. Mass-analysis of Charged Aerosol Particles in a PMSE/NLC Layer by a Rocket-borne Spectrometer

    Science.gov (United States)

    Robertson, S.; Horanyi, M.; Knappmiller, S.; Kohnert, R.; Sternovsky, Z.; Holzworth, R.; Shimogawa, M.; Friedrich, M.; Gumbel, J.; Khaplanov, M.; Megner, L.; Baumgarten, G.; Latteck, R.; Rapp, M.; Hoppe, U.

    2007-12-01

    The first of two "MASS" (Mesospheric Aerosol Sampling Spectrometer) rockets was launched from the Andoya Rocket Range at 22:51 UTC on 3 August 2007 into PMSE and NLC approximately 26 minutes after an AIM satellite overpass. The sun was 4 degrees below the horizon and the local riometer indicated that the ionospheric conditions were rather quiet, i.e., day time conditions as far as negative cluster ions are concerned. NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar pointed along the rocket trajectory and were detected at the same altitude by rocket-borne photometer measurements. The rocket carried an electrostatic mass analyzer for the charged fraction of the aerosol particles and both forward and aft deployable electric field booms. The mass analyzer was mounted on the tip of the payload and pointed in the ram direction. It has a forward inlet slit with area of 25 square centimeters and side vents for air exit. Aerosol particles with different ranges of charge-to-mass ratio are collected within the instrument housing on two sets of four biased collector plates, with one set for positive particles and one set for negative particles. A preliminary analysis of the data shows the density of negative particles with radius greater than 3 nm rising sharply at 83 and continuing to 89 km, collocated with PMSE detected by the ALWIN radar. Particles with 1-2 nm radii with both signs of charge and positive particles with less than1 nm radius were detected at 86-88 km. Initial charge-density estimates are several thousands per cubic centimeter for each of these size ranges. The E field booms detected significant potential variations in the PMSE/NLC region. Further analysis will examine in more detail the effects of aerodynamics, payload charging, and spurious charge generation by particle impacts.

  11. Measurements of double differential charged particle emission cross sections and development of a wide range charged particles spectrometer for ten`s MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Nauchi, Yasushi; Baba, Mamoru; Kiyosumi, Takehide [Tohoku Univ., Sendai (Japan). Faculty of Engineering] [and others

    1997-03-01

    We measured (n,xp), (n,xd) cross sections of C and Al for En=64.3 MeV neutrons at the {sup 7}Li(p,n) neutron sources facility at TIARA (Takasaki Establishment, JAERI) by using a conventional SSD-NaI telescope placed in the air. They show characteristic energy and angular dependence in high energy regions. In order to extend the measurements to low energy protons and {alpha} particles, a new spectrometer consisting of low pressure gas counters and BaF{sub 2} scintillators is now under development. A low threshold for low energy {alpha} particles will be achieved by using the gas counters. The particle identification over a wide energy range will be achieved by combining the {Delta}E-E method for low energy particles with the pulse shape discrimination (PSD) method of BaF{sub 2} for high energy particles. (author)

  12. Design of an electronic charged particle spectrometer to measure left-angle ρR right-angle on inertial fusion experiments

    International Nuclear Information System (INIS)

    The design and fabrication of a new diagnostic that measures the energy spectra of charged particles from targets on the Omega Upgrade are actively underway. Using seven 512x512 charge coupled devices (CCDs) and a 7.5 kG permanent magnet, this instrument will uniquely determine particle identities and measure particle energies from 1 MeV up to the maximum charged particle energies of interest for ρR measurements (10.6 MeV knock-on tritons, 12.5 MeV knock-on deuterons and 30.8 MeV tertiary protons). The resolution of the diagnostic will be better than 5%. We have tested the response of SITe back-illuminated CCDs to 1.2 endash 13.6 MeV protons from our Cockcroft endash Walton accelerator and to alpha particles from an Am241 source, and the results agree extremely well with predictions. With its high density picture elements, each CCD has 105 single-hit detectors. In the case of a low DT yield of 109 neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Measurements of ρR up to 150 mg/cm2 can be obtained from knock-on D and T spectra, and values up to 300 mg/cm2 can be determined from secondary proton spectra. The sensitivity of the CCDs to 14 and 2.5 MeV neutrons has been experimentally determined using our Cockcroft endash Walton accelerator source and indicates that by incorporating neutron shielding, the signal to neutron noise ratio at a yield of 1011 will be better than 100:1. In the development phases of this program, we plan to utilize CR-39 track detectors concurrently with the CCDs. copyright 1997 American Institute of Physics

  13. Biopolymer mass spectrometer with cryogenic particle detectors

    International Nuclear Information System (INIS)

    A novel type of biopolymer mass spectrometer is proposed for massive proteins, polypeptides and DNA-fragments by replacing standard ionizing detectors with cryogenic particle detectors. The detection efficiency in ionizing detectors decreases rapidly with increasing biopolymer mass owing to the biopolymer's decreasing velocity. Cryogenic particle detectors, however, record the total kinetic energy deposited by the accelerated biopolymer. In a given electric acceleration field, this kinetic energy is independent of mass and depends only on the biopolymer's charged state. Using the intrinsic properties of cryogenic particle detectors and their specific fabrication techniques, a mass spectrometer has been designed specifically for high-throughput DNA-sequencing. The calculated DNA-fragment separation rate would be increased by several orders of magnitude as compared to standard gel-electrophoresis DNA-sequencers. (orig.)

  14. Observation of low energy charged particles by means with the SF-3M spectrometer onboard the satellite 'Kosmos-1809'

    International Nuclear Information System (INIS)

    The spectrometer of electrons and ions of low energies was installed onboard the satellite 'Kosmos-1809' launched 18.XII.86. The energy analysis was performed by toroidal electrostatic analyser, the secondary electron multiplier VEU-7-2 was used as a detector. The description of the instrument and of its calibration is given

  15. Design and fabrication of a time-of-flight spectrometer for studies of multiple ionization of gases by charged particle impact

    Indian Academy of Sciences (India)

    R K Singh; R K Mohanta; M J Singh; R Hippler; S K Goel; R Shanker

    2002-04-01

    A time-of-flight spectrometer has been designed and fabricated for measuring the charge state distributions of target ions produced in collisions of keV-electrons with gaseous target atoms/molecules. The design details of the spectrometer and the description of experimental procedures for optimizing various parameters are presented and discussed. The working principle of the spectrometer, its time- and mass-focussing conditions, transmissions and detection efficiency etc. are given. A few typical test runs on multiple ionization of Ne and Ar gas atoms are illustrated. These spectra are found to yield the time resolution of about 10 ns for Ar4+ ion peak in 24.0 keV e- – Ar collisions while the mass resolution of the spectrometer is obtained about 10% at mass = 20.

  16. Associated Particle Tagging (APT) in Magnetic Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the

  17. Magnetic guidance of charged particles

    CERN Document Server

    Dubbers, Dirk

    2015-01-01

    Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case and present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests, for instance in neutrino mass retardation spectrometers.

  18. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  19. Sources for charged particles

    International Nuclear Information System (INIS)

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)

  20. TSI Model 3936 Scanning Mobility Particle Spectrometer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3936 Scanning Mobility Particle Spectrometer (SMPS) measures the size distribution of aerosols ranging from 10 nm up to 1000 nm. The SMPS uses a bipolar aerosol charger to keep particles within a known charge distribution. Charged particles are classified according to their electrical mobility, using a long-column differential mobility analyzer (DMA). Particle concentration is measured with a condensation particle counter (CPC). The SMPS is well-suited for applications including: nanoparticle research, atmospheric aerosol studies, pollution studies, smog chamber evaluations, engine exhaust and combustion studies, materials synthesis, filter efficiency testing, nucleation/condensation studies, and rapidly changing aerosol systems.

  1. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  2. Charged Particle Optics Theory

    Czech Academy of Sciences Publication Activity Database

    Hawkes, P. W.; Lencová, Bohumila

    -, č. 6 (2006), s. 6-8 Grant ostatní: EC 5RP(XE) G5RD-CT-2000-00344 Institutional research plan: CEZ:AV0Z20650511 Keywords : optics of charged particles * design of ion lithography system * spot profile * the finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering www.phantomsnet.net

  3. Introduction to Subatomic-Particle Spectrometers

    OpenAIRE

    Kaplan, Daniel M.; Lane, Charles E.; Nelson, Kenneth S.

    1998-01-01

    An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle interactions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrometers and exemplify the combined use of several detection techniques to cha...

  4. Nanodosimetry of charged particles

    International Nuclear Information System (INIS)

    In last year's annual report, the authors described the development of an ultra-miniature counter (UMC), described some of its physical characteristics, and presented some first measurements with this counter of microdosimetric spectra for neutrons (15 MeV) and photons (137Cs). It remains to investigate in more detail the operational characteristics of the UMC and if possible, to make a comparison of relevant physical parameters such as gain and multiplication radius with the Segur theory. In order to accomplish these objectives, it is necessary to build a wall-less version of the UMC, which will be amenable to calibration and investigation with collimated beams of charged particles. The design of such a counter has been worked out in principle. Investigations into the optimal design of electrode structures and dimensions are being carried out at present. The main problem occurs with the design of the grid structure which is required to define the outer boundary of the collecting volume. Our initial attempts would make it appear at present that a counter of 1 to 1.5 mm diameter is feasible. This should be more than adequate to provide an appropriately wall-less counter within a reasonable size cavity. It will probably be about a year before a working counter can be produced. In the interim, it is possible to make some initial efforts into the investigation of operational characteristics of a wall-less UMC by making use of similar design, but at a somewhat larger size. These first attempts at measurement of charged particle microdosimetric spectra at nanometer site provide added evidence that these counters can yield useful microdosimetric data at far smaller site sizes than heretofore attempted. They also provide added incentive and encouragement for development of wall-less UMC

  5. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    Science.gov (United States)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  6. Data processing and data evaluation of the ISEE-particle spectrometer

    International Nuclear Information System (INIS)

    The processing and the evaluation of the data, provided by our charged particles spectrometers, which we have flown on the ISEE-A and -B spacecraft, is described. Results are demonstrated by several examples. (orig.)

  7. Heavy charged particle therapy

    International Nuclear Information System (INIS)

    A pilot study of heavy charged particles with heavy ion medical accelerator in Chiba (HIMAC) for advanced H and N cancer has been carried out from June 1994 at National Institute of Radiological Sciences (NIRS). As of the beginning of August 1994, three patients were treated by 290 MeV carbon ions. The patients had adenocarcinoma of the cheek mucosa, squamous cell carcinoma of the ethmoid sinus and adenoid cystic carcinoma of the sublingual gland. Patients were immobilized by individual head coach and thermosplint facial shell. Individual collimators and bolus were also prepared for each ports. Dose fractionation for the initial pilot study group was 16.2 GyE/18 fractions/6 weeks, which would be equivalent to standard fractionation of 60.0 Gy/30 fractions/6 weeks with photons. This dose fractionation was considered to be 20% lesser than 75 GyE/37.5 fractions/7.5 weeks, which is estimated to be maximum tolerance dose for advanced H and N cancers. HIMAC worked well and there was no major trouble causing any treatment delay. Acute skin reactions of 3 patients were 2 cases of bright erythema with patchy moist desquamation and one of dull erythema, which were evaluated as equivalent reaction with irradiated dose. Acute mucosa reactions appeared to have lesser reaction than predicted mucositis. Tumor reactions of three patients were partial reaction (PR) at the end of treatment and nearly complete remission (CR) after 6 months of treatment. From October 1994, we started to treat patients with advanced H and N cancer with 10% high dose than previous dose. And new candidates of pilot study with non small cell lung cancer, brain tumor and carcinoma of the tongue were entered into pilot study. At the end of February 1995, a total of 21 patients were treated by carbon ions. (J.P.N.)

  8. Mass-independent search for fractionally charged particles

    International Nuclear Information System (INIS)

    A proposed mass-independent search for fractionally charged particles with the all-electrostatic line of the IsoTRACE Laboratory at University of Toronto is described. Sensitive measurement of the fractional charge is accomplished by (1) a judicious choice of ion source and ion species, (2) charge changing and electrostatic analysis before injection into the tandem accelerator, (3) molecular destruction, charge changing, and acceleration by the tandem, (4) charge state selection and E/q analysis after acceleration, and (5) particle energy measurement with a Si surface barrier detector. In addition, the mass of the fractionally charged particles can be determined by a time of flight spectrometer. Specific cases involving +- (1/3)e and +- (2/3)e particles are discussed. Also included in the discussion are: integral charge background rejection, the procedure of the search, the signature of the fractionally charged particles, he resolutions of the analyzers and detectors, and the expected energy and time of flight spectra

  9. Optics of charged particles

    International Nuclear Information System (INIS)

    Suitable for both the specialist and non-specialist, this book develops all statements from first principles. Key chapters of the book focus upon how to design particle-optical systems, the systematics of image abberations, the effects of fringing fields, systematics of beams, and solutions for particle-optical systems. An undergraduate background in physics and mathematics is required for this work

  10. A chemical analyzer for charged ultrafine particles

    Directory of Open Access Journals (Sweden)

    S. G. Gonser

    2013-04-01

    Full Text Available New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP capable of analyzing particles with diameters below 30 nm. A bulk of size separated particles is collected electrostatically on a metal filament, resistively desorbed and consequently analyzed for its molecular composition in a time of flight mass spectrometer. We report of technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of known masses of camphene (C10H16 to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  11. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  12. Alpha particles spectrometer with photodiode PIN

    International Nuclear Information System (INIS)

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  13. Dust particle charging in sheath

    International Nuclear Information System (INIS)

    The charging and the screening of spherical dust particles in sheaths near the wall were studied using computer simulation. The three-dimensional PIC/MCC method and molecular dynamics method were applied to describe plasma particles motion and interaction with macroscopic dust grain. Calculations were carried out at different neutral gas pressures and wall potentials. Values of the charge of the dust particles and spatial distributions of plasma parameters are obtained by modelling. The results have shown that the charge of the dust particles in the sheath, as well as the spatial distribution of the ions and electrons near the dust particles, depend strongly on the wall potential. It is shown that for large negative values of the wall potential the negative charge of a dust particle decreases due to the decline of the electron density in its vicinity. In addition, the flow of energy of the ions on the surface of dust particles is increased due to better focusing effect of the dust particle field on ions.

  14. Proposed precision laser spectrometer for trapped, highly charged ions

    OpenAIRE

    M. Vogel; Winters, D.F.A.; Segal, D. M.; Thompson, R. C.

    2005-01-01

    We propose a novel type of precision laser spectrometer for trapped, highly charged ions nearly at rest. It consists of a cylindrical open-endcap Penning trap in which an externally produced bunch of highly charged ions can be confined and investigated by means of laser spectroscopy. The combination of confinement, cooling and compression of a dense ion cloud will allow the ground state hyperfine splitting in highly charged ions to be measured with an accuracy three orders of magnitude better...

  15. Charged-particle coating

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-08-29

    Advanced target designs require thicker (approx. 300 ..mu..m) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized.

  16. Charged-particle coating

    International Nuclear Information System (INIS)

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  17. Charged particle acceleration with plasmas

    International Nuclear Information System (INIS)

    Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 107 V/cm have been observed. (Author). 4 refs

  18. Geometrical charged-particle optics. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harald [Technische Univ. Darmstadt (Germany). Inst. fuer Angewandte Physik

    2013-03-01

    Provides a unique theoretical treatment of charged-particle optics. Displays novel unpublished results on several topics. Provides insight into the properties of charged-particle devices. Treats wave optical properties of the electron. Presents the resolution limit of electron microscopes and novel theoretical treatment of the Stern-Gerlach effect. This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton's principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern

  19. 'DIAMANT': A 4 π light charged particle detector array

    International Nuclear Information System (INIS)

    4π γ-spectrometers allow precise determination of weak transitions. A 4π light charged particle detector array of 54 detectors called DIAMANT is described as applied for triggering γ-spectrometers. The multidetector system allows channel selection, increases the sensitivity of the spectrometer, and can give additional information on the exit channel and the path leading to the final nucleus studied by its γ emission. The characteristics and first measured performance of the DIAMANT multidetector array are presented. (R.P.) 2 refs

  20. Magnetic guidance of charged particles

    Directory of Open Access Journals (Sweden)

    Dirk Dubbers

    2015-09-01

    Full Text Available Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF for magnetic transport that deviate strongly from previous results. The “magnetic” PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  1. Computations in Charged Particle Optics

    Czech Academy of Sciences Publication Activity Database

    Oral, Martin; Radlička, Tomáš

    Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014, s. 23-24. ISBN 978-80-87441-12-1. [Workshop of Interesting Topics of SEM and ESEM. Mikulov (CZ), 26.08.2014-31.08.2014] R&D Projects: GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : charged Particle Optics * computations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. Heavy charged particle radiotherapy trial

    International Nuclear Information System (INIS)

    Through mid-1985, a total of 49 patients received heavy-charged-particle irradiation for chordoma, chondrosarcoma, meningioma, or neurilemmoma of the base of skull or juxtaspinal area. The mean tumor dose was 68 Gray-equivalent, ranging from 26 to 80. Control within the irradiated area was obtained in 35 of 49. The median follow up in all 49 patients is 21 months, with a range from 3-90 months. Serious complications were seen in a small number of patients, with cranial nerve injury in two, transverse myelitis in one, and brain necrosis in three patients. In 42 patients with tumors of other histologies and/or sites, including tumors of paranasal sinuses, retroperitoneum, soft tissue and miscellaneous other sites, heavy charged particles were also used to deliver a higher tumor dose than possible with standard irradiation techniques. In the group, 21/42 (50%) have had local tumor control, also a good result considering the extent and the range of tumor types treated. The authors believe that there are a number of sites in addition to the juxtaspinal/base of skull tumors that will show long term benefit from treatment with heavy charged particles

  3. Direct charged particle imaging sensors

    International Nuclear Information System (INIS)

    CMOS image sensors optimized for charged particle imaging applications, such as electron microscopy and particle physics, have been designed and characterized. These directly image charged particles without reliance on performance-degrading hybrid technologies such as the use of scintillating materials. Based on standard CMOS active pixel sensor (APS) technology, the sensor arrays uses an 8-20 μm epitaxial layer that acts as a thicker sensitive region for the generation and collection of ionization electrons resulting from impinging high-energy particles. This results in a 100% fill factor and a far larger signal per incident electron than a standard CMOS photodiode could provide. A 512x550 pixels prototype has been fabricated and used extensively in an electron microscope, including having been used to take sample images. Temporal noise was measured to be 0.9 mV RMS, and the dynamic range was 60 dB. Power consumption at 70 frames/s is 20 mW. The full-width half-maximum of the collected ionization electron distribution was found to be 5.5 μm, yielding a spatial resolution of approximately 2.3 μm for individual incident electrons, and the modulation transfer function of the sensor at the Nyquist limit is to be 32%

  4. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    Science.gov (United States)

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of microorganisms, owing to the generation of nonagglomerated particles. PMID:20038090

  5. The dynamics of a charged particle

    OpenAIRE

    Rohrlich, Fritz

    2008-01-01

    Using physical arguments, I derive the physically correct equations of motion for a classical charged particle from the Lorentz-Abraham-Dirac equations (LAD) which are well known to be physically incorrect. Since a charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation accounts for that by imposing a basic condition on the external force. That condition ensures that the particle's finite size charge distribution looks like a point charg...

  6. Interactions of charged dust particles in clouds of charges

    Science.gov (United States)

    Gundienkov, Vladimir; Yakovlenko, Sergey

    2004-03-01

    Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.

  7. Supplementary kinetic constants of charged particles

    OpenAIRE

    Ribaric, Marijan; Sustersic, Luka

    2006-01-01

    We put forward: (A) An improved description of classical, kinetic properties of a charged pointlike physical particle that consists, in addition to its mass and charge, also of the Eliezer and Bhabha kinetic constants; and (B) a proposal to evaluate these kinetic constants by considering the trajectories of charged particles in an acccelerator.

  8. Development of a portable α-particle spectrometer

    International Nuclear Information System (INIS)

    The detection of undeclared nuclear activities and the verification of declared nuclear facilities and materials are a matter of great concern worldwide. With the purpose of detecting and locating undeclared nuclear activities on site, a portable α-particle spectrometer was designed and built with a weight of 14 kg and a size of 30 cm × 30 cm × 30 cm that can be operated at normal temperature and with a maximum pressure of 1.0 torr. A feasibility study of this new portable α-particle spectrometer was conducted. The experimental results were compared with results from a laboratory α-particle spectrometry system. The 235U/238U ratio determined by the portable spectrometer was about 3.86%, while the laboratory spectrometry system gave the ratio of 3.90%. Their detection efficiencies were nearly identical for those two spectrometers. To improve the energy resolution of the portable spectrometer, a hexagonal-type collimator was designed by using GEANT4 and employed. With this collimator, the average full width at half maximum (FWHM) was enhanced from 29 keV to 24 keV . This study showed that the newly developed portable α-particle spectrometer, employing a small vacuum pump and minimized electronics, can be used for on-site measurement to detect and locate undeclared nuclear facilities and activities in a timely manner

  9. [Emulsion spectrometer experiment for B and C particles

    International Nuclear Information System (INIS)

    An experiment is proposed which employs a hybrid emulsion spectrometer to measure lifetimes and decay properties of beauty particles and charmed particles produced by interactions of high energy hadrons. The key to the experiment is a position-sensitive silicon detector. The physics motivation of the experiment and the design of the experimental apparatus and treatment of data are discussed

  10. Spinning charged test particles and Cosmic Censorship

    International Nuclear Information System (INIS)

    The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis. (Auth.)

  11. High Energy Ionic Charge State Composition in Large Solar Energetic Particle Events

    OpenAIRE

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.; von Rosenvinge, T. T.

    2001-01-01

    Measurements of ionic charge states in solar energetic particle (SEP) events have been made at relatively high energies (> 15 MeV/nucleon) with the Mass Spectrometer Telescope (MAST) on board the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite using the Earth's magnetic field as a particle rigidity filter. We have examined the largest SEP events of solar cycle 23 and determined ionic charge states of Fe and other elements in several of these events. The mean charge s...

  12. Charge of dust particles in a particle chain

    CERN Document Server

    Yousefi, Razieh; Matthews, Lorin Swint; Hyde, Truell W

    2016-01-01

    Charged dust particles form structures which are extended in the vertical direction in the electrode sheath of a rf discharge when confined within a glass box. The charge on each particle as a function of height varies due to the changing plasma conditions and the wakefield of upstream particles. Here an analysis of the equilibrium state of chains of varying number of particles is analyzed to determine the charge on each particle within a vertically extended chain as well as the magnitude of the positive wakefield charge.

  13. Integrated FET and charge reset device for gamma spectrometers

    International Nuclear Information System (INIS)

    This paper reports on a specially designed and processed five-terminal device incorporating a low noise field effect transistor and an integrated charge restoration mechanism used with an HPGe coaxial detector to produce a high rate, high resolution gamma spectrometer. A controlled charge pulse is injected into the FET channel and then collected by the gate to discharge the feedback capacitor and reset the amplifier. The reset time is fast and the high resolution is maintained at energy rate products in excess of 1011 eV/s. The FET input capacitance is 8 pF and the noise voltage is 0.45 nV/sq. root Hz at optimum temperature, When it is used with a 22 pF HPGe n-type coaxial detector the total pulser noise is 420 eV at 12 μs amplifier peaking time

  14. Worldline deviations of charged spinning particles

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, M. [Department of Physics, Shahid Beheshti University, Evin, 19839 Tehran (Iran, Islamic Republic of); Mohseni, M. [Physics Department, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of)]. E-mail: m-mohseni@pnu.ac.ir; Sepangi, H.R. [Department of Physics, Shahid Beheshti University, Evin, 19839 Tehran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics, Tehran (Iran, Islamic Republic of)

    2005-10-20

    The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of charged spinning particles in the framework of Dixon-Souriau equations of motion.

  15. Worldline deviations of charged spinning particles

    CERN Document Server

    Heydari-Fard, M; Sepangi, H R

    2005-01-01

    The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of charged spinning particles in the framework of Dixon-Souriau equations of motion.

  16. The response of a Bonner sphere spectrometer to charged hadrons

    International Nuclear Information System (INIS)

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN. (authors)

  17. Delay Equation for Charged Brown Particle

    OpenAIRE

    Vlasov, Alexander A.

    2001-01-01

    In previous work (physics/0004026) was shown, with the help of numerical calculations, that the effective Brown temperature for charged particle is lower than that for particle without charge. Here we derive this result without numerical calculations, integrating the delay equation analytically, as for zero, so for nonzero viscosity.

  18. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  19. Charged-particle activation analysis

    International Nuclear Information System (INIS)

    The paper discusses the methodology and application of nuclear activation with ion beams (19 via 16O(3He,p)18F, 12C(3He,α)11C and 14N(p,α)11C respectively. Recently, triton activation has been shown to be inherently still superior to 3He activation for the determination of oxygen [16O(3H,n)18F]. Lithium, boron, carbon and sulphur can be detected rapidly, nondestructively and with high sensitivity (approximately 0.25ppm for Li and B) via ''quasi-prompt'' activation based on the detection of short-lived, high-energy beta emitters (10ms1H(7Li,n)7Be for example. Nondestructive multielement analysis: Proton activation has the inherent potential for meeting requirements of broad elemental coverage, sensitivity (ppm and sub-ppm range) and selectivity. Up to 30 elements have been determined in Al, Co, Ag, Nb, Rh, Ta and biological samples, using 12-MeV proton activation followed by gamma-ray spectrometry. These capabilities are further enhanced with the counting of X-ray emitters, 28 elements (269) and accuracy using proton activation. 204Pb/206Pb ratios can also be determined with a relative precision of a few per cent. Although charged-particle activation analysis is a well-established trace analysis technique, broad potential capabilities remain to be explored, e.g. those arising from ultrashort-lived nuclides, heavy ion interactions and the combination of delayed and prompt methods. (author)

  20. Time response of TOF spectrometer to light and heavy particles

    International Nuclear Information System (INIS)

    Comparing time of flight (TOF) values for α particles and fission fragments measured at different distances between the start- and stop detector we have obtained 60 ps as the upper limit for the TOF error resulting from the assumption of equal and linear time calibrations for both types of particles. While the 60 ps limit relates only to the specific spectrometer, the problem and the suggested verification technique are of general interest

  1. Coagulation of charged particles in dust plasma

    International Nuclear Information System (INIS)

    One studied peculiarities of behaviour of small particles in dust plasma resulted on the one hand, from suppression of coagulation due to monopolar charging within the range of particle dimensions under the Debye radius of shielding and, on the other hand, from leveling of this case for particles of large dimensions. On the basis of similarity ratios one determined the range of parameters making linear approximation of particle charge dependence on their dimension true. In terms of the modified classical theory of coagulation in diffusion approximation one studied certain anomalies of behavior of dimension distribution of particles. It is determined that in contrast to the ordinary aerosol in dust plasma as time passes one may reduce dispersion of distribution and average dimensions of particles. For the first time one demonstrates the possibility to realize long-lived quasiliquid state of dust plasma associated with the anomalous behaviour of distribution function of coagulating charged particles according to dimensions

  2. Weak charges of charmed particles

    International Nuclear Information System (INIS)

    The matrix elements between the lowest states of the ΔC=1 weak charges are evaluated including the effect of SU4 breaking. The charges are obtained from the corresponding generators of the classification group by a unitary transformation U, which is factorized as the product of operators acting on a single quark: the breaking is naturally introduced by having different mixing parameters for the different quarks

  3. A Feasibility Study of a Portable Alpha Particle Spectrometer

    International Nuclear Information System (INIS)

    Alpha spectroscopy is widely used for detecting undeclared nuclear facilities, activities, and materials. Due to the heavy equipment required to carry out this technique, its applications is limited. With the goal of quickly and efficiently responding to undeclared nuclear facilities, activities, and materials, the present authors have designed and built a portable α-particle spectrometer. This study was conducted in order to develop a new portable α-particle spectrometer with the purpose of detecting undeclared nuclear facilities, activities, and materials on site quickly and efficiently. All heavy and large components, which are typically required for a laboratory such as a αparticle spectrometry system, were minimized and placed in a small container with a weight of 14 kg and a size of 30 cm x 30 cm x 30 cm. In the feasibility study, the calculated enrichment values of 235U obtained from the portable α-particle spectrometer were 1.868 % and 3.083 %, similar to the results from a commercial spectrometry system used in laboratories, 2.049 % and 3.253 %. These differences were possibly caused by different channel setups for each system

  4. Robust statistical reconstruction for charged particle tomography

    Science.gov (United States)

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  5. New Charged Particles from Higgs Couplings

    CERN Document Server

    Cohen, Andrew G

    2012-01-01

    The recently reported observation of a new particle with mass about 125 GeV and couplings generally resembling those of the Standard Model Higgs boson provides a potential probe of the physics of electroweak symmetry breaking. Although the current data only provides hints, we suggest a particular combination of Higgs couplings as an assay for new charged particles connected with electroweak symmetry breaking, and construct a simple model with charge 5/3 quarks as a demonstration of its use.

  6. Measurement of the electrostatic charge in airborne particles: II - particle charge distribution of different aerosols

    Directory of Open Access Journals (Sweden)

    M. V. Rodrigues

    2006-03-01

    Full Text Available This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000 has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.

  7. Physics Opportunities with the Neutral Particle Spectrometer in Hall C

    Science.gov (United States)

    Horn, Tanja; NPS Collaboration

    2015-10-01

    The two-arm combination of neutral-particle detection and a high-resolution magnetic spectrometer offers unique scientific capabilities to push the energy scale for studies of the transverse spatial and momentum structure of the nucleon through reactions with neutral particles requiring precision and high luminosity. It enables precision measurements of the deeply-virtual Compton scattering cross section at different beam energies to extract the real part of the Compton form factor without any assumptions. It allows measurements to push the energy scale of real Compton scattering, the process of choice to explore factorization in a whole class of wide-angle processes, and its extension to neutral pion photo-production. It further makes possible measurements of the basic semi-inclusive neutral-pion cross section in a kinematic region where the QCD factorization scheme is expected to hold, which is crucial to validate the foundation of this cornerstone of 3D transverse momentum imaging. Adding the option of polarized targets to such a setup, allows for exploration of further scientific directions, e.g., timelike Compton scattering. We describe the unique science program as enabled by the Neutral-Particle Spectrometer and the magnetic spectrometer pair in Hall C at JLab. Supported in part by NSF Grants PHY-1530874 and PHY-1306227.

  8. Particles with non abelian charges

    CERN Document Server

    Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

    2013-01-01

    Efficient methods for describing non abelian charges in worldline approaches to QFT are useful to simplify calculations and address structural properties, as for example color/kinematics relations. Here we analyze in detail a method for treating arbitrary non abelian charges. We use Grassmann variables to take into account color degrees of freedom, which however are known to produce reducible representations of the color group. Then we couple them to a U(1) gauge field defined on the worldline, together with a Chern-Simons term, to achieve projection on an irreducible representation. Upon gauge fixing there remains a modulus, an angle parametrizing the U(1) Wilson loop, whose dependence is taken into account exactly in the propagator of the Grassmann variables. We test the method in simple examples, the scalar and spin 1/2 contribution to the gluon self energy, and suggest that it might simplify the analysis of more involved amplitudes.

  9. Discrete Element Modeling of Triboelectrically Charged Particles

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and

  10. Charged particle concepts for fog dispersion

    Science.gov (United States)

    Frost, W.; Collins, F. G.; Koepf, D.

    1981-01-01

    Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.

  11. Towards a microscopic theory of particle charging

    CERN Document Server

    Bronold, Franz X; Kersten, H; Deutsch, H

    2009-01-01

    We recently questioned the treatment of a dust particle as a perfect absorber for electrons and ions and proposed a surface model for the charge of a dust particle in a quiescent plasma which combines the microscopic physics at the grain boundary (sticking into and desorption from external surface states) with the macrophysics of the discharge (plasma collection fluxes). Within this model the charge and partial screening of the particle can be calculated without relying on the condition that the total electron collection flux balances on the grain surface the total ion collection flux. Grain charges obtained from our approach compared favorably with experimental data. The purpose of this paper is to describe our model in more detail, in particular, the hypotheses on which it is built, contrast it with the standard charging models based on flux balancing on the grain surface, and to analyze additional experimental data.

  12. Fractionally charged particles in cosmic rays

    CERN Document Server

    Bashindzhagyan, George

    2016-01-01

    The results of many experiments on a search of fractionally charged particles in cosmic rays have been reviewed. The registered by ATIC and PAMELA experiments change of the proton energy spectrum at about 250 GeV can be explained if fractionally charged particles with another energy spectrum slope actually mixed with protons but cannot be separated because of a strong dE/dx fluctuations. The performed simulations show that multilayer detectors can seriously help in such separation. In the Aragats experiment performed using multilayer proportional counter combined with hadron calorimeter a group of 4e/3 like events with unexpectedly high average energy has been registered. It could be explained by their different from regular hadrons energy spectrum. The ATIC experiment ionization spectrum in single charged particle area has been examined. An interesting bump in 2e/3 charge region was observed. The events in the bump have very different from regular protons angular distribution.

  13. Electro-optical detection of charged particles

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R; Lazarus, D M; Magurno, B; Nikas, D; Ozben, C; Srinivasan-Rao, T; Tsang, Thomas

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO sub 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  14. Charged particle and magnetic field research in space

    Science.gov (United States)

    1972-01-01

    Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.

  15. Why do particle clouds generate electric charges?

    Science.gov (United States)

    Pähtz, T.; Herrmann, H. J.; Shinbrot, T.

    2010-05-01

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

  16. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  17. Bibliography of integral charged particle nuclear data

    International Nuclear Information System (INIS)

    This publication is the second supplement to the archival edition of the National Nuclear Data Center's charged-particle bibliography. This supplement contains citations to all references scanned since March 15, 1981, and all corrections and additions to previous citations, and indexes all data received in the international exchanged format (EXFOR). The primary goal of the bibliography has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged-particle cross section data and to provide an index of data exchanged among the members. In 1980, coverage was expanded to include differential data relevant to charged-particle-induced neutron-source reactions

  18. Integral charged particle nuclear data bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.; Ramavataram, S.

    1989-12-01

    This publication is the annual supplement to the first edition published in 1984. The primary goal of this publication has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged--particle cross section data. Included in this paper is a partial list of other bibliographies relevant to charged-particle-induced reaction data and a source list of nuclear data bibliographies, complications, and cumulative, earlier versions are also shown in the tables. This publication makes use of a modification to the database of the Nuclear Structure References (NSR) file. This modification allows the retrieval of integral charged particle nuclear data entries from the NSR file. In recent years, the presentation of various sections was changed, as a result of users' suggestions. The authors continue to welcome users' comments.

  19. Integral charged particle nuclear data bibliography

    International Nuclear Information System (INIS)

    This publication is the annual supplement to the first edition published in 1984. The primary goal of this publication has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged--particle cross section data. Included in this paper is a partial list of other bibliographies relevant to charged-particle-induced reaction data and a source list of nuclear data bibliographies, complications, and cumulative, earlier versions are also shown in the tables. This publication makes use of a modification to the database of the Nuclear Structure References (NSR) file. This modification allows the retrieval of integral charged particle nuclear data entries from the NSR file. In recent years, the presentation of various sections was changed, as a result of users' suggestions. The authors continue to welcome users' comments

  20. Position sensitive detector of magnetically charged particles

    International Nuclear Information System (INIS)

    Two variants of coordinate detectors of magnetically charged paticles based on the utilization of transducers with Josephson transitions are proposed. The system of data acquisition and processing is built up in the CAMAC standard. The helium cryostat diagram is presented. The detector resolution time and dead time constitute 1 μs. Methods of detection of magnetically charged particles used in the above detectors are expected to be more effective, as compared to ionization method and other indirect methods

  1. Solar Intensity X-ray and particle Spectrometer (SIXS)

    Science.gov (United States)

    Huovelin, J.; Vainio, R.; Andersson, H.; Valtonen, E.; Alha, L.; Mälkki, A.; Grande, M.; Fraser, G. W.; Kato, M.; Koskinen, H.; Muinonen, K.; Näränen, J.; Schmidt, W.; Syrjäsuo, M.; Anttila, M.; Vihavainen, T.; Kiuru, E.; Roos, M.; Peltonen, J.; Lehti, J.; Talvioja, M.; Portin, P.; Prydderch, M.

    2010-01-01

    The Solar Intensity X-ray and particle Spectrometer (SIXS) on the BepiColombo Mercury Planetary Orbiter (MPO) will investigate the direct solar X-rays, and energetic protons and electrons which pass the Spacecraft on their way to the surface of Mercury. These measurements are vitally important for understanding quantitatively the processes that make Mercury's surface glow in X-rays, since all X-rays from Mercury are due to interactions of the surface with incoming highly energetic photons and space particles. The X-ray emission of Mercury's surface will be analysed to understand its structure and composition. SIXS data will also be utilised for studies of the solar X-ray corona, flares, solar energetic particles, and the magnetosphere of Mercury, and for providing information on solar eruptions to other BepiColombo instruments. SIXS consists of two detector subsystems. The X-ray detector system includes three identical GaAs PIN detectors which measure the solar spectrum at 1-20 keV energy range, and their combined field-of-view covers ˜1/4 of the whole sky. The particle detector system consists of an assembly including a cubic central CsI(Tl) scintillator detector with five of its six surfaces covered by a thin Si detector, which together perform low-resolution particle spectroscopy with a rough angular resolution over a field-of-view covering ˜1/4 of the whole sky. The energy range of detected particle spectra is 0.1-3 MeV for electrons and 1-30 MeV for protons. A major task for the SIXS instrument is the measurement of solar X-rays on the dayside of Mercury's surface to enable modeling of X-ray fluorescence and scattering on the planet's surface. Since highly energetic particles are expected to also induce a significant amount of X-ray emission via particle-induced X-ray emission (PIXE) and bremsstrahlung when they are absorbed by the solid surface of the planet Mercury, SIXS performs measurements of fluxes and spectra of protons and electrons. SIXS performs

  2. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-04-01

    Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and

  3. Quantitative determination of carbonaceous particle mixing state in Paris using single particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-04-01

    Full Text Available Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of

  4. Spectral and angular distributions of charged particles outside biological shielding of the 70 GeV Serpukhov accelerator

    International Nuclear Information System (INIS)

    Space, angular and energy distributions of the charged particle of radiation field outside the Serpukhov accelerator shielding at different protons beam energies obtained with the ΔE-E spectrometer are presented. The influence of the accelerating complex operation on the charged particles field shaping outside the concrete and heterogeneous steel-concrete shieldings has been analyzed. The ratios between neutrons and charged particles of the radiation field outside the 70 GeV accelerator shielding have been estimated

  5. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2013-09-01

    Full Text Available Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC, organic aerosol (OA, ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, a thermal–optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC. ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78, and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the

  6. Quantitative determination of carbonaceous particle mixing state in Paris using single-particle mass spectrometer and aerosol mass spectrometer measurements

    Science.gov (United States)

    Healy, R. M.; Sciare, J.; Poulain, L.; Crippa, M.; Wiedensohler, A.; Prévôt, A. S. H.; Baltensperger, U.; Sarda-Estève, R.; McGuire, M. L.; Jeong, C.-H.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Evans, G. J.; Wenger, J. C.

    2013-09-01

    Single-particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single-particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been determined using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulfate and potassium were compared with concurrent measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal-optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived estimated mass concentrations reproduced the variability of these species well (R2 = 0.67-0.78), and 10 discrete mixing states for carbonaceous particles were identified and quantified. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorisation, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulfate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA / EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidised OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the range of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal

  7. Fog camera to visualize ionizing charged particles

    International Nuclear Information System (INIS)

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  8. Control microprocessor system for charge particle channeling

    International Nuclear Information System (INIS)

    Control microprocessor systems are widely applied not only in designing industrial robots but in providing functioning of different experimental plants. The experiment control system for charge particle channeling has been considered in the paper. Flexibility, relatively low cost and high reliability are advantages of these systems

  9. Studying Charged Particle Optics: An Undergraduate Course

    Science.gov (United States)

    Ovalle, V.; Otomar, D. R.; Pereira, J. M.; Ferreira, N.; Pinho, R. R.; Santos A. C. F.

    2008-01-01

    This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal…

  10. Treatment of cancer with heavy charged particles

    International Nuclear Information System (INIS)

    The goals of the clinical helium and heavy charged particle radiotherapy trial are: (1) to evaluate the potential of improved dose localization as exemplified by helium-ion irradiation where little, if any, biological advantage is expected; and (2) to evaluate the combined potential of improved dose localization and increased biological effect available with heavier ions such as carbon, neon, silicon, and argon ions

  11. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  12. Charged Particles' Tunneling from Noncommutative Charged Black Hole

    CERN Document Server

    Mehdipour, S Hamid

    2010-01-01

    We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstr\\"om black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.

  13. Charged particles' tunneling from a noncommutative charged black hole

    OpenAIRE

    Mehdipour, S. Hamid

    2010-01-01

    We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstrom black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.

  14. Tumor therapy with heavy charged particles

    Science.gov (United States)

    Blattmann, Hans

    1999-11-01

    Nuclear science has contributed significantly to the development of tumor therapy with heavy charged particles. Interest evolved for neutron therapies in the forties because of the increased radiobiological effectiveness (RBE) compared to photon irradiation. The development of more powerful proton and heavy ion accelerators with higher energies or higher intensities, made new particles for radiation therapy available. Pions, protons, light ions, from helium up to silicon were studied in view of precision dose delivery and increased RBE. Without the parallel development of new diagnostic techniques such as computer tomography (CT) and positron emission tomography (PET) the rapid development would not have been possible. Heavy-charged particle therapy has now come into a consolidation phase. Hospital-based facilities are built by industry, and research institutes focus on refinements in dose delivery and treatment planning, as well as systems for monitoring dose delivery and for dose distribution verification.

  15. High-frequency charged particle accelerator

    International Nuclear Information System (INIS)

    The device is refered to technical physics and may be used as a source of accelerated particles for irradiation of different objects in industry and agriculture. The device is aimed at increase of the power and enhancement of stability of the accelerator operation and decrease of its dimensions. High-frequency accelerator is composed of an accelerating cavity resonator a charged particle source and HF power supply. The aim is attained by the fact, that HF power source anode is made as one of coupling capasitor plates, the second plate of which is the nearest to anode HF power supply grid. The coupling capacitor plalte functional union with the HF power supply electrodes (anode and grid) reduces to spirious inductances of HF power supply circuit to minimum. Besides, the accelerator structure is simplified, as additional cooling system for the charged particle source is not necessary

  16. Acceleration of charged particles in laser beam

    Directory of Open Access Journals (Sweden)

    M.J. Małachowski

    2009-12-01

    Full Text Available Purpose: The aim of this paper was to find parameters of the laser and maser beams in numerical ways with additionally applied external static axial magnetic field which satisfies the proper conditions for charged particle acceleration.Design/methodology/approach: The set acceleration was designed in order to obtain the possible high kinetic energy of the charged particles in the controllable manner. This was achieved applying a circularly polarized high intensity laser beam and a static axial magnetic field, both acting on the particle during the proper period.Findings: The quantitative illustrations of the calculation results, in a graphical form enabled to discuss the impact of many parameters on the acceleration process of the electrons and protons. We have found the impact of the Doppler Effect on the acceleration process to be significant. Increase in laser or maser beam intensity results in particle’s energy increase and its trajectory dimension. However, increase in external magnetic field results in shrinking of the helical trajectories. It enables to keep the particle inside the laser beam.Research limitations/implications: Limits in the energy of accelerated particles arise from the limitsin up-to-date available laser beam energy and the beam diameters.Originality/value: The authors show the parameters of the circularly polarized laser beam which should be satisfied in order to obtain the desired energy of the accelerated particles. The influence of the magnetic field strength is also shown.

  17. The formation of negatively charged particles in thermoemission plasmas

    Science.gov (United States)

    Vishnyakov, V. I.; Dragan, G. S.; Florko, A. V.

    2008-01-01

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  18. The formation of negatively charged particles in thermoemission plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, V. I., E-mail: pipeaes@te.net.ua; Dragan, G. S.; Florko, A. V. [Mechnikov Odessa National University (Ukraine)

    2008-01-15

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  19. The formation of negatively charged particles in thermoemission plasmas

    International Nuclear Information System (INIS)

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data

  20. Born expansions for charged particle scattering

    International Nuclear Information System (INIS)

    High-order terms in Born expansions of scattering amplitudes in powers of charge are frequently divergent when long-range Coulomb interactions are present asymptotically. Expansions which are free from these logarithmic divergences have been constructed recently. This paper illustrates these expansions with the simplest example, namely the non-relativistic Rutherford scattering of two charged particles. This approach represents an adequate framework for the calculation of transition amplitudes and a comprehensive starting point for the development of consistent perturbation approximations in multi-channel descriptions of strongly interacting atomic systems

  1. The atmospheric muon flux and charge ratio using a magnet spectrometer

    International Nuclear Information System (INIS)

    We measure the atmospheric muon flux and the charge ratio using the OKAYAMA telescope. It is a solid iron core magnet spectrometer. We report the results of the muon flux and the charge ratio using the maximum likelihood and deconvolution techniques

  2. Heavy charged particle dosimetry, theory and application

    International Nuclear Information System (INIS)

    Experiments were made to verify the theory of the transport of heavy particles through a medium using L-α-alaline for the detection of radiation. The dose response of L-α-alaline was measured for X-ray radiation of an energy of 4 to 16 MeV, electron radiation of an energy of 6, 10 and 20 MeV, low-LET radiation, 16 MeV and 6 MeV protons, 20 MeV particles and other charged particles. Of the measured dose responses RE values were experimentally obtained and compared with calculated results. Free and very stable radicals were obtained by radiation. Fading of low-LET and high-LET radiation was determined as induced by the said radicals. Using ESR spectra it was found that diverse chemical reactions take place in the track of high-LET particles. However, chemical reactions in the track of a heavy charged particle will be the same if the medium is homogeneously irradiated with low-LET radiation. (E.S.). 7 figs., 1 tab., 11 refs

  3. Method for charged particle beam acceleration

    International Nuclear Information System (INIS)

    The method of charged particle beam acceleration based on its resonance interaction with electromagnetic field of travelling wave is suggested. The electron beam is injected into waveguide in which longitudinal magnetic field and electromagnetic wave are excited. With the purpose of reducing HF-power losses in the waveguide walls, the azimuthal particle motion is synchronized with azimuthal change of longitudinal component of electric field of the accelerating electromagnetic wave. The suggested method permits to increase the efficiency and shunting resistance of the accelerating waveguide by reducing its boundary surface

  4. Collective aspects of charged particle track structure

    International Nuclear Information System (INIS)

    A plasmon generated by a swift charged particle constitutes a coherent excitation about the particle track. We discuss the representation of collective modes in impact parameter space when created by a swift ion or a fast electron, and the decay of these modes into localized excitations. Several alternative spatial representations are considered. We show that the high spatial resolution found in secondary electron emission measurements with scanning electron microscopy is consistent with the existence of the plasmon as an intermediary between the fast incident electron and the measured secondary electrons. 24 refs., 6 figs

  5. Charge State Model of Solar Energetic Particles

    Science.gov (United States)

    Del Peral, L.; Pérez-Peraza, J. A.; Rodríguez Frías, M. D.

    2013-05-01

    Charge states of heavy ions in Solar Energetic Particle (SEP) events observed at the Earth's neighborhood with experiments on board satellites give us information about physical properties of plasma where acceleration occurs. SEP detection is performed near the Earth, therefore not only physical condition of the plasma source of accelerated particles have to be taken into account. We have developed a charge state model in order to explain the evolution of particle charge states under solar acceleration. Charge-interchange processes between the accelerated ions and the plasma matter in the acceleration region are considered on basis of electron loss and capture cross sections at high energies. We have applied the model to observational data from satellites measuring charge states of SEPs. In contrast with other models that use ionization and recombination cross-sections that require application of thermal equilibrium, our model assumes that the acceleration is so fast that thermal equilibrium can not be applied to the change interchange processes. Therefore we employ in our model high energy cross-sections for electron capture and loss, since the population which is being accelerated acquires a non-thermal spectrum. We have developed temperature dependent cross-sections. Acceleration begins from a thermal distribution. As soon as the particles increase their energy by the acceleration process, they acquire an energy spectrum which differs from the Maxwellian thermal one while interacting with the background thermal matter. Figure 1 presents the results of our model that fit experimental charge states of Fe ions from two impulsive SEP events detected by the SEPICA satellite in July 1999. We obtain good fitting for source temperature of 1.8 \\cdot 106 K and density of 5\\cdot108 cm-3 and acceleration efficiency of 1.8\\cdot 10-2 s-1 for the July 20th 1999 event and 3.3\\cdot 10-2 s-1 for the July 3rd 1999. Good concordance between experimental data and our model have

  6. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  7. Particle identification algorithms for the HARP forward spectrometer

    CERN Document Server

    Catanesi, M G; Radicioni, E; Edgecock, R; Ellis, M; Robbins, S; Soler, F J P; Go Xling, C; Bunyatov, S; Chelkov, G; Chukanov, A; Dedovitch, D; Gostkin, M; Guskov, A; Khartchenko, D; Klimov, O; Krasnoperov, A; Krumshtein, Z; Kustov, D; Nefedov, Y; Popov, B; Serdiouk, V; Tereshchenko, V; Zhemchugov, A; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Arce, P; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Gruber, P; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Pasternak, J; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Campanelli, M; Cervera-Villanueva, A; Morone, M C; Prior, G; Schroeter, R; Kato, I; Nakaya, T; Nishikawa, K; Ueda, S; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; De Min, A; Ferri, F; Paganoni, M; Paleari, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Pattison, C; Zuber, K; Bobisut, F; Gibin, D; Guglielmi, A; Laveder, M; Menegolli, A; Mezzetto, M; Dumarchez, J; Vannucci, F; Ammosov, V; Koreshev, V; Semak, A; Zaets, V; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Buttar, C; Hodgson, P; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Santin, G; Hayato, Y; Ichikawa, A; Kobayashi, T; Burguet-Castell, J; Gómez-Cadenas, J J; Novella, P; Sorel, M; Tornero, A

    2007-01-01

    The particle identification (PID) methods used for the calculation of secondary pion yields with the HARP forward spectrometer are presented. Information from time of flight and Cherenkov detectors is combined using likelihood techniques. The efficiencies and purities associated with the different PID selection criteria are obtained from the data. For the proton–aluminium interactions at 12.9 GeV/c incident momentum, the PID efficiencies for positive pions are 86% in the momentum range below 2 GeV/c, 92% between 2 and 3 GeV/c and 98% in the momentum range above 3 GeV/c. The purity of the selection is better than 92% for all momenta. Special emphasis has been put on understanding the main error sources. The final PID uncertainty on the pion yield is 3.3%.

  8. Particle identification algorithms for the HARP forward spectrometer

    Science.gov (United States)

    Catanesi, M. G.; Radicioni, E.; Edgecock, R.; Ellis, M.; Robbins, S.; Soler, F. J. P.; Gößling, C.; Bunyatov, S.; Chelkov, G.; Chukanov, A.; Dedovitch, D.; Gostkin, M.; Guskov, A.; Khartchenko, D.; Klimov, O.; Krasnoperov, A.; Kroumchtein, Z.; Kustov, D.; Nefedov, Y.; Popov, B.; Serdiouk, V.; Tereshchenko, V.; Zhemchugov, A.; Di Capua, E.; Vidal-Sitjes, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Cervera-Villanueva, A.; Morone, M. C.; Prior, G.; Schroeter, R.; Kato, I.; Nakaya, T.; Nishikawa, K.; Ueda, S.; Gastaldi, U.; Mills, G. B.; Graulich, J. S.; Grégoire, G.; Bonesini, M.; De Min, A.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, N.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Laveder, M.; Menegolli, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Ammosov, V.; Koreshev, V.; Semak, A.; Zaets, V.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; Howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, S.; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Hayato, Y.; Ichikawa, A.; Kobayashi, T.; Burguet-Castell, J.; Gómez-Cadenas, J. J.; Novella, P.; Sorel, M.; Tornero, A.

    2007-03-01

    The particle identification (PID) methods used for the calculation of secondary pion yields with the HARP forward spectrometer are presented. Information from time of flight and Cherenkov detectors is combined using likelihood techniques. The efficiencies and purities associated with the different PID selection criteria are obtained from the data. For the proton-aluminium interactions at 12.9 GeV/ c incident momentum, the PID efficiencies for positive pions are 86% in the momentum range below 2 GeV/ c, 92% between 2 and 3 GeV/ c and 98% in the momentum range above 3 GeV/ c. The purity of the selection is better than 92% for all momenta. Special emphasis has been put on understanding the main error sources. The final PID uncertainty on the pion yield is 3.3%.

  9. Development of a multifunctional particle spectrometer for space radiation imaging

    International Nuclear Information System (INIS)

    For future exploration of the solar system, the European Space Agency (ESA) is planning missions to Mercury (BepiColombo), the Sun (SolarOrbiter) and to the moons of Jupiter and Saturn. The expected intensity of radiation during such missions is hazardous for the scientific instruments and the satellite. To extend the lifetime of the satellite and its payload a multifunctional particle spectrometer (MPS) is being developed. The basic function of the MPS is to send an alarm signal to the satellite control system during periods of high radiation. In addition the MPS is a scientific instrument that will unfold the composition of the different contributing particles on-line by the dE/dx versus E method. The energy spectrum and angular distribution of the particles will be recorded as well. This article describes the main requirements and the base line design for the MPS. A readout scheme consisting of a 32 channel ASIC from IDEAS is proposed and the signal filtering algorithm will run on a digital signal processor based on FPGA technology. Results are shown from prototype calibration studies with a proton beam

  10. Project and construction of a spectrometer for alpha particles using surface barrier detectors

    International Nuclear Information System (INIS)

    The project, construction, tests and some applications of a system for alpha and beta spectrometry, using surface barrier detector are described. The device includes a solid state detector ORTEC-Series F coupled to a system for amplifying the charges produced by passage of an ionizing particle through the detector. The amplifying system is composed by a charge sensitive pre-amplifier, which employs an operational amplifier CA 3140, and a low noise linear amplifier, which is based on the operational amplifiers CA 3140 and LM 301. The pre-amplifier stage input impedance is on the order of TΩ and produces output pulses which heights are proportional to total charge produced by passage of particle through the detector sensitive volume. The main advantage to use charge sensitive system lies in obtention of independent pulse heights of the distributed capacity of connecting cable between the detector and the pre-amplifier. The total system amplification ca reach a maximum of 50.000 in the linear region. Pulses are analysed in a multichannel system ORTEC, model 6240. The amplifier system is easily constructed and low cost using components available in the national market, and it can be employed with ionization chambers, proportional counters, scitillation counters and semiconductor detectors. The results of spectrometer application for alpha spectrometry of AM241 source were compared to systems made with imported stages. (Author)

  11. Automated control system in charged particle accelerators

    International Nuclear Information System (INIS)

    A general approach to the design of automated radiation safety systems at charged particle accelerators is described. Parameters of high-energy electron accelerators of the Kharkov Physics and Engineering Institute are presented. Characteristics of the surrounding radiation fields are given. Ionizing radiation transducers which can be used in automated systems are considered. Local radiation monitoring station based on the LUE-2000 accelerator of the institute is described. 9 refs.; 4 figs.; 1 tab

  12. Charged particle layers in the Debye limit

    International Nuclear Information System (INIS)

    We develop an equivalent of the Debye-Hueckel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r→∞ limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation

  13. Light Charged Particles as Gateway to Hyperdeformation

    International Nuclear Information System (INIS)

    The Euroball-IV γ -detector array, equipped with the ancillary charged particle detector array DIAMANT was used to study the residues of the fusion reaction 64Ni + 64Ni → 128Ba at Ebeam = 255 and 261 MeV, in an attempt to reach the highest angular momentum and verify the existence of predicted hyperdeformed rotational bands. No discrete hyperdeformed bands were identified, but nevertheless a breakthrough was obtained through a systematic search for rotational ridge structures with very large moments of inertia J(2) ≥ 100 ℎ2 MeV(-1), in agreement with theoretical predictions for hyperdeformed shapes. Evidence for hyperdeformation was obtained by charged particle + γ -ray gating, selecting triple correlated ridge structures in the continuum of each of the nuclei, 118Te, 124Xe and 124,125Cs. In 7 additional nuclei, rotational ridges were also identified with J(2) = 71-77 ℎ2 MeV(-1), which most probably correspond to superdeformed shape. The angular distributions of the emitted charged particles show an excess in forward direction over expectations from pure compound evaporation, which may indicate that in-complete fusion plays an important role in the population of very elongated shapes. (author)

  14. Motion of charged particles in the magnetosphere

    International Nuclear Information System (INIS)

    The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant shows maximum variation for particles close to 900 pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity. (orig.)

  15. The Ionic Charge State Composition at High Energies in Large Solar Energetic Particle Events in Solar Cycle 23

    OpenAIRE

    Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.; von Rosenvinge, T. T.

    2001-01-01

    The ionic charge states of solar energetic particles (SEPs) depend upon the temperature of the source material and on the environment encountered during acceleration and transport during which electron stripping may occur. Measurements of SEP charge states at relatively high energies (≳15 MeV/nucleon) are possible with the Mass Spectrometer Telescope (MAST) on the Solar, Anomalous, and Magnetospheric Particle Explorer satellite by using the Earth's magnetic field as a particle rigidity filter...

  16. Experimental research of thermoemission charging of metal particles

    International Nuclear Information System (INIS)

    Original experimental methods of thermoemission charge determination of a spherical metallic particle surrounded by the condensed disperse phase are proposed. The analytical dependence of the particle charge on time is found, and its relaxation time is determined

  17. Metastable states of plasma particles close to a charged surface

    International Nuclear Information System (INIS)

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles

  18. Radiation reaction for a massless charged particle

    Energy Technology Data Exchange (ETDEWEB)

    Kazinski, P O; Sharapov, A A [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation)

    2003-07-07

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  19. Radiation reaction for a massless charged particle

    CERN Document Server

    Kazinski, P O

    2003-01-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field having regard to the radiation back reaction. It is shown that unlike the massive case not all the divergences resulting from the self-action of the particle are Lagrangian, i.e. can be canceled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of homogeneous external field the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  20. Radiation reaction for a massless charged particle

    International Nuclear Information System (INIS)

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure

  1. Radiation reaction for a massless charged particle

    Science.gov (United States)

    Kazinski, P. O.; Sharapov, A. A.

    2003-07-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  2. Invited Review Article: Contemporary instrumentation and application of charge exchange neutral particle diagnostics in magnetic fusion energy experiments

    International Nuclear Information System (INIS)

    An overview of the developments postcirca 1980s in the instrumentation and application of charge exchange neutral particle diagnostics on magnetic fusion energy experiments is presented. First, spectrometers that employ only electric fields and hence provide ion energy resolution but not mass resolution are discussed. Next, spectrometers that use various geometrical combinations of both electric and magnetic fields to provide both energy and mass resolutions are reviewed. Finally, neutral particle diagnostics based on utilization of time-of-flight techniques are presented

  3. Charged particle production and correlations at high transverse momentum at the CERN intersecting storage rings

    International Nuclear Information System (INIS)

    We study the production of identified charged particles in pp collisions at c.m. energy of 63 GeV in events with an identified high-psub(T) trigger particle. The measurements were performed at the CERN Intersecting Storage Rings using the Axial Field Spectrometer. Production ratios are presented as a function of psub(T) in the range 2.5 to 8 GeV/c. (orig.)

  4. Testing of high-vacuum pumps for charged particle accelerators

    International Nuclear Information System (INIS)

    To study a possibility of employing different types of pumps in charged-particle accelerators the following pumps have been tested: electric-arc, turbomolecular and cryogenic. The research has been carried out on a test bench which made it possible to determine the pumping-out rate for different gases (constant-volume methods), measure their limiting pressure and study the spectra of different gases by using mass spectrometers. It was possible also to warm up the pumps and pumped-out volumes. From these tests it was concluded that: (1) the electric-arc pump does not meet the accelerator pumping-out requirements; (2) the turbomolecular pump with a nitrogen-sorption trap can be recommended for pumping-out accelerators but requires modification of the supply unit; (3) the cryogenic pump can be recommended for pumpimg-out of accelerators but requires modification of the automatic system for replenishment of the cryogenic fluid

  5. Sound from charged particles in liquids

    International Nuclear Information System (INIS)

    Two directions of sound application appearing during the charged particles passing through liquid - in biology and for charged particles registration are considered. Application of this sound in radiology is determined by a contribution of its hypersound component (approximately 109 Hz) to radiology effect of ionizing radiation on micro-organisms and cells. Large amplitudes and pressure gradients in a hypersound wave have a pronounced destructive breaking effect on various microobjects (cells, bacteria, viruses). An essential peculiarity of these processes is the possibility of control by choosing conditions changing hypersound generation, propagation and effect. This fact may lead not only to the control by radiaiton effects but also may explain and complete the analogy of ionizing radiation and ultrasound effect on bioobjects. The second direction is acoustic registration of passing ionizing particles. It is based on the possibility of guaranteed signal reception from a shower with 1015-1016 eV energy in water at distances of hundreds of meters. Usage of acoustic technique for neutrino registration in the DUMAND project permits to use a detecting volume of water with a mass of 109 t and higher

  6. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  7. Organization of synchronized storage at a matrix charge-coupled photodetector in modulation spectrometer

    International Nuclear Information System (INIS)

    To increase fast response of detection and primary data processing in the systems of radioactivity detection on the basis of optical-digital spectrometer it is suggested to use photodetectors with matrix charged-coupled devices (MCCD). MCCD permit to expand the system potentialities at the expense of utilization of second spatial coordinate for conducting analogous optical and electronic processing. Possibility of organization of the modulated signal synchronous accumulation in a charge form is shown. Experimental investigation results allow one to make a conclusion on possibility of signal modulation frequency increase in a modulation spectrometer by one-two orders without any equipment modification of the computer input channel

  8. Theory and design of charged particle beams

    CERN Document Server

    Reiser, Martin

    1994-01-01

    Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density prof

  9. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  10. CVD diamond sensors for charged particle detection

    CERN Document Server

    Krammer, Manfred; Berdermann, E; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dencuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2001-01-01

    CVD diamond material was used to build position-sensitive detectors for single-charged particles to be employed in high-intensity physics experiments. To obtain position information, metal contacts shaped as strips or pixels are applied to the detector surface for one- or two- dimensional coordinate measurement. Strip detectors 2*4 cm/sup 2/ in size with a strip distance of 50 mu m were tested. Pixel detectors of various pixel sizes were bump bonded to electronics chips and investigated. A key issue for the use of these sensors in high intensity experiments is the radiation hardness. Several irradiation experiments were carried out with pions, protons and neutrons exceeding a fluence of 10/sup 15/ particles/cm/sup 2/. The paper presents an overview of the results obtained with strip and pixel detectors in high-energy test beams and summarises the irradiation studies. (8 refs).

  11. Device for measuring charge density distribution in charged particle beams

    International Nuclear Information System (INIS)

    A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat

  12. Surface charge accumulation of particles containing radionuclides in open air

    International Nuclear Information System (INIS)

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. - Highlights: • Radioactivity-induced charge enhances electrostatic particle interactions. • Radioactivity-induced particle charging is important in radioactivity transport. • Ionization rate coefficients of beta-emitting radionuclides are reported

  13. ARES - a spectrometer for the investigation of rare particle decays and rare nuclear processes

    International Nuclear Information System (INIS)

    A magnetic spectrometer intended for a wide range of investigations of rare particle and nuclear processes is described. The spectrometer consists of cylindrical proportional chambers ( similar 15 000 signal wires) with gas supply and gas leakage systems, cylindrical scintillation hodoscopes, a magnet, electronics with power supplies, and a data acquisition system. Basic characteristics of the spectrometer are discussed and results of first physics experiments are presented. ((orig.))

  14. Electrophysical Systems Based On Charged Particle Accelerators

    CERN Document Server

    Vorogushin, M F

    2004-01-01

    The advancement of the charged particle accelerator engineering affects appreciably the modern tendencies of the scientific and technological progress in the world. In a number of advanced countries, this trend is one of the most dynamically progressing in the field of applied science and high-technology production. Such internationally known firms as VARIAN, SIEMENS, PHILIPS, ELECTA, IBA, HITACHI, etc., with an annual budget of milliards of dollars and growth rate of tens of percent may serve as an example. Although nowadays the projects of new large-scale accelerators for physical research are not implemented so quickly and frequently as desired, accelerating facilities are finding ever-widening application in various fields of human activities. The contribution made by Russian scientists into high-energy beams physics is generally known. High scientific and technical potential in this field, qualified personnel with a high creative potential, modern production and test facilities and state-of-the-art techn...

  15. Aberration compensation in charged particle projection lithography

    International Nuclear Information System (INIS)

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  16. How to reliably detect molecular clusters and nucleation mode particles with Neutral cluster and Air Ion Spectrometer (NAIS)

    Science.gov (United States)

    Manninen, Hanna E.; Mirme, Sander; Mirme, Aadu; Petäjä, Tuukka; Kulmala, Markku

    2016-08-01

    To understand the very first steps of atmospheric particle formation and growth processes, information on the size where the atmospheric nucleation and cluster activation occurs, is crucially needed. The current understanding of the concentrations and dynamics of charged and neutral clusters and particles is based on theoretical predictions and experimental observations. This paper gives a standard operation procedure (SOP) for Neutral cluster and Air Ion Spectrometer (NAIS) measurements and data processing. With the NAIS data, we have improved the scientific understanding by (1) direct detection of freshly formed atmospheric clusters and particles, (2) linking experimental observations and theoretical framework to understand the formation and growth mechanisms of aerosol particles, and (3) parameterizing formation and growth mechanisms for atmospheric models. The SOP provides tools to harmonize the world-wide measurements of small clusters and nucleation mode particles and to verify consistent results measured by the NAIS users. The work is based on discussions and interactions between the NAIS users and the NAIS manufacturer.

  17. Precipitation particle charge distribution and evolution of East Asian rainbands

    Science.gov (United States)

    Takahashi, Tsutomu

    2012-11-01

    Numerous videosondes, balloon-borne surveyors of precipitation particle morphology and charge, have been launched into cloud systems in many, disparate locations in East Asia. Reported here are videosonde-based observations of early summer, Baiu rainbands at Tanegashima in southern Japan and of summer rainbands at Chiang Rai in northern Thailand. Precipitation particles are mapped by type and charge over the course of cloud development, allowing particle and charge evolution to be derived. The basic charge distribution as observed in Hokuriku winter thunderclouds at different cloud life stages was seen at different locations characterized by vertical velocity profiles in the cloud. The charge structure of the rainbands in both locations was a basic tripole. The major charge carriers were graupel and ice crystals. As graupel and ice crystal concentrations increased, not only did space charge increase, but per-particle charge also increased. Increased lightning activity was associated with higher particle space charge and lower cloud-top temperature. The particle charge evolution of these systems includes several fundamental features: a. active negative charging of graupel in an intense updraft, b. descent of negative graupel along the edge of an updraft column, c. merging of negative graupel with positively charged raindrops falling in the central cloud, and d. extended distribution of positive ice crystals in the stratiform cloud. The observations suggest that riming electrification was the main charge separation mechanism.

  18. Searches for Fractionally Charged Particles: What Should Be Done Next?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  19. A 'dwarf ball': Design, instrumentation, and response characteristics of a 4π light charged-particle multidetector system

    International Nuclear Information System (INIS)

    A 4π light charged-particle spectrometer is described. The spectrometer consists of 72 fast-slow plastic scintillator phoswiches closely packed in a 4π arrangement. The device is small enough to be enclosed in the spin spectrometer scattering chamber. For each detector that fires, the fast ΔE and slow E pulse heights and a time for each group of 16 detectors are recorded. From this information protons and α particles can be identified and their energies measured over a large dynamic range. The geometry, construction, electronics and data acquisition system are discussed. Examples are given of the performance of this spectrometer from an experiment in which Si (ΔE,E) heavy-ion telescopes were used as event triggers and the spin spectrometer detected γ rays and neutrons. (orig.)

  20. Characterization of Lead Tungstate for Neutral Particle Spectrometer at 12 GeV JLab

    Science.gov (United States)

    Runyon, Christian

    2015-10-01

    Precision measurements of the deeply-virtual Compton scattering cross section at different beam energies to extract the real part of the Compton form factor, measurements to push the energy scale of real Compton scattering, and measurements of the basic semi-inclusive neutral-pion cross section in a kinematical region where the QCD factorization scheme is expected to hold all have something in common: the need for detecting neutral particles with high precision and high luminosity. The Neutral Particle Spectrometer (NPS) is a crystal electromagnetic calorimeter preceded by a sweeping magnet to sweep away charged particles. In this presentation I will show the results of PbWO4 crystal quality studies for the NPS. PbWO4 is optimal for the NPS due to its small Moliere radius and radiation hardness. The critical aspect for crystal quality, and thus resolution/precision, is the combination of high light output and radiation hardness, which depend strongly on the manufacturing process. We have tested the performance of PbWO4 crystals, and in particular, measured their light yield, optical transmission, and uniformity and radiation hardness. The homogeneity of the crystal was investigated based on the variation of the transverse optical transmission. Supported in part by NSF-PHY-1306227.

  1. Determination of colloidal particle surface charge from dielectrophoresis

    Science.gov (United States)

    Chavez, Marko; Nuansri, Rittirong; Mazza, Jacob; Ou-Yang, H. Daniel

    2015-03-01

    Electrophoresis (EP) is used to determine colloidal particle surface charge. However, when the Debye length is comparable to or larger than the particle size, electrophoresis cannot be reliably used to determine the surface charge due to counter ion retardation flow. Alexander et al. developed a theory relating colloidal osmotic pressure and particle surface charge. We use dielectrophoresis (DEP) to obtain a potential landscape based on the number density distribution of the particles in a non-uniform AC electric field. We determine the osmotic pressure from the DEP force and density profiles using Einstein's osmotic equilibrium equation. Surface charge obtained by DEP (thermodynamics) will be compared to that obtained by EP (electrokinetics).

  2. Bibliography of integral charged particle nuclear data. Archival edition

    International Nuclear Information System (INIS)

    This is the fourth annual edition of the National Nuclear Data Center charged-particle bibliography. This edition is cumulative and supersedes the previous editions. The bibliography's primary aims are to satisfy the need for a concise and comprehensive index of integral charged-particle cross section data and to provide an index of charged-particle data compiled in the international exchange format. References in this Part are by target for the various incident charged particles (in order of increasing A). The present publication is an archival volume; future publications will be cumulative supplements to this edition

  3. Single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2014-06-01

    Full Text Available Understanding the impact of atmospheric black carbon (BC containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we demonstrate for the first time the capabilities of the Aerodyne Soot-Particle Aerosol Mass Spectrometer equipped with a light scattering module (LS-SP-AMS to examine the mixing state of refractory BC (rBC and other aerosol components in an urban environment (downtown Toronto. K-means clustering analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant cluster is dominated by rBC mass spectral signals (C1+ to C5+ while the organic signals fall into a few major clusters, identified as hydrocarbon-like organic aerosol (HOA, oxygenated organic aerosol (OOA, and cooking emission organic aerosol (COA. A nearly external mixing is observed with small BC particles only thinly coated by HOA (∼28% by mass on average, while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic clusters were not significantly associated with BC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with low to mid-range aerodynamic diameter (dva. The similar temporal profiles and mass spectral features of the organic clusters and the factors from a positive matrix factorization (PMF analysis of the ensemble aerosol dataset validate the conventional interpretation of the PMF results.

  4. A particle identification technique for large acceptance spectrometers

    International Nuclear Information System (INIS)

    A technique to identify the heavy ions produced in nuclear reactions is presented. It is based on the use of a hybrid detector, which measures the energy loss, the residual energy, the position and angle of the ions at the focal plane of a magnetic spectrometer. The key point is the use of a powerful algorithm for the reconstruction of the ion trajectory, which makes the technique reliable even with large acceptance optical devices. Experimental results with the MAGNEX spectrometer show a remarkable resolution of about 1/160 in the mass parameter.

  5. A particle identification technique for large acceptance spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F., E-mail: cappuzzello@lns.infn.i [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Cunsolo, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Carbone, D.; Orrigo, S.E.A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95125 Catania (Italy); Rodrigues, M.R.D. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95125 Catania (Italy)

    2010-09-21

    A technique to identify the heavy ions produced in nuclear reactions is presented. It is based on the use of a hybrid detector, which measures the energy loss, the residual energy, the position and angle of the ions at the focal plane of a magnetic spectrometer. The key point is the use of a powerful algorithm for the reconstruction of the ion trajectory, which makes the technique reliable even with large acceptance optical devices. Experimental results with the MAGNEX spectrometer show a remarkable resolution of about 1/160 in the mass parameter.

  6. VEDs for charged particle accelerators: Indian scenario

    International Nuclear Information System (INIS)

    In the initial times after their invention, the charged particle accelerators have, primarily, been used for fundamental studies on nuclei and atoms. From the first modern accelerator, the cathode ray tube, used by J.J. Thomson for the discovery of electron, very recently the gigantic 27 km circumference Large Hadron Collider (LHC) is operational in the search of Higg's boson and related physics issues. Particle accelerators have emerged as powerful microscopes for investigating the finest details of cells, genes, molecules, atoms, protons, neutrons, muons, electrons, quarks and, possibly, still undiscovered even more fundamental constituents of the universe, such as dark matter and dark energy. Several noble prize winning discoveries have been made using accelerators. Accelerators are now being used in a wide area of industrial and medical applications. They are used for the production of radioisotopes for medical imaging, cancer therapy, food sterilization, treatment of waste water, sterilization of medical equipment, material modification, mass spectroscopy, cargo scanning, fabrication of semiconductors etc. Ongoing effort towards the development of accelerators with megawatt beam power is showing hope for a cleaner source of nuclear energy and treatment of nuclear waste. Several tens of thousands of accelerators are presently operational in the world for basic research and applications. Development of new accelerators has several times been driven by new technologies and materials and sometimes they have driven the technological developments towards cutting edge. Some examples are ultra-high vacuum in large volumes, superfluid helium in cryogenics, cryocoolers, superconducting magnets and RF cavities, high power vacuum electronic devices, global control systems, superfast computing and communication networks, giant data storage/processing systems etc. India has been pursuing a fairly robust programme of accelerator development at various institutions. It

  7. The effect of single-particle charge limits on charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)

  8. Ionization, Charging and Electric Field Effects on Cloud Particles in the CLOUD Experiment

    Science.gov (United States)

    Nichman, L.; Järvinen, E.; Wagner, R.; Dorsey, J.; Dias, A. M.; Ehrhart, S.; Kirkby, J.; Gallagher, M. W.; Saunders, C. P.

    2015-12-01

    Ice crystals and frozen droplets play an important role in atmospheric charging and electrification processes, particularly by collision and aggregation. The dynamics of charged particles in the atmosphere can be modulated by Galactic Cosmic Rays (GCR). High electric fields also affect the alignment of charged particles, allowing more time for interactions. The CLOUD (Cosmics Leaving OUtdoor Droplets) experiment at CERN has the ability to conduct ionization, charging and high electric field experiments on liquid or ice clouds created in the chamber by adiabatic pressure reductions. A pion secondary beam from the CERN Proton Synchrotron is used to ionize the molecules in the chamber, and Ar+ Corona Ion Generator for Atmospheric Research (CIGAR) is used to inject unipolar charged ions directly into the chamber. A pressurized airgun provides rapid pressure shocks inside the chamber and induces charged ice nucleation. The cloud chamber is accompanied by a variety of analysing instruments e.g. a 3View Cloud Particle Imager (3V-CPI) coupled with an induction ring, a Scattering Intensity Measurements for the Optical detection of icE (SIMONE) and a Nano-aerosol and Air Ion Spectrometer (NAIS). Using adiabatic expansion and high electric fields we can replicate the ideal conditions for adhesion, sintering and interlocking between ice crystals. Charged cloud particles produced measurable variations in the total induced current pulse on the induction ring. The most influential factors comprised initial temperature, lapse rate and charging mechanism. The ions produced in the chamber may deposit onto larger particles and form dipoles during ice nucleation and growth. The small ion concentration was monitored by the NAIS during these runs. Possible short-term aggregates or alignment of particles were observed in-situ with the SIMONE. These and future chamber measurements of charging and aggregation could shed more light on the ambient conditions and dynamics for electrification

  9. Effects of charged particles on DNA

    International Nuclear Information System (INIS)

    It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs 1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderate RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations. (author)

  10. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  11. Investigation of cryogenic charge sensitive amplifier structures for improved spectrometer bandwidth and noise performance

    International Nuclear Information System (INIS)

    An experimental distributed Charge Sensitive Amplifier (CSA) architecture incorporating a multi-stage cryogenic hybrid gain block is described. The hybrid device is of sufficiently small size to be mounted adjacent to a cooled detector with minimal heat load increment, and is intended for X-ray/gamma-ray spectrometer applications. It is shown in the sequel that this architecture affords a more fortuitous placement of CSA Transfer Function (TF) poles for a specified charge conversion gain, resulting in improved bandwidth and Noise Figure (NF). ((orig.))

  12. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  13. Particles and scalar waves in noncommutative charged black hole spacetime

    OpenAIRE

    Bhar, Piyali; Rahaman, Farook; Biswas, Ritabrata(Indian Institute of Engineering Sceince and Technology Shibpur (Formerly, Bengal Engineering and Science University Shibpur), 711 013, Howrah, West Bengal, India); Mondal, U. F.

    2015-01-01

    In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

  14. Particles and Scalar Waves in Noncommutative Charged Black Hole Spacetime

    Science.gov (United States)

    Piyali, Bhar; Farook, Rahaman; Ritabrata, Biswas; U. F., Mondal

    2015-07-01

    In this paper we have discussed geodesics and the motion of test particle in the gravitational field of non-commutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordström black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

  15. Dynamics of fast charged particle beam rotation in bended crystals

    International Nuclear Information System (INIS)

    Dynamics of fast charged particle beam rotation in a bended monocrystal is considered. Face and volume mechanisms of capture in channels are taken into account simultaneously in the model presented. Functions of distribution in transverse energies (φ) of channeled and dechanneled particles are obtained. Charge-energy ''scale invariance'' in ion channeling with charge Z in a bended crystal determined by scale parameter W=pv/Z (p and v are pulse and velocity local to transverse planes) follows from the model presented

  16. Charged particle periodicity in the Saturnian magnetosphere

    International Nuclear Information System (INIS)

    The low energy charged particles (LECP) experiments on the Voyager 1 and 2 spacecraft performed measurements of electrons (approx.22 keV to approx.20 MeV) and ions (approx.28 keV to approx.150 MeV) during the Saturn encounters in 1980 and 1981. Count rate ratios of two of the low energy electron (22 to 35 keV and 183 to 500 keV) and ion (43 to 80 keV and 137 to 215 keV) channels exhibit an approximation 10 hour periodicity in the outer Saturnian magnetosphere beyond the orbit of Titan. Electron ratios vary from approx.50 to approx.300; ion ratios vary from approx.3 to approx.20. Similar but less pronounced periodicities are observed for higher and lower energy electron and ion spectral indices. Three complete cycles were observed during the Voyager 2 outbound portion of the encounter from which were determined an electron ratio period of 10/sup h/21/sup m/ +- 48/sup m/ and an ion ratio period of 9/sup h/49/sup m/ +- 59/sup m/. Using Saturn Kilometric Radiation (SKR) and Saturn Electrostatic Discharge (SED) periods, extrapolation backward from Voyager 2 to Voyager 1 suggests that the periodicities are Saturnian rather than Jovian in nature, and that they persist in phase for time intervals at least as long as 287 days. Ratio minima, or spectral hardenings, occur in the same hemisphere as do auroral brightenings, SKR activity, and spoke enhanement. We interpret the observations as prima facie evidence of an asymmetry in the Saturian magnetic field and the root cause of the observed SKR periodicity

  17. Photon production by charged particles in narrow optical fibers

    OpenAIRE

    Artru, X.; Ray, C.

    2006-01-01

    Presented at International Conference on Charged and Neutral Particles Channeling Phenomena, Frascati, Italy, July 3-7, 2006. - Theorie, CAS A charged particle passing through or by an optical fiber induces emission of light guided by the fiber. The formula giving the spontaneous emission amplitude are given in the general case when the particle trajectory is not parallel to the fiber axis. At small angle, the photon yield grows like the inverse power of the angle and in the parallel limit...

  18. Massive Vector Particles Tunneling From Noncommutative Charged Black Holes

    CERN Document Server

    Övgün, Ali

    2015-01-01

    In this paper, we investigate the tunneling process of charged massive bosons $W^{\\pm}$ (spin-1 particles) from noncommutative charged black holes such as charged RN black holes and charged BTZ black holes. By applying the WKB approximation and by using the Hamilton-Jacobi equation we derive the tunneling rate and the corresponding Hawking temperature for those black holes configuration. The tunneling rate shows that the radiation deviates from pure thermality and is consistent with an underlying unitary theory.

  19. The Fly's Eye Energetic Particle Spectrometer (FEEPS) Sensors for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Blake, J. B.; Mauk, B. H.; Baker, D. N.; Carranza, P.; Clemmons, J. H.; Craft, J.; Crain, W. R.; Crew, A.; Dotan, Y.; Fennell, J. F.; Friedel, R. H.; Friesen, L. M.; Fuentes, F.; Galvan, R.; Ibscher, C.; Jaynes, A.; Katz, N.; Lalic, M.; Lin, A. Y.; Mabry, D. M.; Nguyen, T.; Pancratz, C.; Redding, M.; Reeves, G. D.; Smith, S.; Spence, H. E.; Westlake, J.

    2016-03-01

    The Energetic Particle Detector (EPD) Investigation is one of five particles and fields investigations on the Magnetospheric Multiscale (MMS) mission. This mission consists of four satellites operating in close proximity in elliptical, low-inclination orbits, and is focused upon the fundamental physics of magnetic reconnection. The Energetic Particle Detector (EPD) investigation aboard the four MMS spacecraft consists of two instrument designs, the EIS (Energetic Ion Spectrometer) and the FEEPS (Fly's Eye Electron Proton Spectrometer). This present paper describes FEEPS from an instrument physics and engineering point of view, and provides some test and calibration data to facilitate effective analysis and use of the flight data for scientific purposes.

  20. A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers

    Science.gov (United States)

    Bastian, S.; Löschau, G.; Wiedensohler, A.

    2014-04-01

    An automated function control unit was developed to regularly check the ambient particle number concentration derived from a mobility particle size spectrometer as well as its zero-point behaviour. The function control allows unattended quality assurance experiments at remote air quality monitoring or research stations under field conditions. The automated function control also has the advantage of being able to get a faster system stability response than the recommended on-site comparisons with reference instruments. The method is based on a comparison of the total particle number concentration measured by a mobility particle size spectrometer and a condensation particle counter while removing diffusive particles smaller than 20 nm in diameter. In practice, the small particles are removed by a set of diffusion screens, as traditionally used in a diffusion battery. Another feature of the automated function control is to check the zero-point behaviour of the ambient aerosol passing through a high-efficiency particulate air (HEPA) filter. The performance of the function control is illustrated with the aid of a 1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air quality monitoring network. During the period of concern, the total particle number concentration derived from the mobility particle size spectrometer slightly overestimated the particle number concentration recorded by the condensation particle counter by 2 % (grand average). Based on our first year of experience with the function control, we developed tolerance criteria that allow a performance evaluation of a tested mobility particle size spectrometer with respect to the total particle number concentration. We conclude that the automated function control enhances the quality and reliability of unattended long-term particle number size distribution measurements. This will have beneficial effects for intercomparison studies involving different measurement sites, and help provide a higher

  1. Highly charged hollow latex particles prepared via seeded emulsion polymerization.

    Science.gov (United States)

    Nuasaen, Sukanya; Tangboriboonrat, Pramuan

    2013-04-15

    The carboxylated hollow latex (HL) particles possessing high surface charge density were conveniently prepared by using poly(styrene-co-acrylic acid) (P(St/AA)) as seed particles and methyl methacrylate (MMA)/divinylbenzene (DVB)/AA as monomers. Without seed removal, the hollow structure was simply tuned by adjusting the monomer/seed ratio and the monomer content. The monodisperse, spherical, and non-collapsed HL particles with double shell having the void of 280 nm were obtained from P(St/AA) seeds of 300 nm. The conductimetric back titration, SEM, TEM, and dynamic light scattering measurement revealed that the surface charge density, surface roughness, and size of HL particles significantly increased when applying the stepwise charging monomers/initiator. The highly charged HL particles would be well dispersed in coating film providing good optical properties, for example, opacity and whiteness. PMID:23428072

  2. Anomalous mobility of highly charged particles in pores.

    Science.gov (United States)

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston; Vlassiouk, Ivan V; Siwy, Zuzanna S

    2015-08-18

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. The experiments also indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore. PMID:26177843

  3. Transverse energy distribution, charged particle multiplicities and spectra in 16O-nucleus collisions

    International Nuclear Information System (INIS)

    The HELIOS (High Energy Lepton and Ion Spectrometer) experiment, installed at the CERN Super Proton Synchrotron, proposes to examine in details the physical properties of a state of high energy created in nuclei by ultra-relativistic nucleus-nucleus collisions. It is generally believed that, at high densities or temperatures, a phase transition to a plasma of quark and gluons will occur. The dynamic of the expansion of such a plasma and its subsequent condensation into a hadron gas should markedly affect the composition and momentum distribution of the emerging particles and photons. The HELIOS experimental setup therefore combines 4π calorimetric coverage with measurements of inclusive particle spectra, two particle correlations, low and high mass lepton pairs and photons. The emphasis is placed on transverse energy flow (E/sub T/) measurements with good energy resolution, and the ability to trigger the acquisition of data in a variety of E/sub T/ ranges, thereby selecting the impact parameter or the violence of the collisions. This short note presents HELIOS results, for the most part still preliminary, on 16O-nucleus collisions at the incident energies of 60 and 200 GeV per nucleon. The E/sub T/ distributions from Al, Ag and W targets are discussed and compared to the associated charged particle multiplicities from W. Charged particle and (converted) photon spectra measured with the external magnetic spectrometer are compared for 16O + W and p + W collisions at 200 GeV per nucleon. 5 refs., 7 figs

  4. Bibliography of integral charged particle nuclear data. Archival edition

    International Nuclear Information System (INIS)

    This is the fourth annual edition of the National Nuclear Data Center charged-particle bibliography. This edition is cumulative and supersedes the previous editions. The bibliography's primary aims are to satisfy the need for a concise and comprehensive index of integral charged-particle cross section data and to provide an index of charged-particle data compiled in the international exchange format, EXFOR. This part of the publication deals with isotope production; references are ordered by mass of the nuclide produced. The present publication is an archival volume; future publications will be cumulative supplements to this edition

  5. Quantum interface to charged particles in a vacuum

    Science.gov (United States)

    Okamoto, Hiroshi

    2015-11-01

    A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [Okamoto and Nagatani, Appl. Phys. Lett. 104, 062604 (2014), 10.1063/1.4865244]. Either a clockwise or counterclockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the device's properties, sources of errors, and possible applications are studied in detail. In particular, applications include detection of a charged particle essentially without applying a classical force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.

  6. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  7. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    Science.gov (United States)

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry. PMID:26484617

  8. Particle tracking in kaon electroproduction with cathode-charge sampling in multi-wire proportional chambers

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, P., E-mail: patrick@kph.uni-mainz.de [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Ayerbe Gayoso, C.; Bernauer, J.C.; Boehm, R. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Bosnar, D. [Department of Physics, University of Zagreb (Croatia); Boesz, M. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Debenjak, L. [University of Ljubljana and Jozef Stefan Institute, Ljubljana (Slovenia); Distler, M.O.; Esser, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Friscic, I. [Department of Physics, University of Zagreb (Croatia); Gomez Rodriguez de la Paz, M. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Makek, M. [Department of Physics, University of Zagreb (Croatia); Merkel, H.; Mueller, U.; Nungesser, L.; Pochodzalla, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Potokar, M. [University of Ljubljana and Jozef Stefan Institute, Ljubljana (Slovenia); Sanchez Majos, S.; Schlimme, B.S. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet Mainz (Germany); Sirca, S. [University of Ljubljana and Jozef Stefan Institute, Ljubljana (Slovenia)

    2011-06-11

    Wire chambers are routinely operated as tracking detectors in magnetic spectrometers at high-intensity continuous electron beams. Especially in experiments studying reactions with small cross-sections the reaction yield is limited by the background rate in the chambers. One way to determine the track of a charged particle through a multi-wire proportional chamber (MWPC) is the measurement of the charge distribution induced on its cathodes. In practical applications of this read-out method, the algorithm to relate the measured charge distribution to the avalanche position is an important factor for the achievable position resolution and for the track reconstruction efficiency. An algorithm was developed for operating two large-sized MWPCs in a strong background environment with multiple-particle tracks. Resulting efficiencies were determined as a function of the electron beam current and on the signal amplitudes. Because of the different energy-losses of pions, kaons, and protons in the momentum range of the spectrometer the efficiencies depend also on the particle species.

  9. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, D B

    2008-11-03

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  10. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    International Nuclear Information System (INIS)

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  11. Measurement of single moving particle temperatures with an FT-IR spectrometer

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    1996-01-01

    A conventional scanning FT-IR spectrometer is used to measure the blackbody radiation through a rapidly moving pinhole in an experiment simulating a dying hot particle. The effects and errors from source movements are analyzed and verified through experiments. The importance of the scanning veloc...... by a factor of 2-10 compared with results from a typical two-color pyrometer. A novel method is presented for measuring emission spectra from single moving particles passing the field of view of the spectrometer in a random manner....

  12. Charged particle interaction with a chirped electromagnetic pulse

    OpenAIRE

    Khachatryan, A. G.; Boller, K. -J.; Goor, van, Fred

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  13. Charged particle beam scanning using deformed high gradient insulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  14. Techniques used for charged particle nuclear data evaluation at CNDC

    International Nuclear Information System (INIS)

    The methods and techniques used for Charged Particle Nuclear Data (CPND) evaluation at Chinese Nuclear Data Center (CNDC) are summarized, including compilation and evaluation of experimental data, nuclear reaction theory and model calculation, systematics research and comprehensive recommendation etc

  15. Silicon pin diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    This paper reports on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included

  16. Radiobiology with heavy charged particles: a historical review

    Energy Technology Data Exchange (ETDEWEB)

    Skarsgard, L.D. [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)

    1997-09-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  17. Deposition of Aerosol Particles in Electrically Charged Membrane Filters

    International Nuclear Information System (INIS)

    A theory for the influence of electric charge on particle deposition on the surface of charged filters has been developed. It has been tested experimentally on ordinary membrane filters and Nuclepore filters of 8 μm pore size, with a bipolar monodisperse test aerosol of 1 μm particle diameter, and at a filter charge up to 20 μC/m2. Agreement with theory was obtained for the Coulomb force between filter and particle for both kinds of filters. The image force between charged filter and neutral particles did not result in the predicted deposition in the ordinary membrane filter, probably due to lacking correspondence between the filter model employed for the theory, and the real filter. For the Nuclepore filter a satisfactory agreement with theory was obtained, also at image interaction

  18. On the charged particle shock acceleration

    International Nuclear Information System (INIS)

    The shock acceleration method employs injection of beam particles into the linear accelerator unexcited structure. Upon injecting a wave of accelerating electromagnetic field is excited in the structure it catches up with the particles and accelerates them. Dynamics of particle acceleration using the abovesaid method is under consideration. A d gree of particle beam compression in the process of beam acceleration is found out. New technique is suggested of shock acceleration with particle outlet to the potential barrier plateau that enables to attain compression not only of relativistic beams but also of non relativistic ones. It is shown that the method in question enables to get compression of electron and ion beams while increasing essentially their current and reducing the density modulation period. Shock acceleration in high current accelerators enables to obtain high-energy current beams (above 104A), which ght be used in studies on ionic thermonuclear fusion in powerful free electron lasers

  19. Limits on the production of massive stable charged particles

    International Nuclear Information System (INIS)

    We present improved limits on the production of massive stable charged particles in bar pp collisions using the Collider Detector at Fermilab based on an integrated luminosity of 3.54 pb-1. Both unit and fractionally charged particles are considered. Cross-section upper limits are determined for masses from 50 to 500 GeV/c2. Theoretical cross sections are used to set bounds on the mass of fermionic color triplets, sextets, octets, and decuplets as well as scalar triplets

  20. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  1. Analogies between light optics and charged-particle optics

    OpenAIRE

    Khan, Sameen Ahmed

    2002-01-01

    The close analogy between geometrical optics and the classical theories of charged-particle beam optics have been known for a very long time. In recent years, quantum theories of charged-particle beam optics have been presented with the very expected feature of wavelength-dependent effects. With the current development of non-traditional prescriptions of Helmholtz and Maxwell optics respectively, accompanied with the wavelength-dependent effects, it is seen that the analogy between the two sy...

  2. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  3. Asymptotic algebra for charged particles and radiation

    International Nuclear Information System (INIS)

    A C*-algebra of asymptotic fields which properly describes the infrared structure in quantum electrodynamics is proposed. The algebra is generated by the null asymptotic of electromagnetic field and the time asymptotic of charged matter fields which incorporate the corresponding Coulomb fields. As a consequence Gauss' law is satisfied in the algebraic setting. Within this algebra the observables can be identified by the principle of gauge invariance. A class of representations of the asymptotic algebra is constructed which resembles the Kulish-Faddeev treatment of electrically charged asymptotic fields. (orig.)

  4. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    Science.gov (United States)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  5. An improved search for elementary particles with fractional electric charge

    International Nuclear Information System (INIS)

    The SLAC Quark Search Group has demonstrated successful operation of a low cost, high mass throughput Millikan apparatus designed to search for fractionally charged particles. About six million silicone oil drops were measured with no evidence of fractional charges. A second experiment is under construction with 100 times greater throughput which will utilize optimized search fluids

  6. Charged particle separation by an electrically tunable nanoporous membrane

    International Nuclear Information System (INIS)

    We study the applicability of an electrically tunable nanoporous semiconductor membrane for the separation of nanoparticles by charge. We show that this type of membrane can overcome one of the major shortcomings of nanoporous membrane applications for particle separation: the compromise between membrane selectivity and permeability. The computational model that we have developed describes the electrostatic potential distribution within the system and tracks the movement of the filtered particle using Brownian dynamics while taking into consideration effects from dielectrophoresis, fluid flow, and electric potentials. We found that for our specific pore geometry, the dielectrophoresis plays a negligible role in the particle dynamics. By comparing the results for charged and uncharged particles, we show that for the optimal combination of applied electrolyte and membrane biases the same membrane can effectively separate same-sized particles based on charge with a difference of up to 3 times in membrane permeability. (paper)

  7. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    Science.gov (United States)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  8. Intercomparison of 15 Aerodynamic Particle Size Spectrometers (APS 3321): Uncertainties in Particle Sizing and Number Size Distribution.

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, S.; Müller, T.; Weinhold, K.; Zíková, Naděžda; dos Santos, S.M.; Marinoni, A.; Bischof, O.F.; Kykal, C.; Ries, L.; Meinhardt, F.; Aalto, P.; Mihalopoulos, N.; Wiedensohler, A.

    2016-01-01

    Roč. 9, č. 4 (2016), s. 1545-1551. ISSN 1867-1381 EU Projects: European Commission(XE) 262254 - ACTRIS Institutional support: RVO:67985858 Keywords : counting efficiency * aerodynamic particle size spectrometers * laboratory study Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.929, year: 2014

  9. Reset charge sensitive amplifier for NaI(Tl) gamma-ray spectrometer

    International Nuclear Information System (INIS)

    The time constant of the output signal of the front-end readout circuit of a traditional gamma-ray spectrometer with a NaI(Tl)+PMT structure is affected by temperature, measurement environment and the signal transmission cable, so it is difficult to get a good resolution spectrum, especially at higher counting rates. In this paper, a reset charge sensitive amplifier (RCSA) is designed for the gamma-ray spectrometer with a NaI(Tl)+PMT structure. The designed RCSA outputs a step signal, thus enabling the acquisition of double-exponential signals with a stable time constant by using the next stage of a CR differentiating circuit. The designed RCSA is mainly composed of a basic amplifying circuit, a reset circuit and a dark current compensation circuit. It provides the output step signal through the integration of the PMT output charge signal. When the amplitude of the step signal exceeds a preset voltage threshold, it triggers the reset circuit to generate a reset pulse (about 5 µs pulse width) to reset the output signal. Experimental results demonstrated that the designed RCSA achieves a charge sensitivity of 4.26×1010 V/C, with a zero capacitance noise of 51.09 fC and a noise slope of 1.98 fC/pF. Supported by the digital shaping algorithm of the digital multi-channel analyzer (DMCA), it can maintain good energy resolution with high counting rates up to 150 kcps and with a temperature range from −19 °C to 50 °C. - Highlights: • A new reset type charge sensitive amplifier for gamma-ray spectrometer based on a photomultiplier tube is proposed. • Reset circuit formed by constant current source output a fixed width pulse to reset charge sensitive amplifier. • Photomultiplier tube dark current compensation circuit could increase the pulse through rate by decreasing reset frequency. • This amplifier outputs a step function signal that could match next stage circuit easily

  10. A simple, low-cost, versatile charge-coupled device spectrometer for plasma spectroscopy

    International Nuclear Information System (INIS)

    We have constructed a simple, low-cost charge-coupled device (CCD) spectrometer capable of both high resolution (Δλ≤0.015 nm) and large bandpass (110 nm with Δλ∼0.3 nm). These two modes of operation provide two broad areas of capability for plasma spectroscopy. The first major application is measurement of emission line broadening; the second is emission line surveys from the ultraviolet to the near infrared. Measurements have been made on a low-temperature plasma produced by a miniature electrostatic plasma source and the high-temperature plasma in the Madison Symmetric Torus reversed-field pinch. The spectrometer is a modified Jarrell endash Ash 0.5 m Ebert endash Fastie monochromator. Light is coupled into the entrance slit with a fused silica fiber optic bundle. The exposure time (2 ms minimum) is controlled by a fast electro-mechanical shutter. The exit plane detector is a compact and robust CCD detector developed for amateur astronomy by Santa Barbara Instrument Group. The CCD detector is controlled and read out by a Macintosh reg-sign computer. This spectrometer is sophisticated enough to serve well in a research laboratory, yet is simple and inexpensive enough to be affordable for instructional use. copyright 1997 American Institute of Physics

  11. Simulation of non-charged particles

    International Nuclear Information System (INIS)

    This paper presents the method used to simulate the transport of neutral particles by using a Monte Carlo method with accelerating techniques of convergence based on the importance function by the method of first collision probabilities

  12. A high sensitivity selector for charged particles

    International Nuclear Information System (INIS)

    The electrostatic size selector for aerosol particles, is composed of two coaxial parallel conductive disks between which an electric field is established; an annular slot in the first disk allows for the atmosphere air intake. Suction and injection systems, and a third intermediate disk are used to carry out a dynamic confinement that allows for the separation of the particles having the required electric mobility and therefore the required size

  13. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    Science.gov (United States)

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  14. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321: uncertainties in particle sizing and number size distribution

    Directory of Open Access Journals (Sweden)

    S. Pfeifer

    2015-11-01

    Full Text Available Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network, 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA were compared with a focus on flow rates accuracy, particle sizing, and unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent, while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10–20 % for particles in the range of 0.9 up to 3 μm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 μm in aerodynamic diameter should be only used with caution. For particles larger than 3 μm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. This uncertainty of the particle number size distribution has especially to be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size

  15. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    Science.gov (United States)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  16. Acceleration of low energy charged particles by gravitational waves

    OpenAIRE

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2005-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  17. Ionic charge state measurements in solar energetic particle events

    International Nuclear Information System (INIS)

    With the launch of the Advanced Composition Explorer, it has become possible through the SEPICA instrument to make direct ionic charge state measurements for individual Solar Energetic Particle events. In large events, the charge state may even be measured as a function of time, revealing changes that may be created by phenomena such as injections from different acceleration mechanisms, or confinement by magnetic field structures. The charge state can be a sensitive indicator of separate SEP populations. Several examples of SEP events will be presented. One of these, the November, 1997 event, displayed a trend in which the mean charge state for several ions increased with energy. These measurements may be the result of several processes, including a mixture of plasma with different source and acceleration histories, and abundance formation and possibly additional charge state modification by collisional or other means in the corona. A wide range of iron charge states have been measured for a variety of SEP events, ranging from =10+ to 20+. The mean charge states of C, O, Ne, Mg and Si all increased as the iron charge state increased. In events with the highest iron charge states, there were abundance enhancements in Ne with respect to oxygen in those cases, even though the mass/charge of the O and Ne were similar. In events with the lowest iron charge states, all these ions except Mg showed mean charge states generally consistent with coronal material of an equilibrium temperature of 1.3-1.6 million degrees K

  18. Generalized charge symmetry and charmed particle decays

    International Nuclear Information System (INIS)

    The charge symmetry operations are introduced within the c, s and p, n quark doublets and its consequences for weak decays proceeding via the GIM current, are studied. Numerous relations between various decays are obtained. Combined with CP an interesting pattern of allowed and suppressed amplitudes for charmed meson and baryon processes is found. The results are compatible with the present meagre experimental information. (Auth.)

  19. Measurement of single moving particle temperatures with an FT-IR spectrometer

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    1996-01-01

    A conventional scanning FT-IR spectrometer is used to measure the blackbody radiation through a rapidly moving pinhole in an experiment simulating a dying hot particle. The effects and errors from source movements are analyzed and verified through experiments. The importance of the scanning...

  20. CMOS sensor as charged particles and ionizing radiation detector

    International Nuclear Information System (INIS)

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained

  1. Charged particle acceleration by electron beam in corrugated plasma waveguide

    International Nuclear Information System (INIS)

    A two-beam charged particle acceleration scheme in a plasma waveguide with corrugated conducting walls is considered. The guiding heavy-current relativistic electron beam is in synchronism with the first plasma wave space harmonics and the accelerated beam is synchronism with a quicker plasma wave. In this case under weak corrugation of the wall the accelerating resonance field effecting the accelerated particles notably increases the field braking the guiding beam. The process of plasma wave excitation with regard to the guiding beam space charge and the relativistic particle acceleration dynamics are investigated by numeric methods. Optimal acceleration modes are found. 19 refs.; 12 figs

  2. Charged particles detection: the draft-and-dye method

    International Nuclear Information System (INIS)

    Charged particles travelling through an organic medium leave a trail of highly concentrated active, stable chemical radicals. These functions are able to initiate copolymerization reactions of unsaturated molecules. Such a reagent is made to reach the trail; polymerization occurs. If the new polymer formed either absorbs or emits light the track of the charged particle is made visible. This technique and results are discussed: the efficiency of those detectors has been increased, they do not exhibit any critical dip angle for the registration of particle tracks, they may offer a way to reveal tracks originating in the detector itself. (orig.)

  3. Charged particles detection: the graft-and-dye method

    International Nuclear Information System (INIS)

    Charged particles travelling through an organic medium leave a trail of highly concentrated active, stable chemical radicals. These functions are able to initiate copolymerization reactions of unsaturated molecules. Such a reagent is made to reach the trail; polymerization occurs. If the new polymer formed either absorbs or emits light the track of the charged particle is made visible. This technique and results are discussed: the efficiency of those detectors has been increased, they do not exhibit any critical dip angle for the registration of particle tracks, they may offer a way to reveal tracks originating in the detector itself. (author)

  4. Sources for charged particles; Les sources de particules chargees

    Energy Technology Data Exchange (ETDEWEB)

    Arianer, J.

    1997-09-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.).

  5. Position time spectrometer of loading particles in low background measurements

    International Nuclear Information System (INIS)

    The series of interesting task decision require the loading particle measurement execution in conditions when studied spectrum constituent composes the minor part of common number of radioactive source disintegration. It means that the ratio value signal background aspire to zero. These tasks include the rest mass determination of electron anti-neutrinos from tritium beta spectra, spectrum of three electron Auger transitions and at last the measurement for the good of substance beta spectra with small specific activity radioecology. The received meaning is the most hard evaluation. In radioecological measurements beta sources which are in slightly times weaker, are usually used on corresponding number of this evaluation will be higher

  6. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    Science.gov (United States)

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions. PMID:20469839

  7. An update on (n,charged particle) research at WNR

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Bateman, F.B.; Sterbenz, S.M. [Los Alamos National Lab., NM (United States); Grimes, S.M. [Ohio Univ., Athens, OH (United States); Wasson, O.A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Maier-Komor, P. [T.U. Munich (Germany); Vonach, H. [Inst. fuer Radiumforschung und Kernphysik, Vienna (Austria)

    1995-12-31

    Neutron-induced reactions producing light charged particles continue to be investigated at the spallation fast-neutron source at the Los Alamos Neutron Science Center (LANSCE). New data on the cross sections for alpha-particle production for neutrons on {sup 58}Ni and {sup 60}Ni are presented from threshold to 50 MeV. Recent changes in the experiment now allow protons, deuterons, tritons, {sup 3}He and alpha particles to be identified.

  8. An update on (n,charged particle) research at WNR

    International Nuclear Information System (INIS)

    Neutron-induced reactions producing light charged particles continue to be investigated at the spallation fast-neutron source at the Los Alamos Neutron Science Center (LANSCE). New data on the cross sections for alpha-particle production for neutrons on 58Ni and 60Ni are presented from threshold to 50 MeV. Recent changes in the experiment now allow protons, deuterons, tritons, 3He and alpha particles to be identified

  9. Motions of charged particles in Goedel-type spacetimes

    International Nuclear Information System (INIS)

    Goedel-type spacetimes in Hehl's non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig

  10. Motions of charged particles in Goedel-type spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Bartolomeu D.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-10-01

    Goedel-type spacetimes in Hehl`s non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig.

  11. Search for long lived charged and massive particles at LHCb detector

    International Nuclear Information System (INIS)

    Full text: We present the method used and results obtained in a search for long-lived charged and massive particle, the stau, produced in pp collisions at sqrt(s) = 7 and 8 TeV with the LHCb spectrometer. The data corresponding to an integrated luminosity of 1 fb-1 at sqrt(s) = 7 TeV and of 2 fb-1 at sqrt(s) = 8 TeV was analysed. We used a Neural Network to distinguish staus from muons by their signals in various detectors. No excess of the signal is observed. The upper limits on the cross section for stau pair production are computed. (author)

  12. Atmosphere turbulence effect on the hot particle charge

    International Nuclear Information System (INIS)

    The charging of hot beta-active aerosol articles of the micron size range in the turbulent current has been studied experimentally . For this purpose hot particles, obtained by the neutron activation of gold placed on the surface of glass microspheres by the cathode spraying method, were introduced into the turbulent current with the Reynolds number of 104 - 105. Results of the determination of particle charges within the current velocity range from 0.5 to 3 m/s confirm the reliability of the previously obtained model of the charging of hot particles in the turbulent current of the near - ground atmospere layer which is described by the function directly proportional to the radius of particles and the half-cube of the wind velocity, and inversely proportional to the square root of the height. The scheme is suggested and specific features are described of experimental installations used in the process of studies

  13. Doubly-charged particles at the Large Hadron Collider

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; de Traubenberg, Michel Rausch

    2013-01-01

    In this work we investigate the production and signatures of doubly-charged particles at the Large Hadron Collider. We start with the Standard Model particle content and representations and add generic doubly-charged exotic particles. We classify these doubly-charged states according to their spin, considering scalar, fermionic and vectorial fields, and according to their SU(2)L representation, being chosen to be either trivial, fundamental, or adjoint. We write the most general interactions between them and the Standard Model sector and study their production modes and possible decay channels. We then probe how they can most likely be observed and how particles with different spin and SU(2)L representations could be possibly distinguished.

  14. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  15. Relativistic mixtures of charged and uncharged particles

    Science.gov (United States)

    Kremer, Gilberto M.

    2014-01-01

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad's moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick's law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad's distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  16. Design and test of a magnetic spectrometer for particle detection up to momenta of 2.5 GeV/c

    International Nuclear Information System (INIS)

    At the photon beam γ1 of the Bonn 2.5 GeV electron synchroton a magnetic image spectrometer of large acceptance for the detection of charged particles with momenta up to 2.5 GeV/c was installed. In the present paper the concept of this spectrometer, used for particle detection at medium and small scattering angles in photo-production experiments, is first illustrated and the calculation of the magneto-optical properties of the system, consisting of two quadrupole magnets and a dipole magnet, is described. After assembly and adjustment of the magnets according to the results of the simulation calculations performed, a floating-wire measurement was carried out in order to determine the characteristics of representation achieved. The results of this precision measurement show the installed magneto-optical system to agree with the projected one within the floating-wire measuring accuracy. They allow the calculation of the particle orbits by means of the spectrometer with an accuracy that is better than 1% for average values of the starting parameters of the spectrometer, if particle scattering effects are neglected. For particle identification, determiniation of momentum and scattering angle a detector system, establishing an angular acceptance of about 3 msr and a moment acceptance of about 11% and consisting of scintillation counters, was designed and set up for the spectrometer. To conclude with, the first successful experimental application of the spectrometer for the inclusive measurement of the reaction γd → pX for γ energies up to 580 MeV is reported. This experiment is a new contribution to answering the question if there are resonant excitation levels of the deuteron. The experimental detection of such dibaryon resonance effects is important in order to understand the nucleon-nucleon interaction as well as the structure of hadrons. (orig.)

  17. Bibliography of integral charged particle nuclear data

    International Nuclear Information System (INIS)

    This bibliography is divided into three main sections covering experimental, theoretical, and review references. The review section also includes compilation and evaluation references. Each section contains two subsections. The main subsection contains all references satisfying the criteria noted above and the second subsection is devoted to isotope production. The main subsections are ordered by increasing Z and A of the incident particle, then by increasing Z and A of the target nucleus. Within this order, the entries are ordered by residual nucleus and quantity (e.g., sigma(E)). Finally, the entries are ordered by outgoing particles or processes. All entries which have the same target, reaction, and quantity are grouped under a common heading with the most recent reference first. As noted above the second subsection is devoted to isotope production and is limited in the information it carries. Only those references which contain data on a definite residual nucleus or group of nuclei (e.g., fission fragments) are included in these subsections. Entries within these second subsections are ordered by increasing Z and A of the isotope produced and then by quantity. All references containing data on the same isotope production and quantity are grouped together. All lines within a group are ordered by increasing Z and A of the target and then of the incident particle. The final ordering is by increasing minimum energy

  18. Bibliography of integral charged particle nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, T.W.; Burt, J.S.

    1977-03-01

    This bibliography is divided into three main sections covering experimental, theoretical, and review references. The review section also includes compilation and evaluation references. Each section contains two subsections. The main subsection contains all references satisfying the criteria noted above and the second subsection is devoted to isotope production. The main subsections are ordered by increasing Z and A of the incident particle, then by increasing Z and A of the target nucleus. Within this order, the entries are ordered by residual nucleus and quantity (e.g., sigma(E)). Finally, the entries are ordered by outgoing particles or processes. All entries which have the same target, reaction, and quantity are grouped under a common heading with the most recent reference first. As noted above the second subsection is devoted to isotope production and is limited in the information it carries. Only those references which contain data on a definite residual nucleus or group of nuclei (e.g., fission fragments) are included in these subsections. Entries within these second subsections are ordered by increasing Z and A of the isotope produced and then by quantity. All references containing data on the same isotope production and quantity are grouped together. All lines within a group are ordered by increasing Z and A of the target and then of the incident particle. The final ordering is by increasing minimum energy.

  19. Charged-particle spectroscopy in organic semiconducting single crystals

    Science.gov (United States)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  20. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.

    Science.gov (United States)

    Borkovec, Michal; Szilagyi, Istvan; Popa, Ionel; Finessi, Marco; Sinha, Prashant; Maroni, Plinio; Papastavrou, Georg

    2012-11-01

    Direct force measurements are used to obtain a comprehensive picture of interaction forces acting between charged colloidal particles in the presence of oppositely charged polyelectrolytes. These measurements are achieved by the multi-particle colloidal probe technique based on the atomic force microscope (AFM). This novel extension of the classical colloidal probe technique offers three main advantages. First, the technique works in a colloidal suspension with a huge internal surface area of several square meters, which simplifies the precise dosing of the small amounts of the polyelectrolytes needed and makes this approach less sensitive to impurities. Second, the particles are attached in-situ within the fluid cell, which avoids the formation of nanobubbles on the latex particles used. Third, forces between two similar particles from the same batch are being measured, which allows an unambiguous determination of the surface potential due to the symmetry of the system. Based on such direct force measurements involving positively and negatively charged latex particles and different polyelectrolytes, we find the following forces to be relevant. Repulsive electrostatic double-layer forces and attractive van der Waals forces as described by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) are both important in these systems, whereby the electrostatic forces dominate away from the isoelectric point (IEP), while at this point they vanish. Additional non-DLVO attractive forces are operational, and they have been identified to originate from the electrostatic interactions between the patch-charge heterogeneities of the adsorbed polyelectrolyte films. Highly charged polyelectrolytes induce strong patch-charge attractions, which become especially important at low ionic strengths and high molecular mass. More weakly charged polyelectrolytes seem to form more homogeneous films, whereby patch-charge attractions may become negligible. Individual bridging events

  1. Trapped charged particles a graduate textbook with problems and solutions

    CERN Document Server

    Madsen, Niels; Thompson, Richard C

    2016-01-01

    At Les Houches in January 2015, experts in the field of particle trapping came together to discuss the fundamental physics of traps and the different types of applications. This textbook collates the lectures delivered there; the Second Winter School on Physics with Trapped Charged Particles. Taken as a whole, the book gives an overview of why traps for charged particles are important, how they work, their special features and limitations, and their application in areas such as precision measurements, mass spectrometry, optical clocks, plasma physics, antihydrogen creation, quantum simulation and quantum information processing. Chapters from various world experts include those on the basic properties of Penning traps, RF traps and particle accelerators, as well as those covering important practical aspects such as vacuum systems, detection techniques, and different types of particle cooling including laser cooling. Finally, individual chapters deal with the different areas of application listed above. Each ...

  2. Measuring massive metastable charged particles with ATLAS RPC timing information.

    CERN Document Server

    Ellis, Jonathan Richard; Oye, Ola Kristoffer

    2006-01-01

    We investigate the measurement of massive metastable charged particles in ATLAS, using timing information from the resistive plate chambers (RPCs). As representative particle candidates we use staus, the partners of $ au$ leptons in supersymmetric models with gravitino dark matter (GDM), which may well be stable on the scale of the detector. The generic signatures of massive metastable charged particles are a long Time-of-Flight (ToF) and high energy-loss ($dE/dx$). The RPC timing information allows us to measure the ToF of a particle which, taken in conjunction with the measurement of the particle's momentum from its track, allows one to determine its mass. We pioneer the study of the RPCs' potential for this measurement. We also consider triggering effects on the event selection, and discuss quantitatively the ATLAS potential for measuring the stau mass in three specific GDM benchmark scenarios.

  3. Charged particle creation in the steady state universe

    International Nuclear Information System (INIS)

    The birth of a particle of charge q(0), initial mass m(0), and radius a in the steady state universe is studied. With the particle's birth, in accord with causality, gravity, and Coulomb fields propagate away from it with the speed of light. Field energies are supplied by the particle's mass which subsequently decays in time. Asymptotic solution to a nonlinear equation for the remaining mass gives the criterion m(0) is greater that q(0)2/2ac2 as a necessary condition for the initial mass to survive the field expansion. The resulting radius of a classical charged particle is found to be greater than the standard value obtained by equating self- and rest-mass energies of the initial particle. 12 refs

  4. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  5. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    International Nuclear Information System (INIS)

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  6. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, C. G.; Fiksel, G.; Stoeckl, C.; Sinenian, N.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J.; Mileham, C.; Sangster, T. C.; Frenje, J. A.

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  7. Charged particle reaction cross sections and nucleosynthesis

    International Nuclear Information System (INIS)

    The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated

  8. Behaviour of scintillometers with charge particles

    International Nuclear Information System (INIS)

    The behaviour of a scintillation plastic and an anthracene crystal for protons and deuterons with energies within 0,2 and 1,7 MeV. has been studied. The beam of monoenergetic particles falls directly on the detector in study in optic contact with a photomultiplicator. The impulse get in an amplifier which sends then to a scale a sting as a monitor and to an analyzer of 100 canals. The spectrum for each energy of incidental beam is obtained taking the maximum of the spectrum as the most probable value of amplitude of the detector reply, and this is represented apposite to the energy. (Author) 6 refs

  9. Complex Kepler Orbits and Particle Aggregation in Charged Microscopic Grains

    Science.gov (United States)

    Lee, Victor; Waitukaitis, Scott; Miskin, Marc; Jaeger, Heinrich

    2015-03-01

    Kepler orbits are usually associated with the motion of astronomical objects such as planets or comets. Here we observe such orbits at the microscale in a system of charged, insulating grains. By letting the grains fall freely under vacuum, we eliminate the effects of air drag and gravity, and by imaging them with a co-falling high-speed camera we track the relative positions of individual particles with high spatial and temporal precision. This makes it possible to investigate the behaviors caused by the combination of long-range electrostatic interactions and short-range, dissipative, contact interactions in unprecedented detail. We make the first direct observations of microscopic elliptical and hyperbolic Kepler orbits, collide-and-capture events between pairs of charged grains, and particle-by-particle aggregation into larger clusters. Our findings provide experimental evidence for electrostatic mechanisms that have been suspected, but not previously observed at the single-event level, as driving the early stages of particle aggregation in systems ranging from fluidized particle bed reactors to interstellar protoplanetary disks. Furthermore, since particles of different net charge and size are seen to aggregate into characteristic spatial configurations, our results suggest new possibilities for the formation of charge-stabilized ``granular molecules''. We can reproduce the observed molecule configurations by taking many-body, dielectric polarization effects into account.

  10. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    Science.gov (United States)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  11. Electric birefringence anomaly of solutions of ionically charged anisometric particles.

    Science.gov (United States)

    Hoffmann, H; Gräbner, Dieter

    2015-02-01

    The term "electric birefringence anomaly" is known as the electric birefringence (EB) signal that occurs in solutions of ionically charged anisometric particles in a narrow concentration region. The signal is of opposite sign to the normal birefringence that occurs below and above this narrow concentration region. The normal electric birefringence signals in the dilute and more concentrated regions are due to the orientation of the particles in the direction of the applied electric field. The origin for the anomalous signal was not completely understood until now. The article summarises previous results in which the anomalous results had been observed but not well understood. It shows that the birefringence anomaly occurs in systems as diverse as micellar solutions, polyelectrolytes, solutions of clays, viruses and fibres. In all these systems the anomaly signals are present at the concentration when the length of the colloidal particles including the thickness of the electric double layer are about the same as the mean distance between the colloidal particles. Under these conditions the electric double layers of the particles overlap along the main axis of the particles but not in the direction across the particles. As a consequence of this situation a dipole is built up across the particles by the migration of the counter-ions of the particles in the electric field and this dipole leads to an orientation of the particles perpendicular to the electric field. The anomalous signal can usually be observed simultaneously with the normal signal. The amplitude of the anomalous signal can be larger than the amplitude of the normal signal. As a consequence the total birefringence changes its sign in the anomalous concentration region. The anomaly signal of the clays can also be explained by a fluctuating dipole around the particles, which is due to the fact that the centre of the ionic charges of the particles does not fall on the centre of the ionic charge of the counter

  12. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  13. High-resolution microcalorimeter energy-dispersive spectrometer for x-ray microanalysis and particle analysis

    International Nuclear Information System (INIS)

    We have developed a high-resolution microcalorimeter energy-dispersive spectrometer (EDS) at NIST that provides improved x-ray microanalysis of contaminant particles and defects important to the semiconductor industry. Using our microcalorimeter EDS mounted on a scanning electron microscope (SEM), we have analyzed a variety of specific sized particles on Si wafers, including 0.3 μm diameter W particles and 0.1 μm diameter Al2O3 particles. To compare the particle analysis capabilities of microcalorimeter EDS to that of semiconductor EDS and Auger electron spectroscopy (AES), we report measurements of the Al-Kα/Si-Kα x-ray peak intensity ratio for 0.3 μm diameter Al2O3 particles on Si as a function of electron beam energy. We also demonstrate the capability of microcalorimeter EDS for chemical shift measurements

  14. Optimal performance of charged particle telescopes in space

    International Nuclear Information System (INIS)

    A Bayesian probabilistic data analysis method for energetic proton and ion data from charged particle telescopes in space is described. The telescope is assumed to consist of only a series of planar silicon detectors with graduated thicknesses. The method is based on a range-straggling function and makes optimal use of energy loss measurements in each detector. It provides accurate incidence angle estimates for particles stopping in the telescope, allowing accurate element identification and possible isotope identification. It also provides energy estimates for high-energy particles going through the telescope without stopping. Examples are shown for simulated telescope design performance tests and application to real space-particle data

  15. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  16. Charged-Particle Multiplicity in Proton-Proton Collisions

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2010-01-01

    This article summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of sqrt(s). Feynman scaling, KNO scaling, as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of two or more negative binomial distributions are discussed. Moreover, similarities between the energy dependence of charged-particle multiplicities in p+p(pbar) and e+e- collisions are studied. Finally, various predictions for pseudorapidity densities, average multiplicities in full phase space, and multiplicity distributions of charged particles in p+p(pbar) collisions at the LHC energies of sqrt(s) = 7 TeV, 10 TeV, and 14 TeV are summarized and compared.

  17. Electromagnetic radiation of charged particles in stochastic motion

    CERN Document Server

    Harko, Tiberiu

    2016-01-01

    The study of the Brownian motion of a charged particle in electric and magnetic fields fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The Power Spectral Density (PSD) of the emitted power is ...

  18. Charged Massive Particle's Tunneling From Charged Non-Rotating Micro Black Hole

    CERN Document Server

    Soleimani, M J; Radiman, Shahidan; Abdullah, W A T Wan

    2015-01-01

    In the tunneling framework of Hawking radiation, charged massive particle's tunneling in charged non-rotating TeV-Scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentum through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged non-rotating micro black hole by taking into account the full implications of energy and charge conservation as well as the back- scattered radiation.

  19. Clustering of settling charged particles in turbulence: theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jiang; Nordsiek, Hansen; Shaw, Raymond A, E-mail: rashaw@mtu.edu [Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2010-12-15

    Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.

  20. Clustering of settling charged particles in turbulence: theory and experiments

    International Nuclear Information System (INIS)

    Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.

  1. Galilean electrodynamics. Part 2. Charged particle force and conservation laws

    International Nuclear Information System (INIS)

    From the general formulae for the transformation of fields in Galilean electrodynamics there are derived the expression for the force acting on a charged particle and the equation of motion of a charged particle. Without any additional assumptions these equations are performed into the relativistic form, that is with the relativistic momentum and energy. Hence, in an elementary way, Einstein's formula of the equivalence of energy and mass results. Then the conservation laws of energy and momentum for the fields are derived. 3 refs. (author)

  2. A New Mechanism of Higgs Bosons in Producing Charge Particles

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time.......A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time....

  3. Charged-particle inclusive distributions from hadronic Z0 decays

    International Nuclear Information System (INIS)

    We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were the mean charged-particle multiplicity (left-angle nch right-angle), scaled momentum (x), and momenta transverse to the sphericity axes (p perpendicular in and p perpendicular out). The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations. 12 refs., 2 figs

  4. The telegraph equation in charged particle transport

    Science.gov (United States)

    Gombosi, T. I.; Jokipii, J. R.; Kota, J.; Lorencz, K.; Williams, L. L.

    1993-01-01

    We present a new derivation of the telegraph equation which modifies its coefficients. First, an infinite order partial differential equation is obtained for the velocity space solid angle-averaged phase-space distribution of particles which underwent at least a few collisions. It is shown that, in the lowest order asymptotic expansion, this equation simplifies to the well-known diffusion equation. The second-order asymptotic expansion for isotropic small-angle scattering results in a modified telegraph equation with a signal propagation speed of v(5/11) exp 1/2 instead of the usual v/3 exp 1/2. Our derivation of a modified telegraph equation follows from an expansion of the Boltzmann equation in the relevant smallness parameters and not from a truncation of an eigenfunction expansion. This equation is consistent with causality. It is shown that, under steady state conditions in a convecting plasma, the telegraph equation may be regarded as a diffusion equation with a modified transport coefficient, which describes a combination of diffusion and cosmic-ray inertia.

  5. Charged Particle Monitor on the AstroSat mission

    CERN Document Server

    Rao, A R; Bhargava, Yash; Khanna, Rakesh; Hingar, M K; Kutty, A P K; Malkar, J P; Basak, Rupal; Sreekumar, S; Samuel, Essy; Priya, P; Vinod, P; Bhattacharya, D; Bhalerao, V; Vadawale, S V; Mithun, N P S; Pandiyan, R; Subbarao, K; Seetha, S; Sarma, K Suryanarayana

    2016-01-01

    Charged Particle Monitor (CPM) on-board the AstroSat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.

  6. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  7. Sausage mode of a pinched charged particle beam

    International Nuclear Information System (INIS)

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion

  8. Construction of asymptotic fields for a charged particle

    OpenAIRE

    Greenberg, O. W.; Cowen, Steve

    2012-01-01

    Asymptotic fields do not exist in theories with massless particles and fields, because the vacuum matrix elements of products of the interacting fields in such theories do not have delta function or principal value singularities in momentum space. We remedy this problem by constructing a field for the charged particle that does have the required singularities in momentum space. We illustrate this construction in quantum electrodynamics (QED).

  9. Response of dual-wavelength optical particle spectrometer (DWOPS) to well-defined aerosols

    International Nuclear Information System (INIS)

    Full text: It is a recognized fact that more information is contained in the spatial distribution of light scattered from a particle than is currently used in conventional spectrometers. Employing multiple detectors to study the elastically scattered light gives access to a description of a particle size, leading also to information on a particle's refractive index and maybe shape. The DWOPS measures and evaluates light scattered from an individual particle into four different angular ranges. This data corresponds to theoretically determinable instrument's responses for a given particle. A fit procedure finds the quadruple of theoretical values best matching the quadruple of measured values. Experiments with well-defined spherical, homogeneous aerosols will be reported and show that a unique particle sizing and also an unambiguous determination of the complex refractive indices of measured particles is possible. It must be mentioned that the particle measurement and evaluation of performance is based on the postulation of sphericity of aerosols in question, which may be assumed for many submicron atmospheric particles. The irregular shape of particles is an inherent difficulty in single optical particle spectrometry. Preliminary measurements with DWOPS are promissing in dealing with this issue. (author)

  10. Detection of invisible particles at hadron collider experiments through the magnetic spectrometer

    CERN Document Server

    Bentivegna, Marco; Margaroli, Fabrizio; Potamianos, Karolos

    2012-01-01

    The production of invisible particles plays great importance in high energy physics. Large part of interesting electroweak processes include production of neutrinos, while many new physics scenarios predict the existence of similarly weakly-interacting particles. In events with associated production of invisible particles and hadronic jets, the measurement of the imbalance in transverse momentum of the final state particles is the major leverage to reject the otherwise dominant source of backgrounds in hadron colliders, i.e. the generic production of many jets by QCD interactions. Here we discuss a novel technique which utilizes the information derived from the spectrometer, eventually coupled with the more straightforward calorimeter information, to infer the passage of invisible particles. We check the validity of this technique in data and Monte Carlo simulations in a broad range of topologies, starting from the simplest, with two jets in the final state, to the ones with very large jet multiplicities. We ...

  11. Study on a compact and adaptable Thomson Spectrometer for laser-initiated 11B(p,α)8Be reactions and low-medium energy particle detection

    Science.gov (United States)

    Consoli, F.; De Angelis, R.; Bonasera, A.; Sura, J.; Andreoli, P.; Cristofari, G.; Cipriani, M.; Di Giorgio, G.; Ingenito, F.; Barbarino, M.; Labaune, C.; Baccou, C.; Depierreux, S.; Goyon, C.; Yahia, V.

    2016-05-01

    Thomson Spectrometers are of primary importance in the discrimination of particles produced by laser-plasma interaction, according to their energy and charge-mass ratio. We describe here a detailed study on a set of Thomson Spectrometers, adaptable to different experimental situations, with the aim of being placed directly within the experimental chamber, rather than in additional extensions, in order to increase the solid angle of observation. These instruments are suitable for detection of low-medium energy particles and can be effectively employed in laser-plasma experiments of 11B(p,α)8Be fusion. They are provided with permanent magnets, have small dimensions and compact design. In these small configurations electric and magnetic fringing fields play a primary role for particle deflection, and their accurate characterization is required. It was accomplished by means of COMSOL electromagnetic solver coupled to an effective analytical model, very suitable for practical use of the spectrometers. Data from experimental measurements of the magnetic fields have been also used. We describe the application of the spectrometers to an experiment of laser-plasma interaction, coupled to Imaging Plate detectors. Data analysis for spectrum and yield of the detected radiation is discussed in detail.

  12. Large Acceptance Measurement of Photons and Charged Particles in Heavy Ion Reactions

    CERN Multimedia

    2002-01-01

    % WA98 \\\\ \\\\ The aim of the experiment is the high statistics study of photons and neutral hadrons, as well as of charged particles, and their correlations in Pb~-~Pb collisions. The photons are measured by: \\begin{enumerate}[-] \\item a 10~000 module LEADGLASS SPECTROMETER yielding high precision data on $ \\pi ^0 $ and $ \\eta $ at midrapidity (with transverse momenta 0.3 GeV/c $>$ p$ _{T} $ $>$ 4.5 GeV/c for $\\pi ^0 $ and 1.5~GeV/c~$>$~p$ _{T}~$ $>$~4.0~GeV/c for $ \\eta $ covering the $^{\\prime\\prime}$thermal$^{\\prime\\prime}$ as well as the $^{\\prime\\prime}$hard scattering$^{\\prime\\prime}$ regime beyond 3~GeV/c) and determination of the thermal and direct photon to $ \\pi ^0 $ ratio. \\item a pad preshower PHOTON MULTIPLICITY DETECTOR which, by comparing with the charged particle multiplicity measurement allows to determine the photon enrichment in an event or event class. \\end{enumerate}\\\\ \\\\The charged particle setup contains:\\\\ \\\\\\begin{enumerate}[-] \\item a 4000 element SILICON PAD DETECTOR and a 4-inch SIL...

  13. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission

    OpenAIRE

    McNutt, JR; Livi, Stefano A.; Gurnee, Reid S.; Hill, Matthew E.; Cooper, Kim A.; Andrews, G. Bruce; Keath, Edwin P.; Krimigis, Stamatios M.; Mitchell, Donald G; Tossman, Barry; Bagenal, Fran; Boldt, John D.; Bradley, Walter; Devereux, William S.; Ho, George C.

    2007-01-01

    The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto's outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a "heavy comet" as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric...

  14. Charged particles identification with a CsI(Tl) scintillator

    International Nuclear Information System (INIS)

    A CsI(Tl) scintillator with two light decay components is used to detect and identify p,d,t, 3He, α particles with a low energy threshold, Besides the addition of a thin plastic scintillator in front of the CsI(Tl) crystal allows charge identification for ions with Z up to 19

  15. Some peculiarity of element analysis using charged particle beams

    International Nuclear Information System (INIS)

    Multilayer structures, SiC -layers at Si substrate, have been analyzed by RBS, NR, ERD and PIXE methods using the charged particle beams from EG-5 Van de Graaff accelerator of JINR. The depth profiles of the based deposited layers were obtained for the multilayer structures

  16. Nondestructive diagnostics of charged particle beams in accelerators

    Science.gov (United States)

    Logachev, P. V.; Meshkov, O. I.; Starostenko, A. A.; Nikiforov, D. A.; Andrianov, A. V.; Maltseva, Yu. I.; Levichev, A. E.; Emanov, F. A.

    2016-03-01

    The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

  17. Periodic interactions of charged particles with spatially localized fields

    International Nuclear Information System (INIS)

    We derive and analyze a generic mapping for the spatially periodic interaction of charged particles with localized, coherent electric fields. For such interactions stochastic motion exists in a bounded region of phase-space. Conditions are determined for which diffusion can describe the dynamics in such a bounded, stochastic phase-space. (orig.)

  18. Challenging the weak cosmic censorship conjecture with charged quantum particles

    International Nuclear Information System (INIS)

    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstroem black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-(1/2) particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-(1/2) fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-(1/2) charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.

  19. Some developments in neutron and charged particle dosimetry

    International Nuclear Information System (INIS)

    There is an increasing need for dosimetry of neutrons and charged particles. Increasing exposure levels are reported in the nuclear industry, deriving from more frequent in-service entries at commercial nuclear power plants, and from increased plant decommissioning and refurbishment activities. Another need stems from the compliance with requirements of the regulations and standards. The European Council directive 96/29 requires dosimetric precautions if the effective dose exceeds 1 mSv a-1. On average, aircrew members exceed this value. Further, there is a trend of increasing use of charged particles in radiotherapy. The present situation is that we have reasonably good photon dosemeters, but neutron and charged particle dosemeters are still in need of improvements. This work highlights some of the developments in this field. It is mainly concentrated on some developments in passive dosimetry, in particular thermally and optically stimulated luminescent detectors, indicating the direction of ongoing research. It shows that passive dosemeters are still a very active field. Active dosemeters will not be discussed with the exception of new developments in Micro-dosimetric measurements [new types of tissue equivalent proportional counters (TEPCs)]. The TEPC is unique in its ability to provide a simultaneous determination of neutron/charged particle/ gamma ray doses, or dose equivalents using a single detector. (authors)

  20. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  1. Bibliography of integral charged-particle nuclear data

    International Nuclear Information System (INIS)

    This publication is the first supplement to the archival edition of the National Nuclear Data Center's charged-particle bibliography. This supplement contains citations to all references scanned since March 15, 1980, and all corrections and additions to previous citations, and indexes all data received in the international exchanged format (EXFOR). The primary goal of the bibliography has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged-particle cross section data and to provide an index of data exchanged among the members. As a result of a recommendation by the recent Workshop on Intense High Energy Neutron Source and Their Characteristics, we have also undertaken to expand the coverage of charged-particle-induced neutron-source reactions to include differential data. This supplement is divided into two sections, References and Isotope Production. The References section contains all references satisfying the criteria noted. The Isotope Production section contains an abbreviated reference line for all entries which contain information on a definite residual nucleus, on particle production, or on mass, charge, or isotopic distributions. Entries in the References section are sequentially numbered. These sequence numbers serve as a link between the two sections

  2. Thermodynamic model for bouncing charged particles inside a capacitor

    Science.gov (United States)

    Rezaeizadeh, Amin; Mameghani, Pooya

    2013-08-01

    We introduce an equation of state for a conducting particle inside a charged parallel-plate capacitor and show that it is similar to the equation of state for an ideal gas undergoing an adiabatic process. We describe a simple experiment that shows reasonable agreement with the theoretical model.

  3. Fusion reactivity graphs and tables for charged particle reactions

    International Nuclear Information System (INIS)

    Graphs and tables are presented on 31 light isotope fusion reaction parameters [, n, Q/sub +/, nQ/sub +/ (for n = 1020 fuel ion species/m3 and Q/sub +/ = energy release in charged particles)] in the kinetic temperature range 1 to 1000 keV

  4. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  5. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model

    DEFF Research Database (Denmark)

    Foged, Camilla; Brodin, Birger; Frøkjær, Sven; Sundblad, Anne

    2005-01-01

    polystyrene particles was covalently modified with different polyaminoacids/proteins, yielding particles with varying surface charge. Uptake of 1 microm particles was greatly enhanced when particles displayed a positive surface charge. In general, the present findings establish that particle diameters of 0...

  6. Continuum of the spectra of emitted charged particles

    International Nuclear Information System (INIS)

    The continuous part of nuclear particle spectra situated between direct reactions and compound nuclear reactions is of importance due to its great yield. Because most reactions studied so far have only nucleons in the entrance or exit channel, respectively, the authors have measured charged particle spectra from complex particle induced reactions: deuterons, helions and alphas with bombarding energies up to 40 MeV/nucleon. From spectra measured at both forward and backward angles angle integrated spectra have been deduced which can be compared with the predictions of reaction models. (orig./AH)

  7. Guiding of charged particles through capillaries in insulating materials

    Science.gov (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  8. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    OpenAIRE

    Wilken, B; P. W. Daly; Mall, U; Aarsnes, K.; Baker, D. N.; R. D. Belian; Blake, J B; Borg, H.; Büchner, J.; Carter, M.; Fennell, J. F.; Friedel, R; Fritz, T A; Gliem, F.; Grande, M.

    2001-01-01

    The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonst...

  9. Some recent developments in nuclear charged particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stelzer, H.

    1980-08-01

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown.

  10. Some recent developments in nuclear charged particle detectors

    International Nuclear Information System (INIS)

    The latest developments of large-area, position sensitive gas-filled ionization chambers are described. Multi-wire-proportional chambers as position-sensing and parallel-plate-avalanche counters as time-sensing detectors at low pressure (5 torr) have proven to be useful and reliable instruments in heavy ion physics. Gas (proportional) scintillation counters, used mainly for x-ray spectroscopy, have recently been applied as particle detectors. Finally, a brief description of a large plastic scintillator spectrometer, the Plastic Ball, is given and some of the first test and calibration data are shown

  11. Charged-particle LET-spectra measurements aboard LDEF

    International Nuclear Information System (INIS)

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

  12. Cosmic-Ray Generated Charged Particles for Nuclear Inspection

    International Nuclear Information System (INIS)

    Charged particles continuously rain down on the surface of the Earth. These charged particles primarily consist of muons and electrons. Muons are subatomic particles with the same charge as the electron, but with 200 times the mass. These particles are generated from interactions of primary cosmic-rays, primarily protons, with the upper atmosphere. Decision Sciences has implemented a tracking detector to measure the interactions of these particles with materials through which they pass: multiple Coulomb scattering and ionization energy loss and from these measurements is able to reconstruct a three-dimensional map of the density and atomic number of the materials in a scan volume. This map, combined with sensitive gamma detection capability of the tracking detector, enables the detection of nuclear and radiological materials that may be concealed in shielding, as well as discrimination of naturally occurring radioactive materials (NORM) from point sources that would be more associated with threats. Times to clear most non-threat cargo range from 30-60 seconds, with suspicious (heavy shielding or gamma emitting) scenes being held longer to confirm the presence of and identify nuclear or radiological materials. Extended scanning in this circumstance would typically take two to ten minutes. (author)

  13. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  14. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  15. Verification of nuclear data for DT neutron induced charged-particle emission reaction of light nuclei

    International Nuclear Information System (INIS)

    Double-differential cross-section (DDX) for emitted charged particles is necessary to estimate material damage, gas production and nuclear heating in a fusion reactor. Detailed measurements of the cross-sections for beryllium, carbon and fluorine, which are among the composition materials of expected fusion blankets and first walls, were carried out with a charged-particle spectrometer using a pencil-beam DT neutron source. As verification of the cross-sections evaluated in three nuclear libraries (JENDL-3.3, ENDF/B-VI and JEFF-3.1), our measured data were compared with the data evaluated in the libraries. From the comparison, the following problems were pointed out: Beryllium: Remarkable differences in energy and angular distribution for α-particles were observed between the measured data and the libraries. The estimated total cross-section for α-particle production well agreed with the libraries. Carbon: There was a discrepancy of about 20% between JENDL-3.3 and ENDF/B-VI (JEFF-3.1) for α-particle production cross-section, and no DDX for α-particles is given in the libraries. Our obtained total cross-section for α-particle production was rather consistent with ENDF/B-VI (JEFF-3.1), and the value evaluated in JENDL-3.3 seemed too large. Fluorine: The remarkable differences for DDX of protons and α-particles were observed between the obtained result and JENDL-3.3, although detailed DDX was stored only in JENDL. The obtained total cross-sections mostly supported the evaluation of ENDF/B-VI (JEFF-3.1)

  16. Space charge distribution measurement methods and particle loaded insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)

    2006-03-07

    In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.

  17. Brownian Dynamics of charged particles in a constant magnetic field

    CERN Document Server

    Hou, L J; Piel, A; Shukla, P K

    2009-01-01

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions and, particularly complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  18. Charged Q-balls and boson stars and dynamics of charged test particles

    CERN Document Server

    Brihaye, Yves; Hartmann, Betti

    2014-01-01

    We construct electrically charged Q-balls and boson stars in a model with a scalar self-interaction potential resulting from gauge mediated supersymmetry breaking. We discuss the properties of these solutions in detail and emphasize the differences to the uncharged case. We observe that $Q$-balls can only be constructed up to a maximal value of the charge of the scalar field, while for boson stars the interplay between the attractive gravitational force and the repulsive electromagnetic force determines their behaviour. We also study the motion of charged, massive test particles in the space-time of boson stars. We find that in contrast to charged black holes the motion of charged test particles in charged boson star space-times is planar, but that the presence of the scalar field plays a crucial r\\^ole for the qualitative features of the trajectories. Applications of this test particle motion can be made in the study of extreme-mass ratio inspirals (EMRIs) as well as astrophysical plasmas relevant e.g. in th...

  19. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2011-07-01

    Full Text Available A single particle instrument has been developed for real-time analysis of organic aerosols. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE is ranging from 0.1 to 90 % for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. Scattered light is detected by two photomultipliers and the detected signals are used to trigger a UV excimer laser (λ = 248 nm used for laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 attograms. DOP particles were also used to test the overall functioning of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first scientific application of the instrument. Single particle mass spectra are obtained with a global hit rate of 10 %. They are found to be very different from one particle to another, reflecting chemical differences of the analyzed particles, and most of the detected mass peaks are attributed to oxidized products of indene.

  20. Effects of dispersive wave modes on charged particles transport

    CERN Document Server

    Schreiner, Cedric

    2015-01-01

    The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.

  1. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plates for energetic protons, deuterons, and alpha particles

    Science.gov (United States)

    Freeman, Charles; Canfield, Michael; Graeper, Gavin; Lombardo, Andrew; Stillman, Collin; Fiksel, Gennady; Stoeckl, Christian; Sinenian, Nareg

    2010-11-01

    A Thomson parabola ion spectrometer (TPIS) has been designed and built to study energetic ions accelerated from the rear surface of targets irradiated by ultra-intense laser light from the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE). The device uses a permanent magnet and a pair of electrostatic deflector plates to produce parallel magnetic and electric fields, which cause ions of a given charge-to-mass ratio to be deflected onto parabolic curves on the detector plane. The position of the ion along the parabola can be used to determine its energy. Fujifilm imaging plates (IP) are placed in the rear of the device and are used to detect the incident ions. The energy dispersion of the spectrometer has been calibrated using monoenergetic ion beams from the SUNY Geneseo 1.7 MV pelletron accelerator. The IP sensitivity has been measured for protons and deuterons with energies between 0.6 MeV and 3.4 MeV, and for alpha particles with energies between 1.5 MeV and 5.1 MeV.

  2. Effect of Charge, Size and Temperature on Stability of Charged Colloidal Nano Particles

    Institute of Scientific and Technical Information of China (English)

    A. Golchoobi; A. Khosravi; H. Modarress; A Ahmadzadeh

    2012-01-01

    Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model.The well-known Derjaguin-Landau-Verwey-Overbeek theory is applied to account for effective interactions between particles.Effect of temperature,valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated.The results indicate that the suspension is more stable at higher temperatures.On the other hand,for a more stable suspension to exist,lower microion valance is favorable.For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher.However for the best of our results larger colloidal particle are less stable.Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.

  3. Isospin Effect of Charged Particle Multiplicity in Intermediate Energy Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    HuRongjiang; WuHeyu; JinGenming; ZhuYongtai; DuanLimin; XiaoZhigang; WangHongwei

    2003-01-01

    The dependences of He and intermediate mass fragments (IMF) production rates in the reactions 55 MeV/u 40Ar+58,64 Ni on the isospin, impact parameter and primary excitation energy of the reaction nuclear system were studied by using the 4π charged particle multi-detector array system (MUDAL). For the mentioned two reaction systems, the measured He particle contribution in the total charged particle multiplicity increases with increasing the total charged particle multiplicity but for the contribution of IMFs in the total charged particle multiplicity increases with increasing the total charged particle multiplicity at lower total charged particle multiplicities, and latter on it drops down with further increasing of the total charged particle multiplicities (see Fig.l). The experimental results of these two reaction systems with the same nuclear charge indicate that the contribution of He and IMFs in the total charged particle multiplicities are obviously isospin dependent.

  4. Charged Particle Multiplicity and Open Heavy Flavor Physics in Relativistic Heavy Ion Collisions at the LHC

    Science.gov (United States)

    Chen, Yujiao

    In this thesis, two independent measurements are presented: the measurements of centrality dependence and pseudo-rapidity dependence of charged particle multiplicities, and the measurements of centrality dependence of open heavy flavor suppression. These measurements are carried out with the Pb+Pb collisions data at the LHC energy sNN = 2.76 TeV with the ATLAS detector. For the charged particle measurements, charged particles are reconstructed with two algorithms (2-point "tracklet" and full tracking) from the pixel detector only. Measurements are presented of the per-event charged particle density distribution, dNch /deta and the average charged particle multiplicity in the pseudo-rapidity interval |eta| measurements at the LHC and RHIC. The variation of the mid-rapidity charged particle yield per colliding nucleon pair with the number of participants is consistent with the lower sNN results measured at RHIC. The shape of the dNch/deta distribution is found to be independent of centrality within the systematic uncertainties of the measurement. For the open heavy flavor suppression measurements, muons identified by the muon spectrometer are classified as heavy flavor decays and background contributions by using a fitting procedure with templates from Monte Carlo samples. Results are presented for the per-event muon yield as a function of muon transverse momentum, p T, over the range of 4 measure, muon production from heavy quark decays is found to be suppressed by a centrality-dependent factor that increases smoothly from peripheral to central collisions. Muon production is suppressed by approximately a factor of two in central collisions relative to peripheral collisions. Within the experimental errors, the observed suppression is independent of muon pT for all centralities. Furthermore, the p T dependence of the relative muon yields in Pb+Pb collisions to p+p collisions with the same center of mass collision energy per nucleon is presented by the nuclear

  5. Strange particle production in neutrino-neon charged current interactions

    International Nuclear Information System (INIS)

    Neutral strange particle production in charged-current muon-neutrino interactions have been studied in the Fermilab 15-foot neon bubble chamber. Associated production is expected to be the major source of strange particles in charged-current neutrino interactions. σ-neutral and ξ-minus production by neutrinos was observed. The dependence on various leptonic and hadronic variables is investigated. A fit to single and associated production of s, s/anti-s, and c quarks is described based on the number of single and double strange particle production events. Inclusive neutral strange particle decays (V0) production rates as a fraction of all charged-current events are measured and are tabulated. The λ/K ratio is found to be 0.39 +- 0.04 and the fraction of λ coming from σ-neutral is (16 +- 5)%. The single- and double V0 production was used to determine the associated s anti-s production rate and single s-quark production rate. 13 refs., 7 figs., 3 tabs

  6. Charged Particle Therapy Steps Into the Clinical Environment

    Science.gov (United States)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  7. DART: a simulation code for charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-05-16

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs.

  8. DART: a simulation code for charged particle beams

    International Nuclear Information System (INIS)

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  9. Fast charge exchange spectroscopy using a Fabry-Perot spectrometer in the JIPP TII-U tokamak

    International Nuclear Information System (INIS)

    A new charge exchange spectroscopic technique using a Fabry-Perot spectrometer has been developed to increase the photon flux at the detector and improve the time resolution of ion temperature and plasma rotation velocity measurements. The spectral resolution is obtained by arranging two dimensional fiber optics and a two dimensional detector at the focal plane of a coupled lens located on both sides of a Fabry-Perot spectrometer. The effective finesse of the Fabry-Perot interferometer in this system is 14. The time evolution of the ion temperature is obtained with a time resolution of 125 μs and with the spatial resolution of 3 cm (8 channels). (author)

  10. Detection of charged particles through a photodiode: design and analysis

    International Nuclear Information System (INIS)

    This project develops and construct an charge particle detector mean a pin photodiode array, design and analysis using a silicon pin Fotodiodo that generally is used to detect visible light, its good efficiency, size compact and reduced cost specifically allows to its use in the radiation monitoring and alpha particle detection. Here, so much, appears the design of the system of detection like its characterization for alpha particles where one is reported as alpha energy resolution and detection efficiency. The equipment used in the development of work consists of alpha particle a triple source composed of Am-241, Pu-239 and Cm-244 with 5,55 KBq as total activity, Maestro 32 software made by ORTEC, a multi-channel card Triumph from ORTEC and one low activity electroplated uranium sample. (Author)

  11. Charge collection studies in irradiated HV-CMOS particle detectors

    Science.gov (United States)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  12. Modelling die filling with charged particles using DEM/CFD

    Institute of Scientific and Technical Information of China (English)

    Emmanuel Nkem Nwose; Chunlei Pei; Chuan-Yu Wu

    2012-01-01

    The effects of electrostatic charge on powder flow behaviour during die filling in a vacuum and in air were analysed using a coupled discrete element method and computational fluid dynamics (DEM/CFD) code,in which long range electrostatic interactions were implemented.The present 2D simulations revealed that both electrostatic charge and the presence of air can affect the powder flow behaviour during die filling.It was found that the electrostatic charge inhibited the flow of powders into the die and induced a loose packing structure.At the same filling speed,increasing the electrostatic charge led to a decrease in the fill ratio which quantifies the volumetric occupancy of powder in the die.In addition,increasing the shoe speed caused a further decrease in the fill ratio,which was characterised using the concept of critical filling speed.When the electrostatic charge was low,the air/particle interaction was strong so that a lower critical filling speed was obtained for die filling in air than in a vacuum.With high electrostatic charge,the electrostatic interactions became dominant.Consequently,similar fill ratio and critical filling speed were obtained for die filling in air and in a vacuum.

  13. Charge particle accelerator - a brief review, future challenges and applications

    International Nuclear Information System (INIS)

    Charged particle accelerators are important tools to investigate hitherto inaccessible problems in various fields of science. The interaction of charged particles with materials reveals structural information at very small scale (-16 cm). Accelerator based equipments viz. scanning electron microscope (SEM), transmission electron microscope (TEM) and focused ion beam (FIB) machines are extensively being used to explore new possibilities in nanotechnology. Many experiments in nuclear and particle physics examine the fundamental laws of physics by colliding a high-energy beam of particles, such as electrons or protons, with a fixed target or with another beam of particles. Modern light sources, which are capable of producing high-energy photons such as X-rays, operate by 'bending' the path of electrons in an accelerator with magnets to generate radiation. State-of-the-art cancer treatment facilities utilize high-energy proton and heavier ion beams to treat inoperable tumors. The man made sun, International Thermonuclear Experimental Reactor (ITER), will utilize 1 MeV, 40 A neutral proton beams for additional heating of the plasma. A roadmap for developing accelerator driven systems (ADS) in India was prepared in 2001 and involves development of a 1 GeV, 30 mA proton linear accelerator. Due to potential applications, developing high energy accelerators worldwide is a challenge for the community. New acceleration schemes to make accelerator size compact have been realized. In the present talk, various types of accelerators, accelerator based programs worldwide and new acceleration scheme of charge particles will be discussed. The low energy ion beam facility (LEIBF) at IUAC and a few experimental results arising from this facility will be presented. Finally, I will touch some applications, particularly in nanotechnology, where accelerators are making a big impact. (author)

  14. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with β ∼ 1, where β is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for vs >> vA (e.g., electrons), where vs is the thermal speed of species s and vA is the Alfvén speed, while FTB dominates for vs A (e.g., minor ions). Proton heating rates for β ∼ 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  15. Cataract production in mice by heavy charged particles

    International Nuclear Information System (INIS)

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron (56Fe) or argon (40Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of 60Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of 12C doses over 24 weeks

  16. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  17. The Motion of a Pair of Charged Particles

    CERN Document Server

    Franklin, J

    2013-01-01

    We re-visit the problem of two (oppositely) charged particles interacting electromagnetically in one dimension with retarded potentials and no radiation reaction. The specific quantitative result of interest is the time it takes for the particles to fall in towards one another. Starting with the non-relativistic form, we answer this question while adding layers of complexity until we arrive at the full relativistic delay differential equation that governs this problem. That case can be solved using the Synge method, which we describe and discuss.

  18. The Search for Fractional Charge Elementary Particles and Very Massive Particles in Bulk Matter

    CERN Document Server

    Perl, Martin Lewis; Kim, P C; Lee, E R; Lee, I T; Loomba, D; Perl, Martin L.; Halyo, Valerie; Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Loomba, Dinesh

    2000-01-01

    We describe our ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Our primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future we are interested in examining material brought back by sample return probes from asteroids. We will describe our experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of our experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 10**13 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore we wil...

  19. Charged point particles with magnetic moment in general relativity

    International Nuclear Information System (INIS)

    Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits

  20. Electro-Optical Detection of Charged Particle Beams

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R C; Lazarus, D M; Magurno, B; Srinivasan-Rao, T; Tsang, Thomas; Usack, V

    1999-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO3 crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10ps bunches of 1mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45GHz bandwidth. The fastest rise time measured, 120ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.

  1. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 109 protons/cm3) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  2. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  3. Charged particle induced prompt nuclear reaction and its applications

    International Nuclear Information System (INIS)

    Charged particle induced prompt nuclear reaction analysis (PNR) not only can analyze the content and concentration of elements in sample sensitively and accurately, but also can measure the distributions of elements with depth in surface and near surface layer. And the method is very simple, rapid and nondestructive, and has good depth resolution. So the PNR is very widely used in many modern science and technique field such as solid state physics, surface physics, electrochemistry, metallurgy and material science and so on. This paper deals with the principle, method and the features of the nuclear reaction analysis induced by charged particle. Especially, the distribution analysis of impurities in sample with depth and the improvement of the depth resolution are discussed in detail. Some actual examples of its application are given

  4. Production of carbon monoxide by charged particle deposition.

    Science.gov (United States)

    Green, A. E. S.; Sawada, T.; Edgar, B. C.; Uman, M. A.

    1973-01-01

    Recent studies of electron energy deposition in CO2 and CO based upon a large set of electron impact cross sections are utilized to estimate the telluric CO directly produced by various charged-particle deposition mechanisms. The mechanisms considered are (1) lightning, (2) cloud coronal discharges, (3) background radioactivity, (4) natural electrostatic discharges, (5) photoelectrons in the ionosphere, (6) auroral electrons, (7) auroral protons, (8) cosmic rays, and (9) solar wind. 'Ball park' estimates of the global CO production by each of these mechanisms are given. Apart from mechanisms 1, 2, and 5, all CO production mechanisms are estimated to be small compared to artificial sources. If, as appears to be the case, the hot oxygen atoms and ions and other atomic species immediately produced by these three charged-particle deposition mechanisms react rapidly with CO2 to produce CO, these mechanisms can readily lead to CO production levels in the multimegaton-per-year range.

  5. Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision

    Science.gov (United States)

    Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.

    2007-10-01

    In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.

  6. Development and characterization of a single particle laser ablation mass spectrometer (SPLAM for organic aerosol studies

    Directory of Open Access Journals (Sweden)

    F. Gaie-Levrel

    2012-01-01

    Full Text Available A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM, samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL, sodium chloride (NaCl and dioctylphtalate (DOP particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL and detection efficiency (DE were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm used for one-step laser desorption ionization (LDI of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules. DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles

  7. Transport of Charged Particles: Entropy Production and Maximum Dissipation Principle

    OpenAIRE

    Hsieh, Chia-Yu; Hyon, YunKyong; Lee, Hijin; Lin, Tai-Chia; Liu, Chun

    2014-01-01

    In order to describe the dynamics of crowded ions (charged particles), we use an energetic variation approach to derive a modified Poisson-Nernst-Planck (PNP) system which includes an extra dissipation due to the effective velocity differences between ion species. Such a system is more complicated than the original PNP system but with the same equilibrium states. Using Schauder's fixed-point theorem, we develop a local existence theorem of classical solutions for the modified PNP system. Diff...

  8. Charged particle detectors made from thin layers of amorphous silicon

    International Nuclear Information System (INIS)

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (α-Si:H) as solid state thin film charged particle detectors. 241Am alphas were successfully detected with α-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed

  9. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  10. Electrostatic energy analyzers for high energy charged particle beams

    International Nuclear Information System (INIS)

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics

  11. Multidimensional analysis of charged particles from neutron-induced reactions

    International Nuclear Information System (INIS)

    A survey is given of the most recent experimental results obtained using twin gridded ionization chamber constructed at Obninsk, Russia. Peculiarities of (n,α) and (n,f) reactions investigated are discussed. The detailed description ol the method of charge particles spectrometry is presented. Selected results on fission fragment characteristics are discussed more in detail. Present experiments and instrumental developments are focussed on correlations between fragment masses, energies and emission angles and on fine structures in fragment parameter distributions. (author)

  12. Dynamical structure functions for charged particle bilayers and superlattices

    International Nuclear Information System (INIS)

    A modified Feynman construction with a zero-frequency central peak is used to model the dynamical structure functions for layered charged particle systems. This construction recognizes the affinity between layered and multicomponent systems. It also guarantees the simultaneous satisfaction of all three frequency-moment sum rules. The frequencies and spectral weights of the long-wavelength collective excitations and the strength of the diffusive central peak are calculated for arbitrary degeneracy

  13. Measurement of Forward-Backward Charged Particle Correlations with ALICE

    DEFF Research Database (Denmark)

    Søgaard, Carsten

    (NBI). In order for this calibration system to work, a special trigger interface was implemented. The developed and tested firmware for the FPGA (Field-Programmable Gate Array) will be presented. Part II is the presentation of the analysis - a study of, so-called, forward-backward correlations....... The correlations between charged particles, produced in proton-proton collisions at vs=900 GeV and vs=7 TeV over a wide range in pseudoradidity (-3.5

  14. Charged-Particle Multiplicity in Proton-Proton Collisions

    OpenAIRE

    Grosse-Oetringhaus, Jan Fiete; Reygers, Klaus

    2009-01-01

    This article summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of sqrt(s). Feynman scaling, KNO scaling, as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of...

  15. Optimizing interactive program for charged particle transport system design

    International Nuclear Information System (INIS)

    A computer program for charged particle transport system design is described. The program is written in the BASIC language and allows one to make calculations in dialogue with the computer. The BASTRA program permits to get output information both in digital and in graphical forms. The method for optimization is described, that allows one to put 10 limitation on beam parameters in arbitrary places of the transport system. The program can be adapted on every computer having the BASIC language in its software

  16. Neutron-Induced Charged Particle Studies at LANSCE

    Science.gov (United States)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  17. Electromagnetic radiation of charged particles in stochastic motion

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Mocanu, Gabriela [Astronomical Institute of the Romanian Academy, Cluj-Napoca (Romania)

    2016-03-15

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency. (orig.)

  18. Microsparks Generated by Charged Particles in Dielectric Liquids

    Science.gov (United States)

    Geiger, Robert

    2012-10-01

    The electrodynamics of charged particles in dielectric liquids have been described by several authors [1,2]. As a charged particle approaches an electrode of opposite charge the local electric field eventually exceeds the dielectric strength of the liquid and a microspark is generated. These plasmas can be very small, about type of discharge can provide a simple means of generating non-thermal plasmas in dielectric liquids, such as oils or other hydrocarbons, which can be used to chemically process the liquids. Such a technology may lead to a highly efficient method of heavy oil upgrading which can be easily scaled. In order to understand the plasma properties optical emission spectroscopy is carried out for various hydrocarbons and voltage-current characteristics are used to determine the energy cost for this process. [4pt] [1] Melcher, James R. Continuum Electromechanics. Cambridge, MA: MIT Press, 1981.[0pt] [2] Jones, Thomas B. Electromechanics of Particles. Cambridge University Press 1995.[0pt] [3] Staack, D., Fridman, A., Gutsol, A., Gogotsi, Y. and Friedman, G. 2008, Angew. Chem., Int. Ed. 47, 8020.

  19. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC

    Science.gov (United States)

    Hermann, Markus; Weigelt, Andreas; Assmann, Denise; Pfeifer, Sascha; Muller, Thomas; Conrath, Thomas; Voigtlander, Jens; Heintzenberg, Jost; Wiedensohler, Alfred; Martinsson, Bengt G.; Deshler, Terry; Brenninkmeijer, Carl A. M.; Zahn, Andreas

    2016-05-01

    The particle number size distribution is an important parameter to characterize the atmospheric aerosol and its influence on the Earth's climate. Here we describe a new optical particle size spectrometer (OPSS) for measurements of the accumulation mode particle number size distribution in the tropopause region on board a passenger aircraft (IAGOS-CARIBIC observatory: In-service Aircraft for a Global Observing System - Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container). A modified KS93 particle sensor from RION Co., Ltd., together with a new airflow system and a dedicated data acquisition system, is the key component of the CARIBIC OPSS. The instrument records individual particle pulse signal curves in the particle size range 130-1110 nm diameter (for a particle refractive index of 1.47-i0.006) together with a time stamp and thus allows the post-flight choice of the time resolution and the size distribution bin width. The CARIBIC OPSS has a 50 % particle detection diameter of 152 nm and a maximum asymptotic counting efficiency of 98 %. The instrument's measurement performance shows no pressure dependency and no particle coincidence for free tropospheric conditions. The size response function of the CARIBIC OPSS was obtained by a polystyrene latex calibration in combination with model calculations. Particle number size distributions measured with the new OPSS in the lowermost stratosphere agreed within a factor of 2 in concentration with balloon-borne measurements over western North America. Since June 2010 the CARIBIC OPSS is deployed once per month in the IAGOS-CARIBIC observatory.

  20. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  1. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.

    2005-01-01

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  2. First results from the RAPID imaging energetic particle spectrometer on board Cluster

    Directory of Open Access Journals (Sweden)

    B. Wilken

    Full Text Available The advanced energetic particle spectrometer RAPID on board Cluster can provide a complete description of the relevant particle parameters velocity, V , and atomic mass, A, over an energy range from 30 keV up to 1.5 MeV. We present the first measurements taken by RAPID during the commissioning and the early operating phases. The orbit on 14 January 2001, when Cluster was travelling from a perigee near dawn northward across the pole towards an apogee in the solar wind, is used to demonstrate the capabilities of RAPID in investigating a wide variety of particle populations. RAPID, with its unique capability of measuring the complete angular distribution of energetic particles, allows for the simultaneous measurements of local density gradients, as reflected in the anisotropies of 90° particles and the remote sensing of changes in the distant field line topology, as manifested in the variations of loss cone properties. A detailed discussion of angle-angle plots shows considerable differences in the structure of the boundaries between the open and closed field lines on the nightside fraction of the pass and the magnetopause crossing. The 3 March 2001 encounter of Cluster with an FTE just outside the magnetosphere is used to show the first structural plasma investigations of an FTE by energetic multi-spacecraft observations.

    Key words. Magnetospheric physics (energetic particles, trapped; magnetopause, cusp and boundary layers; magnetosheath

  3. The dynamics of charged particles in turbulent astrophysical plasmas

    Science.gov (United States)

    Dung, Rudiger; Petrosian, Vahe

    1994-01-01

    We consider the resonant interaction of energetic charged particles and transverse plasma wave propagating parallel and/or antiparallel to the uniform magnetic field B(sub 0) in an underlying background plasma of density n. The coupling of the plasma waves and the energetic particles will be controlled by the ratio n/(the absolute value of B(sub 0)(exp 2). A variation of this ratio leads to a strong variation of the dynamics of the energetic particles. By taking into account the whole transverse plasma branch for the resonant interaction we discuss the influence of the background plasma density, the background magnetic field, the cross helicity, and the magnetic helicities on the dynamics of charged particles in astrophysical plasmas. It is shown that low-energy electrons can be accelerated efficiently by the higher electromagnetic waves and short-wavelength whistlers for low values of the ratio n/(the absolute value of B(sub 0)(exp 2), which means for low values of the ratio of plasma frequency to gyrofrequency.

  4. Scanning system for charged and neutral particle beams

    International Nuclear Information System (INIS)

    The present invention aims at providing a simple and reliable method and a reliable device for irradiating a confined volume of matter, preferably at great depth, with a beam of high energy charged or neutral particles. The basic feature of the invention is that the particle beam coming from a radiation source of charged particles is scanned electrically in two orthogonal directions, and that the beam scanned in one plane is deflected in space. For most practical purposes it is important that the radiation source is of small extension. Such a radiation source is realized by means of a beam optical system that includes two scanning magnets each of which admits scanning of the particle beam in one of two orthogonal planes. The beam scanned in one of the planes leaves the associated scanning magnet from an effective scanning centre. The optical system also includes a deflection magnet disposed between the scanning magnets for deflecting the path of the beam in space. By utilizing the optical properties of the deflection magnet in such a way that the deflection magnet produces an image of the effective scanning centre of the first scanning magnet which coincides with the effective scanning centre of the second scanning magnet, the beam scanned in two orthogonal planes will radiate isotropically from the scanning centre of the second scanning magnet. By using the deflection magnet a compact scanning system with a small distance between the scanning centres of the scanning magnets is obtained

  5. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  6. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    Science.gov (United States)

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  7. Predicted angular distribution of fast charged particles with ionization

    International Nuclear Information System (INIS)

    Moliere theory of angular distribution for fast charged particles is improved to take into account ionization loss, by using Kamata-Nishimura formulation of the theory. Decrease of the particle energy along the passage hence increase of the screening angle brings a slight different results from those derived by Moliere-Bethe formulation for fixed energies. The present results are reduced to the same Moliere distribution with modified values of the expansion parameter and the unit of Moliere angle. Properties of the new distribution and differences from the traditional one are discussed. Angular distributions of particles penetrating through the mixed or compound substances are also investigated both under the relativistic and the nonrelativistic conditions, together with the Kamata-Nishimura constants characterizing their formulation. (author)

  8. Charging characteristics of Dynamic Explorer I Retarding Ion Mass Spectrometer and the consequence for core plasma measurements

    OpenAIRE

    Olsen, Richard Christopher

    1989-01-01

    Approved for public release; distribution is unlimited. The Retarding Ion Mass Spectrometer (RIMS) on the Dynamics Explorer I (DE I) satellite has provided a new range of data, and challenges for studies of the core plasma of the magnetosphere. Analysis of the RIMS data provides a measure of the satellite potential in the inner magnetosphere. As the satellite leaves the inner plasmasphere, it begins to charge positively, crossing the 0 V mark at about 1000/cc. The potential rises slowly in...

  9. Theory of intense beams of charged particles optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and pr

  10. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  11. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission

    CERN Document Server

    McNutt, Ralph L; Gurnee, Reid S; Hill, Matthew E; Cooper, Kim A; Andrews, G Bruce; Keath, Edwin P; Krimigis, Stamatios M; Mitchell, Donald G; Tossman, Barry; Bagenal, Fran; Boldt, John D; Bradley, Walter; Devereux, William S; Ho, George C; Jaskulek, Stephen E; LeFevere, Thomas W; Malcom, Horace; Marcus, Geoffrey A; Hayes, John R; Moore, G Ty; Williams, Bruce D; Wilson, Paul; Brown, L E; Kusterer, M; Vandegriff, J

    2007-01-01

    The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto's outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a "heavy comet" as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the...

  12. The present status of the LLNL Evaluated Charged Particle Library (ECPL)

    International Nuclear Information System (INIS)

    The present report is written with two purposes in mind: to summarize the charged-particle reactions that presently exist in Evaluated Charge Particle Library; and to list all of the low-Z charged-particle reactions for which data exist in the Livermore experimental data compilation. 2 tabs

  13. Test results of satellite-borne charged particle measuring instrument

    International Nuclear Information System (INIS)

    A charged particle-measuring instrument to measure on the geostationary orbit the spectra of protons, α-particles and electrons emitted from the sun was manufactured, and its performance was assured by the test on the earth. The Geostationary Meteorological Satellite, on which the instrument will be mounted, will be launched into the geostationary orbit over the pacific ocean in the summer, 1977. The instrument has five systems of detectors to cover the measuring energy range and the kinds of particles, and data are collected every several channels separately. The tests on the earth were carried out by using a cyclotron and setting the energy ranges from 1 to 15 MeV (for protons) and 6 to 30 MeV (for α-particles) through the adjustment of the accelerating conditions and absorbers of the cyclotron. The performance of the instrument was confirmed by comparing the energy and number of the irradiated charged particles measured with the instrument and the reference detector under the same conditions. The results showed that the energy-detecting characteristic was within the error range of a few percent in most cases, and the counts were within the error of 30% against the expected values. The ditinguishing characteristic of the level discriminator was also nearly equal to the estimated result, through it degrades in the vicinity of the border of channels. However, the correction of data may be required when the instrument will be really used in space, because the conditions may be somewhat different from that on the earth. (Wakatsuki, Y.)

  14. Microscopic visualization of a biological response to charged particle traversal

    Science.gov (United States)

    Taucher-Scholz, G.; Jakob, B.; Becker, G.; Scholz, M.

    2003-08-01

    Understanding the molecular mechanisms underlying biological effects of charged particle radiation has become increasingly important in view of the use of ion beams in tumor therapy. Elucidating how the enhanced efficiency of densely ionizing radiation in cell killing is related to the initial causative lesions, namely DNA double-strand breaks, constitutes a major task in radiobiology. The inhomogeneous spatial distribution of energy deposition leading to the induction of more complex and less reparable DNA lesions is the basis for high-LET effects. But the cellular response to radiation damage also involves the interplay between repair and signal transduction proteins with the aim of coordinating the processing of DNA damage and cell cycle progression to allow time for repair. Charged particles are used as a probe for the production of localized subcellular damage to study these aspects of the biological response to ionizing radiation. Immunocytochemical techniques applied in combination with confocal laser microscopy allow to monitor the relocalization of DNA damage response proteins within individual nuclei following irradiation. In particular, the rapid accumulation of the signalling protein p21 at sites of heavy ion-induced DNA damage reflects the microscopic distribution of dose deposited within nuclei of irradiated human fibroblasts. The biological response pattern for p21 is presented for high and low energy ion beams, involving different particle species and representing a wide range of radiation qualities.

  15. The Stability of the Vacuum Polarization Surrounding a Charged Particle

    CERN Document Server

    Himpsel, F J

    2015-01-01

    The internal stability of the electron has been debated for a century at both the classical and the quantum level. Recently, a local force density balance was established for the 1s electron in the H atom, based on the energy-momentum tensor of the classical Dirac field. This methodology is now extended to quantum fields by considering the force densities acting on the vacuum polarization induced by a point charge. Such a model is applicable to any charged particle at large distances, since the only vestige of its internal structure is the electric Coulomb field together with the vacuum polarization induced by it. While the polarization charge density is attracted to the point charge, it is kept from collapsing by repulsive forces due to confinement and degeneracy. It is shown analytically that the corresponding force densities are balanced for every filled shell of mj states at a given angular momentum j. The force densities are then summed over all single-electron states in the Dirac sea and renormalized by...

  16. Study of a large acceptance charged particle detector

    International Nuclear Information System (INIS)

    We investigated basic characteristics of a new detector system, which has been designed to be used for nuclear data measurements. The detector has a large acceptance to cover a wide range of charged particle energies. The detector consists of crystal detectors and plastic scintillators. In this detector, energy measurements are carried out by adopting the pulse-height method for low-energy particles and for high-energy particles the time of flight (TOF) technique. The low-energy detector (crystals) plays also as a degrader for high-energy particles. One of important issues is the non-linearity of scintillation output for heavy ions of crystal detectors. The other issue is the deviation of a particle trajectory due to the multiple-scattering in the detector material. In the present study, we measured the scintillation output of detectors and the multiple-scattering effect on the TOF detection efficiency. Experiments were carried out at National Inst. of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC) for a crystal detector system by using protons and Ar ions. Finally, the scintillation nonlinearity has been determined. As for the multiple-scattering effect, we found that both of simulations, GEANT4 and PHITS tend to underestimate. (author)

  17. Moving Charged Particles in Lattice Boltzmann-Based Electrokinetics

    CERN Document Server

    Kuron, Michael; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-01-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann (LB) algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions, which are needed to simulate moving colloids, into the Capuani scheme has been lacking. In this paper, we detail how to introduce such moving boundaries, based on an analogue to the moving boundary method for the pure LB solver. The key ingredients in our method are mass and charge conservation for the solute spec...

  18. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    Science.gov (United States)

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; Tsouris, Costas

    2016-03-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.

  19. Charged particle multiplicities in π-, K- and anti p interactions with nuclei at 40 GeV/c

    International Nuclear Information System (INIS)

    Interactions of 40 GeV/c π-, K- and anti p on Li, C, S, Cu, CsI and Pb were studied with the RISK-streamer chamber spectrometer. We present multiplicities of negatively charged particles, as well as of protons, and the correlations between them. The normalized mean multiplicity of negative particles, R-, depends on anti ν, the average number of inelastic collisions as R-=(0.73+-0.04)+(0.34+-0.02)anti ν. The dependence of the normalized dispersion of negative particles, D-/->, on the number of protons favours independent collision models and contradicts the coherent tube picture. The excess of fast positive particles behaves as Asup(0.4) and shows, for the heavier nuclei, a clear correlation with identified protons. (orig.)

  20. The all particle method: Coupled neutron, photon, electron, charged particle Monte Carlo calculations

    International Nuclear Information System (INIS)

    At the present time a Monte Carlo transport computer code is being designed and implemented at Lawrence Livermore National Laboratory to include the transport of: neutrons, photons, electrons and light charged particles as well as the coupling between all species of particles, e.g., photon induced electron emission. Since this code is being designed to handle all particles this approach is called the ''All Particle Method''. The code is designed as a test bed code to include as many different methods as possible (e.g., electron single or multiple scattering) and will be data driven to minimize the number of methods and models ''hard wired'' into the code. This approach will allow changes in the Livermore nuclear and atomic data bases, used to described the interaction and production of particles, to be used to directly control the execution of the program. In addition this approach will allow the code to be used at various levels of complexity to balance computer running time against the accuracy requirements of specific applications. This paper describes the current design philosophy and status of the code. Since the treatment of neutrons and photons used by the All Particle Method code is more or less conventional, emphasis in this paper is placed on the treatment of electron, and to a lesser degree charged particle, transport. An example is presented in order to illustrate an application in which the ability to accurately transport electrons is important. 21 refs., 1 fig

  1. Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows

    CERN Document Server

    Bartuschat, Dominik

    2014-01-01

    The article describes parallel multiphysics simulations of charged particles in microfluidic flows with the waLBerla framework. To this end, three physical effects are coupled: rigid body dynamics, fluid flow modelled by a lattice Boltzmann algorithm, and electric potentials represented by a finite volume discretisation. For solving the finite volume discretisation for the electrostatic forces, a cell-centered multigrid algorithm is developed that conforms to the lattice Boltzmann meshes and the parallel communication structure of waLBerla. The new functionality is validated with suitable benchmark scenarios. Additionally, the parallel scaling and the numerical efficiency of the algorithms are analysed on an advanced supercomputer.

  2. Charged particle scattering on two infinite cylindrical solenoids

    International Nuclear Information System (INIS)

    Charged particle scattering on two infinitely parallel cylindrical solenoids with similar by value and inverse by the sign magnetic fields is considered. Scattering amplitude is calculated in the 1st Born and high energy approximations. In both cases the differential cross section is nonsingular and the integral one - finite. Specific examples demonstrating that in one and the same multi-connection space under nontrivial vector-potentials and unambigous wave functions Aharonov-Bohm (AB) effect can exist but it can be absent as well. It is shown that an alternative AB effect interpretation as scattering in magnetic field leakages meets sufficient difficulties

  3. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  4. The prospects for charged particle uses in oncology

    International Nuclear Information System (INIS)

    Prospects and problems of proton therapy by means of accelerators are considered. Approaches to the solution of the problems concerning operation modes of the accelerator are formulated. It is shown that despite vivid advantage of charged particles for their applied use in beam therapy of malignant tumour it is necessary to solve two problems: extraction of special beams meeting strict medical requirements and development of technology of irradiation of malignant tumours of different localizations and construction of special equipment for execution of this technology. Engineering-technological shortcomings of proton therapy and medical-biological problems requiring reglamentation are enumerated

  5. A technique to improve crystal channeling efficiency of charged particles

    CERN Document Server

    Tikhomirov, V V

    2007-01-01

    It is shown that a narrow plane cut near the crystal surface considerably increases the probability of capture into the stable channeling motion of positively charged particles entering a crystal at angles smaller than a quarter of the critical channeling angle with respect to the crystal planes. At smallest incidence angles the capture probability reaches 99 percent. A pair of crystals bent in orthogonal planes and provided with the cuts allows to reach a 99.9 percent efficiency of single-pass deflection of a proton beam with an ultra small divergence. Conditions necessary for efficient single-pass deflection of protons from the LHC beam halo are also discussed.

  6. Fabrication and testing of prototype preamplifier for charged particle detector

    International Nuclear Information System (INIS)

    Development of a 4π charged particle array is one of the major activities under the superconducting cyclotron utilization project. The forward part of the array will consist of 24 telescopes, each will have three elements Si (strip) ΔE, Si(strip) E and CsI(Ti) E. Each ΔE strip will have 16 channels whereas E-strip will have 16 vertical and 16 horizontal channels. The large number of Si channels mandated the development of low-cost, high-density preamplifiers. A variety of circuits have been tested and some prototype preamplifiers have been fabricated. The performance of a prototype preamplifier has been reported

  7. Charged particle induced energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    This review article deals with the X-ray emission induced by heavy, charged particles and the use of this process as an analytical method (PIXE). The physical processes involved, X-ray emission and the various reactions contributing to the background, are described in some detail. The sensitivity is calculated theoretically and the results compared with practical experience. A discussion is given on how the sensitivity can be optimized. The experimental arrangements are described and the various technical problems discussed. The analytical procedure, especially the sample preparation, is described in considerable detail. A number of typical practical applications are discussed. (author)

  8. Nonlinear Stability Theorem for High-Intensity Charged Particle Beams

    International Nuclear Information System (INIS)

    Global conservation constraints based on the nonlinear Vlasov-Maxwell equations are used to derive a three-dimensional kinetic stability theorem for an intense non-neutral ion beam (or charge bunch) propagating with average axial velocity vb=const . It is shown that a sufficient condition for linear and nonlinear stability for perturbations with arbitrary polarization is that the equilibrium distribution be a monotonically decreasing function of the single-particle energy H' in the beam frame, i.e., ∂feq(H') /∂H'≤0 . copyright 1998 The American Physical Society

  9. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  10. Charged Particle Multiplicities in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aïd, S; Andreev, V; Andrieu, B; Appuhn, R D; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Braunschweig, W; Brisson, V; Bruel, P; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Calvet, D; Campbell, A J; Carli, T; Charlet, M; Chechelnitskii, S; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Cocks, S P; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Cousinou, M C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; Davis, C L; De Wolf, E A; Delcourt, B; Di Nezza, P; Dirkmann, M; Dixon, P; Dlugosz, W; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duhm, H; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Evrard, E; Fahr, A B; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Gaede, F; Garvey, J; Gayler, J; Gebauer, M; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; Golec-Biernat, Krzysztof J; González-Pineiro, B; Gorelov, I V; Grab, C; Greenshaw, T J; Griffiths, R K; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Hadig, T; Haidt, Dieter; Hajduk, L; Hampel, M; Haynes, W J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hewitt, K; Hildesheim, W; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Hoffmann, D; Holtom, T; Hoppner, M; Horisberger, R P; Hudgson, V L; Hufnagel, H; Hütte, M; Ibbotson, M; Itterbeck, H; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kander, M; Kant, D; Kaschowitz, R; Kathage, U; Katzy, J M; Kaufmann, H H; Kaufmann, O; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Kolanski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Kuhlen, M; Kurca, T; Kurzhofer, J; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Laforge, B; Lander, R; Landon, M P J; Lange, W; Langenegger, U; Laporte, J F; Lebedev, A; Lehner, F; Levonian, S; Lindström, G; Lindstrøm, M; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lomas, J W; Lubimov, V; Lüke, D; López, G C; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Meyer, A; Meyer, H; Meyer, J; Meyer, P O; Migliori, A; Mikocki, S; Milstead, D; Moeck, J; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Negri, I; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Niggli, H; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Olsson, J E; Ozerov, D; Palmen, P; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Pawletta, H; Peppel, E; Phillips, J P; Pieuchot, A; Pitzl, D; Pope, G; Prell, S; Pérez, E; Rabbertz, K; Reimer, P; Reinshagen, S; Rick, Hartmut; Riech, V; Riedlberger, J; Riepenhausen, F; Riess, S; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rädel, G; Rüter, K; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Specka, A E; Spiekermann, J; Spielman, S; Spitzer, H; Squinabol, F; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Steiner, H; Steinhart, J; Stella, B; Stellberger, A; Stier, J; Stiewe, J; Stolze, K; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Tasevsky, M; Theissen, J; Thiebaux, C; Thompson, G; Truöl, P; Tsipolitis, G; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; West, L R; Wiesand, S; Wilksen, T; Willard, S; Winde, M; Winter, G G; Wittek, C; Wobisch, M; Wünsch, E; Zarbock, D; Zhang, Z; Zhokin, A S; Zini, P; Zomer, F; Zsembery, J; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W

    1996-01-01

    Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q^2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e^+e^-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.

  11. Energy loss of charged particles colliding with an oscillator

    Science.gov (United States)

    Makarov, D. N.

    2015-04-01

    Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state | m> = |0> is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

  12. On the energy losses of fast charged particles

    Science.gov (United States)

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2010-09-01

    The energy losses of fast charged particles colliding with atoms have been considered in the eikonal approximation. It has been shown that the nonperturbative contribution to the effective stopping from the region of the intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target) not only can be significant as compared to shell corrections to the Bethe-Bloch formula (usually considered in the first order of perturbation theory), but also can provide significant (up to 50%) corrections to this formula.

  13. Reduction and scientific analysis of data from the charge-energy-mass (CHEM) spectrometer on the AMPTE/CCE spacecraft

    Science.gov (United States)

    Gloeckler, G.; Hamilton, D. C.; Ipavich, F. M.

    1987-01-01

    The Charge-Energy-Mass (CHEM) spectrometer instrument on the AMPTE/Charge Composition Explorer (CCE) spacecraft is designed to measure the mass and charge-state abundance of magnetospheric and magnetosheath ions between 0.3 and 315 keV/e, an energy range that includes the bulk of the ring current and the dynamically important portion of the plasma sheet population. Continuing research is being conducted using the AMPTE mission data set, and in particular, that of the CHEM spectrometer which has operated flawlessly since launch and still provides excellent quality data. The requirted routine data processing and reduction, and software develpment continues to be performed. Scientific analysis of composition data in a number of magnetospheric regions including the ring current region, near-earth plasma sheet and subsolar magnetosheath continues to be undertaken. Correlative studies using data from the sister instrument SULEICA, which determines the mass and charge states of ions in the energy range of approximately 10 to 250 keV/e on the IRM, as well as other data from the CCE and IRM spacecraft, particularly in the upstream region and plasma sheet have also been undertaken.

  14. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  15. Search for fractional charge and heavy stable particles at PETRA

    International Nuclear Information System (INIS)

    A search has been made for new particles with charge Q = 2/3, 1, 4/3, 5/3 produced in e+e--reactions at PETRA. The energy range was Esub(cm) = 27-35 GeV. No such particles were found. Upper limits for the cross-section depending on the assumed mass and production spectrum are given. For Q = 2/3 quarks with mass less than 12 GeV/c2, upper limits sigma(q anti q)/sigma(μμ) -2 (90% C.L.) are obtained both for inclusive and exclusive production. For the lifetime of the B-meson (msub(B) = 5 GeV/c2) an upper limit tau -9 s is obtained. (orig.)

  16. EGUN, Charged Particle Trajectories in Electromagnetic Focusing System

    International Nuclear Information System (INIS)

    1 - Description of problem or function: EGUN computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes, user-specified conditions input for each ray, and a combination of Child's Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using an arbitrary configuration of coils, or the output of a magnet program, such as Poisson, or by an externally calculated array of the axial fields. 2 - Method of solution: The program first solves Laplace's equation. Next, the first iteration of electron trajectories is started using one of the four starting options. On the first iteration cycle, space charge forces are calculated from the assumption of paraxial flow. As the rays are traced, space charge is computed and stored. After all the electron trajectories have been calculated, the program begins the second cycle by solving the Poisson equation with the space charge from the first iteration. Subsequent iteration cycles follow this pattern. The Poisson equation is solved by an alternate column relaxation technique known as the semi-iterative Chebyshev method. A fourth-order Runge-Kutta method is used to solve the relativistic differential equations of the trajectory calculations. 3 - Restrictions on the complexity of the problem - Maxima of: 9001 mesh points in a square mesh, 300 mesh points in the axial direction, 100 mesh points in the radial direction, 101 potentials, 51 rays. In the cylindrical coordinates, the magnetic fields are axially symmetric. In rectangular coordinates, the external field is assumed to be normal to the plane of the problem, which is assumed to be the median plane

  17. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    Directory of Open Access Journals (Sweden)

    Y.-H. Kim

    2015-09-01

    Full Text Available Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 40 nm and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and a radioactive plume. Limitations of the approaches are discussed.

  18. The charge-energy-mass spectrometer for 0.3-300 keV/e ions on the AMPTE CCE

    Science.gov (United States)

    Gloeckler, G.; Ipavich, F. M.; Hamilton, D. C.; Lundgren, R. A.; Studemann, W.; Wilken, B.; Kremser, G.; Hovestadt, D.; Gliem, F.; Rieck, W.

    1985-01-01

    The charge-energy-mass (CHEM) spectrometer on the Charge Composition Explorer (CCE) has the function to measure the energy spectra, pitch-angle distributions, and ionization states of ions in the earth's magnetosphere and magnetosheath in the energy range from 0.3 to 300 keV/charge with a time resolution of less than 1 min. The obtained data will provide essential information on outstanding problems related to ion sources and dynamical processes of space plasmas and of suprathermal ions. A description of the CHEM experiment is given, taking into account the principle of operation, the sensor, the electronics, instrument characteristics, specifications, and requirements. Questions of postlaunch performance are also discussed.

  19. Anomalous Kinetics of Hard Charged Particles Dynamical Renormalization Group Resummation

    CERN Document Server

    Boyanovsky, D

    1999-01-01

    We study the kinetics of the distribution function for charged particles of hard momentum in scalar QED. The goal is to understand the effects of infrared divergences associated with the exchange of quasistatic magnetic photons in the relaxation of the distribution function. We begin by obtaining a kinetic transport equation for the distribution function for hard charged scalars in a perturbative expansion that includes hard thermal loop resummation. Solving this transport equation, the infrared divergences arising from absorption and emission of soft quasi-static magnetic photons are manifest in logarithmic secular terms. We then implement the dynamical renormalization group resummation of these secular terms in the relaxation time approximation. The distribution function (in the linearized regime) is found to approach equilibrium as $\\delta n_k(t) =\\delta n_k(t_o) e^{-2\\alpha T (t-t_o) and $\\alpha =e^2/4\\pi$. This anomalous relaxation is recognized to be the square of the relaxation of the single particle p...

  20. Particle beams carrying orbital angular momentum, charge, mass and spin

    Science.gov (United States)

    Tijssen, Teuntje; Hayrapetyan, Armen; Goette, Joerg; Dennis, Mark

    Electron beams carrying vortices and angular momentum have been of much experimental and theoretical interest in recent years. In addition, optical vortex beams are a well-established field in optics and photonics. In both cases, the orbital angular momentum associated with the beam's axial vortex has effects on the overall spin of the beam, due to spin-orbit interactions. A simple model of these systems are Bessel beam solutions (of either the Dirac equation or Maxwell equations) with a nonzero azimuthal quantum number, which are found by separation in cylindrical coordinates. Here, we generalize this approach, considering the classical field theory of Bessel beams for particles which are either massive or massless, uncharged or charged and of a variety of different spins (0, 1/2, 1, ⋯). We regard the spin and helicity states and different forms of spin-orbit terms that arise. Moreover, we analyse the induced electromagnetic field when the particles carry charge. Most importantly, this unified field theory approach leads to the prediction of effects for vortex beams of neutrons, mesons and neutrinos.

  1. Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics

    Science.gov (United States)

    Deng, Mingge; Li, Zhen; Karniadakis, George

    2015-11-01

    In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.

  2. Inclusive analysis of negative charged particles produced in sulfur-lead interactions at 200 GeV/c per nucleon

    International Nuclear Information System (INIS)

    After a first theoretical part about the physics of quark-gluon plasma, and after a description of CERN experiments (NA34, NA35, NA38, WA80, WA85), the author presents in a second part, the experiment NA36. He describes, with details, the spectrometers and studies the production of negative charged particles in Sulfur-Lead interactions at 200 GeV/c per nucleon. Reconstruction of trajectories in TPC, correction of multiplicity, correction of transverse momentum distribution, correction of pseudo-rapidity distribution and method of maximum entropy are presented and explained

  3. Response of Charged Particles in a Storage Ring to Gravitational Waves

    Institute of Scientific and Technical Information of China (English)

    DONGDong; HUANGChao-Guang

    2003-01-01

    The influence of gravitational waves on the charged particles in a storage ring is studied. It shows that the gravitational waves might be directly detected by monitoring the motion of charged particles in a storage ring. The angular velocity of the charged particles is continually adjustable by changing the initial energy of particles and the strength of the magnetic field. This feature is very useful for finding the gravitational waves with different frequencies.

  4. Response of Charged Particles in a Storage Ring to Gravitational Waves

    Institute of Scientific and Technical Information of China (English)

    DONG Dong; HUANG Chao-Guang

    2003-01-01

    The influence of gravitational waves on the charged particles in a storage ring is studied. It shows thatthe gravitational waves might be directly detected by monitoring the motion of charged particles in a storage ring. Theangular velocity of the charged particles is continually adjustable by changing the initial energy of particles and thestrength of the magnetic field. This feature is very useful for finding the gravitational waves with different frequencies.

  5. The Anti Matter Spectrometer (AMS-02): a Particle Physics Detector In Space

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, Roberto [Physics Department and INFN Section, Perugia, 06123 (Italy)

    2007-04-15

    AMS-02 is a space borne magnetic spectrometer designed to measure with accuracies up to one part in 10{sup 9} the composition of Cosmic Rays near Earth. With a large acceptance (5000cm{sup 2} sr), an intense magnetic field from a superconducting magnet (0.7 T) and an accurate particle identifications AMS-02 will provide the highest accuracy in Cosmic Rays measurements up to the TeV region. During a three years long mission on the ISS AMS-02 will achieve a sensitivity to the existence of anti-He in the Cosmic Rays of one part in a billion as well as important informations on the origin of Dark Matter. We review the status of the construction of the AMS-02 experiment in preparation for the three years mission on the ISS.

  6. Estimate of the impact of background particles on the X-Ray Microcalorimeter Spectrometer on IXO

    CERN Document Server

    Lotti, S; Natalucci, L; Piro, L; Mineo, T; Colasanti, L; Macculi, C

    2012-01-01

    We present the results of a study on the impact of particles of galactic (GCR) and solar origin for the X-ray Microcalorimeter Spectrometer (XMS) aboard an astronomical satellite flying in an orbit at the second Lagrangian point (L2). The detailed configuration presented in this paper is the one adopted for the International X-Ray Observatory (IXO) study, however the derived estimates can be considered a conservative limit for ATHENA, that is the IXO redefined mission proposed to ESA. This work is aimed at the estimate of the residual background level expected on the focal plane detector during the mission lifetime, a crucial information in the development of any instrumental configuration that optimizes the XMS scientific performances. We used the Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection efficiency of the anticoincidence system and assess the residual background on the detector.

  7. Estimate of the impact of background particles on the X-ray Microcalorimeter Spectrometer on IXO

    Energy Technology Data Exchange (ETDEWEB)

    Lotti, S., E-mail: simone.lotti@iaps.inaf.it [INAF-IAPS Roma, Via fosso del cavaliere 100, Rome 00133 (Italy); Perinati, E. [IAAT-Institut fuer Astronomie und Astrophysik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Natalucci, L. [INAF-IAPS Roma, Via fosso del cavaliere 100, Rome 00133 (Italy); Piro, L. [INAF-IAPS Roma, Via fosso del cavaliere 100, Rome 00133 (Italy); Astronomy Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Mineo, T. [INAF-IASF Palermo, Via Ugo la Malfa 153, Palermo 90146 (Italy); Colasanti, L.; Macculi, C. [INAF-IAPS Roma, Via fosso del cavaliere 100, Rome 00133 (Italy)

    2012-09-11

    We present the results of a study on the impact of particles of galactic (GCR) and solar origin for the X-ray Microcalorimeter Spectrometer (XMS) aboard an astronomical satellite flying in an orbit at the second Lagrangian point (L2). The detailed configuration presented in this paper is the one adopted for the International X-ray Observatory (IXO) study, however the derived estimates can be considered a conservative limit for ATHENA, that is the IXO redefined mission proposed to ESA. This work is aimed at the estimate of the residual background level expected on the focal plane detector during the mission lifetime, a crucial information in the development of any instrumental configuration that optimizes the XMS scientific performances. We used the Geant4 toolkit, a Monte Carlo based simulator, to investigate the rejection efficiency of the anticoincidence system and assess the residual background on the detector.

  8. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  9. A novel silicon array designed for intraoperative charged particle imaging

    International Nuclear Information System (INIS)

    A novel Si-PIN imaging array is under investigation for a charged particle (beta, positron, or alpha) sensitive intraoperative camera to be used for (residual) tumor identification during surgery. This class of collimator-less nuclear imaging device has a higher signal response for direct interactions than its scintillator-optical detector-based counterparts. Monte Carlo simulations with 635 keV betas were performed, yielding maximum and projected ranges of 1.64 and 0.55 mm in Si. Up to 90% of these betas were completely absorbed in the first 0.30 mm. Based on these results, 300 μm thick prototype Si detector arrays were designed in a 16x16 crossed-grid arrangement with 0.8 mm wide orthogonal strips on 1.0 mm pitch. A NIM- and CAMAC-based high-density data acquisition and processing system was used to collect the list mode data. The system was calibrated by comparisons of measured spectra to energy deposition simulations or by direct measurement of various >100 keV conversion electron or beta emitters. Mean electronic noise per strip was 2 pixel size, and measurements of beta emitting point and line sources yielded FWHM resolutions of 1.5 (lateral) and 2.5 mm (diagonal), respectively, with the larger widths due to particle range blurring effects. Deconvolution of the finite source size yielded intrinsic resolutions that corresponded to the image pixel size. Transmission images of circle and line phantoms with various hole sizes and pitch were resolved with either pure beta or positron irradiation without a background correction. This novel semiconductor imaging device facilitates high charged particle and low gamma sensitivity, high signal/noise ratio, and allows for compact design to potentially aid surgical guidance by providing in situ images of clinical relevance

  10. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  11. Integral charged particle nuclear date bibliography. Editon 1, Supplement 2

    International Nuclear Information System (INIS)

    This bibliography is divided into three sections, ''References'', ''Target Index'', and ''Residual Index.'' The ''References'' section contains all references satisfying the following criteria: excitation functions, thick targets, or product yield leading to the formation of a ground or metastable state; the atomic mass and charge of the incident particle must be greater than or equal to 1; the atomic mass of the target must be greater than or equal to 1; and the atomic masses of the outgoing and residual nuclei must be greater than or equal to 1 with the exception of processes which do not lead to a definite residual nucleus and of gamma-ray production cross sections. The ''Target Index'' section contains the incident particle energy and the abbreviated reference lines for all the entries, which contain information on a definite target nucleus and reaction. These reference lines contain the Journal name, followed by the volume and page number. The ''Residual Index'' section also contains the incident particle energy and the abbreviated reference lines for all the entries, which contain information on a definite residual nucleus and a definite target-reaction

  12. Chaotic phenomena of charged particles in crystal lattices.

    Science.gov (United States)

    Desalvo, Agostino; Giannerini, Simone; Rosa, Rodolfo

    2006-06-01

    In this article, we have applied the methods of chaos theory to channeling phenomena of positive charged particles in crystal lattices. In particular, we studied the transition between two ordered types of motion; i.e., motion parallel to a crystal axis (axial channeling) and to a crystal plane (planar channeling), respectively. The transition between these two regimes turns out to occur through an angular range in which the particle motion is highly disordered and the region of phase space spanned by the particle is much larger than the one swept in the two ordered motions. We have evaluated the maximum Lyapunov exponent with the method put forward by Rosenstein et al. [Physica D 65, 117 (1993)] and by Kantz [Phys. Lett. A 185, 77 (1994)]. Moreover, we estimated the correlation dimension by using the Grassberger-Procaccia method. We found that at the transition the system exhibits a very complex behavior showing an exponential divergence of the trajectories corresponding to a positive Lyapunov exponent and a noninteger value of the correlation dimension. These results turn out to be linked to a physical interpretation. The Lyapunov exponents are in agreement with the model by Akhiezer et al. [Phys. Rep. 203, 289 (1991)], based on the equivalence between the ion motion along the crystal plane described as a "string of strings" and the "kicked" rotator. The nonintegral value of the correlation dimension can be explained by the nonconservation of transverse energy at the transition. PMID:16822017

  13. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  14. A new spectrometer using multiple gratings with a two-dimensional charge-coupled diode array detector

    International Nuclear Information System (INIS)

    A new spectrometer with no moving parts uses a two-dimensional Si-based charge-coupled diode (CCD) array detector and an integrated grating consisting of three subgratings. The effective spectral range imaged on the detector is magnified threefold. The digitized spectral image in the 200-1000 nm wavelength range can be measured quickly. The nonlinear relationship between CCD pixel position and wavelength is corrected with multiple polynomial functions in the calibration procedure, which fits the data using a mathematical pattern-analysis method. The instrument can be applied for rapid spectroscopic data analyses in many types of photoelectronic experiments and routine testing

  15. A vacuum double-crystal spectrometer for reference-free highly charged ions X-ray spectroscopy

    OpenAIRE

    Amaro, P.; Szabo, C. I.; Schlesser, S.; Gumberidze, Alexandre; G. Kessler Jr, Ernest; Henins, Albert; Le Bigot, E.-O.; Trassinelli, Martino; Trassinelli, M; Isac, Jean-Michel; Travers, Pascal; Guerra, Mauro; Santos, J. P.; Indelicato, Paul

    2012-01-01

    We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describe in detail the instrument and its performances. Furthermore, we present a few spectra of transitions in Ar$^{14+}$ , Ar$^{15+}$ and Ar$^{16+}$. We have developed an \\emph{ab initio} simulation code that allows us to obtain accurate line profiles....

  16. A vacuum double-crystal spectrometer for reference-free highly charged ions X-ray spectroscopy

    CERN Document Server

    Amaro, P; Schlesser, S; Gumberidze, Alexandre; Kessler, Ernest G; Henins, Albert; Bigot, E -O Le; Trassinelli, M; Isac, Jean-Michel; Travers, Pascal; Guerra, Mauro; Santos, J P; Indelicato, Paul

    2012-01-01

    We have built a vacuum double crystal spectrometer, which coupled to an electron-cyclotron resonance ion source, allows to measure low-energy x-ray transitions in highly-charged ions with accuracies of the order of a few parts per million. We describe in detail the instrument and its performances. Furthermore, we present a few spectra of transitions in Ar$^{14+}$, Ar$^{15+}$ and Ar$^{16+}$. We have developed an \\emph{ab initio} simulation code that allows us to obtain accurate line profiles. It can reproduce experimental spectra with unprecedented accuracy. The quality of the profiles allows the direct determination of line width.

  17. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  18. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Venkatesh [Florida State Univ., Tallahassee, FL (United States)

    2013-10-30

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, Q, greater than that of the electron, e. A search for evidence of such particles was performed using 5.0 fb-1 and 18.8 fb-1 of proton-proton collision data collected at √s = 7 TeV and √s = 8 TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of- flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to 1e ≤ |Q| ≤ 8e. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724 GeV are excluded for |Q| = 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e, respectively.

  19. Particle with non-Abelian charge: classical and quantum

    CERN Document Server

    Lahiri, Amitabha

    2010-01-01

    We construct an action in the worldline formalism for a non-Abelian charged particle in a non-Abelian background field, described by real bosonic variables, leading to a set of the well known classical equations given by Wong. The isospin parts in the action can be viewed as the Lagrange multiplier term corresponding to a non-holonomic constraint restricting the isospins to be parallel transported. The path integration is performed over the isospin variables and their paths turn out to be constrained by its classical solution for the isospins. We derive a wave equation from the path integral, constructed as the constrained Hamiltonian operator acts on the wave function. It reveals what operator ordering corresponds to our classical Hamiltonian. It is verified by the inverse Weyl transformation.

  20. Japan Charged-Particle Nuclear Reaction Data Group (JCPRG)

    International Nuclear Information System (INIS)

    This it the progress report of the Executive Committee of the Japan Charged-Particle Nuclear Reaction Data Group (JCPRG). Since the last NRDC meeting in June 2003, the group has carried out the following activities: Compilation of CPND for NRDF and EXFOR; Compilation of CPND bibliographies for CINDA; Improvement of Web-based data input system HENDEL; Improvement of NRDF retrieval system DARPE; Development of utilization system for EXFOR and evaluated libraries; Data services for Japanese users. The regular JCPRG budget has ended at March 2001. They are applying a competitive budget for our further activity. The Executive Committee is organized by 7 researchers and 1 secretary. 6 postdoctoral researchers in Meme Media Lab. of Hokkaido Univ., 6 graduated students in Nuclear Physics Laboratory of Hokkaido Univ. and 1 technical staff work part-time. 1.5 equivalent man year is dedicated to NRDC Network activities

  1. A hybrid detector telescope for fission fragments and charged particles

    International Nuclear Information System (INIS)

    Measurement of light charged particle (LCP) multiplicities in coincidence with fission fragments (FFs) during the fusion-fission process is a very useful probe to understand the fission dynamics. In this type of measurement, the LCP's are indented to be measured in a wide range of relative angles (θrel) from 0° to 180° with respect to the FF direction. The conventional method of using two separate detectors one for the FF's and another for the LCPs does not allow to direct the LCPs along the direction of FF (in particular, θrel gas and Egas) and two CsI(Tl)-Si(PIN) detectors mounted at the end of the gas-section. In this paper, the results of in-beam usage of the HDT are presented

  2. General magnetized Weyl solutions: Disks and motion of charged particles

    CERN Document Server

    García-Duque, Cristian H

    2010-01-01

    We construct three families of general magnetostatic axisymmetric exact solutions of Einstein-Maxwell equations in spherical coordinates, prolate, and oblates. The solutions obtained are then presented in the system of generalized spheroidal coordinates which is a generalization of the previous systems. The method used to build such solutions is the well-known complex potential formalism proposed by Ernst, using as seed solutions vacuum solutions of the Einstein field equations. The constructed solutions are asymptotically flat and regular on the axis of symmetry. We show explicitly some particular solutions among them a Erez-Rosen type solution and a Morgan-Morgan type solution, which we interpret as the exterior gravitational field of a finite dislike source immersed in a magnetic field. From them we also construct using the well known ``displace, cut and reflect'' method exact solutions representing relativistic thin disks of infinite extension. We analyze the motion of electrically charged test particles ...

  3. A large solid angle detector for medium energy charged particles

    International Nuclear Information System (INIS)

    A charged particle detector with 0.7 sr solid angular acceptance has been built, principally to detect protons in the energy range 25-150 MeV in experiments with tagged photon beams. The detector consists of a three element ΔE1-ΔE2-E plastic scintillator telescope. Position information is obtained from the time difference between signals from the two ends of each scintillator. The design of the detector and tests of its performance are described. An energy resolution of 2.8 MeV fwhm at 60 MeV proton energy, and a two-dimensional position resolution of 24 mm x 41 mm fwhm has been obtained. Successful operation in the tagged photon environment is demonstrated. (orig.)

  4. Use of a magnetic spectrometer to determine the heavy ion effective charge probabilities at 7 MeV/A

    International Nuclear Information System (INIS)

    A magnetic spectrometer has been fully equiped with large area gaseous detectors allowing a complete identification of ions and a measurement of their energy. The equilibrium charge state probabilities of ions ranging between Z = 12 and Z = 21 have been measured at 7. and 7.5 MeV/A, showing that the only sizable contributions are those corresponding to nuclei accompanied by zero, one and two electrons. For these nearly fully stripped ions, only a few electron transfer cross sections are involved in the calculation of the equilibrated multicollision process, leading to a fairly good phenomenological description of the experimental results. A comparison of the results with the predictions of the atomic collisions models supports the introduction in the OBK (Oppenheimer, Brinkman, Kramers) capture cross section of a scaling factor ranging from .3 to .7 depending on the charge of the projectile

  5. The PETAL+ project: X-ray and charged particle diagnostics for plasma experiments at LMJ-PETAL

    Energy Technology Data Exchange (ETDEWEB)

    Ducret, J.-E., E-mail: ducret@celia.u-bordeaux1.fr [Univ. Bordeaux, CEA, CNRS, CELIA UMR 5107, 33400 Talence (France); CEA/IRFU/Service d' Astrophysique, CEA-Saclay, 91191 Gif sur Yvette (France); Bastiani-Ceccotti, S. [LULI UMR 7605, École Polytechnique, 91128 Palaiseau (France); Batani, D. [Univ. Bordeaux, CEA, CNRS, CELIA UMR 5107, 33400 Talence (France); Blanchot, N. [CEA-CESTA, BP 2, 33114 Le Barp (France); Brambrink, E. [LULI UMR 7605, École Polytechnique, 91128 Palaiseau (France); Casner, A. [CEA, DAM, DIF, F-91297 Arpajon (France); Ceccotti, T. [CEA/IRAMIS/SPAM, CEA-Saclay, 91191 Gif sur Yvette (France); ILIL, Istituto Nazionale di Ottica, UOS Adriano Gozzini, via G. Moruzzi 1, Pisa (Italy); Compant La Fontaine, A. [CEA, DAM, DIF, F-91297 Arpajon (France); D' Humières, E. [Univ. Bordeaux, CEA, CNRS, CELIA UMR 5107, 33400 Talence (France); Dobosz-Dufrénoy, S. [CEA/IRAMIS/SPAM, CEA-Saclay, 91191 Gif sur Yvette (France); Duval, A. [CEA, DAM, DIF, F-91297 Arpajon (France); Fuchs, J. [LULI UMR 7605, École Polytechnique, 91128 Palaiseau (France); Hulin, S. [Univ. Bordeaux, CEA, CNRS, CELIA UMR 5107, 33400 Talence (France); Koenig, M. [LULI UMR 7605, École Polytechnique, 91128 Palaiseau (France); Lantuéjoul-Thfoin, I.; Lefebvre, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Marquès, J.-R. [LULI UMR 7605, École Polytechnique, 91128 Palaiseau (France); Miquel, J.-L.; Reverdin, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Serani, L. [CENBG UMR 5797, Chemin du Solarium, 33175 Gradignan (France); and others

    2013-08-21

    The first experiments on the National Ignition Facility (NIF) in the US started and will be followed by the Laser MégaJoule (LMJ) in France. Such facilities will provide unique tools for inertial confinement fusion (ICF) physics and for basic science. A petawatt short pulse laser (ps) is being added to the ns pulse beams of the LMJ. This is PETAL (PETawatt Aquitaine Laser), under construction on the LMJ site near Bordeaux (France). The Petal+ project is aiming at the design and construction of diagnostics dedicated to experiments with PETAL and LMJ laser beams. Within Petal+, three types of diagnostics are under study: a proton spectrometer, an electron spectrometer and a large-band X-ray spectrometer. The first goal of these diagnostics will be to characterize the secondary radiation and particle sources produced with PETAL. They will also be used for experiments using both ns and ps beams. In the present paper emphasis is put on the charged-particle diagnostics.

  6. Kinetic phenomena in charged particle transport in gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana [Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia); Faculty of Traffic Engineering, University of Belgrade Belgrade (Serbia); Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia)

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

  7. Nonrelativistic Charged Particle-Magnetic Monopole Scattering in the Global Monopole Background

    CERN Document Server

    De Oliveira, A L C

    2003-01-01

    We analyze the nonrelativistic quantum scattering problem of a charged particle by an Abelian magnetic monopole in the background of a global monopole. In addition to the magnetic and geometric effects, we consider the influence of the electrostatic self-interaction on the charged particle. Moreover, for the specific case where the electrostatic self-interaction becomes attractive, charged particle-monopole bound system can be formed and the respective energy spectrum is hydrogen-like one.

  8. Surface-integral formulation of scattering theory for charged particles

    International Nuclear Information System (INIS)

    Full text: Collisions in the realm of atomic and nuclear physics not only have many practical applications, but also form the testing ground for the underlying quantum collision theory. The last decade has seen extraordinary theoretical progress in the field of electron-impact atomic breakup problem [1]. This problem was challenging to solve due to formal and computational difficulties associated with the long-range Coulomb potential. Presently, however, the electron-induced breakup processes can be calculated accurately for simple targets such as atomic hydrogen and helium, in the kinematically complete form. We report on how the computational progress has resulted in a deeper understanding of the formal theory of Coulomb few-body scattering [2] and how corresponding calculations of nuclear breakup reactions can benefit from this development. In quantum collision theory it is customary to define the scattering amplitude in terms of the scattering wave function and the potential of interaction. Despite the fact that the Coulomb wave function and the Coulomb potential are both known analytically, the conventional theory is not able to provide such a standard definition for the amplitude of scattering of two charged particles, which yields the Rutherford cross section. As far as breakup of a bound state of two particles in a system of three charged particles is concerned, here again the theory fails to give a formal definition for calculating the breakup amplitude in the post form in terms of the total scattering wave function describing the process. The reason for this failure is that charged particles continue to interact with each other even at infinite separation due to the long-range nature of the Coulomb potential, something the conventional theory cannot handle. We present a new formulation of scattering theory applicable to arbitrary two and three-body systems with both short-range and Coulomb long-range potentials [2]. The formalism is based on a surface

  9. History of activation analysis technique with charged particles in Uzbekistan

    International Nuclear Information System (INIS)

    Full text: The researches on activation analysis with charged particles (CPAA) were started immediately after beginning of constructing of 150-cm cyclotron U-150 in 60-th years of last century. CPAA laboratory organized on bases of the cyclotron and neutron generator NG-200 (in following I-150) in 1971 existed up to the end of 1985. We have used Ion beams of these devices to elaborate two types of nuclear analysis techniques: 1. Delayed Nuclear Analysis (DNA) involving Charged Particle Activation Analysis (CPAA) and Fast Neutron Activation Analysis (FNAA); 2. Prompt Nuclear Analysis (PNA) involving the spectrometry of particles induced X-Ray emission (PIXE). DNA with using accelerators has the following subdivisions: 1. Proton Activation Analysis (PAA); 2. Deuteron Activation Analysis (DAA); 3. 3He Activation Analysis (3HeAA); 4. 4He Activation Analysis (4HeAA or α-AA); 5. Fast Neutron Activation Analysis (FNAA). PAA and DAA found wide application were used to derive a good sensitivity in determination of contents of more than 20 chemical elements in some materials of high purity. For example, we have applied these techniques for the determination of Li, B, C, N, O, F at level of 10-8 - 10-10 g/g in different high purity semiconductors (Si, SiC, Ge, AsGa, InP et al.), nonferrous metals (Li, Be, Zr, Nb, Mo, Ta, W, Re, Al, Ti etc.), nonconductive materials (different glasses, optical materials, diamonds et al.) and environmental objects (soil, plants, water). The techniques provided good results on the determination of B, C and N contents and others. 3HeAA and 4HeAA were generally used to determine of O and C contents in semiconductors ands metals of high purity. We have elaborated rapid radiochemical techniques for separation of short-lived positron emitters. For example, the separation of 15O, formatting by nuclear reaction 16O(3He,α)15O, the reducing fusion technique was used. Radionuclide 11C was separated chemically by the oxidisation of samples in the

  10. Planar charged-particle trajectories in multipole magnetic fields

    Directory of Open Access Journals (Sweden)

    D. M. Willis

    Full Text Available This paper provides a complete generalization of the classic result that the radius of curvature (ρ of a charged-particle trajectory confined to the equatorial plane of a magnetic dipole is directly proportional to the cube of the particle's equatorial distance (ϖ from the dipole (i.e. ρ ∝ ϖ3. Comparable results are derived for the radii of curvature of all possible planar charged-particle trajectories in an individual static magnetic multipole of arbitrary order m and degree n. Such trajectories arise wherever there exists a plane (or planes such that the multipole magnetic field is locally perpendicular to this plane (or planes, everywhere apart from possibly at a set of magnetic neutral lines. Therefore planar trajectories exist in the equatorial plane of an axisymmetric (m = 0, or zonal, magnetic multipole, provided n is odd: the radius of curvature varies directly as ϖn+2. This result reduces to the classic one in the case of a zonal magnetic dipole (n =1. Planar trajectories exist in 2m meridional planes in the case of the general tesseral (0 < m < n magnetic multipole. These meridional planes are defined by the 2m roots of the equation cos[m(ΦΦnm] = 0, where Φnm = (1/m arctan (hnm/gnm; gnm and hnm denote the spherical harmonic coefficients. Equatorial planar trajectories also exist if (nm is odd. The polar axis (θ = 0,π of a tesseral magnetic multipole is a magnetic neutral line if m > 1. A further 2m(nm neutral lines exist at the intersections of the 2m meridional planes with the (nm cones defined by the (n

  11. The steady state of a particle in a vibrating box and possible application in short pulse generation of charged particles

    Indian Academy of Sciences (India)

    Nandan Jha; Sudhir R Jain

    2013-09-01

    In this paper the classical evolution of a particle is studied which bounces back and forth in a 1D vibrating cavity such that the reflection from the wall does not change the speed of the particle. A peculiar behaviour of the particle motion can be seen where the time evolution of the motion shows superposition of linear and oscillatory behaviour. In particular, the parameter range is found in which the particle oscillates between the walls in steady state as if the wall was static and it is showed that for these parameter ranges the particle settles to this steady state for all initial conditions. It is proposed that this phenomenon can be used to bunch charged particles in short pulses where the synchronization proposed in our model should work against the space charge effect in the charged particle bunch.

  12. Charged Particle Energization and Transport in Reservoirs throughout the Heliosphere: 1. Solar Energetic Particles

    Science.gov (United States)

    Roelof, E. C.

    2015-09-01

    “Reservoirs” of energetic charged particles are regions where the particle population is quasi-trapped in large-scale (relative to the gyroradii) magnetic field structures. Reservoirs are found throughout the heliosphere: the huge heliosheath (90appropriate description of this transport is “weak scattering”, in which the particle's first adiabatic invariant (magnetic moment) is approximately conserved while the particle itself moves rather freely along magnetic field lines. Considerable insight into the observed properties of energization processes can be gained from a remarkably simple equation that describes the particle's fractional time-rate-of-change of momentum (dlnp/dt) which depends only upon its pitch angle, the divergence of the plasma velocity (V⊥) transverse to the magnetic field), and the inner product of (V⊥) with the curvature vector of the field lines. The possibilities encompassed in this simple (but general) equation are quite rich, so we restrict our application of it in this paper to the compressive acceleration of SEPs within CMEs.

  13. Square-root operator quantization of elementary particles masses and charges

    International Nuclear Information System (INIS)

    Quantization of elementary particles masses and charges is proposed within the framework of the square-root operator formalism and the concept of extended particles associated with the structure of the torus. (author)

  14. Intermediate regime of charged particle scattering in the field-reversal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Shustov, P. I., E-mail: p.shustov@gmail.com; Yushkov, E. V. [Space Research Institute, RAS, Profsouznaya st., 84/32, GSP-7, 117997 Moscow (Russian Federation); Department of Physics, Moscow State University, 119992 Moscow (Russian Federation); Artemyev, A. V., E-mail: artemyev@iki.rssi.ru [Space Research Institute, RAS, Profsouznaya st., 84/32, GSP-7, 117997 Moscow (Russian Federation)

    2015-12-15

    In this paper, we investigate the charged particle scattering in the magnetic field configuration with stretched magnetic field lines. This scattering results from the violation of the adiabaticity of charged particle motion in the region with the strong gradient of the magnetic field. We consider the intermediate regime of charged particle dynamics, when the violation of the adiabaticity is significant enough, but particle motion is not chaotic. We demonstrate and describe the significant scattering of particles with large adiabatic invariants (magnetic moment). We discuss a possible application of obtained results for description of the peculiarities of pitch-angle diffusion of relativistic electrons in the Earth radiation belts.

  15. Method of producing weakly acidic cation exchange resin particles charged with uranyl ions

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmonem, N.; Ringel, H.; Zimmer, E.

    1981-07-21

    Weakly acidic cationic ion exchange resin particles are charged with uranyl ions by contacting the particles step wise with aqueous uranyl nitrate solution at higher uranium concentrations from stage to stage. An alkaline medium is added to the uranyl nitrate solution in each stage to increase the successive pH values of the uranyl nitrate solution contacting the particles in dependence upon the uranium concentration effective for maximum charging of the particles with uranyl ions.

  16. Double electron excitation of helium by charged particle impact

    International Nuclear Information System (INIS)

    Complete text of publication follows. A four-body classical trajectory Monte Carlo method is applied in the study of double electron excitation of helium by charged particle impact. The calculations are based on the independent particle model. As projectiles we consider protons and antiprotons with energies between 0.25 and 5 MeV. The state selective total cross sections as a function of the impact energy are calculated and compared with experimental and theoretical data. Fig. 1. shows the double excitation cross sections of helium to the (2s2)1S (Fig. 1a), (2s2p)1P (Fig. 1b) and (2p2)1D (Fig. 1c) states as a function of the impact energy. The errors of our calculated data are smaller or comparable with the size of the symbols. Our recent cross sections are compared with the experimental data of Giese et al. and Moretto-Capelle et al. and with the previous calculations of Bodea et al. Instead of the antiproton impact, the experiments in ref. were carried out with electron impact. These cross sections are shown at the energy where the electron velocity is equal that of the antiproton velocity. In all cases the cross sections for antiprotons exceeds the cross section for protons. The largest difference is obtained for the excitation of the (2s2)1S state (Fig. 1a). According to our expectation, with increasing projectile energies the cross sections for proton and antiproton impact approaching each other. This tendency is valid for the previous calculations of Bodea et al. except for the (2p2)1D (Fig. 1c). The calculated cross sections generally agree with the experimental values. (author)

  17. The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

    2006-01-01

    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

  18. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Directory of Open Access Journals (Sweden)

    A. Wiedensohler

    2012-03-01

    Full Text Available Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers or SMPS (Scanning Mobility Particle Sizers have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer.

    We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data.

    Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the

  19. Magnetoinduction converter for measuring the charged particle flux in beams

    International Nuclear Information System (INIS)

    The arrangement of a contactless magnetoinduction converter (MIC) designed for measuring the charged particle flux in beams is described. The converter is made of a coil placed onto a toroidal ferromagnetic core, 120x60x12 mm in size. To eliminate the effect of the external magnetic field the MIC is placed into a compound permalloy- copper labyrinth-type screen, In the aperiodic operating mode the MIC measuring channel contains a preamplifier, an amplifier, a strobing circuit, an integrator with a converter, a delay circuit, a time relay, a pulsed-to-direct voltage converter, and a digital voltmeter. For experimental measuring of sensitivity of the MIC measuring system a calibration loop, consisting of an accurate- amplitude generator, a delay circuit and a time relay, is used. The given contactless magnetoinduction converter is a part of the electron flux standard for 5-50 MeV beams. The normal conditions of reproduction of the ''electron/s'' unit are the following: the 293+-1 K temperature, 101.3+40 kPa pressure, 60+-15% relative humidity, 220B+-10% supply voltage and 50+-0.5 Hz frequency. The dynamic range of MIC application is 1012-1015 electron/s. The total systematic error of reproduction of the electron flux unit for the MIC is 1.7%

  20. The Boltzmann equation theory of charged particle transport

    International Nuclear Information System (INIS)

    It is shown how a formally exact Kubo-like response theory equivalent to the Boltzmann equation theory of charged particle transport can be constructed. The response theory gives the general wavevector and time-dependent velocity distribution at any time in terms of an initial distribution function, to which is added the response induced by a generalized perturbation over the intervening time. The usual Kubo linear response result for the distribution function is recovered by choosing the initial velocity distribution to be Maxwellian. For completeness the response theory introduces an exponential convergence function into the response time integral. This is equivalent to using a modified Boltzmann equation but the general form of the transport theory is not changed. The modified transport theory can be used to advantage where possible convergence difficulties occur in numerical solutions of the Boltzmann equation. This paper gives a systematic development of the modified transport theory and shows how the response theory fits into the broader scheme of solving the Boltzmann equation. The discussion extends both the work of Kumar et al. (1980), where the distribution function is expanded out in terms of tensor functions, and the propagator description where the non-hydrodynamic time development of the distribution function is related to the wavevector dependent Green function of the Boltzmann equation

  1. Local phase transformation in alloys during charged-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Okamoto, P.R.

    1984-10-01

    Among the various mechanisms and processes by which energetic irradiation can alter the phase stability of alloys, radiation-induced segregation is one of the most important phenomena. Radiation-induced segregation in alloys occurs as a consequence of preferential coupling between persistent fluxes of excess defects and solute atoms, leading to local enrichment or depletion of alloying elements. Thus, this phenomenon tends to drive alloy systems away from thermodynamic equilibrium, on a local scale. During charged-particle irradiations, the spatial nonuniformity in the defect production gives rise to a combination of persistent defect fluxes, near the irradiated surface and in the peak-damage region. This defect-flux combination can modify the alloy composition in a complex fashion, i.e., it can destabilize pre-existing phases, causing spatially- and temporally-dependent precipitation of new metastable phases. The effects of radiation-induced segregation on local phase transformations in Ni-based alloys during proton bombardment and high-voltage electron-microscope irradiation at elevated temperatures are discussed.

  2. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  3. Research on the detection of fluxes and spectra of charged particles in space

    CERN Document Server

    Sha Jian Jun; Yu Jin Nan; Zhang Wei Guo; Xiang Hong Wen; Wu Zhong Xiang; Cai Zhen Bo; Zhu Wen Ming

    2002-01-01

    A multi-functional spectrometer-identifier was developed for studying fluxes and spectra of protons, alpha particles, oxygen and iron ions in the near-earth space. The telescope system of this spectrometer consists of three Au-Si surface barrier detectors with different thickness and scintillation CsI (Tl). Owing to adopting the DELTA E-E method in particles identification and improved fast response electronics system in data processing and acquisition system, the spectrometer can be used to simultaneously and separately detect the fluxes and spectra of protons of 1-200 MeV, alpha particles of 1-200 MeV/u(nucleon), oxygen ions of 1.7-496 MeV/u and iron ions of 2.5 MeV-1.0 GeV/u

  4. Dependence of plasmon excitation energy on filler material in interaction of charged particle with filled nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bahari, A., E-mail: bahari.a@lu.ac.i [Department of Physics, Lorestan University, Lorestan (Iran, Islamic Republic of); Mohamadi, A. [Department of Physics, Shiraz Payaem Noor University, Fars (Iran, Islamic Republic of)

    2010-10-15

    The interaction of charged particles with filled single-walled metallic nanotubes (SWMNT) has been investigated. Numerical results for the plasmon energy as a function of the wave vector are presented when the charged particle is outside the nanotube. Dependence of the plasmon energy on ratio of plasma frequency of the filler and SWMNT has been shown.

  5. Summary report on first research coordination meeting on heavy charged-particle interaction data for radiotherapy

    International Nuclear Information System (INIS)

    A summary is given of the First Research Coordination Meeting on Heavy Charged-Particle Interaction Data for Radiotherapy. A programme to compile and evaluate charged-particle nuclear data for therapeutic applications was proposed. Detailed coordinated research proposals were also agreed. Technical discussions and the resulting work plan of the Coordinated Research Project are summarized, along with actions and deadlines. (author)

  6. Method and system for treating an interior surface of a workpiece using a charged particle beam

    Science.gov (United States)

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  7. Search for Bound $\\overline{N}N$ States Using a Precision Gamma and Charged Pion Spectrometer at LEAR

    CERN Multimedia

    2002-01-01

    This experiment uses a magnetic spectrometer to search for monoenergetic @g and @p@+ transitions between bound N&bar.N states. The spectrometer is instrumented with drift chambers (NDC, RDC and PDC), proportional wire chambers (A-E), and various thin scintillation counters (S,M,G,AH,V,Q,D,E and PH) f purposes, as shown in the accompanying drawing.\\\\ \\\\ Gamma-rays produced in the LH^2 target are materialized by a 10\\% converter located in the B chamber with an acceptance (@D@W/4@p) of @=2-6x10|-|3 (100-400 MeV) and 6x10|-|3 ($>$400 MeV). Trajectories of bent electron-positron pairs and @p@+ are measured in the A-E~chambers. Trajectories of less frequent high energy penetrating tracks, as well as the remaining associated charged annihilation products exiting the target, are measured in the drift chamber system. \\\\ \\\\ The resultant energy resolution (@DE/E) is better than 1,5\\% R.M.S. over the full range of energies studied. To illustrate the sensitivity of this experiment, a @g line at 300 MeV produced at t...

  8. Charged NUT field : [Part] I. Motion of test particles and [Part] II. Cosmic censorship

    International Nuclear Information System (INIS)

    Some properties of the charged NUT field are studied. In the first part of the paper, some general aspects of the charged NUT field have been investigated using uncharged and charged particles. The behaviour of the particles near the singularity has also been considered. In the second part of the paper, the charged NUT sources in the context of cosmic censorship hypothesis are studied. Motion of charged particles in the equatorial plane and along the axis is considered. From this investigation the interesting result is discovered that by such a bombardment of charged test particles, the existing event horizons cannot be destroyed but, in contrast to the Reissner-Nordstrom field, naked singularities do not get enveloped by event horizons. (author)

  9. Search for fractionally charged particles in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bożena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-01-01

    A search is presented for free heavy long-lived fractionally charged particles produced in pp collisions at $\\sqrt{s}$ = 7 TeV. The data sample was recorded by the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 inverse femtobarns. Candidate fractionally charged particles are identified by selecting tracks with associated low charge measurements in the silicon tracking detector. Observations are found to be consistent with expectations for background processes. The results of the search are used to set upper limits on the cross section for pair production of fractionally charged, massive spin-1/2 particles that are neutral under SU(3)$_C$ and SU(2)$_L$. We exclude at 95% confidence level such particles with electric charge ±2e/3 with masses below 310 GeV, and those with charge ±e/3 with masses below 140 GeV.

  10. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  11. The charged-particle multiplicity inside jets at 8 TeV with the ATLAS detector

    CERN Document Server

    Nachman, Benjamin Philip; The ATLAS collaboration

    2016-01-01

    The number of charged particles inside jets is a widely used discriminant for identifying the quark or gluon nature of the initiating parton and is sensitive to both the perturbative and non-perturbative components of fragmentation. This paper presents a measurement of the average number of charged particles with pT>500 MeV inside high-momentum jets in dijet events using 20.3 1/fb of data recorded with the ATLAS detector in pp collisions at s = sqrt(8) TeV collisions at the LHC. The jets considered have transverse momenta from 50 GeV up to and beyond 1.5 TeV. The reconstructed charged-particle track multiplicity distribution is unfolded to remove distortions from detector effects and the resulting charged-particle multiplicity is compared to several models. Furthermore, quark and gluon jet fractions are used to extract the average charged-particle multiplicity for quark and gluon jets separately.

  12. Threshold Laws for the Break-up of Atomic Particles into Several Charged Fragments

    OpenAIRE

    Kuchiev, M. Yu.; Ostrovsky, V. N.

    1998-01-01

    The processes with three or more charged particles in the final state exhibit particular threshold behavior, as inferred by the famous Wannier law for (2e + ion) system. We formulate a general solution which determines the threshold behavior of the cross section for multiple fragmentation. Applications to several systems of particular importance with three, four and five leptons (electrons and positrons) in the field of charged core; and two pairs of identical particles with opposite charges ...

  13. New Electrically Charged Black Hole in Higher Derivative Gravity as Particle Colliders

    OpenAIRE

    Lin, Kai; Pavan, A. B.; Flores-Hidalgo, G.; Abdalla, E.

    2016-01-01

    In this paper, new electrically charged asymptotically flat black hole solutions are numerically derived in the context of higher derivative gravity. These solutions can be interpreted as generalizations of two different classes of non-charged asymptotically flat spacetimes: Schwarzschild and non-Schwarzschild solutions. The possibility to use these black holes as particle colliders have been analysed. Our results show that the center-of-mass energy of two accelerated charged particles could ...

  14. Transverse momentum spectra for charged particles at the CERN proton-antiproton collider

    International Nuclear Information System (INIS)

    We have measured transverse momentum spectra up to 10 GeV/c for charged particles produced centrally in proton-antiproton collisions at 540 GeV in the centre of mass at the CERN collider. Our results are compared with data at ISR energies and with the predictions of a QCD model. The charged particle spectrum shows a clear dependence on charged track multiplicity. (orig.)

  15. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    OpenAIRE

    Dai, De-Chang; Freese, Katherine; Stojkovic, Dejan

    2009-01-01

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values...

  16. First direct limits on Lightly Ionizing Particles with electric charge less than $e/6$

    CERN Document Server

    Agnese, R; Balakishiyeva, D; Thakur, R Basu; Bauer, D A; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Chen, Y; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; Di Stefano, P C F; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Harris, H R; Hertel, S A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kennedy, A; Kiveni, M; Koch, K; Leder, A; Loer, B; Asamar, E Lopez; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Moore, D C; Nelson, H; Nelson, R H; Ogburn, R W; Page, K; Page, W A; Partridge, R; Pepin, M; Phipps, A; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Ricci, Y; Rogers, H E; Saab, T; Sadoulet, B; Sander, J; Schneck, K; Schnee, R W; Scorza, S; Serfass, B; Shank, B; Speller, D; Upadhyayula, S; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2014-01-01

    While the Standard Model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically-produced relativistic particles with electric charge lower than $e$/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers found no candidates, thereby excluding new parameter space for particles with electric charges between $e$/6 and $e$/200.

  17. Ground-based verification and data processing of Yutu rover Active Particle-induced X-ray Spectrometer

    Science.gov (United States)

    Guo, Dong-Ya; Wang, Huan-Yu; Peng, Wen-Xi; Cui, Xing-Zhu; Zhang, Cheng-Mo; Liu, Ya-Qing; Liang, Xiao-Hua; Dong, Yi-Fan; Wang, Jin-Zhou; Gao, Min; Yang, Jia-Wei; Zhang, Jia-Yu; Li, Chun-Lai; Zou, Yong-Liao; Zhang, Guang-Liang; Zhang, Li-Yan; Fu, Xiao-Hui

    2015-07-01

    The Active Particle-induced X-ray Spectrometer (APXS) is one of the payloads on board the Yutu rover of the Chang'E-3 mission. In order to assess the instrumental performance of APXS, a ground verification test was performed for two unknown samples (basaltic rock, mixed powder sample). In this paper, the details of the experiment configurations and data analysis method are presented. The results show that the elemental abundance of major elements can be well determined by the APXS with relative deviations <15 wt.% (detection distance=30 mm, acquisition time=30 min). The derived detection limit of each major element is inversely proportional to acquisition time and directly proportional to detection distance, suggesting that the appropriate distance should be <50 mm. Supported by National Science and Technology Major Project (Chang'E-3 Active Particle-induced X-ray Spectrometer)

  18. Particle discriminator for the identification of light charged particles with CsI(Tl) scintillator + PIN photodiode detector

    International Nuclear Information System (INIS)

    A particle discriminator exploiting the ballistic deficit effect for pulse shape discrimination has been developed for CsI(Tl) scintillator + PIN photodiode charged-particle detectors. The method is theoretically investigated and it is shown that the figure of merit of the particle separation is mainly governed by the absolute value of the differential quotient of the rise time dependent ballistic deficit. As the actual particle discriminator contains shaping amplifiers, baseline restorer, pile-up rejector and analog-to-digital converters, it directly accepts signals from a charge-sensitive preamplifier, and its outputs deliver the type and the energy of the particles in the form of eight-bit digital codes. The performance of the particle discriminator is characterised by the figure-of-merit measured as a function of the particle energy. (orig.)

  19. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R; Onasch, T. B.; Kirchstetter, T. W.; D. R. Worton; Fortner, E. C.; S. C. Herndon; Wood, E C; J. P. Franklin; Worsnop, D.R.; Goldstein, A. H.; R. A. Harley

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  20. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R; Onasch, T. B.; Kirchstetter, T. W.; D. R. Worton; Fortner, E. C.; S. C. Herndon; Wood, E C; J. P. Franklin; Worsnop, D.R.; Goldstein, A. H.; R. A. Harley

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well a...

  1. Light charged particle emission in heavy-ion reactions – What have we learnt?

    Indian Academy of Sciences (India)

    S Kailas

    2001-07-01

    Light charged particles emitted in heavy-ion induced reactions, their spectra and angular distributions measured over a range of energies, carry the signature of the underlying reaction mechanisms. Analysis of data of light charged particles, both inclusive and exclusive measured in coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles.

  2. Modelling the Role of Charge in Atmospheric Particle Formation Using Quantum Chemical Methods

    OpenAIRE

    Ruusuvuori, Kai

    2015-01-01

    New particle formation is an important process in the atmosphere. As ions are constantly produced in the atmosphere, the behaviour and role of charged particles in atmospheric processes needs to be understood. In order to gain insight on the role of charge in atmospheric new particle formation, the electron structure of the molecules taking part in this process needs to be taken into account using quantum chemical methods. Quantum chemical density functional theory was employed in an eff...

  3. High Energy Ionic Charge State Composition In Recent Large Solar Energetic Particle Events

    OpenAIRE

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2003-01-01

    The ionic charge states of solar energetic particles (SEPs) provide information on the temperature of source materials and on conditions during acceleration and transport. SAMPEX/MAST measures mean ionic charge states at > 15 MeV/nuc using the geomagnetic rigidity filter technique. Charge state measurements by MAST for gradual SEP events suggest a continuum of charge states correlated with abundance ratios for a variety of elements, similar to what is observed at lower energies. In case...

  4. The atmosphere of comet 67P/Churyumov-Gerasimenko diagnosed by charge-exchanged solar wind alpha particles

    Science.gov (United States)

    Simon Wedlund, C.; Kallio, E.; Alho, M.; Nilsson, H.; Stenberg Wieser, G.; Gunell, H.; Behar, E.; Pusa, J.; Gronoff, G.

    2016-03-01

    Context. The ESA/Rosetta mission has been orbiting comet 67P/Churyumov-Gerasimenko since August 2014, measuring its dayside plasma environment. The ion spectrometer onboard Rosetta has detected two ion populations, one energetic with a solar wind origin (H+, He2+, He+), the other at lower energies with a cometary origin (water group ions such as H2O+). He+ ions arise mainly from charge-exchange between solar wind alpha particles and cometary neutrals such as H2O. Aims: The He+ and He2+ ion fluxes measured by the Rosetta Plasma Consortium Ion Composition Analyser (RPC-ICA) give insight into the composition of the dayside neutral coma, into the importance of charge-exchange processes between the solar wind and cometary neutrals, and into the way these evolve when the comet draws closer to the Sun. Methods: We combine observations by the ion spectrometer RPC-ICA onboard Rosetta with calculations from an analytical model based on a collisionless neutral Haser atmosphere and nearly undisturbed solar wind conditions. Results: Equivalent neutral outgassing rates Q can be derived using the observed RPC-ICA He+/He2+ particle flux ratios as input into the analytical model in inverse mode. A revised dependence of Q on heliocentric distance Rh in AU is found to be Rh-7.06 between 1.8 and 3.3 AU, suggesting that the activity in 2015 differed from that of the 2008 perihelion passage. Conversely, using an outgassing rate determined from optical remote sensing measurements from Earth, the forward analytical model results are in relatively good agreement with the measured RPC-ICA flux ratios. Modelled ratios in a 2D spherically-symmetric plane are also presented, showing that charge exchange is most efficient with solar wind protons. Detailed cometocentric profiles of these ratios are also presented. Conclusions: In conclusion, we show that, with the help of a simple analytical model of charge-exchange processes, a mass-capable ion spectrometer such as RPC-ICA can be used as a

  5. Investigation of surfactant mediated acid-base charging of mineral oxide particles dispersed in apolar systems.

    Science.gov (United States)

    Gacek, Matthew M; Berg, John C

    2012-12-21

    The current work examines the role of acid-base properties on particle charging in apolar media. Manipulating the polarity and magnitude of charge in such systems is of growing interest to a number of applications. A major hurdle to the implementation of this technology is that the mechanism(s) of particle charging remain a subject of debate. The authors previously conducted a study of the charging of a series of mineral oxide particles dispersed in apolar systems that contained the surfactant AOT. It was observed that there was a correlation between the particle electrophoretic mobility and the acid-base nature of the particle, as characterized by aqueous point of zero charge (PZC) or the isoelectric point (IEP). The current study investigates whether or not a similar correlation is observed with other surfactants, namely, the acidic Span 80 and the basic OLOA 11000. This is accomplished by measuring the electrophoretic mobility of a series of mineral oxides that are dispersed in Isopar-L containing various concentrations of either Span 80 or OLOA 11000. The mineral oxides used have PZC values that cover a wide range of pH, providing a systematic study of how particle and surfactant acid-base properties impact particle charge. It was found that the magnitude and polarity of particle surface charge varied linearly with the particle PZC for both surfactants used. In addition, the point at which the polarity of charge reversed for the basic surfactant OLOA 11000 was shifted to a pH of approximately 8.5, compared to the previous result of about 5 for AOT. This proves that both surfactant and particle acid-base properties are important, and provides support for the theory of acid-base charging in apolar media. PMID:23157688

  6. Ion-UHMA: a model for simulating the dynamics of neutral and charged aerosol particles.

    Energy Technology Data Exchange (ETDEWEB)

    Leppae, J.; Kerminen, V.-M. (Finnish Meteorological Institute, Climate Change Research, Helsinki (Finland)); Gagne, S.; Manninen, H. E.; Nieminen, T.; Kulmala, M. (Dept. of Physics, Univ. of Helsinki (Finland)); Laakso, L. (Dept. of Physics, Univ. of Helsinki (Finland); School of Physical and Chemical Sciences, North-West Univ. Potchefstroom (South Africa)); Korhonen, H. (Univ. of Kuopio, Dept. of Physics (Finland)); Lehtinen, K. E. J. (Univ. of Kuopio, Dept. of Physics (Finland); Finnish Meteorological Institute, Kuopio Unit (Finland))

    2009-07-01

    A new aerosol dynamical box model, Ion-UHMA (University of Helsinki Multicomponent Aerosol model for neutral and charged particles), is introduced in this paper. The model includes basic dynamical processes (condensation, coagulation and deposition) as well as ion-aerosol attachment and ion-ion recombination. The formation of particles is treated as model input or, alternatively, the model can be coupled with an existing nucleation model. Ion-UHMA was found to be able to reproduce qualitatively the measured time evolution of the particle number size distribution, when the particle formation and growth rates as well as concentrations of particles > 20 nm in diameter were taken from measurements. The simulated charging state of freshly formed particles during a new particle formation event evolved towards charge equilibrium in line with previously-derived analytical formulae. We provided a few illustrative examples to demonstrate possible applications, to which the Ion-UHMA model could be used in the near future. (orig.)

  7. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...... absorption in matter. No evidence for such particles has been found. This negative result is used to set an upper limit for the ratio of quark yield to that of particles with unit electric charge. For quark masses below 2 GeV/c2 the 90% confidence level upper limits range from 2 × 10−4 to 2.5 × 10...

  8. Electrophoretic mobility of a charged colloidal particle: a computer simulation study

    International Nuclear Information System (INIS)

    We study the mobility of a charged colloidal particle in a constant homogeneous electric field by means of computer simulations. The simulation method combines a lattice Boltzmann scheme for the fluid with standard Langevin dynamics for the colloidal particle, which is built up from a net of bonded particles forming the surface of the colloid. The coupling between the two subsystems is introduced via friction forces. In addition, explicit counterions, also coupled to the fluid, are present. We observe a non-monotonic dependence of the electrophoretic mobility on the bare colloidal charge. At low surface charge density we observe a linear increase of the mobility with bare charge, whereas at higher charges, where more than half of the ions are co-moving with the colloid, the mobility decreases with increasing bare charge

  9. Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2011-10-01

    Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.

  10. Strangelet search and particle production studies in Pb-Pb collisions at 158·A GeV/c with the H6 beamline spectrometer at CERN

    CERN Document Server

    Lindén, Tomas

    The charged particle beamline simulation program DECAY TURTLE (Trace Unlimited Rays Through Lumped Elements) has been modified to enable simulation of dipole magnet steering effects and simulation of hadronic interactions. These modifications together with the implementation of the measured misalignments of the magnetic elements of the H6 beamline at the CERN North Area and implementation of more accurate magnet apertures have been shown to allow a realistic simulation to be made of the complex 524 m long H6 beamline spectrometer used by NA52. The acceptance of the H6 beamline spectrometer has been computed using this modified version of DECAY TURTLE. Using these results better determined invariant differential production cross sections have been computed from the NA52 1994-1995 data, with improved error estimates. New limits for strangelet production in lead-lead collisions at 158.A GeV/c have been computed from the NA52 measurements from 1994-1995. The methods and results presented in this work can be appli...

  11. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    Science.gov (United States)

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  12. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered.

    Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  13. Development of dielectric spectrometer probe for charge and size analysis of industrial slurries. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Philip J.

    2003-01-01

    The project involved the design of a small robust remote probe to measure the dielectric spectra of colloidal dispersions (suspensions and emulsions) and the computation of both the particle size and zeta potential of these systems from the measured spectra. An extensive literature review on non-equilibrium electric surface phenomena relevant to colloidal dispersions was done. Test were performed on both model and industrial colloids to evaluate the probes.

  14. The search for elementary particles with fractional electric charge and the philosophy of speculative experiments

    International Nuclear Information System (INIS)

    All known elementary particles that can be isolated as individual particles have an electric charge that is equal in magnitude to the electron close-quote s charge, q=1.6x10-19C, or is zero. This includes the muon and tau charged leptons, the neutrinos, the photon, the nucleons, and the mesons. There have been many searches without confirmed success for isolated particles with fractional electric charge such as ±q/3, or ±q/2, or ±3q/2. The theory of the physics of elementary particles does not require the existence of such particles. In particular, current theory holds that quarks, whose charge is ±(1/3)q or ±2/3q, cannot be isolated. Despite past failures and current theory, we have been engaged for the past few years in a new search for isolated elementary particles with fractional electric charge. In the course of this paper we discuss models for fractional charge particles, summarize previous searches, and describe our experimental method; and because this is speculative research we will also present our thoughts on speculative experiments. copyright 1997 American Association of Physics Teachers

  15. Heavy charged particle radiobiology: using enhanced biological effectiveness and improved beam focusing to advance cancer therapy.

    Science.gov (United States)

    Allen, Christopher; Borak, Thomas B; Tsujii, Hirohiko; Nickoloff, Jac A

    2011-06-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilities, particle therapy has shown improved cancer survival rates, reflecting more highly focused dose distributions and more severe DNA damage to tumor cells. Despite early successes of charged particle radiotherapy, there is room for further improvement, and much remains to be learned about normal and cancer cell responses to charged particle radiation. PMID:21376738

  16. Toner Display Based on Movement of Tribo-electrically Charged Particles

    Institute of Scientific and Technical Information of China (English)

    Takashi Kitamura

    2004-01-01

    The mechanism of toner display based on an electrical movement of black and white charged particles has been investigated. Two kinds of particles of black and white charged in the different electric polarity are enclosed in two ITO transparent electrodes using an insulating spacer. The particle movement is controlled by the external electric field applied between two transparent electrodes. The black toner is adhered on the electrode by an electrostatic force across the CTL to display a black image. The toners can be put back to the counter electrode by applying a reverse electric field, and a white image is formed. The black and white solid images are displayed by the switch of polarity of applied voltage in toner display cell. The polarity of charge and the value of charge to mass ratio of two particles were measured by observation of the particle separation on the surface-type electrodes and using q/m meter, respectively.

  17. Charge distribution over dust particles configured with size distribution in a complex plasma

    Science.gov (United States)

    Misra, Shikha; Mishra, Sanjay K.

    2016-02-01

    A theoretical kinetic model describing the distribution of charge on the dust particles configured with generalized Kappa size distribution in a complex plasma has been developed. The formulation is based on the manifestation of uniform potential theory with an analytical solution of the master differential equation for the probability density function of dust charge; the number and energy balance of the plasma constituents are utilized in writing the kinetic equations. A parametric study to determine the steady state plasma parameters and the charge distribution corresponding to a size distribution of dust grains in the complex plasma has been made; the numerical results are presented graphically. The charge distribution is seen sensitive to the population of small grains in the particle size distribution and thus in contrast to symmetrical distribution of charge around a mean value for uniform sized grains, the charge distribution in the present case peaks around lower charge.

  18. New Electrically Charged Black Hole in Higher Derivative Gravity as Particle Colliders

    CERN Document Server

    Lin, Kai; Flores-Hidalgo, G; Abdalla, E

    2016-01-01

    In this paper, new electrically charged asymptotically flat black hole solutions are numerically derived in the context of higher derivative gravity. These solutions can be interpreted as generalizations of two different classes of non-charged asymptotically flat spacetimes: Schwarzschild and non-Schwarzschild solutions. The possibility to use these black holes as particle colliders have been analysed. Our results show that the center-of-mass energy of two accelerated charged particles could be arbitrarily high near the event horizon of the extreme charged black hole.

  19. Organic particle types by single-particle measurements using a time-of-flight aerosol mass spectrometer coupled with a light scattering module

    Directory of Open Access Journals (Sweden)

    S. Liu

    2012-04-01

    Full Text Available Chemical and physical properties of individual ambient aerosol particles can vary greatly, so measuring the chemical composition at the single-particle level is essential for understanding atmospheric sources and transformations. Here we describe 46 days of single-particle measurements of atmospheric particles using a time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS. The light scattering module optically detects particles larger than 180 nm vacuum aerodynamic diameter (130 nm geometric diameter (with size resolution of 5–10 defined as dΔd at full width at half maximum before they arrive at the chemical mass detector and then triggers the saving of single-particle mass spectra. 271 641 particles were detected and sampled during 237 h of sampling in single particle mode. By comparing the timing of light scattering and chemical ion signals for each particle, particle types were classified and their number fractions determined as follows: prompt vaporization (49%, delayed vaporization (7%, and null (44%. LS-ToF-AMS provided the first direct measurement of the size-resolved collection efficiency (CE of ambient particles, with an approximate 50% number-based CE for particles above detection limit. Prompt and delayed vaporization particles (147 357 particles were clustered based on similar organic mass spectra (using K-means algorithm to result in three major clusters: highly oxidized particles (dominated by m/z 44, relatively less oxidized particles (dominated by m/z 43, and particles associated with fresh urban emissions. Each of the three organic clusters had limited chemical properties of other clusters, suggesting that all of the sampled organic particle types were internally mixed to some degree; however, the internal mixing was never uniform and distinct particle types existed throughout the study. Furthermore, the single particle mass spectra and diurnal variations

  20. Discrete Element Modeling (DEM) of Triboelectrically Charged Particles: Revised Experiments

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Curry, D. R.; Weitzman, P. S.

    2008-01-01

    In a previous work, the addition of basic screened Coulombic electrostatic forces to an existing commercial discrete element modeling (DEM) software was reported. Triboelectric experiments were performed to charge glass spheres rolling on inclined planes of various materials. Charge generation constants and the Q/m ratios for the test materials were calculated from the experimental data and compared to the simulation output of the DEM software. In this paper, we will discuss new values of the charge generation constants calculated from improved experimental procedures and data. Also, planned work to include dielectrophoretic, Van der Waals forces, and advanced mechanical forces into the software will be discussed.

  1. Exposure to heavy charged particles affects thermoregulation in rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, S.B.; Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Harris, A.H. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States); Rabin, B.M. [Armed Forces Radiobiology Research Institute, Bethesda, MD (United States)]|[Univ. of Maryland, Baltimore, MD (United States)

    1994-09-01

    Rats exposed to 0.1-5 Gy of heavy particles ({sup 56}Fe, {sup 40}Ar, {sup 20}Ne or {sup 4}He) showed dose-dependent changes in body temperature. Lower doses of all particles produced hyperthermia, and higher doses of {sup 20}Ne and {sup 56}Fe produced hypothermia. Of the four HZE particles, {sup 56}Fe particles were the most potent and {sup 4}He particles were the least potent in producing changes in thermoregulation. The {sup 20}Ne and {sup 40}Ar particles produced an intermediate level of change in body temperature. Significantly greater hyperthermia was produced by exposure to 1 Gy of {sup 20}Ne, {sup 40}Ar and {sup 56}Fe particles than by exposure to 1 Gy of {sup 60}Co {gamma} rays. Pretreating rats with the cyclo-oxygenase inhibitor indomethacin attenuated the hyperthermia produced by exposure to 1 Gy of {sup 56}Fe particles, indicating that prostaglandins mediate {sup 56}Fe-particle-induced hyperthermia. The hypothermia produced by exposure to 5 Gy of {sup 56}Fe particles is mediated by histamine and can be attenuated by treatment with the antihistamines mepyramine and cimetidine. 15 refs., 4 figs.

  2. Constraints on dark matter particles charged under a hidden gauge group from primordial black holes

    International Nuclear Information System (INIS)

    In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 1011 GeV–1016 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes

  3. Tunneling of Massive Vector Particles From Rotating Charged Black Strings

    OpenAIRE

    Jusufi, Kimet; Övgün, Ali

    2016-01-01

    We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality...

  4. Charged spinning black holes as accelerators of spinning particles

    CERN Document Server

    Zhang, Yu-Peng; Wei, Shao-Wen; Yang, Jie; Liu, Yu-Xiao

    2016-01-01

    It is well known that some black holes can act as accelerators for particles without spin. Recently, there are some works considering collision of two spinning particles in the background of Schwarzschild and Kerr black holes and it was shown that the spin of the test particles is related to the center-of-mass energy. In this paper we extend the results to some more general cases. We consider Kerr-Newman black holes as accelerators for spinning particles. We derive the center-of-mass energy of the spinning particles and use numerical method to investigate how the center-of-mass energy is affected by the properties of the black holes and spinning particles.

  5. Algorithms for tracking of charged particles in circular accelerators

    International Nuclear Information System (INIS)

    An important problem in accelerator design is the determination of the largest stable betatron amplitude. This stability limit is also known as the dynamic aperture. The equations describing the particle motion are non-linear, and the Linear Lattice Functions cannot be used to compute the stability limits. The stability limits are therefore usually searched for by particle tracking. One selects a set of particles with different betatron amplitudes and tracks them for many turns around the machine. The particles which survive a sufficient number of turns are termed stable. This paper concentrates on conservative systems. For this case the particle motion can be described by a Hamiltonian, i.e. tracking particles means application of canonical transformations. Canonical transformations are equivalent to symplectic mappings, which implies that there exist invariants. These invariants should not be destroyed in tracking

  6. Charge collection characteristics of Frisch collar CdZnTe gamma-ray spectrometers

    International Nuclear Information System (INIS)

    A collimated 198Au source was used to determine the charge collection efficiency (CCE) at several locations along the length of a 3.4x3.4x5.5 mm3 CdZnTe bar detector, both in planar configuration and with Frisch collars of varying length. For each configuration, a 0.50-mm-long region spanning the width of the device was irradiated with 411-keV gamma rays produced by a neutron-activated gold foil. Irradiation began at the cathode and stepped in 0.50-mm steps toward the anode, with a spectrum being collected at each location. By observing the channel location of the full-energy peak in each collected spectrum, an average CCE was determined for each irradiated region. The CCE was found to vary nearly linearly along the length of the device in the planar configuration, starting at a peak value of 89% and dropping to a minimum measured value of 26% near the anode. The addition of a Frisch collar covering the entire length of the crystal greatly altered the CCE profile, which remained near 87% for approximately two-thirds of the length, then sharply dropped near the anode. Results were confirmed by theoretical models. Further CCE mapping was also completed for devices with Frisch collars of various lengths. Those results are reported as well

  7. Asymmetry of Hawking Radiation of Dirac Particles in a Charged Vaidya - de Sitter Black Hole

    CERN Document Server

    Wu, S Q

    2001-01-01

    The Hawking radiation of Dirac particles in a charged Vaidya - de Sitter black hole is investigated by using the method of generalized tortoise coordinate transformation. It is shown that the Hawking radiation of Dirac particles does not exist for $P_1, Q_2$ components, but for $P_2, Q_1$ components it does. Both the location and the temperature of the event horizon change with time. The thermal radiation spectrum of Dirac particles is the same as that of Klein-Gordon particles.

  8. A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid

    OpenAIRE

    Zhou, Jiajia; Schmid, Friederike

    2013-01-01

    A mesoscopic colloid model is developed in which a spherical colloid is represented by many interacting sites on its surface. The hydrodynamic interactions with thermal fluctuations are taken accounts in full using Dissipative Particle Dynamics, and the electrostatic interactions are simulated using Particle-Particle-Particle Mesh method. This new model is applied to investigate the electrophoretic mobility of a charged colloid under an external electric field, and the influence of salt conce...

  9. Study of charged particle production using Omega RICH in WA94 experiment

    International Nuclear Information System (INIS)

    We present preliminary results about charged particle production in S-S collisions at 200GeV/c per nucleon, obtained by WA94 experiment at CERN-SPS. The particle identification has been provided by the Omega RICH; a silicon telescope and an array of multiwire proportional chambers (MWPC) have been used to track particles to the RICH detector. Details about particle tracking and identification procedure are also reported. (orig.)

  10. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  11. Corrections for target absorption of charged particles in wire loaded nuclear emulsions

    International Nuclear Information System (INIS)

    In this paper we discuss how to correct multiplicities, angular and range distributions of charged particles in wire loaded emulsion experiments in order to make the results comparable to those of experiments where ordinary emulsions are used. The corrections arise from particles stopping in the wire or in a shadow zone around the wire and are of importance only for low energy particles. We suggest in the paper a function of the density, the charge and the diameter of the wire target to describe the multiplicity correction for black prong producing particles in hadron-nucleus and nucleus-nucleus reactions above 1 GeV/a.m.u. (author)

  12. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2009-10-01

    Full Text Available We present the first single particle results obtained with an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS. The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area as part of the MILAGRO field study in March of 2006. The LS-ToF-AMS acquires both ensemble average and single particle data. Over a 75-h sampling period from 27–30 March 2006, 12 853 single particle mass spectra were optically-triggered and saved. The single particles were classified based on observed vaporization histories and measured chemical compositions. The single particle data is shown to provide insights on internal AMS collection efficiencies and ambient mixing state information that augments the ensemble data.

    Detection of correlated light scattering and chemical ion signals allowed for a detailed examination of the vaporization/ionization process for single particles measured with the AMS instrument. Three particle vaporization event types were identified as a fraction of the total number of particles detected: (1 23% with prompt vaporization, (2 26% with delayed vaporization, and (3 51% characterized as null. Internal consistency checks show that average single particle nonrefractory mass and chemical composition measurements were in reasonable agreement with ensemble measurements and suggest that delayed and null vaporization events are the dominant source of the nonunit collection efficiency of the AMS. Taken together, the simultaneous prompt single particle and aerosol ensemble measurements offer insight into the mixing state and atmospheric transformations of ambient aerosol particles.

  13. A study of aerosol optical properties using a lightweight optical particle spectrometer and sun photometer from an unmanned aerial system

    Science.gov (United States)

    Telg, H.; Murphy, D. M.; Bates, T. S.; Johnson, J. E.; Gao, R. S.

    2015-12-01

    A miniaturized printed optical particle spectrometer (POPS) and sun photometer (miniSASP) have been developed recently for unmanned aerial systems (UAS) and balloon applications. Here we present the first scientific data recorded by the POPS and miniSASP from a Manta UAS during a field campaign on Svalbard, Norway, in April 2015. As part of a payload composed of five different aerosol instruments (absorption photometer, condensation particle counter, filter sampler, miniSASP and POPS) we collected particle size distributions, the optical depth (OD) and the sky brightness from 0 to 3000 m altitude. The complementary measurement approaches of the miniSASP and POPS allow us to calculate aerosol optical properties such as the aerosol optical depth and the angstrom exponent or the asymmetry parameter independently. We discuss deviation between results with respect to aerosol properties, e.g. hygroscopicity and absorption, as well as instrumental limitations.

  14. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  15. Charged particle-induced modification of cellular genomic DNA and gene expression level

    International Nuclear Information System (INIS)

    Aim of this study is to understand cellular and molecular nature of cancer cells survived for long term after charged particle therapy. During the period of 1st year, clonogenic sensitivity of various cancer cell lines against charged particles was investigated by two experimental strategies. Firstly, human glioblastoma cell line, Becker, was investigated for the phenotypic changes after long term survival period (3 weeks). Especially, the cells were revealed to be sensitized toward secondary exposure of charged particles in a way of primary dose-dependence. However, this tendency was clearly eliminated when cells were treated by 5-azacytidine, a DNA methylation inhibitor, before the primary exposure. Thus, epigenetic regulations of cellular genomic DNA were supposed to play important roles in the radiation sensitivity changes of the long-term survived cells. In the second approach, mouse cancer cell line analysis in the presence of 5-azacytidine revealed epigenetic heterogeneity of charged particle sensitivity within the cell population. (author)

  16. Progress on the evaluation of charged particle nuclear reaction data in Sichuan University

    International Nuclear Information System (INIS)

    The evaluations of excitation function of 9 reactions induced by charged particles (p, α, d) have been fulfilled. The evaluated nuclear reactions and the experimental works are presented. The recommended data for each reaction were remarked

  17. Search for particles with unexpected mass and charge in Z decays

    Science.gov (United States)

    Buskilic, D.; Decamp, D.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Mours, B.; Pietrzyk, B.; Alemany, R.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, N.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bauerdick, L. A. T.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Lusiani, A.; Martinez, M.; Mato, P.; Meinhard, H.; Mitten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Efthymiopoulos, I.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Nash, J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Aubert, J.-J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Catteneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Rotscheidt, H.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Carney, R. E.; Cartwright, S.; Combley, F.; Hatfield, F.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Jared, R. C.; Leclaire, B. W.; Lishka, C.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Schmitt, M.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Lan Wu, Sau; Wu, X.; Zheng, M.; Zobernig, G.

    1993-04-01

    During 1989 and 1990 over 180 000 hadronic and leptonic events, corresponding to 8 pb-1 of luminosity, were collected by the ALEPH detector in a scan of the Z peak at the e+e- collider LEP. This letter reports the results of a search in these data for particles with unexpected mass and charge by measurement of the ionization energy loss of charged tracks in the ALEPH TPC central tracking detector. The mass limits for the pair production of fractionally charged particles and of heavy, long lived charged particles are extended to 43 GeV/c2 at 90% confidence level. If single production of a heavy particle is considered, the mass limit is extended to more than 70 GeV/c2. Supported by the US Department of Energy, contract DE-AC02-76ER00881.

  18. Measurements of the Charged­ Particle distributions with the ATLAS detector

    CERN Document Server

    Cairo, Valentina; The ATLAS collaboration

    2016-01-01

    Inclusive charged ­particle measurements at hadron colliders probe the low­ energy non­perturbative region of QCD. The ATLAS collaboration has measured the charged­ particle multiplicity and its dependence on transverse momentum and pseudorapidity in special data sets with low LHC beam currents, recorded at center­-of­-mass energies of 8 TeV and 13 TeV. The new precise measurements at 8 TeV cover a wide spectrum using charged­ particle selections with minimum transverse momentum of both 100 MeV and 500 MeV and in various phase space regions of low and high charged particle multiplicities. The measurements at 13 TeV present the first detailed studies with a minimum transverse momentum of both 100 MeV and 500 MeV. The measurements are compared with predictions of various MC generators and are found to provide strong constraints on these.

  19. Ground state configurations of charged particles in a disk at zero temperature

    Science.gov (United States)

    Cerkaski, M.; Nazmitdinov, R. G.

    2014-11-01

    We discuss a novel theoretical approach which explains the self-organization of charged particles in a disk geometry. It allows to calculate readily equilibrium configurations for n <= 400 with a remarkable accuracy, when compared with the molecular dynamics calculations.

  20. Stimulated Brillouin scattering of an electromagnetic wave in weakly magnetized plasma with variably charged dust particles

    Indian Academy of Sciences (India)

    Sourabh Bal; M Bose

    2009-10-01

    We have investigated analytically the stimulated Brillouin scattering (SBS) of an electromagnetic wave in non-dissipative weakly magnetized plasma in the presence of dust particles with variable charge.

  1. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  2. Study of quark fragmentation in e+e- annihilation at 29 GeV: charged particle multiplicity distributions

    International Nuclear Information System (INIS)

    This paper presents the charged particle multiplicity distributions for e+e- annihilation at √s = 29 GeV measured in the High Resolution Spectrometer. The data, which correspond to an integrated luminosity of 185 pb-1, were obtained at the e+e- storage ring PEP. The techniques used to obtain the original distributions from the observed prong numbers are discussed. The multiplicity distribution of the charged particles with a two jet selection has a mean value = 13.02 +- 0.03 +- 0.5; and a dispersion D = 3.84 +- 0.02 +- 0.1. The mean multiplicity increases with the event sphericity. No correlation is observed between the multiplicities in the two jets that characterize most of the events. For the single jets a value of D = 2.71 +- 0.02 +- 0.06 is measured which gives further support the idea of independent jet fragmentation. When compared with e+e- data at other energies, the multiplicity distributions exhibit the scaling behavior in the mean first suggested by Koba, Nielsen and Olsen (KNO). The KNO distribution in the central rapidity interval is broader than that for the whole rapidity span and agrees well with the generalized Bose-Einstein formula for three independent sources. 17 refs., 14 figs

  3. Second Research Coordination Meeting on Heavy Charged-Particle Interaction Data for Radiotherapy. Summary Report

    International Nuclear Information System (INIS)

    A summary is given of the 2nd Research Coordination Meeting (RCM) on Heavy Charged-Particle Interaction Data for Radiotherapy. The programme to compile and evaluate charged-particle nuclear data for therapeutic applications was reviewed. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized, along with planned actions and deadlines. Participants' reports at the 2nd RCM are also included in this report. (author)

  4. Tunneling of massive and charged particles from noncommutative Reissner-Nordstr\\"{o}m black hole

    OpenAIRE

    Nozari, Kourosh; Islamzadeh, Sara

    2012-01-01

    Massive charged and uncharged particles tunneling from commutative Reissner-Nordstrom black hole horizon has been studied with details in literature. Here, by adopting the coherent state picture of spacetime noncommutativity, we study tunneling of massive and charged particles from a noncommutative inspired Reissner-Nordstrom black hole horizon. We show that Hawking radiation in this case is not purely thermal and there are correlations between emitted modes. These correlations may provide a ...

  5. CHANTI: a fast and efficient charged particle veto detector for the NA62 experiment at CERN

    International Nuclear Information System (INIS)

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ∼2.5 mm and an efficiency very close to 1 for penetrating charged particles

  6. CHANTI: a fast and efficient charged particle veto detector for the NA62 experiment at CERN

    Science.gov (United States)

    Ambrosino, F.; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Palladino, V.; Saracino, G.; Roscilli, L.; Vanzanella, A.; Corradi, G.; Tagnani, D.; Paglia, U.

    2016-03-01

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  7. A parametrisation of the energy loss distributions of charged particles and its applications for silicon detectors

    CERN Document Server

    Sikler, Ferenc

    2012-01-01

    The energy loss distribution of charged particles in silicon is approximated by a simple analytical parametrization. Its use is demonstrated through several examples. With the help of energy deposits in sensing elements of the detector, the position of track segments and the corresponding deposited energy are estimated with improved accuracy and less bias. The parametrization is successfully used to estimate the energy loss rate of charged particles, and it is applied to detector gain calibration tasks.

  8. Trace element analysis in thick targets by charge particle induced x-rays

    International Nuclear Information System (INIS)

    The quantitative determination of trace impurities in a thick target through detection of x-rays produced by an accelerated charged particle involves a continous variation of energy of the charged particle, from the incident energy to a final minimum value. Hence the expression for the x-ray yield has to be summed over a continuous range of energies. A method is described to reduce this infinite sum into a finite sum

  9. Influence of the fringe field on moving of the charged particles in flat and cylindrical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Doskeyev, G.A.; Edenova, O.A. [Aktobe State University named after K. Zhubanov, Br. Zhubanov Street 263, 030000 Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: spivakif@rambler.ru [Aktobe State University named after K. Zhubanov, Br. Zhubanov Street 263, 030000 Aktobe (Kazakhstan)

    2011-07-21

    This paper describes different analytic approaches to describe the fringe fields of flat and cylindrical capacitor structures. A method for the calculation of deflection of charged particles from the optical axis is developed. The behavior of a charged particle beam in a flat capacitor is approximated by using a sharp cut-off boundary for the field, which has the provision of taking fringe fields into account.

  10. Influence of the fringe field on moving of the charged particles in flat and cylindrical capacitors

    International Nuclear Information System (INIS)

    This paper describes different analytic approaches to describe the fringe fields of flat and cylindrical capacitor structures. A method for the calculation of deflection of charged particles from the optical axis is developed. The behavior of a charged particle beam in a flat capacitor is approximated by using a sharp cut-off boundary for the field, which has the provision of taking fringe fields into account.

  11. A stochastic-hydrodynamic model of halo formation in charged particle beams

    OpenAIRE

    Petroni, Nicola Cufaro; De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio

    2003-01-01

    The formation of the beam halo in charged particle accelerators is studied in the framework of a stochastic-hydrodynamic model for the collective motion of the particle beam. In such a stochastic-hydrodynamic theory the density and the phase of the charged beam obey a set of coupled nonlinear hydrodynamic equations with explicit time-reversal invariance. This leads to a linearized theory that describes the collective dynamics of the beam in terms of a classical Schr\\"odinger equation. Taking ...

  12. Effect of charged particle's multiplicity fluctuations on flow harmonics in even-by-event hydrodynamics

    OpenAIRE

    Chaudhuri, A. K.

    2012-01-01

    In nucleon-nucleon collisions, charged particle's multiplicity fluctuates. We have studied the effect of multiplicity fluctuation on flow harmonics in nucleus-nucleus collision in event-by-event hydrodynamics. Assuming that the charged particle's multiplicity fluctuations are governed by the negative binomial distribution, the Monte-Carlo Glauber model of initial condition is generalised to include the fluctuations. Explicit simulations with the generalised Monte-Carlo Glauber model initial c...

  13. CHANTI: a Fast and Efficient Charged Particle Veto Detector for the NA62 Experiment at CERN

    CERN Document Server

    Ambrosino, F; Di Filippo, D; Massarotti, P; Mirra, M; Napolitano, M; Palladino, V; Saracino, G; Roscilli, L; Vanzanella, A; Corradi, G; Tagnani, D; Paglia, U

    2016-01-01

    The design, construction and test of a charged particle detector made of scintillation counters read by Silicon Photomultipliers (SiPM) is described. The detector, which operates in vacuum and is used as a veto counter in the NA62 experiment at CERN, has a single channel time resolution of 1.14 ns, a spatial resolution of ~2.5 mm and an efficiency very close to 1 for penetrating charged particles.

  14. Preliminary study for the detection of neutrons in heavy-ion collisions with charged particle detectors

    OpenAIRE

    Auditore L.; Pagano A.; Russotto P.

    2015-01-01

    At Laboratori Nazionali del Sud (LNS) the CHIMERA 4π multidetector has been designed and setup to detect charged particles emitted in heavy ion collisions at intermediate energies. Properties and performances of CHIMERA have been widely demonstrated by published results obtained in the performed experiments. Moreover, in recent years, a new charged particle detector (ChPD) for correlation studies (FARCOS) has been designed, and recently a first prototype has been coupled to CHIMERA, in order ...

  15. Measurements of charged-particle inclusive distributions in hadronic decays of the Z boson

    International Nuclear Information System (INIS)

    We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations

  16. Development of a utility system for charged particle nuclear reaction data by using intelligentPad

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Shigeyoshi; Ohbayashi, Yoshihide [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Kato, Kiyoshi [Hokkaido University, Graduate School of Science, Sapporo, Hokkaido (Japan); Chiba, Masaki [Faculty of Social Information, Sapporo Gakuin Univ., Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed a utility system, WinNRDF2, for a nuclear charged particle reaction data of NRDF (Nuclear Reaction Data File) on the IntelligentPad architecture. By using the system, we can search the experimental data of a charged particle reaction of NRDF. Furthermore, we also see the experimental data by using graphic pads which was made through the CONTIP project. (author)

  17. Heavy Charged Particle Radiobiology: Using Enhanced Biological Effectiveness and Improved Beam Focusing to Advance Cancer Therapy

    OpenAIRE

    Allen, Christopher; Borak, Thomas B.; Tsujii, Hirohiko; Jac A Nickoloff

    2011-01-01

    Ionizing radiation causes many types of DNA damage, including base damage and single- and double-strand breaks. Photons, including X-rays and γ-rays, are the most widely used type of ionizing radiation in radiobiology experiments, and in radiation cancer therapy. Charged particles, including protons and carbon ions, are seeing increased use as an alternative therapeutic modality. Although the facilities needed to produce high energy charged particle beams are more costly than photon facilitie...

  18. An upper limit on the branching ratio for $\\tau$ decays into seven charged particles

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; De Jong, S; del Pozo, L A; Desch, Klaus; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hilse, T; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Howard, R; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Przysiezniak, H; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Rooke, A M; Ros, E; Rossi, A M; Rosvick, M; Routenburg, P; Rozen, Y; Runge, K; Runólfsson, O; Ruppel, U; Rust, D R; Rylko, R; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schenk, P; Schieck, J; Schleper, P; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schultz-Coulon, H C; Schulz, M; Schumacher, M; Schwick, C; Scott, W G; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skillman, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Springer, R W; Sproston, M; Stephens, K; Steuerer, J; Stockhausen, B; Stoll, K; Strom, D; Szymanski, P; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Towers, S; Trigger, I; Tsur, E; Turcot, A S; Turner-Watson, M F; Utzat, P; Van Kooten, R; Verzocchi, M; Vikas, P; Vokurka, E H; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilkens, B; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

    1997-01-01

    We have searched for decays of the tau lepton into seven or more charged particles, using data collected with the OPAL detector from 1990 to 1995 in e^+e^- collisions at sqrt(s) ~ M_Z. No candidate events were found and an upper limit on the branching ratio for tau decays into seven charged particles of 1.8 x 10^-5 at the 95% confidence level was determined.

  19. Short-time diffusion of charge-stabilized colloidal particles: generic features

    OpenAIRE

    Heinen, M.; Holmqvist, P.; Banchio, A. J; Nägele, G.

    2010-01-01

    Analytical theory and Stokesian dynamics simulations are used in conjunction with dynamic light scattering to investigate the role of hydrodynamic interactions in short-time diffusion in suspensions of charge-stabilized colloidal particles. The particles are modeled as solvent-impermeable charged spheres, repelling each other via a screened Coulomb potential. Numerical results for self-diffusion and sedimentation coefficients, as well as hydrodynamic and short-time diffusion functions, are co...

  20. Lateral charged particle distribution of extensive air showers - source of information about energy and nature of the primary cosmic particles

    International Nuclear Information System (INIS)

    The CORSIKA simulated showers for H, C and Fe cosmic primaries in 8 energy intervals from 1016 eV to 1018 eV, taking into account the response of KASCADE-Grande detectors, have been used to reconstruct the charged particle density for KASCADE-Grande observations, based on the Linsley lateral distribution function (LDF). Extensive studies have been done to investigate features for energy estimation and mass discrimination of cosmic primaries around 1017 eV. It has been found that the charged particle density distribution of EAS exhibits interesting information for both aspects: at larger distances from shower core, around 500 m - 600 m the charge particle density could be used as energy identifier, and at shorter distances from shower core, around, 100 m - 200 m, it signals the mass of the EAS primary. (author)

  1. Tunneling of Massive Vector Particles From Rotating Charged Black Strings

    CERN Document Server

    Jusufi, Kimet

    2015-01-01

    We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality and is consistent with an underlying unitary theory.

  2. Tunneling of massive vector particles from rotating charged black strings

    Science.gov (United States)

    Jusufi, Kimet; Övgün, Ali

    2016-07-01

    We study the quantum tunneling of charged massive vector bosons from a charged static and a rotating black string. We apply the standard methods, first we use the WKB approximation and the Hamilton-Jacobi equation, and then we end up with a set of four linear equations. Finally, solving for the radial part by using the determinant of the metric equals zero, the corresponding tunneling rate and the Hawking temperature is recovered in both cases. The tunneling rate deviates from pure thermality and is consistent with an underlying unitary theory.

  3. Photoproduction of charged particle with high transverse momentum

    International Nuclear Information System (INIS)

    Inclusive cross sections of high transverse moment charged pions induced by a high energy photon beam have been measured. These results do not account, neither in slope nor in normalisation, for the VDM component of the photon, evaluated with pion induced data taken in the same experimental conditions after VDM subtraction, excellent agreement is found with QCD calculations up to second order in αs, in an extended cinematic region, different choices of the gluon fragmentation function do not alter this conclusion. Our measures of the inclusive final state charge asymmetries also confirm QCD expectations. 42 refs

  4. The self-energy of a charged particle in the presence of a topological defect distribution

    CERN Document Server

    De Carvalho, A M M; Furtado, C; Moraes, Fernando; Furtado, Claudio

    2004-01-01

    In this work we study a charged particle in the presence of both a continuous distribution of disclinations and a continuous distribution of edge dislocations in the framework of the geometrical theory of defects. We obtain the self-energy for a single charge both in the internal and external regions of either distribution. For both distributions the result outside the defect distribution is the self-energy that a single charge experiments in the presence of a single defect.

  5. Propagators of charged particles in an external magnetic field, expanded over Landau levels

    CERN Document Server

    Kuznetsov, A V; Shitova, A M

    2015-01-01

    Various forms of expressions for the propagators of charged particles in a constant magnetic field that should be used for investigations of electroweak processes in external uniform magnetic field are discussed. Formulas for the propagators of the Standard Model charged $W$- and scalar $\\Phi$-bosons in an arbitrary $\\xi$-gauge, expanded over Landau levels, are derived for the first time.

  6. Early results on energetic particle dynamics and structure from the Energetic Ion Spectrometer (EIS) on the Magnetospheric Multiscale (MMS) mission

    Science.gov (United States)

    Cohen, I. J.; Mauk, B.; Westlake, J. H.; Anderson, B. J.; Turner, D. L.; Fennell, J. F.; Spence, H. E.; Baker, D. N.; Pollock, C. J.; Torbert, R. B.; Blake, J. B.; Sibeck, D. G.

    2015-12-01

    The cluster of four, formation-flying spacecraft, comprising the Magnetospheric Multiscale (MMS) mission, launched on 13 March 2015 into near equatorial 1.2 x 12 RE orbits, provides an important new asset for assessing the transport of energy and matter from the distant regions of Earth's magnetosphere into the inner regions. Here we report on early results from the Energetic Ion Spectrometer (EIS) instrument on each of the MMS Spacecraft. EIS provides nearly all-sky energetic ion energy, angle and elemental compositional distributions for 1 MeV. It also measures energetic electrons from 25 keV to > 0.5 MeV in support and coordination with the electron-focused Fly's Eye Energetic Particle Spectrometer (FEEPS). During the early phase of the MMS mission, while the full complement of instruments was being commissioned prior to the prime mission phase beginning 1 September 2015, EIS observed dynamic energetic particle injections at the root of the magnetotail between the post-midnight regions and dawn in association with numerous dipolarization fronts and related processes. Here we report on coordinated measurements between MMS's EIS instrument and EIS's sister instrument on the Van Allen Probes, RBSPICE, to further address the relationship between dynamic injections and depolarization fronts in the magnetotail and injections observed deep within the magnetosphere's ring current regions. We also report preliminary result on using energetic particle gradients and anistotropies to diagnose magnetopause structures near mission-identified reconnection sites.

  7. A search for charged massive long-lived particles

    Czech Academy of Sciences Publication Activity Database

    Abazov, V. M.; Abbott, B.; Acharya, B.S.; Kupčo, Alexander; Lokajíček, Miloš

    2012-01-01

    Roč. 108, č. 12 (2012), "121802-1"-"121802-7". ISSN 0031-9007 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ionization energy loss * new particle * supersymmetry * anti-p p * Batavia TEVATRON Coll * D0 Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.943, year: 2012 http://prl.aps.org/abstract/PRL/v108/i12/e121802

  8. Charged particle identification with modules of the plastic ball

    Energy Technology Data Exchange (ETDEWEB)

    Gutbrod, H.H.; Maier, M.R.; Ritter, H.G.; Warwick, A.I.; Weik, F.; Wieman, H.; Wolf, K.L.

    1980-10-01

    The low energy pion channel (LEP) at LAMPF was used to calibrate the response of modules of the Plastic Ball detector for positive pions and protons. The detection efficiency was measured at various energies. The resolution and efficiency were found to be independent of the point at which the particle entered the detector. Scattered out particles could be well detected by including neighbouring detectors in the analysis.

  9. An approximately 4π tracking magnetic spectrometer for RHIC

    International Nuclear Information System (INIS)

    A tracking magnetic spectrometer based on large Time Projection Chambers (TPC) is proposed to measure the momentum of charged particles emerging from the RHIC beam pipe at angles larger than four degrees and to identify the particle type for those beyond fifteen degrees with momenta up to 700 MeV/c, which is a large fraction of the final charged particles emitted by a low rapidity quark-gluon plasma

  10. Charged massive particle at rest in the field of a Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    The interaction of a Reissner-Nordstroem black hole and a charged massive particle is studied in the framework of perturbation theory. The particle backreaction is taken into account, studying the effect of general static perturbations of the hole following the approach of Zerilli. The solutions of the combined Einstein-Maxwell equations for both perturbed gravitational and electromagnetic fields to first order of the perturbation are exactly reconstructed by summing all multipoles, and are given explicit closed form expressions. The existence of a singularity-free solution of the Einstein-Maxwell system requires that the charge-to-mass ratios of the black hole and of the particle satisfy an equilibrium condition which is in general dependent on the separation between the two bodies. If the black hole is undercritically charged (i.e. its charge-to-mass ratio is less than one), the particle must be overcritically charged, in the sense that the particle must have a charge-to-mass ratio greater than one. If the charge-to-mass ratios of the black hole and of the particle are both equal to one (so that they are both critically charged, or 'extreme'), the equilibrium can exist for any separation distance, and the solution we find coincides with the linearization in the present context of the well-known Majumdar-Papapetrou solution for two extreme Reissner-Nordstroem black holes. In addition to these singularity-free solutions, we also analyze the corresponding solution for the problem of a massive particle at rest near a Schwarzschild black hole, exhibiting a strut singularity on the axis between the two bodies. The relations between our perturbative solutions and the corresponding exact two-body solutions belonging to the Weyl class are also discussed

  11. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma

    2015-01-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given $p_{\\mathrm{T}}^{\\mathrm{min}}$ threshold starting at $p_{\\mathrm{T}}^{\\mathrm{min}} = $ 0.8 and 1 GeV, respectively, is studied in PbPb collisions at $\\sqrt{s} =$ 8 TeV. The particles and the jets are measured for absolute pseudorapidities lower than 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  12. On the problem of exoemission of negatively and positively charged particles

    International Nuclear Information System (INIS)

    Possible mechanisms of exoemission of positively and negatively charged particles from the surface at low temperatures (300-700 K) and electric field intensities (less than 106 V/m) are considered. Thermostimulated emission (TSE) of particles with different charge sign and emission current maxima, located at different temperatures is detected. Based on literary data the basic processes, conditioning electron and ion exoemission, are discussed. It is shown that in a number of cases regularities of ion exoemission can be explained only by the occurence of physico-chemical processes with the participation of charged surface centers. The energy, released therewith allows tha negative and positive ion and electron to be emitted

  13. Comprehensive decay law for emission of charged particles and exotic cluster radioactivity

    Indian Academy of Sciences (India)

    Basudeb Sahu

    2014-04-01

    A general decay formula for the emission of charged particles from metastable nuclei is developed based on the basic phenomenon of resonances occurring in quantum scattering process under Coulomb-nuclear potential. It relates the half-lives of radioactive decays with the values of the outgoing elements with masses and charges of the nuclei involved in the decay. The relation is found to be a generalization of the Geiger–Nuttall law in radioactivity and explains well all the known emissions of charged particles including clusters, alpha and proton.

  14. Thermodynamics of three-dimensional black holes via charged particle absorption

    OpenAIRE

    Bogeun Gwak; Bum-Hoon Lee

    2016-01-01

    We have shown that changes occur in a (2+1)-dimensional charged black hole by adding a charged probe. The particle increases the entropy of the black hole and guarantees the second law of thermodynamics. The first law of thermodynamics is derived from the change in the black hole mass. Using the particle absorption, we test the extremal black hole and find out that the mass of the extremal black hole increases more than the electric charge. Therefore, the outer horizon of the black hole still...

  15. Thermodynamics of three-dimensional black holes via charged particle absorption

    Science.gov (United States)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-04-01

    We have shown that changes occur in a (2 + 1)-dimensional charged black hole by adding a charged probe. The particle increases the entropy of the black hole and guarantees the second law of thermodynamics. The first law of thermodynamics is derived from the change in the black hole mass. Using the particle absorption, we test the extremal black hole and find out that the mass of the extremal black hole increases more than the electric charge. Therefore, the outer horizon of the black hole still exists. However, the extremal condition becomes non-extremal.

  16. Thermodynamics of Three-dimensional Black Holes via Charged Particle Absorption

    CERN Document Server

    Gwak, Bogeun

    2015-01-01

    We have shown that changes occur in a (2+1)-dimensional charged black hole by adding a charged probe. The particle increases the entropy of the black hole and guarantees the second law of thermodynamics. The first law of thermodynamics is derived from the change in the black hole mass. Using the particle absorption, we test the extremal black hole and find out that the mass of the extremal black hole increases more than the electric charge. Therefore, the outer horizon of the black hole still exists. However, the extremal condition becomes non-extremal.

  17. ADIS-type Charged Particle Spectrometer for Manned Space Radiation Dosimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As manned missions to the moon and eventually Mars gain momentum, astronaut crews will be sent back to the deepest parts of space humans have ever traveled, and...

  18. Detection of invisible particles at hadron collider experiments through the magnetic spectrometer

    OpenAIRE

    Bentivegna, Marco; Liu, Qiuguang; Margaroli, Fabrizio; Potamianos, Karolos

    2012-01-01

    The production of invisible particles plays great importance in high energy physics. Large part of interesting electroweak processes include production of neutrinos, while many new physics scenarios predict the existence of similarly weakly-interacting particles. In events with associated production of invisible particles and hadronic jets, the measurement of the imbalance in transverse momentum of the final state particles is the major leverage to reject the otherwise dominant source of back...

  19. A New Approach to Charged Particle Slowing Down and Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, David E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-24

    The process by which super-thermal ions slow down against background Coulomb potentials arises in many fields of study. In particular, this is one of the main mechanisms by which the mass and energy from the reaction products of fusion reactions is deposited back into the background. Many of these fields are characterized by length and time scales that are the same magnitude as the range and duration of the trajectory of these particles, before they thermalize into the background. This requires numerical simulation of this slowing down process through numerically integrating the velocities and energies of these particles. This paper first presents a simple introduction to the required plasma physics, followed by the description of the numerical integration used to integrate a beam of particles. This algorithm is unique in that it combines in an integrated manner both a second-order integration of the slowing down with the particle beam dispersion. These two processes are typically computed in isolation from each other. A simple test problem of a beam of alpha particles slowing down against an inert background of deuterium and tritium with varying properties of both the beam and the background illustrate the utility of the algorithm. This is followed by conclusions and appendices. The appendices define the notation, units, and several useful identities.

  20. Directly resolving particles in an electric field: local charge, force, torque, and applications

    Science.gov (United States)

    Liu, Qianlong

    2011-11-01

    Prosperetti's seminal Physalis method for fluid flows with suspended particles is extended to electric fields to directly resolve finite-sized particles and to investigate accurately the mutual fluid-particle, particle-particle, and particle-boundary interactions. The method can be used for uncharged/charged dielectrics, uncharged/charged conductors, conductors with specified voltage, and general weak and strong discontinuous interface conditions. These interface conditions can be in terms of field variable, its gradients, and surface integration which has not been addesed by other numerical methods. In addition, for the first time, we rigorously derive the force and torque on the finite-sized particles resulting from the interactions between harmonics. The method, for the first time, directly resolves the particles with accurate local charge distribution, force, and torque on the particles, making many applications in engineering, mechanics, physics, chemistry, and biology possible, such as heterogeneous materials, microfluidics, electrophotography, electric double layer capacitors, and microstructures of nanodispersions. The efficiency of the method is demonstrated with up to one hundred thousand 3D particles, which suggests that the method can be used for many important engineering applications of broad interest. This research is supported by the Department of Energy under funding for an EFRC (the HeteroFoaM Center), grant no. DE-SC0001061.