WorldWideScience

Sample records for charged particle transport

  1. The telegraph equation in charged particle transport

    Science.gov (United States)

    Gombosi, T. I.; Jokipii, J. R.; Kota, J.; Lorencz, K.; Williams, L. L.

    1993-01-01

    We present a new derivation of the telegraph equation which modifies its coefficients. First, an infinite order partial differential equation is obtained for the velocity space solid angle-averaged phase-space distribution of particles which underwent at least a few collisions. It is shown that, in the lowest order asymptotic expansion, this equation simplifies to the well-known diffusion equation. The second-order asymptotic expansion for isotropic small-angle scattering results in a modified telegraph equation with a signal propagation speed of v(5/11) exp 1/2 instead of the usual v/3 exp 1/2. Our derivation of a modified telegraph equation follows from an expansion of the Boltzmann equation in the relevant smallness parameters and not from a truncation of an eigenfunction expansion. This equation is consistent with causality. It is shown that, under steady state conditions in a convecting plasma, the telegraph equation may be regarded as a diffusion equation with a modified transport coefficient, which describes a combination of diffusion and cosmic-ray inertia.

  2. Effects of dispersive wave modes on charged particles transport

    CERN Document Server

    Schreiner, Cedric

    2015-01-01

    The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.

  3. Optimizing interactive program for charged particle transport system design

    International Nuclear Information System (INIS)

    A computer program for charged particle transport system design is described. The program is written in the BASIC language and allows one to make calculations in dialogue with the computer. The BASTRA program permits to get output information both in digital and in graphical forms. The method for optimization is described, that allows one to put 10 limitation on beam parameters in arbitrary places of the transport system. The program can be adapted on every computer having the BASIC language in its software

  4. The Boltzmann equation theory of charged particle transport

    International Nuclear Information System (INIS)

    It is shown how a formally exact Kubo-like response theory equivalent to the Boltzmann equation theory of charged particle transport can be constructed. The response theory gives the general wavevector and time-dependent velocity distribution at any time in terms of an initial distribution function, to which is added the response induced by a generalized perturbation over the intervening time. The usual Kubo linear response result for the distribution function is recovered by choosing the initial velocity distribution to be Maxwellian. For completeness the response theory introduces an exponential convergence function into the response time integral. This is equivalent to using a modified Boltzmann equation but the general form of the transport theory is not changed. The modified transport theory can be used to advantage where possible convergence difficulties occur in numerical solutions of the Boltzmann equation. This paper gives a systematic development of the modified transport theory and shows how the response theory fits into the broader scheme of solving the Boltzmann equation. The discussion extends both the work of Kumar et al. (1980), where the distribution function is expanded out in terms of tensor functions, and the propagator description where the non-hydrodynamic time development of the distribution function is related to the wavevector dependent Green function of the Boltzmann equation

  5. TRANSPORT - a computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    TRANSPORT is a computer program for first-order and second-order matrix multiplication, intended for the design of static-magnetic beam-transport systems. It has been in existence in various versions since 1963. The first part of the report is a user's manual, and supersedes the earlier report CERN 73-16. The second part is a reproduction of the Fermilab document 'TRANSPORT appendix', by the same authors, which describes the theory of charged-particle beam optics and the applications of transformation matrices for numerical computation of beam trajectories and properties, as applied in the program. (orig.)

  6. Transport of Charged Particles: Entropy Production and Maximum Dissipation Principle

    OpenAIRE

    Hsieh, Chia-Yu; Hyon, YunKyong; Lee, Hijin; Lin, Tai-Chia; Liu, Chun

    2014-01-01

    In order to describe the dynamics of crowded ions (charged particles), we use an energetic variation approach to derive a modified Poisson-Nernst-Planck (PNP) system which includes an extra dissipation due to the effective velocity differences between ion species. Such a system is more complicated than the original PNP system but with the same equilibrium states. Using Schauder's fixed-point theorem, we develop a local existence theorem of classical solutions for the modified PNP system. Diff...

  7. Charged Particle Energization and Transport in the Magnetotail during Substorms

    Science.gov (United States)

    Pan, Qingjiang

    This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak

  8. Charged-Particle Bean Transport for Ion Trapping Experiments.

    Science.gov (United States)

    Raichle, Brian W.; Wingfield, Love M.

    2001-11-01

    Electrostatic Einsel lenses are being developed for beam transport for use in two distinct metastable atomic lifetime experiments using two separate rf-ion traps. Each system has been modeled using Simion software, and the lenses have been designed from commercially available eV-parts. The first application is part of an electron gun source. Electrons are produced by a conventional dispenser cathode and are transported 25 cm to the trap. The design goal is to create a beam divergence to fully illuminate the active trap volume, and to provide tunable electron energies from 50 to 500 eV. The second application is to transport ions 1 m from a laser ablation ion source to an rf ion trap. Laser ablation involves essentially boiling ions from a solid target with intense laser pulses. Here, the design goal is to maximize flux by maximizing the solid angle of acceptance to the trap, minimize radial velocity, and minimize the spread in axial velocity. Development of a laser ablation ion source external to the trap volume will allow a very low base pressure in the trap region, which will make possible the study of species with lifetimes approaching 1 s. In addition, laser ablation will produce intermediately-charged ions from non-conductive solid targets.

  9. Kinetic phenomena in charged particle transport in gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana [Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia); Faculty of Traffic Engineering, University of Belgrade Belgrade (Serbia); Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia)

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

  10. Charged Particle Energization and Transport in Reservoirs throughout the Heliosphere: 1. Solar Energetic Particles

    Science.gov (United States)

    Roelof, E. C.

    2015-09-01

    “Reservoirs” of energetic charged particles are regions where the particle population is quasi-trapped in large-scale (relative to the gyroradii) magnetic field structures. Reservoirs are found throughout the heliosphere: the huge heliosheath (90appropriate description of this transport is “weak scattering”, in which the particle's first adiabatic invariant (magnetic moment) is approximately conserved while the particle itself moves rather freely along magnetic field lines. Considerable insight into the observed properties of energization processes can be gained from a remarkably simple equation that describes the particle's fractional time-rate-of-change of momentum (dlnp/dt) which depends only upon its pitch angle, the divergence of the plasma velocity (V⊥) transverse to the magnetic field), and the inner product of (V⊥) with the curvature vector of the field lines. The possibilities encompassed in this simple (but general) equation are quite rich, so we restrict our application of it in this paper to the compressive acceleration of SEPs within CMEs.

  11. Attenuation of DNA charge transport by compaction into a nucleosome core particle

    OpenAIRE

    Bjorklund, Chad C.; Davis, William B.

    2006-01-01

    The nucleosome core particle (NCP) is the fundamental building block of chromatin which compacts ∼146 bp of DNA around a core histone protein octamer. The effects of NCP packaging on long-range DNA charge transport reactions have not been adequately assessed to date. Here we study DNA hole transport reactions in a 157 bp DNA duplex (AQ-157TG) incorporating multiple repeats of the DNA TG-motif, a strong NCP positioning sequence and a covalently attached Anthraquinone photooxidant. Following a ...

  12. Adomian decomposition method for solving the telegraph equation in charged particle transport

    International Nuclear Information System (INIS)

    In this paper, the analysis for the telegraph equation in case of isotropic small angle scattering from the Boltzmann transport equation for charged particle is presented. The Adomian decomposition is used to solve the telegraph equation. By means of MAPLE the Adomian polynomials of obtained series (ADM) solution have been calculated. The behaviour of the distribution function are shown graphically. The results reported in this article provide further evidence of the usefulness of Adomain decomposition for obtaining solution of linear and nonlinear problems

  13. Simulation of neutron transport process, photons and charged particles within the Monte Carlo method

    International Nuclear Information System (INIS)

    Description is given to the program system BRAND designed for the accurate solution of non-stationary transport equation of neutrons, photons and charged particles in the conditions of real three-dimensional geometry. An extensive set of local and non-local estimates provides an opportunity of calculating a great set of linear functionals normally being of interest in the calculation of reactors, radiation protection and experiment simulation. The process of particle interaction with substance is simulated on the basis of individual non-group data on each isotope of the composition. 24 refs

  14. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m00 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  15. Charged particle transport and energization by magnetic field fluctuations with Gaussian/non-Gaussian distributions

    International Nuclear Information System (INIS)

    In this paper we investigate charged particle transport and acceleration in a two-dimensional system with an uniform electric field and stationary magnetic field fluctuations. The main idea of this study is to consider dependencies of transport and acceleration rates on properties of distributions of magnetic field fluctuations. We develop a simplified model of magnetic fluctuations with a regulated distribution and apply the test particle approach. System parameters are chosen to simulate conditions typical for ion dynamics in the deep Earth magnetotail. We show that for a fixed power density of magnetic field fluctuations the particle acceleration is more effective in the system where particles interact with small-amplitude (but frequent) fluctuations. In systems with large-amplitude rare fluctuations the particle scattering is less effective and the particle acceleration is weaker. - Highlights: • Ion transport/acceleration by magnetic fluctuations with different distributions. • The most effective acceleration is for non-Gaussian magnetic field fluctuations • Both Gaussian/non-Gaussian distributions give similar energy spectrum shape

  16. Sources for charged particles

    International Nuclear Information System (INIS)

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.)

  17. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    Science.gov (United States)

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. PMID:27045635

  18. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  19. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    Science.gov (United States)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  20. The programme library for numerical simulation of charged particle dynamics in transportation lines

    International Nuclear Information System (INIS)

    The description of a PC codes library to simulate the beam transportation of charged particles is presented. The codes are realized on IBM PC in Visual Basic common interface. It is destined for the simulation and optimization of beam dynamics and based on the successive and consistent use of two methods: the momentum method of distribution functions (RMS technique) and the particle-particle method (PP-Method). The library allows to calculate the RMS parameters of electron and ion beams, passing through a set of quadrupoles, solenoids, bends, accelerating sections. The RMS code is a fast code very suitable for the first test, design and optimization of the beam line parameters. The PP code requires more time for execution but provides a high accuracy of simulation taking into account the space charge effects, aberrations and beam losses. One of the main advantages of PP code presented here is an ability to simulate a real multicomponent beam of different masses and charged states of ions from ion sources

  1. The diffusive idealization of charged-particle transport in random magnetic fields. [cosmic ray propagation

    Science.gov (United States)

    Earl, J. A.

    1974-01-01

    The uniqueness and accuracy of the equations which describe the transport of charged particles diffusing in a random magnetic field parallel to a relatively large guiding field is examined. With regard to uniqueness, it is found that the same coefficient of diffusion is obtained by three methods that have apparently led to discrepancies in previous work. With regard to accuracy, it is found that two corrections must be added to Fick's law in which the diffusive flux is proportional to the gradient of the density. Explicit expressions are given for a characteristic time and a characteristic length which describe the corrections.

  2. Two-dimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges

    International Nuclear Information System (INIS)

    This paper reviews the formulation and updates some numerical procedures usually adopted in two-dimensional, time-dependent fluid models to study the transport of charged particles in radio-frequency capacitively coupled discharges. The description of charged particle transport is made by solving the continuity and momentum transfer equations for electrons and ions, coupled with Poisson's equation and the electron mean energy transport equations. Inertia terms are considered in the ion momentum transfer equations, by generalizing the earlier definition of effective electric field. The electron mean energy equations are written using specific energy transport parameters, deduced from integration over the electron energy distribution function (EEDF). The model adopts the local mean energy approximation, i.e. it computes the electron transport parameters as a function of the electron mean energy, using either a homogeneous, two-term Boltzmann equation solver or a Maxwellian EEDF. More appropriate boundary conditions for the electron and ion fluxes are used successfully. The model is solved for a GEC Cell reactor type (with 6.4 cm radius and 3.2 cm interelectrode distance) operating at frequency 13.56 MHz, pressures between 10 mTorr and 10 Torr and applied voltages from 100 to 500 V, in electropositive (helium) and electronegative (silane-hydrogen) gases or gas mixtures. The ion kinetics in silane and hydrogen is updated with respect to previous works, by further considering SiH2+, H+ and H3+ ions. In general, simulation results for some typical electrical parameters are closer to experimental measurements available than calculations reported in previous works

  3. Evaluation and comparison of SN and Monte-Carlo charged particle transport calculations

    International Nuclear Information System (INIS)

    A study was done to evaluate a 3-D SN charged particle transport code called SMARTEPANTS1 and another 3-D Monte Carlo code called Integrated Tiger Series, ITS2. The evaluation study of SMARTEPANTS code was based on angular discretization and reflected boundary sensitivity whilst the evaluation of ITS was based on CPU time and variance reduction. The comparison of the two code was based on energy and charge deposition calculation in block of Gallium Arsenide with embedded gold cylinders. The result of evaluation tests shows that an S8 calculation maintains both accuracy and speed and calculations with reflected boundaries geometry produces full symmetrical results. As expected for ITS evaluation, the CPU time and variance reduction are opposite to a point beyond which the history augmentation while increasing the CPU time do not result in variance reduction. The comparison test problem showed excellent agreement in total energy deposition calculations

  4. Transport and Acceleration of Energetic Charged Particles near an Oblique Shock

    CERN Document Server

    Ruffolo, D

    1999-01-01

    We have developed a numerical simulation code that treats the transport and acceleration of charged particles crossing an idealized oblique, non-relativistic shock within the framework of pitch angle transport using a finite-difference method. We consider two applications: 1) to study the steady-state acceleration of energetic particles at an oblique shock, and 2) to explain observed precursors of Forbush decreases of galactic cosmic rays before the arrival of an interplanetary shock induced by solar activity. For the former, we find that there is a jump in the particle intensity at the shock, which is stronger for more oblique shocks. Detailed pitch angle distributions are also presented. The simple model of a Forbush decrease explains the key features of observed precursors, an enhanced diurnal anisotropy extending several mean free paths upstream of the shock and a depletion of particles in a narrow loss cone at ~0.1 mean free path from the shock. Such precursors have practical applications for space weath...

  5. OoTran, an object-oriented program for charged-particle beam transport design

    International Nuclear Information System (INIS)

    The OoTran program is a new object-oriented program for charged-particle beam transport computation. Using a simple menu interface, the user builds his beam line with magnetic and electric elements taken from a standard library. The program computes the beam transport using a well-known first-order matrix formalism and displays 'in real time' the computed beam envelope. The menu editor provides functions to interactively modify the beam line. Ootran is written in C++ and uses two object libraries: OOPS, the Object-Oriented Program Support Class Library, which is a collection of classes similar to those of Smalltalk-80; and InterViews, a C++ graphical-interface toolkit based on the X-Window system. OoTran is running on DECstation 3100, VAXstation 2000 and SUN 3, with the ULTRIX and SUN OS operating systems. (orig.)

  6. Methods for two-dimensional charged-particle transport in collisionless plasmas

    International Nuclear Information System (INIS)

    A new method for modeling multi-dimensional charged particle transport in self-consistent electric and magnetic fields is presented. An implicit formulation of the Vlasov-Maxwell equations removes the usual restrictions on time and mesh spacing so that low frequency and large scale-length plasma phenomena can be studied. The improvement over previous explicit methods is literally orders of magnitude. As developed in a new code VENUS, we describe the algorithm and its stability and accuracy properties. This method allows one to bridge the enormous gap between the high frequency short scale-length collective plasma phenomena and the slow time scales and large-scale lengths of hydrodynamic processes. It should result in a significant improvement of phenomenological models of transport in existing hydrodynamics codes. Applications are given that include the discovery of the important role of self-generated magnetic fields in the convective transport of electron energy in laser irradiated plasmas. The transport, which occurs in the magnetized collisionless plasma corona, carries energy large distances from the laser deposition region in agreement with a wide variety of experimental data on apparent inhibited electron transport and fast ion loss

  7. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  8. Non-Axisymmetric Perpendicular Diffusion of Charged Particles and their Transport Across Tangential Magnetic Discontinuities

    Science.gov (United States)

    Strauss, R. D.; le Roux, J. A.; Engelbrecht, N. E.; Ruffolo, D.; Dunzlaff, P.

    2016-07-01

    We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.

  9. TRANSPORT: a computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    TRANSPORT is a first- and second-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. It has been in existence in various evolutionary versions since 1963. The present version, described in the manual given, includes both first- and second-order fitting capabilities. TRANSPORT will step through the beam line, element by element, calculating the properties of the beam or other quantities, described below, where requested. Therefore one of the first elements is a specification of the phase space region occupied by the beam entering the system. Magnets and intervening spaces and other elements then follow in the sequence in which they occur in the beam line. Specifications of calculations to be done or of configurations other than normal are placed in the same sequence, at the point where their effect is to be made

  10. TRANSPORT: a computer program for designing charged particle beam transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Rothacker, F.; Carey, D.C.; Iselin, C.

    1977-05-01

    TRANSPORT is a first- and second-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. It has been in existence in various evolutionary versions since 1963. The present version, described in the manual given, includes both first- and second-order fitting capabilities. TRANSPORT will step through the beam line, element by element, calculating the properties of the beam or other quantities, described below, where requested. Therefore one of the first elements is a specification of the phase space region occupied by the beam entering the system. Magnets and intervening spaces and other elements then follow in the sequence in which they occur in the beam line. Specifications of calculations to be done or of configurations other than normal are placed in the same sequence, at the point where their effect is to be made.

  11. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  12. The role of the Wigner function in charged-particle beam transport

    Directory of Open Access Journals (Sweden)

    Fedele Renato

    2014-01-01

    Full Text Available The role of the Wigner function in the dynamics of charged particle beams in high-energy accelerating machines is discussed. This is done within the quantum-like description of the thermal wave model (TWM. A brief review of the numerical experiments showing satisfactory agreement between TWM and the particle tracking simulations is presented. A simple analysis in phase space in terms of the Wigner quasidistribution, showing that TWM is capable of reproducing the beam dynamics in the presence of the space charge effects, is put froward.

  13. Role of Broken Gauge Symmetry in Transport Phenomena Involving Neutral and Charged Particles in Finite Lattice

    OpenAIRE

    Chubb, Scott R

    2005-01-01

    As opposed to the conventional, approximate theory of electrical conduction in solids, which is based on energy band, quasi-particle states in infinite lattices, a rigorous theory exists that can be used to explain transport phenomena, in finite lattices, at reduced temperature, through the effects of a broken gauge symmetry: The loss of translational invariance with respect to Galilean transformations that maintain particle-particle separation. Implications of this result in areas related to...

  14. Study of CHarged particles transport across model and real phospholipid bilayers

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Jakl, M.; Mareček, Vladimír

    Tenerife: WSEAS Press, 2009 - (Bulucea, C.; Mladenov, V.; Pop, E.; Leba, M.; Mastorakis, N.), s. 212-217 ISBN 978-960-474-142-7. [International Conference on Environment, Ecosystems and Development (EED ´09) /7./. Tenerife (ES), 14.12.2009-16.12.2009] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40550506 Keywords : phospholipid bilayers * environment * trace elements * charged particles Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Charged particle beams

    CERN Document Server

    Humphries, Stanley

    2013-01-01

    Detailed enough for a text and sufficiently comprehensive for a reference, this volume addresses topics vital to understanding high-power accelerators and high-brightness-charged particle beams. Subjects include stochastic cooling, high-brightness injectors, and the free electron laser. Humphries provides students with the critical skills necessary for the problem-solving insights unique to collective physics problems. 1990 edition.

  16. Charged Particle Optics Theory

    Czech Academy of Sciences Publication Activity Database

    Hawkes, P. W.; Lencová, Bohumila

    -, č. 6 (2006), s. 6-8 Grant ostatní: EC 5RP(XE) G5RD-CT-2000-00344 Institutional research plan: CEZ:AV0Z20650511 Keywords : optics of charged particles * design of ion lithography system * spot profile * the finite element method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering www.phantomsnet.net

  17. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    Science.gov (United States)

    Yang, Y. M.; Bednarz, B.

    2013-02-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  18. Magnetic guidance of charged particles

    CERN Document Server

    Dubbers, Dirk

    2015-01-01

    Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case and present analytical point spread functions (PSF) for magnetic transport that deviate strongly from previous results. The "magnetic" PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests, for instance in neutrino mass retardation spectrometers.

  19. Magnetic guidance of charged particles

    Directory of Open Access Journals (Sweden)

    Dirk Dubbers

    2015-09-01

    Full Text Available Many experiments and devices in physics use static magnetic fields to guide charged particles from a source onto a detector, and we ask the innocent question: What is the distribution of particle intensity over the detector surface? One should think that the solution to this seemingly simple problem is well known. We show that, even for uniform guide fields, this is not the case, and we present analytical point spread functions (PSF for magnetic transport that deviate strongly from previous results. The “magnetic” PSF shows unexpected singularities, which were recently also observed experimentally, and which make detector response very sensitive to minute changes of position, field amplitude, or particle energy. In the field of low-energy particle physics, these singularities may become a source of error in modern high precision experiments, or may be used for instrument tests.

  20. Charged and neutral particle transport methods and applications: The CALOR code system

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.; Charlton, L.A.

    1997-04-01

    The CALOR code system, which is a complete radiation transport code system, is described with emphasis on the high-energy (> 20 MeV) nuclear collision models. Codes similar to CALOR are also briefly discussed. A current application using CALOR which deals with the development of the National Spallation Neutron Source is also given.

  1. Nanodosimetry of charged particles

    International Nuclear Information System (INIS)

    In last year's annual report, the authors described the development of an ultra-miniature counter (UMC), described some of its physical characteristics, and presented some first measurements with this counter of microdosimetric spectra for neutrons (15 MeV) and photons (137Cs). It remains to investigate in more detail the operational characteristics of the UMC and if possible, to make a comparison of relevant physical parameters such as gain and multiplication radius with the Segur theory. In order to accomplish these objectives, it is necessary to build a wall-less version of the UMC, which will be amenable to calibration and investigation with collimated beams of charged particles. The design of such a counter has been worked out in principle. Investigations into the optimal design of electrode structures and dimensions are being carried out at present. The main problem occurs with the design of the grid structure which is required to define the outer boundary of the collecting volume. Our initial attempts would make it appear at present that a counter of 1 to 1.5 mm diameter is feasible. This should be more than adequate to provide an appropriately wall-less counter within a reasonable size cavity. It will probably be about a year before a working counter can be produced. In the interim, it is possible to make some initial efforts into the investigation of operational characteristics of a wall-less UMC by making use of similar design, but at a somewhat larger size. These first attempts at measurement of charged particle microdosimetric spectra at nanometer site provide added evidence that these counters can yield useful microdosimetric data at far smaller site sizes than heretofore attempted. They also provide added incentive and encouragement for development of wall-less UMC

  2. Matching the phase volume of a transported charged particle beam by a doublet of quadrupole lenses

    International Nuclear Information System (INIS)

    The problem of matching the phase volume of a transported beam is commonly solved by nonlinear programming methods. Writing a system of matching equations that is transcendental, one can turn to the following stage: its solution by direct numerical methods. In this paper the system of matching equations will be reduced to one equation with one unknown by means of successive analytical transformations. This was achieved by the corresponding substitution of the variables. The last equation was solved on a computer. As a result, such characteristics as drift lengths, lengths and gradients of magnetic lenses are written analytically depending on the chosen vector of the parameters and the unknown quantity as indicated. The formulas obtained are realized as a FORTRAN program on a CDC-6500 computer. In the user's dialogue with the computer, this program allows to correct fast all values of free parameters and to choose the most economical version of the calculated matching structure. Geometrical and magnetic characteristics of the beam transport system under investigation are presented in the version conclusively chosen. (orig.)

  3. SIMPLIFIED CHARGED PARTICLE BEAM TRANSPORT MODELING USING COMMONLY AVAILABLE COMMERCIAL SOFTWARE

    International Nuclear Information System (INIS)

    Particle beam modeling in accelerators has been the focus of considerable effort since the 1950s. Many generations of tools have resulted from this process, each leveraging both prior experience and increases in computer power. However, continuing innovation in accelerator technology results in systems that are not well described by existing tools, so the software development process is on-going. We discuss a novel response to this situation, which was encountered when Jefferson Lab began operation of its energy-recovering linacs. These machines were not readily described with legacy soft-ware; therefore a model was built using Microsoft Excel. This interactive simulation can query data from the accelerator, use it to compute machine parameters, analyze difference orbit data, and evaluate beam properties. It can also derive new accelerator tunings and rapidly evaluate the impact of changes in machine configuration. As it is spreadsheet-based, it can be easily user-modified in response to changing requirements. Examples for the JLab IR Upgrade FEL are presented

  4. Vlasov's kinetic theory of the collective charged particle beam transport through a magnetized plasma in the strongly nonlocal regime

    International Nuclear Information System (INIS)

    Plasma-based accelerator schemes represent the first step of the research-development of the future accelerator machines. Within the Vlasov's kinetic theory, describing the plasma wake field interaction, the collective transport of a warm non-laminar relativistic charged particle beam is analyzed in the strongly nonlocal regime, where the beam spot-size is much less than the plasma wavelength. This is done in the overdense regime, i.e., the beam density is much less than the plasma density. The beam is supposed to be sufficiently long to experience the adiabatic shielding by the plasma. In these conditions, we neglect the longitudinal beam dynamics and focus on the transverse one only. We derive the virial description (envelope description) from the 2D Vlasov-Poisson-type system of equations that governs the transverse self-consistent plasma wake field excitation. The resulting envelope equation is then reduced, in the aberration-less approximation, to a differential equation for the beam spot size, where the role of the ambient magnetic field is evaluated in both laboratory and astrophysical environments. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are found. (authors)

  5. Improvement of charged particles transport across a transverse magnetic filter field by electrostatic trapping of magnetized electrons

    Science.gov (United States)

    Das, B. K.; Hazarika, P.; Chakraborty, M.; Bandyopadhyay, M.

    2014-07-01

    A study on the transport of charged particles across a magnetic filter field has been carried out in a double plasma device (DPD) and presented in this manuscript. The DPD is virtually divided into two parts viz. source and target regions by a transverse magnetic field (TMF) which is constructed by inserting strontium ferrite magnets into two stainless steel rectangular tubes. Plasma electrons are magnetized but ions are unmagnetized inside the TMF region. Negative voltages are applied to the TMF tubes in order to reduce the loss of electrons towards them. Plasma is produced in the source region by filament discharge method and allowed to flow towards the target region through this negatively biased TMF. It is observed that in the target region, plasma density can be increased and electron temperature decreased with the help of negatively biased TMF. This observation is beneficial for negative ion source development. Plasma diffusion across the negatively biased TMF follows Bohm or anomalous diffusion process when negative bias voltage is very less. At higher negative bias, diffusion coefficient starts deviating from the Bohm diffusion value, associated with enhanced plasma flow in the target region.

  6. Surface charge accumulation of particles containing radionuclides in open air

    International Nuclear Information System (INIS)

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. - Highlights: • Radioactivity-induced charge enhances electrostatic particle interactions. • Radioactivity-induced particle charging is important in radioactivity transport. • Ionization rate coefficients of beta-emitting radionuclides are reported

  7. Heavy charged particle therapy

    International Nuclear Information System (INIS)

    A pilot study of heavy charged particles with heavy ion medical accelerator in Chiba (HIMAC) for advanced H and N cancer has been carried out from June 1994 at National Institute of Radiological Sciences (NIRS). As of the beginning of August 1994, three patients were treated by 290 MeV carbon ions. The patients had adenocarcinoma of the cheek mucosa, squamous cell carcinoma of the ethmoid sinus and adenoid cystic carcinoma of the sublingual gland. Patients were immobilized by individual head coach and thermosplint facial shell. Individual collimators and bolus were also prepared for each ports. Dose fractionation for the initial pilot study group was 16.2 GyE/18 fractions/6 weeks, which would be equivalent to standard fractionation of 60.0 Gy/30 fractions/6 weeks with photons. This dose fractionation was considered to be 20% lesser than 75 GyE/37.5 fractions/7.5 weeks, which is estimated to be maximum tolerance dose for advanced H and N cancers. HIMAC worked well and there was no major trouble causing any treatment delay. Acute skin reactions of 3 patients were 2 cases of bright erythema with patchy moist desquamation and one of dull erythema, which were evaluated as equivalent reaction with irradiated dose. Acute mucosa reactions appeared to have lesser reaction than predicted mucositis. Tumor reactions of three patients were partial reaction (PR) at the end of treatment and nearly complete remission (CR) after 6 months of treatment. From October 1994, we started to treat patients with advanced H and N cancer with 10% high dose than previous dose. And new candidates of pilot study with non small cell lung cancer, brain tumor and carcinoma of the tongue were entered into pilot study. At the end of February 1995, a total of 21 patients were treated by carbon ions. (J.P.N.)

  8. Development of multi-gap resistive plate chambers with low-resistive silicate glass electrodes for operation at high particle fluxes and large transported charges

    International Nuclear Information System (INIS)

    Using electrodes made of semi-conductive glass is an innovative way of improving the rate capability of resistive plate chambers. To address this issue, we developed 6- and 10-gap counters with low-resistive silicate glass electrodes (bulk resistivity ∼1010 Ω cm) suited for time-of-flight (TOF) applications at high rates and high transported charges. Measurements were performed at GSI-Darmstadt under uniform an irradiation by secondary particles stemming from proton reactions at 2.5 GeV/A. For the 10-gap MRPC, time resolutions below 90 ps and efficiencies larger than 90% were obtained at counting rates up to 25 kHz/cm2. When the particle flux increases every 5 kHz/cm2, the efficiency decreases by 1% and the time resolution deteriorates by 4 ps. A tolerable decrease of the material conductivity was also observed for a total transported charge of 1 C/cm2.

  9. Optics of charged particles

    International Nuclear Information System (INIS)

    Suitable for both the specialist and non-specialist, this book develops all statements from first principles. Key chapters of the book focus upon how to design particle-optical systems, the systematics of image abberations, the effects of fringing fields, systematics of beams, and solutions for particle-optical systems. An undergraduate background in physics and mathematics is required for this work

  10. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  11. Dust particle charging in sheath

    International Nuclear Information System (INIS)

    The charging and the screening of spherical dust particles in sheaths near the wall were studied using computer simulation. The three-dimensional PIC/MCC method and molecular dynamics method were applied to describe plasma particles motion and interaction with macroscopic dust grain. Calculations were carried out at different neutral gas pressures and wall potentials. Values of the charge of the dust particles and spatial distributions of plasma parameters are obtained by modelling. The results have shown that the charge of the dust particles in the sheath, as well as the spatial distribution of the ions and electrons near the dust particles, depend strongly on the wall potential. It is shown that for large negative values of the wall potential the negative charge of a dust particle decreases due to the decline of the electron density in its vicinity. In addition, the flow of energy of the ions on the surface of dust particles is increased due to better focusing effect of the dust particle field on ions.

  12. Discrete Element Modeling of Triboelectrically Charged Particles

    Science.gov (United States)

    Hogue, Michael D.; Calle, Carlos I.; Weitzman, Peter S.; Curry, David R.

    2008-01-01

    Tribocharging of particles is common in many processes including fine powder handling and mixing, printer toner transport and dust extraction. In a lunar environment with its high vacuum and lack of water, electrostatic forces are an important factor to consider when designing and operating equipment. Dust mitigation and management is critical to safe and predictable performance of people and equipment. The extreme nature of lunar conditions makes it difficult and costly to carry out experiments on earth which are necessary to better understand how particles gather and transfer charge between each other and with equipment surfaces. DEM (Discrete Element Modeling) provides an excellent virtual laboratory for studying tribocharging of particles as well as for design of devices for dust mitigation and for other purposes related to handling and processing of lunar regolith. Theoretical and experimental work has been performed pursuant to incorporating screened Coulombic electrostatic forces into EDEM, a commercial DEM software package. The DEM software is used to model the trajectories of large numbers of particles for industrial particulate handling and processing applications and can be coupled with other solvers and numerical models to calculate particle interaction with surrounding media and force fields. While simple Coulombic force between two particles is well understood, its operation in an ensemble of particles is more complex. When the tribocharging of particles and surfaces due to frictional contact is also considered, it is necessary to consider longer range of interaction of particles in response to electrostatic charging. The standard DEM algorithm accounts for particle mechanical properties and inertia as a function of particle shape and mass. If fluid drag is neglected, then particle dynamics are governed by contact between particles, between particles and equipment surfaces and gravity forces. Consideration of particle charge and any tribocharging and

  13. Charged-particle coating

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-08-29

    Advanced target designs require thicker (approx. 300 ..mu..m) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized.

  14. Charged-particle coating

    International Nuclear Information System (INIS)

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  15. Charged particle acceleration with plasmas

    International Nuclear Information System (INIS)

    Under certain conditions it is possible to create spatial charge waves (OCE) in a plasma (ionized gas) through some disturbance mechanism, the phenomenon produces electric fields of high intensity that are propagated at velocities near to a c. When charged particles are connected to such OCE they may be accelerated to very high energies in short distances. At present electric fields of approximately 107 V/cm have been observed. (Author). 4 refs

  16. Effects of Turbulent Magnetic Fields on the Transport and Acceleration of Energetic Charged Particles: Numerical Simulations with Application to Heliospheric Physics

    CERN Document Server

    Guo, Fan

    2012-01-01

    After introduction we focus on: the transport of charged particles, the acceleration of ions at shocks, and the acceleration of electrons at shocks. Chapter 2 studies the propagation of solar energetic particles(SEPs) in turbulent magnetic fields. Particle trajectories in turbulent magnetic fields are numerically integrated. The turbulence includes a Kolmogorov-like power spectrum containing a broad range of scales. Small-scale variations in particle intensities(dropouts) and velocity dispersions can be reproduced. The result gives a constraint on the error of onset analysis for inferring SEP informations. We find that dropouts are rarely produced using the two-component model(Matthaeus et al., 1990). The result questions the turbulence model. Chapter 3 studies the acceleration of ions. We use 3-D hybrid simulations to study the acceleration of low-energy particles at parallel shocks. We find that particles gain energy by reflection at the shock. The protons can move off field lines in 3-D electric and magnet...

  17. Space charge dominated beam transport

    International Nuclear Information System (INIS)

    We consider beam transport systems where space charge forces are comparable in strength with the external focusing force. Space charge then plays an important role for beam transmission and emittance growth. We use the envelope model for matching and the generalized field energy equations to study emittance growth. Analytic results are compared with numerical simulation. (orig.)

  18. Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas

    International Nuclear Information System (INIS)

    The kinetic theory of charged particles in gases has come a long way in the last 60 years or so, but many of the advances have yet to find their way into contemporary studies of low-temperature plasmas. This review explores the way in which this gap might be bridged, and focuses in particular on the analytic framework and numerical techniques for the solution of Boltzmann's equation for both electrons and ions, as well as on the development of fluid models and semi-empirical formulae. Both hydrodynamic and non-hydrodynamic regimes are considered and transport properties are calculated in various configurations of dc and ac electric and magnetic fields. We discuss in particular the duality in transport coefficients arising from non-conservative collisions (attachment, ionization). (review article)

  19. Geometrical charged-particle optics

    CERN Document Server

    Rose, Harald

    2012-01-01

    This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...

  20. Medium energy charged particle spectrometer

    International Nuclear Information System (INIS)

    The charged particle spectrometer E8 on HELIOS A and B will be described in some detail. It covers proton energies from 80 keV to 6 MeV, electrons from 20 keV to 2 MeV, and positrons from 150 to 550 keV. Its flight performance will be discussed. From examples of measurements the capability of the instrument will be demonstrated. (orig.)

  1. Computations in Charged Particle Optics

    Czech Academy of Sciences Publication Activity Database

    Oral, Martin; Radlička, Tomáš

    Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014, s. 23-24. ISBN 978-80-87441-12-1. [Workshop of Interesting Topics of SEM and ESEM. Mikulov (CZ), 26.08.2014-31.08.2014] R&D Projects: GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : charged Particle Optics * computations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  2. Heavy charged particle radiotherapy trial

    International Nuclear Information System (INIS)

    Through mid-1985, a total of 49 patients received heavy-charged-particle irradiation for chordoma, chondrosarcoma, meningioma, or neurilemmoma of the base of skull or juxtaspinal area. The mean tumor dose was 68 Gray-equivalent, ranging from 26 to 80. Control within the irradiated area was obtained in 35 of 49. The median follow up in all 49 patients is 21 months, with a range from 3-90 months. Serious complications were seen in a small number of patients, with cranial nerve injury in two, transverse myelitis in one, and brain necrosis in three patients. In 42 patients with tumors of other histologies and/or sites, including tumors of paranasal sinuses, retroperitoneum, soft tissue and miscellaneous other sites, heavy charged particles were also used to deliver a higher tumor dose than possible with standard irradiation techniques. In the group, 21/42 (50%) have had local tumor control, also a good result considering the extent and the range of tumor types treated. The authors believe that there are a number of sites in addition to the juxtaspinal/base of skull tumors that will show long term benefit from treatment with heavy charged particles

  3. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.

    Science.gov (United States)

    Grimes, B. A.; Liapis, A. I.

    2001-02-01

    Mass-transfer systems based on electrokinetic phenomena (i.e., capillary electrochromatography (CEC)) have shown practical potential for becoming powerful separation methods for the biotechnology and pharmaceutical industries. A dynamic mathematical model, consisting of the momentum balance and the Poisson equations, as well as the unsteady-state continuity expressions for the cation and anion of the background electrolyte and of a positively charged analyte (adsorbate), is constructed and solved to determine quantitatively the electroosmotic velocity, the electrostatic potential, the concentration profiles of the charged species in the double layer and in the electroneutral core region of the fluid in the interstitial channels for bulk flow in the packed chromatographic column, and the axial current density profiles as the adsorbate adsorbs onto the negatively charged fixed sites on the surface of the nonporous particles packed in the chromatographic column. The frontal analysis mode of operation is simulated in this work. The results obtained from model simulations provide significant physical insight into and understanding of the development and propagation of the dynamic profile of the concentration of the adsorbate (analyte) and indicate that sharp, highly resolved adsorption fronts and large amounts of adsorbate in the adsorbed phase for a given column length can be obtained under the following conditions: (i) The ratio, gamma(2, 0), of the electroosmotic velocity of the mobile liquid phase at the column entrance after the adsorption front has passed the column entrance to the electrophoretic velocity of the anion is very close to -1. The structure of the equations of the model and model simulations indicate that a stable adsorption front cannot develop when gamma(2, 0) is less than -1 unless the value of the mobility of the cation is less than the value of the mobility of the analyte, which may be a rare occurrence in practical CEC systems. (ii) The ratio of

  4. Direct charged particle imaging sensors

    International Nuclear Information System (INIS)

    CMOS image sensors optimized for charged particle imaging applications, such as electron microscopy and particle physics, have been designed and characterized. These directly image charged particles without reliance on performance-degrading hybrid technologies such as the use of scintillating materials. Based on standard CMOS active pixel sensor (APS) technology, the sensor arrays uses an 8-20 μm epitaxial layer that acts as a thicker sensitive region for the generation and collection of ionization electrons resulting from impinging high-energy particles. This results in a 100% fill factor and a far larger signal per incident electron than a standard CMOS photodiode could provide. A 512x550 pixels prototype has been fabricated and used extensively in an electron microscope, including having been used to take sample images. Temporal noise was measured to be 0.9 mV RMS, and the dynamic range was 60 dB. Power consumption at 70 frames/s is 20 mW. The full-width half-maximum of the collected ionization electron distribution was found to be 5.5 μm, yielding a spatial resolution of approximately 2.3 μm for individual incident electrons, and the modulation transfer function of the sensor at the Nyquist limit is to be 32%

  5. The dynamics of a charged particle

    OpenAIRE

    Rohrlich, Fritz

    2008-01-01

    Using physical arguments, I derive the physically correct equations of motion for a classical charged particle from the Lorentz-Abraham-Dirac equations (LAD) which are well known to be physically incorrect. Since a charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation accounts for that by imposing a basic condition on the external force. That condition ensures that the particle's finite size charge distribution looks like a point charg...

  6. TURTLE with MAD input (Trace Unlimited Rays Through Lumped Elements) -- A computer program for simulating charged particle beam transport systems and DECAY TURTLE including decay calculations

    International Nuclear Information System (INIS)

    TURTLE is a computer program useful for determining many characteristics of a particle beam once an initial design has been achieved, Charged particle beams are usually designed by adjusting various beam line parameters to obtain desired values of certain elements of a transfer or beam matrix. Such beam line parameters may describe certain magnetic fields and their gradients, lengths and shapes of magnets, spacings between magnetic elements, or the initial beam accepted into the system. For such purposes one typically employs a matrix multiplication and fitting program such as TRANSPORT. TURTLE is designed to be used after TRANSPORT. For convenience of the user, the input formats of the two programs have been made compatible. The use of TURTLE should be restricted to beams with small phase space. The lumped element approximation, described below, precludes the inclusion of the effect of conventional local geometric aberrations (due to large phase space) or fourth and higher order. A reading of the discussion below will indicate clearly the exact uses and limitations of the approach taken in TURTLE

  7. Interactions of charged dust particles in clouds of charges

    Science.gov (United States)

    Gundienkov, Vladimir; Yakovlenko, Sergey

    2004-03-01

    Two charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.

  8. Charge transport in nanoscale junctions.

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  9. Heavy charged particle dosimetry, theory and application

    International Nuclear Information System (INIS)

    Experiments were made to verify the theory of the transport of heavy particles through a medium using L-α-alaline for the detection of radiation. The dose response of L-α-alaline was measured for X-ray radiation of an energy of 4 to 16 MeV, electron radiation of an energy of 6, 10 and 20 MeV, low-LET radiation, 16 MeV and 6 MeV protons, 20 MeV particles and other charged particles. Of the measured dose responses RE values were experimentally obtained and compared with calculated results. Free and very stable radicals were obtained by radiation. Fading of low-LET and high-LET radiation was determined as induced by the said radicals. Using ESR spectra it was found that diverse chemical reactions take place in the track of high-LET particles. However, chemical reactions in the track of a heavy charged particle will be the same if the medium is homogeneously irradiated with low-LET radiation. (E.S.). 7 figs., 1 tab., 11 refs

  10. Particle size dependence on the structural, transport and optical properties of charge-ordered Pr0.6Ca0.4MnO3

    International Nuclear Information System (INIS)

    Structural, transport and optical properties of nano-crystalline Pr0.6Ca0.4MnO3 have been investigated to emphasize on the semiconducting properties of charge-ordered manganite. Rietveld refinement of X-ray diffraction pattern of Pr0.6Ca0.4MnO3 nanoparticles show that due to increase in sintering temperature, MnO6 octahedra elongated along z-direction and compressed in x-y plane. Both Mn–O–Mn angles are found to decrease with increasing sintering temperature. Fourier transform infrared (FTIR) spectroscopy measurements reveal that the stretching and bending vibration of Mn–O–Mn is responsible for the change in Mn–O–Mn bond length and bond angle respectively. With increasing sintering temperature, these vibrations tend to increase, which resulted in the further distortion of MnO6 octahedra. Magnetic measurements suggest that charge ordering is established and system becomes antiferromagnetic with increasing particle size. Resistivity behavior of Pr0.6Ca0.4MnO3 nanoparticles clearly exhibit semiconducting nature of these systems, which is due to the formation of charge-ordered state of Mn3+ and Mn4+. Estimated optical band-gap of ∼3.7 eV for Pr0.6Ca0.4MnO3 nanocrystals, makes it a potential candidate for wide band-gap magnetic semiconductors. - Highlights: • Pr0.6Ca0.4MnO3 nanoparticles have been synthesized via sol–gel route. • Optical properties of charge-ordered Pr0.6Ca0.4MnO3 have been investigated. • Pr0.6Ca0.4MnO3 nanoparticles exhibit wide band-gap (3.7 eV) semiconducting nature. • Potential candidate for wide band-gap magnetic semiconductor device applications

  11. Charge transport by holographic Fermi surfaces

    CERN Document Server

    Faulkner, Thomas; Liu, Hong; McGreevy, John; Vegh, David

    2013-01-01

    We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipation is as efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in temperature.

  12. Charge transport in desolvated DNA

    Science.gov (United States)

    Wolter, Mario; Elstner, Marcus; Kubař, Tomáš

    2013-09-01

    The conductivity of DNA in molecular junctions is often probed experimentally under dry conditions, but it is unclear how much of the solvent remains attached to the DNA and how this impacts its structure, electronic states, and conductivity. Classical MD simulations show that DNA is unstable if the solvent is removed completely, while a micro-hydrated system with few water molecules shows similar charge transport properties as fully solvated DNA does. This surprising effect is analyzed in detail by mapping the density functional theory-based electronic structure to a tight-binding Hamiltonian, allowing for an estimate of conductivity of various DNA sequences with snapshot-averaged Landauer's approach. The characteristics of DNA charge transport turn out to be determined by the nearest hydration shell(s), and the removal of bulk solvent has little effect on the transport.

  13. Charge transport in organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ortmann, Frank

    2009-07-01

    The understanding of charge transport is one of the central goals in the research on semiconducting crystals. For organic crystals this is particularly complicated due to the strength of the electron-phonon interaction which requires the description of a seamless transition between the limiting cases of a coherent band-transport mechanism and incoherent hopping. In this thesis, charge transport phenomena in organic crystals are studied by theoretical means. A theory for charge transport in organic crystals is developed which covers the whole temperature range from low T, where it reproduces an expression from the Boltzmann equation for band transport, via elevated T, where it generalizes Holstein's small-polaron theory to finite bandwidths, up to high T, for which a temperature dependence equal to Marcus' electron-transfer theory is obtained. Thereby, coherent band transport and thermally induced hopping are treated on equal footing while simultaneously treating the electron-phonon interaction non-perturbatively. By avoiding the approximation of narrow polaron bands the theory allows for the description of large and small polarons and serves as a starting point for computational studies. The theoretical description is completed by using ab initio material parameters for the selected crystals under study. These material parameters are taken from density functional theory calculations for durene, naphthalene, and guanine crystals. Besides the analysis of the transport mechanism, special focus is put on the study of the relationship between mobility anisotropy and structure of the crystals. This study is supported by a 3D-visualization method for the transport channels in such crystals which has been derived in this thesis. (orig.)

  14. Theory and design of charged particle beams

    CERN Document Server

    Reiser, Martin

    1994-01-01

    Although particle accelerators are the book's main thrust, it offers a broad synoptic description of beams which applies to a wide range of other devices such as low-energy focusing and transport systems and high-power microwave sources. Develops material from first principles, basic equations and theorems in a systematic way. Assumptions and approximations are clearly indicated. Discusses underlying physics and validity of theoretical relationships, design formulas and scaling laws. Features a significant amount of recent work including image effects and the Boltzmann line charge density prof

  15. Supplementary kinetic constants of charged particles

    OpenAIRE

    Ribaric, Marijan; Sustersic, Luka

    2006-01-01

    We put forward: (A) An improved description of classical, kinetic properties of a charged pointlike physical particle that consists, in addition to its mass and charge, also of the Eliezer and Bhabha kinetic constants; and (B) a proposal to evaluate these kinetic constants by considering the trajectories of charged particles in an acccelerator.

  16. Spinning charged test particles and Cosmic Censorship

    International Nuclear Information System (INIS)

    The authors consider spinning charged test particles in the gravitational field of a rotating charged black hole, and it is shown that the hole cannot be destroyed, according to the Cosmic Censorship hypothesis. (Auth.)

  17. Mechanisms for DNA Charge Transport

    OpenAIRE

    Genereux, Joseph C.; Barton, Jacqueline K.

    2010-01-01

    DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to...

  18. An improved Monte Carlo study of coherent scattering effects of low energy charged particle transport in Percus-Yevick liquids

    CERN Document Server

    Tattersall, W J; Boyle, G J; White, R D

    2015-01-01

    We generalize a simple Monte Carlo (MC) model for dilute gases to consider the transport behavior of positrons and electrons in Percus-Yevick model liquids under highly non-equilibrium conditions, accounting rigorously for coherent scattering processes. The procedure extends an existing technique [Wojcik and Tachiya, Chem. Phys. Lett. 363, 3--4 (1992)], using the static structure factor to account for the altered anisotropy of coherent scattering in structured material. We identify the effects of the approximation used in the original method, and develop a modified method that does not require that approximation. We also present an enhanced MC technique that has been designed to improve the accuracy and flexibility of simulations in spatially-varying electric fields. All of the results are found to be in excellent agreement with an independent multi-term Boltzmann equation solution, providing benchmarks for future transport models in liquids and structured systems.

  19. Charge of dust particles in a particle chain

    CERN Document Server

    Yousefi, Razieh; Matthews, Lorin Swint; Hyde, Truell W

    2016-01-01

    Charged dust particles form structures which are extended in the vertical direction in the electrode sheath of a rf discharge when confined within a glass box. The charge on each particle as a function of height varies due to the changing plasma conditions and the wakefield of upstream particles. Here an analysis of the equilibrium state of chains of varying number of particles is analyzed to determine the charge on each particle within a vertically extended chain as well as the magnitude of the positive wakefield charge.

  20. Worldline deviations of charged spinning particles

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, M. [Department of Physics, Shahid Beheshti University, Evin, 19839 Tehran (Iran, Islamic Republic of); Mohseni, M. [Physics Department, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of)]. E-mail: m-mohseni@pnu.ac.ir; Sepangi, H.R. [Department of Physics, Shahid Beheshti University, Evin, 19839 Tehran (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics, Tehran (Iran, Islamic Republic of)

    2005-10-20

    The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of charged spinning particles in the framework of Dixon-Souriau equations of motion.

  1. Worldline deviations of charged spinning particles

    CERN Document Server

    Heydari-Fard, M; Sepangi, H R

    2005-01-01

    The geodesic deviation equation is generalized to worldline deviation equations describing the relative accelerations of charged spinning particles in the framework of Dixon-Souriau equations of motion.

  2. Charge fluctuations in nonlinear heat transport

    OpenAIRE

    Gergs, Niklas M.; Hörig, Christoph B. M.; Wegewijs, Maarten R.; Schuricht, Dirk

    2015-01-01

    We show that charge fluctuation processes are crucial for the nonlinear heat conductance through an interacting nanostructure, even far from a resonance. The often made assumption that off-resonant transport proceeds only by virtual occupation of charge states, underlying exchange-scattering models of transport, can fail dramatically for heat transport as compared to charge transport. This indicates that nonlinear heat transport spectroscopy may be a very promising experimental tool, in parti...

  3. Delay Equation for Charged Brown Particle

    OpenAIRE

    Vlasov, Alexander A.

    2001-01-01

    In previous work (physics/0004026) was shown, with the help of numerical calculations, that the effective Brown temperature for charged particle is lower than that for particle without charge. Here we derive this result without numerical calculations, integrating the delay equation analytically, as for zero, so for nonzero viscosity.

  4. Beam transport and space charge compensation strategies (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Meusel, O., E-mail: o.meusel@iap.uni-frankfurt.de; Droba, M.; Noll, D.; Schulte, K.; Schneider, P. P.; Wiesner, C. [IAP, Goethe University Frankfurt, Frankfurt D-60438 (Germany)

    2016-02-15

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.

  5. Beam transport and space charge compensation strategies (invited).

    Science.gov (United States)

    Meusel, O; Droba, M; Noll, D; Schulte, K; Schneider, P P; Wiesner, C

    2016-02-01

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed. PMID:26932109

  6. Beam transport and space charge compensation strategies (invited)

    International Nuclear Information System (INIS)

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed

  7. Charge transport in disordered materials

    Science.gov (United States)

    Gagorik, Adam Gerald

    This thesis is focused on on using Monte Carlo simulation to extract device relevant properties, such as the current voltage behavior of transistors and the efficiency of photovoltaics, from the hopping transport of molecules. Specifically, simulation is used to study organic field-effect transistors (OFETs) and organic photo-voltaics (OPVs). For OFETs, the current was found to decrease with increasing concentration of traps and barriers in the system. As the barrier/trap concentration approaches 100%, the current recovers as carrier begin to travel through the manifold of connected trap states. Coulomb interactions between like charges are found to play a role in removing carriers from trap states. The equilibrium current in OFETs was found to be independent of charge injection method, however, the finite size of devices leads to an oscillatory current. Fourier transforms of the electrical current show peaks that vary non-linearly with device length, while being independent of device width. This has implications for the mobility of carriers in finite sized devices. Lastly, the presence of defects and high barriers (> 0.4 eV) was found to produce negative differential resistance in the saturation region of OFET curves, unlike traps. While defects and barriers prohibit carriers from reaching the drain at high voltages, the repulsive interaction between like charged carriers pushes charges around the defects. For OPVs, the effects of device morphology and charge delocalization were studied. Fill factors increased with domain size in monolayer isotropic morphologies, but decreased for band morphologies. In single-phase systems without Coulomb interactions, astonishingly high fill factors (. 70%) were found. In multilayer OPVs,a complex interplay of domain size, connectivity, tortuosity, interface trapping, and delocalization determined efficiency.

  8. Scintillation Detectors for Charged Particles and Photons

    CERN Document Server

    Lecoq, P

    2011-01-01

    Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scint...

  9. Charged-particle activation analysis

    International Nuclear Information System (INIS)

    The paper discusses the methodology and application of nuclear activation with ion beams (19 via 16O(3He,p)18F, 12C(3He,α)11C and 14N(p,α)11C respectively. Recently, triton activation has been shown to be inherently still superior to 3He activation for the determination of oxygen [16O(3H,n)18F]. Lithium, boron, carbon and sulphur can be detected rapidly, nondestructively and with high sensitivity (approximately 0.25ppm for Li and B) via ''quasi-prompt'' activation based on the detection of short-lived, high-energy beta emitters (10ms1H(7Li,n)7Be for example. Nondestructive multielement analysis: Proton activation has the inherent potential for meeting requirements of broad elemental coverage, sensitivity (ppm and sub-ppm range) and selectivity. Up to 30 elements have been determined in Al, Co, Ag, Nb, Rh, Ta and biological samples, using 12-MeV proton activation followed by gamma-ray spectrometry. These capabilities are further enhanced with the counting of X-ray emitters, 28 elements (269) and accuracy using proton activation. 204Pb/206Pb ratios can also be determined with a relative precision of a few per cent. Although charged-particle activation analysis is a well-established trace analysis technique, broad potential capabilities remain to be explored, e.g. those arising from ultrashort-lived nuclides, heavy ion interactions and the combination of delayed and prompt methods. (author)

  10. Coagulation of charged particles in dust plasma

    International Nuclear Information System (INIS)

    One studied peculiarities of behaviour of small particles in dust plasma resulted on the one hand, from suppression of coagulation due to monopolar charging within the range of particle dimensions under the Debye radius of shielding and, on the other hand, from leveling of this case for particles of large dimensions. On the basis of similarity ratios one determined the range of parameters making linear approximation of particle charge dependence on their dimension true. In terms of the modified classical theory of coagulation in diffusion approximation one studied certain anomalies of behavior of dimension distribution of particles. It is determined that in contrast to the ordinary aerosol in dust plasma as time passes one may reduce dispersion of distribution and average dimensions of particles. For the first time one demonstrates the possibility to realize long-lived quasiliquid state of dust plasma associated with the anomalous behaviour of distribution function of coagulating charged particles according to dimensions

  11. Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing

    OpenAIRE

    Maclean, K; Mentzel, T. S.; Kastner, M. A.

    2009-01-01

    We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances. At high temperatures, where the a-Si:H resistance is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and t...

  12. Charged Particle Diffusion in Isotropic Random Static Magnetic Fields

    Science.gov (United States)

    Subedi, P.; Sonsrettee, W.; Matthaeus, W. H.; Ruffolo, D. J.; Wan, M.; Montgomery, D.

    2013-12-01

    Study of the transport and diffusion of charged particles in a turbulent magnetic field remains a subject of considerable interest. Research has most frequently concentrated on determining the diffusion coefficient in the presence of a mean magnetic field. Here we consider Diffusion of charged particles in fully three dimensional statistically isotropic magnetic field turbulence with no mean field which is pertinent to many astrophysical situations. We classify different regions of particle energy depending upon the ratio of Larmor radius of the charged particle to the characteristic outer length scale of turbulence. We propose three different theoretical models to calculate the diffusion coefficient each applicable to a distinct range of particle energies. The theoretical results are compared with those from computer simulations, showing very good agreement.

  13. Charge Transfer and Charge Transport on the Double Helix

    OpenAIRE

    N. P. Armitage; Briman, M.; Gruner, G.

    2003-01-01

    We present a short review of various experiments that measure charge transfer and charge transport in DNA. Some general comments are made on the possible connection between 'chemistry-style' charge transfer experiments that probe fluorescence quenching and remote oxidative damage and 'physics-style' measurements that measure transport properties as defined typically in the solid-state. We then describe measurements performed by our group on the millimeter wave response of DNA. By measuring ov...

  14. Sources for charged particles; Les sources de particules chargees

    Energy Technology Data Exchange (ETDEWEB)

    Arianer, J.

    1997-09-01

    This document is a basic course on charged particle sources for post-graduate students and thematic schools on large facilities and accelerator physics. A simple but precise description of the creation and the emission of charged particles is presented. This course relies on every year upgraded reference documents. Following relevant topics are considered: electronic emission processes, technological and practical considerations on electron guns, positron sources, production of neutral atoms, ionization, plasma and discharge, different types of positive and negative ion sources, polarized particle sources, materials for the construction of ion sources, low energy beam production and transport. (N.T.).

  15. Weak charges of charmed particles

    International Nuclear Information System (INIS)

    The matrix elements between the lowest states of the ΔC=1 weak charges are evaluated including the effect of SU4 breaking. The charges are obtained from the corresponding generators of the classification group by a unitary transformation U, which is factorized as the product of operators acting on a single quark: the breaking is naturally introduced by having different mixing parameters for the different quarks

  16. Robust statistical reconstruction for charged particle tomography

    Science.gov (United States)

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  17. New Charged Particles from Higgs Couplings

    CERN Document Server

    Cohen, Andrew G

    2012-01-01

    The recently reported observation of a new particle with mass about 125 GeV and couplings generally resembling those of the Standard Model Higgs boson provides a potential probe of the physics of electroweak symmetry breaking. Although the current data only provides hints, we suggest a particular combination of Higgs couplings as an assay for new charged particles connected with electroweak symmetry breaking, and construct a simple model with charge 5/3 quarks as a demonstration of its use.

  18. Measurement of the electrostatic charge in airborne particles: II - particle charge distribution of different aerosols

    Directory of Open Access Journals (Sweden)

    M. V. Rodrigues

    2006-03-01

    Full Text Available This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000 has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.

  19. Charge transfer and transport in DNA

    OpenAIRE

    Jortner, Joshua; Bixon, Mordechai; Langenbacher, Thomas; Michel-Beyerle, Maria E.

    1998-01-01

    We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the char...

  20. Particles with non abelian charges

    CERN Document Server

    Bastianelli, Fiorenzo; Corradini, Olindo; Latini, Emanuele

    2013-01-01

    Efficient methods for describing non abelian charges in worldline approaches to QFT are useful to simplify calculations and address structural properties, as for example color/kinematics relations. Here we analyze in detail a method for treating arbitrary non abelian charges. We use Grassmann variables to take into account color degrees of freedom, which however are known to produce reducible representations of the color group. Then we couple them to a U(1) gauge field defined on the worldline, together with a Chern-Simons term, to achieve projection on an irreducible representation. Upon gauge fixing there remains a modulus, an angle parametrizing the U(1) Wilson loop, whose dependence is taken into account exactly in the propagator of the Grassmann variables. We test the method in simple examples, the scalar and spin 1/2 contribution to the gluon self energy, and suggest that it might simplify the analysis of more involved amplitudes.

  1. Charged particle concepts for fog dispersion

    Science.gov (United States)

    Frost, W.; Collins, F. G.; Koepf, D.

    1981-01-01

    Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.

  2. Towards a microscopic theory of particle charging

    CERN Document Server

    Bronold, Franz X; Kersten, H; Deutsch, H

    2009-01-01

    We recently questioned the treatment of a dust particle as a perfect absorber for electrons and ions and proposed a surface model for the charge of a dust particle in a quiescent plasma which combines the microscopic physics at the grain boundary (sticking into and desorption from external surface states) with the macrophysics of the discharge (plasma collection fluxes). Within this model the charge and partial screening of the particle can be calculated without relying on the condition that the total electron collection flux balances on the grain surface the total ion collection flux. Grain charges obtained from our approach compared favorably with experimental data. The purpose of this paper is to describe our model in more detail, in particular, the hypotheses on which it is built, contrast it with the standard charging models based on flux balancing on the grain surface, and to analyze additional experimental data.

  3. Fractionally charged particles in cosmic rays

    CERN Document Server

    Bashindzhagyan, George

    2016-01-01

    The results of many experiments on a search of fractionally charged particles in cosmic rays have been reviewed. The registered by ATIC and PAMELA experiments change of the proton energy spectrum at about 250 GeV can be explained if fractionally charged particles with another energy spectrum slope actually mixed with protons but cannot be separated because of a strong dE/dx fluctuations. The performed simulations show that multilayer detectors can seriously help in such separation. In the Aragats experiment performed using multilayer proportional counter combined with hadron calorimeter a group of 4e/3 like events with unexpectedly high average energy has been registered. It could be explained by their different from regular hadrons energy spectrum. The ATIC experiment ionization spectrum in single charged particle area has been examined. An interesting bump in 2e/3 charge region was observed. The events in the bump have very different from regular protons angular distribution.

  4. Electro-optical detection of charged particles

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R; Lazarus, D M; Magurno, B; Nikas, D; Ozben, C; Srinivasan-Rao, T; Tsang, Thomas

    2000-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the polarization of laser light in a LiNbO sub 3 crystal. The modulation of the laser light during the passage of a pulsed electron beam was observed using a fast photodiode and a digital oscilloscope. The fastest rise time measured, 120 ps, was obtained in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. This technology holds good for detectors of greatly improved spatial and temporal resolution for single relativistic charged particles as well as particle beams.

  5. Cooperative Transport of Brownian Particles

    OpenAIRE

    Derenyi, Imre; Vicsek, Tamas

    1998-01-01

    We consider the collective motion of finite-sized, overdamped Brownian particles (e.g., motor proteins) in a periodic potential. Simulations of our model have revealed a number of novel cooperative transport phenomena, including (i) the reversal of direction of the net current as the particle density is increased and (ii) a very strong and complex dependence of the average velocity on both the size and the average distance of the particles.

  6. Why do particle clouds generate electric charges?

    Science.gov (United States)

    Pähtz, T.; Herrmann, H. J.; Shinbrot, T.

    2010-05-01

    Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

  7. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  8. Charge transport and recombination in dye-sensitized solar cells based on hybrid films of TiO2 particles/TiO2 nanotubes

    International Nuclear Information System (INIS)

    Graphical abstract: Highlights: → The electron lifetime increases with increasing the nanotube concentration. → The electron transport time is shortest at 10 wt% TiO2 nanotubes. → The electron collection efficiency achieves maxima at 10 wt% nanotubes. → The energy conversion efficiency obtains the highest value at 10 wt% nanotubes. - Abstract: In this paper, anodic TiO2 nanotubes are blended into the TiO2 mesoporous films based on P25 nanoparticles to assemble a list of dye-sensitized solar cells (DSSCs) with different nanotube concentrations. The electron properties of transport and recombination in the fabricated DSSCs are studied by using electrochemical impedance spectroscopy and the open-circuit voltage decay technique under AM 1.5 illumination. Results indicate that the electron lifetime increases with increasing the concentration of the anodic TiO2 nanotubes, the electron transport time at a blending level of 10 wt% TiO2 nanotubes is short as compared to that at 0 wt%, and above 10 wt%, the electron transport time has a trend of becoming large. Due to the combining effects of the electron transport and recombination, the electron collecting efficiency and the electron diffusion length obtain maxima at a blending level of 10 wt% nanotubes, which results in a highest short circuit current and a maximum energy conversion efficiency at this point in the DSSCs. This study gives a clear explanation for the performance enhancement of TiO2 particle-based DSSCs at a blending level of 10 wt% anodic TiO2 nanotubes and for the performance decrease at a blending level over 10 wt% anodic TiO2 nanotubes from the angle of the electron transport and recombination. This study also supplies a feasible and easy way to improve the performance of particle-based DSSCs by restraining electron recombination and accelerating electron transportation.

  9. Simulation of non-charged particles

    International Nuclear Information System (INIS)

    This paper presents the method used to simulate the transport of neutral particles by using a Monte Carlo method with accelerating techniques of convergence based on the importance function by the method of first collision probabilities

  10. Bibliography of integral charged particle nuclear data

    International Nuclear Information System (INIS)

    This publication is the second supplement to the archival edition of the National Nuclear Data Center's charged-particle bibliography. This supplement contains citations to all references scanned since March 15, 1981, and all corrections and additions to previous citations, and indexes all data received in the international exchanged format (EXFOR). The primary goal of the bibliography has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged-particle cross section data and to provide an index of data exchanged among the members. In 1980, coverage was expanded to include differential data relevant to charged-particle-induced neutron-source reactions

  11. Integral charged particle nuclear data bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Holden, N.E.; Ramavataram, S.

    1989-12-01

    This publication is the annual supplement to the first edition published in 1984. The primary goal of this publication has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged--particle cross section data. Included in this paper is a partial list of other bibliographies relevant to charged-particle-induced reaction data and a source list of nuclear data bibliographies, complications, and cumulative, earlier versions are also shown in the tables. This publication makes use of a modification to the database of the Nuclear Structure References (NSR) file. This modification allows the retrieval of integral charged particle nuclear data entries from the NSR file. In recent years, the presentation of various sections was changed, as a result of users' suggestions. The authors continue to welcome users' comments.

  12. Integral charged particle nuclear data bibliography

    International Nuclear Information System (INIS)

    This publication is the annual supplement to the first edition published in 1984. The primary goal of this publication has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged--particle cross section data. Included in this paper is a partial list of other bibliographies relevant to charged-particle-induced reaction data and a source list of nuclear data bibliographies, complications, and cumulative, earlier versions are also shown in the tables. This publication makes use of a modification to the database of the Nuclear Structure References (NSR) file. This modification allows the retrieval of integral charged particle nuclear data entries from the NSR file. In recent years, the presentation of various sections was changed, as a result of users' suggestions. The authors continue to welcome users' comments

  13. Position sensitive detector of magnetically charged particles

    International Nuclear Information System (INIS)

    Two variants of coordinate detectors of magnetically charged paticles based on the utilization of transducers with Josephson transitions are proposed. The system of data acquisition and processing is built up in the CAMAC standard. The helium cryostat diagram is presented. The detector resolution time and dead time constitute 1 μs. Methods of detection of magnetically charged particles used in the above detectors are expected to be more effective, as compared to ionization method and other indirect methods

  14. Fog camera to visualize ionizing charged particles

    International Nuclear Information System (INIS)

    The human being can not perceive the different types of ionizing radiation, natural or artificial, present in the nature, for what appropriate detection systems have been developed according to the sensibility to certain radiation type and certain energy type. The objective of this work was to build a fog camera to visualize the traces, and to identify the trajectories, produced by charged particles with high energy, coming mainly of the cosmic rays. The origin of the cosmic rays comes from the solar radiation generated by solar eruptions where the protons compose most of this radiation. It also comes, of the galactic radiation which is composed mainly of charged particles and gamma rays that comes from outside of the solar system. These radiation types have energy time millions higher that those detected in the earth surface, being more important as the height on the sea level increases. These particles in their interaction produce secondary particles that are detectable by means of this cameras type. The camera operates by means of a saturated atmosphere of alcohol vapor. In the moment in that a charged particle crosses the cold area of the atmosphere, the medium is ionized and the particle acts like a condensation nucleus of the alcohol vapor, leaving a visible trace of its trajectory. The built camera was very stable, allowing the detection in continuous form and the observation of diverse events. (Author)

  15. Control microprocessor system for charge particle channeling

    International Nuclear Information System (INIS)

    Control microprocessor systems are widely applied not only in designing industrial robots but in providing functioning of different experimental plants. The experiment control system for charge particle channeling has been considered in the paper. Flexibility, relatively low cost and high reliability are advantages of these systems

  16. Studying Charged Particle Optics: An Undergraduate Course

    Science.gov (United States)

    Ovalle, V.; Otomar, D. R.; Pereira, J. M.; Ferreira, N.; Pinho, R. R.; Santos A. C. F.

    2008-01-01

    This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal…

  17. Treatment of cancer with heavy charged particles

    International Nuclear Information System (INIS)

    The goals of the clinical helium and heavy charged particle radiotherapy trial are: (1) to evaluate the potential of improved dose localization as exemplified by helium-ion irradiation where little, if any, biological advantage is expected; and (2) to evaluate the combined potential of improved dose localization and increased biological effect available with heavier ions such as carbon, neon, silicon, and argon ions

  18. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  19. Charged Particles' Tunneling from Noncommutative Charged Black Hole

    CERN Document Server

    Mehdipour, S Hamid

    2010-01-01

    We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstr\\"om black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.

  20. Charged particles' tunneling from a noncommutative charged black hole

    OpenAIRE

    Mehdipour, S. Hamid

    2010-01-01

    We apply the tunneling process of charged massive particles through the quantum horizon of a Reissner-Nordstrom black hole in a new noncommutative gravity scenario. In this model, the tunneling amplitude on account of noncommutativity influences in the context of coordinate coherent states is modified. Our calculation points out that the emission rate satisfies the first law of black hole thermodynamics and is consistent with an underlying unitary theory.

  1. Tumor therapy with heavy charged particles

    Science.gov (United States)

    Blattmann, Hans

    1999-11-01

    Nuclear science has contributed significantly to the development of tumor therapy with heavy charged particles. Interest evolved for neutron therapies in the forties because of the increased radiobiological effectiveness (RBE) compared to photon irradiation. The development of more powerful proton and heavy ion accelerators with higher energies or higher intensities, made new particles for radiation therapy available. Pions, protons, light ions, from helium up to silicon were studied in view of precision dose delivery and increased RBE. Without the parallel development of new diagnostic techniques such as computer tomography (CT) and positron emission tomography (PET) the rapid development would not have been possible. Heavy-charged particle therapy has now come into a consolidation phase. Hospital-based facilities are built by industry, and research institutes focus on refinements in dose delivery and treatment planning, as well as systems for monitoring dose delivery and for dose distribution verification.

  2. High-frequency charged particle accelerator

    International Nuclear Information System (INIS)

    The device is refered to technical physics and may be used as a source of accelerated particles for irradiation of different objects in industry and agriculture. The device is aimed at increase of the power and enhancement of stability of the accelerator operation and decrease of its dimensions. High-frequency accelerator is composed of an accelerating cavity resonator a charged particle source and HF power supply. The aim is attained by the fact, that HF power source anode is made as one of coupling capasitor plates, the second plate of which is the nearest to anode HF power supply grid. The coupling capacitor plalte functional union with the HF power supply electrodes (anode and grid) reduces to spirious inductances of HF power supply circuit to minimum. Besides, the accelerator structure is simplified, as additional cooling system for the charged particle source is not necessary

  3. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  4. The all particle method: Coupled neutron, photon, electron, charged particle Monte Carlo calculations

    International Nuclear Information System (INIS)

    At the present time a Monte Carlo transport computer code is being designed and implemented at Lawrence Livermore National Laboratory to include the transport of: neutrons, photons, electrons and light charged particles as well as the coupling between all species of particles, e.g., photon induced electron emission. Since this code is being designed to handle all particles this approach is called the ''All Particle Method''. The code is designed as a test bed code to include as many different methods as possible (e.g., electron single or multiple scattering) and will be data driven to minimize the number of methods and models ''hard wired'' into the code. This approach will allow changes in the Livermore nuclear and atomic data bases, used to described the interaction and production of particles, to be used to directly control the execution of the program. In addition this approach will allow the code to be used at various levels of complexity to balance computer running time against the accuracy requirements of specific applications. This paper describes the current design philosophy and status of the code. Since the treatment of neutrons and photons used by the All Particle Method code is more or less conventional, emphasis in this paper is placed on the treatment of electron, and to a lesser degree charged particle, transport. An example is presented in order to illustrate an application in which the ability to accurately transport electrons is important. 21 refs., 1 fig

  5. Dust charging and transport on airless planetary bodies

    Science.gov (United States)

    Wang, X.; Schwan, J.; Hsu, H.-W.; Grün, E.; Horányi, M.

    2016-06-01

    We report on laboratory experiments to shed light on dust charging and transport that have been suggested to explain a variety of unusual phenomena on the surfaces of airless planetary bodies. We have recorded micron-sized insulating dust particles jumping to several centimeters high with an initial speed of ~0.6 m/s under ultraviolet illumination or exposure to plasmas, resulting in an equivalent height of ~0.11 m on the lunar surface that is comparable to the height of the so-called lunar horizon glow. Lofted large aggregates and surface mobilization are related to many space observations. We experimentally show that the emission and re-absorption of photoelectron and/or secondary electron at the walls of microcavities formed between neighboring dust particles below the surface are responsible for generating unexpectedly large negative charges and intense particle-particle repulsive forces to mobilize and lift off dust particles.

  6. Acceleration of charged particles in laser beam

    Directory of Open Access Journals (Sweden)

    M.J. Małachowski

    2009-12-01

    Full Text Available Purpose: The aim of this paper was to find parameters of the laser and maser beams in numerical ways with additionally applied external static axial magnetic field which satisfies the proper conditions for charged particle acceleration.Design/methodology/approach: The set acceleration was designed in order to obtain the possible high kinetic energy of the charged particles in the controllable manner. This was achieved applying a circularly polarized high intensity laser beam and a static axial magnetic field, both acting on the particle during the proper period.Findings: The quantitative illustrations of the calculation results, in a graphical form enabled to discuss the impact of many parameters on the acceleration process of the electrons and protons. We have found the impact of the Doppler Effect on the acceleration process to be significant. Increase in laser or maser beam intensity results in particle’s energy increase and its trajectory dimension. However, increase in external magnetic field results in shrinking of the helical trajectories. It enables to keep the particle inside the laser beam.Research limitations/implications: Limits in the energy of accelerated particles arise from the limitsin up-to-date available laser beam energy and the beam diameters.Originality/value: The authors show the parameters of the circularly polarized laser beam which should be satisfied in order to obtain the desired energy of the accelerated particles. The influence of the magnetic field strength is also shown.

  7. The formation of negatively charged particles in thermoemission plasmas

    Science.gov (United States)

    Vishnyakov, V. I.; Dragan, G. S.; Florko, A. V.

    2008-01-01

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  8. The formation of negatively charged particles in thermoemission plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, V. I., E-mail: pipeaes@te.net.ua; Dragan, G. S.; Florko, A. V. [Mechnikov Odessa National University (Ukraine)

    2008-01-15

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data.

  9. The formation of negatively charged particles in thermoemission plasmas

    International Nuclear Information System (INIS)

    The results of measuring the charges of the magnesium oxide particles formed near a block of metallic magnesium burning in air are presented. It has been found that, apart from positively charged magnesium oxide particles, there are negatively charged particles in the thermoemission plasma of the burning products. It has been shown that within the framework of the model of neutralizing charges, the oxide particles can acquire unlike charges in the thermoemission plasma. The calculations agree with the experimental data

  10. Born expansions for charged particle scattering

    International Nuclear Information System (INIS)

    High-order terms in Born expansions of scattering amplitudes in powers of charge are frequently divergent when long-range Coulomb interactions are present asymptotically. Expansions which are free from these logarithmic divergences have been constructed recently. This paper illustrates these expansions with the simplest example, namely the non-relativistic Rutherford scattering of two charged particles. This approach represents an adequate framework for the calculation of transition amplitudes and a comprehensive starting point for the development of consistent perturbation approximations in multi-channel descriptions of strongly interacting atomic systems

  11. On the Langevin approach to particle transport

    International Nuclear Information System (INIS)

    In the Langevin description of Brownian motion, the action of the surrounding medium upon the Brownian particle is split up into a systematic friction force of Stokes type and a randomly fluctuating force, alternatively termed noise. That simple description accounts for several basic features of particle transport in a medium, making it attractive to teach at the undergraduate level, but its range of applicability is limited. The limitation is illustrated here by showing that the Langevin description fails to account realistically for the transport of a charged particle in a medium under crossed electric and magnetic fields and the ensuing Hall effect. That particular failure is rooted in the concept of the friction force rather than in the accompanying random force. It is then shown that the framework of kinetic theory offers a better account of the Hall effect. It is concluded that the Langevin description is nothing but an extension of Drude's transport model subsuming diffusion, and so it inherits basic limitations from that model. This paper thus describes the interrelationship of the Langevin approach, the Drude model and kinetic theory, in a specific transport problem of physical interest

  12. Method for charged particle beam acceleration

    International Nuclear Information System (INIS)

    The method of charged particle beam acceleration based on its resonance interaction with electromagnetic field of travelling wave is suggested. The electron beam is injected into waveguide in which longitudinal magnetic field and electromagnetic wave are excited. With the purpose of reducing HF-power losses in the waveguide walls, the azimuthal particle motion is synchronized with azimuthal change of longitudinal component of electric field of the accelerating electromagnetic wave. The suggested method permits to increase the efficiency and shunting resistance of the accelerating waveguide by reducing its boundary surface

  13. Collective aspects of charged particle track structure

    International Nuclear Information System (INIS)

    A plasmon generated by a swift charged particle constitutes a coherent excitation about the particle track. We discuss the representation of collective modes in impact parameter space when created by a swift ion or a fast electron, and the decay of these modes into localized excitations. Several alternative spatial representations are considered. We show that the high spatial resolution found in secondary electron emission measurements with scanning electron microscopy is consistent with the existence of the plasmon as an intermediary between the fast incident electron and the measured secondary electrons. 24 refs., 6 figs

  14. Charge State Model of Solar Energetic Particles

    Science.gov (United States)

    Del Peral, L.; Pérez-Peraza, J. A.; Rodríguez Frías, M. D.

    2013-05-01

    Charge states of heavy ions in Solar Energetic Particle (SEP) events observed at the Earth's neighborhood with experiments on board satellites give us information about physical properties of plasma where acceleration occurs. SEP detection is performed near the Earth, therefore not only physical condition of the plasma source of accelerated particles have to be taken into account. We have developed a charge state model in order to explain the evolution of particle charge states under solar acceleration. Charge-interchange processes between the accelerated ions and the plasma matter in the acceleration region are considered on basis of electron loss and capture cross sections at high energies. We have applied the model to observational data from satellites measuring charge states of SEPs. In contrast with other models that use ionization and recombination cross-sections that require application of thermal equilibrium, our model assumes that the acceleration is so fast that thermal equilibrium can not be applied to the change interchange processes. Therefore we employ in our model high energy cross-sections for electron capture and loss, since the population which is being accelerated acquires a non-thermal spectrum. We have developed temperature dependent cross-sections. Acceleration begins from a thermal distribution. As soon as the particles increase their energy by the acceleration process, they acquire an energy spectrum which differs from the Maxwellian thermal one while interacting with the background thermal matter. Figure 1 presents the results of our model that fit experimental charge states of Fe ions from two impulsive SEP events detected by the SEPICA satellite in July 1999. We obtain good fitting for source temperature of 1.8 \\cdot 106 K and density of 5\\cdot108 cm-3 and acceleration efficiency of 1.8\\cdot 10-2 s-1 for the July 20th 1999 event and 3.3\\cdot 10-2 s-1 for the July 3rd 1999. Good concordance between experimental data and our model have

  15. High-LET charged particle radiotherapy

    International Nuclear Information System (INIS)

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years

  16. Charge transport in conducting polymers

    International Nuclear Information System (INIS)

    Polymers with metal-like electrical conductivity are presented as novel materials. After a short discussion of the present situation of technical applications experimental data on the electrical conductivity and its temperature and frequency dependence are reviewed. These data are discussed within the framework of a model involving fluctuation-induced tunneling between marcroscopic inhomogeneities and energy dependent hopping of charge carriers between localized states on a microscopic level. Pulsed photoconductivity measurements indicate that also in photoconductivity a hopping mechanism is dominant and solitary wave motion of conjugational defects escapes observation. (orig.)

  17. Relativity primer for particle transport. A LASL monograph. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    Everett, C.J.; Cashwell, E.D.

    1979-04-01

    The basic principles of special relativity involved in Monte Carlo transport problems are developed with emphasis on the possible transmutations of particles, and on computational methods. Charged particle ballistics and polarized scattering are included, as well as a discussion of colliding beams.

  18. Charge carrier transport in liquid crystals

    International Nuclear Information System (INIS)

    The materials exhibiting charge carrier mobility ranging from 10−3 to 0.1 cm2/Vs, i.e., between those of amorphous and crystalline materials, had been missing before the 1990s when the electronic conduction in liquid crystals was discovered. Since then, various liquid crystalline materials including discotic and calamitic liquid crystals have been studied in order to clarify their charge carrier transport properties in liquid crystalline mesophases. In this article, the historical background of the discovery of electronic conduction in liquid crystals, intrinsic and extrinsic conductions, unique properties of the charge carrier transport, the effect of molecular alignment on it, and the conduction mechanism in liquid crystalline mesophases are shortly described on the basis of the experimental and theoretical studies accumulated in these two decades, noting that the missing materials were liquid crystals. - Highlights: • Liquid crystals exhibit charge mobility ranging from 10–3 to 0.1 cm2/Vs. • Electronic (intrinsic) and ionic (extrinsic) conductions in liquid crystals • Unique charge carrier transport properties in liquid crystals • Effect of molecular alignment in mesophases on charge carrier transport • Conduction mechanism in smectic liquid crystals

  19. Geometrical charged-particle optics. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Harald [Technische Univ. Darmstadt (Germany). Inst. fuer Angewandte Physik

    2013-03-01

    Provides a unique theoretical treatment of charged-particle optics. Displays novel unpublished results on several topics. Provides insight into the properties of charged-particle devices. Treats wave optical properties of the electron. Presents the resolution limit of electron microscopes and novel theoretical treatment of the Stern-Gerlach effect. This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are discussed extensively. Beam properties such as emittance, brightness, transmissivity and the formation of caustics are outlined. Relativistic motion and spin precession of the electron are treated in a covariant way by introducing the Lorentz-invariant universal time and by extending Hamilton's principle from three to four spatial dimensions where the laboratory time is considered as the fourth pseudo-spatial coordinate. Using this procedure and introducing the self action of the electron, its accompanying electromagnetic field and its radiation field are calculated for arbitrary motion. In addition, the Stern

  20. Automated control system in charged particle accelerators

    International Nuclear Information System (INIS)

    A general approach to the design of automated radiation safety systems at charged particle accelerators is described. Parameters of high-energy electron accelerators of the Kharkov Physics and Engineering Institute are presented. Characteristics of the surrounding radiation fields are given. Ionizing radiation transducers which can be used in automated systems are considered. Local radiation monitoring station based on the LUE-2000 accelerator of the institute is described. 9 refs.; 4 figs.; 1 tab

  1. Controlling Charged Particles with Inhomogeneous Electrostatic Fields

    Science.gov (United States)

    Herrero, Federico A. (Inventor)

    2016-01-01

    An energy analyzer for a charged-particle spectrometer may include a top deflection plate and a bottom deflection plate. The top and bottom deflection plates may be non-symmetric and configured to generate an inhomogeneous electrostatic field when a voltage is applied to one of the top or bottom deflection plates. In some instances, the top and bottom deflection plates may be L-shaped deflection plates.

  2. Guiding of charged particles through capillaries in insulating materials

    Science.gov (United States)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  3. Charged particle layers in the Debye limit

    International Nuclear Information System (INIS)

    We develop an equivalent of the Debye-Hueckel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r→∞ limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation

  4. Light Charged Particles as Gateway to Hyperdeformation

    International Nuclear Information System (INIS)

    The Euroball-IV γ -detector array, equipped with the ancillary charged particle detector array DIAMANT was used to study the residues of the fusion reaction 64Ni + 64Ni → 128Ba at Ebeam = 255 and 261 MeV, in an attempt to reach the highest angular momentum and verify the existence of predicted hyperdeformed rotational bands. No discrete hyperdeformed bands were identified, but nevertheless a breakthrough was obtained through a systematic search for rotational ridge structures with very large moments of inertia J(2) ≥ 100 ℎ2 MeV(-1), in agreement with theoretical predictions for hyperdeformed shapes. Evidence for hyperdeformation was obtained by charged particle + γ -ray gating, selecting triple correlated ridge structures in the continuum of each of the nuclei, 118Te, 124Xe and 124,125Cs. In 7 additional nuclei, rotational ridges were also identified with J(2) = 71-77 ℎ2 MeV(-1), which most probably correspond to superdeformed shape. The angular distributions of the emitted charged particles show an excess in forward direction over expectations from pure compound evaporation, which may indicate that in-complete fusion plays an important role in the population of very elongated shapes. (author)

  5. Charge Transport in Weyl Semimetals

    OpenAIRE

    Hosur, Pavan; Parameswaran, S. A.; Vishwanath, Ashvin

    2011-01-01

    We study transport in three dimensional Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity by solving a quantum Boltzmann equation within a `leading log' approximation and find it to be proportional to T, upto logarithmic factors arising from the flow of couplings. In the noninteracting disordered case, we compute the finite-frequency Kubo conductivity and show that it ...

  6. Motion of charged particles in the magnetosphere

    International Nuclear Information System (INIS)

    The adiabatic motion of charged particles in the magnetosphere has been investigated using Mead-Fairfield magnetospheric field model (Mead and Fairfield, 1975). Since the motion of charged particles in a dipolar field geometry is well understood, we bring out in this paper some important features in characteristic motion due to non-dipolar distortions in the field geometry. We look at the tilt averaged picture of the field configuration and estimate theoretically the parameters like bounce period, longitudinal invariant and the bounce averaged drift velocities of the charged particle in the Mead-Fairfield field geometry. These parameters are evaluated as a function of pitch angle and azimuthal position in the region of ring current (5 to 7 Earth radii from the centre of the Earth) for four ranges of magnetic activity. At different longitudes the non-dipolar contribution as a percentage of dipole value in bounce period and longitudinal invariant shows maximum variation for particles close to 900 pitch angles. For any low pitch angle, these effects maximize at the midnight meridian. The radial component of the bounce averaged drift velocity is found to be greatest at the dawn-dusk meridians and the contribution vanishes at the day and midnight meridians for all pitch angles. In the absence of tilt-dependent terms in the model, the latitudinal component of the drift velocity vanishes. On the other hand, the relative non-dipolar contribution to bounce averaged azimuthal drift velocity is very high as compared to similar contribution in other characteristic parameters of particle motion. It is also shown that non-dipolar contribution in bounce period, longitudinal invariant and bounce averaged drift velocities increases in magnitude with increase in distance and magnetic activity. (orig.)

  7. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  8. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  9. Experimental research of thermoemission charging of metal particles

    International Nuclear Information System (INIS)

    Original experimental methods of thermoemission charge determination of a spherical metallic particle surrounded by the condensed disperse phase are proposed. The analytical dependence of the particle charge on time is found, and its relaxation time is determined

  10. Polaronic charge transport mechanism in DNA

    OpenAIRE

    Hennig, Dirk; Archilla, Juan F. R.

    2006-01-01

    For the detailed understanding of the conduction mechanism in DNA we use models based on the concept of polaron and breather solutions. We describe how charge transport relies on the coupling of the charge carrying unit to the vibrational modes of DNA allowing for the formation of polaron-like localised states. The mobility of these localised states is discussed particularly in the presence of parametrical and structural disorder inherent to biomolecules. It is demonstrated tha...

  11. Charge Transport in DNA-Based Devices

    OpenAIRE

    Porath, Danny; Cuniberti, Gianaurelio; Di Felice, Rosa

    2004-01-01

    Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that elect...

  12. Charge Transport in DNA - Insights from Simulations

    OpenAIRE

    Wolter, Mario

    2013-01-01

    Charge transport and charge transfer (CT) capabilities of deoxyribonucleic acid (DNA) are investigated. A QM/MM multi-scale framework is applied to calculate the CT capabilities of DNA under conditions resembling the experimental setup. The simulations are able to explain and predict the outcome of experiments and therefore make suggestions in advance. Based on the findings, suitable DNA sequences can be opted for the design of DNA-based devices as nano-scale electronic elements.

  13. Charge transport in DNA-based devices

    OpenAIRE

    Porath, Danny; Cuniberti, Gianaurelio; Felice, Rosa di

    2004-01-01

    Charge migration along DNA molecules attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrica...

  14. Metastable states of plasma particles close to a charged surface

    International Nuclear Information System (INIS)

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles

  15. Radiation reaction for a massless charged particle

    Energy Technology Data Exchange (ETDEWEB)

    Kazinski, P O; Sharapov, A A [Physics Faculty, Tomsk State University, Tomsk, 634050 (Russian Federation)

    2003-07-07

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  16. Radiation reaction for a massless charged particle

    CERN Document Server

    Kazinski, P O

    2003-01-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field having regard to the radiation back reaction. It is shown that unlike the massive case not all the divergences resulting from the self-action of the particle are Lagrangian, i.e. can be canceled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of homogeneous external field the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  17. Radiation reaction for a massless charged particle

    International Nuclear Information System (INIS)

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure

  18. Radiation reaction for a massless charged particle

    Science.gov (United States)

    Kazinski, P. O.; Sharapov, A. A.

    2003-07-01

    We derive effective equations of motion for a massless charged particle coupled to the dynamical electromagnetic field with regard to the radiation back reaction. It is shown that unlike the massive case, not all the divergences resulting from the self-action of the particle are Lagrangian, i.e., can be cancelled out by adding appropriate counterterms to the original action. Besides, the order of renormalized differential equations governing the effective dynamics turns out to be greater than the order of the corresponding Lorentz-Dirac equation for a massive particle. For the case of a homogeneous external field, the first radiative correction to the Lorentz equation is explicitly derived via the reduction of order procedure.

  19. A chemical analyzer for charged ultrafine particles

    Directory of Open Access Journals (Sweden)

    S. G. Gonser

    2013-04-01

    Full Text Available New particle formation is a frequent phenomenon in the atmosphere and of major significance for the earth's climate and human health. To date the mechanisms leading to the nucleation of particles as well as to aerosol growth are not completely understood. A lack of appropriate measurement equipment for online analysis of the chemical composition of freshly nucleated particles is one major limitation. We have developed a Chemical Analyzer for Charged Ultrafine Particles (CAChUP capable of analyzing particles with diameters below 30 nm. A bulk of size separated particles is collected electrostatically on a metal filament, resistively desorbed and consequently analyzed for its molecular composition in a time of flight mass spectrometer. We report of technical details as well as characterization experiments performed with the CAChUP. Our instrument was tested in the laboratory for its detection performance as well as for its collection and desorption capabilities. The manual application of known masses of camphene (C10H16 to the desorption filament resulted in a detection limit between 0.5 and 5 ng, and showed a linear response of the mass spectrometer. Flow tube experiments of 25 nm diameter secondary organic aerosol from ozonolysis of alpha-pinene also showed a linear relation between collection time and the mass spectrometer's signal intensity. The resulting mass spectra from the collection experiments are in good agreement with published work on particles generated by the ozonolysis of alpha-pinene. A sensitivity study shows that the current setup of CAChUP is ready for laboratory measurements and for the observation of new particle formation events in the field.

  20. Trapped-Particle-Mediated Damping and Transport

    International Nuclear Information System (INIS)

    Weak axial variations in B(z) or φ(z) in Penning-Malmberg traps cause some particles to be trapped locally. This causes a velocity-space separatrix between trapped and passing populations, and collisional separatrix diffusion then causes mode damping and asymmetry-induced transport. This separatrix dissipation scales with collisionality as v1/2, so it dominates in low collisionallity plasmas. The confinement lifetime in the 'CamV' apparatus was dominated by a weak magnetic ripple with δB/B ∼ 10-3, and it appears likely that the ubiquitous (L/B)-2 lifetime scalings and other applied asymmetry scalings represent similar TPM effects. TPM transport will limit the containment of large numbers of positrons or p-bars, since TPM loss rates generally scale as total charge Q2, independent of length

  1. Sound from charged particles in liquids

    International Nuclear Information System (INIS)

    Two directions of sound application appearing during the charged particles passing through liquid - in biology and for charged particles registration are considered. Application of this sound in radiology is determined by a contribution of its hypersound component (approximately 109 Hz) to radiology effect of ionizing radiation on micro-organisms and cells. Large amplitudes and pressure gradients in a hypersound wave have a pronounced destructive breaking effect on various microobjects (cells, bacteria, viruses). An essential peculiarity of these processes is the possibility of control by choosing conditions changing hypersound generation, propagation and effect. This fact may lead not only to the control by radiaiton effects but also may explain and complete the analogy of ionizing radiation and ultrasound effect on bioobjects. The second direction is acoustic registration of passing ionizing particles. It is based on the possibility of guaranteed signal reception from a shower with 1015-1016 eV energy in water at distances of hundreds of meters. Usage of acoustic technique for neutrino registration in the DUMAND project permits to use a detecting volume of water with a mass of 109 t and higher

  2. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  3. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  4. Preface: Charge transport in nanoscale junctions

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  5. DNA oligonucleotides damage in charge transport context

    Czech Academy of Sciences Publication Activity Database

    Kratochvílová, Irena; Bunček, M.; Šebera, Jakub; Záliš, Stanislav; Sychrovský, Vladimír; Mojzeš, P.; Schneider, Bohdan

    Prague: -, 2012. s. 22-22. [International Workshop on Radiation Damage to DNA /12./. 02.06.2012-06.06.2012, Prague] Institutional support: RVO:61388963 ; RVO:68378271 ; RVO:86652036 ; RVO:61388955 Keywords : charge transport * DNA damage Subject RIV: CC - Organic Chemistry

  6. The charge transport in polymeric gel electrolytes

    CERN Document Server

    Reiche, A

    2001-01-01

    The aim of the present thesis consisted in the study of the charge transport in gel electrolytes, which were obtained by photopolymerization of oligo(ethylene glycol) sub n -dimethacrylates with n=3, 9, and 23, and the survey of structure and property relations for the optimization of the electrolyte composition. The pressure dependence of the electric conductivity was measured. (HSI)

  7. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  8. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  9. Transport of 3D space charge dominated beams

    International Nuclear Information System (INIS)

    In this paper we present the theoretical analysis and the computer code design for the intense pulsed beam transport. Intense beam dynamics is a very important issue in low-energy high-current accelerators and beam transport systems. This problem affects beam transmission and beam qualities. Therefore, it attracts the attention of the accelerator physicists worldwide. The analysis and calculation for the intense beam dynamics are very complicated, because the state of particle motion is dominated not only by the applied electromagnetic fields, but also by the beam-induced electromagnetic fields (self-fields). Moreover, the self-fields are related to the beam dimensions and particle distributions. So, it is very difficult to get the self-consistent solutions of particle motion analytically. For this reason, we combine the Lie algebraic method and the particle in cell (PIC) scheme together to simulate intense 3D beam transport. With the Lie algebraic method we analyze the particle nonlinear trajectories in the applied electromagnetic fields up to third order approximation, and with the PIC algorithm we calculate the space charge effects to the particle motion. Based on the theoretical analysis, we have developed a computer code, which calculates beam transport systems consisting of electrostatic lenses, electrostatic accelerating columns, solenoid lenses, magnetic and electric quadruples, magnetic sextupoles, octopuses and different kinds of electromagnetic analyzers. The optimization calculations and the graphic display for the calculated results are provided by the code. (authors)

  10. CVD diamond sensors for charged particle detection

    CERN Document Server

    Krammer, Manfred; Berdermann, E; Bergonzo, P; Bertuccio, G; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; D'Angelo, P; Dabrowski, W; Delpierre, P A; Dencuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Hallewell, G D; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Koeth, T W; Lo Giudice, A; Lü, R; MacLynne, L; Manfredotti, C; Meier, D; Mishina, M; Moroni, L; Oh, A; Pan, L S; Pernicka, Manfred; Peitz, A; Perera, L P; Pirollo, S; Procario, M; Riester, J L; Roe, S; Rousseau, L; Rudge, A; Russ, J; Sala, S; Sampietro, M; Schnetzer, S; Sciortino, S; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Trischuk, W; Tromson, D; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Wetstein, M; White, C; Zeuner, W; Zöller, M

    2001-01-01

    CVD diamond material was used to build position-sensitive detectors for single-charged particles to be employed in high-intensity physics experiments. To obtain position information, metal contacts shaped as strips or pixels are applied to the detector surface for one- or two- dimensional coordinate measurement. Strip detectors 2*4 cm/sup 2/ in size with a strip distance of 50 mu m were tested. Pixel detectors of various pixel sizes were bump bonded to electronics chips and investigated. A key issue for the use of these sensors in high intensity experiments is the radiation hardness. Several irradiation experiments were carried out with pions, protons and neutrons exceeding a fluence of 10/sup 15/ particles/cm/sup 2/. The paper presents an overview of the results obtained with strip and pixel detectors in high-energy test beams and summarises the irradiation studies. (8 refs).

  11. Device for measuring charge density distribution in charged particle beams

    International Nuclear Information System (INIS)

    A device to measure charge density distribution in charged particle beams has been described. The device contains a set of hollow interinsulated current-receiving electrodes, recording system, and cooling system. The invention is aimed at the increase of admissible capacity of the beams measured at the expense of cooling efficiency increase. The aim is achieved by the fact, that in the device a dynamic evaporating-condensational cooling of electrodes is realized by means of cooling agent supply in perpendicular to their planes through the tubes introduced inside special cups. Spreading in radial direction over electrode surface the cooling agent gradually and intensively washes the side surface of the cup, after that, it enters the cooling cavity in the form of vapour-liquid mixture. In the cavity the cooling agent, supplied using dispensina and receiving collectors in which vapoUr is condensed, circulates. In the device suggested the surface of electrode cooling is decreased significantly at the expense of side surface of the cups which receives the electrode heat

  12. Charge transport properties of CdMnTe radiation detectors

    Directory of Open Access Journals (Sweden)

    Prokopovich D. A.

    2012-10-01

    Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.

  13. High Energy Ionic Charge State Composition In Recent Large Solar Energetic Particle Events

    OpenAIRE

    Labrador, A. W.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; von Rosenvinge, T. T.

    2003-01-01

    The ionic charge states of solar energetic particles (SEPs) provide information on the temperature of source materials and on conditions during acceleration and transport. SAMPEX/MAST measures mean ionic charge states at > 15 MeV/nuc using the geomagnetic rigidity filter technique. Charge state measurements by MAST for gradual SEP events suggest a continuum of charge states correlated with abundance ratios for a variety of elements, similar to what is observed at lower energies. In case...

  14. Monte Carlo Studies of Charge Transport Below the Mobility Edge

    OpenAIRE

    Jakobsson, Mattias

    2012-01-01

    Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of h...

  15. Temperature Dependent Kinetics DNA Charge Transport

    Science.gov (United States)

    Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason

    2012-10-01

    Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare square wave voltammetry of distinct DNA sequences under identical experimental conditions. We vary the probe length within the well matched DNA duplex in order to investigate distance dependent kinetics. This length dependent study is a necessary step to understanding the dominant mechanism behind DNA CT. Using a model put forth by O'Dea and Osteryoung and applying a nonlinear least squares analysis we are able to determine the charge transfer rates (k), transfer coefficients (α), and the total surface concentration (&*circ;) of the DNA monolayer. Arrhenius like behavior is observed for the multiple probe locations, and the results are viewed in light of and compared to the prominent charge transport mechanisms.

  16. Charge Redistribution and Transport in Molecular Contacts

    Science.gov (United States)

    Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J.; Jelínek, Pavel; Pascual, J. Ignacio

    2015-09-01

    The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C2 H2 ) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C2 H2 molecule attributed to a weak overlap of their respective frontier orbitals.

  17. Mass-independent search for fractionally charged particles

    International Nuclear Information System (INIS)

    A proposed mass-independent search for fractionally charged particles with the all-electrostatic line of the IsoTRACE Laboratory at University of Toronto is described. Sensitive measurement of the fractional charge is accomplished by (1) a judicious choice of ion source and ion species, (2) charge changing and electrostatic analysis before injection into the tandem accelerator, (3) molecular destruction, charge changing, and acceleration by the tandem, (4) charge state selection and E/q analysis after acceleration, and (5) particle energy measurement with a Si surface barrier detector. In addition, the mass of the fractionally charged particles can be determined by a time of flight spectrometer. Specific cases involving +- (1/3)e and +- (2/3)e particles are discussed. Also included in the discussion are: integral charge background rejection, the procedure of the search, the signature of the fractionally charged particles, he resolutions of the analyzers and detectors, and the expected energy and time of flight spectra

  18. Transportation charges in the gas industry

    International Nuclear Information System (INIS)

    British Gas was privatized in 1986, a monopoly with no direct competition and only very light regulation of the tariff market. The regulator had an obligation to enable competition to develop in the unregulated, large-quantity, contract market. Competitors required access to the BG-owned transportation network. The government has recently rejected the recommendation of divestiture of the supply business, but has accelerated the advent of competition to the domestic market. This paper considers the role of BG's transport charges in these developments, using its past behaviour as a guide, and identifying the issues for future regulation and development of the gas market. (Author)

  19. Variational multiscale models for charge transport

    OpenAIRE

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic ...

  20. Understanding charge transport in molecular electronics.

    Science.gov (United States)

    Kushmerick, J J; Pollack, S K; Yang, J C; Naciri, J; Holt, D B; Ratner, M A; Shashidhar, R

    2003-12-01

    For molecular electronics to become a viable technology the factors that control charge transport across a metal-molecule-metal junction need to be elucidated. We use an experimentally simple crossed-wire tunnel junction to interrogate how factors such as metal-molecule coupling, molecular structure, and the choice of metal electrode influence the current-voltage characteristics of a molecular junction. PMID:14976024

  1. Charge Transport In Metal-Organic Frameworks

    OpenAIRE

    Wiers, Brian Michael

    2015-01-01

    This dissertation documents efforts to synthesize and measure ionically and electronically conductive porous, three-dimensional metal-organic frameworks. Chapter 1 introduces concepts of conductivity, mixed-valency, measurement techniques and gives a survey of charge-transport in metal-organic and covalent-organic frameworks. Concepts that directed the work detailed in this thesis is given, as is a perspective on possible future avenues to generate conductive metal-organic frameworks and poss...

  2. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  3. Simulating charge transport in flexible systems

    OpenAIRE

    Timothy Clark

    2015-01-01

    Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models) that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our ...

  4. DNA Charge Transport over 34 nm

    OpenAIRE

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-01-01

    Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Ni...

  5. Biological contexts for DNA charge transport chemistry

    OpenAIRE

    Merino, Edward J.; Boal, Amie K.; Barton, Jacqueline K.

    2008-01-01

    Many experiments have now shown that double helical DNA can serve as a conduit for efficient charge transport (CT) reactions over long distances in vitro. These results prompt the consideration of biological roles for DNA-mediated CT. DNA CT has been demonstrated to occur in biologically relevant environments such as within the mitochondria and nuclei of HeLa cells as well as in isolated nucleosomes. In mitochondria, DNA damage that results from CT is funneled to a critical regulatory element...

  6. Electrophysical Systems Based On Charged Particle Accelerators

    CERN Document Server

    Vorogushin, M F

    2004-01-01

    The advancement of the charged particle accelerator engineering affects appreciably the modern tendencies of the scientific and technological progress in the world. In a number of advanced countries, this trend is one of the most dynamically progressing in the field of applied science and high-technology production. Such internationally known firms as VARIAN, SIEMENS, PHILIPS, ELECTA, IBA, HITACHI, etc., with an annual budget of milliards of dollars and growth rate of tens of percent may serve as an example. Although nowadays the projects of new large-scale accelerators for physical research are not implemented so quickly and frequently as desired, accelerating facilities are finding ever-widening application in various fields of human activities. The contribution made by Russian scientists into high-energy beams physics is generally known. High scientific and technical potential in this field, qualified personnel with a high creative potential, modern production and test facilities and state-of-the-art techn...

  7. Aberration compensation in charged particle projection lithography

    International Nuclear Information System (INIS)

    Projection systems offer the opportunity to increase the throughput for charged particle lithography, because such systems image a large area of a mask directly on to a wafer as a single shot. Shots have to be imaged over a certain range of off-axis distances at the wafer to increase the writing speed, because shot sizes are limited to about 0.25x0.25 mm2 due to aberrations. In a projection system with only lenses, however, the aberrations for off-axis shots are still very large, and some aberration compensation elements need to be introduced. In this paper, three aberration compensation elements (deflectors, stigmators and dynamic focus lenses) are first discussed, a suite of newly developed software, called PROJECTION, based on this principle and our unified aberration theory is then described, and an illustrative example computed with the software is finally given

  8. Precipitation particle charge distribution and evolution of East Asian rainbands

    Science.gov (United States)

    Takahashi, Tsutomu

    2012-11-01

    Numerous videosondes, balloon-borne surveyors of precipitation particle morphology and charge, have been launched into cloud systems in many, disparate locations in East Asia. Reported here are videosonde-based observations of early summer, Baiu rainbands at Tanegashima in southern Japan and of summer rainbands at Chiang Rai in northern Thailand. Precipitation particles are mapped by type and charge over the course of cloud development, allowing particle and charge evolution to be derived. The basic charge distribution as observed in Hokuriku winter thunderclouds at different cloud life stages was seen at different locations characterized by vertical velocity profiles in the cloud. The charge structure of the rainbands in both locations was a basic tripole. The major charge carriers were graupel and ice crystals. As graupel and ice crystal concentrations increased, not only did space charge increase, but per-particle charge also increased. Increased lightning activity was associated with higher particle space charge and lower cloud-top temperature. The particle charge evolution of these systems includes several fundamental features: a. active negative charging of graupel in an intense updraft, b. descent of negative graupel along the edge of an updraft column, c. merging of negative graupel with positively charged raindrops falling in the central cloud, and d. extended distribution of positive ice crystals in the stratiform cloud. The observations suggest that riming electrification was the main charge separation mechanism.

  9. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  10. Charge transport properties of CdMnTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  11. Searches for Fractionally Charged Particles: What Should Be Done Next?

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin L.; /SLAC

    2009-01-15

    Since the initial measurements of the electron charge a century ago, experimenters have faced the persistent question as to whether elementary particles exist that have charges that are fractional multiples of the electron charge. I concisely review the results of the last 50 years of searching for fractional charge particles with no confirmed positive results. I discuss the question of whether more searching is worthwhile?

  12. Anomalous Kinetics of Hard Charged Particles Dynamical Renormalization Group Resummation

    CERN Document Server

    Boyanovsky, D

    1999-01-01

    We study the kinetics of the distribution function for charged particles of hard momentum in scalar QED. The goal is to understand the effects of infrared divergences associated with the exchange of quasistatic magnetic photons in the relaxation of the distribution function. We begin by obtaining a kinetic transport equation for the distribution function for hard charged scalars in a perturbative expansion that includes hard thermal loop resummation. Solving this transport equation, the infrared divergences arising from absorption and emission of soft quasi-static magnetic photons are manifest in logarithmic secular terms. We then implement the dynamical renormalization group resummation of these secular terms in the relaxation time approximation. The distribution function (in the linearized regime) is found to approach equilibrium as $\\delta n_k(t) =\\delta n_k(t_o) e^{-2\\alpha T (t-t_o) and $\\alpha =e^2/4\\pi$. This anomalous relaxation is recognized to be the square of the relaxation of the single particle p...

  13. Determination of colloidal particle surface charge from dielectrophoresis

    Science.gov (United States)

    Chavez, Marko; Nuansri, Rittirong; Mazza, Jacob; Ou-Yang, H. Daniel

    2015-03-01

    Electrophoresis (EP) is used to determine colloidal particle surface charge. However, when the Debye length is comparable to or larger than the particle size, electrophoresis cannot be reliably used to determine the surface charge due to counter ion retardation flow. Alexander et al. developed a theory relating colloidal osmotic pressure and particle surface charge. We use dielectrophoresis (DEP) to obtain a potential landscape based on the number density distribution of the particles in a non-uniform AC electric field. We determine the osmotic pressure from the DEP force and density profiles using Einstein's osmotic equilibrium equation. Surface charge obtained by DEP (thermodynamics) will be compared to that obtained by EP (electrokinetics).

  14. Bibliography of integral charged particle nuclear data. Archival edition

    International Nuclear Information System (INIS)

    This is the fourth annual edition of the National Nuclear Data Center charged-particle bibliography. This edition is cumulative and supersedes the previous editions. The bibliography's primary aims are to satisfy the need for a concise and comprehensive index of integral charged-particle cross section data and to provide an index of charged-particle data compiled in the international exchange format. References in this Part are by target for the various incident charged particles (in order of increasing A). The present publication is an archival volume; future publications will be cumulative supplements to this edition

  15. VEDs for charged particle accelerators: Indian scenario

    International Nuclear Information System (INIS)

    In the initial times after their invention, the charged particle accelerators have, primarily, been used for fundamental studies on nuclei and atoms. From the first modern accelerator, the cathode ray tube, used by J.J. Thomson for the discovery of electron, very recently the gigantic 27 km circumference Large Hadron Collider (LHC) is operational in the search of Higg's boson and related physics issues. Particle accelerators have emerged as powerful microscopes for investigating the finest details of cells, genes, molecules, atoms, protons, neutrons, muons, electrons, quarks and, possibly, still undiscovered even more fundamental constituents of the universe, such as dark matter and dark energy. Several noble prize winning discoveries have been made using accelerators. Accelerators are now being used in a wide area of industrial and medical applications. They are used for the production of radioisotopes for medical imaging, cancer therapy, food sterilization, treatment of waste water, sterilization of medical equipment, material modification, mass spectroscopy, cargo scanning, fabrication of semiconductors etc. Ongoing effort towards the development of accelerators with megawatt beam power is showing hope for a cleaner source of nuclear energy and treatment of nuclear waste. Several tens of thousands of accelerators are presently operational in the world for basic research and applications. Development of new accelerators has several times been driven by new technologies and materials and sometimes they have driven the technological developments towards cutting edge. Some examples are ultra-high vacuum in large volumes, superfluid helium in cryogenics, cryocoolers, superconducting magnets and RF cavities, high power vacuum electronic devices, global control systems, superfast computing and communication networks, giant data storage/processing systems etc. India has been pursuing a fairly robust programme of accelerator development at various institutions. It

  16. The effect of single-particle charge limits on charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)

  17. DNA Charge Transport within the Cell

    OpenAIRE

    Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.

    2015-01-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor th...

  18. Effects of charged particles on DNA

    International Nuclear Information System (INIS)

    It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs 1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderate RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations. (author)

  19. Charged-particle beam: a safety mandate

    International Nuclear Information System (INIS)

    The Advanced Test Accelerator (ATA) is a recent development in the field of charged particle beam research at Lawrence Livermore National Laboratory. With this experimental apparatus, researchers will characterize intense pulses of electron beams propagated through air. Inherent with the ATA concept was the potential for exposure to hazards, such as high radiation levels and hostile breathing atmospheres. The need for a comprehensive safety program was mandated; a formal system safety program was implemented during the project's conceptual phase. A project staff position was created for a safety analyst who would act as a liaison between the project staff and the safety department. Additionally, the safety analyst would be responsible for compiling various hazards analyses reports, which formed the basis of th project's Safety Analysis Report. Recommendations for safety features from the hazards analysis reports were incorporated as necessary at appropriate phases in project development rather than adding features afterwards. The safety program established for the ATA project faciliated in controlling losses and in achieving a low-level of acceptable risk

  20. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  1. Monte Carlo methods for particle transport

    CERN Document Server

    Haghighat, Alireza

    2015-01-01

    The Monte Carlo method has become the de facto standard in radiation transport. Although powerful, if not understood and used appropriately, the method can give misleading results. Monte Carlo Methods for Particle Transport teaches appropriate use of the Monte Carlo method, explaining the method's fundamental concepts as well as its limitations. Concise yet comprehensive, this well-organized text: * Introduces the particle importance equation and its use for variance reduction * Describes general and particle-transport-specific variance reduction techniques * Presents particle transport eigenvalue issues and methodologies to address these issues * Explores advanced formulations based on the author's research activities * Discusses parallel processing concepts and factors affecting parallel performance Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, Monte Carlo Methods for Particle Transport provides nuclear engineers and scientists with a practical guide ...

  2. Charge and Heat Transport in Polycrystalline Metallic Nanostructures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xing; TAKAHASHI Koji; FUJII Motoo

    2008-01-01

    Metals are typically good conductors in which the abilities to transport charge and to transport heat can be related through the Wiedemann-Franz law. Here we report on an abnormal charge and heat transport in polyerystalline metallic nanostructures in which the ability to transport charge is weakened more obviously than that to transport heat. We attribute it to the influence of the internal grain boundaries and have formulated a novel relation to predict the thermal conductivity. The Wiedemann-Franz law is then modified to account for the influence of the grain boundaries on the charge and heat transport with the predictions now agreeing well with the measured results.

  3. Transport of Dust Particles in Tokamak Devices

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A Y; Smirnov, R D; Krasheninnikov, S I; Rognlien, T D; Rozenberg, M

    2006-06-06

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  4. Particle size dependence on the structural, transport and optical properties of charge-ordered Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyam [Department of Physics, Banaras Hindu University, Varanaasi 221005 (India); Dwivedi, G.D. [Department of Physics, Banaras Hindu University, Varanaasi 221005 (India); Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Lourembam, J. [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Kumar, Shiv; Saxena, U.; Ghosh, A.K. [Department of Physics, Banaras Hindu University, Varanaasi 221005 (India); Chou, H. [Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Chatterjee, Sandip, E-mail: schatterji.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-11-15

    Structural, transport and optical properties of nano-crystalline Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} have been investigated to emphasize on the semiconducting properties of charge-ordered manganite. Rietveld refinement of X-ray diffraction pattern of Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} nanoparticles show that due to increase in sintering temperature, MnO{sub 6} octahedra elongated along z-direction and compressed in x-y plane. Both Mn–O–Mn angles are found to decrease with increasing sintering temperature. Fourier transform infrared (FTIR) spectroscopy measurements reveal that the stretching and bending vibration of Mn–O–Mn is responsible for the change in Mn–O–Mn bond length and bond angle respectively. With increasing sintering temperature, these vibrations tend to increase, which resulted in the further distortion of MnO{sub 6} octahedra. Magnetic measurements suggest that charge ordering is established and system becomes antiferromagnetic with increasing particle size. Resistivity behavior of Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} nanoparticles clearly exhibit semiconducting nature of these systems, which is due to the formation of charge-ordered state of Mn{sup 3+} and Mn{sup 4+}. Estimated optical band-gap of ∼3.7 eV for Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} nanocrystals, makes it a potential candidate for wide band-gap magnetic semiconductors. - Highlights: • Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} nanoparticles have been synthesized via sol–gel route. • Optical properties of charge-ordered Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} have been investigated. • Pr{sub 0.6}Ca{sub 0.4}MnO{sub 3} nanoparticles exhibit wide band-gap (3.7 eV) semiconducting nature. • Potential candidate for wide band-gap magnetic semiconductor device applications.

  5. Particles and scalar waves in noncommutative charged black hole spacetime

    OpenAIRE

    Bhar, Piyali; Rahaman, Farook; Biswas, Ritabrata(Indian Institute of Engineering Sceince and Technology Shibpur (Formerly, Bengal Engineering and Science University Shibpur), 711 013, Howrah, West Bengal, India); Mondal, U. F.

    2015-01-01

    In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

  6. Particles and Scalar Waves in Noncommutative Charged Black Hole Spacetime

    Science.gov (United States)

    Piyali, Bhar; Farook, Rahaman; Ritabrata, Biswas; U. F., Mondal

    2015-07-01

    In this paper we have discussed geodesics and the motion of test particle in the gravitational field of non-commutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordström black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.

  7. Dynamics of fast charged particle beam rotation in bended crystals

    International Nuclear Information System (INIS)

    Dynamics of fast charged particle beam rotation in a bended monocrystal is considered. Face and volume mechanisms of capture in channels are taken into account simultaneously in the model presented. Functions of distribution in transverse energies (φ) of channeled and dechanneled particles are obtained. Charge-energy ''scale invariance'' in ion channeling with charge Z in a bended crystal determined by scale parameter W=pv/Z (p and v are pulse and velocity local to transverse planes) follows from the model presented

  8. Charged particle periodicity in the Saturnian magnetosphere

    International Nuclear Information System (INIS)

    The low energy charged particles (LECP) experiments on the Voyager 1 and 2 spacecraft performed measurements of electrons (approx.22 keV to approx.20 MeV) and ions (approx.28 keV to approx.150 MeV) during the Saturn encounters in 1980 and 1981. Count rate ratios of two of the low energy electron (22 to 35 keV and 183 to 500 keV) and ion (43 to 80 keV and 137 to 215 keV) channels exhibit an approximation 10 hour periodicity in the outer Saturnian magnetosphere beyond the orbit of Titan. Electron ratios vary from approx.50 to approx.300; ion ratios vary from approx.3 to approx.20. Similar but less pronounced periodicities are observed for higher and lower energy electron and ion spectral indices. Three complete cycles were observed during the Voyager 2 outbound portion of the encounter from which were determined an electron ratio period of 10/sup h/21/sup m/ +- 48/sup m/ and an ion ratio period of 9/sup h/49/sup m/ +- 59/sup m/. Using Saturn Kilometric Radiation (SKR) and Saturn Electrostatic Discharge (SED) periods, extrapolation backward from Voyager 2 to Voyager 1 suggests that the periodicities are Saturnian rather than Jovian in nature, and that they persist in phase for time intervals at least as long as 287 days. Ratio minima, or spectral hardenings, occur in the same hemisphere as do auroral brightenings, SKR activity, and spoke enhanement. We interpret the observations as prima facie evidence of an asymmetry in the Saturian magnetic field and the root cause of the observed SKR periodicity

  9. Charge transport in single crystal organic semiconductors

    Science.gov (United States)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form

  10. Photon production by charged particles in narrow optical fibers

    OpenAIRE

    Artru, X.; Ray, C.

    2006-01-01

    Presented at International Conference on Charged and Neutral Particles Channeling Phenomena, Frascati, Italy, July 3-7, 2006. - Theorie, CAS A charged particle passing through or by an optical fiber induces emission of light guided by the fiber. The formula giving the spontaneous emission amplitude are given in the general case when the particle trajectory is not parallel to the fiber axis. At small angle, the photon yield grows like the inverse power of the angle and in the parallel limit...

  11. Massive Vector Particles Tunneling From Noncommutative Charged Black Holes

    CERN Document Server

    Övgün, Ali

    2015-01-01

    In this paper, we investigate the tunneling process of charged massive bosons $W^{\\pm}$ (spin-1 particles) from noncommutative charged black holes such as charged RN black holes and charged BTZ black holes. By applying the WKB approximation and by using the Hamilton-Jacobi equation we derive the tunneling rate and the corresponding Hawking temperature for those black holes configuration. The tunneling rate shows that the radiation deviates from pure thermality and is consistent with an underlying unitary theory.

  12. Particle with non-Abelian charge: classical and quantum

    CERN Document Server

    Lahiri, Amitabha

    2010-01-01

    We construct an action in the worldline formalism for a non-Abelian charged particle in a non-Abelian background field, described by real bosonic variables, leading to a set of the well known classical equations given by Wong. The isospin parts in the action can be viewed as the Lagrange multiplier term corresponding to a non-holonomic constraint restricting the isospins to be parallel transported. The path integration is performed over the isospin variables and their paths turn out to be constrained by its classical solution for the isospins. We derive a wave equation from the path integral, constructed as the constrained Hamiltonian operator acts on the wave function. It reveals what operator ordering corresponds to our classical Hamiltonian. It is verified by the inverse Weyl transformation.

  13. Fractal like charge transport in polyaniline nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Chandrani; Kumar, A., E-mail: ask@tezu.ernet.in

    2013-10-01

    The structural and electrical properties of camphorsulfonic acid (CSA) doped nanotubes, and hydrochloric acid (HCl) doped nanofibers and nanoparticles of polyaniline have been studied as a function of doping level. The crystallinity increases with doping for all the nanostructures. Electrical transport measurements in the temperature range of 5–300 K show an increase in conductivity with doping for the nanostructures. All the nanostructures exhibit metal to insulator (MIT) transition below 40 K. The metallic behavior is ascribed to the electron–electron interaction effects. In the insulating regime of the nanotubes conduction follows the Mott quasi-1D variable range hopping model, whereas the conduction in the nanofibers and nanoparticles occur by variable range hopping of charge carriers among superlocalized states without and with Coulomb interaction, respectively. The smaller dopant size in case of HCl makes the polymer fractal resulting in superlocalization of electronic wave-functions. The confined morphology of the nanoparticles results in effective Coulomb interaction dominating the intersite hopping.

  14. Charge transport in holography with momentum dissipation

    CERN Document Server

    Goutéraux, B

    2014-01-01

    In this work, we examine how charge is transported in a theory where momentum is relaxed by spatially dependent, massless scalars. We analyze the possible IR phases in terms of various scaling exponents and the (ir)relevance of operators in the IR effective holographic theory with a dilaton. We compute the (finite) resistivity and encounter broad families of (in)coherent metals and insulators, characterized by universal scaling behaviour. The optical conductivity at zero temperature and low frequencies exhibits power tails which can decay or blow up, including in the metallic regime, swamping out the contribution from the Drude peak. Their frequency scaling can differ from the resistivity scaling due to the running of the dilaton.

  15. Highly charged hollow latex particles prepared via seeded emulsion polymerization.

    Science.gov (United States)

    Nuasaen, Sukanya; Tangboriboonrat, Pramuan

    2013-04-15

    The carboxylated hollow latex (HL) particles possessing high surface charge density were conveniently prepared by using poly(styrene-co-acrylic acid) (P(St/AA)) as seed particles and methyl methacrylate (MMA)/divinylbenzene (DVB)/AA as monomers. Without seed removal, the hollow structure was simply tuned by adjusting the monomer/seed ratio and the monomer content. The monodisperse, spherical, and non-collapsed HL particles with double shell having the void of 280 nm were obtained from P(St/AA) seeds of 300 nm. The conductimetric back titration, SEM, TEM, and dynamic light scattering measurement revealed that the surface charge density, surface roughness, and size of HL particles significantly increased when applying the stepwise charging monomers/initiator. The highly charged HL particles would be well dispersed in coating film providing good optical properties, for example, opacity and whiteness. PMID:23428072

  16. Anomalous mobility of highly charged particles in pores.

    Science.gov (United States)

    Qiu, Yinghua; Yang, Crystal; Hinkle, Preston; Vlassiouk, Ivan V; Siwy, Zuzanna S

    2015-08-18

    Single micropores in resistive-pulse technique were used to understand a complex dependence of particle mobility on its surface charge density. We show that the mobility of highly charged carboxylated particles decreases with the increase of the solution pH due to an interplay of three effects: (i) ion condensation, (ii) formation of an asymmetric electrical double layer around the particle, and (iii) electroosmotic flow induced by the charges on the pore walls and the particle surfaces. The results are important for applying resistive-pulse technique to determine surface charge density and zeta potential of the particles. The experiments also indicate the presence of condensed ions, which contribute to the measured current if a sufficiently high electric field is applied across the pore. PMID:26177843

  17. Analysis of electrolyte transport through charged nanopores

    Science.gov (United States)

    Peters, P. B.; van Roij, R.; Bazant, M. Z.; Biesheuvel, P. M.

    2016-05-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3 ×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968), 10.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.

  18. Bibliography of integral charged particle nuclear data. Archival edition

    International Nuclear Information System (INIS)

    This is the fourth annual edition of the National Nuclear Data Center charged-particle bibliography. This edition is cumulative and supersedes the previous editions. The bibliography's primary aims are to satisfy the need for a concise and comprehensive index of integral charged-particle cross section data and to provide an index of charged-particle data compiled in the international exchange format, EXFOR. This part of the publication deals with isotope production; references are ordered by mass of the nuclide produced. The present publication is an archival volume; future publications will be cumulative supplements to this edition

  19. Quantum interface to charged particles in a vacuum

    Science.gov (United States)

    Okamoto, Hiroshi

    2015-11-01

    A superconducting qubit device suitable for interacting with a flying electron has recently been proposed [Okamoto and Nagatani, Appl. Phys. Lett. 104, 062604 (2014), 10.1063/1.4865244]. Either a clockwise or counterclockwise directed loop of half magnetic flux quantum encodes a qubit, which naturally interacts with any single charged particle with arbitrary kinetic energy. Here, the device's properties, sources of errors, and possible applications are studied in detail. In particular, applications include detection of a charged particle essentially without applying a classical force to it. Furthermore, quantum states can be transferred between an array of the proposed devices and the charged particle.

  20. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  1. Defect states and disorder in charge transport in semiconductor nanowires

    OpenAIRE

    Ko, Dongkyun; Zhao, X. W.; Reddy, Kongara M.; Restrepo, O. D.; Mishra, R; Beloborodov, I. S.; Trivedi, Nandini; Padture, Nitin P.; W. Windl; Yang, F. Y.; Johnston-Halperin, E.

    2011-01-01

    We present a comprehensive investigation into disorder-mediated charge transport in InP nanowires in the statistical doping regime. At zero gate voltage transport is well described by the space charge limited current model and Efros-Shklovskii variable range hopping, but positive gate voltage (electron accumulation) reveals a previously unexplored regime of nanowire charge transport that is not well described by existing theory. The ability to continuously tune between these regimes provides ...

  2. Particle Transport in Parallel-Plate Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Geller, A.S.

    1999-08-01

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle

  3. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    Science.gov (United States)

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry. PMID:26484617

  4. Facilitated transport of charged colloids in geologic media

    International Nuclear Information System (INIS)

    Diffusion of a charged colloidal particle in a two-dimensional simple shear flow was studied by means of Monte Carlo calculations and the effects of a bounding wall and charge of a particle on convective diffusion were elucidated. Taking charge effects into account has a marked effect on the diffusion behavior of the particle, increasing the migration distance. Diffusion of latex colloidal particles in a quartz-powder packed cell was also studied by through-diffusion methods. For the large latex colloidal particles, the effective diffusion coefficients measured are larger than those estimated by Stokes-Einstein equation

  5. Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brantley, P S; Stuart, L M

    2006-11-06

    A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.

  6. Charged particle interaction with a chirped electromagnetic pulse

    OpenAIRE

    Khachatryan, A. G.; Boller, K. -J.; Goor, van, Fred

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  7. Charged particle beam scanning using deformed high gradient insulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  8. Techniques used for charged particle nuclear data evaluation at CNDC

    International Nuclear Information System (INIS)

    The methods and techniques used for Charged Particle Nuclear Data (CPND) evaluation at Chinese Nuclear Data Center (CNDC) are summarized, including compilation and evaluation of experimental data, nuclear reaction theory and model calculation, systematics research and comprehensive recommendation etc

  9. Silicon pin diode array hybrids for charged particle detection

    International Nuclear Information System (INIS)

    This paper reports on the design of silicon PIN diode array hybrids for use as charged particle detectors. A brief summary of the need for vertex detectors is presented. Circuitry, block diagrams and device specifications are included

  10. Radiobiology with heavy charged particles: a historical review

    Energy Technology Data Exchange (ETDEWEB)

    Skarsgard, L.D. [Dept. of Medical Biophysics, B.C. Cancer Research Centre and TRIUMF, Vancouver (Canada)

    1997-09-01

    The presentation will attempt to briefly review some of radiobiological data on the effects of heavy charged particles and to discuss the influence of those studies on the clinical application which followed. (orig./MG)

  11. Deposition of Aerosol Particles in Electrically Charged Membrane Filters

    International Nuclear Information System (INIS)

    A theory for the influence of electric charge on particle deposition on the surface of charged filters has been developed. It has been tested experimentally on ordinary membrane filters and Nuclepore filters of 8 μm pore size, with a bipolar monodisperse test aerosol of 1 μm particle diameter, and at a filter charge up to 20 μC/m2. Agreement with theory was obtained for the Coulomb force between filter and particle for both kinds of filters. The image force between charged filter and neutral particles did not result in the predicted deposition in the ordinary membrane filter, probably due to lacking correspondence between the filter model employed for the theory, and the real filter. For the Nuclepore filter a satisfactory agreement with theory was obtained, also at image interaction

  12. On the charged particle shock acceleration

    International Nuclear Information System (INIS)

    The shock acceleration method employs injection of beam particles into the linear accelerator unexcited structure. Upon injecting a wave of accelerating electromagnetic field is excited in the structure it catches up with the particles and accelerates them. Dynamics of particle acceleration using the abovesaid method is under consideration. A d gree of particle beam compression in the process of beam acceleration is found out. New technique is suggested of shock acceleration with particle outlet to the potential barrier plateau that enables to attain compression not only of relativistic beams but also of non relativistic ones. It is shown that the method in question enables to get compression of electron and ion beams while increasing essentially their current and reducing the density modulation period. Shock acceleration in high current accelerators enables to obtain high-energy current beams (above 104A), which ght be used in studies on ionic thermonuclear fusion in powerful free electron lasers

  13. Removal of two waterborne pathogenic bacterial strains by activated carbon particles prior to and after charge modification.

    Science.gov (United States)

    Busscher, Henk J; Dijkstra, Rene J B; Engels, Eefje; Langworthy, Don E; Collias, Dimitris I; Bjorkquist, David W; Mitchell, Michael D; Van der Mei, Henny C

    2006-11-01

    Waterborne diseases constitute a threat to public health despite costly treatment measures aimed at removing pathogenic microorganisms from potable water supplies. This paper compared the removal of Raoultella terrigena ATCC 33257 and Escherichia coli ATCC 25922 by negatively and positively charged types of activated carbon particles. Both strains display bimodal negative zeta-potential distributions in stabilized water. Carbon particles were suspended to an equivalent external geometric surface area of 700 cm2 in 250 mL of a bacterial suspension, with shaking. Samples were taken after different durations for plate counting. Initial removal rates were less elevated for the positively charged carbon particle than expected, yielding the conclusion that bacterial adhesion under shaking is mass-transport limited. After 360 min, however, the log-reduction of the more negatively charged R. terrigena in suspension was largest for the positively charged carbon particles as compared with the negatively charged ones, although conditioning in ultrapure or tap water of positively charged carbon particles for 21 days eliminated the favorable effect of the positive charge due to counterion adsorption from the water. Removal of the less negatively charged E. coli was less affected by aging of the (positively charged) carbon particles, confirming the role of electrostatic interactions in bacterial removal by activated carbon particles. The microporous, negatively charged coconut carbon performed less than the mesoporous, positively charged carbon particle prior to conditioning but did not suffer from loss of effect after conditioning in ultrapure or tap water. PMID:17144313

  14. Limits on the production of massive stable charged particles

    International Nuclear Information System (INIS)

    We present improved limits on the production of massive stable charged particles in bar pp collisions using the Collider Detector at Fermilab based on an integrated luminosity of 3.54 pb-1. Both unit and fractionally charged particles are considered. Cross-section upper limits are determined for masses from 50 to 500 GeV/c2. Theoretical cross sections are used to set bounds on the mass of fermionic color triplets, sextets, octets, and decuplets as well as scalar triplets

  15. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  16. Analogies between light optics and charged-particle optics

    OpenAIRE

    Khan, Sameen Ahmed

    2002-01-01

    The close analogy between geometrical optics and the classical theories of charged-particle beam optics have been known for a very long time. In recent years, quantum theories of charged-particle beam optics have been presented with the very expected feature of wavelength-dependent effects. With the current development of non-traditional prescriptions of Helmholtz and Maxwell optics respectively, accompanied with the wavelength-dependent effects, it is seen that the analogy between the two sy...

  17. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  18. Asymptotic algebra for charged particles and radiation

    International Nuclear Information System (INIS)

    A C*-algebra of asymptotic fields which properly describes the infrared structure in quantum electrodynamics is proposed. The algebra is generated by the null asymptotic of electromagnetic field and the time asymptotic of charged matter fields which incorporate the corresponding Coulomb fields. As a consequence Gauss' law is satisfied in the algebraic setting. Within this algebra the observables can be identified by the principle of gauge invariance. A class of representations of the asymptotic algebra is constructed which resembles the Kulish-Faddeev treatment of electrically charged asymptotic fields. (orig.)

  19. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    Science.gov (United States)

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  20. An improved search for elementary particles with fractional electric charge

    International Nuclear Information System (INIS)

    The SLAC Quark Search Group has demonstrated successful operation of a low cost, high mass throughput Millikan apparatus designed to search for fractionally charged particles. About six million silicone oil drops were measured with no evidence of fractional charges. A second experiment is under construction with 100 times greater throughput which will utilize optimized search fluids

  1. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  2. Charged particle separation by an electrically tunable nanoporous membrane

    International Nuclear Information System (INIS)

    We study the applicability of an electrically tunable nanoporous semiconductor membrane for the separation of nanoparticles by charge. We show that this type of membrane can overcome one of the major shortcomings of nanoporous membrane applications for particle separation: the compromise between membrane selectivity and permeability. The computational model that we have developed describes the electrostatic potential distribution within the system and tracks the movement of the filtered particle using Brownian dynamics while taking into consideration effects from dielectrophoresis, fluid flow, and electric potentials. We found that for our specific pore geometry, the dielectrophoresis plays a negligible role in the particle dynamics. By comparing the results for charged and uncharged particles, we show that for the optimal combination of applied electrolyte and membrane biases the same membrane can effectively separate same-sized particles based on charge with a difference of up to 3 times in membrane permeability. (paper)

  3. An imaging co-axial tube electrodynamic trap for manipulation of charged particles

    International Nuclear Information System (INIS)

    A tubular particle trapping device was designed and fabricated using two co-axial electrically conductive tubes with diameters of 5 mm and 7 mm, respectively. The device was integrated with an imaging camera and optical fiber bundle for real time monitoring of trapped particle motion. Charged microparticles of 3 to 50 m diameter can be suspended in air at ambient pressure using the device utilizing a quadrupole potential with an alternating voltage of amplitude 300 V to 750 V and frequency of 30 Hz to 140 Hz. Controlled trapping of a single particle or multiple particles can be achieved by tuning the voltage amplitude. The particle remained trapped when the entire assembly was translated or rotated. The device can be used as a manipulator for charged particle transport and repositioning.

  4. A high sensitivity selector for charged particles

    International Nuclear Information System (INIS)

    The electrostatic size selector for aerosol particles, is composed of two coaxial parallel conductive disks between which an electric field is established; an annular slot in the first disk allows for the atmosphere air intake. Suction and injection systems, and a third intermediate disk are used to carry out a dynamic confinement that allows for the separation of the particles having the required electric mobility and therefore the required size

  5. Charged particle detectors with active detector surface for partial energy deposition of the charged particles and related methods

    Science.gov (United States)

    Gerts, David W; Bean, Robert S; Metcalf, Richard R

    2013-02-19

    A radiation detector is disclosed. The radiation detector comprises an active detector surface configured to generate charge carriers in response to charged particles associated with incident radiation. The active detector surface is further configured with a sufficient thickness for a partial energy deposition of the charged particles to occur and permit the charged particles to pass through the active detector surface. The radiation detector further comprises a plurality of voltage leads coupled to the active detector surface. The plurality of voltage leads is configured to couple to a voltage source to generate a voltage drop across the active detector surface and to separate the charge carriers into a plurality of electrons and holes for detection. The active detector surface may comprise one or more graphene layers. Timing data between active detector surfaces may be used to determine energy of the incident radiation. Other apparatuses and methods are disclosed herein.

  6. Turbulence driven particle transport in Texas Helimak

    International Nuclear Information System (INIS)

    We analyze the turbulence driven particle transport in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)], a toroidal plasma device with a one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change the spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. When applying a negative bias, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias values, the plasma has a reversed shear flow, and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region.

  7. Kinetic transport simulation of energetic particles

    Science.gov (United States)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  8. The Ionic Charge State Composition at High Energies in Large Solar Energetic Particle Events in Solar Cycle 23

    OpenAIRE

    Leske, R. A.; Mewaldt, R. A.; Cummings, A. C.; Stone, E. C.; von Rosenvinge, T. T.

    2001-01-01

    The ionic charge states of solar energetic particles (SEPs) depend upon the temperature of the source material and on the environment encountered during acceleration and transport during which electron stripping may occur. Measurements of SEP charge states at relatively high energies (≳15 MeV/nucleon) are possible with the Mass Spectrometer Telescope (MAST) on the Solar, Anomalous, and Magnetospheric Particle Explorer satellite by using the Earth's magnetic field as a particle rigidity filter...

  9. Metal oxide charge transport material doped with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  10. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  11. Acceleration of low energy charged particles by gravitational waves

    OpenAIRE

    Voyatzis, G.; Vlahos, L.; Ichtiaroglou, S.; Papadopoulos, D.

    2005-01-01

    The acceleration of charged particles in the presence of a magnetic field and gravitational waves is under consideration. It is shown that the weak gravitational waves can cause the acceleration of low energy particles under appropriate conditions. Such conditions may be satisfied close to the source of the gravitational waves if the magnetized plasma is in a turbulent state.

  12. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, M. S.; Dalla, S.; Kelly, J.; Laitinen, T., E-mail: mike.s.marsh@gmail.com [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

    2013-09-01

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations.

  13. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations

  14. Discrete particle simulation of mixed sand transport

    Institute of Scientific and Technical Information of China (English)

    Fengjun Xiao; Liejin Guo; Debiao Li; Yueshe Wang

    2012-01-01

    An Eulerian/Lagrangian numerical simulation is performed on mixed sand transport.Volume averaged Navier-Stokes equations are solved to calculate gas motion,and particle motion is calculated using Newton's equation,involving a hard sphere model to describe particle-to-particle and particle-to-wall collisions.The influence of wall characteristics,size distribution of sand particles and boundary layer depth on vertical distribution of sand mass flux and particle mean horizontal velocity is analyzed,suggesting that all these three factors affect sand transport at different levels.In all cases,for small size groups,sand mass flux first increases with height and then decreases while for large size groups,it decreases exponentially with height and for middle size groups the behavior is in-between.The mean horizontal velocity for all size groups well fits experimental data,that is,increasing logarithmically with height in the middle height region.Wall characteristics greatly affects particle to wall collision and makes the flat bed similar to a Gobi surface and the rough bed similar to a sandy surface.Particle size distribution largely affects the sand mass flux and the highest heights they can reach especially for larger particles.

  15. Ionic charge state measurements in solar energetic particle events

    International Nuclear Information System (INIS)

    With the launch of the Advanced Composition Explorer, it has become possible through the SEPICA instrument to make direct ionic charge state measurements for individual Solar Energetic Particle events. In large events, the charge state may even be measured as a function of time, revealing changes that may be created by phenomena such as injections from different acceleration mechanisms, or confinement by magnetic field structures. The charge state can be a sensitive indicator of separate SEP populations. Several examples of SEP events will be presented. One of these, the November, 1997 event, displayed a trend in which the mean charge state for several ions increased with energy. These measurements may be the result of several processes, including a mixture of plasma with different source and acceleration histories, and abundance formation and possibly additional charge state modification by collisional or other means in the corona. A wide range of iron charge states have been measured for a variety of SEP events, ranging from =10+ to 20+. The mean charge states of C, O, Ne, Mg and Si all increased as the iron charge state increased. In events with the highest iron charge states, there were abundance enhancements in Ne with respect to oxygen in those cases, even though the mass/charge of the O and Ne were similar. In events with the lowest iron charge states, all these ions except Mg showed mean charge states generally consistent with coronal material of an equilibrium temperature of 1.3-1.6 million degrees K

  16. Generalized charge symmetry and charmed particle decays

    International Nuclear Information System (INIS)

    The charge symmetry operations are introduced within the c, s and p, n quark doublets and its consequences for weak decays proceeding via the GIM current, are studied. Numerous relations between various decays are obtained. Combined with CP an interesting pattern of allowed and suppressed amplitudes for charmed meson and baryon processes is found. The results are compatible with the present meagre experimental information. (Auth.)

  17. Two-Dimensional Charge Transport in Disordered Organic Semiconductors

    OpenAIRE

    Brondijk, J. J.; Roelofs, WSC Christian; Mathijssen, SGJ Simon; Shehu, A; Cramer, T.; Biscarini, F Fabio; Blom, PWM Paul; Leeuw, van der, R.

    2012-01-01

    We analyze the effect of carrier confinement on the charge-transport properties of organic field-effect transistors. Confinement is achieved experimentally by the use of semiconductors of which the active layer is only one molecule thick. The two-dimensional confinement of charge carriers provides access to a previously unexplored charge-transport regime and is reflected by a reduced temperature dependence of the transfer curves of organic monolayer transistors.

  18. CMOS sensor as charged particles and ionizing radiation detector

    International Nuclear Information System (INIS)

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained

  19. Charged particle acceleration by electron beam in corrugated plasma waveguide

    International Nuclear Information System (INIS)

    A two-beam charged particle acceleration scheme in a plasma waveguide with corrugated conducting walls is considered. The guiding heavy-current relativistic electron beam is in synchronism with the first plasma wave space harmonics and the accelerated beam is synchronism with a quicker plasma wave. In this case under weak corrugation of the wall the accelerating resonance field effecting the accelerated particles notably increases the field braking the guiding beam. The process of plasma wave excitation with regard to the guiding beam space charge and the relativistic particle acceleration dynamics are investigated by numeric methods. Optimal acceleration modes are found. 19 refs.; 12 figs

  20. Charged particles detection: the draft-and-dye method

    International Nuclear Information System (INIS)

    Charged particles travelling through an organic medium leave a trail of highly concentrated active, stable chemical radicals. These functions are able to initiate copolymerization reactions of unsaturated molecules. Such a reagent is made to reach the trail; polymerization occurs. If the new polymer formed either absorbs or emits light the track of the charged particle is made visible. This technique and results are discussed: the efficiency of those detectors has been increased, they do not exhibit any critical dip angle for the registration of particle tracks, they may offer a way to reveal tracks originating in the detector itself. (orig.)

  1. Charged particles detection: the graft-and-dye method

    International Nuclear Information System (INIS)

    Charged particles travelling through an organic medium leave a trail of highly concentrated active, stable chemical radicals. These functions are able to initiate copolymerization reactions of unsaturated molecules. Such a reagent is made to reach the trail; polymerization occurs. If the new polymer formed either absorbs or emits light the track of the charged particle is made visible. This technique and results are discussed: the efficiency of those detectors has been increased, they do not exhibit any critical dip angle for the registration of particle tracks, they may offer a way to reveal tracks originating in the detector itself. (author)

  2. An update on (n,charged particle) research at WNR

    Energy Technology Data Exchange (ETDEWEB)

    Haight, R.C.; Bateman, F.B.; Sterbenz, S.M. [Los Alamos National Lab., NM (United States); Grimes, S.M. [Ohio Univ., Athens, OH (United States); Wasson, O.A. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Maier-Komor, P. [T.U. Munich (Germany); Vonach, H. [Inst. fuer Radiumforschung und Kernphysik, Vienna (Austria)

    1995-12-31

    Neutron-induced reactions producing light charged particles continue to be investigated at the spallation fast-neutron source at the Los Alamos Neutron Science Center (LANSCE). New data on the cross sections for alpha-particle production for neutrons on {sup 58}Ni and {sup 60}Ni are presented from threshold to 50 MeV. Recent changes in the experiment now allow protons, deuterons, tritons, {sup 3}He and alpha particles to be identified.

  3. An update on (n,charged particle) research at WNR

    International Nuclear Information System (INIS)

    Neutron-induced reactions producing light charged particles continue to be investigated at the spallation fast-neutron source at the Los Alamos Neutron Science Center (LANSCE). New data on the cross sections for alpha-particle production for neutrons on 58Ni and 60Ni are presented from threshold to 50 MeV. Recent changes in the experiment now allow protons, deuterons, tritons, 3He and alpha particles to be identified

  4. Motions of charged particles in Goedel-type spacetimes

    International Nuclear Information System (INIS)

    Goedel-type spacetimes in Hehl's non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig

  5. Motions of charged particles in Goedel-type spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Bartolomeu D.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-10-01

    Goedel-type spacetimes in Hehl`s non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig.

  6. Atmosphere turbulence effect on the hot particle charge

    International Nuclear Information System (INIS)

    The charging of hot beta-active aerosol articles of the micron size range in the turbulent current has been studied experimentally . For this purpose hot particles, obtained by the neutron activation of gold placed on the surface of glass microspheres by the cathode spraying method, were introduced into the turbulent current with the Reynolds number of 104 - 105. Results of the determination of particle charges within the current velocity range from 0.5 to 3 m/s confirm the reliability of the previously obtained model of the charging of hot particles in the turbulent current of the near - ground atmospere layer which is described by the function directly proportional to the radius of particles and the half-cube of the wind velocity, and inversely proportional to the square root of the height. The scheme is suggested and specific features are described of experimental installations used in the process of studies

  7. Doubly-charged particles at the Large Hadron Collider

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; de Traubenberg, Michel Rausch

    2013-01-01

    In this work we investigate the production and signatures of doubly-charged particles at the Large Hadron Collider. We start with the Standard Model particle content and representations and add generic doubly-charged exotic particles. We classify these doubly-charged states according to their spin, considering scalar, fermionic and vectorial fields, and according to their SU(2)L representation, being chosen to be either trivial, fundamental, or adjoint. We write the most general interactions between them and the Standard Model sector and study their production modes and possible decay channels. We then probe how they can most likely be observed and how particles with different spin and SU(2)L representations could be possibly distinguished.

  8. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  9. Single-step Charge Transport through DNA over Long Distances

    OpenAIRE

    Genereux, Joseph C.; Wuerth, Stephanie M.; Barton, Jacqueline K.

    2011-01-01

    Quantum yields for charge transport across adenine tracts of increasing length have been measured by monitoring hole transport in synthetic oligonucleotides between photoexcited 2-aminopurine, a fluorescent analogue of adenine, and N2-cyclopropyl guanine. Using fluorescence quenching, a measure of hole injection, and hole trapping by the cyclopropyl guanine derivative, we separate the individual contributions of single- and multi-step channels to DNA charge transport, and find that with 7 or ...

  10. DNA charge transport within the cell.

    Science.gov (United States)

    Grodick, Michael A; Muren, Natalie B; Barton, Jacqueline K

    2015-02-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long-range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long-range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long-range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within Escherichia coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. On the basis of these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  11. Relativistic mixtures of charged and uncharged particles

    Science.gov (United States)

    Kremer, Gilberto M.

    2014-01-01

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad's moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick's law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad's distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  12. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  13. Bibliography of integral charged particle nuclear data

    International Nuclear Information System (INIS)

    This bibliography is divided into three main sections covering experimental, theoretical, and review references. The review section also includes compilation and evaluation references. Each section contains two subsections. The main subsection contains all references satisfying the criteria noted above and the second subsection is devoted to isotope production. The main subsections are ordered by increasing Z and A of the incident particle, then by increasing Z and A of the target nucleus. Within this order, the entries are ordered by residual nucleus and quantity (e.g., sigma(E)). Finally, the entries are ordered by outgoing particles or processes. All entries which have the same target, reaction, and quantity are grouped under a common heading with the most recent reference first. As noted above the second subsection is devoted to isotope production and is limited in the information it carries. Only those references which contain data on a definite residual nucleus or group of nuclei (e.g., fission fragments) are included in these subsections. Entries within these second subsections are ordered by increasing Z and A of the isotope produced and then by quantity. All references containing data on the same isotope production and quantity are grouped together. All lines within a group are ordered by increasing Z and A of the target and then of the incident particle. The final ordering is by increasing minimum energy

  14. Bibliography of integral charged particle nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, T.W.; Burt, J.S.

    1977-03-01

    This bibliography is divided into three main sections covering experimental, theoretical, and review references. The review section also includes compilation and evaluation references. Each section contains two subsections. The main subsection contains all references satisfying the criteria noted above and the second subsection is devoted to isotope production. The main subsections are ordered by increasing Z and A of the incident particle, then by increasing Z and A of the target nucleus. Within this order, the entries are ordered by residual nucleus and quantity (e.g., sigma(E)). Finally, the entries are ordered by outgoing particles or processes. All entries which have the same target, reaction, and quantity are grouped under a common heading with the most recent reference first. As noted above the second subsection is devoted to isotope production and is limited in the information it carries. Only those references which contain data on a definite residual nucleus or group of nuclei (e.g., fission fragments) are included in these subsections. Entries within these second subsections are ordered by increasing Z and A of the isotope produced and then by quantity. All references containing data on the same isotope production and quantity are grouped together. All lines within a group are ordered by increasing Z and A of the target and then of the incident particle. The final ordering is by increasing minimum energy.

  15. Charged-particle spectroscopy in organic semiconducting single crystals

    Science.gov (United States)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  16. Investigating forces between charged particles in the presence of oppositely charged polyelectrolytes with the multi-particle colloidal probe technique.

    Science.gov (United States)

    Borkovec, Michal; Szilagyi, Istvan; Popa, Ionel; Finessi, Marco; Sinha, Prashant; Maroni, Plinio; Papastavrou, Georg

    2012-11-01

    Direct force measurements are used to obtain a comprehensive picture of interaction forces acting between charged colloidal particles in the presence of oppositely charged polyelectrolytes. These measurements are achieved by the multi-particle colloidal probe technique based on the atomic force microscope (AFM). This novel extension of the classical colloidal probe technique offers three main advantages. First, the technique works in a colloidal suspension with a huge internal surface area of several square meters, which simplifies the precise dosing of the small amounts of the polyelectrolytes needed and makes this approach less sensitive to impurities. Second, the particles are attached in-situ within the fluid cell, which avoids the formation of nanobubbles on the latex particles used. Third, forces between two similar particles from the same batch are being measured, which allows an unambiguous determination of the surface potential due to the symmetry of the system. Based on such direct force measurements involving positively and negatively charged latex particles and different polyelectrolytes, we find the following forces to be relevant. Repulsive electrostatic double-layer forces and attractive van der Waals forces as described by the theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO) are both important in these systems, whereby the electrostatic forces dominate away from the isoelectric point (IEP), while at this point they vanish. Additional non-DLVO attractive forces are operational, and they have been identified to originate from the electrostatic interactions between the patch-charge heterogeneities of the adsorbed polyelectrolyte films. Highly charged polyelectrolytes induce strong patch-charge attractions, which become especially important at low ionic strengths and high molecular mass. More weakly charged polyelectrolytes seem to form more homogeneous films, whereby patch-charge attractions may become negligible. Individual bridging events

  17. Trapped charged particles a graduate textbook with problems and solutions

    CERN Document Server

    Madsen, Niels; Thompson, Richard C

    2016-01-01

    At Les Houches in January 2015, experts in the field of particle trapping came together to discuss the fundamental physics of traps and the different types of applications. This textbook collates the lectures delivered there; the Second Winter School on Physics with Trapped Charged Particles. Taken as a whole, the book gives an overview of why traps for charged particles are important, how they work, their special features and limitations, and their application in areas such as precision measurements, mass spectrometry, optical clocks, plasma physics, antihydrogen creation, quantum simulation and quantum information processing. Chapters from various world experts include those on the basic properties of Penning traps, RF traps and particle accelerators, as well as those covering important practical aspects such as vacuum systems, detection techniques, and different types of particle cooling including laser cooling. Finally, individual chapters deal with the different areas of application listed above. Each ...

  18. Measuring massive metastable charged particles with ATLAS RPC timing information.

    CERN Document Server

    Ellis, Jonathan Richard; Oye, Ola Kristoffer

    2006-01-01

    We investigate the measurement of massive metastable charged particles in ATLAS, using timing information from the resistive plate chambers (RPCs). As representative particle candidates we use staus, the partners of $ au$ leptons in supersymmetric models with gravitino dark matter (GDM), which may well be stable on the scale of the detector. The generic signatures of massive metastable charged particles are a long Time-of-Flight (ToF) and high energy-loss ($dE/dx$). The RPC timing information allows us to measure the ToF of a particle which, taken in conjunction with the measurement of the particle's momentum from its track, allows one to determine its mass. We pioneer the study of the RPCs' potential for this measurement. We also consider triggering effects on the event selection, and discuss quantitatively the ATLAS potential for measuring the stau mass in three specific GDM benchmark scenarios.

  19. Charged particle creation in the steady state universe

    International Nuclear Information System (INIS)

    The birth of a particle of charge q(0), initial mass m(0), and radius a in the steady state universe is studied. With the particle's birth, in accord with causality, gravity, and Coulomb fields propagate away from it with the speed of light. Field energies are supplied by the particle's mass which subsequently decays in time. Asymptotic solution to a nonlinear equation for the remaining mass gives the criterion m(0) is greater that q(0)2/2ac2 as a necessary condition for the initial mass to survive the field expansion. The resulting radius of a classical charged particle is found to be greater than the standard value obtained by equating self- and rest-mass energies of the initial particle. 12 refs

  20. Turbulent particle transport in magnetized fusion plasma

    International Nuclear Information System (INIS)

    The understanding of the mechanisms responsible for particle transport is of the utmost importance for magnetized fusion plasmas. Indeed, a peaked density profile is attractive to improve the fusion rate, which is proportional to the square of the density, and to self-generate a large fraction of non-inductive current required for continuous operation. Experiments in various tokamak devices have indicated the existence of an anomalous inward particle pinch. Recently, such an anomalous pinch has been unambiguously identified in Tore Supra very long discharges, in absence of toroidal electric field and of central particle source, for more than 3 minutes. This anomalous particle pinch is predicted by a quasilinear theory of particle transport, and confirmed by non-linear turbulence simulations and general considerations based on the conservation of motion invariants. Experimentally, the particle pinch is found to be sensitive to the magnetic field gradient in many cases, to the temperature gradient and also to the collisionality that changes the nature of the microturbulence. The consistency of some of the observed dependences with the theoretical predictions gives us a clearer understanding of the particle pinch in tokamaks, allowing us to predict more accurately the density profile in ITER. (authors)

  1. Charged particle reaction cross sections and nucleosynthesis

    International Nuclear Information System (INIS)

    The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated

  2. Behaviour of scintillometers with charge particles

    International Nuclear Information System (INIS)

    The behaviour of a scintillation plastic and an anthracene crystal for protons and deuterons with energies within 0,2 and 1,7 MeV. has been studied. The beam of monoenergetic particles falls directly on the detector in study in optic contact with a photomultiplicator. The impulse get in an amplifier which sends then to a scale a sting as a monitor and to an analyzer of 100 canals. The spectrum for each energy of incidental beam is obtained taking the maximum of the spectrum as the most probable value of amplitude of the detector reply, and this is represented apposite to the energy. (Author) 6 refs

  3. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P.B.; Roij, van R.; Bazant, M.Z.; Biesheuvel, P.M.

    2016-01-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relat

  4. Complex Kepler Orbits and Particle Aggregation in Charged Microscopic Grains

    Science.gov (United States)

    Lee, Victor; Waitukaitis, Scott; Miskin, Marc; Jaeger, Heinrich

    2015-03-01

    Kepler orbits are usually associated with the motion of astronomical objects such as planets or comets. Here we observe such orbits at the microscale in a system of charged, insulating grains. By letting the grains fall freely under vacuum, we eliminate the effects of air drag and gravity, and by imaging them with a co-falling high-speed camera we track the relative positions of individual particles with high spatial and temporal precision. This makes it possible to investigate the behaviors caused by the combination of long-range electrostatic interactions and short-range, dissipative, contact interactions in unprecedented detail. We make the first direct observations of microscopic elliptical and hyperbolic Kepler orbits, collide-and-capture events between pairs of charged grains, and particle-by-particle aggregation into larger clusters. Our findings provide experimental evidence for electrostatic mechanisms that have been suspected, but not previously observed at the single-event level, as driving the early stages of particle aggregation in systems ranging from fluidized particle bed reactors to interstellar protoplanetary disks. Furthermore, since particles of different net charge and size are seen to aggregate into characteristic spatial configurations, our results suggest new possibilities for the formation of charge-stabilized ``granular molecules''. We can reproduce the observed molecule configurations by taking many-body, dielectric polarization effects into account.

  5. Electric birefringence anomaly of solutions of ionically charged anisometric particles.

    Science.gov (United States)

    Hoffmann, H; Gräbner, Dieter

    2015-02-01

    The term "electric birefringence anomaly" is known as the electric birefringence (EB) signal that occurs in solutions of ionically charged anisometric particles in a narrow concentration region. The signal is of opposite sign to the normal birefringence that occurs below and above this narrow concentration region. The normal electric birefringence signals in the dilute and more concentrated regions are due to the orientation of the particles in the direction of the applied electric field. The origin for the anomalous signal was not completely understood until now. The article summarises previous results in which the anomalous results had been observed but not well understood. It shows that the birefringence anomaly occurs in systems as diverse as micellar solutions, polyelectrolytes, solutions of clays, viruses and fibres. In all these systems the anomaly signals are present at the concentration when the length of the colloidal particles including the thickness of the electric double layer are about the same as the mean distance between the colloidal particles. Under these conditions the electric double layers of the particles overlap along the main axis of the particles but not in the direction across the particles. As a consequence of this situation a dipole is built up across the particles by the migration of the counter-ions of the particles in the electric field and this dipole leads to an orientation of the particles perpendicular to the electric field. The anomalous signal can usually be observed simultaneously with the normal signal. The amplitude of the anomalous signal can be larger than the amplitude of the normal signal. As a consequence the total birefringence changes its sign in the anomalous concentration region. The anomaly signal of the clays can also be explained by a fluctuating dipole around the particles, which is due to the fact that the centre of the ionic charges of the particles does not fall on the centre of the ionic charge of the counter

  6. Relativistic mixtures of charged and uncharged particles

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  7. Particle-in-Cell/Test-Particle Simulations of Technological Plasmas: Sputtering Transport in Capacitive Radio Frequency Discharges

    OpenAIRE

    Trieschmann, Jan; Schmidt, Frederik; Mussenbrock, Thomas

    2016-01-01

    The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo me...

  8. Axonal transport of ribonucleoprotein particles (vaults).

    Science.gov (United States)

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H

    1999-01-01

    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  9. Optimal performance of charged particle telescopes in space

    International Nuclear Information System (INIS)

    A Bayesian probabilistic data analysis method for energetic proton and ion data from charged particle telescopes in space is described. The telescope is assumed to consist of only a series of planar silicon detectors with graduated thicknesses. The method is based on a range-straggling function and makes optimal use of energy loss measurements in each detector. It provides accurate incidence angle estimates for particles stopping in the telescope, allowing accurate element identification and possible isotope identification. It also provides energy estimates for high-energy particles going through the telescope without stopping. Examples are shown for simulated telescope design performance tests and application to real space-particle data

  10. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  11. FLUKA: A Multi-Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan; Fasso, A.; /SLAC; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  12. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  13. Charged-Particle Multiplicity in Proton-Proton Collisions

    CERN Document Server

    Grosse-Oetringhaus, Jan Fiete

    2010-01-01

    This article summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of sqrt(s). Feynman scaling, KNO scaling, as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of two or more negative binomial distributions are discussed. Moreover, similarities between the energy dependence of charged-particle multiplicities in p+p(pbar) and e+e- collisions are studied. Finally, various predictions for pseudorapidity densities, average multiplicities in full phase space, and multiplicity distributions of charged particles in p+p(pbar) collisions at the LHC energies of sqrt(s) = 7 TeV, 10 TeV, and 14 TeV are summarized and compared.

  14. Electromagnetic radiation of charged particles in stochastic motion

    CERN Document Server

    Harko, Tiberiu

    2016-01-01

    The study of the Brownian motion of a charged particle in electric and magnetic fields fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The Power Spectral Density (PSD) of the emitted power is ...

  15. Particle transport in diverted TdeV

    Energy Technology Data Exchange (ETDEWEB)

    Lachambre, J.-L.; Quirion, B.; Le Clair, G.; Stansfield, B.; Martin, F.; Abel, G.; Michaud, D.; Bourgoin, D.; Zuzak, W. [Centre Canadien de Fusion Magnetique, Varennes, PQ (Canada)

    1996-11-01

    The particle confinement time of ohmic double-null discharges in Tokamak de Varennes (TdeV) is determined by two different techniques, the conventional H{sub {alpha}} method and a new technique based on the temporal decay of the total core population following the injection of a gas puff. Both methods show a confinement time increasing with density up to a maximum of 13 ms at 2.5 x 10{sup 19} m{sup -3} and decreasing at larger densities, with very little dependence on plasma current. Particle transport is analysed using fast gas puffing and Abel inversion of the seven-chord submillimetre (SMM) interferometer together with the source profiles determined by H{sub {alpha}} measurements. The incremental transport coefficients are obtained by testing the standard form of the particle flux functions against the data during the transistory period towards equilibrium. Both perturbed diffusion and convection coefficients are found to vary approximately as the inverse of the density and almost proportionally to the plasma current. The equilibrium transport coefficients are then deduced from the experimental equilibrium density profiles and the measured incremental coefficients using a transport model developed from the data. The model is finally used to predict confinement times to be compared with experiment. The effect of divertor plate biasing on transport is also discussed. (author).

  16. Charged Massive Particle's Tunneling From Charged Non-Rotating Micro Black Hole

    CERN Document Server

    Soleimani, M J; Radiman, Shahidan; Abdullah, W A T Wan

    2015-01-01

    In the tunneling framework of Hawking radiation, charged massive particle's tunneling in charged non-rotating TeV-Scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentum through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged non-rotating micro black hole by taking into account the full implications of energy and charge conservation as well as the back- scattered radiation.

  17. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  18. Dust particle diffusion in ion beam transport region

    Science.gov (United States)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M.

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  19. Heavy particle transport in sputtering systems

    Science.gov (United States)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  20. Clustering of settling charged particles in turbulence: theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jiang; Nordsiek, Hansen; Shaw, Raymond A, E-mail: rashaw@mtu.edu [Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)

    2010-12-15

    Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.

  1. Clustering of settling charged particles in turbulence: theory and experiments

    International Nuclear Information System (INIS)

    Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.

  2. Galilean electrodynamics. Part 2. Charged particle force and conservation laws

    International Nuclear Information System (INIS)

    From the general formulae for the transformation of fields in Galilean electrodynamics there are derived the expression for the force acting on a charged particle and the equation of motion of a charged particle. Without any additional assumptions these equations are performed into the relativistic form, that is with the relativistic momentum and energy. Hence, in an elementary way, Einstein's formula of the equivalence of energy and mass results. Then the conservation laws of energy and momentum for the fields are derived. 3 refs. (author)

  3. A New Mechanism of Higgs Bosons in Producing Charge Particles

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time.......A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time....

  4. Charged-particle inclusive distributions from hadronic Z0 decays

    International Nuclear Information System (INIS)

    We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were the mean charged-particle multiplicity (left-angle nch right-angle), scaled momentum (x), and momenta transverse to the sphericity axes (p perpendicular in and p perpendicular out). The distributions have been corrected for detector effects and are compared with data from e+e- annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations. 12 refs., 2 figs

  5. PREDICTION OF PARTICLE TRANSPORT IN ENCLOSED ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Qingyan Chen; Zhao Zhang

    2005-01-01

    Prediction of particle transport in enclosed environment is crucial to the welfare of its occupants. The prediction requires not only a reliable particle model but also an accurate flow model. This paper introduces two categories of flow models - Reynolds Averaged Navier-Stokes equation modeling (RANS modeling) and Large Eddy Simulation (LES); as well as two popular particle models - Lagrangian and Eulerian methods. The computed distributions of air velocity, air temperature, and tracer-gas concentration in a ventilated room by the RANS modeling and LES agreed reasonably with the experimental data from the literature. The two flow models gave similar prediction accuracy. Both the Lagrangian and Eulerian methods were applied to predict particle transport in a room. Again, the computed results were in reasonable agreement with the experimental data obtained in an environmental chamber. The performance of the two methods was nearly identical. Finally the flow and particle models were applied to study particle dispersion in a Boeing 767 cabin and in a small building with six rooms. The computed results look plausible.

  6. Charged Particle Monitor on the AstroSat mission

    CERN Document Server

    Rao, A R; Bhargava, Yash; Khanna, Rakesh; Hingar, M K; Kutty, A P K; Malkar, J P; Basak, Rupal; Sreekumar, S; Samuel, Essy; Priya, P; Vinod, P; Bhattacharya, D; Bhalerao, V; Vadawale, S V; Mithun, N P S; Pandiyan, R; Subbarao, K; Seetha, S; Sarma, K Suryanarayana

    2016-01-01

    Charged Particle Monitor (CPM) on-board the AstroSat satellite is an instrument designed to detect the flux of charged particles at the satellite location. A Cesium Iodide Thallium (CsI(Tl)) crystal is used with a Kapton window to detect protons with energies greater than 1 MeV. The ground calibration of CPM was done using gamma-rays from radioactive sources and protons from particle accelerators. Based on the ground calibration results, energy deposition above 1 MeV are accepted and particle counts are recorded. It is found that CPM counts are steady and the signal for the onset and exit of South Atlantic Anomaly (SAA) region are generated in a very reliable and stable manner.

  7. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  8. Sausage mode of a pinched charged particle beam

    International Nuclear Information System (INIS)

    The axisymmetric oscillations of a self-pinched charged particle beam are analyzed using a dispersion relation derived from a 3/2 dimensional model. This calculation includes the effects of rounded profiles, finite conductivity, a steady return current, and phase mix damping among particle orbits. However, only the lowest order radial mode of distortion is treated, and this is done in an approximate fashion

  9. Construction of asymptotic fields for a charged particle

    OpenAIRE

    Greenberg, O. W.; Cowen, Steve

    2012-01-01

    Asymptotic fields do not exist in theories with massless particles and fields, because the vacuum matrix elements of products of the interacting fields in such theories do not have delta function or principal value singularities in momentum space. We remedy this problem by constructing a field for the charged particle that does have the required singularities in momentum space. We illustrate this construction in quantum electrodynamics (QED).

  10. A composite bolometer as a charged-particle spectrometer

    International Nuclear Information System (INIS)

    An improved version of a He-cooled composite diamond bolometer with a monolithic germanium thermistor, for use as a charged-particle spectrometer, is described. The performance of the bolometer was tested using 5-6 MeV α particles, and a full-width-at-half-maximum of 36 keV was obtained at 1.3 K. (U.K.)

  11. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  12. Ion and water transport in charge-modified graphene nanopores

    CERN Document Server

    Qiu, Yinghua; Chen, Weiyu; Si, Wei; Tan, Qiyan; Chen, Yunfei

    2016-01-01

    Porous graphene has high mechanical strength and atomic layer thickness, which make it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solution are a kind of strong long-range interaction which may have great influence on the fluid transport through nanopores. Here, molecular dynamics simulations were conducted to investigate ion and water transport through a 1.05-nm-in-diameter monolayer graphene nanopore with its edge charge-modified. From the results, it is found that the nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonously decrease. The co-ions rejection can reach 75% and 90% when the nanopores are negatively and positively charged, respectively. Cl ions current increases and reaches a plateau, and Na+ current decreases with the charge amount in the systems where they act as counterions. Beside...

  13. Empirical particle transport model for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ approx. = chi/sub e/ is the thermal diffusivity, and then use the kappa/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles.

  14. Common misconceptions in Monte Carlo particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Thomas E., E-mail: teb@lanl.gov [LANL, XCP-7, MS F663, Los Alamos, NM 87545 (United States)

    2012-07-15

    Monte Carlo particle transport is often introduced primarily as a method to solve linear integral equations such as the Boltzmann transport equation. This paper discusses some common misconceptions about Monte Carlo methods that are often associated with an equation-based focus. Many of the misconceptions apply directly to standard Monte Carlo codes such as MCNP and some are worth noting so that one does not unnecessarily restrict future methods. - Highlights: Black-Right-Pointing-Pointer Adjoint variety and use from a Monte Carlo perspective. Black-Right-Pointing-Pointer Misconceptions and preconceived notions about statistical weight. Black-Right-Pointing-Pointer Reasons that an adjoint based weight window sometimes works well or does not. Black-Right-Pointing-Pointer Pulse height/probability of initiation tallies and 'the' transport equation. Black-Right-Pointing-Pointer Highlights unnecessary preconceived notions about Monte Carlo transport.

  15. Congestion charge as the regulatory tool of a transport system

    OpenAIRE

    Chlaň, Alexander; Lejsková, Pavla

    2010-01-01

    Congestion increases private transport costs and contributes to the decline of public transport service. While these two phenomena are logically connected, in most cities they are institutionally and financially separated. In principle, vehicular users of congested urban road space should be charged a price at least equal to the short-run marginal cost of use, including congestion, road wear and tear, and environmental impacts. Charging for road infrastructure is the core of a strategy ...

  16. Fixed Charge Capacitated Non-Linear Transportation Problem

    OpenAIRE

    Das, Atanu; Basu, Manjusri; Acharya, Debiprasad

    2013-01-01

    The fixed charge (fixed cost) may present the cost of renting a vehicle, landing fees in an airport, setup cost for machines in a manufacturing environment, etc. In this paper, we discuss fixed charge capacitated in a non-linear transportation problem. Thereby, we establish local optimum condition of this problem. Next we establish an algorithm for solving this transportation problem. Also, we illustrate a numerical example to support this algorithm

  17. Nonlinear charge transport in DNA mediated by twist modes

    OpenAIRE

    Palmero, F.; Archilla, J. F. R.; Hennig, D.; Romero, F. R.

    2003-01-01

    Recent works on localized charge transport along DNA, based on a three--dimensional, tight--binding model (Eur. Phys. J. B 30:211, 2002; Phys. D 180:256, 2003), suggest that charge transport is mediated by the coupling of the radial and electron variables. However, these works are based on a linear approximation of the distances among nucleotides, which forces for consistency the assumption that the parameter $\\alpha$, that describes the coupling between the transfer integral and the distance...

  18. Probing spin-charge separation using spin transport

    OpenAIRE

    Si, Qimiao

    2000-01-01

    Pedagogical discussions are given on what constitutes a signature of spin-charge separation. A proposal is outlined to probe spin-charge separation in the normal state of the high $T_c$ cuprates using spin transport. Specifically, the proposal is to compare the temperature dependences of the spin resistivity and electrical resistivity: Spin-charge separation will be manifested in the different temperature dependences of these two resistivities. We also estimate the spin diffusion length and s...

  19. Particle Swarm Transport in Fracture Networks

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  20. Neutron secondary-particle production cross sections and their incorporation into Monte-Carlo transport codes

    International Nuclear Information System (INIS)

    Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs

  1. Charged particles identification with a CsI(Tl) scintillator

    International Nuclear Information System (INIS)

    A CsI(Tl) scintillator with two light decay components is used to detect and identify p,d,t, 3He, α particles with a low energy threshold, Besides the addition of a thin plastic scintillator in front of the CsI(Tl) crystal allows charge identification for ions with Z up to 19

  2. Some peculiarity of element analysis using charged particle beams

    International Nuclear Information System (INIS)

    Multilayer structures, SiC -layers at Si substrate, have been analyzed by RBS, NR, ERD and PIXE methods using the charged particle beams from EG-5 Van de Graaff accelerator of JINR. The depth profiles of the based deposited layers were obtained for the multilayer structures

  3. Nondestructive diagnostics of charged particle beams in accelerators

    Science.gov (United States)

    Logachev, P. V.; Meshkov, O. I.; Starostenko, A. A.; Nikiforov, D. A.; Andrianov, A. V.; Maltseva, Yu. I.; Levichev, A. E.; Emanov, F. A.

    2016-03-01

    The basic techniques for nondestructive diagnostics and detection of losses of charged particle beams used in accelerator engineering are reviewed. The data provided may help choose the systems for diagnostics and detection of losses of beams and give a qualitative picture of the operation principles of such devices. Quantitative characteristics that define the limits of applicability of each diagnostic technique are outlined.

  4. Periodic interactions of charged particles with spatially localized fields

    International Nuclear Information System (INIS)

    We derive and analyze a generic mapping for the spatially periodic interaction of charged particles with localized, coherent electric fields. For such interactions stochastic motion exists in a bounded region of phase-space. Conditions are determined for which diffusion can describe the dynamics in such a bounded, stochastic phase-space. (orig.)

  5. Challenging the weak cosmic censorship conjecture with charged quantum particles

    International Nuclear Information System (INIS)

    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstroem black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-(1/2) particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-(1/2) fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-(1/2) charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.

  6. Some developments in neutron and charged particle dosimetry

    International Nuclear Information System (INIS)

    There is an increasing need for dosimetry of neutrons and charged particles. Increasing exposure levels are reported in the nuclear industry, deriving from more frequent in-service entries at commercial nuclear power plants, and from increased plant decommissioning and refurbishment activities. Another need stems from the compliance with requirements of the regulations and standards. The European Council directive 96/29 requires dosimetric precautions if the effective dose exceeds 1 mSv a-1. On average, aircrew members exceed this value. Further, there is a trend of increasing use of charged particles in radiotherapy. The present situation is that we have reasonably good photon dosemeters, but neutron and charged particle dosemeters are still in need of improvements. This work highlights some of the developments in this field. It is mainly concentrated on some developments in passive dosimetry, in particular thermally and optically stimulated luminescent detectors, indicating the direction of ongoing research. It shows that passive dosemeters are still a very active field. Active dosemeters will not be discussed with the exception of new developments in Micro-dosimetric measurements [new types of tissue equivalent proportional counters (TEPCs)]. The TEPC is unique in its ability to provide a simultaneous determination of neutron/charged particle/ gamma ray doses, or dose equivalents using a single detector. (authors)

  7. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  8. Bibliography of integral charged-particle nuclear data

    International Nuclear Information System (INIS)

    This publication is the first supplement to the archival edition of the National Nuclear Data Center's charged-particle bibliography. This supplement contains citations to all references scanned since March 15, 1980, and all corrections and additions to previous citations, and indexes all data received in the international exchanged format (EXFOR). The primary goal of the bibliography has been to satisfy the need expressed by the Nuclear Reaction Data Center Network for a concise and comprehensive bibliography of integral charged-particle cross section data and to provide an index of data exchanged among the members. As a result of a recommendation by the recent Workshop on Intense High Energy Neutron Source and Their Characteristics, we have also undertaken to expand the coverage of charged-particle-induced neutron-source reactions to include differential data. This supplement is divided into two sections, References and Isotope Production. The References section contains all references satisfying the criteria noted. The Isotope Production section contains an abbreviated reference line for all entries which contain information on a definite residual nucleus, on particle production, or on mass, charge, or isotopic distributions. Entries in the References section are sequentially numbered. These sequence numbers serve as a link between the two sections

  9. Thermodynamic model for bouncing charged particles inside a capacitor

    Science.gov (United States)

    Rezaeizadeh, Amin; Mameghani, Pooya

    2013-08-01

    We introduce an equation of state for a conducting particle inside a charged parallel-plate capacitor and show that it is similar to the equation of state for an ideal gas undergoing an adiabatic process. We describe a simple experiment that shows reasonable agreement with the theoretical model.

  10. Fusion reactivity graphs and tables for charged particle reactions

    International Nuclear Information System (INIS)

    Graphs and tables are presented on 31 light isotope fusion reaction parameters [, n, Q/sub +/, nQ/sub +/ (for n = 1020 fuel ion species/m3 and Q/sub +/ = energy release in charged particles)] in the kinetic temperature range 1 to 1000 keV

  11. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  12. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model

    DEFF Research Database (Denmark)

    Foged, Camilla; Brodin, Birger; Frøkjær, Sven; Sundblad, Anne

    2005-01-01

    polystyrene particles was covalently modified with different polyaminoacids/proteins, yielding particles with varying surface charge. Uptake of 1 microm particles was greatly enhanced when particles displayed a positive surface charge. In general, the present findings establish that particle diameters of 0...

  13. Continuum of the spectra of emitted charged particles

    International Nuclear Information System (INIS)

    The continuous part of nuclear particle spectra situated between direct reactions and compound nuclear reactions is of importance due to its great yield. Because most reactions studied so far have only nucleons in the entrance or exit channel, respectively, the authors have measured charged particle spectra from complex particle induced reactions: deuterons, helions and alphas with bombarding energies up to 40 MeV/nucleon. From spectra measured at both forward and backward angles angle integrated spectra have been deduced which can be compared with the predictions of reaction models. (orig./AH)

  14. Charged-particle LET-spectra measurements aboard LDEF

    International Nuclear Information System (INIS)

    The linear energy transfer (LET) spectra of charged particles was measured in the 5 to 250 keV/micron (water) interval with CR-39 and in the 500 to 1500 keV/micron (water) interval with polycarbonate plastic nuclear track detectors (PNTDs) under different shielding depths in the P0006 experiment. The optimal processing conditions were determined for both PNTDs in relation to the relatively high track densities due to the long term exposure in space. The total track density was measured over the selected samples, and tracks in coincidence on the facing surfaces of two detector sheets were selected for measuring at the same position on each sheet. The short range (SR) and Galactic Cosmic Ray (GCR) components were measured separately with CR-39 PNTDs and the integral dose and dose rate spectra of charged particles were also determined. The high LET portion of the LET spectra was measured with polycarbonate PNTDs with high statistical accuracy. This is a unique result of this exposure due to the low flux of these types of particles for typical spaceflight durations. The directional dependence of the charged particles at the position of the P0006 experiment was also studied by four small side stacks which surrounded the main stack and by analyzing the dip angle and polar angle distributions of the measured SR and GCR particle tracks in the main stack

  15. Cosmic-Ray Generated Charged Particles for Nuclear Inspection

    International Nuclear Information System (INIS)

    Charged particles continuously rain down on the surface of the Earth. These charged particles primarily consist of muons and electrons. Muons are subatomic particles with the same charge as the electron, but with 200 times the mass. These particles are generated from interactions of primary cosmic-rays, primarily protons, with the upper atmosphere. Decision Sciences has implemented a tracking detector to measure the interactions of these particles with materials through which they pass: multiple Coulomb scattering and ionization energy loss and from these measurements is able to reconstruct a three-dimensional map of the density and atomic number of the materials in a scan volume. This map, combined with sensitive gamma detection capability of the tracking detector, enables the detection of nuclear and radiological materials that may be concealed in shielding, as well as discrimination of naturally occurring radioactive materials (NORM) from point sources that would be more associated with threats. Times to clear most non-threat cargo range from 30-60 seconds, with suspicious (heavy shielding or gamma emitting) scenes being held longer to confirm the presence of and identify nuclear or radiological materials. Extended scanning in this circumstance would typically take two to ten minutes. (author)

  16. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection.

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  17. Monitoring of Hadrontherapy Treatments by Means of Charged Particle Detection

    Science.gov (United States)

    Muraro, Silvia; Battistoni, Giuseppe; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Ferroni, Fernando; Fiore, Salvatore; Frallicciardi, Paola; Marafini, Michela; Mattei, Ilaria; Morganti, Silvio; Paramatti, Riccardo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Solfaroli-Camillocci, Elena; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Patera, Vincenzo

    2016-01-01

    The interaction of the incoming beam radiation with the patient body in hadrontherapy treatments produces secondary charged and neutral particles, whose detection can be used for monitoring purposes and to perform an on-line check of beam particle range. In the context of ion-therapy with active scanning, charged particles are potentially attractive since they can be easily tracked with a high efficiency, in presence of a relatively low background contamination. In order to verify the possibility of exploiting this approach for in-beam monitoring in ion-therapy, and to guide the design of specific detectors, both simulations and experimental tests are being performed with ion beams impinging on simple homogeneous tissue-like targets (PMMA). From these studies, a resolution of the order of few millimeters on the single track has been proven to be sufficient to exploit charged particle tracking for monitoring purposes, preserving the precision achievable on longitudinal shape. The results obtained so far show that the measurement of charged particles can be successfully implemented in a technology capable of monitoring both the dose profile and the position of the Bragg peak inside the target and finally lead to the design of a novel profile detector. Crucial aspects to be considered are the detector positioning, to be optimized in order to maximize the available statistics, and the capability of accounting for the multiple scattering interactions undergone by the charged fragments along their exit path from the patient body. The experimental results collected up to now are also valuable for the validation of Monte Carlo simulation software tools and their implementation in Treatment Planning Software packages. PMID:27536555

  18. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    Science.gov (United States)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  19. Space charge distribution measurement methods and particle loaded insulating materials

    Energy Technology Data Exchange (ETDEWEB)

    Hole, S [Laboratoire des Instruments et Systemes d' Ile de France, Universite Pierre et Marie Curie-Paris6, 10 rue Vauquelin, 75005 Paris (France); Sylvestre, A [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Lavallee, O Gallot [Laboratoire d' Etude Aerodynamiques, CNRS UMR6609, boulevard Marie et Pierre Curie, Teleport 2, BP 30179, 86962 Futuroscope, Chasseneuil (France); Guillermin, C [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France); Rain, P [Laboratoire d' Electrostatique et des Materiaux Dielectriques, CNRS UMR5517, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Rowe, S [Schneider Electric Industries SAS, 22 rue Henry Tarze, 38000 Grenoble (France)

    2006-03-07

    In this paper the authors discuss the effects of particles (fillers) mixed in a composite polymer on the space charge measurement techniques. The origin of particle-induced spurious signals is determined and silica filled epoxy resin is analysed using the laser-induced-pressure-pulse (LIPP) method, the pulsed-electro-acoustic (PEA) method and the laser-induced-thermal-pulse (LITP) method. A spurious signal identified as the consequence of a piezoelectric effect of some silica particles is visible for all the method. Moreover, space charges are clearly detected at the epoxy/silica interface after a 10 kV mm{sup -1} poling at room temperature for 2 h.

  20. Brownian Dynamics of charged particles in a constant magnetic field

    CERN Document Server

    Hou, L J; Piel, A; Shukla, P K

    2009-01-01

    Numerical algorithms are proposed for simulating the Brownian dynamics of charged particles in an external magnetic field, taking into account the Brownian motion of charged particles, damping effect and the effect of magnetic field self-consistently. Performance of these algorithms is tested in terms of their accuracy and long-time stability by using a three-dimensional Brownian oscillator model with constant magnetic field. Step-by-step recipes for implementing these algorithms are given in detail. It is expected that these algorithms can be directly used to study particle dynamics in various dispersed systems in the presence of a magnetic field, including polymer solutions, colloidal suspensions and, particularly complex (dusty) plasmas. The proposed algorithms can also be used as thermostat in the usual molecular dynamics simulation in the presence of magnetic field.

  1. Charged Q-balls and boson stars and dynamics of charged test particles

    CERN Document Server

    Brihaye, Yves; Hartmann, Betti

    2014-01-01

    We construct electrically charged Q-balls and boson stars in a model with a scalar self-interaction potential resulting from gauge mediated supersymmetry breaking. We discuss the properties of these solutions in detail and emphasize the differences to the uncharged case. We observe that $Q$-balls can only be constructed up to a maximal value of the charge of the scalar field, while for boson stars the interplay between the attractive gravitational force and the repulsive electromagnetic force determines their behaviour. We also study the motion of charged, massive test particles in the space-time of boson stars. We find that in contrast to charged black holes the motion of charged test particles in charged boson star space-times is planar, but that the presence of the scalar field plays a crucial r\\^ole for the qualitative features of the trajectories. Applications of this test particle motion can be made in the study of extreme-mass ratio inspirals (EMRIs) as well as astrophysical plasmas relevant e.g. in th...

  2. Interplays between charge and electric field in perovskite solar cells: charge transport, recombination and hysteresis

    OpenAIRE

    Shi, Jiangjian; Zhang, Huiyin; Xu, Xin; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2016-01-01

    Interplays between charge and electric field, which play a critical role in determining the charge transport, recombination, storage and hysteresis in the perovskite solar cell, have been systematically investigated by both electrical transient experiments and theoretical calculations. It is found that the light illumination can increase the carrier concentration in the perovskite absorber, thus enhancing charge recombination and causing the co-existence of high electric field and free carrie...

  3. A core-particle model for periodically focused ion beams with intense space-charge

    International Nuclear Information System (INIS)

    A core-particle (CP) model is derived to analyze transverse orbits of test-particles evolving in the presence of a core ion beam that has uniform density within an elliptical cross-section. The model can be applied to both quadrupole and solenoidal focused beams in periodic or aperiodic lattices. Efficient analytical descriptions of electrostatic space-charge fields external to the beam core are derived to simplify model equations. Image-charge effects are analyzed for an elliptical beam centered in a round, conducting pipe to estimate model corrections resulting from image-charge nonlinearities. Transformations are employed in diagnostics to remove coherent flutter motion associated with oscillations of the ion beam core due to rapidly varying, linear applied-focusing forces. Diagnostics for particle trajectories, Poincare phase-space projections, and single-particle emittances based on these transformations better illustrate the effects of nonlinear forces acting on particles evolving outside the core. A numerical code has been written based on this model. Example applications illustrate model characteristics. The CP model described has recently been applied to identify physical processes leading to space-charge transport limits for an rms-envelope matched beam in a periodic quadrupole focusing-channel [S.M. Lund, S.R. Chawla, Nucl. Instr. and Meth. A 561 (2006) 203]. Further characteristics of these processes are presented here

  4. Particle dynamics in asymmetry-induced transport

    International Nuclear Information System (INIS)

    The particle dynamics of asymmetry-induced transport are studied using a single-particle computer simulation. For the case of a helical asymmetry with axial and azimuthal wavenumbers (k,l) and with periodic boundary conditions, behaviors consistent with analytical theory are observed. For the typical experimental case of a standing wave asymmetry, the code reveals dynamical behaviors not included in the analytical theory of this transport. The resonances associated with the two constituent helical waves typically overlap and produce a region of stochastic motion. In addition, particles near the radius where the asymmetry frequency ω matches l times the ExB rotation frequency ωR can be trapped in the potential of the applied asymmetry and confined to one end of the device. Both behaviors are associated with large radial excursions and mainly affect particles with low velocities, i.e., vzT/k, where ωT is the trapping frequency. For the case of a helical asymmetry with specularly reflecting boundaries, large radial excursions are observed for all velocities near the radius, where ω=lωR. Minor modifications to these results are observed when the code is run with realistic end potentials

  5. Effect of Charge, Size and Temperature on Stability of Charged Colloidal Nano Particles

    Institute of Scientific and Technical Information of China (English)

    A. Golchoobi; A. Khosravi; H. Modarress; A Ahmadzadeh

    2012-01-01

    Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model.The well-known Derjaguin-Landau-Verwey-Overbeek theory is applied to account for effective interactions between particles.Effect of temperature,valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated.The results indicate that the suspension is more stable at higher temperatures.On the other hand,for a more stable suspension to exist,lower microion valance is favorable.For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher.However for the best of our results larger colloidal particle are less stable.Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.

  6. Comparisons Between Model Predictions and Spectral Measurements of Charged and Neutral Particles on the Martian Surface

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; Koehler, Jan; Martin, Cesar; Reitz, Guenther; Posner, Arik

    2014-01-01

    Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios

  7. Conformation sensitive charge transport in conjugated polymers

    OpenAIRE

    Andersson, Mattias; Hedstrom, Svante; Persson, Petter

    2013-01-01

    Temperature dependent charge carrier mobility measurements using field effect transistors and density functional theory calculations are combined to show how the conformation dependent frontier orbital delocalization influences the hole-and electron mobilities in a donor-acceptor based polymer. A conformationally sensitive lowest unoccupied molecular orbital results in an electron mobility that decreases with increasing temperature above room temperature, while a conformationally stable highe...

  8. Isospin Effect of Charged Particle Multiplicity in Intermediate Energy Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    HuRongjiang; WuHeyu; JinGenming; ZhuYongtai; DuanLimin; XiaoZhigang; WangHongwei

    2003-01-01

    The dependences of He and intermediate mass fragments (IMF) production rates in the reactions 55 MeV/u 40Ar+58,64 Ni on the isospin, impact parameter and primary excitation energy of the reaction nuclear system were studied by using the 4π charged particle multi-detector array system (MUDAL). For the mentioned two reaction systems, the measured He particle contribution in the total charged particle multiplicity increases with increasing the total charged particle multiplicity but for the contribution of IMFs in the total charged particle multiplicity increases with increasing the total charged particle multiplicity at lower total charged particle multiplicities, and latter on it drops down with further increasing of the total charged particle multiplicities (see Fig.l). The experimental results of these two reaction systems with the same nuclear charge indicate that the contribution of He and IMFs in the total charged particle multiplicities are obviously isospin dependent.

  9. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  10. Strange particle production in neutrino-neon charged current interactions

    International Nuclear Information System (INIS)

    Neutral strange particle production in charged-current muon-neutrino interactions have been studied in the Fermilab 15-foot neon bubble chamber. Associated production is expected to be the major source of strange particles in charged-current neutrino interactions. σ-neutral and ξ-minus production by neutrinos was observed. The dependence on various leptonic and hadronic variables is investigated. A fit to single and associated production of s, s/anti-s, and c quarks is described based on the number of single and double strange particle production events. Inclusive neutral strange particle decays (V0) production rates as a fraction of all charged-current events are measured and are tabulated. The λ/K ratio is found to be 0.39 +- 0.04 and the fraction of λ coming from σ-neutral is (16 +- 5)%. The single- and double V0 production was used to determine the associated s anti-s production rate and single s-quark production rate. 13 refs., 7 figs., 3 tabs

  11. Charged Particle Therapy Steps Into the Clinical Environment

    Science.gov (United States)

    Haberer, Th.

    Beams of heavy charged particles like protons or carbon ions represent the ideal tool for the treatment of deep-seated, inoperable and radioresistant tumors. For more than 4 decades research with beams of charged particles has been performed. In total more than 40000 patients have been treated, mostly using protons being delivered by accelerators that were designed for basic research centers. In Berkeley, USA heavier particles like helium or neon ions were used to conduct clinical trials until 1992. Based on that somewhat limited technological standard and triggered by the promising results from Berkeley the first dedicated charged particle facilities were constructed. In order to maximally exploit the advantageous physical and radiobiological characteristics of these beams enormous effort was put into developing dynamic beam delivery techniques and tailoring the capabilities of the accelerators, the planning systems and the quality assurance procedures and equipment to the requirements resulting from these new treatment modalities. Active beam delivery systems integrated in rotating gantries, if necessary, will allow the production of superior dose distributions that precisely follow the medical prescription. The technological progress being made during the last 10 years defines the state of the art of the upcoming next-generation facilities for the clinical environment in Europe and Japan.

  12. Damaging impacts of energetic charge particles on materials in plasma energy explosive events

    Institute of Scientific and Technical Information of China (English)

    Deng Bai-Quan; Peng Li-Lin; Yan Jian-Cheng; Luo Zheng-Ming; Chen Zhi

    2006-01-01

    To provide some reference data for estimation of the erosion rates and lifetimes of some candidate plasma facing component (PF3 materials in the plasma stored energy explosive events (PSEEE), this paper calculates the sputtering yields of Mo, W and deuterium saturated Li surface bombarded by energetic charged particles by a new sputtering physics description method based on bipartition model of charge particle transport theory. The comparisons with Monte Carlo data of TRIM code and experimental results are made. The dependences of maximum energy deposition,particle and energy reflection coefficients on the incident energy of energetic runaway electrons impinging on the different material surfaces are also calculated. Results may be useful for estimating the lifetime of PFC and analysing the impurity contamination extent, especially in the PSEEE for high power density and with high plasma current fusion reactor.

  13. DART: a simulation code for charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    White, R.C.; Barr, W.L.; Moir, R.W.

    1988-05-16

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs.

  14. DART: a simulation code for charged particle beams

    International Nuclear Information System (INIS)

    This paper presents a recently modified verion of the 2-D DART code designed to simulate the behavior of a beam of charged particles whose paths are affected by electric and magnetic fields. This code was originally used to design laboratory-scale and full-scale beam direct converters. Since then, its utility has been expanded to allow more general applications. The simulation technique includes space charge, secondary electron effects, and neutral gas ionization. Calculations of electrode placement and energy conversion efficiency are described. Basic operation procedures are given including sample input files and output. 7 refs., 18 figs

  15. Detection of charged particles through a photodiode: design and analysis

    International Nuclear Information System (INIS)

    This project develops and construct an charge particle detector mean a pin photodiode array, design and analysis using a silicon pin Fotodiodo that generally is used to detect visible light, its good efficiency, size compact and reduced cost specifically allows to its use in the radiation monitoring and alpha particle detection. Here, so much, appears the design of the system of detection like its characterization for alpha particles where one is reported as alpha energy resolution and detection efficiency. The equipment used in the development of work consists of alpha particle a triple source composed of Am-241, Pu-239 and Cm-244 with 5,55 KBq as total activity, Maestro 32 software made by ORTEC, a multi-channel card Triumph from ORTEC and one low activity electroplated uranium sample. (Author)

  16. Charge collection studies in irradiated HV-CMOS particle detectors

    Science.gov (United States)

    Affolder, A.; Andelković, M.; Arndt, K.; Bates, R.; Blue, A.; Bortoletto, D.; Buttar, C.; Caragiulo, P.; Cindro, V.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Gorišek, A.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hommels, L. B. A.; Huffman, T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, G.; Liang, Z.; Mandić, I.; Maneuski, D.; McMahon, S.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Perić, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zavrtanik, M.; Zhang, J.; Zhu, H.

    2016-04-01

    Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from 90Sr source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection.

  17. Modelling die filling with charged particles using DEM/CFD

    Institute of Scientific and Technical Information of China (English)

    Emmanuel Nkem Nwose; Chunlei Pei; Chuan-Yu Wu

    2012-01-01

    The effects of electrostatic charge on powder flow behaviour during die filling in a vacuum and in air were analysed using a coupled discrete element method and computational fluid dynamics (DEM/CFD) code,in which long range electrostatic interactions were implemented.The present 2D simulations revealed that both electrostatic charge and the presence of air can affect the powder flow behaviour during die filling.It was found that the electrostatic charge inhibited the flow of powders into the die and induced a loose packing structure.At the same filling speed,increasing the electrostatic charge led to a decrease in the fill ratio which quantifies the volumetric occupancy of powder in the die.In addition,increasing the shoe speed caused a further decrease in the fill ratio,which was characterised using the concept of critical filling speed.When the electrostatic charge was low,the air/particle interaction was strong so that a lower critical filling speed was obtained for die filling in air than in a vacuum.With high electrostatic charge,the electrostatic interactions became dominant.Consequently,similar fill ratio and critical filling speed were obtained for die filling in air and in a vacuum.

  18. Charge particle accelerator - a brief review, future challenges and applications

    International Nuclear Information System (INIS)

    Charged particle accelerators are important tools to investigate hitherto inaccessible problems in various fields of science. The interaction of charged particles with materials reveals structural information at very small scale (-16 cm). Accelerator based equipments viz. scanning electron microscope (SEM), transmission electron microscope (TEM) and focused ion beam (FIB) machines are extensively being used to explore new possibilities in nanotechnology. Many experiments in nuclear and particle physics examine the fundamental laws of physics by colliding a high-energy beam of particles, such as electrons or protons, with a fixed target or with another beam of particles. Modern light sources, which are capable of producing high-energy photons such as X-rays, operate by 'bending' the path of electrons in an accelerator with magnets to generate radiation. State-of-the-art cancer treatment facilities utilize high-energy proton and heavier ion beams to treat inoperable tumors. The man made sun, International Thermonuclear Experimental Reactor (ITER), will utilize 1 MeV, 40 A neutral proton beams for additional heating of the plasma. A roadmap for developing accelerator driven systems (ADS) in India was prepared in 2001 and involves development of a 1 GeV, 30 mA proton linear accelerator. Due to potential applications, developing high energy accelerators worldwide is a challenge for the community. New acceleration schemes to make accelerator size compact have been realized. In the present talk, various types of accelerators, accelerator based programs worldwide and new acceleration scheme of charge particles will be discussed. The low energy ion beam facility (LEIBF) at IUAC and a few experimental results arising from this facility will be presented. Finally, I will touch some applications, particularly in nanotechnology, where accelerators are making a big impact. (author)

  19. Charge Transport Phenomena in Peptide Molecular Junctions

    International Nuclear Information System (INIS)

    Inelastic electron tunneling spectroscopy (IETS) is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nano electronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  20. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  1. Charge Transport Properties in Polymer Brushes

    Science.gov (United States)

    Moog, Mark; Tsui, Frank; Vonwald, Ian; You, Wei

    Electrical transport properties in poly(3-methyl)thiophene (P3MT) brushes have been studied. The P3MT brushes correspond to a new type of surface-tethered, vertically oriented conjugated molecular wires, sandwiched between two metallic electrodes to form the electrode-molecule-electrode (EME) devices. P3MT is a highly conjugated polymer, a ''workhorse'' material for organic electronics and photonics. The P3MT brushes were grown on ITO surfaces with controlled length (between 2 and 100 nm). The top electrodes were transfer-printed Au films with lateral dimensions between 200 nm and 50 μm. I-V and differential conductance measurements were performed using conductive AFM and 4-terminal techniques. Tunneling and field-emission measurements in EME devices with molecular lengths mobility and the interplay between intra- and intermolecular transport have been investigated.

  2. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author)

  3. Charge redistribution and transport in molecular contacts

    Czech Academy of Sciences Publication Activity Database

    Corso, A.; Ondráček, Martin; Lotze, C.; Hapala, Prokop; Franke, K.J.; Jelínek, Pavel; Pascual, I.

    2015-01-01

    Roč. 115, č. 13 (2015), "136101-1"-"136101-5". ISSN 0031-9007 R&D Projects: GA ČR(CZ) GA14-02079S Grant ostatní: AV ČR(CZ) M100101207 Institutional support: RVO:68378271 Keywords : AFM * molecular transport * STM * DFT * molecular junction * tunneling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.512, year: 2014

  4. RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE

    International Nuclear Information System (INIS)

    The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with β ∼ 1, where β is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for vs >> vA (e.g., electrons), where vs is the thermal speed of species s and vA is the Alfvén speed, while FTB dominates for vs A (e.g., minor ions). Proton heating rates for β ∼ 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.

  5. Cataract production in mice by heavy charged particles

    International Nuclear Information System (INIS)

    The cataractogenic effects of heavy charged particles have been evaluated in mice in relation to dose and ionization density (LET/sub infinity/). The study was undertaken due to the high potential for eye exposures to HZE particles among SPS personnel working in outer space. This has made it imperative that the relative biological effectiveness (RBE) in relation to LET/sub infinity/ for various particles be defined so that appropriate quality factors (Q) could be assigned for estimation of risk. Although mice and men differ in susceptibility to radiation-induced cataracts, the results from this project should assist in defining appropriate quality factors in relation to LET/sub infinity/, particle mass, charge, or velocity. Evaluation of results indicated that : (1) low single doses (5 to 20 rad) of iron (56Fe) or argon (40Ar) particles are cataractogenic at 11 to 18 months after irradiation; (2) onset and density of the opacification are dose related; (3) cataract density (grade) at 9, 11, 13, and 16 months after irradiation shows partial LET/sub infinity/-dependence; and (4) the severity of cataracts is reduced significantly when 417 rad of 60Co gamma radiation is given in 24 weekly 17 rad fractions compared to giving this radiation as a single dose, but cataract severity is not reduced by fractionation of 12C doses over 24 weeks

  6. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  7. The Motion of a Pair of Charged Particles

    CERN Document Server

    Franklin, J

    2013-01-01

    We re-visit the problem of two (oppositely) charged particles interacting electromagnetically in one dimension with retarded potentials and no radiation reaction. The specific quantitative result of interest is the time it takes for the particles to fall in towards one another. Starting with the non-relativistic form, we answer this question while adding layers of complexity until we arrive at the full relativistic delay differential equation that governs this problem. That case can be solved using the Synge method, which we describe and discuss.

  8. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xeq+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  9. The Search for Fractional Charge Elementary Particles and Very Massive Particles in Bulk Matter

    CERN Document Server

    Perl, Martin Lewis; Kim, P C; Lee, E R; Lee, I T; Loomba, D; Perl, Martin L.; Halyo, Valerie; Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Loomba, Dinesh

    2000-01-01

    We describe our ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Our primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future we are interested in examining material brought back by sample return probes from asteroids. We will describe our experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of our experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 10**13 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore we wil...

  10. Charged point particles with magnetic moment in general relativity

    International Nuclear Information System (INIS)

    Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition Ssub(μν)Xsup(ν) = 0 and to Nakano's condition Ssub(μν)Psup(ν) = 0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational fields and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in Ssub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits

  11. Electro-Optical Detection of Charged Particle Beams

    CERN Document Server

    Semertzidis, Y K; Kowalski, L A; Kraus, D E; Larsen, R C; Lazarus, D M; Magurno, B; Srinivasan-Rao, T; Tsang, Thomas; Usack, V

    1999-01-01

    We have made the first observation of a charged particle beam by means of its electro-optical effect on the propagation of laser light in a birefringent crystal at the Brookhaven National Laboratory Accelerator Test Facility. Polarized infrared light was coupled to a LiNbO3 crystal through a polarization maintaining fiber of 4 micron diameter. An electron beam in 10ps bunches of 1mm diameter was scanned across the crystal. The modulation of the laser light during passage of the electron beam was observed using a photodiode with 45GHz bandwidth. The fastest rise time measured, 120ps, was made in the single shot mode and was limited by the bandwidth of the oscilloscope and the associated electronics. Both polarization dependent and polarization independent effects were observed. This technology holds promise of greatly improved spatial and temporal resolution of charged particle beams.

  12. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 109 protons/cm3) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  13. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  14. Charged particle induced prompt nuclear reaction and its applications

    International Nuclear Information System (INIS)

    Charged particle induced prompt nuclear reaction analysis (PNR) not only can analyze the content and concentration of elements in sample sensitively and accurately, but also can measure the distributions of elements with depth in surface and near surface layer. And the method is very simple, rapid and nondestructive, and has good depth resolution. So the PNR is very widely used in many modern science and technique field such as solid state physics, surface physics, electrochemistry, metallurgy and material science and so on. This paper deals with the principle, method and the features of the nuclear reaction analysis induced by charged particle. Especially, the distribution analysis of impurities in sample with depth and the improvement of the depth resolution are discussed in detail. Some actual examples of its application are given

  15. Production of carbon monoxide by charged particle deposition.

    Science.gov (United States)

    Green, A. E. S.; Sawada, T.; Edgar, B. C.; Uman, M. A.

    1973-01-01

    Recent studies of electron energy deposition in CO2 and CO based upon a large set of electron impact cross sections are utilized to estimate the telluric CO directly produced by various charged-particle deposition mechanisms. The mechanisms considered are (1) lightning, (2) cloud coronal discharges, (3) background radioactivity, (4) natural electrostatic discharges, (5) photoelectrons in the ionosphere, (6) auroral electrons, (7) auroral protons, (8) cosmic rays, and (9) solar wind. 'Ball park' estimates of the global CO production by each of these mechanisms are given. Apart from mechanisms 1, 2, and 5, all CO production mechanisms are estimated to be small compared to artificial sources. If, as appears to be the case, the hot oxygen atoms and ions and other atomic species immediately produced by these three charged-particle deposition mechanisms react rapidly with CO2 to produce CO, these mechanisms can readily lead to CO production levels in the multimegaton-per-year range.

  16. Analysis of electrolyte transport through charged nanopores

    CERN Document Server

    Peters, P B; Bazant, M Z; Biesheuvel, P M

    2015-01-01

    We revisit the classical problem of the flow of an electrolyte solution through charged capillaries (nanopores). In the limit where the length of the capillary is much larger than its radius, the problem can be simplified to a one-dimensional averaged flux-force formalism that relates the relevant fluxes (electrical current, salt flux, fluid velocity) to their respective driving forces (difference in electric potential, salt concentration, pressure). Calculations in literature mainly consider the limit of non-overlapping electrical double layers (EDLs) in the pores and the absence of salt concentration gradients in the axial direction. In the present work these simplifications are relaxed and we discuss the general case with overlapping EDLs and nonzero axial salt concentration gradients. The 3x3 matrix that relates these quantities exhibits Onsager symmetry and for one of the cross coefficients we report a new significant simplification. We describe how Onsager symmetry is preserved under change of variables...

  17. Effect of collisions on dust particle charging via particle-in-cell Monte-Carlo collision

    Science.gov (United States)

    Rovagnati, B.; Davoudabadi, M.; Lapenta, G.; Mashayek, F.

    2007-10-01

    In this paper, the effect of collisions on the charging and shielding of a single dust particle immersed in an infinite plasma is studied. A Monte-Carlo collision (MCC) algorithm is implemented in the particle-in-cell DEMOCRITUS code to account for the collisional phenomena which are typical of dusty plasmas in plasma processing, namely, electron-neutral elastic scattering, ion-neutral elastic scattering, and ion-neutral charge exchange. Both small and large dust particle radii, as compared to the characteristic Debye lengths, are considered. The trends of the steady-state dust particle potential at increasing collisionality are presented and discussed. The ions and electron energy distributions at various locations and at increasing collisionality in the case of large particle radius are shown and compared to their local Maxwellians. The ion-neutral charge-exchange collision is found to be by far the most important collisional phenomenon. For small particle radius, collisional effects are found to be important also at low level of collisionality, as more ions are collected by the dust particle due to the destruction of trapped ion orbits. For large particle radius, the major collisional effect is observed to take place in proximity of the presheath. Finally, the species energy distribution functions are found to approach their local Maxwellians at increasing collisionality.

  18. Charged particle detectors made from thin layers of amorphous silicon

    International Nuclear Information System (INIS)

    A series of experiments was conducted to determine the feasibility of using hydrogenated amorphous silicon (α-Si:H) as solid state thin film charged particle detectors. 241Am alphas were successfully detected with α-Si:H devices. The measurements and results of these experiments are presented. The problems encountered and changes in the fabrication of the detectors that may improve the performance are discussed

  19. Laser focusing of high-energy charged-particle beams

    International Nuclear Information System (INIS)

    It is shown that laser focusing of high-energy charged-particle beams using the inverse Cherenkov effect is well suited for applications with large linear colliders. Very high gradient (>0.5 MG/cm) lenses result that can be added sequentially without AG cancellation. These lenses are swell understood, have small geometric aberrations, and offer the possibility of correlating phase and energy aberrations to produce an achromatic final focus

  20. Electrostatic energy analyzers for high energy charged particle beams

    International Nuclear Information System (INIS)

    The electrostatic energy analyzers for high energy charged particle beams emitted from extended large-size objects as well as from remote point sources are proposed. Results of the analytical trajectory solutions in ideal cylindrical field provide focusing characteristics for both configurations. The instruments possess of simple compact design, based on an ideal cylindrical field with entrance window arranged in the end-boundary between electrodes and can be used for measurements in space technologies, plasma and nuclear physics

  1. Multidimensional analysis of charged particles from neutron-induced reactions

    International Nuclear Information System (INIS)

    A survey is given of the most recent experimental results obtained using twin gridded ionization chamber constructed at Obninsk, Russia. Peculiarities of (n,α) and (n,f) reactions investigated are discussed. The detailed description ol the method of charge particles spectrometry is presented. Selected results on fission fragment characteristics are discussed more in detail. Present experiments and instrumental developments are focussed on correlations between fragment masses, energies and emission angles and on fine structures in fragment parameter distributions. (author)

  2. Dynamical structure functions for charged particle bilayers and superlattices

    International Nuclear Information System (INIS)

    A modified Feynman construction with a zero-frequency central peak is used to model the dynamical structure functions for layered charged particle systems. This construction recognizes the affinity between layered and multicomponent systems. It also guarantees the simultaneous satisfaction of all three frequency-moment sum rules. The frequencies and spectral weights of the long-wavelength collective excitations and the strength of the diffusive central peak are calculated for arbitrary degeneracy

  3. Measurement of Forward-Backward Charged Particle Correlations with ALICE

    DEFF Research Database (Denmark)

    Søgaard, Carsten

    (NBI). In order for this calibration system to work, a special trigger interface was implemented. The developed and tested firmware for the FPGA (Field-Programmable Gate Array) will be presented. Part II is the presentation of the analysis - a study of, so-called, forward-backward correlations....... The correlations between charged particles, produced in proton-proton collisions at vs=900 GeV and vs=7 TeV over a wide range in pseudoradidity (-3.5

  4. Charged-Particle Multiplicity in Proton-Proton Collisions

    OpenAIRE

    Grosse-Oetringhaus, Jan Fiete; Reygers, Klaus

    2009-01-01

    This article summarizes and critically reviews measurements of charged-particle multiplicity distributions and pseudorapidity densities in p+p(pbar) collisions between sqrt(s) = 23.6 GeV and sqrt(s) = 1.8 TeV. Related theoretical concepts are briefly introduced. Moments of multiplicity distributions are presented as a function of sqrt(s). Feynman scaling, KNO scaling, as well as the description of multiplicity distributions with a single negative binomial distribution and with combinations of...

  5. Base pair dynamic assisted charge transport in DNA

    OpenAIRE

    Kats, E. I.; Lebedev, V. V.

    2002-01-01

    An 1d model with time-dependent random hopping is proposed to describe charge transport in DNA. It admits to investigate both diffusion of electrons and their tunneling between different sites in DNA. The tunneling appears to be strongly temperature-dependent. Observations of a strong (exponential) as well as a weak distance dependence of the charge transfer in DNA can be explained in the framework of our model.

  6. DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains

    OpenAIRE

    O'Neill, Melanie A.; Barton, Jacqueline K.

    2004-01-01

    The role of base motions in delocalization and propagation of charge through double helical DNA must be established experimentally and incorporated into mechanistic descriptions of DNA-mediated charge transport (CT). Here, we address these fundamental issues by examining the temperature dependence of the yield of CT between photoexcited 2-aminopurine (Ap*) and G through DNA bridges of varied length and sequence. DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)_nG (n ...

  7. Nonlinear charge transport mechanism in periodic and disordered DNA

    OpenAIRE

    Hennig, Dirk; Archilla, Juan F. R.; J Agarwal

    2003-01-01

    We study a model for polaron-like charge transport mechanism along DNA molecules with emphasis on the impact of parametrical and structural disorder. Our model Hamiltonian takes into account the coupling of the charge carrier to two different kind of modes representing fluctuating twist motions of the base pairs and H-bond distortions within the double helix structure of $\\lambda-$DNA. Localized stationary states are constructed with the help of a nonlinear map approach for a periodic double ...

  8. Neutron-Induced Charged Particle Studies at LANSCE

    Science.gov (United States)

    Lee, Hye Young; Haight, Robert C.

    2014-09-01

    Direct measurements on neutron-induced charged particle reactions are of interest for nuclear astrophysics and applied nuclear energy. LANSCE (Los Alamos Neutron Science Center) produces neutrons in energy of thermal to several hundreds MeV. There has been an effort at LANSCE to upgrade neutron-induced charged particle detection technique, which follows on (n,z) measurements made previously here and will have improved capabilities including larger solid angles, higher efficiency, and better signal to background ratios. For studying cross sections of low-energy neutron induced alpha reactions, Frisch-gridded ionization chamber is designed with segmented anodes for improving signal-to-noise ratio near reaction thresholds. Since double-differential cross sections on (n,p) and (n,a) reactions up to tens of MeV provide important information on deducing nuclear level density, the ionization chamber will be coupled with silicon strip detectors (DSSD) in order to stop energetic charged particles. In this paper, we will present the status of this development including the progress on detector design, calibrations and Monte Carlo simulations. This work is funded by the US Department of Energy - Los Alamos National Security, LLC under Contract DE-AC52-06NA25396.

  9. Electromagnetic radiation of charged particles in stochastic motion

    Energy Technology Data Exchange (ETDEWEB)

    Harko, Tiberiu [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); University College London, Department of Mathematics, London (United Kingdom); Mocanu, Gabriela [Astronomical Institute of the Romanian Academy, Cluj-Napoca (Romania)

    2016-03-15

    The study of the Brownian motion of a charged particle in electric and magnetic fields has many important applications in plasma and heavy ions physics, as well as in astrophysics. In the present paper we consider the electromagnetic radiation properties of a charged non-relativistic particle in the presence of electric and magnetic fields, of an exterior non-electromagnetic potential, and of a friction and stochastic force, respectively. We describe the motion of the charged particle by a Langevin and generalized Langevin type stochastic differential equation. We investigate in detail the cases of the Brownian motion with or without memory in a constant electric field, in the presence of an external harmonic potential, and of a constant magnetic field. In all cases the corresponding Langevin equations are solved numerically, and a full description of the spectrum of the emitted radiation and of the physical properties of the motion is obtained. The power spectral density of the emitted power is also obtained for each case, and, for all considered oscillating systems, it shows the presence of peaks, corresponding to certain intervals of the frequency. (orig.)

  10. Microsparks Generated by Charged Particles in Dielectric Liquids

    Science.gov (United States)

    Geiger, Robert

    2012-10-01

    The electrodynamics of charged particles in dielectric liquids have been described by several authors [1,2]. As a charged particle approaches an electrode of opposite charge the local electric field eventually exceeds the dielectric strength of the liquid and a microspark is generated. These plasmas can be very small, about type of discharge can provide a simple means of generating non-thermal plasmas in dielectric liquids, such as oils or other hydrocarbons, which can be used to chemically process the liquids. Such a technology may lead to a highly efficient method of heavy oil upgrading which can be easily scaled. In order to understand the plasma properties optical emission spectroscopy is carried out for various hydrocarbons and voltage-current characteristics are used to determine the energy cost for this process. [4pt] [1] Melcher, James R. Continuum Electromechanics. Cambridge, MA: MIT Press, 1981.[0pt] [2] Jones, Thomas B. Electromechanics of Particles. Cambridge University Press 1995.[0pt] [3] Staack, D., Fridman, A., Gutsol, A., Gogotsi, Y. and Friedman, G. 2008, Angew. Chem., Int. Ed. 47, 8020.

  11. Origin of traps and charge transport mechanism in hafnia

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Cheng, C. H. [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan (China); Chin, A., E-mail: albert-achin@hotmail.com [National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-12-01

    In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.

  12. Monte Carlo simulations of charge transport in heterogeneous organic semiconductors

    Science.gov (United States)

    Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta

    2015-03-01

    The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.

  13. A Simple Index for Characterizing Charge Transport in Molecular Materials.

    Science.gov (United States)

    Jackson, Nicholas E; Savoie, Brett M; Chen, Lin X; Ratner, Mark A

    2015-03-19

    While advances in quantum chemistry have rendered the accurate prediction of band alignment relatively straightforward, the ability to forecast a noncrystalline, multimolecule system's conductivity possesses no simple computational form. Adapting the theory of classical resistor networks, we develop an index for quantifying charge transport in bulk molecular materials, without the requirement of crystallinity. The basic behavior of this index is illustrated through its application to simple lattices and clusters of common organic photovoltaic molecules, where it is shown to reproduce experimentally known performances for these materials. This development provides a quantitative computational means for determining a priori the bulk charge transport properties of molecular materials. PMID:26262862

  14. Modeling Transport in Ultrathin Si Nanowires: Charged versus Neutral Impurities

    DEFF Research Database (Denmark)

    Rurali, Riccardo; Markussen, Troels; Suné, Jordi;

    2008-01-01

    Abstract: At room temperature dopants in semiconducting nanowires are ionized. We show that the long-range electrostatic potential due to charged dopants has a dramatic impact on the transport properties in ultrathin wires and can virtually block minority carriers. Our quantitative estimates of...... this effect are obtained by computing the electronic transmission through wires with either charged or neutral P and B dopants. The dopant potential is obtained from density functional theory (DFT) calculations. Contrary to the neutral case, the transmission through charged dopants cannot be converged...

  15. EDITORIAL: Charge transport in non-metallic solids

    Science.gov (United States)

    Youngs, Ian J.; Almond, Darryl P.

    2009-03-01

    Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of

  16. Dust-Particle Transport in Tokamak Edge Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.

  17. The dynamics of charged particles in turbulent astrophysical plasmas

    Science.gov (United States)

    Dung, Rudiger; Petrosian, Vahe

    1994-01-01

    We consider the resonant interaction of energetic charged particles and transverse plasma wave propagating parallel and/or antiparallel to the uniform magnetic field B(sub 0) in an underlying background plasma of density n. The coupling of the plasma waves and the energetic particles will be controlled by the ratio n/(the absolute value of B(sub 0)(exp 2). A variation of this ratio leads to a strong variation of the dynamics of the energetic particles. By taking into account the whole transverse plasma branch for the resonant interaction we discuss the influence of the background plasma density, the background magnetic field, the cross helicity, and the magnetic helicities on the dynamics of charged particles in astrophysical plasmas. It is shown that low-energy electrons can be accelerated efficiently by the higher electromagnetic waves and short-wavelength whistlers for low values of the ratio n/(the absolute value of B(sub 0)(exp 2), which means for low values of the ratio of plasma frequency to gyrofrequency.

  18. Scanning system for charged and neutral particle beams

    International Nuclear Information System (INIS)

    The present invention aims at providing a simple and reliable method and a reliable device for irradiating a confined volume of matter, preferably at great depth, with a beam of high energy charged or neutral particles. The basic feature of the invention is that the particle beam coming from a radiation source of charged particles is scanned electrically in two orthogonal directions, and that the beam scanned in one plane is deflected in space. For most practical purposes it is important that the radiation source is of small extension. Such a radiation source is realized by means of a beam optical system that includes two scanning magnets each of which admits scanning of the particle beam in one of two orthogonal planes. The beam scanned in one of the planes leaves the associated scanning magnet from an effective scanning centre. The optical system also includes a deflection magnet disposed between the scanning magnets for deflecting the path of the beam in space. By utilizing the optical properties of the deflection magnet in such a way that the deflection magnet produces an image of the effective scanning centre of the first scanning magnet which coincides with the effective scanning centre of the second scanning magnet, the beam scanned in two orthogonal planes will radiate isotropically from the scanning centre of the second scanning magnet. By using the deflection magnet a compact scanning system with a small distance between the scanning centres of the scanning magnets is obtained

  19. Charge Transport across DNA-Based Three-Way Junctions.

    Science.gov (United States)

    Young, Ryan M; Singh, Arunoday P N; Thazhathveetil, Arun K; Cho, Vincent Y; Zhang, Yuqi; Renaud, Nicolas; Grozema, Ferdinand C; Beratan, David N; Ratner, Mark A; Schatz, George C; Berlin, Yuri A; Lewis, Frederick D; Wasielewski, Michael R

    2015-04-22

    DNA-based molecular electronics will require charges to be transported from one site within a 2D or 3D architecture to another. While this has been shown previously in linear, π-stacked DNA sequences, the dynamics and efficiency of charge transport across DNA three-way junction (3WJ) have yet to be determined. Here, we present an investigation of hole transport and trapping across a DNA-based three-way junction systems by a combination of femtosecond transient absorption spectroscopy and molecular dynamics simulations. Hole transport across the junction is proposed to be gated by conformational fluctuations in the ground state which bring the transiently populated hole carrier nucleobases into better aligned geometries on the nanosecond time scale, thus modulating the π-π electronic coupling along the base pair sequence. PMID:25822073

  20. Predicted angular distribution of fast charged particles with ionization

    International Nuclear Information System (INIS)

    Moliere theory of angular distribution for fast charged particles is improved to take into account ionization loss, by using Kamata-Nishimura formulation of the theory. Decrease of the particle energy along the passage hence increase of the screening angle brings a slight different results from those derived by Moliere-Bethe formulation for fixed energies. The present results are reduced to the same Moliere distribution with modified values of the expansion parameter and the unit of Moliere angle. Properties of the new distribution and differences from the traditional one are discussed. Angular distributions of particles penetrating through the mixed or compound substances are also investigated both under the relativistic and the nonrelativistic conditions, together with the Kamata-Nishimura constants characterizing their formulation. (author)

  1. A stochastic theory of particle transport

    International Nuclear Information System (INIS)

    A probability balance equation is formulated for the number of particles present in a cascade resulting from multiple births at each collision. Janossy's regeneration point method is used and it leads to an integro-differential equation for the generating function from which statistical information can readily be extracted. The technique is applied to the interpretation of radiation damage cascades in a homogeneous, amorphous medium in which two particles are 'born' per collision. The history of a single chain is followed and equations for the mean and variance are obtained as well as for individual probabilities. It is further shown how the backward and forward forms of the Boltzmann equation are related via the Green function of the system. Additional study shows that the variance also obeys a forward type of equation although its solution is not obtained as conveniently as that of the corresponding backward equation. Several analogies are made with other branches of particle physics; in particular, cosmic rays and neutron transport. (author)

  2. Theory of intense beams of charged particles optics of charged particle analyzers

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and pr

  3. Charge transport in dye-sensitized solar cell

    International Nuclear Information System (INIS)

    The effect of charge transport on the photovoltaic properties of dye-sensitized solar cells (DSCs) was investigated by the experimental results and the ion transport. The short current photocurrent density (Jsc) is determined by the electron transport in porous TiO2 when the diffusion limited current (Jdif) due to the I3− transport is larger than the photo-generated electron flux (Jg) estimated from the light harvesting efficiency of dye-sensitized porous TiO2 and the solar spectrum. However, the Jsc value is determined by the ion transport in the electrolyte solution at Jdif < Jg. The J value becomes constant against light intensity, and is expressed as the saturated current (Jscs). The Js value depends on the thickness (d) of the TiO2 layer, the initial concentration (COX0), and the diffusion coefficient (DOXb) of I3−. These suitable parameters were determined by using the ion transport. (paper)

  4. Space-charge transport limits of ion beams in periodic quadrupole focusing channels

    CERN Document Server

    Lund, S M; Lund, Steven M.; Chawla, Sugreev R.

    2006-01-01

    It has been empirically observed in both experiments and particle-in-cell simulations that space-charge-dominated beams suffer strong growth in statistical phase-space area (degraded quality) and particle losses in alternating gradient quadrupole transport channels when the undepressed phase advance sigma_0 increases beyond about 85 degrees per lattice period. Although this criterion has been used extensively in practical designs of strong focusing intense beam transport lattices, the origin of the limit has not been understood. We propose a mechanism for the transport limit resulting from classes of halo particle resonances near the core of the beam that allow near-edge particles to rapidly increase in oscillation amplitude when the space-charge intensity and the flutter of the matched beam envelope are both sufficiently large. When coupled with a diffuse beam edge and/or perturbations internal to the beam core that can drive particles outside the edge, this mechanism can result in large and rapid halo-drive...

  5. Analysis of Charge Carrier Transport in Organic Photovoltaic Active Layers

    Science.gov (United States)

    Han, Xu; Maroudas, Dimitrios

    2015-03-01

    We present a systematic analysis of charge carrier transport in organic photovoltaic (OPV) devices based on phenomenological, deterministic charge carrier transport models. The models describe free electron and hole transport, trapping, and detrapping, as well as geminate charge-pair dissociation and geminate and bimolecular recombination, self-consistently with Poisson's equation for the electric field in the active layer. We predict photocurrent evolution in devices with active layers of P3HT, P3HT/PMMA, and P3HT/PS, as well as P3HT/PCBM blends, and photocurrent-voltage (I-V) relations in these devices at steady state. Charge generation propensity, zero-field charge mobilities, and trapping, detrapping, and recombination rate coefficients are determined by fitting the modeling predictions to experimental measurements. We have analyzed effects of the active layer morphology for layers consisting of both pristine drop-cast films and of nanoparticle (NP) assemblies, as well as effects on device performance of insulating NP doping in conducting polymers and of specially designed interlayers placed between an electrode and the active layer. The model predictions provide valuable input toward synthesis of active layers with prescribed morphology that optimize OPV device performance.

  6. The present status of the LLNL Evaluated Charged Particle Library (ECPL)

    International Nuclear Information System (INIS)

    The present report is written with two purposes in mind: to summarize the charged-particle reactions that presently exist in Evaluated Charge Particle Library; and to list all of the low-Z charged-particle reactions for which data exist in the Livermore experimental data compilation. 2 tabs

  7. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  8. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, C; Blom, PWM; Meijer, EJ; de Leeuw, DM; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is dependen

  9. On the Structure of the Fixed Charge Transportation Problem

    Science.gov (United States)

    Kowalski, K.

    2005-01-01

    This work extends the theory of the fixed charge transportation problem (FCTP), currently based mostly on a forty-year-old publication by Hirsch and Danzig. This paper presents novel properties that need to be considered by those using existing, or those developing new methods for optimizing FCTP. It also defines the problem in an easier way,…

  10. Charge transport in silicon nanocrystal superlattices in the terahertz regime

    Czech Academy of Sciences Publication Activity Database

    Němec, Hynek; Zajac, Vít; Kužel, Petr; Malý, P.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2015-01-01

    Roč. 91, č. 19 (2015), "195443-1"-"195443-10". ISSN 1098-0121 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : silicon nanocrystals * charge transport * terahertz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  11. Charge transport in disordered semiconducting polymers driven by nuclear tunneling

    Science.gov (United States)

    van der Kaap, N. J.; Katsouras, I.; Asadi, K.; Blom, P. W. M.; Koster, L. J. A.; de Leeuw, D. M.

    2016-04-01

    The current density-voltage (J -V ) characteristics of hole-only diodes based on poly(2-methoxy, 5-(2' ethyl-hexyloxy)-p -phenylene vinylene) (MEH-PPV) were measured at a wide temperature and field range. At high electric fields the temperature dependence of the transport vanishes, and all J -V sweeps converge to a power law. Nuclear tunneling theory predicts a power law at high fields that scales with the Kondo parameter. To model the J -V characteristics we have performed master-equation calculations to determine the dependence of charge carrier mobility on electric field, charge carrier density, temperature, and Kondo parameter, using nuclear tunneling transfer rates. We demonstrate that nuclear tunneling, unlike other semiclassical models, provides a consistent description of the charge transport for a large bias, temperature, and carrier density range.

  12. Test results of satellite-borne charged particle measuring instrument

    International Nuclear Information System (INIS)

    A charged particle-measuring instrument to measure on the geostationary orbit the spectra of protons, α-particles and electrons emitted from the sun was manufactured, and its performance was assured by the test on the earth. The Geostationary Meteorological Satellite, on which the instrument will be mounted, will be launched into the geostationary orbit over the pacific ocean in the summer, 1977. The instrument has five systems of detectors to cover the measuring energy range and the kinds of particles, and data are collected every several channels separately. The tests on the earth were carried out by using a cyclotron and setting the energy ranges from 1 to 15 MeV (for protons) and 6 to 30 MeV (for α-particles) through the adjustment of the accelerating conditions and absorbers of the cyclotron. The performance of the instrument was confirmed by comparing the energy and number of the irradiated charged particles measured with the instrument and the reference detector under the same conditions. The results showed that the energy-detecting characteristic was within the error range of a few percent in most cases, and the counts were within the error of 30% against the expected values. The ditinguishing characteristic of the level discriminator was also nearly equal to the estimated result, through it degrades in the vicinity of the border of channels. However, the correction of data may be required when the instrument will be really used in space, because the conditions may be somewhat different from that on the earth. (Wakatsuki, Y.)

  13. Microscopic visualization of a biological response to charged particle traversal

    Science.gov (United States)

    Taucher-Scholz, G.; Jakob, B.; Becker, G.; Scholz, M.

    2003-08-01

    Understanding the molecular mechanisms underlying biological effects of charged particle radiation has become increasingly important in view of the use of ion beams in tumor therapy. Elucidating how the enhanced efficiency of densely ionizing radiation in cell killing is related to the initial causative lesions, namely DNA double-strand breaks, constitutes a major task in radiobiology. The inhomogeneous spatial distribution of energy deposition leading to the induction of more complex and less reparable DNA lesions is the basis for high-LET effects. But the cellular response to radiation damage also involves the interplay between repair and signal transduction proteins with the aim of coordinating the processing of DNA damage and cell cycle progression to allow time for repair. Charged particles are used as a probe for the production of localized subcellular damage to study these aspects of the biological response to ionizing radiation. Immunocytochemical techniques applied in combination with confocal laser microscopy allow to monitor the relocalization of DNA damage response proteins within individual nuclei following irradiation. In particular, the rapid accumulation of the signalling protein p21 at sites of heavy ion-induced DNA damage reflects the microscopic distribution of dose deposited within nuclei of irradiated human fibroblasts. The biological response pattern for p21 is presented for high and low energy ion beams, involving different particle species and representing a wide range of radiation qualities.

  14. Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented

  15. Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.

    1981-01-01

    A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented.

  16. The Stability of the Vacuum Polarization Surrounding a Charged Particle

    CERN Document Server

    Himpsel, F J

    2015-01-01

    The internal stability of the electron has been debated for a century at both the classical and the quantum level. Recently, a local force density balance was established for the 1s electron in the H atom, based on the energy-momentum tensor of the classical Dirac field. This methodology is now extended to quantum fields by considering the force densities acting on the vacuum polarization induced by a point charge. Such a model is applicable to any charged particle at large distances, since the only vestige of its internal structure is the electric Coulomb field together with the vacuum polarization induced by it. While the polarization charge density is attracted to the point charge, it is kept from collapsing by repulsive forces due to confinement and degeneracy. It is shown analytically that the corresponding force densities are balanced for every filled shell of mj states at a given angular momentum j. The force densities are then summed over all single-electron states in the Dirac sea and renormalized by...

  17. Study of a large acceptance charged particle detector

    International Nuclear Information System (INIS)

    We investigated basic characteristics of a new detector system, which has been designed to be used for nuclear data measurements. The detector has a large acceptance to cover a wide range of charged particle energies. The detector consists of crystal detectors and plastic scintillators. In this detector, energy measurements are carried out by adopting the pulse-height method for low-energy particles and for high-energy particles the time of flight (TOF) technique. The low-energy detector (crystals) plays also as a degrader for high-energy particles. One of important issues is the non-linearity of scintillation output for heavy ions of crystal detectors. The other issue is the deviation of a particle trajectory due to the multiple-scattering in the detector material. In the present study, we measured the scintillation output of detectors and the multiple-scattering effect on the TOF detection efficiency. Experiments were carried out at National Inst. of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC) for a crystal detector system by using protons and Ar ions. Finally, the scintillation nonlinearity has been determined. As for the multiple-scattering effect, we found that both of simulations, GEANT4 and PHITS tend to underestimate. (author)

  18. Moving Charged Particles in Lattice Boltzmann-Based Electrokinetics

    CERN Document Server

    Kuron, Michael; Schornbaum, Florian; Bauer, Martin; Godenschwager, Christian; Holm, Christian; de Graaf, Joost

    2016-01-01

    The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann (LB) algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions, which are needed to simulate moving colloids, into the Capuani scheme has been lacking. In this paper, we detail how to introduce such moving boundaries, based on an analogue to the moving boundary method for the pure LB solver. The key ingredients in our method are mass and charge conservation for the solute spec...

  19. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    Science.gov (United States)

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; Tsouris, Costas

    2016-03-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.

  20. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  1. Transport of energetic particles in the heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, Cedric

    2014-07-01

    With most of our simulations being numerically very expensive, we were able to run only a few different setups. The overall conclusion we have drawn so far is that our code - or PIC codes in general - is suitable for studies of particle transport characteristics on a microscopic scale. However, simulation runs and physical setups have to be chosen carefully, in order not to waste computing time. We are planning follow-up simulations, which will be run either within our current project pr85li or in a successional project. Especially the above mentioned scenario of electrons scattering off of Whistler modes will be a point of interest, since it is a relevant process in the solar wind. (orig.)

  2. Computer codes in particle transport physics

    International Nuclear Information System (INIS)

    Simulation of transport and interaction of various particles in complex media and wide energy range (from 1 MeV up to 1 TeV) is very complicated problem that requires valid model of a real process in nature and appropriate solving tool - computer code and data library. A brief overview of computer codes based on Monte Carlo techniques for simulation of transport and interaction of hadrons and ions in wide energy range in three dimensional (3D) geometry is shown. Firstly, a short attention is paid to underline the approach to the solution of the problem - process in nature - by selection of the appropriate 3D model and corresponding tools - computer codes and cross sections data libraries. Process of data collection and evaluation from experimental measurements and theoretical approach to establishing reliable libraries of evaluated cross sections data is Ion g, difficult and not straightforward activity. For this reason, world reference data centers and specialized ones are acknowledged, together with the currently available, state of art evaluated nuclear data libraries, as the ENDF/B-VI, JEF, JENDL, CENDL, BROND, etc. Codes for experimental and theoretical data evaluations (e.g., SAMMY and GNASH) together with the codes for data processing (e.g., NJOY, PREPRO and GRUCON) are briefly described. Examples of data evaluation and data processing to generate computer usable data libraries are shown. Among numerous and various computer codes developed in transport physics of particles, the most general ones are described only: MCNPX, FLUKA and SHIELD. A short overview of basic application of these codes, physical models implemented with their limitations, energy ranges of particles and types of interactions, is given. General information about the codes covers also programming language, operation system, calculation speed and the code availability. An example of increasing computation speed of running MCNPX code using a MPI cluster compared to the code sequential option

  3. Methods for studying plasma charge transport across a magnetic field

    International Nuclear Information System (INIS)

    A comparative analysis of experimental methods for the diffusion transfer of plasma charged particles accross the magnetic field at the study of its confinement effectiveness, instability effect is carried out. Considered are the methods based on the analysis of particle balance in the charge and possibilities of diffusion coefficient determination according to measuring parameters of density gradient and particle flow on the wall, rate of plasma decay after switching off ionization source radial profile of plasma density outside the active region of stationary charge. Much attension is payed to the research methods of diffusion transfer, connected with the study of propagation of periodic and aperiodic density perturbation in a plasma. Analysed is the Golubev and Granovsky method of diffusion waves and its different modifications, phase analysis method of ''test charges'' movement, as well as different modifications of correlation methods. Considered are physical preconditions of the latter and criticized is unilateral interpretation of correlation measurings, carried out in a number of works. The analysis of study possibilities of independent (non-ambipolar) diffusion of electrons and ions in a plasma in the magnetic field is executed

  4. Parallel Multiphysics Simulations of Charged Particles in Microfluidic Flows

    CERN Document Server

    Bartuschat, Dominik

    2014-01-01

    The article describes parallel multiphysics simulations of charged particles in microfluidic flows with the waLBerla framework. To this end, three physical effects are coupled: rigid body dynamics, fluid flow modelled by a lattice Boltzmann algorithm, and electric potentials represented by a finite volume discretisation. For solving the finite volume discretisation for the electrostatic forces, a cell-centered multigrid algorithm is developed that conforms to the lattice Boltzmann meshes and the parallel communication structure of waLBerla. The new functionality is validated with suitable benchmark scenarios. Additionally, the parallel scaling and the numerical efficiency of the algorithms are analysed on an advanced supercomputer.

  5. Charged particle scattering on two infinite cylindrical solenoids

    International Nuclear Information System (INIS)

    Charged particle scattering on two infinitely parallel cylindrical solenoids with similar by value and inverse by the sign magnetic fields is considered. Scattering amplitude is calculated in the 1st Born and high energy approximations. In both cases the differential cross section is nonsingular and the integral one - finite. Specific examples demonstrating that in one and the same multi-connection space under nontrivial vector-potentials and unambigous wave functions Aharonov-Bohm (AB) effect can exist but it can be absent as well. It is shown that an alternative AB effect interpretation as scattering in magnetic field leakages meets sufficient difficulties

  6. Motion of charged particles in a knotted electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Arrayas, M; Trueba, J L, E-mail: joseluis.trueba@urjc.e [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2010-06-11

    In this paper we consider the classical relativistic motion of charged particles in a knotted electromagnetic field. After reviewing how to construct electromagnetic knots from maps between the three-sphere and the two-sphere, we introduce a mean quadratic radius of the energy density distribution in order to study some properties of this field. We study the classical relativistic motion of electrons in the electromagnetic field of the Hopf map, and compute their trajectories. It is observed that these electrons initially at rest are strongly accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that depends on the knot energy and size.

  7. The prospects for charged particle uses in oncology

    International Nuclear Information System (INIS)

    Prospects and problems of proton therapy by means of accelerators are considered. Approaches to the solution of the problems concerning operation modes of the accelerator are formulated. It is shown that despite vivid advantage of charged particles for their applied use in beam therapy of malignant tumour it is necessary to solve two problems: extraction of special beams meeting strict medical requirements and development of technology of irradiation of malignant tumours of different localizations and construction of special equipment for execution of this technology. Engineering-technological shortcomings of proton therapy and medical-biological problems requiring reglamentation are enumerated

  8. A technique to improve crystal channeling efficiency of charged particles

    CERN Document Server

    Tikhomirov, V V

    2007-01-01

    It is shown that a narrow plane cut near the crystal surface considerably increases the probability of capture into the stable channeling motion of positively charged particles entering a crystal at angles smaller than a quarter of the critical channeling angle with respect to the crystal planes. At smallest incidence angles the capture probability reaches 99 percent. A pair of crystals bent in orthogonal planes and provided with the cuts allows to reach a 99.9 percent efficiency of single-pass deflection of a proton beam with an ultra small divergence. Conditions necessary for efficient single-pass deflection of protons from the LHC beam halo are also discussed.

  9. Fabrication and testing of prototype preamplifier for charged particle detector

    International Nuclear Information System (INIS)

    Development of a 4π charged particle array is one of the major activities under the superconducting cyclotron utilization project. The forward part of the array will consist of 24 telescopes, each will have three elements Si (strip) ΔE, Si(strip) E and CsI(Ti) E. Each ΔE strip will have 16 channels whereas E-strip will have 16 vertical and 16 horizontal channels. The large number of Si channels mandated the development of low-cost, high-density preamplifiers. A variety of circuits have been tested and some prototype preamplifiers have been fabricated. The performance of a prototype preamplifier has been reported

  10. Charged particle and magnetic field research in space

    Science.gov (United States)

    1972-01-01

    Research completed and in progress is described, related publications and reports are listed, and abstracts of papers and talks on results of the research are given. The charged particle research centered on OGO-5 and OGO-6 electron spectrometer data, and theoretical radiation belt studies. Work on the ATS-1 magnetometer project included development of production data reduction programs, development of spectral analysis procedures, and scientific studies of ULF waves at synchronous orbit. The magnetic fields research also included work on the Mariner project and theoretical studies on the solar wind.

  11. Charged particle induced energy dispersive X-ray analysis

    International Nuclear Information System (INIS)

    This review article deals with the X-ray emission induced by heavy, charged particles and the use of this process as an analytical method (PIXE). The physical processes involved, X-ray emission and the various reactions contributing to the background, are described in some detail. The sensitivity is calculated theoretically and the results compared with practical experience. A discussion is given on how the sensitivity can be optimized. The experimental arrangements are described and the various technical problems discussed. The analytical procedure, especially the sample preparation, is described in considerable detail. A number of typical practical applications are discussed. (author)

  12. Nonlinear Stability Theorem for High-Intensity Charged Particle Beams

    International Nuclear Information System (INIS)

    Global conservation constraints based on the nonlinear Vlasov-Maxwell equations are used to derive a three-dimensional kinetic stability theorem for an intense non-neutral ion beam (or charge bunch) propagating with average axial velocity vb=const . It is shown that a sufficient condition for linear and nonlinear stability for perturbations with arbitrary polarization is that the equilibrium distribution be a monotonically decreasing function of the single-particle energy H' in the beam frame, i.e., ∂feq(H') /∂H'≤0 . copyright 1998 The American Physical Society

  13. Cataractogenic effects of heavy charged particles in mice

    International Nuclear Information System (INIS)

    The effects of heavy charged particles on the crystalline lens of the eye of mice are important because this tissue has proven susceptible to other forms of high-LET radiation. This report summarizes the results currently available from a prospectively designed study to explore the LET dependence of the cataractogenic process. The present results are consistent with a high cataractogenic effect at 100 keV/μm, because plateau argon 40 ions, with an LET in this range, produce higher average cataracts scores at 9, 11 and 13 months than do carbon 12 or neon 20 ions. In the electron micrographs, significant changes were observed from the controls

  14. Charged Particle Multiplicities in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aïd, S; Andreev, V; Andrieu, B; Appuhn, R D; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Braunschweig, W; Brisson, V; Bruel, P; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Calvet, D; Campbell, A J; Carli, T; Charlet, M; Chechelnitskii, S; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Cocks, S P; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Cousinou, M C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; Davis, C L; De Wolf, E A; Delcourt, B; Di Nezza, P; Dirkmann, M; Dixon, P; Dlugosz, W; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duhm, H; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Evrard, E; Fahr, A B; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Gaede, F; Garvey, J; Gayler, J; Gebauer, M; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; Golec-Biernat, Krzysztof J; González-Pineiro, B; Gorelov, I V; Grab, C; Greenshaw, T J; Griffiths, R K; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Hadig, T; Haidt, Dieter; Hajduk, L; Hampel, M; Haynes, W J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hewitt, K; Hildesheim, W; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Hoffmann, D; Holtom, T; Hoppner, M; Horisberger, R P; Hudgson, V L; Hufnagel, H; Hütte, M; Ibbotson, M; Itterbeck, H; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kander, M; Kant, D; Kaschowitz, R; Kathage, U; Katzy, J M; Kaufmann, H H; Kaufmann, O; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Kolanski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Kuhlen, M; Kurca, T; Kurzhofer, J; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Laforge, B; Lander, R; Landon, M P J; Lange, W; Langenegger, U; Laporte, J F; Lebedev, A; Lehner, F; Levonian, S; Lindström, G; Lindstrøm, M; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lomas, J W; Lubimov, V; Lüke, D; López, G C; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Meyer, A; Meyer, H; Meyer, J; Meyer, P O; Migliori, A; Mikocki, S; Milstead, D; Moeck, J; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Negri, I; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Niggli, H; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Olsson, J E; Ozerov, D; Palmen, P; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Pawletta, H; Peppel, E; Phillips, J P; Pieuchot, A; Pitzl, D; Pope, G; Prell, S; Pérez, E; Rabbertz, K; Reimer, P; Reinshagen, S; Rick, Hartmut; Riech, V; Riedlberger, J; Riepenhausen, F; Riess, S; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rädel, G; Rüter, K; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Specka, A E; Spiekermann, J; Spielman, S; Spitzer, H; Squinabol, F; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Steiner, H; Steinhart, J; Stella, B; Stellberger, A; Stier, J; Stiewe, J; Stolze, K; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Tasevsky, M; Theissen, J; Thiebaux, C; Thompson, G; Truöl, P; Tsipolitis, G; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; West, L R; Wiesand, S; Wilksen, T; Willard, S; Winde, M; Winter, G G; Wittek, C; Wobisch, M; Wünsch, E; Zarbock, D; Zhang, Z; Zhokin, A S; Zini, P; Zomer, F; Zsembery, J; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W

    1996-01-01

    Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q^2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e^+e^-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.

  15. 'DIAMANT': A 4 π light charged particle detector array

    International Nuclear Information System (INIS)

    4π γ-spectrometers allow precise determination of weak transitions. A 4π light charged particle detector array of 54 detectors called DIAMANT is described as applied for triggering γ-spectrometers. The multidetector system allows channel selection, increases the sensitivity of the spectrometer, and can give additional information on the exit channel and the path leading to the final nucleus studied by its γ emission. The characteristics and first measured performance of the DIAMANT multidetector array are presented. (R.P.) 2 refs

  16. Energy loss of charged particles colliding with an oscillator

    Science.gov (United States)

    Makarov, D. N.

    2015-04-01

    Energy loss of fast charged particles colliding with an oscillator is considered in the dipole approximation. In this approximation, the problem is solved exactly and the energy loss of the oscillator from the initial state | m> = |0> is found in the form of the sum of single integrals. It is shown that passing to the limit, the Bethe theory for an atom with small perturbations can be obtained, and in the case of strong fields, the correction to the Bethe theory, analogous to the Bloch correction, can be calculated; in addition, a classical limit coinciding with the Bohr formula is possible.

  17. On the energy losses of fast charged particles

    Science.gov (United States)

    Matveev, V. I.; Makarov, D. N.; Gusarevich, E. S.

    2010-09-01

    The energy losses of fast charged particles colliding with atoms have been considered in the eikonal approximation. It has been shown that the nonperturbative contribution to the effective stopping from the region of the intermediate impact parameters (comparable with the characteristic sizes of the electron shells of the target) not only can be significant as compared to shell corrections to the Bethe-Bloch formula (usually considered in the first order of perturbation theory), but also can provide significant (up to 50%) corrections to this formula.

  18. Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling

    Science.gov (United States)

    2008-01-01

    The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.

  19. Transport of charged Aerosol OT inverse micelles in nonpolar liquids.

    Science.gov (United States)

    Karvar, Masoumeh; Strubbe, Filip; Beunis, Filip; Kemp, Roger; Smith, Ashley; Goulding, Mark; Neyts, Kristiaan

    2011-09-01

    Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses. PMID:21728309

  20. Development of Si (Li) detectors for charged particles spectrometer

    CERN Document Server

    Onabe, H; Obinata, M; Kashiwagi, T

    2002-01-01

    Lithium drifted silicon (Si (Li)) detectors with high-quality large area for charged particles spectrometer abroad artificial satellite have been developed. Surface stability can be obtained by thin p-n junction fabricated with the applied photo engraving process (PEP) instead of surface barrier. The region compensated with Lithium can be improved by the adequate heat treatment, and this improvement can be monitored by means of a combination of copper plating and subsequent micro-XRF analysis. The detectors fabricated from the thermal treated wafers were found to have better energy resolution both for alpha-particles from sup 2 sup 4 sup 1 Am and conversion electrons from sup 2 sup 0 sup 7 Bi. (author)

  1. Physical sputtering of metallic systems by charged-particle impact

    International Nuclear Information System (INIS)

    The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs

  2. Search for fractional charge and heavy stable particles at PETRA

    International Nuclear Information System (INIS)

    A search has been made for new particles with charge Q = 2/3, 1, 4/3, 5/3 produced in e+e--reactions at PETRA. The energy range was Esub(cm) = 27-35 GeV. No such particles were found. Upper limits for the cross-section depending on the assumed mass and production spectrum are given. For Q = 2/3 quarks with mass less than 12 GeV/c2, upper limits sigma(q anti q)/sigma(μμ) -2 (90% C.L.) are obtained both for inclusive and exclusive production. For the lifetime of the B-meson (msub(B) = 5 GeV/c2) an upper limit tau -9 s is obtained. (orig.)

  3. EGUN, Charged Particle Trajectories in Electromagnetic Focusing System

    International Nuclear Information System (INIS)

    1 - Description of problem or function: EGUN computes trajectories of charged particles in electrostatic and magnetostatic focusing systems including the effects of space charge and self-magnetic fields. Starting options include Child's Law conditions on cathodes of various shapes, user-specified conditions input for each ray, and a combination of Child's Law conditions and user specifications. Either rectangular or cylindrically symmetric geometry may be used. Magnetic fields may be specified using an arbitrary configuration of coils, or the output of a magnet program, such as Poisson, or by an externally calculated array of the axial fields. 2 - Method of solution: The program first solves Laplace's equation. Next, the first iteration of electron trajectories is started using one of the four starting options. On the first iteration cycle, space charge forces are calculated from the assumption of paraxial flow. As the rays are traced, space charge is computed and stored. After all the electron trajectories have been calculated, the program begins the second cycle by solving the Poisson equation with the space charge from the first iteration. Subsequent iteration cycles follow this pattern. The Poisson equation is solved by an alternate column relaxation technique known as the semi-iterative Chebyshev method. A fourth-order Runge-Kutta method is used to solve the relativistic differential equations of the trajectory calculations. 3 - Restrictions on the complexity of the problem - Maxima of: 9001 mesh points in a square mesh, 300 mesh points in the axial direction, 100 mesh points in the radial direction, 101 potentials, 51 rays. In the cylindrical coordinates, the magnetic fields are axially symmetric. In rectangular coordinates, the external field is assumed to be normal to the plane of the problem, which is assumed to be the median plane

  4. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    Directory of Open Access Journals (Sweden)

    Y.-H. Kim

    2015-09-01

    Full Text Available Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 40 nm and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and a radioactive plume. Limitations of the approaches are discussed.

  5. SLC injector end to end simulation for high charge transport

    International Nuclear Information System (INIS)

    The authors describe the end-to-end simulation of the SLC injector from the Gun through the first accelerating section. The purpose of these simulations is to aid the injector tuning for high charge transport. Simulations are conducted using PARMELA, a 3 dimensional ray trace code with a two dimensional space charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The results from POISSON and SUPERFISH are used in PARMELA to simulate and prescribe experimental parameters

  6. Intermediate tunnelling-hopping regime in DNA charge transport

    Science.gov (United States)

    Xiang, Limin; Palma, Julio L.; Bruot, Christopher; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian

    2015-03-01

    Charge transport in molecular systems, including DNA, is involved in many basic chemical and biological processes, and its understanding is critical if they are to be used in electronic devices. This important phenomenon is often described as either coherent tunnelling over a short distance or incoherent hopping over a long distance. Here, we show evidence of an intermediate regime where coherent and incoherent processes coexist in double-stranded DNA. We measure charge transport in single DNA molecules bridged to two electrodes as a function of DNA sequence and length. In general, the resistance of DNA increases linearly with length, as expected for incoherent hopping. However, for DNA sequences with stacked guanine-cytosine (GC) base pairs, a periodic oscillation is superimposed on the linear length dependence, indicating partial coherent transport. This result is supported by the finding of strong delocalization of the highest occupied molecular orbitals of GC by theoretical simulation and by modelling based on the Büttiker theory of partial coherent charge transport.

  7. Particle-in-Cell/Test-Particle Simulations of Technological Plasmas: Sputtering Transport in Capacitive Radio Frequency Discharges

    CERN Document Server

    Trieschmann, Jan; Mussenbrock, Thomas

    2016-01-01

    The paper provides a tutorial to the conceptual layout of a self-consistently coupled Particle-In-Cell/Test-Particle model for the kinetic simulation of sputtering transport in capacitively coupled plasmas at low gas pressures. It explains when a kinetic approach is actually needed and which numerical concepts allow for the inherent nonequilibrium behavior of the charged and neutral particles. At the example of a generic sputtering discharge both the fundamentals of the applied Monte Carlo methods as well as the conceptual details in the context of the sputtering scenario are elaborated on. Finally, two in the context of sputtering transport simulations often exploited assumptions, namely on the energy distribution of impinging ions as well as on the test particle approach, are validated for the proposed example discharge.

  8. Particle beams carrying orbital angular momentum, charge, mass and spin

    Science.gov (United States)

    Tijssen, Teuntje; Hayrapetyan, Armen; Goette, Joerg; Dennis, Mark

    Electron beams carrying vortices and angular momentum have been of much experimental and theoretical interest in recent years. In addition, optical vortex beams are a well-established field in optics and photonics. In both cases, the orbital angular momentum associated with the beam's axial vortex has effects on the overall spin of the beam, due to spin-orbit interactions. A simple model of these systems are Bessel beam solutions (of either the Dirac equation or Maxwell equations) with a nonzero azimuthal quantum number, which are found by separation in cylindrical coordinates. Here, we generalize this approach, considering the classical field theory of Bessel beams for particles which are either massive or massless, uncharged or charged and of a variety of different spins (0, 1/2, 1, ⋯). We regard the spin and helicity states and different forms of spin-orbit terms that arise. Moreover, we analyse the induced electromagnetic field when the particles carry charge. Most importantly, this unified field theory approach leads to the prediction of effects for vortex beams of neutrons, mesons and neutrinos.

  9. Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics

    Science.gov (United States)

    Deng, Mingge; Li, Zhen; Karniadakis, George

    2015-11-01

    In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.

  10. Status of vectorized Monte Carlo for particle transport analysis

    International Nuclear Information System (INIS)

    The conventional particle transport Monte Carlo algorithm is ill suited for modern vector supercomputers because the random nature of the particle transport process in the history based algorithm inhibits construction of vectors. An alternative, event-based algorithm is suitable for vectorization and has been used recently to achieve impressive gains in performance on vector supercomputers. This review describes the event-based algorithm and several variations of it. Implementations of this algorithm for applications in particle transport are described, and their relative merits are discussed. The implementation of Monte Carlo methods on multiple vector parallel processors is considered, as is the potential of massively parallel processors for Monte Carlo particle transport simulations

  11. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  12. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  13. Response of Charged Particles in a Storage Ring to Gravitational Waves

    Institute of Scientific and Technical Information of China (English)

    DONGDong; HUANGChao-Guang

    2003-01-01

    The influence of gravitational waves on the charged particles in a storage ring is studied. It shows that the gravitational waves might be directly detected by monitoring the motion of charged particles in a storage ring. The angular velocity of the charged particles is continually adjustable by changing the initial energy of particles and the strength of the magnetic field. This feature is very useful for finding the gravitational waves with different frequencies.

  14. Response of Charged Particles in a Storage Ring to Gravitational Waves

    Institute of Scientific and Technical Information of China (English)

    DONG Dong; HUANG Chao-Guang

    2003-01-01

    The influence of gravitational waves on the charged particles in a storage ring is studied. It shows thatthe gravitational waves might be directly detected by monitoring the motion of charged particles in a storage ring. Theangular velocity of the charged particles is continually adjustable by changing the initial energy of particles and thestrength of the magnetic field. This feature is very useful for finding the gravitational waves with different frequencies.

  15. Charged Brownian particles: Kramers and Smoluchowski equations and the hydrothermodynamical picture

    Science.gov (United States)

    Lagos, R. E.; Simões, Tania P.

    2011-05-01

    We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski-reactive like equation; for the particle’s momentum density, a generalized Ohm’s-like equation; and for the particle’s energy density, a Maxwell-Cattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann’s entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles.

  16. Preliminary study for the detection of neutrons in heavy-ion collisions with charged particle detectors

    Directory of Open Access Journals (Sweden)

    Auditore L.

    2015-01-01

    Full Text Available At Laboratori Nazionali del Sud (LNS the CHIMERA 4π multidetector has been designed and setup to detect charged particles emitted in heavy ion collisions at intermediate energies. Properties and performances of CHIMERA have been widely demonstrated by published results obtained in the performed experiments. Moreover, in recent years, a new charged particle detector (ChPD for correlation studies (FARCOS has been designed, and recently a first prototype has been coupled to CHIMERA, in order to test performances in view of correlation measurements in coincidence with 4π detectors. Simultaneous neutrons and charged particles detection in heavy ion collisions represents an important experimental progress for future experiments to be performed with both stable and exotic nuclei. In order to investigate about this possibility, simple Monte Carlo simulations have been performed. Preliminary simulations have been carried out by means of MCNPX transport code to evaluate the perturbation effects, including cross-talk and time response, induced in CHIMERA and/or FARCOS Si-CsI(Tl telescopes on (typical 20MeV neutron signals coming froma typical reaction in heavy ion collisions at the Fermi energy. Moreover, first data analysis results of the INKIISSY experiment indicates sizable probability to detect neutrons by properly shadowing CHIMERA Si-CsI(Tl telescopes. Analysis is still in progress.

  17. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  18. A novel silicon array designed for intraoperative charged particle imaging

    International Nuclear Information System (INIS)

    A novel Si-PIN imaging array is under investigation for a charged particle (beta, positron, or alpha) sensitive intraoperative camera to be used for (residual) tumor identification during surgery. This class of collimator-less nuclear imaging device has a higher signal response for direct interactions than its scintillator-optical detector-based counterparts. Monte Carlo simulations with 635 keV betas were performed, yielding maximum and projected ranges of 1.64 and 0.55 mm in Si. Up to 90% of these betas were completely absorbed in the first 0.30 mm. Based on these results, 300 μm thick prototype Si detector arrays were designed in a 16x16 crossed-grid arrangement with 0.8 mm wide orthogonal strips on 1.0 mm pitch. A NIM- and CAMAC-based high-density data acquisition and processing system was used to collect the list mode data. The system was calibrated by comparisons of measured spectra to energy deposition simulations or by direct measurement of various >100 keV conversion electron or beta emitters. Mean electronic noise per strip was 2 pixel size, and measurements of beta emitting point and line sources yielded FWHM resolutions of 1.5 (lateral) and 2.5 mm (diagonal), respectively, with the larger widths due to particle range blurring effects. Deconvolution of the finite source size yielded intrinsic resolutions that corresponded to the image pixel size. Transmission images of circle and line phantoms with various hole sizes and pitch were resolved with either pure beta or positron irradiation without a background correction. This novel semiconductor imaging device facilitates high charged particle and low gamma sensitivity, high signal/noise ratio, and allows for compact design to potentially aid surgical guidance by providing in situ images of clinical relevance

  19. Fractional dynamics of charged particles in magnetic fields

    Science.gov (United States)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Méndez, E.; Guerrero-Ramírez, G. V.; Escobar-Jiménez, R. F.

    2016-02-01

    In many physical applications the electrons play a relevant role. For example, when a beam of electrons accelerated to relativistic velocities is used as an active medium to generate Free Electron Lasers (FEL), the electrons are bound to atoms, but move freely in a magnetic field. The relaxation time, longitudinal effects and transverse variations of the optical field are parameters that play an important role in the efficiency of this laser. The electron dynamics in a magnetic field is a means of radiation source for coupling to the electric field. The transverse motion of the electrons leads to either gain or loss energy from or to the field, depending on the position of the particle regarding the phase of the external radiation field. Due to the importance to know with great certainty the displacement of charged particles in a magnetic field, in this work we study the fractional dynamics of charged particles in magnetic fields. Newton’s second law is considered and the order of the fractional differential equation is (0;1]. Based on the Grünwald-Letnikov (GL) definition, the discretization of fractional differential equations is reported to get numerical simulations. Comparison between the numerical solutions obtained on Euler’s numerical method for the classical case and the GL definition in the fractional approach proves the good performance of the numerical scheme applied. Three application examples are shown: constant magnetic field, ramp magnetic field and harmonic magnetic field. In the first example the results obtained show bistability. Dissipative effects are observed in the system and the standard dynamic is recovered when the order of the fractional derivative is 1.

  20. Wave theories of non-laminar charged particle beams: from quantum to thermal regime

    CERN Document Server

    Fedele, Renato; Jovanovic, Dusan; De Nicola, Sergio; Ronsivalle, Concetta

    2013-01-01

    The standard classical description of non-laminar charge particle beams in paraxial approximation is extended to the context of two wave theories. The first theory is the so-called Thermal Wave Model (TWM) that interprets the paraxial thermal spreading of the beam particles as the analog of the quantum diffraction. The other theory, hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of the single beam particle (uncertainty principle and spin) and provides the collective description of the beam transport in the presence of the quantum paraxial diffraction. QWM can be applied to beams that are sufficiently cold to allow the particles to manifest their individual quantum nature but sufficiently warm to make overlapping-less the single-particle wave functions. In both theories, the propagation of the beam transport in plasmas or in vacuo is provided by fully similar set of nonlinear and nonlocal governing equations, where in the case of TWM the Compton wavelength (fun...

  1. Heat, Mass and Charge Transport, and Chemical Reactions at Surfaces

    Directory of Open Access Journals (Sweden)

    Signe Kjelstrup

    2005-03-01

    Full Text Available In this work we derive the excess entropy production rate for heat, mass and charge transport into, out of and across a surface, using as basic variables the excess densities proposed by Gibbs. With the help of these variables we define the surface as an autonomous system (i.e. a surface in local equilibrium and find its excess entropy production rate. This then determines the conjugate fluxes and forces. Equivalent forms of the entropy production rate are given. The forms contain finite differences of intensive variables into and across the surface as driving forces. The general form of the force-flux relations is given. The expressions for the fluxes serve as boundary conditions for integration across heterogeneous systems. Two examples are discussed in more detail. The first example is the practically important coupled transport of heat and mass into and through a liquid-vapor surface. The second example concerns phenomena at electrode surfaces: the coupled transport of heat, mass and charge and a chemical reaction. By assuming that the two sides of the surface can be described as resistances in series, we are able to reduce the number of unknown transport coefficients considerably. For both examples it is shown that the coupling coefficients for heat and mass flow are large at the surface, when the homogeneous phases have a large enthalpy difference. As a consequence it is not sufficient to use, for instance, Fourier’s law for transport of heat across surfaces.

  2. Charge transport properties of cryolite–silica melts

    International Nuclear Information System (INIS)

    Electrodeposition of silicon from a cryolite based electrolyte at a relatively low temperature is a promising approach to generate high purity silicon. In order to obtain fundamental data pertaining to electrowinning of silicon from cryolite–SiO2 melts, charge transport properties of the melt such as conductivity and electronic and ionic transference numbers were measured. Each property was determined for a range of temperatures and SiO2 contents. It was found that addition of silica to cryolite generally decreases the transport rate of charge carriers. The temperature on the other hand had a positive effect on the electronic and ionic conductivities. The variations arise from the structural changes in the melt, particularly formation of complex ions involving Na, Si, and Al.

  3. Role of mesoscopic morphology in charge transport of doped polyaniline

    Indian Academy of Sciences (India)

    A K Mukherjee; Reghu Menon

    2002-02-01

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain conformation and charge delocalization. The resistivity of PANI doped by camphor sulfonic acid (CSA)/2-acrylo-amido-1-propane sulfonic acid (AMPSA)/dodecyl benzene sulfonic acid (DBSA) is around 0.02 cm. PANI-CSA and PANI-AMPSA show a metallic positive temperature coefficient of resistivity above 150 K, with a finite value of conductivity at 1.4 K; whereas, PANI-DBSA shows hopping transport at low temperatures. The magnetoresistance is positive (negative) for PANI-CSA (PANIAMPSA); and PANI-DBSA has a large positive MR. The behavior of MR suggests subtle variations in mesoscopic morphology between PANI-CSA and PANI-AMPSA.

  4. Massively parallel simulations of Brownian dynamics particle transport in low pressure parallel-plate reactors

    International Nuclear Information System (INIS)

    An understanding of particle transport is necessary to reduce contamination of semiconductor wafers during low-pressure processing. The trajectories of particles in these reactors are determined by external forces (the most important being neutral fluid drag, thermophoresis, electrostatic, viscous ion drag, and gravitational), by Brownian motion (due to neutral and charged gas molecule collisions), and by particle inertia. Gas velocity and temperature fields are also needed for particle transport calculations, but conventional continuum fluid approximations break down at low pressures when the gas mean free path becomes comparable to chamber dimensions. Thus, in this work we use a massively parallel direct simulation Monte Carlo method to calculate low-pressure internal gas flow fields which show temperature jump and velocity slip at the reactor boundaries. Because particle residence times can be short compared to particle response times in these low-pressure systems (for which continuum diffusion theory fails), we solve the Langevin equation using a numerical Lagrangian particle tracking model which includes a fluctuating Brownian force. Because of the need for large numbers of particle trajectories to ensure statistical accuracy, the particle tracking model is also implemented on a massively parallel computer. The particle transport model is validated by comparison to the Ornstein endash Furth theoretical result for the mean square displacement of a cloud of particles. For long times, the particles tend toward a Maxwellian spatial distribution, while at short times, particle spread is controlled by their initial (Maxwellian) velocity distribution. Several simulations using these techniques are presented for particle transport and deposition in a low pressure, parallel-plate reactor geometry. The corresponding particle collection efficiencies on a wafer for different particle sizes, gas temperature gradients, and gas pressures are evaluated

  5. Charge transport through weakly open one dimensional quantum wires

    OpenAIRE

    Kopnin, N. B.; Galperin, Y. M.; Vinokur, V.M.

    2008-01-01

    We consider resonant transmission through a finite-length quantum wire connected to leads via finite transparency junctions. The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-voltage ($IV$) curves show step-like dependence on the bias voltage determined by the distance between the quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and level spacing. If the system is tuned close to...

  6. Charge transport in disordered superconductor-graphene junctions

    International Nuclear Information System (INIS)

    We consider the charge transport through superconductor-graphene tunnel junctions, including the effect of disorder. Coherent scattering on elastic impurities in the graphene layer can give rise to multiple reflections at the graphene-superconductor interface, and can thereby increase the probability of Andreev reflection, leading to an enhancement of the subgap conductance above its classical value. Although the phenomenon is known already from heterostructures involving normal metals, we have studied how graphenes peculiar dispersion relation influences the effect.

  7. Revised-Modified Penalties for Fixed Charge Transportation Problems

    OpenAIRE

    Bruce W. Lamar; Chris A. Wallace

    1997-01-01

    Conditional penalties are used to obtain lower bounds to subproblems in a branch-and-bound procedure that can be tighter than the LP relaxation of the subproblems. For the fixed charge transportation problem (FCTP), branch-and-bound algorithms have been implemented using conditional penalties proposed by Driebeek (Driebeek, N. 1966. An algorithm for the solution of mixed integer programming problems. Management Sci. 12 576--587.), Cabot and Erenguc (Cabot, A. V., S. S. Erenguc. 1984. Some bra...

  8. Magnetic fields facilitate DNA-mediated charge transport

    OpenAIRE

    Wong, Jiun Ru; Lee, Kee Jin; Shu, Jian-Jun; Shao, Fangwei

    2015-01-01

    Exaggerate radical-induced DNA damage under magnetic fields is of great concerns to medical biosafety and to bio-molecular device based upon DNA electronic conductivity. In this report, the effect of applying an external magnetic field (MF) on DNA-mediated charge transport (CT) was investigated by studying guanine oxidation by a kinetics trap (8CPG) via photoirradiation of anthraquinone (AQ) in the presence of an external MF. Positive enhancement in CT efficiencies was observed in both the pr...

  9. Effective models for charge transport in DNA nanowires

    OpenAIRE

    Gutierrez, Rafael; Cuniberti, Gianaurelio

    2006-01-01

    The rapid progress in the field of molecular electronics has led to an increasing interest on DNA oligomers as possible components of electronic circuits at the nanoscale. For this, however, an understanding of charge transfer and transport mechanisms in this molecule is required. Experiments show that a large number of factors may influence the electronic properties of DNA. Though full first principle approaches are the ideal tool for a theoretical characterization of the structural and elec...

  10. Charge-transport-mediated recruitment of DNA repair enzymes

    OpenAIRE

    Fok, Pak-Wing; Guo, Chin-Lin; Chou, Tom

    2008-01-01

    Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes (BER) that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546 (2005)]. In this CT mechanism, electrons are released by recently adsorbed BER enzymes and travel along the DNA. The electrons can scatter (by...

  11. DNA-mediated Charge Transport in Redox Sensing and Signaling

    OpenAIRE

    Genereux, Joseph C.; Boal, Amie K.; Barton, Jacqueline K.

    2010-01-01

    The transport of charge through the DNA base pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidativ...

  12. Models for Energy and Charge Transport and Storage in Biomolecules

    OpenAIRE

    Mingaleev, S. F.; Christiansen, P. L.; Gaididei, Yu. B.; M. Johansson; Rasmussen, K.Ø.

    1999-01-01

    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the tot...

  13. Charge transport through DNA four-way junctions

    OpenAIRE

    Duncan T Odom; Dill, Erik A.; Barton, Jacqueline K.

    2001-01-01

    Long range oxidative damage as a result of charge transport is shown to occur through single crossover junctions assembled from four semi-complementary strands of DNA. When a rhodium complex is tethered to one of the arms of the four-way junction assembly, thereby restricting its intercalation into the π-stack, photo-induced oxidative damage occurs to varying degrees at all guanine doublets in the assembly, though direct strand scission only occurs at the predicted...

  14. DNA Charge Transport Leading to Disulfide Bond Formation

    OpenAIRE

    Takada, Tadao; Barton, Jacqueline K.

    2005-01-01

    Here, we show that DNA-mediated charge transport (CT) can lead to the oxidation of thiols to form disulfide bonds in DNA. DNA assemblies were prepared possessing anthraquinone (AQ) as a photooxidant spatially separated on the duplex from two SH groups incorporated into the DNA backbone. Upon AQ irradiation, HPLC analysis reveals DNA ligated through a disulfide. The reaction efficiency is seen to vary in assemblies containing intervening DNA mismatches, confirming that the reaction is DNA-medi...

  15. Nonlinear charge transport in the helicoidal DNA molecule.

    Science.gov (United States)

    Dang Koko, A; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C

    2012-12-01

    Charge transport in the twist-opening model of DNA is explored via the modulational instability of a plane wave. The dynamics of charge is shown to be governed, in the adiabatic approximation, by a modified discrete nonlinear Schrödinger equation with next-nearest neighbor interactions. The linear stability analysis is performed on the latter and manifestations of the modulational instability are discussed according to the value of the parameter α, which measures hopping interaction correction. In so doing, increasing α leads to a reduction of the instability domain and, therefore, increases our chances of choosing appropriate values of parameters that could give rise to pattern formation in the twist-opening model. Our analytical predictions are verified numerically, where the generic equations for the radial and torsional dynamics are directly integrated. The impact of charge migration on the above degrees of freedom is discussed for different values of α. Soliton-like and localized structures are observed and thus confirm our analytical predictions. We also find that polaronic structures, as known in DNA charge transport, are generated through modulational instability, and hence reinforces the robustness of polaron in the model we study. PMID:23278045

  16. Charge Transport in LDPE Nanocomposites Part I—Experimental Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available This work presents results of bulk conductivity and surface potential decay measurements on low-density polyethylene and its nanocomposites filled with uncoated MgO and Al2O3, with the aim to highlight the effect of the nanofillers on charge transport processes. Material samples at various filler contents, up to 9 wt %, were prepared in the form of thin films. The performed measurements show a significant impact of the nanofillers on reduction of material’s direct current (dc conductivity. The investigations thus focused on the nanocomposites having the lowest dc conductivity. Various mechanisms of charge generation and transport in solids, including space charge limited current, Poole-Frenkel effect and Schottky injection, were utilized for examining the experimental results. The mobilities of charge carriers were deduced from the measured surface potential decay characteristics and were found to be at least two times lower for the nanocomposites. The temperature dependencies of the mobilities were compared for different materials.

  17. Charge injection and transport in fluorene-based copolymers.

    Science.gov (United States)

    Fong, Hon Hang; Malliaras, George G.; Lu, Tianjian; Dunlap, David

    2007-03-01

    Fluorene-based copolymer is considered to be one of the most promising hole transporting and blue light-emitting conjugated polymers used in polymeric light-emitting diodes (PLEDs). Time-of-flight (TOF) technique has been employed to evaluate the charge drift mobility under a temperature range between 200 - 400 K at the thick film regime (1-10 micron). Meanwhile, contact ohmicity is studied by Dark Current Space Charge Limited Conduction (DISCLC) technique. Charge injection efficiencies from different electrical contacts are also studied and the corresponding injection barriers are independently investigated by photoemission and electroabsorption spectroscopies. Results show that the copolymers exhibit non-dispersive charge transport behavior and possess superior mobilities of up to 0.01cm^2V-1s-1 while single-carrier devices from various electrical contacts such as PEDOT:PSS are varied, depending on the chemical structure of amine component in the fluorene-triarylamine copolymers. Results will shed light on the enhancement of device efficiency and stability in the future polymer electronic devices.

  18. Nonlinear charge transport in the helicoidal DNA molecule

    Science.gov (United States)

    Dang Koko, A.; Tabi, C. B.; Ekobena Fouda, H. P.; Mohamadou, A.; Kofané, T. C.

    2012-12-01

    Charge transport in the twist-opening model of DNA is explored via the modulational instability of a plane wave. The dynamics of charge is shown to be governed, in the adiabatic approximation, by a modified discrete nonlinear Schrödinger equation with next-nearest neighbor interactions. The linear stability analysis is performed on the latter and manifestations of the modulational instability are discussed according to the value of the parameter α, which measures hopping interaction correction. In so doing, increasing α leads to a reduction of the instability domain and, therefore, increases our chances of choosing appropriate values of parameters that could give rise to pattern formation in the twist-opening model. Our analytical predictions are verified numerically, where the generic equations for the radial and torsional dynamics are directly integrated. The impact of charge migration on the above degrees of freedom is discussed for different values of α. Soliton-like and localized structures are observed and thus confirm our analytical predictions. We also find that polaronic structures, as known in DNA charge transport, are generated through modulational instability, and hence reinforces the robustness of polaron in the model we study.

  19. Integral charged particle nuclear date bibliography. Editon 1, Supplement 2

    International Nuclear Information System (INIS)

    This bibliography is divided into three sections, ''References'', ''Target Index'', and ''Residual Index.'' The ''References'' section contains all references satisfying the following criteria: excitation functions, thick targets, or product yield leading to the formation of a ground or metastable state; the atomic mass and charge of the incident particle must be greater than or equal to 1; the atomic mass of the target must be greater than or equal to 1; and the atomic masses of the outgoing and residual nuclei must be greater than or equal to 1 with the exception of processes which do not lead to a definite residual nucleus and of gamma-ray production cross sections. The ''Target Index'' section contains the incident particle energy and the abbreviated reference lines for all the entries, which contain information on a definite target nucleus and reaction. These reference lines contain the Journal name, followed by the volume and page number. The ''Residual Index'' section also contains the incident particle energy and the abbreviated reference lines for all the entries, which contain information on a definite residual nucleus and a definite target-reaction

  20. Chaotic phenomena of charged particles in crystal lattices.

    Science.gov (United States)

    Desalvo, Agostino; Giannerini, Simone; Rosa, Rodolfo

    2006-06-01

    In this article, we have applied the methods of chaos theory to channeling phenomena of positive charged particles in crystal lattices. In particular, we studied the transition between two ordered types of motion; i.e., motion parallel to a crystal axis (axial channeling) and to a crystal plane (planar channeling), respectively. The transition between these two regimes turns out to occur through an angular range in which the particle motion is highly disordered and the region of phase space spanned by the particle is much larger than the one swept in the two ordered motions. We have evaluated the maximum Lyapunov exponent with the method put forward by Rosenstein et al. [Physica D 65, 117 (1993)] and by Kantz [Phys. Lett. A 185, 77 (1994)]. Moreover, we estimated the correlation dimension by using the Grassberger-Procaccia method. We found that at the transition the system exhibits a very complex behavior showing an exponential divergence of the trajectories corresponding to a positive Lyapunov exponent and a noninteger value of the correlation dimension. These results turn out to be linked to a physical interpretation. The Lyapunov exponents are in agreement with the model by Akhiezer et al. [Phys. Rep. 203, 289 (1991)], based on the equivalence between the ion motion along the crystal plane described as a "string of strings" and the "kicked" rotator. The nonintegral value of the correlation dimension can be explained by the nonconservation of transverse energy at the transition. PMID:16822017

  1. Peristaltic particle transport using the Lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  2. Simulation of charge transport in pixelated CdTe

    International Nuclear Information System (INIS)

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points

  3. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  4. Observation of high iron charge states at low energies in solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z.; Möbius, E.; Bochsler, P.; Connell, J. J.; Popecki, M. A. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); Klecker, B. [Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Kartavykh, Y. Y. [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation); Mason, G. M., E-mail: zwm2@unh.edu [Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723 (United States)

    2014-04-10

    The ionic charge states of solar energetic particles (SEPs) provide direct information about the source plasma, the acceleration environment, and their transport. Recent studies report that both gradual and impulsive SEP events show mean iron charge states (Q {sub Fe}) ∼ 10-14 at low energies E ≤ 0.1 MeV nuc{sup –1}, consistent with their origin from typical corona material at temperatures 1-2 MK. Observed increases of (Q {sub Fe}) up to 20 at energies 0.1-0.5 MeV nuc{sup –1} in impulsive SEPs are attributed to stripping during acceleration. However, Q {sub Fe} > 16 is occasionally found in the solar wind, particularly coming from active regions, in contrast to the exclusively reported (Q {sub Fe}) ≤ 14 for low energy SEPs. Here we report results from a survey of all 89 SEP events observed with Advanced Composition Explorer Solar Energetic Particle Ionic Charge Analyzer (SEPICA) in 1998-2000 for iron charge states augmented at low energy with Solar and Heliospheric Observatory CELIAS suprathermal time-of-flight (STOF). Nine SEP events with (Q {sub Fe}) ≥ 14 throughout the entire SEPICA and STOF energy range have been identified. Four of the nine events are impulsive events identified through velocity dispersion that are consistent with source temperatures ≥2 MK up to ∼4 MK. The other five events show evidence of interplanetary acceleration. Four of them involve re-acceleration of impulsive material, whose original energy dependent charge states appear re-distributed to varying extent bringing higher charge states to lower energy. One event, which shows flat but elevated (Q {sub Fe}) ∼ 14.2 over the entire energy range, can be associated with interplanetary acceleration of high temperature material. This event may exemplify a rare situation when a second shock plows through high temperature coronal mass ejection material.

  5. Bibliography and index for nuclear reactions among light charged particles. Volume 26

    International Nuclear Information System (INIS)

    A bibliography and index of experimental data from light charged particle induced nuclear reactions has been developed by searching the literature. To reduce both bulk and expense, this information is presented in the form of microfiche. Such data are useful for charged particle cross section evaluations and transport calculations. The incident particles considered were the five light isotopes p, d, t, 3He, and α. The criterion for including a reference was that the reference contain information about, at least, one reaction induced by an ion of one of the five light isotopes impinging on a target nucleus lighter than 12C. Once a reference was selected all reactions for target nuclei with Z less than or equal to 17 were included. A further criterion for selection was that the incident particle energy be less than or equal to 20 MeV. The bibliography consists of 1303 separate entries and is sorted three ways: (1) Author Citations arranges authors alphabetically, with associated reference numbers to data sets in which authors appear; (2) References Ordered Alphabetically arranges references and cross references in alphabetic order, with associated reference number, year, and authors; and (3) References Ordered Numerically shows the contents of the bibliographic file, including all primary and secondary references and associated annotations which, in most cases are brief indexes to the data associated with the experiment

  6. Theory of charge transport in molecular junctions: From Coulomb blockade to coherent tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yao-Wen; Jin, Bih-Yaw, E-mail: byjin@ntu.edu.tw [Department of Chemistry and Center for Emerging Material and Advanced Devices and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-08-14

    We study charge transport through molecular junctions in the presence of electron-electron interaction using the nonequilibrium Green's function techniques and the renormalized perturbation theory. In the perturbation treatment, the zeroth-order Hamiltonian of the molecular junction is composed of independent single-impurity Anderson's models, which act as the channels where charges come through or occupy, and the interactions between different channels are treated as the perturbation. Using this scheme, the effects of molecule-lead, electron-electron, and hopping interactions are included nonperturbatively, and the charge transport processes can thus be studied in the intermediate parameter range from the Coulomb blockade to the coherent tunneling regimes. The concept of quasi-particles is introduced to describe the kinetic process of charge transport, and then the electric current can be studied and calculated. As a test study, the Hubbard model is used as the molecular Hamiltonian to simulate dimeric and trimeric molecular junctions. Various nonlinear current-voltage characteristics, including Coulomb blockade, negative differential resistance, rectification, and current hysteresis, are shown in the calculations, and the mechanisms are elucidated.

  7. Theory of charge transport in molecular junctions: From Coulomb blockade to coherent tunneling

    International Nuclear Information System (INIS)

    We study charge transport through molecular junctions in the presence of electron-electron interaction using the nonequilibrium Green's function techniques and the renormalized perturbation theory. In the perturbation treatment, the zeroth-order Hamiltonian of the molecular junction is composed of independent single-impurity Anderson's models, which act as the channels where charges come through or occupy, and the interactions between different channels are treated as the perturbation. Using this scheme, the effects of molecule-lead, electron-electron, and hopping interactions are included nonperturbatively, and the charge transport processes can thus be studied in the intermediate parameter range from the Coulomb blockade to the coherent tunneling regimes. The concept of quasi-particles is introduced to describe the kinetic process of charge transport, and then the electric current can be studied and calculated. As a test study, the Hubbard model is used as the molecular Hamiltonian to simulate dimeric and trimeric molecular junctions. Various nonlinear current-voltage characteristics, including Coulomb blockade, negative differential resistance, rectification, and current hysteresis, are shown in the calculations, and the mechanisms are elucidated

  8. Evaluation of the film formation and the charge transport mechanism of indium tin oxide nanoparticle films

    International Nuclear Information System (INIS)

    The structure formation and charge transfer of thin nanoparticulate indium tin oxide (ITO) films prepared by dip-coating was studied as a function of stabilizer before and after annealing at different temperatures. The analysis of the film structure by optical methods revealed that it is a function of the stability. Suspensions containing an optimum stabilizer concentration of 0.1 mol/l resulted in densely packed films with a peak specific conductivity of 8.3 S cm-1 after annealing at 550 oC for 1 h in air and 121 S cm-1 after annealing in forming gas at 250 oC for 1 h, respectively. Furthermore, for the densely packed films fluctuation-induced tunnelling was found to be the dominant charge transport mechanism, whereas for the low density films a thermally activated charge transport was observed. That the films of maximum density showed a metallic charge transport behaviour at temperatures above 300 K indicated the optimal contact between ITO particles had been achieved.

  9. Search for multiply charged Heavy Stable Charged Particles in data collected with the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Veeraraghavan, Venkatesh [Florida State Univ., Tallahassee, FL (United States)

    2013-10-30

    Several models of new physics yield particles that are massive, long-lived, and have an electric charge, Q, greater than that of the electron, e. A search for evidence of such particles was performed using 5.0 fb-1 and 18.8 fb-1 of proton-proton collision data collected at √s = 7 TeV and √s = 8 TeV, respectively, with the Compact Muon Solenoid detector at the Large Hadron Collider. The distinctive detector signatures of these particles are that they are slow-moving and highly ionizing. Ionization energy loss and time-of- flight measurements were made using the inner tracker and the muon system, respectively. The search is sensitive to 1e ≤ |Q| ≤ 8e. Data were found to be consistent with standard model expectations and upper limits on the production cross section of these particles were computed using a Drell-Yan-like production model. Masses below 517, 687, 752, 791, 798, 778, 753, and 724 GeV are excluded for |Q| = 1e, 2e, 3e, 4e, 5e, 6e, 7e, and 8e, respectively.

  10. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  11. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasma

    CERN Document Server

    Choudhary, Mangilal; Bandyopadhyay, P

    2016-01-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current (DC) glow discharge. These dust particles are found to get trapped in an electrostatic potential well which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self excited dust acoustic waves and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust par...

  12. Japan Charged-Particle Nuclear Reaction Data Group (JCPRG)

    International Nuclear Information System (INIS)

    This it the progress report of the Executive Committee of the Japan Charged-Particle Nuclear Reaction Data Group (JCPRG). Since the last NRDC meeting in June 2003, the group has carried out the following activities: Compilation of CPND for NRDF and EXFOR; Compilation of CPND bibliographies for CINDA; Improvement of Web-based data input system HENDEL; Improvement of NRDF retrieval system DARPE; Development of utilization system for EXFOR and evaluated libraries; Data services for Japanese users. The regular JCPRG budget has ended at March 2001. They are applying a competitive budget for our further activity. The Executive Committee is organized by 7 researchers and 1 secretary. 6 postdoctoral researchers in Meme Media Lab. of Hokkaido Univ., 6 graduated students in Nuclear Physics Laboratory of Hokkaido Univ. and 1 technical staff work part-time. 1.5 equivalent man year is dedicated to NRDC Network activities

  13. A hybrid detector telescope for fission fragments and charged particles

    International Nuclear Information System (INIS)

    Measurement of light charged particle (LCP) multiplicities in coincidence with fission fragments (FFs) during the fusion-fission process is a very useful probe to understand the fission dynamics. In this type of measurement, the LCP's are indented to be measured in a wide range of relative angles (θrel) from 0° to 180° with respect to the FF direction. The conventional method of using two separate detectors one for the FF's and another for the LCPs does not allow to direct the LCPs along the direction of FF (in particular, θrel gas and Egas) and two CsI(Tl)-Si(PIN) detectors mounted at the end of the gas-section. In this paper, the results of in-beam usage of the HDT are presented

  14. General magnetized Weyl solutions: Disks and motion of charged particles

    CERN Document Server

    García-Duque, Cristian H

    2010-01-01

    We construct three families of general magnetostatic axisymmetric exact solutions of Einstein-Maxwell equations in spherical coordinates, prolate, and oblates. The solutions obtained are then presented in the system of generalized spheroidal coordinates which is a generalization of the previous systems. The method used to build such solutions is the well-known complex potential formalism proposed by Ernst, using as seed solutions vacuum solutions of the Einstein field equations. The constructed solutions are asymptotically flat and regular on the axis of symmetry. We show explicitly some particular solutions among them a Erez-Rosen type solution and a Morgan-Morgan type solution, which we interpret as the exterior gravitational field of a finite dislike source immersed in a magnetic field. From them we also construct using the well known ``displace, cut and reflect'' method exact solutions representing relativistic thin disks of infinite extension. We analyze the motion of electrically charged test particles ...

  15. Testing of high-vacuum pumps for charged particle accelerators

    International Nuclear Information System (INIS)

    To study a possibility of employing different types of pumps in charged-particle accelerators the following pumps have been tested: electric-arc, turbomolecular and cryogenic. The research has been carried out on a test bench which made it possible to determine the pumping-out rate for different gases (constant-volume methods), measure their limiting pressure and study the spectra of different gases by using mass spectrometers. It was possible also to warm up the pumps and pumped-out volumes. From these tests it was concluded that: (1) the electric-arc pump does not meet the accelerator pumping-out requirements; (2) the turbomolecular pump with a nitrogen-sorption trap can be recommended for pumping-out accelerators but requires modification of the supply unit; (3) the cryogenic pump can be recommended for pumpimg-out of accelerators but requires modification of the automatic system for replenishment of the cryogenic fluid

  16. A large solid angle detector for medium energy charged particles

    International Nuclear Information System (INIS)

    A charged particle detector with 0.7 sr solid angular acceptance has been built, principally to detect protons in the energy range 25-150 MeV in experiments with tagged photon beams. The detector consists of a three element ΔE1-ΔE2-E plastic scintillator telescope. Position information is obtained from the time difference between signals from the two ends of each scintillator. The design of the detector and tests of its performance are described. An energy resolution of 2.8 MeV fwhm at 60 MeV proton energy, and a two-dimensional position resolution of 24 mm x 41 mm fwhm has been obtained. Successful operation in the tagged photon environment is demonstrated. (orig.)

  17. Particle transport and deposition: basic physics of particle kinetics

    OpenAIRE

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2013-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeu...

  18. Simulations of charge transport in organic light emitting diodes

    CERN Document Server

    Martin, S J

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for th...

  19. Numerical Studies of Electromagnetic Instabilities in Intense Charged Particle Beams with Large Energy Anisotropy

    CERN Document Server

    Startsev, Edward; Lee, Wei-li

    2005-01-01

    In intense charged particle beams with large energy anisotropy, free energy is available to drive transverse electromagnetic Weibel-type instabilities. Such slow-wave transverse electromagnetic instabilities can be described by the so-called Darwin model, which neglects the fast-wave portion of the displacement current. The Weibel instability may also lead to an increase in the longitudinal velocity spread, which would make the focusing of the beam difficult and impose a limit on the minimum spot size achievable in heavy ion fusion experiments. This paper reports the results of recent numerical studies of the Weibel instability using the Beam Eigenmode And Spectra (bEASt) code for space-charge-dominated, low-emittance beams with large tune depression. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  20. Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport

    OpenAIRE

    Rozhkov, A. V.; Giavaras, G.; Bliokh, Yury P.; Freilikher, Valentin; Nori, Franco

    2011-01-01

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, $pn$-junctions, $pnp$-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.