WorldWideScience

Sample records for charged ions progress

  1. Progress in quantum electrodynamics theory of highly charged ions

    OpenAIRE

    Volotka, A. V.; Glazov, D. A.; Plunien, G.; Shabaev, V. M.

    2013-01-01

    Recent progress in quantum electrodynamics (QED) calculations of highly charged ions is reviewed. The theoretical predictions for the binding energies, the hyperfine splittings, and the g factors are presented and compared with available experimental data. Special attention is paid to tests of bound-state QED at strong field regime. Future prospects for tests of QED at the strongest electric and magnetic fields as well as for determination of the fine structure constant and the nuclear magnet...

  2. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  3. Correlated charge-changing ion-atom collisions. Progress report, February 16, 1990--February 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Tanis, J.A.

    1993-02-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from February 16, 1990 through February 15, 1993. This work involves the experimental investigation of atomic interactions in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron-correlation effects. The processes studied are of interest both from fundamental and applied points of view. In the latter case, results are obtained which are relevant to the understanding of laboratory and astrophysical plasmas, highly-excited (Rydberg) and continuum states of atoms and ions, atomic structure effects, the interaction of ions with surfaces, and the development of heavy-ion storage-rings. The results obtained have provided the basis for several M.A. thesis projects at Western Michigan and several Ph.D. dissertation projects are currently underway. Summaries of work completed and work in progress are given below in Section II. This research has resulted in 26 papers (in print and in press), 12 invited presentations at national and international meetings, and 28 contributed presentations as detailed in Section III.

  4. Atomic physics with highly charged ions. Progress report, FY 1989--91

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  5. Charge Breeding of Radioactive Ions

    CERN Document Server

    Wenander, F J C

    2013-01-01

    Charge breeding is a technique to increase the charge state of ions, in many cases radioactive ions. The singly charged radioactive ions, produced in an isotope separator on-line facility, and extracted with a low kinetic energy of some tens of keV, are injected into a charge breeder, where the charge state is increased to Q. The transformed ions are either directed towards a dedicated experiment requiring highly charged ions, or post-accelerated to higher beam energies. In this paper the physics processes involved in the production of highly charged ions will be introduced, and the injection and extraction beam parameters of the charge breeder defined. A description of the three main charge-breeding methods is given, namely: electron stripping in gas jet or foil; external ion injection into an electron-beam ion source/trap (EBIS/T); and external ion injection into an electron cyclotron resonance ion source (ECRIS). In addition, some preparatory devices for charge breeding and practical beam delivery aspects ...

  6. Excitation of atoms and molecules in collisions with highly charged ions. Progress report, January 1, 1990--December 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.L.

    1993-01-01

    A study of the double ionization of He by high-energy N{sup 7+} ions was extended up in energy to 40 MeV/amu. Coincidence time-of-flight studies of multicharged N{sub 2}, O{sub 2}, and CO molecular ions produced in collisions with 97-MeV Ar{sup 14+} ions were completed. Analysis of the total kinetic energy distributions and comparison with the available data for CO{sup 2+} and CO{sup 3+} from synchrotron radiation experiments led to the conclusion that ionization by Ar-ion impact populates states having considerably higher excitation energies than those accessed by photoionization. The dissociation fractions for CO{sup 1+} and CO{sup 2+} molecular ions, and the branching ratios for the most prominent charge division channels of CO{sup 2+} through CO{sup 7+} were determined from time-of-flight singles and coincidence data. An experiment designed to investigate the orientation dependence of dissociative multielectron ionization of molecules by heavy ion impact was completed. Measurements of the cross sections for K-shell ionization of intermediate-Z elements by 30-MeV/amu H, N, Ne, and Ar ions were completed. The cross sections were determined for solid targets of Z = 13, 22, 26, 29, 32, 40, 42, 46, and 50 by recording the spectra of K x rays with a Si(Li) spectrometer.

  7. Hydration of highly charged ions.

    Science.gov (United States)

    Hofer, Thomas S; Weiss, Alexander K H; Randolf, Bernhard R; Rode, Bernd M

    2011-08-01

    Based on a series of ab initio quantum mechanical charge field molecular dynamics (QMCF MD) simulations, the broad spectrum of structural and dynamical properties of hydrates of trivalent and tetravalent ions is presented, ranging from extreme inertness to immediate hydrolysis. Main group and transition metal ions representative for different parts of the periodic system are treated, as are 2 threefold negatively charged anions. The results show that simple predictions of the properties of the hydrates appear impossible and that an accurate quantum mechanical simulation in cooperation with sophisticated experimental investigations seems the only way to obtain conclusive results.

  8. Holographic heavy ion collisions with baryon charge

    CERN Document Server

    Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel

    2016-01-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  9. Surface nanostructures by single highly charged ions.

    Science.gov (United States)

    Facsko, S; Heller, R; El-Said, A S; Meissl, W; Aumayr, F

    2009-06-03

    It has recently been demonstrated that the impact of individual, slow but highly charged ions on various surfaces can induce surface modifications with nanometer dimensions. Generally, the size of these surface modifications (blisters, hillocks, craters or pits) increases dramatically with the potential energy of the highly charged ion, while the kinetic energy of the projectile ions seems to be of little importance. This paper presents the currently available experimental evidence and theoretical models and discusses the circumstances and conditions under which nanosized features on different surfaces due to the impact of slow highly charged ions can be produced.

  10. Handbook for highly charged ion spectroscopic research

    CERN Document Server

    Hutton, Roger; Currell, Fred; Martinson, Indrek; Hagmann, Siegbert

    2011-01-01

    Highly charged ions are key research objects in atomic physics. Precision spectroscopy of such ions provides a powerful tool for exploring relativistic and quantum electrodynamics effects. Additionally, the interaction of high-energy heavy-ions with matter is itself a topic of importance in many areas of applied physics, including fusion and plasma physics, accelerator physics, materials science and semiconductor device preparation and behavior. This work provides a complete overview of modern methods of studying highly charged ions. With chapters covering everything from the essential backgro

  11. Spectroscopy with trapped highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  12. Experimental recombination rates for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold Schuch [Dept. of Atomic Physics, Stockholm Univ., Frescativ., Stockholm (Sweden)

    2000-01-01

    Recent studies of recombination between free electrons and highly charged ions using electron coolers of heavy-ion storage rings have produced accurate rate coefficients of interest for plasma modeling and diagnostics. Some surprises were discovered which can lead to revisions of recombination models. With bare ions one finds at low energy a strong and puzzling deviation from radiative recombination theory. Dielectronic recombination with C3+, N4+ show that jj coupling gives essential contributions to the cross section also for light ions. (author)

  13. Production and ion-ion cooling of highly charged ions in electron string ion source.

    Science.gov (United States)

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  14. Progress Toward Heavy Ion IFE

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Logan, B G; Waldron, W L; Sabbi, G L; Callahan-Miller, D A; Peterson, P F; Goodin, D T

    2002-01-17

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed.

  15. Coulomb crystallization of highly charged ions.

    Science.gov (United States)

    Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo

    2015-03-13

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  16. Ion specific effects on charged interfaces

    OpenAIRE

    Medda, Luca

    2013-01-01

    The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...

  17. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  18. Production of Charge in Heavy Ion Collisions

    CERN Document Server

    Pratt, Scott; Ratti, Claudia

    2015-01-01

    By analyzing preliminary experimental measurements of charge-balance functions from the STAR Collaboration at the Relativistic-Heavy-Ion Collider (RHIC), it is found that pictures where balancing charges are produced in a single surge, and therefore separated by a single length scale, are inconsistent with data. In contrast, a model that assumes two surges, one associated with the formation of a thermalized quark-gluon plasma and a second associated with hadronization, provides a far superior reproduction of the data. A statistical analysis of the model comparison finds that the two-surge model best reproduces the data if the charge production from the first surge is similar to expectations for equilibrated matter taken from lattice gauge theory. The charges created in the first surge appear to separate by approximately one unit of spatial rapidity before emission, while charges from the second wave appear to have separated by approximately a half unit or less.

  19. Radioactive decays of highly-charged ions

    Directory of Open Access Journals (Sweden)

    Gao B. S.

    2015-01-01

    Full Text Available Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state β-decay and its time-mirrored counterpart, orbital electron-capture.

  20. Dielectronic recombination of multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.; Dittner, P.F.; Fou, C.M.; Miller, P.D.; Pepmiller, P.L.

    1986-09-01

    Using a merged electron-ion merged beam apparatus in conjunction with the ORNL EN Tandem Van de Graaff, we have measured dielectronic recombination in ..delta..n = 0 transitions for a number of Li-liked (B/sup 2 +/, C/sup 3 +/, N/sup 4 +/, and O/sup 5 +/), Be-like (C/sup 2 +/, N/sup 3 +/, and O/sup 4 +/), B-like (N/sup 2 +/, O/sup 3 +/, and F/sup 4 +/), and Na-like (P/sup 4 +/, S/sup 5 +/, and Cl/sup 6 +/) ions. The results are compared with theory which includes field enhancement and extension of the more highly charged ions is discussed. 11 refs., 11 figs.

  1. Precision mass measurements of highly charged ions

    Science.gov (United States)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  2. (The physics of highly charged ions)

    Energy Technology Data Exchange (ETDEWEB)

    Phaneuf, R.A.

    1990-10-12

    The Fifth International Conference on the Physics of Highly Charged Ions drew more than 200 participants, providing an excellent overview of this growing field. Important technical developments and experimental results in electron-ion collisions were reported. The merging of fast ion beams from accelerators or storage rings with advanced high-intensity electron-beam targets has yielded data of unprecedented quality on radiative and dielectronic recombination, providing stringent tests of theory. Long-awaited technical innovations in electron-impact excitation measurements were also reported. The level of activity in multicharged ion-surface interactions has increased. More sophisticated experimental studies of the neutralization process have shown the inadequacy of previously accepted mechanisms, and theoretical activity in this area is just being initiated. The IAEA meetings addressed atomic and molecular data needs for fusion research, with ITER providing a key focus. Such data are especially critical to modeling and diagnostics of the edge plasma. The ALADDIN data base system has been universally accepted and has streamlined the exchange of numerical data among data centers and the fusion community. The IAEA continues to play a pivotal role in the identification of data needs, and in the coordination of data compilation and research activities for fusion applications.

  3. Study on charge equilibration time of highly charged ions in carbon foils

    Institute of Scientific and Technical Information of China (English)

    Fang Yan; Xiao Guo-Qing; Xu Hu-Shan; Sun Zhi-Yu; Zhao Yong-Wao; Hu Zheng-Guo; Xu Hua-Gen; Huang Wian-Heng; Wang Yu-Yu

    2008-01-01

    Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied.It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15 μg/cm2 carbon foil.The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.

  4. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  5. Water and Ion Permeation through Electrically Charged Nanopore

    Institute of Scientific and Technical Information of China (English)

    ZENG Li; ZUO Guang-Hong; GONG Xiao-Jing; LU Hang-Jun; WANG Chun-Lei; WU Ke-Fei; WAN Rong-Zheng

    2008-01-01

    @@ The behaviour of water and small solutes in confined geometries is important to a variety of chemical and nanofluidic applications. Here we investigate the permeation and distribution of water and ions in electrically charged carbon cylindrical nanopore during the osmotic process using molecular dynamics simulations. In the simulations, charges are distributed uniformly on the pores with diameter of 0.9 nm. For nanopores with no charge or a low charge, ions are difficult to enter. With the increasing of charge densities on the pores, ions will appear inside the nanopores because of the large electronic forces between the ions and the charged pores. Different ion entries induce varying effects on osmotic water flow. Our simulations reveal that the osmotic water can flow through the negatively charged pore occupied by K+ ions, while water flux through the positively charged pores will be disrupted by Cl- ions inside the pores. This may be explained by the different radial distributions of K+ions and Cl- ions inside the charged nanopores.

  6. Frequency metrology using highly charged ions

    Science.gov (United States)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  7. Cooling of highly charged ions in a Penning trap

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, L

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  8. Progress in understanding heavy-ion stopping

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  9. Transfer ionization in collisions with a fast highly charged ion.

    Science.gov (United States)

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  10. Measurements of Ion Selective Containment on the RF Charge Breeder Device BRIC

    CERN Document Server

    Variale, Vincenzo; Batazova, Marina; Boggia, Antonio; Clauser, Tarcisio; Kuznetsov, Gennady I; Rainò, Antonio; Shiyankov, Sergey; Skarbo, Boris A; Valentino, Vincenzo; Verrone, Grazia

    2005-01-01

    The "charge state breeder" BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) Quadrupole aiming to filtering the unwanted elements and then making a more efficient containment of the wanted ions. In this contribution, the measurements of the selective effect on the ion charge state containement of the RF quadrupole field, applied on the ion chamber, will be reported and discussed. The ion charge state analisys of the ions trapped in BRIC seem confirm, as foreseen by simulation results carried out previously, that the s...

  11. Photons shedding light on electron capture by highly charged ions

    NARCIS (Netherlands)

    Hoekstra, Romke Anne

    1990-01-01

    In this thesis charge transfer is studied in collisions of highly charged ions (Aq+) with neutral particles (B). Because the electron is captured resonantly (i.e. without its binding energy) by the ion, a limited number of highly excited states (characterized by the quantum numbers nlm) is preferent

  12. Problems with Accurate Atomic Lfetime Measurements of Multiply Charged Ions

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2009-02-19

    A number of recent atomic lifetime measurements on multiply charged ions have reported uncertainties lower than 1%. Such a level of accuracy challenges theory, which is a good thing. However, a few lessons learned from earlier precision lifetime measurements on atoms and singly charged ions suggest to remain cautious about the systematic errors of experimental techniques.

  13. Ion and water transport in charge-modified graphene nanopores

    CERN Document Server

    Qiu, Yinghua; Chen, Weiyu; Si, Wei; Tan, Qiyan; Chen, Yunfei

    2016-01-01

    Porous graphene has high mechanical strength and atomic layer thickness, which make it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solution are a kind of strong long-range interaction which may have great influence on the fluid transport through nanopores. Here, molecular dynamics simulations were conducted to investigate ion and water transport through a 1.05-nm-in-diameter monolayer graphene nanopore with its edge charge-modified. From the results, it is found that the nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonously decrease. The co-ions rejection can reach 75% and 90% when the nanopores are negatively and positively charged, respectively. Cl ions current increases and reaches a plateau, and Na+ current decreases with the charge amount in the systems where they act as counterions. Beside...

  14. Experimental results on charge fluctuations in heavy-ion collisions

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Pant, L M; Mohanty, A K

    2016-01-01

    We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC energies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure $\

  15. Ion and water transport in charge-modified graphene nanopores

    Institute of Scientific and Technical Information of China (English)

    裘英华; 李堃; 陈伟宇; 司伟; 谭启檐; 陈云飞

    2015-01-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly infl uence fl uid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase–decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5%and 90.2%when the nanopores are negatively and positively charged, respectively. The Cl−ion current increases and reaches a plateau, and the Na+current decreases as the charge amount increases in systems in which Na+ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges.

  16. Evaporative cooling of highly charged ions in EBIT (Electron Beam Ion Trap): An experimental realization

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Levine, M.A.; Bennett, C.L.; Henderson, J.R.; Knapp, D.A.; Marrs, R.E.

    1988-12-01

    Both the total number and trapping lifetime of near-neon-like gold ions held in an electron beam ion trap have been greatly increased by a process of 'evaporative cooling'. A continuous flow of low-charge-state ions into the trap cools the high-charge-state ions in the trap. Preliminary experimental results using titanium ions as a coolant are presented. 8 refs., 6 figs., 2 tabs.

  17. The charge spectrum of positive ions in a hydrogen aurora

    Science.gov (United States)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  18. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  19. A singly charged ion source for radioactive {sup 11}C ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  20. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Spädtke, Peter, E-mail: p.spaedtke@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany)

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  1. In-Trap Spectroscopy of Charge-Bred Radioactive Ions

    Science.gov (United States)

    Lennarz, A.; Grossheim, A.; Leach, K. G.; Alanssari, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Crespo López-Urrutia, J. R.; Gallant, A. T.; Holl, M.; Kwiatkowski, A. A.; Lassen, J.; Macdonald, T. D.; Schultz, B. E.; Seeraji, S.; Simon, M. C.; Andreoiu, C.; Dilling, J.; Frekers, D.

    2014-08-01

    In this Letter, we introduce the concept of in-trap nuclear decay spectroscopy of highly charged radioactive ions and describe its successful application as a novel spectroscopic tool. This is demonstrated by a measurement of the decay properties of radioactive mass A=124 ions (here, In124 and Cs124) in the electron-beam ion trap of the TITAN facility at TRIUMF. By subjecting the trapped ions to an intense electron beam, the ions are charge bred to high charge states (i.e., equivalent to the removal of N-shell electrons), and an increase of storage times to the level of minutes without significant ion losses is achieved. The present technique opens the venue for precision spectroscopy of low branching ratios and is being developed in the context of measuring electron-capture branching ratios needed for determining the nuclear ground-state properties of the intermediate odd-odd nuclei in double-beta (ββ) decay.

  2. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  3. Charge breeding of radioactive ions with EBIS and EBIT

    CERN Document Server

    Wenander, Fredrik

    2010-01-01

    A charge state breeder, which transforms externally injected singly charged ions to a higher charge state q+, is an important tool which has applications within atomic, nuclear and even particle physics. The charge breeding concept of radioactive ions has already been demonstrated at REX-ISOLDE/CERN with the use of an Electron beam Ion Source (EBIS) and at several facilities employing Electron Resonance Cyclotron Ion Sources (ECRIS). As will be demonstrated in this paper, EBIS and Electron Beam Ion Traps (EBIT), are well suited for the task as they are capable of delivering clean, highly charged beams within a short transformation time. The increasing demand for highly charged ions of all kind of elements and isotopes, stable and radioactive, to be used for low-energy experiments such as TITAN at TRIUMF and MATS at FAIR, but also for post-acceleration to higher energies, is now pushing the development of the breeders. The next challenge will be to satisfy the needs, for example space-charge capacity, of the s...

  4. The effect of the charging protocol on the cycle life of a Li-ion battery

    Science.gov (United States)

    Zhang, Sheng Shui

    The effect of the charging protocol on the cycle life of a commercial 18650 Li-ion cell was studied using three methods: (1) constant current (CC) charging, (2) constant power (CP) charging, and (3) multistage constant current (MCC) charging. The MCC-charging consists of two CC steps, which starts with a low current to charge the initial 10% capacity followed by a high current charging until the cell voltage reaches 4.2 V. Using these methods, respectively, the cell was charged to 4.2 V followed by a constant voltage (CV) charging until the current declined to 0.05 C. Results showed that the cycle life of the cell strongly depended on the charging protocol even if the same charging rate was used. Among these three methods, the CC-method was found to be more suitable for slow charging (0.5 C) while the CP-method was better for fast charging (1 C). Impedance analyses indicated that the capacity loss during cycling was mainly attributed to the increase of charge-transfer resistance as a result of the progressive growth of surface layers on the surface of two electrodes. Fast charging resulted in an accelerated capacity fading due to the loss of Li + ions and the related growth of a surface layer, which was associated with metallic lithium plating onto the anode and a high polarization at the electrolyte-electrode interface. Analyses of the cell electrochemistry showed that use of a reduced current to charge the initial 10% capacity and near the end of charge, respectively, was favorable for long cycle life.

  5. Auger neutralization rates of multiply charged ions near metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, N.N.; Janev, R.K.; Lazur, V.Y.

    1988-08-15

    Transition rates for the Auger neutralization processes of multiply charged ions on metal surfaces are calculated in closed analytical form. The core potential of a multiply charged ion is represented by a pseudopotential, which accounts for the electron screening effects and allows transition to the pure Coulomb case (fully stripped ions). The relative importance of various neutralization channels in slow-ion--surface collisions is discussed for the examples of He/sup 2+/+Mo(100) and C/sup 3+/+Mo(100) collisional systems.

  6. Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source.

    Science.gov (United States)

    Inutan, Ellen D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-11-06

    This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of "soft" acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated N-terminal end of myelin basic protein: mass-to-charge (m/z) 795.81 (+2) molecular weight (MW) 1589.6, m/z 831.35 (+2) MW 1660.7, and m/z 917.40 (+2) MW 1832.8.

  7. Charge reversal Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Lobodin, Vladislav V; Savory, Joshua J; Kaiser, Nathan K; Dunk, Paul W; Marshall, Alan G

    2013-02-01

    We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

  8. Production of High-Intensity, Highly Charged Ions

    CERN Document Server

    Gammino, S

    2013-01-01

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyclotron resonance ion sources (ECRIS). Multiple ionization is also obtained in laser-generated plasmas (laser ion sources (LIS)), where the high-energy electrons and the extremely high electron density allow step-by-step ionization, but the reproducibility is poor. This chapter discusses the atomic physics background at the basis of the production of highly charged ions and describes the scientific and technological features of the most advanced ion sources. Particular attention is paid to ECRIS and the latest developments, since they now r...

  9. Production of highly charged argon ions from a room temperature electron beam ion trap

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; PENG Hai-Bo; Ovsyannikov V P; Kentsch U; Ullmann F; CHENG Rui; Zschornack G

    2008-01-01

    In this work.highly charged ions have been extracted from the advanced Electron Beam Ion Source (EBIS-A) developed in a scientific cooperation between the Dresden University of Technology and the DREEBIT GmbH Dresden.The charge state distributions of ions extracted from the EBIS-A are measured in and extracted in the leaky mode.3×105 Ar18+ ions per pulse are extracted in the pulse mode.The ion charge state distribution is a function of the ionization time.

  10. Charge Transfer and Ionization by Intermediate-Energy Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L. H. [East Carolina University; McLawhorn, S. L. [East Carolina University; McLawhorn, R. A. [East Carolina University; Evans, N. L. [East Carolina University; Justiniano, E. L. B. [East Carolina University; Shinpaugh, J. L. [East Carolina University; Schultz, David Robert [ORNL; Reinhold, Carlos O [ORNL

    2006-11-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u-1 or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7+, 32 MeV sulphur ions have an equilibrium charge of approx. 11+, and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C+ ions with energies of 100 and 200 keV u-1 are described.

  11. Charge transfer and ionisation by intermediate-energy heavy ions.

    Science.gov (United States)

    Toburen, L H; McLawhorn, S L; McLawhorn, R A; Evans, N L; Justiniano, E L B; Shinpaugh, J L; Schultz, D R; Reinhold, C O

    2006-01-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u(-1) or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7(+), 32 MeV sulphur ions have an equilibrium charge of approximately 11(+), and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C(+) ions with energies of 100 and 200 keV u(-1) are described.

  12. Charge-transfer spectra of tetravalent lanthanide ions in oxides

    NARCIS (Netherlands)

    Hoefdraad, H.E.

    1975-01-01

    The charge-transfer spectra of Ce4+, Pr4+ and Tb4+ in a number of oxides are reported. It is noted that the position of the first charge-transfer band is fixed for the metal ion in an oxygen coordination of VI, but varies in VIII coordination as a function of the host lattice. It is argued that this

  13. Collision phenomena involving highly-charged ions in astronomical objects

    Science.gov (United States)

    Chutjian, A.

    2001-01-01

    A description of the role of highly charged ions in various astronomical objects; includes the use of critical quantities such as cross sections for excitation, charge-exchange, X-ray emission, radiative recombination (RR) and dielectronic recombination (DR); and lifetimes, branching ratios, and A-values.

  14. A vacuum spark ion source: High charge state metal ion beams

    Science.gov (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  15. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)

    2016-02-15

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  16. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  17. Cryogenic linear Paul trap for cold highly charged ion experiments.

    Science.gov (United States)

    Schwarz, M; Versolato, O O; Windberger, A; Brunner, F R; Ballance, T; Eberle, S N; Ullrich, J; Schmidt, P O; Hansen, A K; Gingell, A D; Drewsen, M; López-Urrutia, J R Crespo

    2012-08-01

    Storage and cooling of highly charged ions require ultra-high vacuum levels obtainable by means of cryogenic methods. We have developed a linear Paul trap operating at 4 K capable of very long ion storage times of about 30 h. A conservative upper bound of the H(2) partial pressure of about 10(-15) mbar (at 4 K) is obtained from this. External ion injection is possible and optimized optical access for lasers is provided, while exposure to black body radiation is minimized. First results of its operation with atomic and molecular ions are presented. An all-solid state laser system at 313 nm has been set up to provide cold Be(+) ions for sympathetic cooling of highly charged ions.

  18. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    Science.gov (United States)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  19. Stopping power of charged particles due to ion wave excitations

    Science.gov (United States)

    Nitta, H.; Muroki, C.; Nambu, M.

    2002-08-01

    Stopping power due to ion wave excitations is derived for a charged particle moving in a two-component plasma. Unlike previous theories based on ion-acoustic-wave approximation (IAWA), the excitation of short-wavelength ion waves is taken into account. The obtained stopping power has a magnitude larger than that of IAWA. Stopping power at subsonic velocities, where stopping power in IAWA disappears, is even larger than that of supersonic velocities.

  20. Stopping power of charged particles due to ion wave excitations.

    Science.gov (United States)

    Nitta, H; Muroki, C; Nambu, M

    2002-08-01

    Stopping power due to ion wave excitations is derived for a charged particle moving in a two-component plasma. Unlike previous theories based on ion-acoustic-wave approximation (IAWA), the excitation of short-wavelength ion waves is taken into account. The obtained stopping power has a magnitude larger than that of IAWA. Stopping power at subsonic velocities, where stopping power in IAWA disappears, is even larger than that of supersonic velocities.

  1. Production of High-Intensity, Highly Charged Ions

    OpenAIRE

    S. GamminoINFN, LNS, Catania

    2014-01-01

    In the past three decades, the development of nuclear physics facilities for fundamental and applied science purposes has required an increasing current of multicharged ion beams. Multiple ionization implies the formation of dense and energetic plasmas, which, in turn, requires specific plasma trapping configurations. Two types of ion source have been able to produce very high charge states in a reliable and reproducible way: electron beam ion sources (EBIS) and electron cyc...

  2. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  3. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    Science.gov (United States)

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment.

  4. Measurement of Metastable Lifetimes of Highly-Charged Ions

    Science.gov (United States)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  5. Solar photovoltaic charging of lithium-ion batteries

    Science.gov (United States)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  6. Charge exchange and energy loss of slow highly charged ions in 1 nm thick carbon nanomembranes.

    Science.gov (United States)

    Wilhelm, Richard A; Gruber, Elisabeth; Ritter, Robert; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2014-04-18

    Experimental charge exchange and energy loss data for the transmission of slow highly charged Xe ions through ultrathin polymeric carbon membranes are presented. Surprisingly, two distinct exit charge state distributions accompanied by charge exchange dependent energy losses are observed. The energy loss for ions exhibiting large charge loss shows a quadratic dependency on the incident charge state indicating that equilibrium stopping force values do not apply in this case. Additional angle resolved transmission measurements point on a significant contribution of elastic energy loss. The observations show that regimes of different impact parameters can be separated and thus a particle's energy deposition in an ultrathin solid target may not be described in terms of an averaged energy loss per unit length.

  7. Absolute cross sections for charge capture from Rydberg targets by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    DePaola, B.D.; Huang, M.; Winecki, S.; Stoeckli, M.P.; Kanai, Y. [J. R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506 (United States); Lundeen, S.R.; Fehrenbach, C.W.; Arko, S.A. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

    1995-09-01

    A crossed beam experiment has been used to measure absolute charge capture cross sections in collisions of slow highly charged xenon ions with laser excited Rydberg atoms. The cross sections were measured for scaled projectile velocities {ital nv}{sub {ital p}} from 1.0 to 6.0, for projectile charges of 8, 16, 32, and 40, where {ital n} is the principal quantum number of the target electron. Experimental cross sections are compared with predictions of classical models.

  8. Adsorption of Potassium and Calcium Ions by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    LIHONG-YAN; JIGUO-LIANG

    1992-01-01

    Interactions of potassium and calcium ions with four typical variable charge soils in South China were examined by measuring pK-0.5pCa value with a potassium ion-selective electrode and a calcium ion-selective electrode,and pK value with a potassium ion-selective electrode.The results showed that adsorption of potassium and calcium ions increased with soil suspension pH,and the tendency of the pK-0.5pCa value changing with pH differed with respect to pH range and potassium to calcium ratio.Adsorption of equal amount of calcium and potassium ions led to release of an identical number of protons,suggesting similar adsorption characteristics of these two ions when adsorbed by variable charge soils.Compared with red soil,latosol and lateritic red soil had higher adsorption selectivities for calcium ion.The red soil had a greater affinity for potassium ion than that for calcium ion at low concentration,which seems to result from its possession of 2:1 type minerals,such as vermiculite and mica with a high affinity for potassium ion.The results indicated that adsorption of potassium and calcium ions by the variable charge soils was chiefly caused by the electrostatic attraction between the cations and the soil surfaces.Moreover,it was found that sulfate could affect the adsorption by changing soil surface properties and by forming ion-pair.

  9. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  10. Progress toward a prototype recirculating ion induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.; Barnard, J.J.; Cable, M.D. [and others

    1996-06-01

    The U.S. Inertial Fusion Energy (IFE) Program is developing the physics and technology of ion induction accelerators, with the goal of electric power production by means of heavy ion beam-driven inertial fusion (commonly called heavy ion fusion, or HIF). Such accelerators are the principal candidates for inertial fusion power production applications, because they are expected to enjoy high efficiency, inherently high pulse repetition frequency (power plants are expected to inject and burn several fusion targets per second), and high reliability. In addition (and in contrast with laser beams, which are focused with optical lenses) heavy-ion beams will be focused onto the target by magnetic fields, which cannot be damaged by target explosions. Laser beams are used in present-day and planned near-term facilities (such as LLNUs Nova and the National Ignition Facility, which is being designed) because they can focus beams onto very small, intensely illuminated spots for scaled experiments and because the laser technology is already available. An induction accelerator works by passing the beam through a series of accelerating modules, each of which applies an electromotive force to the beam as it goes by; effectively, the beam acts as the secondary winding of a series of efficient one-turn transformers. The authors present plans for and progress toward the development of a small (4.5-m-diam) prototype recirculator, which will accelerate singly charged potassium ions through 15 laps, increasing the ion energy from 80 to 320 keV and the beam current from 2 to 8 mA. Beam confinement and bending are effected with permanent-magnet quadrupoles and electric dipoles, respectively. The design is based on scaling laws and on extensive particle and fluid simulations of the behavior of the space charge-dominated beam.

  11. Low-energy state-selective charge transfer by multiply charged ions

    NARCIS (Netherlands)

    Lubinski, G; Juhasz, Z; Morgenstern, R; Hoekstra, R

    2001-01-01

    We present a combined rf-guided ion beam and photon emission spectroscopy method, which facilitates state-selective charge-transfer measurements at energies of direct relevance for astrophysics and fusion-plasma diagnostics and modeling. Ion energies have been varied from 1000 eV/amu down to energie

  12. Adsorption of Potassium and Sodium Ions by Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    LIHONG-YAN; JIGUO-LIANG

    1992-01-01

    Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied.The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions,and this tendence could not be changed by such factors as the pH,the concentration of the cations,the dielectric constant of solvent,the accompanying anions and the iron oxide content etc.,suggesting that this difference in affinity is caused by the difference in the nature of the two cations.It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH,which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations.The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content.Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.

  13. Study on space charge compensation in negative hydrogen ion beam.

    Science.gov (United States)

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  14. Study on space charge compensation in negative hydrogen ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, A. L.; Chen, J. E. [University of Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China); Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y. [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871 (China)

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  15. Charge state distribution analysis of Al and Pb ions from the laser ion source at IMP

    CERN Document Server

    Shan, Sha; Zhang-Min, Li; Xiao-Hong, Guo; Lun-Cai, Zhou; Guo-Zhu, Cai; Liang-ting, Sun; Xue-Zhen, Zhang; Huan-Yu, Zhao; Xi-Meng, Chen; Hong-Wei, Zhao

    2013-01-01

    A prototype laser ion source that could demonstrate the possibility of producing intense pulsed high charge state ion beams has been established with a commercial Nd:YAG laser (E max = 3 J, 1064 nm, 8-10 ns) to produce laser plasma for the research of Laser Ion Source (LIS). At the laser ion source test bench, high purity (99.998 %) aluminum and lead targets have been tested for laser plasma experiment. An Electrostatic Ion Analyzer (EIA) and Electron Multiply Tube (EMT) detector were used to analyze the charge state and energy distribution of the ions produced by the laser ion source. The maximum charge states of Al12+ and Pb7+ were achieved. The results will be presented and discussed in this paper.

  16. Atomic physics with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  17. High Intensity High Charge State ECR Ion Sources

    CERN Document Server

    Leitner, Daniela

    2005-01-01

    The next-generation heavy ion beam accelerators such as the proposed Rare Isotope Accelerator (RIA), the Radioactive Ion Beam Factory at RIKEN, the GSI upgrade project, the LHC-upgrade, and IMP in Lanzhou require a great variety of high charge state ion beams with a magnitude higher beam intensity than currently achievable. High performance Electron Cyclotron Resonance (ECR) ion sources can provide the flexibility since they can routinely produce beams from hydrogen to uranium. Over the last three decades, ECR ion sources have continued improving the available ion beam intensities by increasing the magnetic fields and ECR heating frequencies to enhance the confinement and the plasma density. With advances in superconducting magnet technology, a new generation of high field superconducting sources is now emerging, designed to meet the requirements of these next generation accelerator projects. The talk will briefly review the field of high performance ECR ion sources and the latest developments for high intens...

  18. Parity nonconservation in dielectronic recombination of multiply charged ions

    CERN Document Server

    Kozlov, M G; Currell, F J

    2007-01-01

    We discuss a parity nonconserving (PNC) asymmetry in the cross section of dielectronic recombination of polarized electrons on multiply charged ions with Z>40. This effect is strongly enhanced for close doubly-excited states of opposite parity in the intermediate compound ion. Such states are known for He-like ions. However, these levels have large energy and large radiative widths which hampers observation of the PNC asymmetry. We argue that accidentally degenerate states of the more complex ions may be more suitable for the corresponding experiment.

  19. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2003-01-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. For the engine considered, the upper limit for the ion emission index EIi is of the order of (2-5 x1016 ions/kg-fuel if ion-soot interactions are ignored and the introduction of ion-soot interactions lead about to a 50% reduction. The results also show that most of the soot particles are either positively or negatively charged, the remaining neutral particles representing approximately 20% of the total particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  20. Electrochemical model based charge optimization for lithium-ion batteries

    Science.gov (United States)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  1. Electrokinetic inversion of ion screening charges in nano-channels

    CERN Document Server

    Zhu, Xin; Ni, Sheng; Zhang, Xingye; Liu, Yang

    2016-01-01

    This work studies a counter-intuitive but basic process of ionic screening in nano-fluidic channels. Numerical simulations and perturbation analysis reveal that, under significant electrokinetic transport, the ion screening charges can be locally inverted in the channels: their charge sign becomes the same as that of the channel surface charges. The process is identified to originate from the coupling of longitudinal transport and junction electrostatics. This finding may revise the common understanding of ionic screening in nano-channels and indicates that their ion selectivity can be locally changed by transport. Furthermore, the charge inversion process results in a body force torque on channel fluids, which is a possible mechanism for vortex generation in the channels.

  2. Controlled charge exchange between alkaline earth metals and their ions

    Science.gov (United States)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  3. Charge Breeding and Production of Multiply Charged Ions in EBIS and ECRIS

    CERN Document Server

    Wenander, Frederik J C

    2001-01-01

    The REXEBIS is an Electron Beam Ion Source (EBIS) developed for charge breeding of the exotic and sometimes short-lived isotopes that are produced at ISOLDE for the REX-ISOLDE post accelerator. Bunches of singly charged radioactive ions are injected into the EBIS and charge bred to a charge-to-mass ratio of approximately ¼, and thereafter extracted and injected into a short 3-stage LINAC for acceleration to a few MeV/u. This novel concept, employing a Penning trap to bunch and cool the ions from an on-line mass separator in combination with a charge breeding EBIS, should result in an efficient and compact system. The REXEBIS is based on a 0.5 A electron beam produced in the fringe field of a magnetic solenoid, and compressed to a current density of >200 A/cm2. The 2 T magnetic field is provided by a warm-bore superconducting solenoid, thus giving easy accessibility but no cryogenic pumping. The EBIS is switched between 60 kV (ion injection) and ~20 kV (ion extraction). This thesis presents the design and con...

  4. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  5. Electron impact ionization of highly charged lithiumlike ions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  6. Electron dynamics at surfaces induced by highly charged ions

    NARCIS (Netherlands)

    Morgenstern, R

    1998-01-01

    Energy spectra of electrons resulting from hydrogen-like multiply charged N6+ and Q(7+) ions on various surfaces are presented and discussed. Por metal target surfaces thr formation and decay of hollow atoms during the approach towards the surface is rather well understood in terms of the classical

  7. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    Science.gov (United States)

    Nakagawa, T.

    2014-02-01

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  8. Emission of ions and charged soot particles by aircraft engines

    Directory of Open Access Journals (Sweden)

    A. Sorokin

    2002-11-01

    Full Text Available In this article, a model which examines the formation and evolution of chemiions in an aircraft engine is proposed. This model which includes chemiionisation, electron thermo-emission, electron attachment to soot particles and to neutral molecules, electron-ion and ion-ion recombination, ion-soot interaction, allows the determination of the ion concentration at the exit of the combustor and at the nozzle exit of the engine. It also allows the determination of the charge of the soot particles. A comparison of the model results with the available ground-based experimental data obtained on the ATTAS research aircraft engines during the SULFUR experiments (Schumann, 2002 shows an excellent agreement.

  9. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    Science.gov (United States)

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  10. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  11. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs

    OpenAIRE

    Rongguo Yan; Shuai Qiu; Lei Tong; Yin Qian

    2016-01-01

    There exist several positively and negatively charged electrolytes or ions in human blood, urine, and other body fluids. Tests that measure the concentration of these ions in clinics are performed using a more affordable, portable, and disposable potentiometric sensing method with few sample volumes, which requires the use of ion-selective electrodes (ISEs) and reference electrodes. This review summarily descriptively presents progressive developments and applications of ion selective electro...

  12. Systematics of heavy-ion charge-exchange straggling

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12 , in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  13. MULTIPLY CHARGED IONS COLLISIONS WITH ATOMS INTO EXCITED STATES

    Institute of Scientific and Technical Information of China (English)

    PanGuangyan

    1990-01-01

    The emission spectra in collisions between Ions and Atoms have been measured by an Optical Multichannel Analysis System (OMA).The experimental results demonstrate that there are two channels of excitation in collision between single charged ions and atoms and three channels of excitation in collision between double charged ions and atoms.Emission cross cestions and excitation cross sections have been obtained.K.Kadota et al and R.Shingal et al suggested that,under the appropriate conditions,the H42+-Li and He2++Na collision systems can be used efficiently to produce a laser of Lyman-α(30,4nm) and Lyman-β(25.6nm)lines via cascade to He+(2P)state.

  14. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    Science.gov (United States)

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions.

  15. High resolution charge spectroscopy of heavy ions with FNTD technology

    Science.gov (United States)

    Bartz, J. A.; Kodaira, S.; Kurano, M.; Yasuda, N.; Akselrod, M. S.

    2014-09-01

    This paper is focused on the improvement of the heavy charge particle charge resolution of Fluorescent Nuclear Track Detector (FNTD) technology. Fluorescent intensity of individual heavy charge particle tracks is used to construct the spectrum. Sources of spectroscopic line broadening were investigated and several fluorescent intensity correction procedures were introduced to improve the charge resolution down to δZ = 0.25 c.u. and enable FNTD technology to distinguish between all projectile fragments of 290 MeV carbon ions. The benefits of using FNTD technology for fragmentation study include large dynamic range and wide angular acceptance. While we describe these developments in the context of fragmentation studies, the same techniques are readily extended to FNTD LET spectroscopy in general.

  16. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  17. A compact source for bunches of singly charged atomic ions.

    Science.gov (United States)

    Murböck, T; Schmidt, S; Andelkovic, Z; Birkl, G; Nörtershäuser, W; Vogel, M

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 10(6) Mg(+) ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg(+) ions for sympathetic cooling of highly charged ions by laser-cooled (24)Mg(+).

  18. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  19. Charge-dependent dissociation of insulin cations via ion/ion electron transfer

    Science.gov (United States)

    Liu, Jian; Gunawardena, Harsha P.; Huang, Teng-Yi; McLuckey, Scott A.

    2008-10-01

    The dissociation reactions of various charge states of insulin cations obtained directly from nano-electrospray were investigated as a result of ion/ion electron transfer from azobenzene anions. Data were collected with and without simultaneous ion trap collisional excitation of the first generation charge-reduced product during the ion/ion reaction period. Neither separation of the two constituent chains nor cleavages within the loop defined by the disulfide bridges were observed under normal electron transfer dissociation (ETD) conditions for any of the charge states studied. However, substantial sequence coverage (exocyclic region: 82.6%; entire protein: 38.8%) outside the ring structure was obtained for insulin +6, while only limited coverage (exocyclic: 43.5%; entire protein: 20.4%) was observed for insulin +5 and no dissociation, aside from low abundance side-chain losses, was noted for insulin +4 and +3 in the normal ETD spectra. When the first generation charge-reduced precursor ions were subjected to collisional activation during the ion/ion reaction period, higher sequence coverages were obtained for both insulin +5 (entire protein: 34.7%) and +4 (entire protein: 20.4%) with backbone cleavages occurring within the loop defined by the disulfide bonds. Dissociation of insulin +3 was not significantly improved by the additional activation. Separation of the two constituent chains resulting from cleavages of both of the two disulfide bridges that link the chains was observed for insulin +6, +5, and +4 when the charge-reduced species were activated. The dissociation of disulfide linkages in this study suggests that as the charge state decreases, disulfide bond cleavages dominate over N-C[alpha] bond cleavages in the electron transfer dissociation process.

  20. Irradiation of graphene field effect transistors with highly charged ions

    Science.gov (United States)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M.

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm2, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  1. Influence of solar wind ions on photoemission charging of dust

    Science.gov (United States)

    Nouzak, Libor; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    The lunar surface covered by a layer of dust grains is exposed to solar wind particles and photons coming from the Sun on the sunlit side. Solar wind ions cause sputtering of dust grains or can be implanted into grains. We suppose that as a consequence of ion implantation, an additional energy is transferred to grains, more valence band electrons are excited, and the photoelectron yield is increased. An increase of the photoelectron current causes the enhanced density of electrons that form a sheet above the illuminated lunar surface. Thus, an influence of solar wind ions on the Debye length and photoelectron sheet formation is expected. We present laboratory estimations of work functions and photoelectron yields of a single micron-sized silica grain before and after ion implantation. The silica grain used as a lunar simulant is caught in the electrodynamic trap. Grain's specific charge is evaluated by an analysis of the grain motion within the trap, while its work function is determined from observations of a time evolution of the charge-to-mass ratio when the grain is irradiated by photons of different emission lines. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is thoroughly analyzed and discussed.

  2. Peripheral collisions of highly charged ions with metal clusters

    Institute of Scientific and Technical Information of China (English)

    Zhang Cheng-Jun; Hu Bi-Tao; Luo Xian-Wen

    2012-01-01

    Within the framework of the dynamical classical over-barrier model,the soft collisions between slow highly charged ions(SHCIs)Ar17+ and the large copper clusters under large impact parameters have been studied in this paper.We present the dominant mechanism of the electron transfer between SHCls and a large metal cluster by computational simulation.The evolution of the occupation of projectile ions,KLχ satellite lines,X-ray yields,Auger electron spectrum and scattering angles are provided.

  3. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  4. Semiconductor characterization by scanning ion beam induced charge (IBIC) microscopy

    CERN Document Server

    Vittone, E; Olivero, P; Manfredotti, C; Jaksic, M; Giudice, A Lo; Fizzotti, F; Colombo, E

    2016-01-01

    The acronym IBIC (Ion Beam Induced Charge) was coined in early 1990's to indicate a scanning microscopy technique which uses MeV ion beams as probes to image the basic electronic properties of semiconductor materials and devices. Since then, IBIC has become a widespread analytical technique to characterize materials for electronics or for radiation detection, as testified by more than 200 papers published so far in peer-reviewed journals. Its success stems from the valuable information IBIC can provide on charge transport phenomena occurring in finished devices, not easily obtainable by other analytical techniques. However, IBIC analysis requires a robust theoretical background to correctly interpret experimental data. In order to illustrate the importance of using a rigorous mathematical formalism, we present in this paper a benchmark IBIC experiment aimed to test the validity of the interpretative model based on the Gunn's theorem and to provide an example of the analytical capability of IBIC to characteriz...

  5. An electrostatic deceleration lens for highly charged ions.

    Science.gov (United States)

    Rajput, J; Roy, A; Kanjilal, D; Ahuja, R; Safvan, C P

    2010-04-01

    The design and implementation of a purely electrostatic deceleration lens used to obtain beams of highly charged ions at very low energies is presented. The design of the lens is such that it can be used with parallel as well as diverging incoming beams and delivers a well focused low energy beam at the target. In addition, tuning of the final energy of the beam over a wide range (1 eV/q to several hundred eV/q, where q is the beam charge state) is possible without any change in hardware configuration. The deceleration lens was tested with Ar(8+), extracted from an electron cyclotron resonance ion source, having an initial energy of 30 keV/q and final energies as low as 70 eV/q have been achieved.

  6. Preliminary study for the detection of neutrons in heavy-ion collisions with charged particle detectors

    Directory of Open Access Journals (Sweden)

    Auditore L.

    2015-01-01

    Full Text Available At Laboratori Nazionali del Sud (LNS the CHIMERA 4π multidetector has been designed and setup to detect charged particles emitted in heavy ion collisions at intermediate energies. Properties and performances of CHIMERA have been widely demonstrated by published results obtained in the performed experiments. Moreover, in recent years, a new charged particle detector (ChPD for correlation studies (FARCOS has been designed, and recently a first prototype has been coupled to CHIMERA, in order to test performances in view of correlation measurements in coincidence with 4π detectors. Simultaneous neutrons and charged particles detection in heavy ion collisions represents an important experimental progress for future experiments to be performed with both stable and exotic nuclei. In order to investigate about this possibility, simple Monte Carlo simulations have been performed. Preliminary simulations have been carried out by means of MCNPX transport code to evaluate the perturbation effects, including cross-talk and time response, induced in CHIMERA and/or FARCOS Si-CsI(Tl telescopes on (typical 20MeV neutron signals coming froma typical reaction in heavy ion collisions at the Fermi energy. Moreover, first data analysis results of the INKIISSY experiment indicates sizable probability to detect neutrons by properly shadowing CHIMERA Si-CsI(Tl telescopes. Analysis is still in progress.

  7. Low charge state heavy ion production with sub-nanosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kumaki, M. [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Ikeda, S. [Nishina Center for Accelerator-Based Science, RIKEN, Saitama 351-0198 (Japan); Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Kanagawa 226-8503 (Japan)

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  8. Low charge state heavy ion production with sub-nanosecond laser.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  9. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  10. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  11. Highly charged ion X-rays from Electron-Cyclotron Resonance Ion Sources

    OpenAIRE

    Indelicato, Paul; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L.M.; Stingelin, L.; Trassinelli, Martino; Veloso, J.; Wasser, A.

    2006-01-01

    Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy ($\\approx 1$~eV) transitions can be very narrow, containing only small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with $Z=16$--18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-...

  12. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Tamura, M.; Aihara, T.; Uchiyama, A. [SHI Accelerator Service Ltd., 1-17-6 Osaki, Shinagawa, Tokyo 141-0032 (Japan)

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  13. Charge density asymmetry of heavy-ion fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, N.D.; Ivascu, M.; Mazilu, D.; Sandulescu, A. (Institutul de Fizica si Inginerie Nucleara, Bucharest (Romania))

    1980-01-01

    The generalized liquid-drop model replacing surface energy by double folded Yukawa-plus-exponential function is extended for fusion of heavy ions with different charge densities. Calculated interaction barriers for some 58 pairs of nuclei are in good agreement with experimental ones, within -10% and +7%. For even-even beta-stable nuclei with Z =4-104 the general trend of variation of interaction barriers and fusion Q-values show the regions where the charge density asymmetry cannot be neglected. PES for the entrance channel of the reactions /sup 109/Ag + /sup 40/Ar, /sup 138/Ce + /sup 57/Fe, /sup 144/Nd + /sup 84/Kr and the corresponding charge-equilibrated system have been computed.

  14. Experimental Results on Charge Fluctuations in Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    D. K. Mishra

    2017-01-01

    Full Text Available We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC energies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure ν(+-,dyn are studied as a function of collision energy (sNN and centrality of the collisions. The product of ν(+-,dyn and 〈Nch〉 shows a monotonic decrease with collision energies, which indicates that at LHC energy the fluctuations have their origin in the QGP phase. The fluctuations in terms of higher moments of net-proton, net-electric charge, and net-kaon have been measured for various sNN. Deviations are observed in both Sσ and κσ2 for net-proton multiplicity distributions from the Skellam and hadron resonance gas model for sNN<39 GeV. Higher moment results of the net-electric charge and net-kaon do not observe any significant nonmonotonic behavior as a function of collision energy. We also discuss the extraction of the freeze-out parameters using particle ratios and experimentally measured higher moments of net-charge fluctuations. The extracted freeze-out parameters from experimentally measured moments and lattice calculations are found to be in agreement with the results obtained from the fit of particle ratios to the thermal model calculations.

  15. Dynamics of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    Science.gov (United States)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.; Ji, Qing; Persaud, Arun; Seidl, Peter A.; Schenkel, Thomas

    2016-10-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams. Here we present experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a FEPS plasma. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Near-complete charge neutralization is established 5 μs after the driving pulse is applied to the FEPS, and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub- μs surface discharge. Measurements of current flow in the driving circuit of the FEPS suggest that plasma can be generated for tens of μs after the high voltage pulse is applied. This is confirmed by fast photography of the plasma in the 1-meter long FEPS on NDCX-II, where effective charge neutralization of the beam was achieved with the optimized FEPS timing. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0209CH11466 (PPPL) and DE-AC0205CH11231 (LBNL).

  16. Charged particle-induced nuclear fission reactions – Progress and prospects

    Indian Academy of Sciences (India)

    S Kailas; K Mahata

    2014-12-01

    The nuclear fission phenomenon continues to be an enigma, even after nearly 75 years of its discovery. Considerable progress has been made towards understanding the fission process. Both light projectiles and heavy ions have been employed to investigate nuclear fission. An extensive database of the properties of fissionable nuclei has been generated. The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. As the fission process initiated by the neutrons has been well documented, the present article will be restricted to charged particle-induced fission reactions. The progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review.

  17. The uses of electron beam ion traps in the study of highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  18. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  19. Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe

    Science.gov (United States)

    Cornelius, Iwan; Siegele, Rainer; Rosenfeld, Anatoly B.; Cohen, David D.

    2002-05-01

    An ion beam induced charge (IBIC) facility has been added to the existing capabilities of the ANSTO heavy ion microprobe and the results of the first measurements are presented. Silicon on insulator (SOI) diode arrays with microscopic junction sizes have recently been proposed as microdosimeters for hadron therapy. A 20 MeV carbon beam was used to perform IBIC imaging of a 10 μm thick SOI device.

  20. Current Progress of Capacitive Deionization for Removal of Pollutant Ions

    Science.gov (United States)

    Gaikwad, Mahendra S.; Balomajumder, Chandrajit

    2016-08-01

    A mini review of a recently developing water purification technology capacitive deionization (CDI) applied for removal of pollutant ions is provided. The current progress of CDI for removal of different pollutant ions such as arsenic, fluoride, boron, phosphate, lithium, copper, cadmium, ferric, and nitrate ions is presented. This paper aims at motivating new research opportunities in capacitive deionization technology for removal of pollutant ions from polluted water.

  1. Electronic transitions in highly charged ion-atom collisions

    Science.gov (United States)

    Schmidt-Böcking, H.; Ullrich, J.; Schuch, R.; Olson, R. E.; Dörner, R.

    1989-09-01

    Three different aspects of electronic transitions in fast, highly charged ion-atom collisions are discussed. First, experimental data and n-CTMC calculations for differential multiple ionization cross sections of 1.4 {MeV}/{u} U 32+on rare gas atoms are presented. It is shown that the electronic motion has a dramatic influence on the kinematics of the emitted particles (in particular the nuclei). The possibility is discussed to measure in fast ionizing processes by a recoil ion-projectile coincidence technique the internal sum momentum of "electron clusters" in atoms. This new "technique" opens a new field of atomic structure research at high-energy heavy-ion accelerators. Second, the use of the H-like heavy ions as projectiles is discussed to measure, through observable interference structures, static and dynamic properties of transiently formed superheavy quasimolecular systems. Third, the "ancient" gas target-solid target difference in the impact-parameter dependence of K-shell ionization in nearly symmetric ion-atom collisions is presented. This severe discrepancy between gas and solid still remains an unsolved fundamental problem in the field of inner-shell ionization in the MO regime.

  2. Charge exchange spectroscopy as a fast ion diagnostic on TEXTORa)

    Science.gov (United States)

    Delabie, E.; Jaspers, R. J. E.; von Hellermann, M. G.; Nielsen, S. K.; Marchuk, O.

    2008-10-01

    An upgraded charge exchange spectroscopy diagnostic has been taken into operation at the TEXTOR tokamak. The angles of the viewing lines with the toroidal magnetic field are close to the pitch angles at birth of fast ions injected by one of the neutral beam injectors. Using another neutral beam for active spectroscopy, injected counter the direction in which fast ions injected by the first beam are circulating, we can simultaneously measure a fast ion tail on the blue wing of the Dα spectrum while the beam emission spectrum is Doppler shifted to the red wing. An analysis combining the two parts of the spectrum offers possibilities to improve the accuracy of the absolute (fast) ion density profiles. Fast beam modulation or passive viewing lines cannot be used for background subtraction on this diagnostic setup and therefore the background has to be modeled and fitted to the data together with a spectral model for the slowing down feature. The analysis of the fast ion Dα spectrum obtained with the new diagnostic is discussed.

  3. Two-photon processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Jahrsetz, Thorsten

    2015-03-05

    Two-photon processes are atomic processes in which an atom interacts simultaneously with two photons. Such processes describe a wide range of phenomena, such as two-photon decay and elastic or inelastic scattering of photons. In recent years two-photon processes involving highly charged heavy ions have become an active area of research. Such studies do not only consider the total transition or scattering rates but also their angular and polarization dependence. To support such examinations in this thesis I present a theoretical framework to describe these properties in all two-photon processes with bound initial and final states and involving heavy H-like or He-like ions. I demonstrate how this framework can be used in some detailed studies of different two-photon processes. Specifically a detailed analysis of two-photon decay of H-like and He-like ions in strong external electromagnetic fields shows the importance of considering the effect of such fields for the physics of such systems. Furthermore I studied the elastic Rayleigh as well as inelastic Raman scattering by heavy H-like ions. I found a number of previously unobserved phenomena in the angular and polarization dependence of the scattering cross-sections that do not only allow to study interesting details of the electronic structure of the ion but might also be useful for the measurement of weak physical effects in such systems.

  4. Electron Flood Charge Compensation Device for Ion Trap Secondary Ion Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Anthony David; Ward, Michael Blair; Olson, John Eric

    2002-11-01

    During secondary ion mass spectrometry (SIMS) analyses of organophosphorous compounds adsorbed onto soils, the measured anion signals were lower than expected and it was hypothesized that the low signals could be due to sample charging. An electron flood gun was designed, constructed and used to investigate sample charging of these and other sample types. The flood gun was integrated into one end cap of an ion trap secondary ion mass spectrometer and the design maintained the geometry of the self-stabilizing extraction optics used in this instrument. The SIMION ion optics program was used to design the flood gun, and experimental results agreed with the predicted performance. Results showed the low anion signals from the soils were not due to sample charging. Other insulating and conducting samples were tested using both a ReO4- and a Cs+ primary ion beam. The proximity of the sample and electron source to the ion trap aperture resulted in generation of background ions in the ion trap via electron impact (EI) ionization during the period the electron gun was flooding the sample region. When using the electron gun with the ReO4- primary beam, the required electron current was low enough that the EI background was negligible; however, the high electron flood current required with the Cs+ beam produced background EI ions that degraded the quality of the mass spectra. The consequences of the EI produced cations will have to be evaluated on a sample-by-sample basis when using electron flood. It was shown that the electron flood gun could be intentionally operated to produce EI spectra in this instrument. This offers the opportunity to measure, nearly simultaneously, species evaporating from a sample, via EI, and species bound to the surface, via SIMS.

  5. An Ion Switch Regulates Fusion of Charged Membranes

    Science.gov (United States)

    Siepi, Evgenios; Lutz, Silke; Meyer, Sylke; Panzner, Steffen

    2011-01-01

    Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way. PMID:21575575

  6. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  7. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Science.gov (United States)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  8. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: sunlt@impcas.ac.cn; Lu, W.; Zhang, W. H.; Feng, Y. C.; Qian, C.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); Guo, J. W.; Yang, Y.; Fang, X. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω{sup 2} scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE{sub 01} and HE{sub 11} modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar{sup 12+}, 0.92 emA Xe{sup 27+}, and so on, will be presented.

  9. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  10. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs

    Directory of Open Access Journals (Sweden)

    Rongguo Yan

    2016-10-01

    Full Text Available There exist several positively and negatively charged electrolytes or ions in human blood, urine, and other body fluids. Tests that measure the concentration of these ions in clinics are performed using a more affordable, portable, and disposable potentiometric sensing method with few sample volumes, which requires the use of ion-selective electrodes (ISEs and reference electrodes. This review summarily descriptively presents progressive developments and applications of ion selective electrodes in medical laboratory electrolytic ion tests, from conventional ISEs, solid-contact ISEs, carbon nanotube based ISEs, to graphene-based ISEs.

  11. Modelling surface restructuring by slow highly charged ions

    Science.gov (United States)

    Wachter, G.; Tőkési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.

    2013-12-01

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF2 (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.

  12. Modelling surface restructuring by slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, G., E-mail: georg.wachter@tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria); Tőkési, K. [Institute of Nuclear Research of the Hungarian Academy of Science (ATOMKI), H-4001 Debrecen, P.O. Box 51 (Hungary); Betz, G. [Institute for Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria); Lemell, C.; Burgdörfer, J. [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)

    2013-12-15

    We theoretically investigate surface modifications on alkaline earth halides due to highly charged ion impact, focusing on recent experimental evidence for both etch pit and nano-hillock formation on CaF{sub 2} (A.S. El-Said et al., Phys. Rev. Lett. 109, (2012) 117602 [1]). We discuss mechanisms for converting the projectile potential and kinetic energies into thermal energy capable of changing the surface structure. A proof-of-principle classical molecular dynamics simulation suggests the existence of two thresholds which we associate with etch pit and nano-hillock formation in qualitative agreement with experiment.

  13. Analysis of Ion Charge States in Solar Wind and CMEs

    Indian Academy of Sciences (India)

    Arati Dasgupta; J. M. Laming

    2008-03-01

    We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.

  14. Highly confined ions store charge more efficiently in supercapacitors.

    Science.gov (United States)

    Merlet, C; Péan, C; Rotenberg, B; Madden, P A; Daffos, B; Taberna, P-L; Simon, P; Salanne, M

    2013-01-01

    Liquids exhibit specific properties when they are adsorbed in nanoporous structures. This is particularly true in the context of supercapacitors, for which an anomalous increase in performance has been observed for nanoporous electrodes. This enhancement has been traditionally attributed in experimental studies to the effect of confinement of the ions from the electrolyte inside sub-nanometre pores, which is accompanied by their partial desolvation. Here we perform molecular dynamics simulations of realistic supercapacitors and show that this picture is correct at the microscopic scale. We provide a detailed analysis of the various environments experienced by the ions. We pick out four different adsorption types, and we, respectively, label them as edge, planar, hollow and pocket sites upon increase of the coordination of the molecular species by carbon atoms from the electrode. We show that both the desolvation and the local charge stored on the electrode increase with the degree of confinement.

  15. Influence of ion size and charge on osmosis.

    Science.gov (United States)

    Cannon, James; Kim, Daejoong; Maruyama, Shigeo; Shiomi, Junichiro

    2012-04-12

    Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small.

  16. Energy dissipation of highly charged ions on Al oxide films.

    Science.gov (United States)

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-03

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  17. Charge Breeding of Radioactive Ions in an Electron Cyclotron Resonance Ion Source(ECRIS) at ISOLDE

    CERN Multimedia

    Lindroos, M

    2002-01-01

    The development of an efficient charge breeding scheme for the next generation of RIB facilities will have a strong impact on the post-accelerator for several Radioactive Ion Beam (RIB) projects at European large scale facilities. At ISOLDE/CERN there will be the unique possibility to carry out experiments with the two possible charge breeding set-ups with a large variety of radioactive isotopes using identical injection conditions. One charge breeding set-up is the Penning trap/EBIS combination which feeds the REX-ISOLDE linear accelerator and which is in commissioning now. The second charge breeder is a new ECRIS PHOENIX developed at the ISN ion source laboratory at Grenoble. This ECRIS is now under investigation with a 14 GHz amplifier to characterize its performance. The experiments are accompanied by theoretical studies in computer simulations in order to optimize the capture of the ions in the ECRIS plasma. A second identical PHOENIX ECRIS which is under investigation at the Daresbury Laboratory is avai...

  18. Progress in Application of CNTs in Lithium-Ion Batteries

    OpenAIRE

    2014-01-01

    The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described...

  19. Highly-charged-ion-induced electron emission from C-60 thin films

    NARCIS (Netherlands)

    Bodewits, E.; Hoekstra, R.; Kowarik, G.; Dobes, K.; Aumayr, F.

    2011-01-01

    The secondary electron yields as a result of highly charged ions impinging on clean Au(111) and thin films of C-60 on Au have been measured. This has been done for film thicknesses of one to five monolayers and several charge states of Ar and Xe ions. For all ions an increase of 35% in the secondary

  20. Additional considerations about the role of ion size in charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Molina, A; Hidalgo-Alvarez, R [Grupo de Fisica de Fluidos y Biocoloides, Departamento de Fisica Aplicada, Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain); Quesada-Perez, M, E-mail: almartin@ugr.e [Departamento de Fisica, Universidad de Jaen, Escuela Politecnica Superior de Linares, 23700 Linares, Jaen (Spain)

    2009-10-21

    The effect of the ion size on the charge reversal process is studied via canonical Monte Carlo simulation. To this end, a primitive model of electrolyte is used to analyze the electric double layer formed by an asymmetric electrolyte in the presence of a charged planar wall. Different values of ion diameters and surface charge densities are used so as to determine the conditions at which the charge reversal first occurs. For each case, the apparent surface charge density is calculated as a function of the distance from the charged wall for the different electrolyte concentrations in order to establish the minimal salt concentration required for the charge reversal. We will refer to this electrolyte concentration as the reversal concentration and will show how it depends on the surface charge density and on the ion size. From the apparent surface charge density profiles, the distance from the wall at which the charge reversal arises as well as its intensity can be also inferred.

  1. Theory for charge states of energetic oxygen ions in the earth's radiation belts

    Science.gov (United States)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Fluxes of geomagnetically trapped energetic oxygen ions have been studied in detail. Ion distributions in radial locations below the geostationary orbit, energy spectra between 1 keV and 100 MeV, and the distribution over charge states have been computed for equatorially mirroring ions. Both ionospheric and solar wind oxygen ion sources have been considered, and it is found that the charge state distributions in the interior of the radiation belts are largely independent of the charge state characteristics of the sources. In the MeV range, oxygen ions prove to be a more sensitive probe for radiation belt dynamics than helium ions and protons.

  2. Development of a Kingdon ion trap system for trapping externally injected highly charged ions.

    Science.gov (United States)

    Numadate, Naoki; Okada, Kunihiro; Nakamura, Nobuyuki; Tanuma, Hajime

    2014-10-01

    We have developed a Kingdon ion trap system for the purpose of the laboratory observation of the x-ray forbidden transitions of highly charged ions (HCIs). Externally injected Ar(q+) (q = 5-7) with kinetic energies of 6q keV were successfully trapped in the ion trap. The energy distribution of trapped ions is discussed in detail on the basis of numerical simulations. The combination of the Kingdon ion trap and the time-of-flight mass spectrometer enabled us to measure precise trapping lifetimes of HCIs. As a performance test of the instrument, we measured trapping lifetimes of Ar(q+) (q = 5-7) under a constant number density of H2 and determined the charge-transfer cross sections of Ar(q+)(q = 5, 6)-H2 collision systems at binary collision energies of a few eV. It was confirmed that the present cross section data are consistent with previous data and the values estimated by some scaling formula.

  3. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; WU De-Jin

    2006-01-01

    @@ After the charge of heavy ions is considered, a Sagdeev equation is obtained for the solitary kinetic Alfvén waves (SKAWs) in a low-β(me/mp<<β<<1 or mp/me>>α>>1), three-component (electrons, protons, and highly charged heavy ions) plasma. Numerical results show that the charge number q of heavy ions can cause the width of the solitary structure to decrease, but increase for the maximum of electron density nem≤1.2 and the initial abundance of heavy ions Cb0 ≤ 0.1. The parallel phase speed of the waves increases with larger q.

  4. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    Science.gov (United States)

    Lu, W.; Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W.

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H+, 40Ar8+, 129Xe30+, 209Bi33+, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  5. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H{sup +}, {sup 40}Ar{sup 8+}, {sup 129}Xe{sup 30+}, {sup 209}Bi{sup 33+}, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  6. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    Science.gov (United States)

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  7. Ion-induced nucleation of dibutyl phthalate vapors on spherical and nonspherical singly and multiply charged polyethylene glycol ions.

    Science.gov (United States)

    Nasibulin, Albert G; de la Mora, Juan Fernandez; Kauppinen, Esko I

    2008-02-14

    Dibutyl phthalate vapor nucleation induced by positive polyethylene glycol (PEG) ions with controlled sizes and charges was experimentally studied. The ions were produced by electrospray ionization, classified in a high-resolution differential mobility analyzer, and studied in a nano condensation nucleus counter of the mixing type. Ionic radii of PEG varied from 0.52 to 1.56 nm, including from singly to quadruply charged ions. Some of these ions are fully stretched chains, other are spherical, and others have intermediate forms, all of them having been previously characterized by mobility and mass spectrometry studies. Activation of PEG1080(+2) requires a supersaturation almost as high as that required for small singly charged ions and higher than for PEG1080(+). This anomaly is explained by the Coulombic stretching of the ion into a long chain, where the two charged centers appear to be relatively decoupled from each other. The critical supersaturation for singly charged spherical ions falls below Thomson's (capillary) theory and even below the already low values seen previously for tetraheptyl ammonium bromide clusters. Spherical PEG4120(+2) falls close to the Thomson curve. The trends observed for slightly nonspherical PEG4120(+3) and highly nonspherical (but not quite linear) PEG4120(+4) are intermediate between those of multiply charged spheres and small singly charged ions.

  8. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Science.gov (United States)

    Zhao, H. Y.; Zhang, J. J.; Jin, Q. Y.; Liu, W.; Wang, G. C.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 1013 W cm-2 in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  9. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, W.; Wang, G. C. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-02-15

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  10. New development of laser ion source for highly charged ion beam production at Institute of Modern Physics (invited).

    Science.gov (United States)

    Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W

    2016-02-01

    A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.

  11. Charge Exchange Collisions between Ultracold Fermionic Lithium Atoms and Calcium Ions

    CERN Document Server

    Haze, Shinsuke; Saito, Ryoichi; Mukaiyama, Takashi

    2014-01-01

    An observation of charge exchange collisions between ultracold fermionic 6Li atoms and 40Ca+ ions is reported. The reaction product of the charge exchange collision is dentified via mass spectrometry where the motion of the ions is excited parametrically. We measure the cross section of the charge exchange collisions between the 6Li atoms in the ground state and the 40Ca+ ions in the ground and metastable excited states. Investigation of the inelastic collision characteristics in the atom-ion mixture is an important step toward ultracold chemistry based on ultracold atoms and ions.

  12. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190 (China); Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  13. Beamline for low-energy transport of highly charged ions at HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Andelkovic, Z., E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Herfurth, F.; Kotovskiy, N. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); König, K.; Maaß, B.; Murböck, T. [Technische Universität Darmstadt (Germany); Neidherr, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Schmidt, S. [Technische Universität Darmstadt (Germany); Johannes Gutenberg-Universität Mainz (Germany); Steinmann, J. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Hochschule Darmstadt (Germany); Vogel, M.; Vorobjev, G. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2015-09-21

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency.

  14. Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Vondrasek, R.; Kutsaev, Sergey [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Delahaye, P.; Maunoury, L. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Blvd Henri Becquerel, 14076 Caen (France)

    2012-11-15

    The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

  15. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  16. Spontaneous Mass and Charge Losses from Single Multi-Megadalton Ions Studied by Charge Detection Mass Spectrometry

    Science.gov (United States)

    Keifer, David Z.; Alexander, Andrew W.; Jarrold, Martin F.

    2017-01-01

    Spontaneous mass and charge losses from individual multi-megadalton ions have been observed with charge detection mass spectrometry (CDMS) by trapping single hepatitis B virus (HBV) capsids for 3 s. Gradual increases in the oscillation frequency of single ions in the ion trap are attributed mainly to mass loss (probably solvent, water, and/or salt). The total mass lost during the 3 s trapping period peaks at around 20 kDa for 4 MDa HBV T = 4 capsids. Discrete frequency drops punctuate the gradual increases in the oscillation frequencies. The drops are attributed to a sudden loss of charge. In most cases a single positive charge is lost along with some mass (on average around 1000 Da). Charge loss occurs for over 40% of the trapped ions. It usually occurs near the beginning of the trapping event, and it occurs preferentially in regions of the trap with strong electric fields, indicating that external electric fields promote charge loss. This process may contribute to the decrease in m/z resolution that often occurs with megadalton ions.

  17. Charge-transfer energy in closed-shell ion-atom interactions. [for H and Li ions in He

    Science.gov (United States)

    Alvarez-Rizzatti, M.; Mason, E. A.

    1975-01-01

    The importance of charge-transfer energy in the interactions between closed-shell ions and atoms is investigated. Ab initio calculations on H(plus)-He and Li(plus)-He are used as a guide for the construction of approximate methods for the estimation of the charge-transfer energy for more complicated systems. For many alkali ion-rate gas systems the charge-transfer energy is comparable to the induction energy in the region of the potential minimum, although for doubly charged alkaline-earth ions in rare gases the induction energy always dominates. Surprisingly, an empirical combination of repulsion energy plus asymptotic induction energy plus asymptotic dispersion energy seems to give a fair representation of the total interaction, especially if the repulsion energy is parameterized, despite the omission of any explicit charge-transfer contribution. More refined interaction models should consider the charge-transfer energy contribution.

  18. Quantitative evaluation of charge-reduction effect in cluster constituent ions passing through a foil

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A., E-mail: chiba.atsuya@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Saitoh, Y.; Narumi, K.; Yamada, K. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, kita-ku, Okayama-shi, Okayama 700-0005 (Japan)

    2013-11-15

    Swift cluster ions, which cause characteristic irradiation effects on a solid surface, have a possibility of establishing a new ion irradiation technique for high-sensitivity surface analysis and innovative surface modification. However, the mechanism of cluster irradiation effects has not been understood completely. We have focused on the charge reduction effect in some physical phenomena and performed a quantitative evaluation of the relationship between the charge state and the interatomic distance of the constituent ions moving in the solid. This technique is based on the refined analysis of the divergence angle of the constituent ions resulting from the foil-induced dissociation of the two-atomic molecular ion. The results derived from this analytical approach clearly showed the correlation between the average charge and the interatomic distance of the constituent ions and implied that the average charge of the constituent ions emerging from the foil varies according to the interatomic distance at the instant of cluster dissociation.

  19. Recent Progress in Advanced Materials for Lithium Ion Batteries

    OpenAIRE

    Jiajun Chen

    2013-01-01

    The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as ...

  20. U.S. Department of Energy Workplace Charging Challenge - Progress Update 2016: A New Sustainable Commute

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    In June 2016, the Workplace Charging Challenge distributed its third annual survey to 295 partners with the goal of tracking partners' progress and identifying trends in workplace charging. This document summarizes findings from the survey and highlights accomplishments of the EV Everywhere Workplace Charging Challenge.

  1. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    Science.gov (United States)

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-02

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks.

  2. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  3. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  4. Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shuo Zhang

    2014-10-01

    Full Text Available The charging method of lithium-ion batteries used in electric vehicles (EVs significantly affects its commercial application. This paper aims to make three contributions to the existing literature. (1 In order to achieve an efficient charging strategy for lithium-ion batteries with shorter charging time and lower charring loss, the trade-off problem between charging loss and charging time has been analyzed in details through the dynamic programing (DP optimization algorithm; (2 To reduce the computation time consumed during the optimization process, we have proposed a database based optimization approach. After off-line calculation, the simulation results can be applied to on-line charge; (3 The novel database-based DP method is proposed and the simulation results illustrate that this method can effectively find the suboptimal charging strategies under a certain balance between the charging loss and charging time.

  5. Tuning Charge Transfer in Ion-Surface Collisions at Hyperthermal Energies.

    Science.gov (United States)

    Yao, Yunxi; Giapis, Konstantinos P

    2016-05-18

    Charge exchange in ion-surface collisions may be influenced by surface adsorbates to alter the charge state of the scattered projectiles. We show here that the positive-ion yield, observed during ion scattering on metal surfaces at low incident energies, is greatly enhanced by adsorbing electronegative species onto the surface. Specifically, when beams of N(+) and O(+) ions are scattered off of clean Au surfaces at hyperthermal energies, no positive ions are observed exiting. Partial adsorption of F atoms on the Au surface, however, leads to the appearance of positively charged primary ions scattering off of Au, a direct result of the increase in the Au work function. The inelastic energy losses for positive-ion exits are slightly larger than the corresponding ionization energies of the respective N and O atoms, which suggest that the detected positive ions are formed by surface reionization during the hard collision event.

  6. Progress on and Instrumentation for an Ion Inteferometer

    Science.gov (United States)

    Jackson, Jarom; Archibald, James; Christopher, Erickson; Durfee, Dallin

    2013-05-01

    We describe progress on a cold ion matter-wave interferometer. The ions are generated by laser-cooling strontium and then photo-ionizing the atoms with a two-photon transition to an auto-ionizing state in the continuum. A pair of electrodes will set the kinetic energy of the ions. Splitting and recombining the quantum waves will be achieved using Raman transitions driven by a pair of laser beams. These beams are created by injection locking a pair of diode lasers with two beams from a master laser which have been shifted to differ in frequency by the strontium ion hyperfine splitting. Optical pumping and detection of the ions will be done with a laser locked to a column of strontium vapor which has been photo-ionized. Funding provided by the NSF and NIST.

  7. QED corrections to atomic wavefunctions in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Johan

    2015-11-18

    Bound electron states in highly charged ions are strongly influenced by the effects of relativity and quantum electrodynamics (QED). These effects induce shifts of the binding energies as well as corrections to observables related to atomic processes. In this work a numerical procedure is described and implemented in which the QED effects are treated as corrections to relativistic bound-state wavefunctions. This approach, which is based on the recently developed covariant evolution-operator formalism, allows for a merging of QED with the standard methods of many-body perturbation theory. In particular, it enables an evaluation of the combined effect of QED and electron correlation in few-electron systems. Numerical results for this effect are presented for the ground state energy of helium-like ions. A detailed analysis of the contribution from the electron self-energy is carried out in both the Feynman and Coulomb gauge. It is found that the Feynman gauge suffers from large numerical cancellations and acquires significant contributions from terms involving multiple interactions with the nuclear potential (the so-called many-potential terms), while the Coulomb gauge is well suited for an approximate treatment based on terms involving only freely propagating electrons (the zero-potential terms). With the help of QED-corrected wavefunctions it is also possible to compute corrections to observables in basic atomic processes. In this work some of the one-loop QED corrections (those derivable from perturbed wavefunctions and energies) to the differential cross section and distribution of polarization in radiative recombination of initially bare uranium nuclei are evaluated, as well as the corresponding corrections to the ratio τ{sub E1}/τ{sub M2} of the electric dipole and magnetic quadrupole transition amplitudes in the 2p{sub 3/2}→1s radiative decay of hydrogenlike uranium. The results from these calculations are all of the expected magnitude, namely on the order

  8. Modifications of gallium phosphide single crystals using slow highly charged ions and swift heavy ions

    Science.gov (United States)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Akhmadaliev, Sh.; Schumann, E.; Sorokin, M.; Facsko, S.; Trautmann, C.

    2016-09-01

    GaP single crystals were irradiated with slow highly charged ions (HCI) using 114 keV 129Xe(33-40)+ and with various swift heavy ions (SHI) of 30 MeV I9+ and 374 MeV-2.2 GeV 197Au25+. The irradiated surfaces were investigated by scanning force microscopy (SFM). The irradiations with SHI lead to nanohillocks protruding from the GaP surfaces, whereas no changes of the surface topography were observed after the irradiation with HCI. This result indicates that a potential energy above 38.5 keV is required for surface nanostructuring of GaP. In addition, strong coloration of the GaP crystals was observed after irradiation with SHI. The effect was stronger for higher energies. This was confirmed by measuring an increased extinction coefficient in the visible light region.

  9. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    Science.gov (United States)

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium-Ion Battery Failure: Effects of State of Charge and Packing ...PAGES 17. LIMITATION OF ABSTRACT Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...geometries, abuse scenarios, and analysis techniques. In this report, different states of charge and packing configurations of a commercially available

  10. Charge Breeding Techniques in an Electron Beam Ion Trap for High Precision Mass Spectrometry at TITAN

    Science.gov (United States)

    MacDonald, T. D.; Simon, M. C.; Bale, J. C.; Chowdhury, U.; Eibach, M.; Gallant, A. T.; Lennarz, A.; Simon, V. V.; Chaudhuri, A.; Grossheim, A.; Kwiatkowski, A. A.; Schultz, B. E.; Dilling, J.

    2012-10-01

    Penning trap mass spectrometry is the most accurate and precise method available for performing atomic mass measurements. TRIUMF's Ion Trap for Atomic and Nuclear science is currently the only facility to couple its Penning trap to a rare isotope facility and an electron beam ion trap (EBIT). The EBIT is a valuable tool for beam preparation: since the precision scales linearly with the charge state, it takes advantage of the precision gained by using highly charged ions. However, this precision gain is contingent on fast and efficient charge breeding. An optimization algorithm has been developed to identify the optimal conditions for running the EBIT. Taking only the mass number and half-life of the isotope of interest as inputs, the electron beam current density, charge breeding time, charge state, and electron beam energy are all specified to maximize this precision. An overview of the TITAN charge breeding program, and the results of charge breeding simulations will be presented.

  11. Experimental characterization of the Hitrap Cooler trap with highly charged ions.

    OpenAIRE

    Fedotova, Svetlana

    2013-01-01

    The HITRAP (Highly charged Ions TRAP)facility is being set up and commissioned at GSI, Darmstadt. It will provide heavy, highly charged ions at low velocities to high-precision atomic physics experiments. Within this work the Cooler trap- the key element of the HITRAP facility was tested. The Cooler trap was assembled, aligned, and commissioned in trapping experiments with ions from off-line sources.The work performed within the scope of this thesis provided the baseline for further operation...

  12. Space-charge-dominated mass spectrometry ion sources: Modeling and sensitivity.

    Science.gov (United States)

    Busman, M; Sunner, J; Vogel, C R

    1991-01-01

    The factors determining the sensitivity of space-charge-dominated (SCD) unipolar ion sources, such as electrospray (ESP) and corona atmospheric pressure ionization (API) have been studied theoretically. The most important parameters are the ion density and ion drift time in the vicinity of the sampling orifice. These are obtained by solving a system of differential equations, "the space-charge problem." For some simple geometries, analytical solutions are known. For a more realistic "needle-in-can" geometry, a solution to the space-charge problem was obtained using a finite-element method. The results illustrate some general characteristics of SCD ion sources. It is shown that for typical operating conditions the minimum voltage required to overcome the space-charge effect in corona API or ESP ion sources constitutes a dominant or significant fraction of total applied voltage. Further, the electric field and the ion density in the region of the ion-sampling orifice as well as the ion residence time in the source are determined mainly by the space charge. Finally, absolute sensitivities of corona API ion sources were calculated by using a geometry-independent treatment of space charge.

  13. Ionic Charge State Distribution of Au Plasma for 7-Ion System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present work extends the previous work[2] on 5-ion system to consider 7-ion system (i.e., Au47+ ~ Au53+). It is found that more highly charged ions, e.g., Au53+, Au54+ etc., could be able to be neglected, however, less highly charged ions, e.g., Au47+, Au46+ etc., are rather important. Therefore, a new idea to consider 8-ion system, i.e., Au46+ ~ Au53+, is under way. As a supplement, we discuss the simultaneous reaction, which would be important in this sort of works.

  14. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    2003-01-01

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  15. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    Science.gov (United States)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  16. Modulation and interactions of charged biomimetic membranes with bivalent ions

    Science.gov (United States)

    Kazadi Badiambile, Adolphe

    biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 --POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings.

  17. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  18. Optimization of electron-cyclotron-resonance charge-breeder ions : Final CRADA Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R.; Physics; Far-Tech, Inc.

    2009-10-09

    Measurements of 1+ beam properties and associated performance of ECR Charge Breeder source determined by total efficiency measurement and charge state distributions from the ECR Charge Breeder. These results were communicated to Far-Tech personnel who used them to benchmark the newly developed programs that model ion capture and charge breeding in the ECR Charge Breeder Source. Providing the basic data described above and in the discussion below to Far-Tech allowed them to improve and refine their calculational tools for ECR ion sources. These new tools will be offered for sale to industry and will also provide important guidance to other research labs developing Charge Breeding ion sources for radioactive beam physics research.

  19. Highly charged ions trapping for lifetime measurements; Piegeage d'ions tres charges pour la mesure de duree de vie d'etats metastables

    Energy Technology Data Exchange (ETDEWEB)

    Attia, D

    2007-10-15

    A new experimental setup dedicated to highly charged ion trapping is presented in this work. The final goal is to perform lifetime measurement of metastable states produced by our ECR (Electron Cyclotron Resonance) ion source. Lifetimes to be measured are in the range of a few ms and more. We have measured the lifetimes of the M1 transitions of the metastable states of Ar{sup 9+}, Ar{sup 13+} and Ar{sup 14+}. These measurements are useful to test the N-body problem in the relativistic range. The trap we have built, was designed a few years ago at the Weizman Institute in Israel, it allows ions with an energy of several keV to be trapped for lifetimes of about 1 second. This trap was originally designed to study the dynamics of excited molecules. We have shown for the first time how the trap operates and that it can operate with highly charged ions. We have studied the beam dynamics of highly charged ions and the trap has been tested with various species of ions and different charge states: from O{sup +} to O{sup 6+}, from Ar{sup 8+} to Ar{sup 13+}, and from Kr{sup 13+} to Kr{sup 20+}.

  20. Highly charged ion research at the Livermore electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P

    2004-01-04

    Spectroscopy performed with the three Livermore electron beam ion traps is reviewed, which is continuing and complementing the innumerable contributions to atomic physics provided over the years by heavy-ion accelerators. Numerous spectrometers were developed that cover the spectral bands from the visible to the hard x ray region. These enabled exhaustive line surveys useful for x-ray astrophysics and for systematic studies along iso-electronic sequences, such as the 4s-4p, 3s-3p, and 2s-2p transitions in ions of the Cu-I, Na-I, and Li-I sequences useful for studying QED and correlation effects as well as for precise determinations of atomic-nuclear interactions. They also enabled measurements of radiative transition probabilities of very long-lived (milli- and microseconds) and very short-live (femtosecond) levels. Because line excitation processes can be controlled by choice of the electron beam energy, the observed line intensities are used to infer cross sections for electron-impact excitation, dielectronic recombination, resonance excitation, and innershell ionization. These capabilities have recently been expanded to simulate x-ray emission from comets by charge exchange. Specific contributions to basic atomic physics, nuclear physics, and high-temperature diagnostics are illustrated.

  1. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  2. Intense beam production of highly charged heavy ions by the superconducting electron cyclotron resonance ion source SECRAL.

    Science.gov (United States)

    Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z

    2008-02-01

    There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

  3. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  4. Testing spatial α-variation with optical atomic clocks based on highly charged ions

    Directory of Open Access Journals (Sweden)

    Berengut J. C.

    2013-08-01

    Full Text Available We review recent works illustrating the potential use of highly charged ions as the basis of optical atomic clocks of exceptional accuracy and very high sensitivity to variation of the fine structure constant, α. The tendency towards large transition energies in highly charged ions can be overcome using level crossings, which allow transitions between different orbitals to be within the range of usual lasers. We present simple scaling laws that demonstrate reduced systematics that could be realised in highly charged ion clocks. Such clocks could allow us to corroborate astronomical studies that suggest a spatial gradient in values of α across the Universe.

  5. Recent Progress in Advanced Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2013-01-01

    Full Text Available The development and commercialization of lithium ion batteries is rooted in material discovery. Promising new materials with high energy density are required for achieving the goal toward alternative forms of transportation. Over the past decade, significant progress and effort has been made in developing the new generation of Li-ion battery materials. In the review, I will focus on the recent advance of tin- and silicon-based anode materials. Additionally, new polyoxyanion cathodes, such as phosphates and silicates as cathode materials, will also be discussed.

  6. Performance on the low charge state laser ion source in BNL

    Energy Technology Data Exchange (ETDEWEB)

    Okamura, M.; Alessi, J.; Beebe, E.; Costanzo, M.; DeSanto, L.; Jamilkowski, J.; Kanesue, T.; Lambiase, R.; Lehn, D.; Liaw, C. J.; McCafferty, D.; Morris, J.; Olsen, R.; Pikin, A.; Raparia, D.; Steszyn, A.; Ikeda, S.

    2015-09-07

    On March 2014, a Laser Ion Source (LIS) was commissioned which delivers high-brightness, low-charge-state heavy ions for the hadron accelerator complex in Brookhaven National Laboratory (BNL). Since then, the LIS has provided many heavy ion species successfully. The low-charge-state (mostly singly charged) beams are injected to the Electron Beam Ion Source (EBIS), where ions are then highly ionized to fit to the following accelerator’s Q/M acceptance, like Au32+. Recently we upgraded the LIS to be able to provide two different beams into EBIS on a pulse-to-pulse basis. Now the LIS is simultaneously providing beams for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL).

  7. Highly charged ions from laser-cluster interactions: local-field-enhanced impact ionization and frustrated electron-ion recombination.

    Science.gov (United States)

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe_{147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  8. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)]. E-mail: a.gumberidze@gsi.de; Bosch, F. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Braeuning-Demian, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Hagmann, S. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Kuehl, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Liesen, D. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Stoehlker, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)

    2005-05-01

    The proposed new international accelerator Facility for Antiproton and Ion Research (FAIR) will open up exciting and far-reaching perspectives for atomic physics research in the realm of highly-charged heavy ions: it will provide the highest intensities of relativistic beams of both stable and unstable heavy nuclei. In combination with the strongest possible electromagnetic fields produced by the nuclear charge of the heaviest nuclei, this will allow to extend atomic spectroscopy up to the virtual limits of atomic matter. Based on the experience and results already achieved at the experimental storage ring (ESR), a substantial progress in atomic physics research has to be expected in this domain, due to a tremendous improvement of intensity, energy and production yield of both stable and unstable nuclei.

  9. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission - Concept and laboratory testing

    Science.gov (United States)

    Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard

    2017-03-01

    For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.

  10. Molecular effect on equilibrium charge-state distributions. [of nitrogen ions injected through carbon foil

    Science.gov (United States)

    Wickholm, D.; Bickel, W. S.

    1976-01-01

    The paper describes an experiment consisting of the acceleration of N(+) and N2(+) ions to energies between 0.25 and 1.75 MeV and their injection through a thin carbon foil, whereupon they were charge-state analyzed with an electrostatic analyzer. A foil-covered electrically suppressed Faraday cup, connected to a stepping motor, moved in the plane of the dispersed beams. The Faraday cup current, which was proportional to the number of incident ions, was sent to a current digitizer and computer programmed as a multiscaler. The energy-dependent charge-state fractions, the mean charge and the distribution width were calculated. It was shown that for incident atoms, the charge state distribution appeared to be spread over more charge states, while for the incident molecules, there was a greater fraction of charge states near the mean charge.

  11. Experiments and Researches on Production of Highly Charged Metallic Ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To satisfy the requirements of HIRFL (Heavy Ion Research Facility in Lanzhou), series of experiments have been done to produce metallic ion beams on the 14.5 GHz ECR ion source. By now, numerous methods have been tested, in which oven heating and MIVOC (Metallic Ion from Volatile Compounds) are both included.According to the experiments, the results show that oven heating is much better than MIVOC. In most of our

  12. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  13. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    Science.gov (United States)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  14. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  15. Time-dependent cylindrical and spherical ion-acoustic solitary structures in relativistic degenerate multi-ion plasmas with positively-charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Nahar, L.; Mamun, A. A. [Jahangirnagar University,Savar, Dhaka (Bangladesh)

    2014-12-15

    The properties of time-dependent cylindrical and spherical, modified ion-acoustic (mIA) solitary structures in relativistic degenerate multi-ion plasmas (containing degenerate electron fluids, inertial positively-, as well as negatively-, charged light ions, and positively-charged static heavy ions) have been investigated theoretically. This investigation is valid for both non-relativistic and ultrarelativistic limits. The well-known reductive perturbation method has been used to derive the Korteweg-de Vries (K-dV) and the mK-dV equations for studying the basic features of solitary waves. The fundamental characteristics of mIA solitary waves are found to be significantly modified by the effects of the degenerate pressures of the electron and the ion fluids, their number densities, and the various charge states of heavy ions. The relevance of our results in astrophysical compact objects like white dwarfs and neutron stars, which are of scientific interest, is briefly discussed.

  16. Progress of Target/Ion Source for Radioactive Beam

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ISOL test bench which uses proton beam from HL-13 Tandem to generate radioactive ion beamhas been set up and primary off line test has been carried out. The effects of magnetic field, anode voltage,cathode current and flax of feed-in gas on ionization efficiency have been investigated. The results showthe overal ionization efficiency of the source is greater than 0.7%. The effort to improve the overallefficiency is still in progress.

  17. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  18. Recoil ion charge state distributions in low energy Ar{sup q+} {minus} Ar collisions

    Energy Technology Data Exchange (ETDEWEB)

    Vancura, J.; Marchetti, V.; Kostroun, V.O.

    1992-12-31

    We have measured the recoil ion charge state distributions in Ar{sup q+} -- Ar (8{le}q{le}16) collisions at 2.3 qkeV and 0.18qkeV by time of flight (TOF) spectroscopy. For Ar{sup 8-16+}, recoil ion charge states up to 6+ are clearly present, indicating that the 3p subshell in the target atom is being depleted, while for Ar{sup 10-16+}, there is evidence that target 3s electrons are also being removed. Comparison of the recoil ion charge state spectra at 2.3 and 0.18 qkeV shows that for a given projectile charge, there is very little dependence of the observed recoil target charge state distribution on projectile energy.

  19. Progress in bright ion beams for industry, medicine and fusion at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Joe W.

    2002-05-31

    Recent progresses at LBNL in developing ion beams for industry, radiation therapy and inertial fusion applications were discussed. The highlights include ion beam lithography, boron neutron capture therapy (BNCT), and heavy ion fusion (HIF) drivers using multiple linacs.

  20. Bound state properties and photodetachment of the negatively charged hydrogen ions

    Science.gov (United States)

    Frolov, Alexei M.

    2015-05-01

    Absorption of infrared and visible radiation from stellar emission spectra by the negatively charged hydrogen ions H- is considered. The explicit formula for the photodetachment cross-section of the negatively charged hydrogen ion(s) is derived. Photodetachemnt cross-sections of the {∞}H-, {3}H- (or T-), {2}H- (or D-) and {1}H- ions are determined to high accuracy and for a large number of photo-electron momenta/energies. We introduce criteria which can be used to evaluate the overall quality of highly accurate wave functions of the hydrogen ion(s). One of these criteria is based on highly accurate calculations of the lowest order QED corrections in the negatively charged hydrogen ions, including {1}H- (protium), {2}H- (deuterium), {3}H- (tritium) and model ion with the infinitely heavy nucleus {∞}H-. An effective approach has been developed to calculate three-body integrals with the Bessel functions of different orders. Some preliminary evaluations of the phototdetachment cross-sections of the negatively charged hydrogen ions are performed. Inverse bremsstrahlung in the field of the neutral hydrogen atom is briefly discussed.

  1. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    Science.gov (United States)

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  2. Microbeam Studies of Diffusion Time Resolved Ion Beam Induced Charge Collection from Stripe-Like Junctions

    Energy Technology Data Exchange (ETDEWEB)

    GUO,B.N.; BOUANANI,M.E.; RENFROW,S.N.; WALSH,DAVID S.; DOYLE,BARNEY L.; ATON,T.J.; SMITH,E.B.; BAUMANN,R.C.; DUGGAN,J.L.; MCDANIEL,F.D.

    2000-06-14

    To design more radiation tolerant Integrated Circuits (ICs), it is essential to create and test accurate models of ionizing radiation induced charge collection dynamics within microcircuits. A new technique, Diffusion Time Resolved Ion Beam Induced Charge Collection (DTRIBICC), is proposed to measure the average arrival time of the diffused charge at the junction. Specially designed stripe-like junctions were experimentally studied using a 12 MeV carbon microbeam with a spot size of 1 {micro}m. The relative arrival time of ion-generated charge is measured along with the charge collection using a multiple parameter data acquisition system. The results show the importance of the diffused charge collection by junctions, which is especially significant in accounting for Multiple Bit Upset (MBUs) in digital devices.

  3. Net-charge probability distributions in heavy ion collisions at chemical freeze-out

    CERN Document Server

    Braun-Munzinger, P; Karsch, F; Redlich, K; Skokov, V

    2011-01-01

    We explore net charge probability distributions in heavy ion collisions within the hadron resonance gas model. The distributions for strangeness, electric charge and baryon number are derived. We show that, within this model, net charge probability distributions and the resulting fluctuations can be computed directly from the measured yields of charged and multi-charged hadrons. The influence of multi-charged particles and quantum statistics on the shape of the distribution is examined. We discuss the properties of the net proton distribution along the chemical freeze-out line. The model results presented here can be compared with data at RHIC energies and at the LHC to possibly search for the relation between chemical freeze-out and QCD cross-over lines in heavy ion collisions.

  4. Highly charged ions impinging on a stepped metal surface under grazing incidence

    NARCIS (Netherlands)

    Robin, A; Niemann, D; Stolterfoht, N; Heiland, W

    2003-01-01

    We report on energy loss measurements and charge state distributions for 60 keV N6+ and 75 keV N5+ ions scattered off a Pt(110)(1x2) single crystal surface. In particular, the influence of surface steps on the energy loss and the outgoing charge states is discussed. The scattering angle and the angl

  5. Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions.

    Science.gov (United States)

    Inutan, Ellen D; Wang, Beixi; Trimpin, Sarah

    2011-02-01

    The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide

  6. Charge state studies of low energy heavy ions passing through hydrogen and helium gas

    CERN Document Server

    Liu, W; Buchmann, L; Chen, A A; D'Auria, J M; D'Onofrio, A; Engel, S; Gialanella, L; Greife, U; Hunter, D; Hussein, A; Hutcheon, D A; Olin, A; Ottewell, D; Rogalla, D; Rogers, J; Romano, M; Roy, G; Terrasi, F

    2003-01-01

    Studies of the charge state distribution of low energy (<1.5 MeV/u), low Z (<13) heavy ions passing through hydrogen and helium gas of varying target pressure have been performed using separate windowless gas target systems at TRIUMF and the University of Naples. Semi-empirical relationships have been deduced to estimate the equilibrium charge state distributions as a function of beam energy. From these distributions, cross-sections for the relevant charge changing reactions have been deduced.

  7. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  8. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  9. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    Science.gov (United States)

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-).

  10. Prospects for Parity Non-conservation Experiments with Highly Charged Heavy Ions

    OpenAIRE

    Maul, M.; A. Schäfer; Greiner, W.; Indelicato, P.

    1996-01-01

    We discuss the prospects for parity non-conservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with two to five electrons are calculated. We investigate two-photon-transitions and the possibility to observe interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  11. Prospects for parity-nonconservation experiments with highly charged heavy ions

    OpenAIRE

    Maul, Martin; Schäfer, Andreas; Greiner, Walter; Indelicato, Paul

    2006-01-01

    We discuss the prospects for parity-nonconservation experiments with highly charged heavy ions. Energy levels and parity mixing for heavy ions with 2–5 electrons are calculated. We investigate two-photon transitions and the possibility of observing interference effects between weak-matrix elements and Stark matrix elements for periodic electric field configurations.

  12. The study towards high intensity high charge state laser ion sources

    Science.gov (United States)

    Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W.

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  13. SMILETRAP - A Penning trap facility for precision mass measurements using highly charged ions

    CERN Document Server

    Bergström, I; Fritioff, T; Douysset, G; Schoenfelder, J; Schuch, R

    2002-01-01

    The precision of mass measurements in a Penning trap increases linearly with the charge of the ion. Therefore we have attached a Penning trap, named SMILETRAP, to the electron beam ion source CRYSIS at MSL. CRYSIS is via an isotope separator connected to an ion source that can deliver singly charged ions of practically any element. In CRYSIS charge state breeding occurs by intense electron bombardment. We have shown that it is possible to produce, catch and measure the cyclotron frequencies of ions in the charge region 1+ to 52+. The relevant observable in mass measurements using a Penning trap is the ratio of the cyclotron frequencies of the ion of interest and ion used as a mass reference. High precision requires that the two frequencies are measured after one another in the shortest possible time. For reasons of convenience the precision trap operates at room temperature. So far it has been believed that warm traps working at 4 K are required for high mass precision with exactly one ion in the trap at a ti...

  14. Optimization of a charge-state analyzer for electron cyclotron resonance ion source beams

    NARCIS (Netherlands)

    Saminathan, S.; Beijers, J. P. M.; Kremers, H. R.; Mironov, V.; Mulder, J.; Brandenburg, S.

    2012-01-01

    A detailed experimental and simulation study of the extraction of a 24 keV He+ beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the b

  15. Ion pair formation and primary charging behavior of titanium oxide (anastase and rutile)

    NARCIS (Netherlands)

    Bourikas, K.; Hiemstra, T.; Riemsdijk, van W.H.

    2001-01-01

    The primary charging behavior of titanium oxide (anatase, rutile, and P25) and the ion pair formation of the electrolyte ions with the surface groups have been extensively studied. A large number of titration and electrokinetic data sets available in the literature have been successfully described,

  16. The study towards high intensity high charge state laser ion sources.

    Science.gov (United States)

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible.

  17. Negative Ion CID Fragmentation of O-linked Oligosaccharide Aldoses—Charge Induced and Charge Remote Fragmentation

    Science.gov (United States)

    Doohan, Roisin A.; Hayes, Catherine A.; Harhen, Brendan; Karlsson, Niclas Göran

    2011-06-01

    Collision induced dissociation (CID) fragmentation was compared between reducing and reduced sulfated, sialylated, and neutral O-linked oligosaccharides. It was found that fragmentation of the [M - H]- ions of aldoses with acidic residues gave unique Z-fragmentation of the reducing end GalNAc containing the acidic C-6 branch, where the entire C-3 branch was lost. This fragmentation pathway, which is not seen in the alditols, showed that the process involved charge remote fragmentation catalyzed by a reducing end acidic anomeric proton. With structures containing sialic acid on both the C-3 and C-6 branch, the [M - H]- ions were dominated by the loss of sialic acid. This fragmentation pathway was also pronounced in the [M - 2H]2- ions revealing both the C-6 Z-fragment plus its complementary C-3 C-fragment in addition to glycosidic and cross ring fragmentation. This generation of the Z/C-fragment pairs from GalNAc showed that the charges were not participating in their generation. Fragmentation of neutral aldoses showed pronounced Z-fragmentation believed to be generated by proton migration from the C-6 branch to the negatively charged GalNAc residue followed by charge remote fragmentation similar to the acidic oligosaccharides. In addition, A-type fragments generated by charge induced fragmentation of neutral oligosaccharides were observed when the charge migrated from C-1 of the GalNAc to the GlcNAc residue followed by rearrangement to accommodate the 0,2A-fragmentation. LC-MS also showed that O-linked aldoses existed as interchangeable α/β pyranose anomers, in addition to a third isomer (25% of the total free aldose) believed to be the furanose form.

  18. Progress on the design of the polarized Medium-energy Electron Ion Collider at JLAB

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.; Bogacz, A.; Brindza, P.; Camsonne, A.; Daly, E.; Derbenev, Ya. S.; Douglas, D.; Ent, R.; Gaskell, D.; Geng, R.; Grames, J.; Guo, J.; Harwood, L.; Hutton, A.; Jordan, K.; Kimber, A.; Krafft, G.; Li, R.; Michalski, T.; Morozov, V. S.; Nadel-Turonski, P.; /Jefferson Lab /Argonne /DESY /Moscow , Inst. Phys. Tech., Dolgoprydny /Dubna, JINR /Northern Illinois U. /Old Doominion U. /Novosibirsk, GOO Zaryad /SLAC /Texas A-M

    2015-07-14

    The Medium-energy Electron Ion Collider (MEIC) at JLab is designed to provide high luminosity and high polarization needed to reach new frontiers in the exploration of nuclear structure. The luminosity, exceeding 1033 cm-2s-1 in a broad range of the center-of-mass (CM) energy and maximum luminosity above 1034 cm-2s-1, is achieved by high-rate collisions of short small-emittance low-charge bunches made possible by high-energy electron cooling of the ion beam and synchrotron radiation damping of the electron beam. The polarization of light ion species (p, d, 3He) can be easily preserved and manipulated due to the unique figure-8 shape of the collider rings. A fully consistent set of parameters have been developed considering the balance of machine performance, required technical development and cost. This paper reports recent progress on the MEIC accelerator design including electron and ion complexes, integrated interaction region design, figure-8-ring-based electron and ion polarization schemes, RF/SRF systems and ERL-based high-energy electron cooling. Luminosity performance is also presented for the MEIC baseline design.

  19. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  20. ECR Ion Source of High Charge States%高电荷态ECR离子源

    Institute of Scientific and Technical Information of China (English)

    张子民; 刘占稳; 赵红卫

    2000-01-01

    介绍了目前ECR离子源的发展状况和国际上几台典型的ECR离子源.%Electron cyclotron resonance (ECR) ion source is the most efficient facility for producing highly charged ions.So far more than 1 emA of O6+ and 0.02eμA of U55+ have been delivered by ECR ion source. In this paper the latest develop-ment of ECR ion source is presented and several typical ECR ion sources in the world is introduced.

  1. Charge distribution of Kr ions produced upon photoionization around the 2s edge

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.C.F., E-mail: toni@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21991-972 (Brazil); Pilling, S. [Laboratório Nacional de Luz Síncroton, Campinas 13084-971 (Brazil); Almeida, D.P. [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-979 (Brazil)

    2015-08-15

    Highlights: • Charge spectra of Kr after photoionization of the L shell have been measured. • Multiple photoionization of krypton around the 2s edge is a collective process. • Electron correlation plays an important role in multiple ionization of heavy atoms. - Abstract: Charge state spectra of krypton ions generated after ionization (by a single photon) of the L shell have been measured by using the PEPICO technique. Relative abundances of Kr{sup q+} ions in charge state up to 8+ were obtained using monochromatized synchrotron radiation. A comparison with other experimental and theoretical data is presented.

  2. EBIS-A facility for the studies of X-ray emission from solids bombarded by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Jabłoński, Ł. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Jagodziński, P. [Department of Physics, Kielce University of Technology, 25-314 Kielce (Poland); Kubala-Kukuś, A.; Sobota, D.; Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland)

    2015-07-01

    We report here on the progress in the X-ray spectroscopy program at the EBIS-A facility installed recently at the Institute of Physics of Jan Kochanowski University in Kielce. In this facility the beams of low-energy highly charged ions (HCI) produced by the Dresden EBIS-A ion source, after extraction and charge-state separation in the double focusing magnet, are directed to the experimental UHV chamber equipped with a 5-axis universal sample manipulator. The X-rays emitted in interaction of the highly charged ions with solids can be measured by an energy dispersive X-ray silicon drift detector (SDD) and/or a wavelength-dispersive X-ray spectrometer (WDS) mounted at the experimental chamber. The surface nanostructures formed by an impact of HCI will be studied by the grazing emission X-ray fluorescence (GEXRF) technique and using a multiprobe surface analysis system based on the X-ray photoelectron spectrometer (XPS) coupled to the UHV chamber of the EBIS-A facility. In this paper a brief description of the facility, X-ray instrumentation and the surface analysis system is given and the first results are presented.

  3. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    Science.gov (United States)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  4. Spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Panitzsch, Lauri

    2013-02-08

    The experimental determination of the spatial distribution of charged particles along the ion-optical axis in electron cyclotron resonance ion sources (ECRIS) defines the focus of this thesis. The spatial distributions of different ion species were obtained in the object plane of the bending magnet ({approx}45 cm downstream from the plasma electrode) and in the plane of the plasma electrode itself, both in high spatial resolution. The results show that each of the different ion species forms a bloated, triangular structure in the aperture of the plasma electrode. The geometry and the orientation of these structures are defined by the superposition of the radial and axial magnetic fields. The radial extent of each structure is defined by the charge of the ion. Higher charge states occupy smaller, more concentrated structures. The total current density increases towards the center of the plasma electrode. The circular and star-like structures that can be observed in the beam profiles of strongly focused, extracted ion beams are each dominated by ions of a single charge state. In addition, the spatially resolved current density distribution of charged particles in the plasma chamber that impinge on the plasma electrode was determined, differentiating between ions and electrons. The experimental results of this work show that the electrons of the plasma are strongly connected to the magnetic field lines in the source and thus spatially well confined in a triangular-like structure. The intensity of the electrons increases towards the center of the plasma electrode and the plasma chamber, as well. These electrons are surrounded by a spatially far less confined and less intense ion population. All the findings mentioned above were already predicted in parts by simulations of different groups. However, the results presented within this thesis represent the first (and by now only) direct experimental verification of those predictions and are qualitatively transferable to

  5. Measurements of excitation spectra and level lifetimes for highly charged neon ions

    Institute of Scientific and Technical Information of China (English)

    王友德; 马新文; 杨治虎; 杜一飞; 刘惠萍; 赵孟春; 郭天瑞; 王春芳

    1997-01-01

    Beam foil experiments were carried out for 47 MeV Ne ions passing through C (39 μg/cm2) and Al (3 4mg/cm2) foils. Highly charged H-, He-, Li-, and Be-like ions were obtained after the foils. The excitation spectra and level lifetimes for these ions were measured, and transition configurations for most measured lines were identified

  6. Single and double charge transfer of He(2+) ions with molecules at near-thermal energies

    Science.gov (United States)

    Tosh, R. E.; Johnsen, R.

    1993-01-01

    Rate coefficients were measured for charge-transfer reactions of He(2+) ions with H2, N2, O2, CO, CO2, and H2O. The experiments were carried out using a selected-ion drift-tube mass spectrometer. Total rate coefficients are found to be very large and are generally close to the limiting Langevin capture rate coefficients or the corresponding ADO-model (Su and Bowers, 1973) coefficients. The product-ion spectra indicate that both single and double charge transfer and possibly transfer ionization occur in these reactions.

  7. High precision wavelength measurements of QED-sensitive forbidden transitions in highly charged argon ions.

    Science.gov (United States)

    Draganić, I; Crespo López-Urrutia, J R; DuBois, R; Fritzsche, S; Shabaev, V M; Orts, R Soria; Tupitsyn, I I; Zou, Y; Ullrich, J

    2003-10-31

    We present the results of an experimental study of magnetic dipole (M1) transitions in highly charged argon ions (Ar X, Ar XI, Ar XIV, Ar XV) in the visible spectral range using an electron beam ion trap. Their wavelengths were determined with, for highly charged ions, unprecedented accuracy up to the sub-ppm level and compared with theoretical calculations. The QED contributions, calculated in this Letter, are found to be 4 orders of magnitude larger than the experimental error and are absolutely indispensable to bring theory and experiment to a good agreement. This method shows great potential for the study of QED effects in relativistic few-electron systems.

  8. Possible Diamond-Like Nanoscale Structures Induced by Slow Highly-Charged Ions on Graphite (HOPG)

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E.; Schenkel, T.; Shrivastava, S.; Makgato, T.; Batra, A.; Weis, C. D.; Persaud, A.; Erasmus, R.; Mwakikunga, B.

    2009-01-06

    The interaction between slow highly-charged ions (SHCI) of different charge states from an electron-beam ion trap and highly oriented pyrolytic graphite (HOPG) surfaces is studied in terms of modification of electronic states at single-ion impact nanosizeareas. Results are presented from AFM/STM analysis of the induced-surface topological features combined with Raman spectroscopy. I-V characteristics for a number of different impact regions were measured with STM and the results argue for possible formation of diamond-like nanoscale structures at the impact sites.

  9. Novel aspects on the irradiation of HOPG surfaces with slow highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, R. [Institute of Applied Physics, TU Wien, 1040 Vienna (Austria); Shen, Q. [Institute of Physics, Montanuniversität Leoben, 8700 Leoben (Austria); Wilhelm, R.A. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Heller, R. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Ginzel, R.; Crespo López-Urrutia, J.R. [Max Planck Institute for Nuclear Physics, 69117 Heidelberg (Germany); Facsko, S. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Teichert, C. [Institute of Physics, Montanuniversität Leoben, 8700 Leoben (Austria); Aumayr, F., E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, 1040 Vienna (Austria)

    2013-11-15

    As a continuation of our previous work, we present new results regarding the interaction of slow highly charged ions with HOPG. Lateral atomic force microscopy measurements with calibrated cantilevers were performed to investigate in more detail the locally enhanced friction at ion impact sites, which has been reported earlier. For very high charge states, apart from ever-present changes in frictional and electronic properties, we find evidence for true topographic surface modifications (hillocks). In complementary studies, we have investigated these structures regarding their conductivity by employing high-resolution conductive atomic force microscopy. In addition, we demonstrate the possibility to etch ion-induced surface structures by thermal annealing.

  10. Neutralization Of Multiply Charged Rydberg Ions Interacting With Solid Surfaces Under The Grazing Incidence Geometry

    Science.gov (United States)

    Majkic, M. D.; Nedeljkovic, N. N.; Galijas, S. M. D.

    2010-07-01

    We elaborated the time-symmetric, two-state vector model to investigate the intermediate stages of the electron capture into the Rydberg states of multiply charged ions interacting with solid surface under the grazing incidence geometry. The neutralization distances for the ions XeZ+ interacting with Al-surface are calculated, for core charges Z ?[5,30]. The corresponding mean neutralization distances are in agreement with the data deduced from the measured kinetic energy gain due to the image acceleration of the ions.

  11. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    OpenAIRE

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series f...

  12. Charge breeding results and future prospects with electron cyclotron resonance ion source and electron beam ion source (invited).

    Science.gov (United States)

    Vondrasek, R; Levand, A; Pardo, R; Savard, G; Scott, R

    2012-02-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.

  13. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near a charged surface.

    Science.gov (United States)

    Gongadze, Ekaterina; van Rienen, Ursula; Kralj-Iglič, Veronika; Iglič, Aleš

    2011-06-01

    Water ordering near a charged membrane surface is important for many biological processes such as binding of ligands to a membrane or transport of ions across it. In this work, the mean-field Poisson-Boltzmann theory for point-like ions, describing an electrolyte solution in contact with a planar charged surface, is modified by including the orientational ordering of water. Water molecules are considered as Langevin dipoles, while the number density of water is assumed to be constant everywhere in the electrolyte solution. It is shown that the dielectric permittivity of an electrolyte close to a charged surface is decreased due to the increased orientational ordering of water dipoles. The dielectric permittivity close to the charged surface is additionally decreased due to the finite size of ions and dipoles.

  14. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions

    Science.gov (United States)

    El-Said, Ayman S.; Wilhelm, Richard A.; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-01

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (129Xe Q+ ) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q =15 to Q =36 , the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  15. Tuning the Fabrication of Nanostructures by Low-Energy Highly Charged Ions.

    Science.gov (United States)

    El-Said, Ayman S; Wilhelm, Richard A; Heller, Rene; Sorokin, Michael; Facsko, Stefan; Aumayr, Friedrich

    2016-09-16

    Slow highly charged ions have been utilized recently for the creation of monotype surface nanostructures (craters, calderas, or hillocks) in different materials. In the present study, we report on the ability of slow highly charged xenon ions (^{129}Xe^{Q+}) to form three different types of nanostructures on the LiF(100) surface. By increasing the charge state from Q=15 to Q=36, the shape of the impact induced nanostructures changes from craters to hillocks crossing an intermediate stage of caldera structures. A dimensional analysis of the nanostructures reveals an increase of the height up to 1.5 nm as a function of the potential energy of the incident ions. Based on the evolution of both the geometry and size of the created nanostructures, defect-mediated desorption and the development of a thermal spike are utilized as creation mechanisms of the nanostructures at low and high charge states, respectively.

  16. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  17. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  18. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    Science.gov (United States)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  19. Penning traps with unitary architecture for storage of highly charged ions

    CERN Document Server

    Tan, Joseph N; Guise, Nicholas D; 10.1063/1.3685246

    2012-01-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two- magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  20. Penning traps with unitary architecture for storage of highly charged ions.

    Science.gov (United States)

    Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D

    2012-02-01

    Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.

  1. Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms.

    Science.gov (United States)

    Berkout, Vadym D; Doroshenko, Vladimir M

    2008-12-01

    Fragmentation of phosphorylated peptide ions via interaction with electronically excited metastable argon atoms was studied in a linear trap - time-of-flight mass spectrometer. Doubly charged ions of phosphorylated peptides from an Enolase digest were produced by electrospray ionization and subjected to a metastable atom beam in the linear trap. The metastable argon atoms were generated using a glow-discharge source. An intensive series of c- and z- ions were observed in all cases, with the phosphorylation group intact. The formation of molecular radical cations with reduced charge indicated that an electron transfer from a highly excited metastable state of argon to the peptide cation occurred. Additionally, singly charged Bradykinin, Substance P and Fibrinopeptide A molecular ions were fragmented via interaction with electronically excited metastable helium atoms. The fragmentation mechanism was different in this case and involved Penning ionization.

  2. Charge states distribution of 3350 keV He ions channeled in silicon

    CERN Document Server

    Bentini, G G; Bianconi, M; Lotti, R; Lulli, G

    2002-01-01

    When an ion beam is aligned along a major crystalline axis the dominant interaction is with valence electrons. In this condition the charge exchange processes mostly concern the interaction between the incident ion and a quasi-free electron gas and a strong reduction of the charge-changing probabilities is expected. In this work, 3350 keV He sup + and He sup 2 sup + ions were aligned at small tilt angles about the axis of a 4650 A silicon crystalline membrane. The charge state distribution (CSD) of the transmitted ions was detected by an electro-magnetic analyzer having a very small acceptance angle. In these conditions the equilibration of the CSD was not yet reached and this allowed, making use of simple approximations, for the measurement of the valence electron loss cross-section.

  3. PREFACE: 8th International Conference on the Physics of Highly Charged Ions (HCI-96)

    Science.gov (United States)

    Awaya, Yohko; Kambara, Tadashi

    1997-01-01

    These proceedings contain the papers presented at the Eighth International Conference on the Physics of Highly Charged Ions (HCI-96) which was held on September 23-26, 1996 in Omiya, Saitama, Japan, hosted by the Institute of Physical and Chemical Research (RIKEN). The first conference of this series was held in Stockholm, Sweden in 1982. The subject was the "Production and Physics of Highly Charged Ions". The conference has since been held every other year; in Oxford, UK (1984), Groningen, the Netherlands (1986), Grenoble, France (1988), Giessen, Germany (1990), Manhattan, Kansas, USA (1992) and Vienna, Austria (1994). When the first conference of this series was held, various highly charged ions were available from many heavy ion accelerators, which had been constructed since the 1960's, and ion sources such as EBIS and ECRIS, which were then new facilities. Subsequently, many other experimental techniques have been developed to study or to control highly charged ions, such as ion traps, EBIT's, storage rings, high-brilliance synchrotron radiation, and so forth. Now the properties of highly charged ions themselves and their interactions with various kinds of materials can be studied systematically using ions of any element at various collision energies. These studies will result in a deeper insight into their nature as well as giving us important basic data for use in the fields closely related to atomic physics. About 190 scientists from 18 countries registered at the HCI-96. The number of invited talks was 21 and that of contrib- uted papers 215. In these proceedings, 20 papers of invited talks and 116 papers on contributions are included. They are classified into categories of "Structure and Spectroscopy of Highly Charged Ions and Fundamental Aspects", "Highly Charged Ions in Plasmas and Strong Fields", "Interactions of Highly Charged Ions with Atoms and Ions", "Dynamic Processes Related to Molecules and Clusters", "Interactions of Highly Charged Ions with

  4. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  5. Charge-to-mass-ratio-dependent ion heating during magnetic reconnection in the MST RFP

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. T. A.; Almagri, A. F.; Den Hartog, D. J.; Nornberg, M. D.; Sarff, J. S.; Terry, P. W. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Craig, D. [Wheaton College, Wheaton, Illinois 60187 (United States)

    2013-05-15

    Temperature evolution during magnetic reconnection has been spectroscopically measured for various ion species in a toroidal magnetized plasma. Measurements are made predominantly in the direction parallel to the equilibrium magnetic field. It is found that the increase in parallel ion temperature during magnetic reconnection events increases with the charge-to-mass ratio of the ion species. This trend can be understood if the heating mechanism is anisotropic, favoring heating in the perpendicular degree of freedom, with collisional relaxation of multiple ion species. The charge-to-mass ratio trend for the parallel temperature derives from collisional isotropization. This result emphasizes that collisional isotropization and energy transfer must be carefully modeled when analyzing ion heating measurements and comparing to theoretical predictions.

  6. Space charge effect on parametric resonances of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P; De Munshi, D; Dutta, T; Mukherjee, M

    2013-01-01

    The effect of the presence of a finite number of ions on their parametric resonances inside a Paul trap has been investigated both experimentally and theoretically. The Coulomb coupling among the charged particles results in two distinct phenomena: one is the frequency shift of the trapped ion oscillators and second is the collective oscillation of the trapped ion cloud. We observe both in a linear trap configuration. It is found that the strength and the secular frequency of individual ion-oscillation decrease while the strength of the collective oscillation increases with increasing number of trapped ions. The observation has been modeled by considering the space charge potential as an effective dc potential inside the trap. It describes the observations well within the experimental uncertainties.

  7. Surface Erosion of GaN Bombarded by Highly Charged 208Pbq+-Ions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Qing; ZHANG Chong-Hong; YANG Yi-Tao; YAO Cun-Feng; LI Bing-Sheng; JIN Yun-Fan; SUN You-Mei; SONG Shu-Jian

    2008-01-01

    Surface change of gallium nitride specimens after bombardment by highly charged Pbq+-ions (q=25, 35) at room temperature is studied by means of atomic force microscopy. The experimental results reveal that the surface of GaN specimens is significantly etched and erased. An unambiguous step-up is observed. The erosion depth not only strongly depends on the charge state of ions, but also is related to the incident angle of Pbq+ -ions and the ion dose. The erosion depth of the specimens in 60°incidence (tilted incidence) is significantly deeper than that of the normal incidence. The erosion behaviour of specimens has little dependence on the kinetic energy of ion (E,k=360, 700keV). On the other hand, surface roughness of the irradiated area is obviously decreased due to erosion compared with the un-irradiated area. A flat terrace is formed.

  8. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  9. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy

    Institute of Scientific and Technical Information of China (English)

    Wei Yang; Bailing Jiang; Aiying Wang; Huiying Shi

    2012-01-01

    The present study deals with the effect of negatively charged ions on the ceramic coating formation on 2024 aluminium alloy during microarc oxidation (MAO) process. On the basis of the experimental results, two steps (the formation of an incipient film without arc presence and the growth of a ceramic coating with arc discharge) of MAO process have been observed. For comparison, four different negatively charged ions studied. It is proved that negatively charged ions strongly participated in the formation of an incipient film with high impedance value at the first step. The growth of ceramic coating depends on the combination between AI of the substrate and O from the electrolyte, and the negatively charged ions are little consumed. As an anodic oxide coating is prepared on the sample surface instead of the incipient film, the first step occurs easily and the growth of ceramic coating is accelerated. Furthermore, the mechanism of negatively charged ions in the formation of the MAO coating has been proposed.

  10. Interaction of singly and multiply charged ions with a lithium-fluoride surface

    CERN Document Server

    Wirtz, L

    2001-01-01

    Charge transfer between slow ions and an ionic crystal surface still poses a considerable challenge to theory due to the intrinsic many-body character of the system. For the neutralization of multiply charged ions in front of metal surfaces, the Classical Over the Barrier (COB) model is a widely used tool. We present an extension of this model to ionic crystal surfaces where the localization of valence electrons at the anion sites and the lack of cylindrical symmetry of the ion-surface system impede a simple analytical estimate of electron transfer rates. We use a classical trajectory Monte Carlo approach to calculate electron transfer rates for different charge states of the projectile ion. With these rates we perform a Monte Carlo simulation of the neutralization of slow Ne10+ ions in vertical incidence on an LiF surface. Capture of one or several electrons may lead to a local positive charge up of the surface. The projectile dynamics depends on the balance between the repulsion due to this charge and the a...

  11. Dielectronic recombination measurements of highly-charged heliumlike and neonlike ions using an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.B.; Knapp, D.A.; Beiersdorfer, P.; Chen, M.H.; Scofield, J.H.; Bennett, C.L.; DeWitt, D.R.; Henderson, J.R.; Lee, P.; Marrs, R.E.; Schneider, D. (Lawrence Livermore National Lab., CA (United States)); Levine, M.A. (Lawrence Berkeley Lab., CA (United States))

    1991-01-01

    The electron beam ion trap (EBIT) at LLNL is a unique device designed to measure the interactions of electrons with highly-charged ions. We describe three methods used at EBIT to directly measure the dielectronic recombination (DR) process: the intensity of the stabilizing x-rays is measured as a function of electron beam energy; the ions remaining in a particular ionization state are counted after the electron beam has been held at a fixed electron energy for a fixed time; and high-resolution spectroscopy is used to resolve individual DR satellite lines. In our discussions, we concentrate on the KLL resonances of the heliumlike target ions (V{sup 21+} to Ba{sup 54+}), and the LMM resonances of the neonlike target ions (Xe{sup 44+} to Th{sup 80+}). 12 refs., 8 figs.

  12. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  13. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Wei [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  14. Study on the ECR Ion Source and Application Technology of the Charged Particle Beam

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; Lee, K. W.; Jin, J. T.; and others

    2012-12-15

    Recently, Korea has launched the world's top class heavy ion accelerator project, and for the machine it is necessary to develop related physic and technology for the high charge state beam including a 28 GHz superconducting ECR ion source. This study is prepared to support this activity including transport of TRIAC(Tokai Radioactive Accelerator Complex) and development of ECR ion source technology. TRIAC, which was developed by KEK Japan, was a one of a heavy ion accelerator. This work is especially necessary to support the originality of the experiments with the heavy ion accelerator in the future in Korea. New accelerator DIAC will be used to support Korea Rare Isotope Accelerator project, and also will be applied to other heavy ion beam physics and engineering research. Based on the conceptual design results of the 28 GHz superconducting ECR ion source, an engineering design and construction will be started from next fiscal year.

  15. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  16. How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2006-06-20

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory.

  17. Efficiently photo-charging lithium-ion battery by perovskite solar cell.

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-27

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  18. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    Science.gov (United States)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  19. Strongly Enhanced Effects of Lorentz-Symmetry Violation in Yb$^+$ and Highly Charged Ions

    CERN Document Server

    Safronova, M S

    2016-01-01

    A Lorentz-symmetry test with Ca$^+$ ions demonstrated the potential of using quantum information inspired technology for tests of fundamental physics. A systematic study of atomic-system sensitivities to Lorentz violation identified the ytterbium ion as an ideal system with high sensitivity as well as excellent experimental controllability. A test of Lorentz-violating physics in the electron-photon sector with Yb$^+$ ions has the potential to reach levels of 10$^{-23}$, five orders of magnitude more sensitive than the current best bounds. Similar sensitivities may be also reached with highly charged ions.

  20. Shot-to-shot reproducibility in the emission of fast highly charged metal ions from a laser ion source.

    Science.gov (United States)

    Krása, J; Velyhan, A; Margarone, D; Krouský, E; Krouský, L; Jungwirth, K; Rohlena, K; Ullschmied, J; Parys, P; Ryć, L; Wołowski, J

    2012-02-01

    The generation of fast highly charged metal ions with the use of the sub-nanosecond Prague Asterix Laser System, operated at a fundamental wavelength of 1315 nm, is reported. Particular attention is paid to shot-to-shot reproducibility in the ion emission. Au and Pd targets were exposed to intensities up to 5 × 10(16) W∕cm(2). Above the laser intensity threshold of ∼3 × 10(14) W∕cm(2) the plasma is generated in a form of irregular bursts. The maximum energy of protons constituting the leading edge of the fastest burst reaches a value up to 1 MeV. The fast ions in the following bursts have energy gradually decreasing with the increasing burst number, namely, from a value of about 0.5 MeV∕charge regardless of the atomic number and mass of the ionized species.

  1. A compact electron beam ion source with integrated Wien filter providing mass and charge state separated beams of highly charged ions.

    Science.gov (United States)

    Schmidt, M; Peng, H; Zschornack, G; Sykora, S

    2009-06-01

    A Wien filter was designed for and tested with a room temperature electron beam ion source (EBIS). Xenon charge state spectra up to the charge state Xe46+ were resolved as well as the isotopes of krypton using apertures of different sizes. The complete setup consisting of an EBIS and a Wien filter has a length of less than 1 m substituting a complete classical beamline setup. The Wien filter is equipped with removable permanent magnets. Hence total beam current measurements are possible via simple removal of the permanent magnets. In dependence on the needs of resolution a weak (0.2 T) or a strong (0.5 T) magnets setup can be used. In this paper the principle of operation and the design of the Wien filter meeting the requirements of an EBIS are briefly discussed. The first ion beam extraction and separation experiments with a Dresden EBIS are presented.

  2. A perspective on MALDI alternatives-total solvent-free analysis and electron transfer dissociation of highly charged ions by laserspray ionization.

    Science.gov (United States)

    Trimpin, Sarah

    2010-05-01

    Progress in research is hindered by analytical limitations, especially in biological areas in which sensitivity and dynamic range are critical to success. Inherent difficulties of characterization associated with complexity arising from heterogeneity of various materials including topologies (isomeric composition) and insolubility also limit progress. For this reason, we are developing methods for total solvent-free analysis by mass spectrometry consisting of solvent-free ionization followed by solvent-free gas-phase separation. We also recently constructed a novel matrix-assisted laser desorption ionization (MALDI) source that provides a simple, practical and sensitive way of producing highly charged ions by laserspray ionization (LSI) or singly charged ions commonly observed with MALDI by choice of matrix or matrix preparation. This is the first ionization source with such freedom-an extremely powerful analytical 'switch'. Multiply charged LSI ions allow molecules exceeding the mass-to-charge range of the instrument to be observed and permit for the first time electron transfer dissociation fragment ion analysis.

  3. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  4. Electroweak Decay Studies of Highly Charged Radioactive Ions with TITAN at TRIUMF

    CERN Document Server

    Leach, K G; Klawitter, R; Leistenschneider, E; Lennarz, A; Brunner, T; Frekers, D; Andreiou, C; Kwiatkowski, A A; Dilling, J

    2016-01-01

    Several modes of electroweak radioactive decay require an interaction between the nucleus and bound electrons within the constituent atom. Thus, the probabilities of the respective decays are not only influenced by the structure of the initial and final states in the nucleus, but can also depend strongly on the atomic charge. Conditions suitable for the partial or complete ionization of these rare isotopes occur naturally in hot, dense astrophysical environments, but can also be artificially generated in the laboratory to selectively block certain radioactive decay modes. Direct experimental studies on such scenarios are extremely difficult due to the laboratory conditions required to generate and store radioactive ions at high charge states. A new electron-beam ion trap (EBIT) decay setup with the TITAN experiment at TRIUMF has successfully demonstrated such techniques for performing spectroscopy on the radioactive decay of highly charged ions.

  5. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    Science.gov (United States)

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  6. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  7. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  8. Trapped-ion probing of light-induced charging effects on dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Harlander, M; Brownnutt, M; Haensel, W; Blatt, R, E-mail: max.harlander@uibk.ac.a [Institut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2010-09-15

    We use a string of confined {sup 40}Ca{sup +} ions to measure perturbations to a trapping potential which are caused by the light-induced charging of an antireflection-coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterized as a function of distance to the dielectric and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 40 elementary charges per {radical}(Hz) on the dielectric at distances of the order of millimetres, and perturbations are observed for illuminations with light of wavelengths as large as 729 nm. This has important implications for the future of miniaturized ion-trap experiments, notably with regard to the choice of electrode material and the optics that must be integrated in the vicinity of the ion. The method presented here can be readily applied to the investigation of charging effects beyond the context of ion-trap experiments.

  9. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    Science.gov (United States)

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions.

  10. Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, H., E-mail: hannu.koivisto@phys.jyu.fi; Tarvainen, O.; Toivanen, V.; Komppula, J.; Kronholm, R. [Department of Physics, University of Jyväskylä (JYFL), Jyväskylä (Finland); Lamy, T.; Angot, J. [LPSC, Université Joseph Fourier Grenoble 1, Grenoble INP, 53 rue des martyrs, 38026 Grenoble Cedex (France); Delahaye, P.; Maunoury, L. [GANIL, CEA/DSM-CNRS/IN2P3, Caen Cedex 05 (France); Galata, A. [INFN-Laboratori Nazionali di Legnaro, Legnaro, Padova (Italy); Patti, G. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Standylo, L.; Steczkiewicz, O.; Choinski, J. [Heavy Ion Laboratory, University of Warsaw, Warsaw (Poland)

    2014-02-15

    Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 GHz ECRIS and the LPSC-PHOENIX charge breeder. The first experiments were carried out with noble gases and they revealed, for example, that the effects of the gas mixing and 2-frequency heating on the production of high charge states appear to be additive for the conventional ECRIS. The results also indicate that at least in the case of noble gases the differences between the conventional ECRIS and the charge breeder cause only minor impact on the production efficiency of ion beams.

  11. Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media

    CERN Document Server

    Schmuck, Markus

    2012-01-01

    Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component pe- riodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to mean pore size; and (iii) the surface charge per volume appears as a continuous "background charge density". The coeffcient tensors in the macroscopic PNP equations can be calculated from periodic reference cell problem, and several examples are considered. For an insulating solid matrix, all gradients are corrected by a single tortuosit...

  12. Collisionless damping of dust-acoustic waves in a charge varying dusty plasma with nonextensive ions

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia; Tribeche, Mouloud [Faculty of Physics, Theoretical Physics Laboratory (TPL), Plasma Physics Group (PPG), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2014-12-15

    The charge variation induced nonlinear dust-acoustic wave damping in a charge varying dusty plasma with nonextensive ions is considered. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust acoustic wave propagation to be described by a damped Korteweg-de Vries (dK-dV) equation the coefficients of which depend sensitively on the nonextensive parameter q. The damping term, solely due to the dust charge variation, is affected by the ion nonextensivity. For the sake of completeness, the possible effects of nonextensivity and collisionless damping on weakly nonlinear wave packets described by the dK-dV equation are succinctly outlined by deriving a nonlinear Schrödinger-like equation with a complex nonlinear coefficient.

  13. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S.

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  14. Light charged particle emission in heavy-ion reactions – What have we learnt?

    Indian Academy of Sciences (India)

    S Kailas

    2001-07-01

    Light charged particles emitted in heavy-ion induced reactions, their spectra and angular distributions measured over a range of energies, carry the signature of the underlying reaction mechanisms. Analysis of data of light charged particles, both inclusive and exclusive measured in coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles.

  15. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  16. Ion selection of charge-modified large nanopores in a graphene sheet

    Science.gov (United States)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  17. Charge Transfer Based Colorimetric Detection of Silver Ion

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Choul; Kim, Kwang Seob; Choi, Soon Kyu; Oh, Jinho; Lee, Jae Wook [Dong-A Univ., Busan (Korea, Republic of)

    2014-05-15

    We have demonstrated the colorimetric chemosensor for detection of Ag{sup +} via formation of nanoparticles which is based on the intramolecular CT interaction between the electron-rich (2,6-dialkoxynaphthalene; Np) moiety and the electron-deficient (methyl viologen; MV{sup 2+}) moiety of a single sensor molecule. Under irradiation of light, Ag{sup +} was reduced to very small silver nanoparticle by CT interaction in the presence of OEGs as flexible recognition moiety of Ag{sup +} and stabilizer for Ag nanoparticles, thus Ag nanoparticles resulted to reddish brown in the color change of sensor solution, gradually. Therefore, the charge-transfer interaction between an electron-deficient and an electron-rich units existing at a sensor molecule can be regarded as a new and efficient method to construct various colorimetric chemosensors. Donor.acceptor interactions or charge transfer (CT) interactions are an important class of non-covalent interactions and have been widely exploited in self-assembling systems. Beyond molecular chemistry, supramolecular chemistry aims at constituting highly complex, functional chemical systems from components held together by intermolecular forces. Chemosensors are the molecules of abiotic origin that bind selectively and reversibly with the analyte with concomitant change in one or more properties of the system. The recognition and signaling of ionic and neutral species of varying complexity is one of the most intensively studied areas of contemporary supramolecular chemistry.

  18. Theory of a stationary microwave discharge with multiply charged ions in an expanding gas jet

    Science.gov (United States)

    Shalashov, A. G.; Abramov, I. S.; Golubev, S. V.; Gospodchikov, E. D.

    2016-08-01

    The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.

  19. Highly charged ion impact on uracil: Cross sections measurements and scaling

    Science.gov (United States)

    Agnihotri, A. N.; Kasthurirangan, S.; Champion, C.; Rivarola, R. D.; Tribedi, L. C.

    2014-04-01

    Absolute total ionization cross sections (TCS) of uracil in collisions with highly charge C, O and F ions are measured. The scaling properties of cross sections are obtained as a function of projectile charge state and energy. The measurements are compared with the CDW-EIS, CB1 and CTMC calculations. The absolute double differential cross sections (DDCS) of secondary electron emission from uracil in collisions with bare MeV energy C and O ions are also measured. Large enhancement in forward emission is observed.

  20. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    Science.gov (United States)

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  1. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    Science.gov (United States)

    Levin, J. C.; Biedermann, C.; Cederquist, H.; O, C.-S.; Short, R. T.; Sellin, I. A.

    1989-04-01

    Argon recoil ions produced by beams of 0.8 MeV/u Cl 5+ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly charged ions produced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find the inclusion of Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to the projectile-electron loss. These conclusions are consistent with impact parameters inferred from determination of mean recoil energy.

  2. Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases

    Science.gov (United States)

    Bacchus-Montabonel, M. C.

    2012-07-01

    A theoretical approach of the charge transfer dynamics induced by collision of C6+ ions with biological targets has been performed in a wide collision energy range by means of ab-initio quantum chemistry molecular methods. The process has been investigated for the target series thymine, uracil and 5-halouracil corresponding to similar molecules with different substituent on carbon C5. Such a study may be related to hadrontherapy treatments by C6+carbon ions and may provide, in particular, information on the radio-sensitivity of the different bases with regard to ion-induced radiation damage. The results have been compared to a previous analysis concerning the collision of C4+ carbon ions with the same biomolecular targets and significant charge effects have been pointed out.

  3. Surface charging of thick porous water ice layers relevant for ion sputtering experiments

    Science.gov (United States)

    Galli, A.; Vorburger, A.; Pommerol, A.; Wurz, P.; Jost, B.; Poch, O.; Brouet, Y.; Tulej, M.; Thomas, N.

    2016-07-01

    We use a laboratory facility to study the sputtering properties of centimeter-thick porous water ice subjected to the bombardment of ions and electrons to better understand the formation of exospheres of the icy moons of Jupiter. Our ice samples are as similar as possible to the expected moon surfaces but surface charging of the samples during ion irradiation may distort the experimental results. We therefore monitor the time scales for charging and discharging of the samples when subjected to a beam of ions. These experiments allow us to derive an electric conductivity of deep porous ice layers. The results imply that electron irradiation and sputtering play a non-negligible role for certain plasma conditions at the icy moons of Jupiter. The observed ion sputtering yields from our ice samples are similar to previous experiments where compact ice films were sputtered off a micro-balance.

  4. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  5. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    Science.gov (United States)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  6. Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps

    CERN Document Server

    McLaughlin, B M; Lane, I C; McCann, J F

    2014-01-01

    Ultracold hybrid ion-atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the Yb$^{+}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion-atom collisions dominates cold ion-atom collisions. For spin dependent processes \\cite{kohl13} the...

  7. Resonant charge transfer in low-energy ion scattering: Information depth in the reionization regime.

    Science.gov (United States)

    Primetzhofer, D; Spitz, M; Taglauer, E; Bauer, P

    2011-11-01

    Time-Of-Flight Low-energy ion scattering (TOF-LEIS) experiments were performed for He(+) ions scattered from Cu(100) and Cu(0.5)Au(0.5)(100). Probabilities for resonant neutralization and reionization in close collisions were deduced in a wide energy range. To learn about the information depth in LEIS, in a next step ion spectra were analyzed for polycrystalline Cu samples. The relative yield of backscattered projectiles, which have undergone distinct charge exchange processes, was calculated. Results indicate a strong contribution to the ion yield that origins from particles reionized in a close collision in deeper layers when experiments are performed at energies where reionization is prominent. The surface sensitivity of the ion signal at different energies is quantified. Based on these results, the total ion spectrum was quantitatively modelled by two consistent, but different approaches.

  8. Ion mobility-mass spectrometry of phosphorylase B ions generated with supercharging reagents but in charge-reducing buffer.

    Science.gov (United States)

    Hogan, Christopher J; Ogorzalek Loo, Rachel R; Loo, Joseph A; de la Mora, Juan Fernandez

    2010-11-01

    We investigate whether "supercharging" reagents able to shift the charge state distributions (CSDs) of electrosprayed protein ions upward also influence gas-phase protein structure. A differential mobility analyzer and a mass spectrometer are combined in series (DMA-MS) to measure the mass and mobility of monomer and multimeric phosphorylase B ions (monomer molecular weight ∼97 kDa) in atmospheric pressure air. Proteins are electrosprayed from charge-reducing triethylammonium formate in water (pH = 6.8) with and without the addition of the supercharging reagent tetramethylene sulfone (sulfolane). Because the DMA measures ion mobility prior to collisional heating or declustering, it probes the structure of supercharged protein ions immediately following solvent (water) evaporation. As in prior studies, the addition of sulfolane is found to drastically increase both the mean and maximum charge state of phosphorylase B ions. Ions from all protein n-mers were found to yield mobilities that, for a given charge state, were ∼6-10% higher in the absence of sulfolane. We find that the mobility decrease which arises with sulfolane is substantially smaller than that typically observed for folded-to-unfolded transitions in protein ions (where a ∼60% decrease in mobility is typical), suggesting that supercharging reagents do not cause structural protein modifications in solution as large as noted recently by Williams and colleagues [E. R. Williams et al., J. Am. Soc. Mass Spectrom., 2010, 21, 1762-1774]. In fact, the measurements described here indicate that the modest mobility decrease observed can be partly attributed to sulfolane trapping within the protein ions during DMA measurements, and probably also in solution. As the most abundant peaks in measured mass-mobility spectra for ions produced with and without sulfolane correspond to non-covalently bound phosphorylase B dimers, we find that in spite of a change in mobility/cross section, sulfolane addition does not

  9. Charge-exchange Induced Modulation of the Heliosheath Ion Distribution Downstream of the Termination Shock

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.

    2015-12-01

    We consider the evolution of the solar wind ion distribution function alongthe plasma flow downstream from the termination shock induced by chargeexchange processes with cold interstellar H-atoms. We start from a kineticphase space transport equation valid in the bulk frame of the plasma flowthat takes into account convective changes, cooling processes, energydiffusion and ion injection, and describes solar wind and pick-up ionsas a co-moving, isotropic, joint ion population. From this kinetic transportequation one can ascend to an equation for the pressure moment of the iondistribution function, a so-called pressure transport equation, describingthe evolution of the ion pressure in the comoving rest frame. Assuming thatthe local ion distribution can be represented by an adequate kappa functionwith a kappa parameter that varies with the streamline coordinate, weobtain an ordinary differential equation for kappa as function of thestreamline coordinate s. With this result then we gain the heliosheath iondistribution function downstream of the termination shock. The latter thencan be used to predict the Voyager-2 measured moments of the distributionfunction like ion density and ion temperature, and it can also be used topredict spectral fluxes of ENA`s originating from these ions and registeredby IBEX-Hi and IBEX-Lo.We especially analyse the solar wind ion temperature decreasemeasured by Voyager-2 between the years 2008 to 2011 and try to explain itas a charge-exchange induced cooling of the ion distribution function duringthe associated ion convection period.

  10. Charge symmetry breaking in $\\Lambda$ hypernuclei: updated HYP 2015 progress report

    CERN Document Server

    Gal, Avraham

    2016-01-01

    Ongoing progress in understanding and evaluating charge symmetry breaking in $\\Lambda$ hypernuclei is discussed in connection to recent measurements of the $_{\\Lambda}^{4}{\\rm H}(0^+_{\\rm g.s.})$ binding energy at MAMI [A1 Collaboration: PRL 114 (2015) 232501] and of the $_{\\Lambda}^{4}{\\rm He}(1^+_{\\rm exc})$ excitation energy at J-PARC [E13 Collaboration: PRL 115 (2015) 222501].

  11. Production of intense highly charged ion beams by IMP 14.5 GHz electron cyclotron resonance ion source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new 14.5 GHz Electron Cyclotron Resonance (ECR) ion source has been constructed over the last two years. The source was designed and tested by making use of the latest results from ECR ion source development, such as high mirror magnetic field, large plasma volume, and biased probe. 140μA of O7+, 185μA of Ar11+ and 50 μA of Xe26+ could be produced with a RF power of 800 W. The intense beams of highly charged metallic ions are produced by means of the method of a metal evaporation oven and volatile compound through axial access. The test results are 130μA of Ca11+, 70μA of Ca12+ and 65μA of Fe10+. The ion source has been put into operation for the cyclotron at the Institute of Modern Physics (IMP).

  12. Spectroscopy of few-electron highly charged ions

    CERN Document Server

    Tarbutt, M R

    2000-01-01

    attainable precision is as high as 0.2%. New techniques for measuring QED effects in the ground states of the hydrogen-like ions are proposed, which avoid the need for absolute x-ray calibration. Using the fast-beam laser resonance technique the 1s2p sup 3 P sub 0 - sup 3 P sub 1 fine-structure interval in helium-like Mg sup 1 sup 0 sup + has been measured, with the result nu-tilde sub 0 sub 1 = 833.133 (14) cm sup - sup 1. This measurement is a very sensitive test of the higher-order relativistic and QED terms of the theory for the fine-structure in helium and the light helium-like ions. This theory will be used to obtain a new value for the fine structure constant by comparing its results with precision measurements of the n = 2 fine structure in helium. Although there is a large discrepancy between the present measurement and the current theoretical value for this interval, the discrepancy lies within the estimated size of the unevaluated terms in the theory. A preliminary measurement of the 2s Lamb shift ...

  13. Potential and Kinetic Electron Emissions from HOPG Surface Irradiated by Highly Charged Xenon and Neon Ions

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-Yu; ZHAO Yong-Tao; SUN Jian-Rong; LI De-Hui; QAYYUM Abdul; LI Jin-Yu; WANG Ping-Zhi; XIAO Guo-Qing

    2011-01-01

    Highly charged 129 Xeq+ (q =10-30) and 40Neq+ (q =4-8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite (HOPG) are reported. The total secondary electron yield is measured as a function of the potential energy of incident ions. The experimental data are used to separate contributions of kinetic and potential electron yields. Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xeq+-HOPG and Neq+-HOPG combinations. A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission.%@@ Highly charged 129 Xeq+(q =10-30) and 40Neq+(q =4-8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite(HOPG) are reported.The total secondary electron yield is measured as a function of the potential energy of incident ions.The experimental data are used to separate contributions of kinetic and potential electron yields.Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xeq+-HOPG and Neq+-HOPG combinations.A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission.

  14. Contribution of charge-transfer processes to ion-induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Roesler, M. [Departamento de Fisica de Materiales, Facultad de Quimica, UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Garcia de Abajo, F.J. [Departamento de Ciencias de la Computacion e Inteligencia Artificial, Facultad de Informatica, UPV/EHU, Apartado 649, 20080 San Sebastian (Spain)

    1996-12-01

    Charge changing events of ions moving inside metals are shown to contribute significantly to electron emission in the intermediate velocity regime via electrons coming from projectile ionization. Inclusion of equilibrium charge state fractions, together with two-electron Auger processes and resonant-coherent electron loss from the projectile, results in reasonable agreement with previous calculations for frozen protons, though a significant part of the emission is now interpreted in terms of charge exchange. The quantal character of the surface barrier transmission is shown to play an important role. The theory compares well with experimental observations for {ital H} projectiles. {copyright} {ital 1996 The American Physical Society.}

  15. Charge-state-dependent energy loss of slow ions. II. Statistical atom model

    Science.gov (United States)

    Wilhelm, Richard A.; Möller, Wolfhard

    2016-05-01

    A model for charge-dependent energy loss of slow ions is developed based on the Thomas-Fermi statistical model of atoms. Using a modified electrostatic potential which takes the ionic charge into account, nuclear and electronic energy transfers are calculated, the latter by an extension of the Firsov model. To evaluate the importance of multiple collisions even in nanometer-thick target materials we use the charge-state-dependent potentials in a Monte Carlo simulation in the binary collision approximation and compare the results to experiment. The Monte Carlo results reproduce the incident charge-state dependence of measured data well [see R. A. Wilhelm et al., Phys. Rev. A 93, 052708 (2016), 10.1103/PhysRevA.93.052708], even though the experimentally observed charge exchange dependence is not included in the model.

  16. Ion optics and beam dynamics optimization at the HESR storage ring for the SPARC experiments with highly charged heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Oleksandr

    2015-06-24

    The High-Energy Storage Ring (HESR) is a part of an upcoming International Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt. A key part of a scientific program, along with antiproton physics, will be physics with highly-charged heavy ions. Phase-space cooled beams together with fixed internal target will provide an excellent environment for storage ring experiments at the HESR for the SPARC collaboration. Until recently, however, the existing ion optical lattice for the HESR was designed only for the experiments with antiproton beams. The thesis presents a new ion optical mode developed specifically for the operation of the HESR with highly charged heavy ions. The presence of the errors, such as beam momentum spread, magnetic field impurities or magnets misalignments, leads to disruption of beam dynamics: exciting of resonant motion and loss of beam stability. Within the paper, these effects are investigated with the help of numerical codes for particle accelerator design and simulation MAD-X and MIRKO. A number of correction techniques are applied to minimize the nonlinear impact on the beam dynamics and improve the experimental conditions. The application of the analytical and numerical tools is demonstrated in the experiment with uranium U{sup 90+} beam at the existing storage ring ESR, GSI.

  17. Potential energy, force distribution and oscillatory motion of chloride ion inside electrically charged carbon nanotubes

    Science.gov (United States)

    Sadeghi, F.; Ansari, R.; Darvizeh, M.

    2016-06-01

    In this research, a continuum-based model is presented to explore potential energy, force distribution and oscillatory motion of ions, and in particular chloride ion, inside carbon nanotubes (CNTs) decorated by functional groups at two ends. To perform this, van der Waals (vdW) interactions between ion and nanotube are modeled by the 6-12 Lennard-Jones (LJ) potential, whereas the electrostatic interactions between ion and functional groups are modeled by the Coulomb potential and the total interactions are analytically derived by summing the vdW and electrostatic interactions. Making the assumption that carbon atoms and charge of functional groups are all uniformly distributed over the nanotube surface and the two ends of nanotube, respectively, a continuum approach is utilized to evaluate the related interactions. Based on the actual force distribution, the equation of motion is also solved numerically to arrive at the time history of displacement and velocity of inner core. With respect to the proposed formulations, comprehensive studies on the variations of potential energy and force distribution are carried out by varying functional group charge and nanotube length. Moreover, the effects of these parameters together with initial conditions on the oscillatory behavior of system are studied and discussed in detail. It is found out that chloride ion escapes more easily from negatively charged CNTs which is followed by uncharged and positively charged ones. It is further shown that the presence of functional groups leads to enhancing the operating frequency of such oscillatory systems especially when the electric charges of ion and functional groups have different signs.

  18. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E., E-mail: ettore.vittone@unito.it [Department of Physics, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Breese, M.B.H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Garcia Lopez, J. [Centro Nacional de Aceleradores (CNA), Sevilla University, J. Andalucia, CSIC, Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jaksic, M. [Department for Experimental Physics, Ruder Boškovic Institute (RBI), P.O. Box 180, 10002 Zagreb (Croatia); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland); Siegele, R. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Simon, A. [International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Vizkelethy, G. [Sandia National Laboratories (SNL), PO Box 5800, Albuquerque, NM (United States)

    2016-04-01

    Highlights: • We study the electronic degradation of semiconductors induced by ion irradiation. • The experimental protocol is based on MeV ion microbeam irradiation. • The radiation induced damage is measured by IBIC. • The general model fits the experimental data in the low level damage regime. • Key parameters relevant to the intrinsic radiation hardness are extracted. - Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  19. Kinetic Modeling of the Neutral Gas, Ions, and Charged Dust in Europa's Exosphere

    Science.gov (United States)

    Tenishev, V.; Borovikov, D.; Rubin, M.; Jia, X.; Combi, M. R.

    2015-12-01

    The interaction of the Jovian magnetosphere with Europa has been a subject of active research during the last few decades both through in-situ and remote sensing observations as well as theoretical considerations. Linking the magnetosphere and the moon's surface and interior, Europa's exosphere has become one of the primary objects of study in the field. Understanding the physical processes occurring in the exosphere and its chemical composition is required for the understanding of the interaction between Europa and Jupiter. Europa's surface-bound exosphere originates mostly from ion sputtering of the water ice surface. Minor neutral species and ions of exospheric origin are produced via photolytic and electron impact reactions. The interaction of the Jovian magnetosphere and Europa affects the exospheric population of both neutrals and ions via source and loss processes. Moreover, the Lorentz force causes the newly created exospheric ions to move preferably aligned with the magnetic field lines. Contrary to the ions, heavier and slow-moving charged dust grains are mostly affected by gravity and the electric field component of the Lorentz force. As a result, escaping dust forms a narrow tail aligned in the direction of the convection electric field. Here we present results of a kinetic model of the neutral species (H2O, OH, O2, O, and H), ions (O+, O2+, H+, H2+, H2O+, and OH+), and neutral and charged dust in Europa's exosphere. In our model H2O and O2 are produced via sputtering and other exospheric neutral and ions species are produced via photolytic and electron impact reactions. For the charged dust we compute the equilibrium grain charge by balancing the electron and ion collecting currents according to the local plasma flow conditions at the grain's location. For the tracking of the ions, charged dust, and the calculation of the grains' charge we use plasma density and velocity, and the magnetic field derived from our multi-fluid MHD model of Europa

  20. Electron cooling of highly charged ions in penning traps; Elektronenkuehlung hochgeladener Ionen in Penningfallen

    Energy Technology Data Exchange (ETDEWEB)

    Moellers, B.

    2007-02-08

    For many high precision experiments with highly charged ions in ion traps it is necessary to work with low energy ions. One possibility to slow ions down to a very low energy in a trap is electron cooling, a method, which is already successfully used in storage rings to produce ion beams with high phase space density. Fast ions and a cold electron plasma are inserted into a Penning trap. The ions lose their energy due to Coulomb interaction with the electrons while they cross the plasma, the electrons are heated. The cooling time is the time, which is needed to cool an ion from a given initial energy to a low final energy. To calculate cooling times it is necessary to solve coupled differential equations for the ion energy and electron temperature. In a Penning trap the strong external magnetic field constitutes a theoretical challenge, as it influences the energy loss of the ions in an electron plasma, which can no longer be calculated analytically. In former estimates of cooling times this influence is neglected. But simulations show a dramatic decrease of the energy loss in the presence of a strong magnetic field, so it is necessary to investigate the effect of the magnetic field on the cooling times. This work presents a model to calculate cooling times, which includes both the magnetic field and the trap geometry. In a first step a simplified model without the external trap potential is developed. The energy loss of the ions in the magnetized electron plasma is calculated by an analytic approximation, which requires a numerical solution of integrals. With this model the dependence of the cooling time on different parameters like electron and ion density, magnetic field and the angle between ion velocity and magnetic field is studied for fully ionized uranium. In addition the influence of the electron heating is discussed. Another important topic in this context is the recombination between ions and electrons. The simplified model for cooling times allows to

  1. Final Progress Report - Heavy Ion Accelerator Theory and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Haber, Irving

    2009-10-31

    The use of a beam of heavy ions to heat a target for the study of warm dense matter physics, high energy density physics, and ultimately to ignite an inertial fusion pellet, requires the achievement of beam intensities somewhat greater than have traditionally been obtained using conventional accelerator technology. The research program described here has substantially contributed to understanding the basic nonlinear intense-beam physics that is central to the attainment of the requisite intensities. Since it is very difficult to reverse intensity dilution, avoiding excessive dilution over the entire beam lifetime is necessary for achieving the required beam intensities on target. The central emphasis in this research has therefore been on understanding the nonlinear mechanisms that are responsible for intensity dilution and which generally occur when intense space-charge-dominated beams are not in detailed equilibrium with the external forces used to confine them. This is an important area of study because such lack of detailed equilibrium can be an unavoidable consequence of the beam manipulations such as acceleration, bunching, and focusing necessary to attain sufficient intensity on target. The primary tool employed in this effort has been the use of simulation, particularly the WARP code, in concert with experiment, to identify the nonlinear dynamical characteristics that are important in practical high intensity accelerators. This research has gradually made a transition from the study of idealized systems and comparisons with theory, to study the fundamental scaling of intensity dilution in intense beams, and more recently to explicit identification of the mechanisms relevant to actual experiments. This work consists of two categories; work in direct support beam physics directly applicable to NDCX and a larger effort to further the general understanding of space-charge-dominated beam physics.

  2. Database for inelastic collisions of lithium atoms with electrons, protons, and multiply charged ions

    NARCIS (Netherlands)

    Schweinzer, J; Brandenburg, R; Bray, [No Value; Hoekstra, R; Aumayr, F; Janev, RK; Winter, HP

    1999-01-01

    New experimental and theoretical cross-section data for inelastic collision processes of Li atoms in the ground state and excited states (up to n = 4) with electrons, protons, and multiply charged ions have been reported since the database assembled by Wutte et al. [ATOMIC DATA AND NUCLEAR DATA TABL

  3. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  4. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons, a

  5. A metal ion charged mixed matrix membrane for selective adsorption of hemoglobin

    NARCIS (Netherlands)

    Tetala, K.K.R.; Skrzypek, K.; Levisson, M.; Stamatialis, D.F.

    2013-01-01

    In this work, we developed a mixed matrix membrane by incorporating 20–40 µm size iminodiacetic acid modified immobeads within porous Ethylene vinyl alcohol (EVAL) polymer matrix. The MMM were charged with copper ions for selective adsorption of bovine hemoglobin in presence of bovine serum albumin.

  6. Solid-state NMR Study of Ion Adsorption and Charge Storage in Graphene Film Supercapacitor Electrodes

    Science.gov (United States)

    Li, Kecheng; Bo, Zheng; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Graphene film has been demonstrated as promising active materials for electric double layer capacitors (EDLCs), mainly due to its excellent mechanical flexibility and freestanding morphology. In this work, the distribution and variation pattern of electrolyte ions in graphene-film based EDLC electrodes are investigated with a 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy. For neutral graphene films soaked with different amounts of electrolytes (1 M TEABF4/ACN), weakly and strongly adsorbed anions are identified based on the resonances at different 11B chemical shifts. Unlike other porous carbonaceous materials, the strongly adsorbed anions are found as the major electrolyte anions components in graphene films. Further measurements on the ion population upon charging are carried out with applying different charging voltages on the graphene films. Results indicate that the charging process of graphene-film based EDLCs can be divided into two distinct charge storage stages (i.e., ejection of co-ions and adsorption of counter-ions) for different voltages. The as-obtained results will be useful for the design and fabrication of high performance graphene-film based EDLCs.

  7. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  8. Average charge states of heavy and superheavy ions passing through a rarified gas : Theory and experiment

    NARCIS (Netherlands)

    Khuyagbaatar, J.; Shevelko, V. P.; Borschevsky, A.; Duellmann, Ch. E.; Tolstikhina, I. Yu.; Yakushev, A.

    2013-01-01

    The average charge states (q) over bar of heavy and superheavy ions (atomic numbers Z = 80-114) passing through He gas are studied experimentally and theoretically. Experimental data were measured at the gas-filled recoil separator, i.e., the TransActinide Separator and Chemistry Apparatus (TASCA) a

  9. Near-resonant versus nonresonant chemiluminescent charge-transfer reactions of atomic ions with HCl

    Science.gov (United States)

    Glenewinkel-Meyer, Th.; Ottinger, Ch.

    1994-01-01

    Charge-transfer reactions of C+, O+, F+, Ar+ and some other atomic ions with hydrogen chloride were investigated at collision energies between eVc.m.. This may be due to formation of a long-lived collision complex (Ar-HCl)+.

  10. Preparation of cold Mg{sup +}ion clouds for sympathetic cooling of highly charged ions at SPECTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Cazan, Radu Mircea

    2012-02-15

    The bound electrons in hydrogen-like or lithium-like heavy ions experience extremely strong electric and magnetic fields in the surrounding of the nucleus. Laser spectroscopy of the ground-state hyperfine splitting in the lead region provides a sensitive tool to test strong-field quantum electro dynamics (QED), especially in the magnetic sector. Previous measurements on hydrogen-like systems performed in an electron-beam ion trap (EBIT) or at the experimental storage ring (ESR) were experimentally limited in accuracy due to statistics, the large Doppler broadening and the ion energy. The full potential of the QED test can only be exploited if measurements for hydrogen- and lithium-like ions are performed with accuracy improved by 2-3 orders of magnitude. Therefore, the new Penning trap setup SPECTRAP - dedicated for laser spectroscopy on trapped and cooled highly charged ions - is currently commissioned at GSI Darmstadt. Heavy highly charged ions will be delivered to this trap by the HITRAP facility in the future. SPECTRAP is a cylindrical Penning trap with axial access for external ion injection and radial optical access mounted inside a cold-bore superconducting Helmholtz-type split-coil magnet. To reach the targeted accuracy in laser spectroscopy, an efficient and fast cooling process for the highly charged ions must be employed. This can be realized by sympathetic cooling with a cloud of laser-cooled light ions. Within this thesis work, a laser system and an ion source for the production of such a {sup 24}Mg{sup +} ion cloud was developed and commissioned at SPECTRAP. An all-solid-state laser system for the generation of 279.6 nm light was designed and built. It consists of a fiber laser at 1118.5 nm followed by frequency quadrupling using two successive second-harmonic generation stages with actively stabilized ring resonators and nonlinear crystals. The laser system can deliver more than 15 mW of UV laser power under optimal conditions and requires little

  11. Surface modification of oxide layer on Si using highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M., E-mail: msakurai@kobe-u.ac.jp [Department of Physics, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501 (Japan); Liu, S.; Sakai, S. [Department of Physics, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501 (Japan); Ohtani, S. [Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Terui, T. [National Institute of Information and Communications Technology, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Sakaue, H.A. [National Institute for Fusion Science, Oroshi-cho, Toki 509-5292 (Japan)

    2013-11-15

    Surface modification using highly charged ions is presented. The surface of a Si wafer which is covered with a native oxide layer is used as a sample. The sample was irradiated with Ar{sup 11+} ions at a fluence of 10{sup 13}–10{sup 14}/cm{sup 2}. The Ar{sup 11+} ions were obtained from an electron beam ion source (Kobe EBIS). The surface was investigated using secondary electron microscopy, X-ray photoelectron spectroscopy and high-resolution electron energy loss spectroscopy. The obtained results suggest that the native oxide layer is sputtered by the irradiation of Ar{sup 11+} ions and that the structural modification makes the density of the oxide layer lower and the electric conductivity higher.

  12. Multi-turn injection into a heavy-ion synchrotron in the presence of space charge

    CERN Document Server

    Appel, Sabrina

    2014-01-01

    For heavy-ion synchrotrons an efficient Multi-Turn Injection (MTI) from the injector linac is crucial in order to reach the specified currents using the available machine acceptance. The beam loss during the MTI must not exceed the limits determined by machine protection and by the vacuum requirements. Especially for low energy and intermediate charge state ions, the beam loss at the injection septum can cause a degradation of the vacuum and a corresponding reduction of the beam lifetime. In order to optimize the injection of intense beams a very detailed simulation model was developed. Besides the closed orbit bump, lattice errors, the position of the septum and other aperture limiting components the transverse space charge force is included self-consistently. The space charge force causes a characteristic shift of the optimum tunes and a smoothing of the phase space density.

  13. Charge exchange of medium energy H and He ions emerging from solid surfaces

    Science.gov (United States)

    Kitsudo, Y.; Shibuya, K.; Nishimura, T.; Hoshino, Y.; Vickridge, I.; Kido, Y.

    2009-02-01

    Charge exchange of medium energy H and He ions emerging from clean solid surfaces is studied extensively using a toroidal electrostatic analyzer with an excellent energy resolution. The charge distributions of He ions scattered from sub-monolayers near a surface are non-equilibrated, resulting in a surface peak even for poly-crystal solids. By solving simultaneous rate equations numerically, we derive electron capture and loss cross sections for Ni and Au surfaces. Based on a free electron gas model, non-equilibrated He+ fractions dependent on emerging angle reveals uniform electronic surfaces for metals and corrugated surfaces for Si and graphite with covalent bonds. It is also found that equilibrium charge fractions of H+ are independent of surface materials (Z2) and in contrast equilibrium He+ fractions depend pronouncedly on Z2. The data obtained are compared with semi-empirical formulas.

  14. The evolution of ion charge states in cathodic vacuum arc plasmas: a review

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2011-12-18

    Cathodic vacuum arc plasmas are known to contain multiply charged ions. 20 years after “Pressure Ionization: its role in metal vapour vacuum arc plasmas and ion sources” appeared in vol. 1 of Plasma Sources Science and Technology, it is a great opportunity to re-visit the issue of pressure ionization, a non-ideal plasma effect, and put it in perspective to the many other factors that influence observable charge state distributions, such as the role of the cathode material, the path in the density-temperature phase diagram, the “noise” in vacuum arc plasma as described by a fractal model approach, the effects of external magnetic fields and charge exchange collisions with neutrals. A much more complex image of the vacuum arc plasma emerges putting decades of experimentation and modeling in perspective.

  15. Laser acceleration of electrons to giga-electron-volt energies using highly charged ions.

    Science.gov (United States)

    Hu, S X; Starace, Anthony F

    2006-06-01

    The recent proposal to use highly charged ions as sources of electrons for laser acceleration [S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002)] is investigated here in detail by means of three-dimensional, relativistic Monte Carlo simulations for a variety of system parameters, such as laser pulse duration, ionic charge state, and laser focusing spot size. Realistic laser focusing effects--e.g., the existence of longitudinal laser field components-are taken into account. Results of spatial averaging over the laser focus are also presented. These numerical simulations show that the proposed scheme for laser acceleration of electrons from highly charged ions is feasible with current or near-future experimental conditions and that electrons with GeV energies can be obtained in such experiments.

  16. Role of nonthermal electrons on dust ion acoustic double layer with variable dust charge

    Science.gov (United States)

    Borah, Prathana; Gogoi, Deepshikha; Das, Nilakshi

    2016-01-01

    The presence of nonthermal electron may play an important role in the formation of nonlinear structures in plasma. On the other hand, fluctuation of dust charge is an important and unique feature of complex plasma and it gives rise to a dissipative effect in the system leading to the formation of nonlinear structures due to the balance between nonlinearity and dissipation. In this paper, the propagation of nonlinear dust ion acoustic (DIA) wave in unmagnetized collisionless dusty plasma consisting of ions, nonthermal electrons and dust grains with variable negative charge has been investigated using the Sagdeev potential method. The existence domain of rarefactive double layer (DL) in the DIA wave has been investigated for the range of plasma parameters. The real potential has been obtained by numerically solving the Poisson equation and dust charging equation. It is observed that the presence of nonthermal electrons strengthens the DIA DL.

  17. Development of diagnostic method for deep levels in semiconductors using charge induced by heavy ion microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Yuya [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamoto, Naoya; Onoda, Shinobu; Makino, Takahiro; Koka, Masashi; Kamiya, Tomihiro [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Kojima, Kazutoshi [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Hanaizumi, Osamu [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Ohshima, Takeshi, E-mail: ohshima.takeshi20@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2015-04-01

    Highlights: •Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed. •HIQTS system is connected with 3 MeV Tandem accelerator at JAEA Takasaki. •Defects in 4H Silicon Carbide (SiC) Schottky diodes were evaluated using HIQTS. •6H-SiC pn diodes with partial damaged areas were also evaluated using HIQTS. -- Abstract: In order to study defects that create deep energy levels in semiconductors which act as carrier traps, Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed at JAEA Takasaki. The HIQTS system was connected with the heavy ion microbeam line of the 3 MV Tandem accelerator. Using the HIQTS system, deep levels in 4H-SiC Schottky barrier diodes irradiated with 3 MeV-protons were studied. As a result, a HIQTS peak with an activation energy of 0.73 eV was observed. In addition, local damage in 6H-SiC pn diodes partially irradiated with 12 MeV-O ion microbeams was studied using HIQTS. With increasing 12 MeV-O ion fluence, charge collection efficiency in locally damaged areas decreased and HIQTS signals increased.

  18. Laboratory measurements of K-shell transitions in highly charged iron ions

    Science.gov (United States)

    Steinbrügge, René; Rudolph, Jan K.; Bernitt, Sven; Crespo López-Urrutia, José R.

    2016-09-01

    The x-ray spectra of celestial sources show a plethora of features originating from highly charged ions. These can be used to determine the flow, temperatures, and abundances of elements in the star, which are needed to benchmark-stellar evolution models. However, the underlying atomic transition data of the ions are often only known by theoretical calculations, thus testing them in laboratory measurements is crucial. We present our measurements of energies, natural linewidths, radiative and Auger decay rates for K-shell transitions in He-like to F-like iron ions. In this experiments, an electron beam ion trap was used to create a target of highly charged ions, which were resonantly excited by monochromatic light from the PETRA III synchrotron radiation source. Fluorescence was observed while simultaneously detecting photoionization by the change in the ionic charge state. This method, combined with the high resolution of the monochromator used, yields uncertainties on the ppm-level for the excitation energies and below 10% for the linewidths and transition rates, thus providing a valuable benchmark for atomic theory.

  19. Thermodynamics of Ion Pair Formations Between Charged Poly(Amino Acid)s.

    Science.gov (United States)

    Petrauskas, Vytautas; Maximowitsch, Eglė; Matulis, Daumantas

    2015-09-17

    Electrostatic interactions between the positively and negatively charged amino acids in proteins play an important role in macromolecular stability, binding, and recognition. Numerous amino acids in proteins are ionizable and may exist in negatively (e.g., Glu, Asp, Cys, Tyr) or positively (e.g., Arg, Lys, His, Orn) charged form dependent on pH and their pKas. In this work, isothermal titration calorimetry was used to determine the average standard values of thermodynamic parameters (the Gibbs free energy, enthalpy, entropy, and the heat capacity) of interaction between the positively charged amino acid homopolymers (polyarginine, polylysine, and polyornithine) and the negatively charged homopolymers (polyaspartic and polyglutamic acids). These values are of potential use in the computational models of interacting proteins and other biological macromolecules. The study showed that oppositely charged poly(amino acid)s bound each other with the stoichiometry of one positive to one negative charge. Arginine bound to the negatively charged amino acids with exothermic enthalpy and higher affinity than lysine. This result also suggests that positive charges in proteins should not be considered entirely equivalent if carried by lysine or arginine. The difference in binding energy of arginine and lysine association with the negatively charged amino acids was attributed to the enthalpy of the second ionic hydrogen bond formation between the guanidine and carboxylic groups. Despite the favorable enthalpic contribution, all such ion pair formation reactions were largely entropy-driven. Consistent with previously observed ionic interactions, the positive heat capacity was always observed during the amino acid ion pair formation.

  20. On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization.

    Science.gov (United States)

    Konermann, Lars; Rodriguez, Antony D; Liu, Jiangjiang

    2012-08-07

    Electrospray ionization (ESI) of native proteins results in a narrow distribution of low protonation states. ESI for these folded species proceeds via the charged residue mechanism. In contrast, ESI of unfolded proteins yields a wide distribution of much higher charge states. The current work develops a model that can account for this effect. Recent molecular dynamics simulations revealed that ESI for unfolded polypeptide chains involves protein ejection from nanodroplets, representing a type of ion evaporation mechanism (IEM). We point out the analogies between this IEM, and the dissociation of gaseous protein complexes after collisional activation. The latter process commences with unraveling of a single subunit, in concert with Coulombically driven proton transfer. The subunit then separates from the residual complex as a highly charged ion. We propose that similar charge equilibration events accompany the IEM of unfolded proteins, thereby causing the formation of high ESI charge states. A bead chain model is used for examining how charge is partitioned as protein and droplet separate. It is shown that protein ejection from differently sized ESI droplets generates a range of protonation states. The predicted behavior agrees well with experimental data.

  1. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    CERN Document Server

    Shah, Chintan; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; López-Urrutia, José R Crespo; Tashenov, Stanislav

    2016-01-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron beam ion trap with the electron beam energy adjusted to recombination resonances in order to produce $K\\alpha$ x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted--wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-$Z$ element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  2. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  3. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin T.

    1999-12-17

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  4. Ion Compensation for Space Charge in the Helical Electron Beams of Gyrotrons

    Science.gov (United States)

    Manuilov, V. N.; Semenov, V. E.

    2016-06-01

    We solve analytically the problem about ion compensation for the space charge of a helical electron beam in a gyrotron operated in the long-pulse regime. Elementary processes, which take place during ionization of residual gas in the tube under typical pressures of 10-6-10-7 mm Hg, are considered. It is shown that distribution of the space charge is affected mainly by the electrons of the initial beam and slow-moving ions produced by ionization of the residual gas. Steady-state density of ions in the operating space of the gyrotron after the end of the transitional processes is found, as well as the electron density profile in the channel of electron beam transportation. The results obtained allow us to evaluate the pitch-factor variations caused by partial compensations for the potential "sagging" in the gyrotron cavity, thus being useful for analysis of starting currents, efficiency, and mode competition in high-power gyrotrons.

  5. Energy and charge dependence of the rate of electron-ion recombination in cold magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H.; Schuch, R.; Zong, W.; Justiniano, E.; DeWitt, D.R.; Lebius, H.; Spies, W. [Stockholm Univ., Atomic Physics Dept., Stockholm (Sweden)

    1997-07-28

    We have measured electron-ion recombination rates for bare ions of D{sup +}, He{sup 2+}, N{sup 7+}, Ne{sup 10+} and Si{sup 14+} in a storage ring. For the multi-charged ions an unexpected energy dependence was found, showing a strong increase of the measured rates over the calculated radiative recombination rate for electron beam detuning energies below the electron beam transverse temperature. The measured enhanced rates increase approximately as Z{sup 2.8} with the charge state Z. A comparison of these rates with theoretical predictions for collisional-radiative recombination in the cold magnetized electron plasma, in particular three-body recombination including radiative de-excitation of electrons in Rydberg levels, is made. (author).

  6. Highly charged ions in a dilute plasma: an exact asymptotic solution involving strong coupling.

    Science.gov (United States)

    Brown, Lowell S; Dooling, David C; Preston, Dean L

    2006-05-01

    The ion sphere model introduced long ago by Salpeter is placed in a rigorous theoretical setting. The leading corrections to this model for very highly charged but dilute ions in thermal equilibrium with a weakly coupled, one-component background plasma are explicitly computed, and the subleading corrections shown to be negligibly small. This is done using the effective field theory methods advocated by Brown and Yaffe. Thus, corrections to nuclear reaction rates that such highly charged ions may undergo can be computed precisely. Moreover, their contribution to the equation of state can also be computed with precision. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models in this limit.

  7. EUV spectra of highly-charged ions W$^{54+}$-W$^{63+}$ relevant to ITER diagnostics

    CERN Document Server

    Ralchenko, Yu; Tan, J N; Gillaspy, J D; Pomeroy, J M; Reader, J; Feldman, U; Holland, G E

    2008-01-01

    We report the first measurements and detailed analysis of extreme ultraviolet (EUV) spectra (4 nm to 20 nm) of highly-charged tungsten ions W$^{54+}$ to W$^{63+}$ obtained with an electron beam ion trap (EBIT). Collisional-radiative modelling is used to identify strong electric-dipole and magnetic-dipole transitions in all ionization stages. These lines can be used for impurity transport studies and temperature diagnostics in fusion reactors, such as ITER. Identifications of prominent lines from several W ions were confirmed by measurement of isoelectronic EUV spectra of Hf, Ta, and Au. We also discuss the importance of charge exchange recombination for correct description of ionization balance in the EBIT plasma.

  8. Charge generation by heavy ions in power MOSFETs, burnout space predictions, and dynamic SEB sensitivity

    Science.gov (United States)

    Stassinopoulos, E. G.; Brucker, G. J.; Calvel, P.; Baiget, A.; Peyrotte, C.; Gaillard, R.

    1992-01-01

    The transport, energy loss, and charge production of heavy ions in the sensitive regions of IRF 150 power MOSFETs are described. The dependence and variation of transport parameters with ion type and energy relative to the requirements for single event burnout in this part type are discussed. Test data taken with this power MOSFET are used together with analyses by means of a computer code of the ion energy loss and charge production in the device to establish criteria for burnout and parameters for space predictions. These parameters are then used in an application to predict burnout rates in a geostationary orbit for power converters operating in a dynamic mode. Comparisons of rates for different geometries in simulating SEU (single event upset) sensitive volumes are presented.

  9. 16th international conference on the physics of highly charged ions

    Science.gov (United States)

    Fritzsche, Stephan; Stöhlker, Thomas; Surzhykov, Andrey

    2013-09-01

    This volume contains the proceedings of the 16th International Conference on the Physics of Highly Charged Ions (HCI 2012) held at the Ruprecht-Karls University in Heidelberg, Germany, 2-7 September 2012 (figure 1). This conference has been part of a biannual conference series that was started in Stockholm in 1982 and, since then, has been organized at various places around the world, with recent venues in Belfast (UK, 2006), Tokyo (Japan, 2008) and Shanghai (China, 2010). The physics of highly charged ions (HCI) is a rapidly developing and attractive field of research with impact upon many other research disciplines. Apart from fundamental studies on the structure and dynamics of matter in extreme fields, or the search for physics beyond the standard model, detailed knowledge about the properties and behavior of HCI is crucial for other areas, from astro- and solar physics to hot plasma and fusion research to extreme ultra-violet and ion lithography, or even to medical research, to name just a few. In fusion research, for example, of whether tokamak, stellarator or confinement fusion facilities, most models and diagnostics deeply rely on the understanding of HCI and the (theoretical) prediction of accurate atomic data for these systems. In life science, moreover, ion therapy or the laser acceleration of ions and electrons may help save and improve the quality of life in the future. Many of these and further topics are addressed in these proceedings. After 30 years, the HCI conference series, and especially the meeting in Heidelberg, is appreciated much as a key forum for bringing together senior experts with students, young researchers and scientists from related disciplines who make use and give back impact upon the research with HCI. More than 250 scientists from 23 countries participated in HCI 2012 and presented the current status of the field. About one third of them were post-graduate students, showing that the field attracts many young and talented

  10. Molecular dynamics investigation into the electric charge effect on the operation of ion-based carbon nanotube oscillators

    Science.gov (United States)

    Ansari, R.; Ajori, S.; Sadeghi, F.

    2015-10-01

    The fabrication of nanoscale oscillators working in the gigahertz (GHz) range and beyond has now become the focal center of interest to many researchers. Motivated by this issue, this paper proposes a new type of nano-oscillators with enhanced operating frequency in which both the inner core and outer shell are electrically charged. To this end, molecular dynamics (MD) simulations are performed to investigate the mechanical oscillatory behavior of ions, and in particular chloride ion, tunneling through electrically charged carbon nanotubes (CNTs). It is assumed that the electric charges with similar sign and magnitude are evenly distributed on two ends of nanotube. The interatomic interactions between carbon atoms and van der Waals (vdW) interactions between ion and nanotube are respectively modeled by Tersoff-Brenner and Lennard-Jones (LJ) potential functions, whereas the electrostatic interactions between ion and electric charges are modeled by Coulomb potential function. A comprehensive study is conducted to get an insight into the effects of different parameters such as sign and magnitude of electric charges, nanotube radius, nanotube length and initial conditions (initial separation distance and velocity) on the oscillatory behavior of chloride ion-charged CNT oscillators. It is shown that, the chloride ion frequency inside negatively charged CNTs is lower than that inside positively charged ones with the same magnitude of electric charge, while it is higher than that inside uncharged CNTs. It is further observed that, higher frequencies are generated at higher magnitudes of electric charges distributed on the nanotube.

  11. Soft-X-ray spectra of highly charged Os, Bi, Th, and U ions in an electron beam ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E; Beiersdorfer, P; Fournier, K B; Chen, M H

    2004-12-03

    Systematic variation of the electron-beam energy in an electron-beam ion trap has been employed to produce soft-X-ray spectra of Os, Bi, Th, and U with highest charge states ranging up to Ni-like ions. Guided by relativistic atomic structure calculations, the strongest lines have been identified with {Delta}n = 0 (n = 4 to n' = 4) transitions in Rb- to Cu-like ions. The rather weak 4p-4d transitions are much less affected by QED contributions than the dominant 4s-4p transitions. Our wavelength measurements consequently provide benchmarks with and (almost) without QED. Because the radiative corrections are not very sensitive to the number of electrons in the valence shell, our data, moreover, provide benchmarks for the evaluation of electron-electron interactions.

  12. Projectile- and charge-state-dependent electron yields from ion penetration of solids as a probe of preequilibrium stopping power

    DEFF Research Database (Denmark)

    Rothard, H.; Schou, Jørgen; Groeneveld, K.-O.

    1992-01-01

    Kinetic electron-emission yields gamma from swift ion penetration of solids are proportional to the (electronic) stopping power gamma approximately Beta-S*, if the preequilibrium evolution of the charge and excitation states of the positively charged ions is taken into account. We show...... that the concept of the preequilibrium near-surface stopping S* can be applied successfully to describe the dependence of the ion-induced electron yields on the projectile atomic number Z(P) and on the charge states q(i) of the incoming ions. We discuss the implementation of this concept into Schou's transport...

  13. Charged Polymer-Coated Separators by Atmospheric Plasma-Induced Grafting for Lithium-Ion Batteries.

    Science.gov (United States)

    Han, Mina; Kim, Dong-Won; Kim, Yeong-Cheol

    2016-10-05

    A simple and fast method of atmospheric plasma-induced grafting was applied over a polyethylene membrane to enhance its performance as a separator for lithium-ion batteries. The process of grafting has formed a thin, durable, and uniform layer on the surface of the porous membrane. The charges of grafted polymers affected the performance of batteries in many ways besides the change of hydrophilicity. Negative charges in polymers improve the capacity retention of batteries and the uniformity of the SEI layer. On the other hand, the electrostatic attraction between different charges contributed to small increases of thermal stability and mechanical strength of separators. Polyampholyte was grafted by using the mixtures of monomers, and the composition of the grafted layer was optimized. The formation of stable uniform SEI layers and the marked improvement in capacity retention were observed in the full cell tests of the lithium battery with the polyampholyte-grafted separators when the polyampholyte has a negative net charge.

  14. Charge stripping of U238 ion beam by helium gas stripper

    Science.gov (United States)

    Imao, H.; Okuno, H.; Kuboki, H.; Yokouchi, S.; Fukunishi, N.; Kamigaito, O.; Hasebe, H.; Watanabe, T.; Watanabe, Y.; Kase, M.; Yano, Y.

    2012-12-01

    Development of a nondestructive, efficient electric-charge-stripping method is a key requirement for next-generation high-intensity heavy-ion accelerators such as the RIKEN Radioactive-Isotope Beam Factory. A charge stripper employing a low-Z gas is an important candidate applicable to high-intensity uranium beams for replacing carbon-foil strippers. In this study, a high-beam-transmission charge-stripping system employing helium gas for U238 beams injected at 10.8MeV/u was developed and demonstrated for the first time. The charge-state evolution measured using helium in a thickness range of 0.24-1.83mg/cm2 is compared with theoretical predictions. Energy attenuation and energy spread due to the helium stripper are also investigated.

  15. Prospects for advanced electron cyclotron resonance and electron beam ion source charge breeding methods for EURISOL

    Energy Technology Data Exchange (ETDEWEB)

    Delahaye, P.; Jardin, P.; Maunoury, L.; Traykov, E.; Varenne, F. [GANIL, CEA/DSM-CNRS/IN2P3, Bd. Becquerel, BP 55027, 14076 Caen Cedex 05 (France); Galata, A.; Porcellato, A. M.; Prete, G. F. [INFN-Laboratori Nazionali di Legnaro, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Angot, J.; Lamy, T.; Sortais, P.; Thuillier, T. [LPSC Grenoble, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Ban, G. [LPC Caen, 6 bd Marechal Juin, 14050 Caen Cedex (France); Celona, L.; Lunney, D. [INFN-Laboratori Nazionali del Sud, via S.Sofia 62, 95125 Catania (Italy); Choinski, J.; Gmaj, P.; Jakubowski, A.; Steckiewicz, O. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5a, 02 093 Warsaw (Poland); Kalvas, T. [Department of Physics, University of Jyvaeskylae, PB 35 (YFL) 40351 Jyvaeskylae (Finland); and others

    2012-02-15

    As the most ambitious concept of isotope separation on line (ISOL) facility, EURISOL aims at producing unprecedented intensities of post-accelerated radioactive isotopes. Charge breeding, which transforms the charge state of radioactive beams from 1+ to an n+ charge state prior to post-acceleration, is a key technology which has to overcome the following challenges: high charge states for high energies, efficiency, rapidity and purity. On the roadmap to EURISOL, a dedicated R and D is being undertaken to push forward the frontiers of the present state-of-the-art techniques which use either electron cyclotron resonance or electron beam ion sources. We describe here the guidelines of this R and D.

  16. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn; Qian, C.; Sun, L. T.; Zhang, X. Z.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.; Zhan, W. L. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); Fang, X.; Guo, J. W.; Yang, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 73000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, B.; Ruan, L. [Institute of Electrical Engineering, CAS, Beijing 100190 (China); Xie, D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-02-15

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O{sup 7+}, 620 eμA of Ar{sup 11+}, 430 eμA of Ar{sup 12+}, 430 eμA of Xe{sup 20+}, and so on. The comparison will be discussed in the paper.

  17. Investigation of ion beam space charge compensation with a 4-grid analyzer

    Science.gov (United States)

    Ullmann, C.; Adonin, A.; Berezov, R.; Chauvin, N.; Delferrière, O.; Fils, J.; Hollinger, R.; Kester, O.; Senée, F.; Tuske, O.

    2016-02-01

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system of the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.

  18. Investigation of ion beam space charge compensation with a 4-grid analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, C., E-mail: c.ullmann@gsi.de; Adonin, A.; Berezov, R.; Fils, J.; Hollinger, R.; Kester, O. [GSI, Darmstadt (Germany); Chauvin, N.; Delferrière, O.; Senée, F.; Tuske, O. [CEA, Saclay (France)

    2016-02-15

    Experiments to investigate the space charge compensation of pulsed high-current heavy ion beams are performed at the GSI ion source text benches with a 4-grid analyzer provided by CEA/Saclay. The technical design of the 4-grid analyzer is revised to verify its functionality for measurements at pulsed high-current heavy ion beams. The experimental investigation of space charge compensation processes is needed to increase the performance and quality of current and future accelerator facilities. Measurements are performed directly downstream a triode extraction system mounted to a multi-cusp ion source at a high-current test bench as well as downstream the post-acceleration system of the high-current test injector (HOSTI) with ion energies up to 120 keV/u for helium and argon. At HOSTI, a cold or hot reflex discharge ion source is used to change the conditions for the measurements. The measurements were performed with helium, argon, and xenon and are presented. Results from measurements with single aperture extraction systems are shown.

  19. Charged Particle, Photon Multiplicity, and Transverse Energy Production in High-Energy Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Raghunath Sahoo

    2015-01-01

    Full Text Available We review the charged particle and photon multiplicities and transverse energy production in heavy-ion collisions starting from few GeV to TeV energies. The experimental results of pseudorapidity distribution of charged particles and photons at different collision energies and centralities are discussed. We also discuss the hypothesis of limiting fragmentation and expansion dynamics using the Landau hydrodynamics and the underlying physics. Meanwhile, we present the estimation of initial energy density multiplied with formation time as a function of different collision energies and centralities. In the end, the transverse energy per charged particle in connection with the chemical freeze-out criteria is discussed. We invoke various models and phenomenological arguments to interpret and characterize the fireball created in heavy-ion collisions. This review overall provides a scope to understand the heavy-ion collision data and a possible formation of a deconfined phase of partons via the global observables like charged particles, photons, and the transverse energy measurement.

  20. Surface Disorder of GaN Irradiated by Highly Charged Arq+-Ions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Qing; ZHANG Chong-Hong; YANG Yi-Tao; YAO Cun-Feng; LI Bing-Sheng; SUN You-Mei; SONG Shu-Jian

    2009-01-01

    The surface damage to gallium nitride films irradiated by Arq+ (6 < q < 16) ions at room temperature is studied by the atomic force microscopy.It is found that when charge state exceeds a threshold value,significant swelling was turned into obvious erosion in the irradiated region.The surface change of the irradiated region strongly depends on the charge state and ion fluence.On the other hand,surface change is less dependent on the kinetic energy nearly in the present experimental range (120keV≤Ek≤220 keV).For q≤14,surface of the irradiated region is covered with an amorphous layer,rough and bulgy.A step-up appears between the irradiated and un-irradiated region. Moreover,the step height and the surface roughness are functions of the ion dose and charge state,and increase with the increase of dose and charge state.Especially at and near boundary,a sharp bump like ridges in irradiated areas is observed,and there appear characteristic grooves in un-irradiated areas.For q=16,surface of the irradiated region was etched and erased.

  1. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Science.gov (United States)

    Beebe, E.; Alessi, J.; Binello, S.; Kanesue, T.; McCafferty, D.; Morris, J.; Okamura, M.; Pikin, A.; Ritter, J.; Schoepfer, R.

    2015-01-01

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au32+ in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au32+ fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  2. Reliable operation of the Brookhaven EBIS for highly charged ion production for RHIC and NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, E., E-mail: beebe@bnl.gov; Alessi, J., E-mail: beebe@bnl.gov; Binello, S., E-mail: beebe@bnl.gov; Kanesue, T., E-mail: beebe@bnl.gov; McCafferty, D., E-mail: beebe@bnl.gov; Morris, J., E-mail: beebe@bnl.gov; Okamura, M., E-mail: beebe@bnl.gov; Pikin, A., E-mail: beebe@bnl.gov; Ritter, J., E-mail: beebe@bnl.gov; Schoepfer, R., E-mail: beebe@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-01-09

    An Electron Beam Ion Source for the Relativistic Heavy Ion Collider (RHIC EBIS) was commissioned at Brookhaven in September 2010 and since then it routinely supplies ions for RHIC and NASA Space Radiation Laboratory (NSRL) as the main source of highly charged ions from Helium to Uranium. Using three external primary ion sources for 1+ injection into the EBIS and an electrostatic injection beam line, ion species at the EBIS exit can be switched in 0.2 s. A total of 16 different ion species have been produced to date. The length and the capacity of the ion trap have been increased by 20% by extending the trap by two more drift tubes, compared with the original design. The fraction of Au{sup 32+} in the EBIS Au spectrum is approximately 12% for 70-80% electron beam neutralization and 8 pulses operation in a 5 Hertz train and 4-5 s super cycle. For single pulse per super cycle operation and 25% electron beam neutralization, the EBIS achieves the theoretical Au{sup 32+} fractional output of 18%. Long term stability has been very good with availability of the beam from RHIC EBIS during 2012 and 2014 RHIC runs approximately 99.8%.

  3. Dust charging processes with a Cairns-Tsallis distribution function with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Abid, A. A., E-mail: abidaliabid1@hotmail.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Khan, M. Z., E-mail: mzk-qau@yahoo.com [Applied Physics Department, Federal Urdu University of Arts, Science and Technology, Islamabad Campus, Islamabad 45320 (Pakistan); Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yap, S. L. [Plasma Technology Research Center, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia); Terças, H., E-mail: hugo.tercas@tecnico.ul.pt [Physics of Information Group, Instituto de Telecomunicações, Av. Rovisco Pais, Lisbon 1049-001 (Portugal); Mahmood, S. [Science Place, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A2 (Canada)

    2016-01-15

    Dust grain charging processes are presented in a non-Maxwellian dusty plasma following the Cairns-Tsallis (q, α)–distribution, whose constituents are the electrons, as well as the positive/negative ions and negatively charged dust grains. For this purpose, we have solved the current balance equation for a negatively charged dust grain to achieve an equilibrium state value (viz., q{sub d} = constant) in the presence of Cairns-Tsallis (q, α)–distribution. In fact, the current balance equation becomes modified due to the Boltzmannian/streaming distributed negative ions. It is numerically found that the relevant plasma parameters, such as the spectral indexes q and α, the positive ion-to-electron temperature ratio, and the negative ion streaming speed (U{sub 0}) significantly affect the dust grain surface potential. It is also shown that in the limit q → 1 the Cairns-Tsallis reduces to the Cairns distribution; for α = 0 the Cairns-Tsallis distribution reduces to pure Tsallis distribution and the latter reduces to Maxwellian distribution for q → 1 and α = 0.

  4. HITRAP - a facility for experiments on heavy highly charged ions and on antiprotons

    Energy Technology Data Exchange (ETDEWEB)

    Andjelkovic, Z; Barth, W; Brantjes, N P M; Braeuning-Demian, A; Dahl, L; Herfurth, F; Kester, O; Kluge, H J; Koszudowski, S; Kozhuharov, C; Maero, G; Noertershaeuser, W [GSI, Darmstadt (Germany); Birkl, G [Technische Universitaet Darmstadt (Germany); Blank, I; Goetz, S [Universitaet Freiburg (Germany); Blaum, K [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Bodewits, E; Hoekstra, R [KVI Groningen (Netherlands); Church, D [Texas AM University, Texas (United States); Pfister, J, E-mail: w.quint@gsi.d [Universitaet Frankfurt (Germany)

    2009-11-01

    HITRAP is a facility for very slow highly-charged heavy ions at GSI. HITRAP uses the GSI relativistic ion beams, the Experimental Storage Ring ESR for electron cooling and deceleration to 4 MeV/u, and consists of a combination of an interdigital H-mode (IH) structure with a radiofrequency quadrupole structure for further deceleration to 6 keV/u, and a Penning trap for accumulation and cooling to low temperatures. Finally, ion beams with low emittance will be delivered to a large variety of atomic and nuclear physics experiments. Presently, HITRAP is in the commissioning phase. The deceleration of heavy-ion beam from the ESR storage ring to an energy of 500 keV/u with the IH structure has been demonstrated and studied in detail. The commissioning of the RFQ structure and the cooler trap is ongoing.

  5. Charge-exchange recombination spectroscopy of the plasma ion temperature at the T-10 tokamak

    Science.gov (United States)

    Krupin, V. A.; Tugarinov, S. N.; Barsukov, A. G.; Dnestrovskij, A. Yu.; Klyuchnikov, L. A.; Korobov, K. V.; Krasnyanskii, S. A.; Naumenko, N. N.; Nemets, A. R.; Sushkov, A. V.; Tilinin, G. N.

    2013-08-01

    Charge-exchange recombination spectroscopy (CXRS) based on a diagnostic neutral beam has been developed at the T-10 tokamak. The diagnostics allows one to measure the ion temperature profile in the cross section of the plasma column. In T-10 experiments, the measurement technique was adjusted and the elements of the CXRS diagnostics for ITER were tested. The used spectroscopic equipment makes it possible to reliably determine the ion temperature from the Doppler broadening of impurity lines (helium, carbon), as well as of the spectral lines of the working gas. The profiles of the plasma ion temperature in deuterium and helium discharges were measured at different plasma currents and densities, including with the use of active Doppler measurements of lines of different elements. The validity and reliability of ion temperature measurements performed by means of the developed CXRS diagnostics are analyzed.

  6. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    CERN Document Server

    Tanaka, Koichi; Zhou, Xue; Anders, André

    2015-01-01

    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  7. Fragmentation of amino acids induced by collisions with low-energy highly charged ions

    Science.gov (United States)

    Piekarski, D. G.; Maclot, S.; Domaracka, A.; Adoui, L.; Alcamí, M.; Rousseau, P.; Díaz-Tendero, S.; Huber, B. A.; Martín, F.

    2014-04-01

    Fragmentation of amino acids NH2-(CH2)n-COOH (n=1 glycine; n=2 β-alanine and n=3 γ-aminobutyric acid GABA) following collisions with slow highly charged ions has been studied in the gas phase by a combined experimental and theoretical approach. In the experiments, a multi-coincidence detection method was used to deduce the charge state of the molecules before fragmentation. Quantum chemistry calculations have been carried out in the basis of the density functional theory and ab initio molecular dynamics. The combination of both methodologies is essential to unambiguously unravel the different fragmentation pathways.

  8. The interactions of high-energy, highly charged Xe ions with buckyballs

    Energy Technology Data Exchange (ETDEWEB)

    Ali, R.; Berry, H.G.; Cheng, S. [and others

    1994-12-31

    Ionization and fragmentation have been measured for C{sub 60} molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented.

  9. Advances in Charge-Compensation in Secondary Ion Mass Spectrometry (SIMS)

    Science.gov (United States)

    Hervig, R. L.; Chen, J.; Schauer, S.; Stanley, B. D.; Moore, G. M.; Roggensack, K.

    2012-12-01

    In secondary ion mass spectrometry (SIMS), a sample is bombarded by a charged particle beam (the primary ion) and sputtered positive or negative secondary ions are analyzed in a mass spectrometer. When the target is not conducting (like many geological materials), sample charging can result in variable deflection of secondary ions away from the mass spectrometer and a low, unstable, or absent signal. Applying a thin conducting coat (e.g., C, Au) to polished samples is required, and if the primary ion beam is negatively-charged, the build-up of negative charge can be alleviated by secondary electrons draining to the conducting coat at the edge of the crater (if a positive potential is applied to the sample for the collection of positive secondary ions) or accelerated away from the crater (if a negative potential is applied for negative ion study). Unless the sputtered crater in the conducting coat becomes too large, sample charging can be kept at a controllable level, and high-quality trace element analyses and isotope ratios have been obtained using this technique over the past 3+ decades. When a positive primary beam is used, the resulting build-up of positive charge in the sample requires an electron gun to deliver sufficient negative charge to the sputtered crater. While there are many examples of successful analyses using this approach, the purpose of this presentation is to describe a very simple technique for aligning the electron gun on Cameca nf and 1270/80 SIMS instruments. This method allows reproducible analyses of insulating phases with a Cs+ primary beam and detection of negative secondary ions. Normally, the filament voltage on the E-gun is the same as the sample voltage; thus electrons do not strike the sample except when a positive charge has built up (e.g., in the analysis crater!). In this method, we decrease the sample voltage by 3 or more kV, so that the impact energy of the electrons is sufficient to induce a cathodoluminescent (CL) image on an

  10. Atomic physics with highly-charged ions at the future FAIR facility: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany) and Institut fuer Kernphysik, University of Frankfurt (Germany)]. E-mail: t.stoehlker@gsi.de; Beyer, H.F. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning, H. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Brandau, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Hagmann, S. [Institut fuer Kernphysik, University of Frankfurt (Germany); Kozhuharov, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kluge, H.J. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kuehl, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Liesen, D. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Mann, R. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Noertershaeuser, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Quint, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Schramm, U. [LMU, Munich (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden)

    2007-08-15

    Key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and set-ups required to reach the physics goals is given.

  11. Atomic physics with highly-charged ions at the future FAIR facility. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Beyer, H.F.; Braeuning, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (DE)] (and others)

    2006-11-15

    The key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and setups required to reach the physics goals is given. (orig.)

  12. Simulations of ion velocity distribution functions taking into account both elastic and charge exchange collisions

    Science.gov (United States)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Based on accurate representation of the He+-He angular differential scattering cross sections consisting of both elastic and charge exchange collisions, we performed detailed numerical simulations of the ion velocity distribution functions (IVDF) by Monte Carlo collision method (MCC). The results of simulations are validated by comparison with the experimental data of the ion mobility and the transverse diffusion. The IVDF simulation study shows that due to significant effect of scattering in elastic collisions IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions.

  13. X-ray characterization of surfaces irradiated with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Briand, J.P. [Laboratoire Kastler Brossel, Universite P. et M. Curie, Paris (France); Universite P. et M. Curie, Paris (France); Ion Surface Advanced Processes (ISAP) muE., 2 Square Francois Couperin, 92160 Antony (France)], E-mail: jpbriand920@aol.com; Benhachoum, M. [Universite P. et M. Curie, Paris (France)

    2009-02-15

    Highly charged ions (HCI) approaching, touching or penetrating dielectric surfaces extract many electrons of the solid leading to the formation of permanent surface modifications. The ions which capture the electrons in their outermost shells form hollow atoms which emit X-rays during their decay to the ground state. In this paper one presents experiments showing that these X-rays) allow diagnosing the electric nature of the surfaces. HCI while modifying the structure of surfaces may then also be used to diagnose these changes on line or off line.

  14. Collision of highly charged ion with clusters. Simulation study for electronic systems

    Energy Technology Data Exchange (ETDEWEB)

    Yabana, Kazuhiro [Niigata Univ. (Japan)

    1997-05-01

    Collision of highly charged ion with cluster, for example, collision of C{sub 60}-Ar{sup 8+} at E=80 KeV, was simulated by the time-dependence Kohn-Shame equation. The distribution of electron densities and the self-consistent potential were obtained. A part of C{sub 60} potential curve became depressed by the Coulomb force of ion, so that the saddle point was produced on the potential. The behavior of electron transfer on the saddle point was agreed with the classical barrier model. Time-dependent density functional method was explained. (S.Y.)

  15. Microcalorimeter/EBIT measurements of X-ray spectra of highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Kink, I.; Porto, J.V.; Gillaspy, J.D. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Laming, J.M. [Naval Research Lab., Washington, DC (United States); Takacs, E. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Silver, E.; Schnopper, H.; Bandler, S.R.; Brickhouse, N.; Murray, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Barbera, M. [Osservatorio Astronomico G.S. Vaiana, Palermo (Italy); Madden, N.; Landis, D.; Beeman, J.; Haller, E.E. [Lawrence Berkeley National Lab., CA (United States)

    2001-07-01

    Spectra of highly charged Ar, Kr, Xe and Fe ions, produced in an electron beam ion trap (EBIT), have been recorded in a broad X-ray energy band (0.2 keV to 10 keV) with a microcalorimeter detector. The first analysis of the Kr spectra has been completed and most of the spectral lines have been identified as transitions of B- to Al-like Kr. Line intensity ratios of Fe XVII have been measured and compared with theoretical models. (orig.)

  16. Possibility of resonant capture of antiprotons by highly charged hydrogenlike ions

    Science.gov (United States)

    Genkin, M.; Lindroth, E.

    2009-02-01

    Recently, an experimental setup was proposed by Lapierre et al. [ Physics with ultra slow antiproton beams, AIP Conference Proceedings (2005), Vol. 793, p. 361] which would allow antiprotons and highly charged ions to collide repeatedly in an electron beam ion trap (EBIT) due to a nested trap configuration. As mentioned by the authors, such a setup may open the possibility to study antiproton capture into well-defined states through a resonant process which involves simultaneous electron excitation. In the present work, we give some theoretical estimations of the feasibility of that process.

  17. Creation of nanohillocks on CaF2 surfaces by single slow highly charged ions.

    Science.gov (United States)

    El-Said, A S; Heller, R; Meissl, W; Ritter, R; Facsko, S; Lemell, C; Solleder, B; Gebeshuber, I C; Betz, G; Toulemonde, M; Möller, W; Burgdörfer, J; Aumayr, F

    2008-06-13

    Upon impact on a solid surface, the potential energy stored in slow highly charged ions is primarily deposited into the electronic system of the target. By decelerating the projectile ions to kinetic energies as low as 150 x q eV, we find first unambiguous experimental evidence that potential energy alone is sufficient to cause permanent nanosized hillocks on the (111) surface of a CaF(2) single crystal. Our investigations reveal a surprisingly sharp and well-defined threshold of potential energy for hillock formation which can be linked to a solid-liquid phase transition.

  18. High-precision metrology of highly charged ions via relativistic resonance fluorescence.

    Science.gov (United States)

    Postavaru, O; Harman, Z; Keitel, C H

    2011-01-21

    Resonance fluorescence of laser-driven highly charged ions is investigated with regard to precisely measuring atomic properties. For this purpose an ab initio approach based on the Dirac equation is employed that allows for studying relativistic ions. These systems provide a sensitive means to test correlated relativistic dynamics, quantum electrodynamic phenomena and nuclear effects by applying x-ray lasers. We show how the narrowing of sidebands in the x-ray fluorescence spectrum by interference due to an additional optical driving can be exploited to determine atomic dipole or multipole moments to unprecedented accuracy.

  19. Decay rates of large-l Rydberg states of multiply charged ions approaching solid surfaces

    Science.gov (United States)

    Nedeljkovic, N. N.; Mirkovic, M. A.; Bozanic, D. K.

    2008-07-01

    We investigate the ionization of large-l multiply charged Rydberg ions approaching solid surfaces within the framework of decay model and applying the etalon equation method. The radial coordinate rho of the active electron is treated as a variational parameter and therefore the parabolic symmetry is preserved in this procedure. The complex eigenenergies are calculated from which the energy terms and the ionization rates are derived. We find that the large-l Rydberg states decay at approximately the same ion-surface distances as the low-l states oriented toward the vacuum and considerably closer to the surface comparing to the low-l states oriented towards the surface.

  20. Recent progress and applications of ion-exclusion/ion-exchange chromatography for simultaneous determination of inorganic anions and cations.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Tanaka, Kazuhiko

    2012-01-01

    One of the ultimate goals of ion chromatography is to determine both anions and cations found in samples with a single chromatographic run. In the present article, recent progress in ion-exclusion/ion-exchange chromatography for the simultaneous determinations of inorganic anions and cations are reviewed. Firstly, the principle and the control for the simultaneous separation and detection of analyte ions using ion-exclusion/cation-exchange chromatography with a weakly acidic cation-exchange column are outlined. Then, advanced chromatographic techniques in terms of analytical time, selectively and sensitivity are summarized. As a related method, ion-exclusion/anion-exchange chromatography with an anion-exchange column could be used for the simultaneous determination of inorganic nitrogen species, such as ammonium, nitrite and nitrate ions. Their usefulness and applications to water-quality monitoring and related techniques are also described.

  1. Charge exchange and energy loss of slowed down heavy ions channeled in silicon crystals; Echanges de charge et perte d'energie d'ions lourds ralentis, canalises dans des cristaux de silicium

    Energy Technology Data Exchange (ETDEWEB)

    Testa, E

    2005-10-15

    This work is devoted to the study of charge exchange processes and of the energy loss of highly charged heavy ions channeled in thin silicon crystals. The two first chapters present the techniques of heavy ion channeling in a crystal, the ion-electron processes and the principle of our simulations (charge exchange and trajectory of channeled ions). The next chapters describe the two experiments performed at the GSI facility in Darmstadt, the main results of which follow: the probability per target atom of the mechanical capture (MEC) of 20 MeV/u U{sup 91+} ions as a function of the impact parameter (with the help of our simulations), the observation of the strong polarization of the target electron gas by the study of the radiative capture and the slowing down of Pb{sup 81+} ions from 13 to 8,5 MeV/u in channeling conditions for which electron capture is strongly reduced. (author)

  2. Effect of Specific Adsorption of Ions on Electrokinetic Properties of Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    ZHANGHONG; ZHANGXIAO-NIAN

    1991-01-01

    Studies were carried out by using electrophoretic method on the effects of the specific adsorption of the anions,such as SO42-,PO43-,and F- ions,the cations,such as Ca2+,Mn2+,Zn2+,and Cu2+,ions,and the anions and cations coexisting,such as Zn2+ and SO42= ions,on electrokinetic properties of the red soils as typical variable charge soils in China concerning variation in the specific ion species and concentrations,with an emphasis on the interaction between soil colloid surfaces and the ions in soil solutions.The results showed that the adsorption of specific ions led to a very pronounced decrease in zeta potentials of the soil colloids and a shift of the IEPs to lower values for specific anions,and an obvious increase in zeta potentials of the soil colloids and a shift of the IEPs to higher values for specific cations.Under circumstances of the specific anions and cations coexisting,for instance,Zn2+ and SO42- ions,the zeta potentials changed with values higher than the value for SO42- alone and lower than that for Zn2+ alone,and the IEP was between that for Zn2+ and that for SO42-.The adsorption of Zn2+ and Cu2+ ions resulted in a reversal of the zeta potentials,and appearance of two IEPs for Zn2+ and no IEP for Cu2+,exhibiting interesting special effects of these kinds of metal ions.The higher the concentrations of the ions,the greater the change of the electrokinetic properties.

  3. A Numerical Model for Ion Charge Distribution of Plasmas in Collisional Radiative Steady State

    Institute of Scientific and Technical Information of China (English)

    DUAN Yaoyong; GUO Yonghui; QIU Aici; KUAI Bin

    2009-01-01

    A numerical model for the charge state distribution of plasmas in a collisional ra-diative steady state (CRSS) is established by averaging over the atomic process rate coefficients in universal kinetic equations.It is used to calculate the mean ion charge and ion population for a given temperature and density of the plasmas,ranging from low Z to high Z elements.The comparisons of the calculated results with those of other non-local thermodynamic equilibrium kinetics codes show that this model possesses acceptable precision.Furthermore,the NLTE effects are investigated by virtue of the model,and the differences between CRSS and LTE models for low density plasmas are quite evident.

  4. The interactions of high-energy, highly-charged ions with fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, R.; Berry, H.G.; Cheng, S. [and others

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

  5. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    Science.gov (United States)

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-05

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts.

  6. l-distributions of the first electron transferred to multiply charged ions interacting with solid surfaces

    Science.gov (United States)

    Mirkovic, M. A.; Nedeljkovic, N. N.

    2008-07-01

    We analyze the angular momentum distributions of the electron transferred into the Rydberg states of multiply charged ions escaping the solid surfaces. The population probabilities are calculated within the framework of two-state-vector model; in the case of large values of the angular momentum quantum numbers l the model takes into account an importance of a wide space region around the projectile trajectory. The reionization of the previously populated states is also taken into account. The corresponding ionization rates are obtained by the appropriate etalon equation method; in the large-l case the radial electronic coordinate rho is treated as variational parameter. The theoretical predictions based on the proposed population-reionization mechanism fit the available beam-foil experimental data; the obtained large-l distributions are also used to elucidate the recent experimental data concerning the multiply charged Rydberg ions interacting with micro-capillary foil.

  7. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry.

    Science.gov (United States)

    König, Simone; Kollas, Oliver; Dreisewerd, Klaus

    2007-07-15

    We show that highly charged ions can be generated if a pulsed infrared laser and a glycerol matrix are employed for atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry with a quadrupole ion trap. Already for small peptides like bradykinin, doubly protonated ions form the most abundant analyte signal in the mass spectra. The center of the charge-state distribution increases with the size of the analyte. For example, insulin is detected with a most abundant ion signal corresponding to a charge state of four, whereas for cytochrome c, the 10 times protonated ion species produces the most intense signal. Myoglobin is observed with up to 13 charges. The high m/z ratios allow us to use the Paul trap for the detection of MALDI-generated protein ions that are, owing to their high molecular weight, not amenable in their singly protonated charge state. Formation of multiple charges critically depends on the addition of diluted acid to the analyte-matrix solution. Tandem mass spectra generated by collision-induced dissociation of doubly charged peptides are also presented. The findings allow speculations about the involvement of electrospray ionization processes in these MALDI experiments.

  8. Energy dissipation of highly charged ions interacting with solid surfaces; Energieeintrag langsamer hochgeladener Ionen in Festkoerperoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, D.

    2006-07-01

    Motivated by the incomplete scientific description of the relaxation of highly charged ions in front of solid surfaces and their energy balance, this thesis describes an advanced complementary study of determining deposited fractions and re-emitted fractions of the potential energy of highly charged ions. On one side, a calorimetric measurement setup is used to determine the retained potential energy and on the other side, energy resolved electron spectroscopy is used for measuring the reemitted energy due to secondary electron emission. In order to study the mechanism of energy retention in detail, materials with different electronic structures are investigated: Cu, n-Si, p-Si and SiO{sub 2}. In the case of calorimetry, a linear relationship between the deposited potential energy and the inner potential energy of the ions was determined. The total potential energy which stays in the solid remains almost constant at about (80 {+-} 10) %. Comparing the results of the Cu, n-Si and p-Si targets, no significant difference could be shown. Therefore we conclude that the difference in energy deposition between copper, n-doped Si and p-doped Si is below 10 %, which is significantly lower than using SiO{sub 2} targets. For this purpose, electron spectroscopy provides a complementary result. For Cu and Si surfaces, an almost linear increase of the re-emitted energy with increasing potential energy of the ion up to Ar{sup 7+} was also observed. The ratio of the re-emitted energy is about (10 {+-} 5) % of the total potential energy of the incoming ion, almost independent of the ion charge state. In contrast, an almost vanishing electron emission was observed for SiO{sub 2} and for charge states below q=7. For Ar{sup 8+} and Ar{sup 9+}, the electron emission increased due to the contribution of the projectile LMM Auger electrons and the re-emitted energy amounts up to 20 % for Cu and Si and around 10 % for SiO{sub 2}. These results are in good agreement with the calorimetric

  9. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    OpenAIRE

    Jun Xu; Binghe Liu; Dayong Hu

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the ...

  10. Ion adsorption on oxides. Surface charge formation and cadmium binding on rutile and hematite.

    NARCIS (Netherlands)

    Fokkink, L.G.J.

    1987-01-01

    The adsorption of charge-determining (H +and OH -) and cadmium ions on rutile (TiO 2 ) and hematite (α-Fe 2 O 3 ) has been studied

  11. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    Khabibullaev, P. K.

    2000-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  12. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    Science.gov (United States)

    2016-08-22

    geometries, abuse scenarios, and analysis techniques. In this report, different states of charge and packing configurations of a commercially available...15 1 1.0 Background and Motivation Lithium-ion batteries are a popular choice of power source for a variety of...military systems due to their promise of high power and high energy density. However, safety remains a significant concern, as battery failure leads

  13. Highly charged ions for atomic clocks, quantum information, and search for α variation.

    Science.gov (United States)

    Safronova, M S; Dzuba, V A; Flambaum, V V; Safronova, U I; Porsev, S G; Kozlov, M G

    2014-07-18

    We propose 10 highly charged ions as candidates for the development of next generation atomic clocks, quantum information, and search for α variation. They have long-lived metastable states with transition wavelengths to the ground state between 170-3000 nm, relatively simple electronic structure, stable isotopes, and high sensitivity to α variation (e.g., Sm(14+), Pr(10+), Sm(13+), Nd(10+)). We predict their properties crucial for the experimental exploration and highlight particularly attractive systems for these applications.

  14. Hydrogenlike highly charged ions for tests of the time independence of fundamental constants.

    Science.gov (United States)

    Schiller, S

    2007-05-04

    Hyperfine transitions in the electronic ground state of cold, trapped hydrogenlike highly charged ions have attractive features for use as frequency standards because the majority of systematic frequency shifts are smaller by orders of magnitude compared to many microwave and optical frequency standards. Frequency measurements of these transitions hold promise for significantly improved laboratory tests of local position invariance of the electron and quark masses.

  15. Crystal optics for hard-X-ray spectroscopy of highly charged ions

    OpenAIRE

    Beyer, H. F.; Attia, D.; Banas, D; Bigot, E. -O. Le; Bosch, F.; Dousse, Jean-Claude; Förster, E.; Gumberidze, A.; Hagmann, S.; Heß, S.; J. Hoszowska; Indelicato, P.; Jagodzinski, P.; Kozhuharov, Chr.; Krings, Th.

    2009-01-01

    A twin crystal-spectrometer assembly, operated in the focusing compensated asymmetric Laue geometry has been developed for accurate spectroscopy of fast highly charged heavy ions in the hard-X-ray region. Coupled to the focusing crystal optics is a specially developed two-dimensional position-sensitive X-ray detector which is necessary for retaining spectral resolution also for fast moving sources. We summarize the crystal optics and demonstrate the usefulness of the instrument for spectrosco...

  16. Effect of trapped ions and nonequilibrium electron-energy distribution function on dust-particle charging in gas discharges.

    Science.gov (United States)

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2009-03-01

    Dust-particles charging in a low-pressure glow discharge was investigated theoretically. The dust-particle charge was found on the basis of a developed self-consistent model taking into account the nonequilibrium character of electron distribution function and the formation of an ionic coat composed of bound or trapped ions around the dust particle. The dust-particle charge, the radial distributions of electron density, free and trapped ions densities, and the distribution of electrostatic potential were found. It was shown that the non-Maxwellian electron distribution function and collisional flux of trapped ions both reduce the dust-particle charge in comparison with that received with the help of the conventional orbital motion limited (OML) model. However, in rare collisional regimes in plasma when the collisional flux is negligible, the formation of ionic coat around a particle leads to a shielding of the proper charge of a dust particle. In low-pressure experiments, it is only possible to detect the effective charge of a dust particle that is equal to the difference between the proper charge of the particle and the charge of trapped ions. The calculated effective dust particle charge is in fairly good agreement with the experimental measurements of dust-particle charge dependence on gas pressure.

  17. Safe and fast-charging Li-ion battery with long shelf life for power applications

    Science.gov (United States)

    Zaghib, K.; Dontigny, M.; Guerfi, A.; Charest, P.; Rodrigues, I.; Mauger, A.; Julien, C. M.

    We report a Li-ion battery that can be charged within few minutes, passes the safety tests, and has a very long shelf life. The active materials are nanoparticles of LiFePO 4 (LFP) and Li 4Ti 5O 12 (LTO) for the positive and negative electrodes, respectively. The LiFePO 4 particles are covered with 2 wt.% carbon to optimize the electrical conductivity, but not the Li 4Ti 5O 12 particles. The electrolyte is the usual carbonate solvent. The binder is a water-soluble elastomer. The "18650" battery prepared under such conditions delivers a capacity of 800 mAh. It retains full capacity after 20,000 cycles performed at charge rate 10C (6 min), discharge rate 5C (12 min), and retains 95% capacity after 30,000 cycles at charge rate 15C (4 mn) and discharge rate 5C both at 100% DOD and 100% SOC.

  18. Exploring relativistic many-body recoil effects in highly charged ions.

    Science.gov (United States)

    Orts, R Soria; Harman, Z; López-Urrutia, J R Crespo; Artemyev, A N; Bruhns, H; Martínez, A J González; Jentschura, U D; Keitel, C H; Lapierre, A; Mironov, V; Shabaev, V M; Tawara, H; Tupitsyn, I I; Ullrich, J; Volotka, A V

    2006-09-08

    The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s(2)2s(2)2p 2P(1/2) - 2P(3/2) transition in Ar13+ and the 1s(2)2s2p 3P1-3P2 transition in Ar14+. The experimental isotope shifts of 0.00123(6) nm (Ar13+) and 0.00120(10) nm (Ar14+) are in agreement with our present predictions of 0.00123(5) nm (Ar13+) and 0.00122(5) nm (Ar14+) based on the total relativistic recoil operator, confirming that a thorough understanding of correlated relativistic electron dynamics is necessary even in a region of intermediate nuclear charges.

  19. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, Daniel Bristol [Univ. of California, Davis, CA (United States)

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of

  20. Effect of dust charge variation on dust-acoustic solitary waves in a magnetized two-ion-temperature dusty plasma

    Institute of Scientific and Technical Information of China (English)

    薛具奎; 郎和

    2003-01-01

    The effect of dust charge variation on the dust-acoustic solitary structures is investigated in a warm magnetized two-ion-temperature dusty plasma consisting of a negatively and variably charged extremely massive dust fluid and ions of two different temperatures. It is shown that the dust charge variation as well as the presence of a second component of ions would modify the properties of the dust-acoustic solitary structures and may excite both dust-acoustic solitary holes (soliton waves with a density dip) and positive solitons (soliton waves with a density hump).

  1. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification.

    Science.gov (United States)

    Zinnel, Nathanael F; Russell, David H

    2014-05-20

    Ion mobility is used to disperse product ions formed by collision-induced dissociation (CID) on the basis of charge state and size-to-charge ratio. We previously described an approach for combining CID with ion mobility mass spectrometry (IM-MS) for dispersing fragment ions along charge state specific trend lines (Zinnel, N. F.; Pai, P. J.; Russell, D. H. Anal. Chem. 2012, 84, 3390; Sowell, R. A.; Koeniger, S. L.; Valentine, S. J.; Moon, M. H.; Clemmer, D. E. J. Am. Soc. Mass Spectrom. 2004, 15, 1341; McLean, J. A.; Ruotolo, B. T.; Gillig, K. J.; Russell, D. H. Int. J. Mass Spectrom. 2005, 240, 301), and this approach was used to assign metal ion binding sites for human metallothionein protein MT-2a (Chen, S. H.; Russell, W. K.; Russell, D. H. Anal. Chem. 2013, 85, 3229). Here, we use this approach to distinguish b-type N-terminal fragment ions from both internal fragment ions and y-type C-terminal fragment ions. We also show that in some cases specific secondary structural elements, viz., extended coils or helices, can be obtained for the y-type fragment ions series. The advantage of this approach is that product ion identity can be correlated to gas-phase ion structure, which provides rapid identification of the onset and termination of extended coil structure in peptides.

  2. Status of deceleration and laser spectroscopy of highly charged ions at HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Andelkovic, Zoran, E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Birkl, Gerhard [Technische Universität Darmstadt (Germany); Fedotova, Svetlana [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Hannen, Volker [Universität Münster (Germany); Herfurth, Frank [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); König, Kristian [Technische Universität Darmstadt (Germany); Kotovskiy, Nikita [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Maaß, Bernhard [Technische Universität Darmstadt (Germany); Vollbrecht, Jonas [Universität Münster (Germany); Murböck, Tobias [Technische Universität Darmstadt (Germany); Neidherr, Dennis [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Nörtershäuser, Wilfried; Schmidt, Stefan; Vogel, Manuel [Technische Universität Darmstadt (Germany); Vorobjev, Gleb [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Weinheimer, Christian [Universität Münster (Germany)

    2015-11-15

    Heavy few-electron ions are relatively simple systems in terms of electron structure and offer unique opportunities to conduct experiments under extremely large electromagnetic fields that exist around their nuclei. However, the preparation of highly charged ions (HCI) has remained the major challenge for experiments. As an extension of the existing GSI accelerator facility, the HITRAP facility was conceived as a multi-stage decelerator for HCI produced at high velocity. It is designed to prepare bunches of around 10{sup 5} HCI and to deliver them at low energies to various experiments. One of these experiments is SpecTrap, aiming for laser spectroscopy of trapped, cold HCI. We present the latest results on deceleration of ions in a radio-frequency quadrupole, synchrotron cooling of electrons in a trap as a preparation step for the prospective electron cooling of the HCI decelerated in HITRAP, as well as laser cooling of singly charged Mg ions for sympathetic cooling of HCI in SpecTrap.

  3. Electron Impact Excitation and Dielectronic Recombination of Highly Charged Tungsten Ions

    Directory of Open Access Journals (Sweden)

    Zhongwen Wu

    2015-11-01

    Full Text Available Electron impact excitation (EIE and dielectronic recombination (DR of tungsten ions are basic atomic processes in nuclear fusion plasmas of the International Thermonuclear Experimental Reactor (ITER tokamak. Detailed investigation of such processes is essential for modeling and diagnosing future fusion experiments performed on the ITER. In the present work, we studied total and partial electron-impact excitation (EIE and DR cross-sections of highly charged tungsten ions by using the multiconfiguration Dirac–Fock method. The degrees of linear polarization of the subsequent X-ray emissions from unequally-populated magnetic sub-levels of these ions were estimated. It is found that the degrees of linear polarization of the same transition lines, but populated respectively by the EIE and DR processes, are very different, which makes diagnosis of the formation mechanism of X-ray emissions possible. In addition, with the help of the flexible atomic code on the basis of the relativistic configuration interaction method, DR rate coefficients of highly charged W37+ to W46+ ions are also studied, because of the importance in the ionization equilibrium of tungsten plasmas under running conditions of the ITER.

  4. Dust ion-acoustic shock waves due to dust charge fluctuation in a superthermal dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Alinejad, H., E-mail: alinejad@nit.ac.ir [Department of Physics, Faculty of Basic Science, Babol University of Technology, Babol 47148-71167 (Iran, Islamic Republic of); Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Tribeche, M. [Plasma Physics Group, Faculty of Sciences – Physics, University of Bab-Ezzouar (Algeria); Mohammadi, M.A. [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, 51664, Tabriz (Iran, Islamic Republic of); Department of Atomic and Molecular Physics, Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2011-11-14

    The nonlinear propagation of dust ion-acoustic (DIA) shock waves is studied in a charge varying dusty plasma with electrons having kappa velocity distribution. We use hot ions with equilibrium streaming speed and a fast superthermal electron charging current derived from orbit limited motion (OLM) theory. It is found that the presence of superthermal electrons does not only significantly modify the basic properties of shock waves, but also causes the existence of shock profile with only positive potential in such plasma with parameter ranges corresponding to Saturn's rings. It is also shown that the strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. -- Highlights: ► The presence of superthermal electrons causes the existence of shock waves with only positive potential. ► The strength and steepness of the shock waves decrease with increase of the size of dust grains and ion temperature. ► As the electrons evolve toward their thermodynamic equilibrium, the shock structures are found with smaller amplitude.

  5. Measurements of atomic parameters of highly charged ions for interpreting astrophysical spectra

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.V.; Beiersdorfer, P.; Utter, S.B. [Lawrence Livermore National Lab., CA (United States); Boyce, K.R.; Gendreau, K.C.; Kelley, R.; Porter, F.S. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Gu, M.F.; Kahn, S.M.; Savin, D.W. [Columbia Univ., New York, NY (United States); Gygax, J. [Swales and Associates, Beltsville, MD (United States)

    2001-07-01

    High-resolution X-ray spectra obtained by the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission put new demands on atomic data including line positions, excitation cross sections, and radiative rates of cosmically-abundant highly-charged ions. To address this need, we are performing measurements of the line emission from ions of cosmically abundant elements. The data are obtained at the LLNL Electron Beam Ion Trap and focus on cross sections for electron-impact excitation, dielectronic recombination, and resonance excitation as well as atomic structure measurements. We find that ratios of the electron-impact excitation cross sections of singlet and triplet levels are systematically different from the calculated values in the case of many highly charged ions. This, for example, has a profound impact on inferring optical depths from solar and stellar atmospheres. Moreover, new line identifications are presented that resolve some long-standing puzzles in the interpretation of solar data, and the importance of resonance contributions to the spectral emission is assessed. (orig.)

  6. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP)

    Science.gov (United States)

    Sun, L.; Lu, W.; Feng, Y. C.; Zhang, W. H.; Zhang, X. Z.; Cao, Y.; Zhao, Y. Y.; Wu, W.; Yang, T. J.; Zhao, B.; Zhao, H. W.; Ma, L. Z.; Xia, J. W.; Xie, D.

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe27+, 236 eμA Xe30+, and 64 eμA Xe35+. Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi30+ and 202 eμA U33+ have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  7. Progress of superconducting electron cyclotron resonance ion sources at Institute of Modern Physics (IMP).

    Science.gov (United States)

    Sun, L; Lu, W; Feng, Y C; Zhang, W H; Zhang, X Z; Cao, Y; Zhao, Y Y; Wu, W; Yang, T J; Zhao, B; Zhao, H W; Ma, L Z; Xia, J W; Xie, D

    2014-02-01

    Superconducting ECR ion sources can produce intense highly charged ion beams for the application in heavy ion accelerators. Superconducting Electron Resonance ion source with Advanced Design (SECRAL) is one of the few fully superconducting ECR ion sources that has been successfully built and put into routine operation for years. With enormous efforts and R&D work, promising results have been achieved with the ion source. Heated by the microwave power from a 7 kW/24 GHz gyrotron microwave generator, very intense highly charged gaseous ion beams have been produced, such as 455 eμA Xe(27+), 236 eμA Xe(30+), and 64 eμA Xe(35+). Since heavy metallic ion beams are being more and more attractive and important for many accelerator projects globally, intensive studies have been made to produce highly charged heavy metal ion beams, such as those from bismuth and uranium. Recently, 420 eμA Bi(30+) and 202 eμA U(33+) have been produced with SECRAL source. This paper will present the latest results with SECRAL, and the operation status will be discussed as well. An introduction of recently started SECRAL II project will also be given in the presentation.

  8. Nanostructuring CaF2 surfaces with slow highly charged ions

    Science.gov (United States)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Ritter, R.; Wachter, G.; Facsko, S.; Lemell, C.; Burgdörfer, J.; Aumayr, F.

    2014-04-01

    In recent years the potential of slow highly charged ions (HCI) as tools for nanostructuring purposes has received considerable attention and a wide range of material classes, from insulating ionic crystals, polymers and ultrathin films, to semiconducting and conducting substrates have been investigated regarding their response to individual HCI impact. For the majority of investigated materials, however, consistent theoretical modeling to supplement with experimental evidence and to satisfactorily explain the complete physical process from ion approach and impact to the formation of an individual nanostructure is still lacking. CaF2, from both an experimental and theoretical point of view, might be considered the most thoroughly investigated material. Combining results from numerous studies has allowed for the generation of a "phase diagram" for nanostructuring of CaF2 in dependence of ion beam parameters. This paves the way for a first unified picture, as implications from this phase diagram should be applicable to similar materials as well.

  9. A Collimation Scheme for Ions Changing Charge State in the LEIR Ring

    CERN Document Server

    Pasternak, Jaroslaw; Carli, Christian; Chanel, Michel; Mahner, Edgar

    2005-01-01

    Avalanche-like pressure rise and an associated decrease of the beam life-time, caused by (i) beam loss due to charge exchange interactions with rest gas molecules and (ii) electron capture from the electron beam of the electron cooler and (iii) ion impact induced outgassing, is a potential limitation for heavy ion accelerators. The vacuum system of the LEIR ring as to be upgraded to reach the dynamical vacuum pressure in the low 10-12 Torr range necessary to reach design performance. A collimation system to intercept lost ions by absorber blocks made of low beam-induced outgassing material will be installed. This paper reviews the collimation scheme and simulations of beam loss patterns around the ring.

  10. Soft x-ray laser spectroscopy on trapped highly charged ions at FLASH.

    Science.gov (United States)

    Epp, S W; López-Urrutia, J R Crespo; Brenner, G; Mäckel, V; Mokler, P H; Treusch, R; Kuhlmann, M; Yurkov, M V; Feldhaus, J; Schneider, J R; Wellhöfer, M; Martins, M; Wurth, W; Ullrich, J

    2007-05-04

    In a proof-of-principle experiment, we demonstrate high-resolution resonant laser excitation in the soft x-ray region at 48.6 eV of the 2 (2)S(1/2) to 2 (2)P(1/2) transition of Li-like Fe23+ ions trapped in an electron beam ion trap by using ultrabrilliant light from Free Electron Laser in Hamburg (FLASH). High precision spectroscopic studies of highly charged ions at this and upcoming x-ray lasers with an expected accuracy gain up to a factor of a thousand, become possible with our technique, thus potentially yielding fundamental insights, e.g., into basic aspects of QED.

  11. Laser spectroscopy on forbidden transitions in trapped highly charged Ar(13+) ions.

    Science.gov (United States)

    Mäckel, V; Klawitter, R; Brenner, G; Crespo López-Urrutia, J R; Ullrich, J

    2011-09-30

    We demonstrate resonant fluorescence laser spectroscopy in highly charged ions (HCI) stored in an electron beam ion trap by investigating the dipole-forbidden 1s(2)2s(2)2p (2)P(3/2)-(2)P(1/2) transition in boronlike Ar(13+) ions. Forced evaporative cooling yielded a high resolving power, resulting in an accurate wavelength determination to λ=441.255 68(26)  nm. By applying stronger cooling and two-photon excitation, new optical frequency standards based upon ultrastable transitions in such HCI could be realized in the future, e.g., for the search of time variations of the fine-structure constant.

  12. Multi-reference configuration-interaction calculations on multiply charged ions of carbon monosulfide

    Institute of Scientific and Technical Information of China (English)

    Yan Bing; Zhang Yu-Juan

    2013-01-01

    The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+ (q > 2) ions according to the present ab initio calculations.The calculated values for lst-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.

  13. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc.

    Science.gov (United States)

    Kim, J. S.; Zhao, L.; Spencer, J. A.; Evstatiev, E. G.

    2015-01-01

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics. This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.

  14. Recent progress in molecule modification with heavy ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research into heavy ion beam biology started in the 1960s, and so far it has become an important interdisciplinary study. Heavy ion beam is more suitable for molecule modification than other sorts of radiation, for it has many superiorities such as the energy transfer effect and the mass deposition effect. Molecule modification with heavy ion beam irradiation can be applied to developing new medicines and their precursors, genetic engineering, protein engi neering, outer space radiobiology, etc. Retrospect and prospect of the research and development of molecule modifica tion with heavy ion beam irradiation are given.

  15. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations.

    Science.gov (United States)

    Going, Catherine C; Williams, Evan R

    2015-04-07

    The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate.

  16. Thermal Analysis of a Fast Charging Technique for a High Power Lithium-Ion Cell

    Directory of Open Access Journals (Sweden)

    Victor Manuel García Fernández

    2016-11-01

    Full Text Available The cell case temperature versus time profiles of a multistage fast charging technique (4C-1C-constant voltage (CV/fast discharge (4C in a 2.3 Ah cylindrical lithium-ion cell are analyzed using a thermal model. Heat generation is dominated by the irreversible component associated with cell overpotential, although evidence of the reversible component is also observed, associated with the heat related to entropy from the electrode reactions. The final charging stages (i.e., 1C-CV significantly reduce heat generation and cell temperature during charge, resulting in a thermally safe charging protocol. Cell heat capacity was determined from cell-specific heats and the cell materials’ thickness. The model adjustment of the experimental data during the 2 min resting period between discharge and charge allowed us to calculate both the time constant of the relaxation process and the cell thermal resistance. The obtained values of these thermal parameters used in the proposed model are almost equal to those found in the literature for the same cell model, which suggests that the proposed model is suitable for its implementation in thermal management systems.

  17. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  18. New supercharging reagents produce highly charged protein ions in native mass spectrometry.

    Science.gov (United States)

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2015-11-07

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.

  19. PREFACE: 17th International Conference on the Physics of Highly Charged Ions

    Science.gov (United States)

    2015-01-01

    The 17th edition of the International Conference on the Physics of Highly Charged Ions (HCI 2014) was held in San Carlos de Bariloche, in the southern region of Argentina known as Patagonia, from August 31 to September 5, 2014. This meeting corresponds to a series of HCI conferences, which has been held every other year since 1982 in cities in Europe, USA, Japan and China. This was the first time that the conference took place in Latin America. This edition was organized by a Local Committee made up of physicists mainly from the cities of Bariloche and Rosario and also from Buenos Aires and Bahía Blanca, all sites where research on Atomic Collisions is developed. The conference was attended by delegates coming from 18 countries, more that 23% of whom were women. The field of highly charged ions has seen in recent years a promising evolution originating from bold progress in theory and significant advances in experimental techniques. The HCI conferences aim at bringing together experimentalists and theoreticians from as wide a range of fields as, for instance, Fundamental Aspects, Structure and Spectroscopy, Collisions with Electrons, Ions, Atoms and Molecules, Interaction with Clusters, Surfaces and Solids, Interactions with Photons and Plasmas, Strong Field Processes, and Production, Experimental Developments and Applications. The Scientific Programme, selected by an International Advisory Board, included 5 Review Lectures, 11 Progress Reports, 1 Local Report and 24 Special Reports. In addition, the results of 132 contributed works were presented as poster communications and a Public Lecture on 'The wonders of the Southern Skies' was delivered by an Argentinean expert. Thus, a wide range of subjects comprising a balanced mix of topics was covered throughout the course of the conference. The HCI 2014 was a resounding success for the international and local communities, from both the scientific and social aspects, considering that the attendees and accompanying

  20. Progress on research of materials science and biotechnology by ion beam application

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Isao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Research of materials science and biotechnology by ion beam application in Takasaki Establishment was reviewed. Especially, the recent progresses of research on semiconductors in space, creation of new functional materials and topics in biotechnology were reported. (author)

  1. Atomic data for neutron-capture elements III. Charge transfer rate coefficients for low-charge ions of Ge, Se, Br, Kr, Rb, and Xe

    CERN Document Server

    Sterling, N C

    2011-01-01

    We present total and final-state resolved charge transfer (CT) rate coefficients for low-charge Ge, Se, Br, Kr, Rb, and Xe ions reacting with neutral hydrogen over the temperature range 10^2--10^6 K. Each of these elements has been detected in ionized astrophysical nebulae, particularly planetary nebulae. CT rate coefficients are a key ingredient for the ionization equilibrium solutions needed to determine total elemental abundances from those of the observed ions. A multi-channel Landau Zener approach was used to compute rate coefficients for projectile ions with charges q=2-5, and for singly-charged ions the Demkov approximation was utilized. Our results for five-times ionized species are lower limits, due to the incompleteness of level energies in the NIST database. In addition, we computed rate coefficients for charge transfer ionization reactions between the neutral species of the above six elements and ionized hydrogen. The resulting total and state-resolved CT rate coefficients are tabulated and availa...

  2. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    Science.gov (United States)

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  3. Oxaliplatin neurotoxicity – no general ion channel surface-charge effect

    Directory of Open Access Journals (Sweden)

    Ehrsson Hans

    2009-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapeutic drug. Neurotoxicity is the dose-limiting side effect. Previous investigations have reported that acute neurotoxicity could be mediated via voltage-gated ion channels. A possible mechanism for some of the effects is a modification of surface charges around the ion channel, either because of chelation of extracellular Ca2+, or because of binding of a charged biotransformation product of oxaliplatin to the channel. To elucidate the molecular mechanism, we investigated the effects of oxaliplatin and its chloride complex [Pt(dachoxCl]- on the voltage-gated Shaker K channel expressed in Xenopus oocytes. The recordings were made with the two-electrode and the cut-open oocyte voltage clamp techniques. Conclusion To our surprise, we did not see any effects on the current amplitudes, on the current time courses, or on the voltage dependence of the Shaker wild-type channel. Oxaliplatin is expected to bind to cysteines. Therefore, we explored if there could be a specific effect on single (E418C and double-cysteine (R362C/F416C mutated Shaker channels previously shown to be sensitive to cysteine-specific reagents. Neither of these channels were affected by oxaliplatin. The clear lack of effect on the Shaker K channel suggests that oxaliplatin or its monochloro complex has no general surface-charge effect on the channels, as has been suggested before, but rather a specific effect to the channels previously shown to be affected.

  4. Low-temperature charging of lithium-ion cells Part II: Model reduction and application

    Science.gov (United States)

    Remmlinger, Jürgen; Tippmann, Simon; Buchholz, Michael; Dietmayer, Klaus

    2014-05-01

    Lithium-ion cells, especially when used in electric vehicles at varying operation conditions, require a sophisticated battery management to ensure an optimal operation regarding operation limits, performance, and maximum lifetime. In some cases, the best trade-off between these conflictive goals can only be reached by considering internal, non-measurable cell characteristics. This article presents a data-driven model-reduction method for a strict electrochemical model. The model describes the charging process of a lithium-ion cell and possibly occurring degradation effects in a large temperature range and is presented in Part I of this contribution. The model-reduction process is explained in detail, and the gained model is compared to the original electrochemical model showing a very high approximation quality. This reduced model offers a very low computation complexity and is therefore suitable for the implementation in a battery management system (BMS). Based on this model, an advanced charging strategy is presented and evaluated for possible reductions in charging times especially at low temperatures.

  5. Multiple sampling ionization chamber (MUSIC) for measuring the charge of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B.; Romero, J.L.; Brady, F.P.; Tull, C.E.; Castaneda, C.M.; Barasch, E.F.; Webb, M.L.; Drummond, J.R.; Crawford, H.J.; Flores, I.

    1987-04-01

    A large area (1 m x 2 m) multiple sampling ionization chamber (MUSIC) has been constructed and tested. The MUSIC detector makes multiple measurements of energy 'loss', dE/dx, for a relativistic heavy ion. Given the velocity, the charge of the ion can be extracted from the energy loss distributions. The widths of the distributions we observe are much narrower than predicted by Vavilov's theory for energy loss while agreeing well with the theory of Badhwar which deals with the energy deposited. The versatile design of MUSIC allows a variety of anode configurations which results in a large dynamic range of charge. In our tests to date we have observed charge resolutions of 0.25e fwhm for 727 MeV/nucleon /sup 40/Ar and 0.30e fwhm for 1.08 GeV/nucleon /sup 139/La and /sup 139/La fragments. Vertical position and multiple track determination are obtained by using time projection chamber electronics. Preliminary tests indicate that the position resolution is also very good with sigmaapprox. =100 ..mu..m.

  6. Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy

    Science.gov (United States)

    Muñoz Burgos, J. M.; Burrell, K. H.; Solomon, W. M.; Grierson, B. A.; Loch, S. D.; Ballance, C. P.; Chrystal, C.

    2013-09-01

    Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D.

  7. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.

  8. State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2015-06-01

    Full Text Available Accurate state of charge (SOC estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST and New European Driving Cycle (NEDC are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF and cubature Kalman filter (CKF algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.

  9. Average charge states of heavy and superheavy ions passing through a rarified gas: Theory and experiment

    Science.gov (United States)

    Khuyagbaatar, J.; Shevelko, V. P.; Borschevsky, A.; Düllmann, Ch. E.; Tolstikhina, I. Yu.; Yakushev, A.

    2013-10-01

    The average charge states q¯ of heavy and superheavy ions (atomic numbers Z=80-114) passing through He gas are studied experimentally and theoretically. Experimental data were measured at the gas-filled recoil separator, i.e., the TransActinide Separator and Chemistry Apparatus (TASCA) at GSI Darmstadt, for ion energies of a few hundred keV/u at gas pressures of 0.2 to 2.0 mbar. An attempt is made to describe experimental q¯ values by means of atomic calculations of the binding energies and electron-loss and electron-capture cross sections. The influence of the gas-density effect is included in the calculations. The calculated q¯ reproduce the experimental values for elements with Z=80-114 within 20%. A comparison with different semiempirical models is presented as well, including a local fit of high accuracy, which is often used in superheavy-element experiments to estimate the average charge states of heavy ions, e.g., at the gas-filled recoil separator TASCA. The q¯ values for elements with Z=115, 117, 119, and 120 at He-gas pressure of 0.8 mbar are predicted.

  10. Formation and decay of the Rydberg states of multiply charged ions interacting with solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mirkovic, M A; Nedeljkovic, N N; Bozanic, D K, E-mail: gmirkomarko@sezampro.rs

    2010-11-01

    Processes of formation and decay of the Rydberg states of multiply charged ions escaping solid surfaces with intermediate velocities (v {approx} 1 a.u.) represent complex quantum events that require a detailed quantum description. We have developed a two-state vector model for the population process, with the functions {Psi}{sub 1} and {Psi}{sub 2} for definition of the state of a single active electron. The electron exchange between the solid and the moving ion is described by a mixed flux through a plane positioned between them. For the low values of the angular momentum quantum numbers l the radial electronic coordinate {rho} can be neglected, whereas for the large-l values a wide space region around the projectile trajectory was taken into account. The reionization of the previously populated states is considered as a decay of the wave function {Psi}{sub 2}. The corresponding decay rates are obtained by an appropriate etalon equation method: in the large-l case the radial electronic coordinate {rho} is treated as a variational parameter. The theoretical predictions based on that population-reionization mechanism are compared with the available beam-foil experimental data, as well as the experimental data obtained in the interaction of multiply charged ions with micro-capillary foil. Generally, the model reproduces the experimentally observed non-linear trend of the l distributions from l = 0 to l{sub max} = n - 1.

  11. Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes.

    Science.gov (United States)

    Cuartero, Maria; Bishop, Josiah; Walker, Raymart; Acres, Robert G; Bakker, Eric; De Marco, Roland; Crespo, Gaston A

    2016-08-11

    This paper presents the first direct spectroscopic evidence for double layer or capacitive charging of carbon nanomaterial-based solid contacts in all-solid-state polymeric ion-selective electrodes (ISEs). Here, we used synchrotron radiation-X-ray photoelectron spectroscopy (SR-XPS) and SR valence band (VB) spectroscopy in the elucidation of the charging mechanism of the SCs.

  12. ANISOTROPY EFFECTS IN SINGLE-ELECTRON TRANSFER BETWEEN LASER-EXCITED ATOMS AND HIGHLY-CHARGED IONS

    NARCIS (Netherlands)

    1995-01-01

    Recent collision experiments are reviewed in which one-electron transfer between laser excited target atoms and (highly charged) keV-ions has been studied. Especially results showing a dependence of the charge exchange on the initial target orbital alignment are discussed. The question to what exten

  13. Energy loss and charge state dependency of swift Nq+ ions scattered off a Pt(110)(1 x 2) surface

    NARCIS (Netherlands)

    Robin, A; Hatke, N; Jensen, J; Plachke, D; Carstanjen, HD; Heiland, W

    2003-01-01

    We present new surface scattering results combining measurements of energy loss and charge state distributions of 0.7-1.4 MeV Nq+ (q = 1, 2) ions. The energy range is still below the bulk stopping power maximum and charge exchange occurs. The projectiles scatter from a Pt(110)(1 x 2) single crystal

  14. A setup for transmission measurements of low energy multiply charged ions through free-standing few atomic layer films

    Science.gov (United States)

    Smejkal, V.; Gruber, E.; Wilhelm, R. A.; Brandl, L.; Heller, R.; Facsko, S.; Aumayr, F.

    2016-09-01

    We report the design and testing of a setup for transmission measurements of multiply charged ions through free-standing films with a thickness of a few atomic layers. The investigation thereof can yield deeper insight into charge equilibration and pre-equilibrium stopping phenomena which can ultimately be used to specifically tailor and modify these materials.

  15. The Effect of the Charge Fluctuation of Dust Particles on Ion-acoustic Wave Excited Through Ioniza tion Instability

    Institute of Scientific and Technical Information of China (English)

    华建军; 刘金远; 马腾才

    2002-01-01

    The effect of the charge fluctuation of dust particles on ion acoustic wave (IAW) excited through ionization instability was investigated. The hydrodynamic equations and linear time-dependent perturbation theory served as the starting point of theory, by which the dispersion relation and growth rate of the IAW were given. By comparing the results with the case of constant dust charges, it was found that the charge fluctuation of dust particles reduces the instability of the wave mode.

  16. Development of laser-ion beam photodissociation methods. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Russell, D.H.

    1992-08-01

    Research efforts were concentrated on developing the tandem magnetic sector (EB)/reflection-time-of-flight (TOF) instrument, preliminary experiments with tandem TOF/TOF instruments, developing method for performing photodissociation with pulsed lasers, experiments with laser ionization of aerosol particles, matrix-assisted laser desorption ionization (MALDI), and ion-molecule reaction chemistry of ground and excited state transition metal ions. This progress report is divided into: photodissociation, MALDI (including aerosols), and ion chemistry fundamentals.

  17. A New Charging Method for Li-ion Batteries: Dependence of the charging time on the Direction of an Additional Oscillating Field

    CERN Document Server

    Hamad, I Abou; Wipf, D O; Rikvold, P A

    2010-01-01

    We have recently proposed a new method for charging Li-ion batteries based on large-scale molecular dynamics studies (I. Abou Hamad et al, Phys. Chem. Chem. Phys., 12, 2740 (2010)). Applying an additional oscillating electric field in the direction perpendicular to the graphite sheets of the anode showed an exponential decrease in charging time with increasing amplitude of the applied oscillating field. Here we present new results exploring the effect on the charging time of changing the orientation of the oscillating field. Results for oscillating fields in three orthogonal directions are compared.

  18. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M.A., E-mail: dorf1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Zorin, V.G.; Sidorov, A.V.; Bokhanov, A.F.; Izotov, I.V.; Razin, S.V.; Skalyga, V.A. [Institute of Applied Physics RAS, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-01

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available; however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (∼100 kW) microwave (37.5 GHz) radiation provides a dense plasma (∼10{sup 13} cm{sup −3}) with a relatively low electron temperature (∼50–100 eV) and allows for the generation of high current (∼1 A/cm{sup 2}) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP.

  19. Generation of multi-charged high current ion beams using the SMIS 37 gas-dynamic electron cyclotron resonance (ECR) ion source

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zorin, V. G. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Sidorov, A. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Bokhanov, A. F. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Izotov, I. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Razin, S. V. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics; Skalyga, V. A. [Russian Academy of Sciences (RAS), Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    2013-06-02

    A gas-dynamic ECR ion source (GaDIS) is distinguished by its ability to produce high current and high brightness beams of moderately charged ions. Contrary to a classical ECR ion source where the plasma confinement is determined by the slow electron scattering into an empty loss-cone, the higher density and lower electron temperature in a GaDIS plasma lead to an isotropic electron distribution with the confinement time determined by the prompt gas-dynamic flow losses. As a result, much higher ion fluxes are available, however a decrease in the confinement time of the GaDIS plasma lowers the ion charge state. The gas-dynamic ECR ion source concept has been successfully realized in the SMIS 37 experimental facility operated at the Institute of Applied Physics, Russia. The use of high-power (~100 kW) microwave (37.5 GHz) radiation provides a dense plasma (~1013 cm-3) with a relatively low electron temperature (~50- 100 eV) and allows for the generation of high current (~1 A/cm2) beams of multi-charged ions. In this work we report on the present status of the SMIS 37 ion source and discuss the advanced numerical modeling of ion beam extraction using the particle-in-cell code WARP

  20. Progress report of the innovated KIST ion beam facility

    Science.gov (United States)

    Kim, Joonkon; Eliades, John A.; Yu, Byung-Yong; Lim, Weon Cheol; Chae, Keun Hwa; Song, Jonghan

    2017-01-01

    The Korea Institute of Science and Technology (KIST, Seoul, Republic of (S.) Korea) ion beam facility consists of three electrostatic accelerators: a 400 kV single ended ion implanter, a 2 MV tandem accelerator system and a 6 MV tandem accelerator system. The 400 kV and 6 MV systems were purchased from High Voltage Engineering Europa (HVEE, Netherlands) and commissioned in 2013, while the 2 MV system was purchased from National Electrostatics Corporation (NEC, USA) in 1995. These systems are used to provide traditional ion beam analysis (IBA), isotope ratio analysis (ex. accelerator mass spectrometry, AMS), and ion implantation/irradiation for domestic industrial and academic users. The main facility is the 6 MV HVEE Tandetron system that has an AMS line currently used for 10Be, 14C, 26Al, 36 Cl, 41Ca and 129I analyses, and three lines for IBA that are under construction. Here, these systems are introduced with their specifications and initial performance results.

  1. Electro-osmosis over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions

    Science.gov (United States)

    Ghosh, Uddipta; Chakraborty, Suman

    2016-06-01

    In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.

  2. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    Science.gov (United States)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  3. Charge state dependent fragmentation of gaseous [alpha]-synuclein cations via ion trap and beam-type collisional activation

    Science.gov (United States)

    Chanthamontri, Chamnongsak; Liu, Jian; McLuckey, Scott A.

    2009-06-01

    Ions derived from nano-electrospray ionization (nano-ESI) of [alpha]-synuclein, a 14.5 kDa, 140 amino acid residue protein that is a major component of the Lewy bodies associated with Parkinson's disease, have been subjected to ion trap and beam-type collisional activation. The former samples products from fragmentation at rates generally lower than 100 s-1 whereas the latter samples products from fragmentation at rates generally greater than 103 s-1. A wide range of protein charge states spanning from as high as [M+17H]17+ to as low as [M+4H]4+ have been formed either directly from nano-ESI or via ion/ion proton transfer reactions involving the initially formed protein cations and have been subjected to both forms of collision-induced dissociation (CID). The extent of sequence information (i.e., number of distinct amide bond cleavages) available from either CID method was found to be highly sensitive to protein precursor ion charge state. Furthermore, the relative contributions of the various competing dissociation channels were also dependent upon precursor ion charge state. The qualitative trends in the changes in extent of amide bond cleavages and identities of bonds cleaved with precursor ion charge state were similar for two forms of CID. However, for every charge state examined, roughly twice the primary sequence information resulted from beam-type CID relative to ion trap CID. For example, evidence for cleavage of 86% of the protein amide bonds was observed for the [M+9H]9+ precursor ion using beam-type CID whereas 41% of the bonds were cleaved for the same precursor ion using ion trap CID. The higher energies required to drive fragmentation reactions at rates necessary to observe products in the beam experiment access more of the structurally informative fragmentation channels, which has important implications for whole protein tandem mass spectrometry.

  4. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    Science.gov (United States)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  5. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yi, E-mail: yyin@bnl.gov [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng, E-mail: liaoji@indiana.edu [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-10

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction — a phenomenon known as the Chiral Magnetic Effect (CME). The quark–gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.

  6. Electron capture rates in stars studied with heavy ion charge exchange reactions

    CERN Document Server

    Bertulani, C A

    2015-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean $\\sim$ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  7. High yield sample preconcentration using a highly ion-conductive charge-selective polymer.

    Science.gov (United States)

    Chun, Honggu; Chung, Taek Dong; Ramsey, J Michael

    2010-07-15

    The development and analysis of a microfluidic sample preconcentration system using a highly ion-conductive charge-selective polymer [poly-AMPS (2-acrylamido-2-methyl-1-propanesulfonic acid)] is reported. The preconcentration is based on the phenomenon of concentration polarization which develops at the boundaries of the poly-AMPS with buffer solutions. A negatively charged polymer, poly-AMPS, positioned between two microchannels efficiently extracts cations through its large cross section, resulting in efficient anion sample preconcentration. The present work includes the development of a robust polymer that is stable over a wide range of buffers with varying chemical compositions. The sample preconcentration effect remains linear to over 3 mM (0.15 pmol) and 500 microM (15 fmol) for fluorescein and TRITC-tagged albumin solutions, respectively. The system can potentially be used for concentrating proteins on microfluidic devices with subsequent analysis for proteomic applications.

  8. Progress Report of Beijing Radioactive Ion-beam Facility(BRIF)

    Institute of Scientific and Technical Information of China (English)

    YI; Hui; SUN; Yang

    2015-01-01

    In 2015,the Beijing Radioactive Ion-beam Facility(BRIF)project made progress under efforts of all employees.The significant progress was made in the construction,the main process equipment installation,shakedown test and successful completion of the task for the whole year.

  9. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides

    Science.gov (United States)

    Greber, Katarzyna E.; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  10. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  11. Relativistic calculations of the isotope shifts in highly charged Li-like ions

    CERN Document Server

    Zubova, N A; Shabaev, V M; Tupitsyn, I I; Volotka, A V; Plunien, G; Brandau, C; Stöhlker, Th

    2014-01-01

    Relativistic calculations of the isotope shifts of energy levels in highly charged Li-like ions are performed. The nuclear recoil (mass shift) contributions are calculated by merging the perturbative and large-scale configuration-interaction Dirac-Fock-Sturm (CI-DFS) methods. The nuclear size (field shift) contributions are evaluated by the CI-DFS method including the electron-correlation, Breit, and QED corrections. The nuclear deformation and nuclear polarization corrections to the isotope shifts in Li-like neodymium, thorium, and uranium are also considered. The results of the calculations are compared with the theoretical values obtained with other methods.

  12. On the possibility of accelerating multiply charged ions in the CERN Synchrocyclotron

    CERN Document Server

    Giannini, R

    1975-01-01

    Some problems relating to the possibility of accelerating light ions in the CERN SC are studied. Deuteron capture conditions and the optimum radio-frequency versus time curve are calculated. Internal beam currents of some micro-amperes seem obtainable when using the calutron source as for protons. The same calculations were repeated for N/sup 5+/ taking into account the charge exchange process in the vacuum. A transmission of between 5 and 10% has been calculated, giving some 10/sup 10/ particles per second with a PIG source.

  13. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Grether, M.; Spieler, A.; Niemann, D. [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A.

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  14. Simulations of Ion Velocity Distribution Functions Taken into Account Both Elastic and Charge Exchange Collisions

    CERN Document Server

    Wang, Huihui; Kaganovich, Igor D; Mustafaev, Alexander S

    2016-01-01

    Based on accurate representation of the He+-He differential angular scattering cross sections consisting of both elastic and charge exchange collisions, we performed detailed numerical simulations of the ion velocity distribution functions (IVDF) by Monte Carlo collision method (MCC). The results of simulations are validated by comparison with the experimental data of the mobility and the transverse diffusion. The IVDF simulation study shows that due to significant effect of scattering in elastic collisions IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions.

  15. Ionization and charge transfer in high-energy ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.; Berkner, K.H.; Stearns, J.W.; Schmidt-Boecking, H.; Kelbch, S.; Ullrich, J.; Hagmann, S.; Richard, P.; Stockli, M.P.; Graham, W.G.

    1986-11-01

    Electron capture and loss by fast highly charged ions in a gas target, and ionization of the target by passage of the fast projectile beam, are fundamental processes in atomic physics. These processes, along with excitation, can be experimentally studied separately (''singles'') or together (''coincidence''). This paper is a review of recent results on singles measurements for electron capture and loss and for target ionization, for velocities which are generally high relative to the active electron, including recent ionization measurements for a nearly relativistic projectile. 11 refs., 6 figs.

  16. A simple method to evaluate double ionization of He by swift highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Galassi, M.E., E-mail: galassi@fceia.unr.edu.a [Instituto de Fisica Rosario (CONICET-UNR), Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Rivarola, R.D. [Instituto de Fisica Rosario (CONICET-UNR), Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Fainstein, P.D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, Avda E. Bustillo 9500, 8400 Bariloche (Argentina)

    2010-05-15

    Double ionization of He by impact of multiply charged ions is studied. Perturbative and non-perturbative regimes are analysed discriminating the influence of post-collisional effects. A simple exponential approximation, based on known theoretical or experimental single ionization cross sections and Bohr and Linhard predictions of the electron release distance, is shown to give an adequate description of existing experimental data. Saturation effects are shown to play an important role in the total cross section ratios of double and single ionization for non-perturbative collisions.

  17. Simulation of charge-discharge cycling of lithium-ion batteries under low-earth-orbit conditions

    Science.gov (United States)

    Lee, Jong-Won; Anguchamy, Yogesh K.; Popov, Branko N.

    Charge-discharge behavior of SONY 18650 lithium-ion batteries for aerospace applications was simulated under low-earth-orbit (LEO) conditions, by using a first-principles based mathematical model. The model determines the capacity fade on the basis of the irreversible loss of active lithium ions due to electrolyte reduction. The capacity fade during LEO cycling was studied for 5 years of continuous operation with 20% depth of discharge as a function of the cycling parameters such as the end of charge voltage and the charging rate.

  18. PREFACE: 15th International Conference on the Physics of Highly Charged Ions

    Science.gov (United States)

    Zou, Yaming; Hutton, Roger

    2011-07-01

    This issue contains papers presented at the 15th International Conference on the Physics of Highly Charged Ions, HCI2010. The conference was held at Fudan University, Shanghai, 29 August-3 September 2010. HCI is a biannual conference series going back to the very first conference held in Stockholm, Sweden in 1982. Previous editions in this millennium were held in Berkeley, USA, 2000; Caen, France, 2002; Vilnius, Lithuania, 2004; Belfast, UK, 2006, and Tokyo, Japan, 2008. The physics of highly charged ions, HCIs, is of great interest due to their key role in testing quantum electrodynamics in strong fields, and possible testing of parity non-conservation. However, HCIs also play crucial roles in the physics of hot plasmas, for example those produced in tokamak fusion devices and in inertial confinement fusion experiments. Much of the diagnostics of matter under such extreme environments relies very heavily on high quality atomic data of HCIs. The field of x-ray astronomy hinges almost entirely on the use of spectral lines from HCIs to provide information from distant astrophysical plasmas and objects. Given these fundamental interests and the current rapid developments in fusion and x-ray astronomy, it is clear that the physics of HCIs is a rich area of research with strong and important connections to many important subfields of physics. New application areas of HCI physics are also under development: two examples are (a) to provide 13.5 nm—and later half of this wavelength—radiation for lithography and (b) applications in medical research. The need for high quality atomic data of HCIs is as important now as it has ever been. HCI2010 was attended by over 200 scientists from around 20 countries; see the following table. Over 70 of the participants were students, which is very encouraging for the future of HCI related physics. The academic programme was organized based on the suggestions from the International Advisory Board, and consisted of six review lectures

  19. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong Lin [Los Alamos National Laboratory; Fontes, Christopher J [Los Alamos National Laboratory; Sampson, Douglas H [PENNSYLVANIA STATE UNIV

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  20. A fully relativistic approach for calculating atomic data for highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Douglas H. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang Honglin [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: zhang@lanl.gov; Fontes, Christopher J. [Applied Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)], E-mail: cjf@lanl.gov

    2009-07-15

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  1. X-ray Emission Induced by Interaction of Highly Charged Ions with Solid Surface

    Institute of Scientific and Technical Information of China (English)

    ZhaoYongtao; XiaoGuoqing; ZhangXiaoan; YangZhihu; ChenXimeng; ZhangYanping

    2003-01-01

    The X-rays with energy from 1 keV to 60 keV in the interaction of highly charged ions (HCI) with a variety of solid surfaces were investigated at the research platform for atomic physics with the electron cyclone resonance (ECR) ion resource at IMP. We altered the projectile kinetic energy from 150 keV to about 400 keV. The X-ray excited by the projectile with the surface is shown in Fig.l, and a threshold of the projectile kinetic energy for this excitation is observed. Combining the colliding theory of classic electrodynamics with the concept of quantized orbits, we crudely give this threshold energy Tm as follows,

  2. Ionisation from the 3s sub-level of highly charged ions

    Science.gov (United States)

    Golden, L. B.; Sampson, D. H.; Omidvar, K.

    1978-01-01

    Scaled electron-impact cross sections are calculated for ionization from the 3s sublevel of hydrogenic ions with Z equal infinity by use of the Born exchange or the Coulomb-Born Oppenheimer approximation (which is exact, apart from relativistic corrections, in this limit). The results are fitted to an analytic expression which goes into the correct Bethe approximation result at high energies and which can readily be integrated over a Maxwellian electron velocity distribution to obtain collision rates. These results permit calculation of the approximate cross section and collision rate for ionization from the 3s sublevel of any highly charged ion with Z/N larger than approximately 2. Results obtained by the described procedure for Fe-14(+) and Fe-15(+) are compared with results obtained by other procedures.

  3. X-ray spectra induced by slow highly charged Arq+ ions in collision with Nb surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The X-ray spectra of Nb surface induced by Arq+ (q =16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.

  4. Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma.

    Science.gov (United States)

    Min, Qi; Su, Maogen; Cao, Shiquan; Sun, Duixiong; O'Sullivan, Gerry; Dong, Chenzhong

    2016-11-15

    We present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation, which can be used to investigate the radiation properties and dynamics evolution of highly charged ions in a laser-produced plasma in vacuum. The outputs of the model consist of the evolution of the electron temperature, atom, and ion density, and the temporal and spatial evolution of various transient particles in plasma, as well as the simulated spectrum related to certain experimental conditions in a specified spectral window. In order to test the model and provide valuable experimental feedback, a series of EUV emission spectra of silicon plasmas have been measured using the spatio-temporally resolved laser produced plasma technique. The temporal and spatial evolution of the plasma is reliably reconstructed by using this model.

  5. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  6. State-Of-Charge Estimation of Li-Ion Battery Using Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Feng Jin

    2013-07-01

    Full Text Available The Li-ion battery is studied base on its equivalent circuit PNGV model. The model parameters are identified by HPPC test. The discrete state space equation is established according to the model. The basic theory of extended Kalman filter algorithm is studied and then the filtering algorithm is set up under the noisy environments. Finally, a kind of electric car is used for testing under the UDDS driving condition. The difference between the simulation value using extended Kalman filter under the noisy environment and the theoretical value is compared. The result indicated that the extended Kalman filter keeps an excellent precision in state of charge estimation of Li-ion battery and performs well when disturbance happens.

  7. X-ray spectra induced by slow highly charged Arq+ ions in collision with Nb surface

    Institute of Scientific and Technical Information of China (English)

    YANG ZhiHu; GAO ZhiMing; ZHANG XiaoAn; ZHU KeXin; YU DeYang; CAI XiaoHong; CUI Ying; CHEN XiMeng; SONG ZhangYong; SHAO JianXiong; RUAN FangFang; ZHANG HongQiang; DU Juan; LIU YuWen

    2008-01-01

    The X-ray spectra of Nb surface induced by Arq+ (q = 16,17) ions with the energy range from 10 to 20 keV/q were studied by the optical spectrum technology. The experimental results indicate that the multi-electron excitation occurred as a highly charged Ar16+ ion was neutralized below the metal surface. The K shell electron of Ar16+ was excited and then de-excited cascadly to emit K X-ray. The intensity of the X-ray emitted from K shell of the hollow Ar atom decreased with the increase of projectile kinetic energy. The intensity of the X-ray emitted from L shell of the target atom Nb increased with the increase of projectile kinetic energy. The X-ray yield of Ar17+ is three magnitude orders larger than that of Ar16+.

  8. The beam commissioning of a CW high charge state heavy ion RFQ

    Science.gov (United States)

    Zhu, K.; Lu, Y. R.; Yin, X. J.; Yang, Y. Q.; Gao, S. L.; Wang, Z.; He, Y.; Liu, G.; Zhang, X. H.; Yuan, Y. J.; Zhao, H. W.; Xia, J. W.; Chen, C. E.

    2015-09-01

    The SSC-LINAC project is launched at Institute of Modern Physics in China to develop one new linear accelerator (LINAC) injector for separated sector cyclotron (SSC). It includes a high charge state ion source, a CW RFQ and a DTL section, and is designed to accelerate ions up to 580 keV/u. Now the ion source and the RFQ cavity have been installed in the main hall and the beam commissioning has been carried out. Two kinds of ions have been tested, 16O5+ and 40Ar8+. The experiment result of 16O5+ is: the measured beam current is 180 μA at entrance of RFQ and 150 μA at exit of RFQ. The output energy of 16O5+ is 141.89 keV/u. The measured beam current is 210 μA at entrance of RFQ and 198 μA at exit of RFQ for 40Ar8+. The output energy of 40Ar8+ is 142.78 keV/u. The experiment results agree with the design parameters of RFQ very well. This paper presents: the design consideration of beam dynamics, RF and cooling structure design; measurement of the cold model; high power test of RFQ and beam commissioning result.

  9. Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Zhongyue Zou

    2014-08-01

    Full Text Available Four model-based State of Charge (SOC estimation methods for lithium-ion (Li-ion batteries are studied and evaluated in this paper. Different from existing literatures, this work evaluates different aspects of the SOC estimation, such as the estimation error distribution, the estimation rise time, the estimation time consumption, etc. The equivalent model of the battery is introduced and the state function of the model is deduced. The four model-based SOC estimation methods are analyzed first. Simulations and experiments are then established to evaluate the four methods. The urban dynamometer driving schedule (UDDS current profiles are applied to simulate the drive situations of an electrified vehicle, and a genetic algorithm is utilized to identify the model parameters to find the optimal parameters of the model of the Li-ion battery. The simulations with and without disturbance are carried out and the results are analyzed. A battery test workbench is established and a Li-ion battery is applied to test the hardware in a loop experiment. Experimental results are plotted and analyzed according to the four aspects to evaluate the four model-based SOC estimation methods.

  10. The beam commissioning of a CW high charge state heavy ion RFQ

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, K. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Lu, Y.R., E-mail: yrlu@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Yin, X.J.; Yang, Y.Q. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gao, S.L.; Wang, Z. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); He, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Liu, G. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Zhang, X.H.; Yuan, Y.J.; Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Chen, C.E. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China)

    2015-09-11

    The SSC-LINAC project is launched at Institute of Modern Physics in China to develop one new linear accelerator (LINAC) injector for separated sector cyclotron (SSC). It includes a high charge state ion source, a CW RFQ and a DTL section, and is designed to accelerate ions up to 580 keV/u. Now the ion source and the RFQ cavity have been installed in the main hall and the beam commissioning has been carried out. Two kinds of ions have been tested, {sup 16}O{sup 5+} and {sup 40}Ar{sup 8+}. The experiment result of {sup 16}O{sup 5+} is: the measured beam current is 180 μA at entrance of RFQ and 150 μA at exit of RFQ. The output energy of {sup 16}O{sup 5+} is 141.89 keV/u. The measured beam current is 210 μA at entrance of RFQ and 198 μA at exit of RFQ for {sup 40}Ar{sup 8+}. The output energy of {sup 40}Ar{sup 8+} is 142.78 keV/u. The experiment results agree with the design parameters of RFQ very well. This paper presents: the design consideration of beam dynamics, RF and cooling structure design; measurement of the cold model; high power test of RFQ and beam commissioning result.

  11. Charging the quantum capacitance of graphene with a single biological ion channel.

    Science.gov (United States)

    Wang, Yung Yu; Pham, Ted D; Zand, Katayoun; Li, Jinfeng; Burke, Peter J

    2014-05-27

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents.

  12. Large amplitude solitary waves in ion-beam plasmas with charged dust impurities

    CERN Document Server

    Misra, A P

    2011-01-01

    The nonlinear propagation of large amplitude dust ion-acoustic (DIA) solitary waves (SWs) in an ion-beam plasma with stationary charged dusts is investigated. For typical plasma parameters relevant for experiments [J. Plasma Phys. \\textbf{60}, 69 (1998)], when the beam speed is larger than the DIA speed ($v_{b0}\\gtrsim1.7c_s$), three stable waves, namely the "fast" and "slow" ion-beam modes and the plasma DIA wave are shown to exist. These modes can propagate as SWs in the beam plasmas. However, in the other regime ($c_s0)$ is found to be limited by a critical value which typically depends on $M$, $v_{b0}$ as well as the ion/beam temperature. The conditions for the existence of DIA solitons are obtained and their properties are analyzed numerically in terms of the system parameters. While the system supports both the compressive and rarefactive large amplitude SWs, the small amplitude solitons exist only of the compressive type. The theoretical results may be useful for observation of soliton excitations in l...

  13. Design of a two-ion-source (2-IS) beam transport line for the production of multi charged radioactive ion beams

    CERN Document Server

    Banerjee, V; Bandyopadhyay, A; Chattopadhyay, S; Polley, A; Nakagawa, T; Kamigaito, O; Goto, A; Yano, Y

    2000-01-01

    A 'two-ion-source' beam transport line between a surface ionization source and a 6.4 GHz on-line Electron Cyclotron Resonance Ion Source (ECRIS) for the production of multi-charged radioactive ions has been designed. The 1 sup + ions from the surface ionization source are decelerated and focused onto the ECRIS plasma so that they can be efficiently trapped there and further ionized to charge state q>1 sup +. A scheme for stepwise and gradual deceleration of the 1 sup + ion beam consisting of a multi-electrode decelerator and a tuning electrode placed before the ECRIS has been optimized. The beam dynamics calculations show that the 1 sup + beam decelerated to energies of 20-50 eV could be focused to a spot size smaller than the radial dimensions of the ECR plasma zone.

  14. Fragmentation dynamics of CO(2)(3+) investigated by multiple electron capture in collisions with slow highly charged ions.

    Science.gov (United States)

    Neumann, N; Hant, D; Schmidt, L Ph H; Titze, J; Jahnke, T; Czasch, A; Schöffler, M S; Kreidi, K; Jagutzki, O; Schmidt-Böcking, H; Dörner, R

    2010-03-12

    Fragmentation of highly charged molecular ions or clusters consisting of more than two atoms can proceed in a one step synchronous manner where all bonds break simultaneously or sequentially by emitting one ion after the other. We separated these decay channels for the fragmentation of CO(2)(3+) ions by measuring the momenta of the ionic fragments. We show that the total energy deposited in the molecular ion is a control parameter which switches between three distinct fragmentation pathways: the sequential fragmentation in which the emission of an O(+) ion leaves a rotating CO(2+) ion behind that fragments after a time delay, the Coulomb explosion and an in-between fragmentation--the asynchronous dissociation. These mechanisms are directly distinguishable in Dalitz plots and Newton diagrams of the fragment momenta. The CO(2)(3+) ions are produced by multiple electron capture in collisions with 3.2 keV/u Ar(8+) ions.

  15. Characterization of charge-exchange collisions between ultracold $\\rm{^6Li}$ atoms and $\\rm{^{40}Ca^+}$ ions

    CERN Document Server

    Saito, R; Sasakawa, M; Nakai, R; Raoult, M; Silva, H Da; Dulieu, O; Mukaiyama, T

    2016-01-01

    We investigate the energy dependence and the internal-state dependence of the charge-exchange collision cross sections in a mixture of $^6$Li atoms and $^{40}$Ca$^+$ ions in the collision energy range from 0.2 mK to 1 K. Deliberately excited ion micromotion is used to control the collision energy of atoms and ions. The energy dependence of the charge-exchange collision cross section obeys the Langevin model in the temperature range of the current experiment, and the measured magnitude of the cross section is correlated to the internal state of the $^{40}$Ca$^+$ ions. Revealing the relationship between the charge-exchange collision cross sections and the interaction potentials is an important step toward the realization of the full quantum control of the chemical reactions at an ultralow temperature regime.

  16. Surface charging and x-ray emission from insulator surfaces induced by collisions with highly charged ions : relevance to cometary and planetary sp

    Science.gov (United States)

    Djuric, N.; Lozano, J. A.; Smith, S. J.; Chutjian, A.

    2005-01-01

    Characteristic X-ray emission lines are detected from simulants of comet surfaces as they undergo collisions with highly charged ions (HCIs). The HCI projectiles are O+2-O+7. Ion energies are varied in the range (2-7)q keV, where q is the ion charge state. The targets are the insulator minerals olivine, augite, and quartz. It is found that the emission of characteristic K-L, K-M X-rays appears to proceed during positive charging of the surface by the HCI beam. When one uses low-energy, flood-gun electrons to neutralize the surface charge, the X-ray emission is eliminated or greatly reduced, depending on the flood-gun current. Acceleration of background electrons onto the charged surface results in excitation of elemental transitions, including the K-L2 and K-L3 target X-ray emission lines of Mg and Si located spectroscopically at 1253.6 and 1739.4 eV, respectively. Also observed are emission lines from O, Na, Ca, Al, and Fe atoms in the target and charge-exchange lines via surface extraction of electrons by the O+q electric field. Good agreement is found in the ratio of the measured X-ray yields for Mg and Si relative to the ratio of their electron-impact K-shell ionization cross sections. The present study may serve as a guide to astronomers as to specific observing X-ray energies indicative of solar/stellar wind or magnetospheric ion interactions with a comet, planetary surface, or circumstellar dust.

  17. Progress on the Los Alamos heavy-ion injector

    Science.gov (United States)

    Wilson, D. C.; Riepe, K. B.; Ballard, E. O.; Meyer, E. A.; Shurter, R. P.; Van Haaften, F. W.; Humphries, S.

    1986-01-01

    Heavy-ion fusion using an induction linac requires injection of multiple high-current beams from a pulsed electrostatic accelerator at as high a voltage as practical. Los Alamos National Laboratory is developing a 16-beam, 2-MeV, pulsed electrostatic accelerator for Al+ ions. The ion source will use a pulsed metal vapor arc plasma. A biased grid wil control plasma flux into the ion extraction region. This source has achieved a normalized emittance of ɛnlaser fired diverter is being assembled. The ceramic accelerating column sections have been brazed and leak tested. Voltage hold off on a brazed sample was more than doubled by selective removal of the Ticusil braze fillet extending along the ceramic. A scaled test module held 250 kV for 50 μs, giving confidence that the full module can hold 175 kV per section. The pressure vessel should be received in June 1986. High-voltage testing of a 1 MV column will begin by early 1987.

  18. Recent progress on the superconducting ion source VENUS.

    Science.gov (United States)

    Benitez, J Y; Franzen, K Y; Hodgkinson, A; Loew, T; Lyneis, C M; Phair, L; Saba, J; Strohmeier, M; Tarvainen, O

    2012-02-01

    The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi(31+), which is in the intensity range of interest for high performance heavy-ion drivers such as FRIB (Facility for Rare Isotope Beams). In addition, the space radiation effects testing program at the cyclotron relies on the production of a cocktail beam with many species produced simultaneously in the ion source and this can be done with a combination of gases, sputter probes, and an oven. These capabilities are being developed with VENUS by adding a low temperature oven, sputter probes, as well as studying the RF coupling into the source.

  19. Charge-exchange cross sections and beam lifetimes for stored and decelerated bare uranium ions

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Ludziejewski, T.; Reich, H.; Bosch, F.; Franzke, B.; Kozhuharov, C.; Menzel, G.; Mokler, P.H.; Nolden, F.; Steck, M. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Dunford, R.W. [Argonne National Lab., IL (United States). Physics Div.; Eichler, J. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Theoretische Physik]|[Freie Univ. Berlin (Germany). Fachbereich Physik; Rymuza, P. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland); Stachura, Z. [Institute of Nuclear Physics, Cracow (Poland); Swiat, P.; Warczak, A. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki; Winkler, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1998-08-01

    Charge-exchange cross sections and beam lifetimes are studied for decelerated bare uranium ions at the ESR storage ring. By deceleration from the initial energy of 358 MeV/u down to various energies as low as 49 MeV/u, i.e. far below the production energy of bare ionic species, the electron pick-up cross sections were obtained for collisions with N{sub 2}, Ar, CH{sub 4} and Kr gaseous targets. The measured cross sections and beam lifetimes are compared with the theoretical results for radiative and non-radiative electron capture. The present data along with the theoretical approximations discussed, provide a solid basis for the estimation of beam lifetimes for decelerated bare high-Z ions. Moreover, a normalization procedure is proposed, in which absolute total charge-exchange cross sections are derived by normalizing the simultaneously measured yield of K-REC photons to rigorously calculated relativistic cross sections. This method along with the unprecedented beam conditions at the ESR storage ring, allows a significant improvement in the accuracy of cross section data. (orig.)

  20. Study of high transverse momentum charged particle suppression in heavy ion collisions at LHC

    CERN Document Server

    Yoon, Andre Sungho

    The charged particle spectrum at large transverse momentum (PT), dominated by hadrons originating from parton fragmentation, is an important observable for studying the properties of the hot, dense medium produced in high-energy heavy-ion collisions. The study of the modifications of the PT spectrum in PbPb compared to pp collisions at the same collision energy can shed light on the detailed mechanism by which hard partons lose energy traversing the medium. In this thesis, the transverse momentum spectra of charged particles in pp and PbPb collisions at [square root of]Snn = 2.76 TeV measured up to PT = 100 GeV/c with the CMS experiment at the Large Hadron Collider (LHC) are presented. In the transverse momentum range PT = 5-10 GeV/c, the charged particle yield in the most central PbPb collisions is suppressed by up to a factor of 7 compared to the pp yield scaled by the number of incoherent nucleon-nucleon collisions. At higher PT, this suppression is significantly reduced, approaching roughly a factor of 2 ...

  1. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  2. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  3. Highly charged ions in Penning traps, a new tool for resolving low lying isomeric states

    CERN Document Server

    Gallant, A T; Brunner, T; Chowdhury, U; Ettenauer, S; Simon, V V; Mané, E; Simon, M C; Andreoiu, C; Delheij, P; Gwinner, G; Pearson, M R; Ringle, R; Dilling, J

    2011-01-01

    The use of highly charged ions greatly increases the precision and resolving power, in particular for short-lived species produced at on-line radio-isotope beam facilities, achievable with Penning trap mass spectrometers. This increase in resolving power provides a new and unique access to resolving low-lying long-lived ($T_{1/2} > 50$ ms) nuclear isomers. Recently, the $111.19(22)$ keV (determined from $\\gamma$-ray spectroscopy) isomeric state in $^{78}$Rb has been resolved from the ground state, in a charge state of $q=8+$ with the TITAN Penning trap at the TRIUMF-ISAC facility. The energy level of the isomer was measured to be $108.7(6.4)$ keV above the ground state. The extracted masses for both the ground and isomeric states, and their difference, agree with the AME2003 and Nuclear Data Sheet values. This proof of principle measurement demonstrates the feasibility of using Penning trap mass spectrometers coupled to charge breeders to study nuclear isomers and opens a new route for isomer searches.

  4. Ions in mixed dielectric solvents: density profiles and osmotic pressure between charged interfaces.

    Science.gov (United States)

    Ben-Yaakov, Dan; Andelman, David; Harries, Daniel; Podgornik, Rudi

    2009-04-30

    The forces between charged macromolecules, usually given in terms of osmotic pressure, are highly affected by the intervening ionic solution. While in most theoretical studies the solution is treated as a homogeneous structureless dielectric medium, recent experimental studies concluded that, for a bathing solution composed of two solvents (binary mixture), the osmotic pressure between charged macromolecules is affected by the binary solvent composition. By adding local solvent composition terms to the free energy, we obtain a general expression for the osmotic pressure, in planar geometry and within the mean-field framework. The added effect is due to the permeability inhomogeneity and nonelectrostatic short-range interactions between the ions and solvents (preferential solvation). This effect is mostly pronounced at small distances and leads to a reduction in the osmotic pressure for macromolecular separations of the order 1-2 nm. Furthermore, it leads to a depletion of one of the two solvents from the charged macromolecules (modeled as planar interfaces). Lastly, by comparing the theoretical results with experimental ones, an explanation based on preferential solvation is offered for recent experiments on the osmotic pressure of DNA solutions.

  5. Progressing subglottic and tracheobronchial stenosis in a patient with CHARGE syndrome diagnosed in adulthood

    Directory of Open Access Journals (Sweden)

    Keiko Mitaka Komatsuzaki

    2014-01-01

    Full Text Available A 33-year-old woman was admitted for a pseudocroup-like cough and wheezing after general anesthesia. Several months ago, she had undergone cardiac re-operation and turbinectomy, both of which had involved difficult intubations. Bronchoscopy indicated a pin-hall-like subglottic stenosis; therefore, emergency tracheotomy was performed. Six years later, a computed tomography scan demonstrated progressive stenosis of the entire circumference of the trachea and main bronchi. She died at 40 years. Her autopsy revealed marked tracheobronchial stenosis. She had many medical histories that had gone undiagnosed and had been clinically ill with only heart defects. She did not have coloboma but had microphthalmos, atresia choanae, retarded growth development, and deafness; thus, we diagnosed CHARGE syndrome that refers to multiple congenital anomalies, including airway abnormalities, which can lead to secondary complications such as traumatic stenosis after intubation. Physicians should have knowledge of this rare disease and should pay special attention to potential airway problems.

  6. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    Science.gov (United States)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  7. Development of electron beam ion source charge breeder for rare isotopes at Californium Rare Isotope Breeder Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashev, S.; Dickerson, C.; Levand, A.; Ostroumov, P. N.; Pardo, R. C.; Savard, G.; Vondrasek, R. [Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Alessi, J.; Beebe, E.; Pikin, A. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Kuznetsov, G. I.; Batazova, M. A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation)

    2012-02-15

    Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs{sup +} surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved {approx}70% injection/extraction efficiency and breeding efficiency into the most abundant charge state of {approx}17%.

  8. Development of electron beam ion source charge breeder for rare isotopes at Californium Rare Isotope Breeder Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Kondrashev S.; Alessi J.; Dickerson, C.; Levand, A.; Ostroumov, P.N.; Pardo, R.C.; Savard, G.; Vondrasek, R.; Beebe, E.; Pikin, A.; Kuznetsov, G.I.; Batazova, M.A.

    2012-02-03

    Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs{sup +} surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved {approx}70% injection/extraction efficiency and breeding efficiency into the most abundant charge state of {approx}17%.

  9. Ion Beam Induced Charge Collection (IBICC) from Integrated Circuit Test Structures Using a 10 MeV Carbon Microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Aton, T.J.; Doyle, B.L.; Duggan, J.L.; El Bouanani, M.; Guo, B.N.; McDaniel, F.D.; Renfrow, S.N.; Walsh, D.S.

    1998-11-18

    As future sizes of Integrated Circuits (ICs) continue to shrink the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICS. The IBICC measurements, conducted at the Sandia National Laboratories employed a 10 MeV carbon microbeam with 1pm diameter spot to scan test structures on specifically designed ICS. With the aid of layout information, an analysis of the charge collection efficiency from different test areas is presented. In the present work a 10 MeV Carbon high-resolution microbeam was used to demonstrate the differential charge collection efficiency in ICS with the aid of the IC design Information. When ions strike outside the FET, the charge was only measured on the outer ring, and decreased with strike distance from this diode. When ions directly strike the inner and ring diodes, the collected charge was localized to these diodes. The charge for ions striking the gate region was shared between the inner and ring diodes. I The IBICC measurements directly confirmed the interpretations made in the earlier work.

  10. Effect of ion charges on the electric double layer capacitance of activated carbon in aqueous electrolyte systems

    Science.gov (United States)

    Icaza, Juan C.; Guduru, Ramesh K.

    2016-12-01

    Carbon based electrochemical double layer capacitors (EDLCs) are known for high power density, but their energy density is limited due to surface characteristics of the electrode materials as well as the size and charge of the ions used in the electrolyte. Therefore, considering the current demand for enhanced energy density devices, we investigated the use of multivalent electrolytes to increase the capacitance of activated carbon (AC) based EDLCs. As part of these studies, we examined the effect of the charge of the multivalent ions on the capacitive behavior of microporous AC electrodes and compared with the univalent Li+ system. We performed impedance and cyclic voltammetry measurements on AC electrodes in a symmetric two electrode configuration to determine the impedance and capacitance with respect to varying charge and concentration of the ions in the aqueous nitrate electrolytes. These studies clearly demonstrated an increased capacitance with Mg2+ and Al3+ implying the possible effects of ion mobility and electrolyte conductivity in addition to the multivalent charge. These preliminary observations clearly point to the importance of selection of electrolyte ions with more charge, conductivity, and suitable size with respect to the pore size of the electrodes in order to increase the capacitance of EDLCs.

  11. Charge Inversion of Phospholipids by Dimetal Complexes for Positive Ion-Mode Electrospray Ionization Mass Spectrometry Analysis

    DEFF Research Database (Denmark)

    Svane, Simon; Gorshkov, Vladimir; Kjeldsen, Frank

    2015-01-01

    Phospholipids are vital constituents of living cells, as they are involved in signaling and membrane formation. Mass spectrometry analysis of many phospholipids is preferentially performed in the negative ion-mode because of their acidic nature. Here we have studied the potential of a digallium...... phosphates and phosphatidic acid bound to {LGa2}(5+) were between 2.5- and 116-fold higher than that of the unmodified lipids in the negative ion-mode. Native phosphoinositide ions yielded upon CID in the negative ion-mode predominantly product ions due to losses of H3PO4, PO3(-) and H2O. In comparison, CID...... and dizinc complex to charge-invert a range of different types of phospholipids and measured their ion yield and fragmentation behavior in positive ion-mode tandem mass spectrometry. The dimetal complexes bind specifically the phosphate groups of phospholipids and add an excess of up to three positive...

  12. Local state-of-charge mapping of lithium-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Jagjit [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Remillard, Jeffrey; O' Neill, Ann; Bernardi, Dawn; Ro, Tina; Nietering, Kenneth E.; Miller, Ted J. [Research and Advanced Engineering, Ford Motor Co., Dearborn, MI (United States); Go, Joo-Young [SB LiMotive, R and D Team, Gyeonggi-do (Korea, Republic of)

    2011-09-09

    Current lithium-ion battery technology is gearing towards meeting the robust demand of power and energy requirements for all-electric transportation without compromising on the safety, performance, and cycle life. The state-of-charge (SOC) of a Li-ion cell can be a macroscopic indicator of the state-of-health of the battery. The microscopic origin of the SOC relates to the local lithium content in individual electrode particles and the effective ability of Li-ions to transport or shuttle between the redox couples through the cell geometric boundaries. Herein, micrometer-resolved Raman mapping of a transition-metal-based oxide positive electrode, Li{sub 1-x}(Ni{sub y}Co{sub z}Al{sub 1-y-z})O{sub 2}, maintained at different SOCs, is shown. An attempt has been made to link the underlying changes to the composition and structural integrity at the individual particle level. Furthermore, an SOC distribution at macroscopic length scale of the electrodes is presented. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. A Single Charge State ECR Ion Source%单粒子态ECR离子源

    Institute of Scientific and Technical Information of China (English)

    赵玉彬; 刘占稳; 赵红卫; 丁俊章; 曹云; 张子民; 张雪珍; 郭晓虹

    1999-01-01

    A compact 2.45GHz electron cyclotron resonance ion source (ECRIS) for high beam current of single charge state has been built at Institute of Modern Physics. A mixed ion( )beam current of 90mA is delivered from a single aperture of φ6mm with rf power 600W at extraction voltage 22kV. This paper introduces the source structure, the magnetic configuration, the test results and the relation between the magnetic configuration and total beam current. In addition, the magnetic configuration is also compared with that of the other 2.45GHz ECR ion sources built in different laboratories. Finally, some conclusions are presented.%介绍了一台2.45GHz电子回旋共振(ECR)单电荷离子源的磁场场形,以及它和总束流的关系. 并且比较了国际上现有的几台同类型离子源的磁场场形. 由此得出了关于2.45GHz ECR 离子源磁场场形的一些结论.

  14. Wave packet study of the secondary emission of negatively charged, monoatomic ions from sputtered metals

    Energy Technology Data Exchange (ETDEWEB)

    Sindona, A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy) and Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)]. E-mail: sindona@fis.unical.it; Riccardi, P. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Maletta, S. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Rudi, S.A. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy); Falcone, G. [Dipartimento di Fisica, Universita della Calabria, Via P. Bucci 31C, 87036 Rende (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Gruppo collegato di Cosenza, Via P. Bucci 31C, 87036 Rende (Italy)

    2007-05-15

    Secondary emission of Ag{sup -} and Au{sup -} particles, following the sputtering of clean Ag(1 0 0) and Au(1 0 0) targets, respectively, is studied with a Crank-Nicholson wave-packet propagation method. A one-electron pseudo-potential is used to describe the plane metal surface, with a projected band gap, the ejected ion, whose charge state is investigated, and its nearest-neighbor substrate ion, put in motion by the collision cascade generated by the primary ion beam. Time-dependent Schroedinger equation is solved backwards in time to determine the evolution of the affinity orbital of the negative particles from an instant when they are unperturbed, at distances of the order of {approx}10{sup 2} a.u. from the surface, to the instant of ejection. The probability that a band electron will be eventually detected in affinity state of the ejected particle is, thus, calculated and compared with the result of another method based on the spectral decomposition of the one-electron Hamiltonian.

  15. Progress in Development of Improved Ion-Channel Biosensors

    Science.gov (United States)

    Nadeau, Jay L.; White, Victor E.; Maurer, Joshua A.; Dougherty, Dennis A.

    2008-01-01

    Further improvements have recently been made in the development of the devices described in Improved Ion-Channel Biosensors (NPO-30710), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 30. As discussed in more detail in that article, these sensors offer advantages of greater stability, greater lifetime, and individual electrical addressability, relative to prior ion-channel biosensors. In order to give meaning to a brief description of the recent improvements, it is necessary to recapitulate a substantial portion of the text of the cited previous article. The figure depicts one sensor that incorporates the recent improvements, and can be helpful in understanding the recapitulated text, which follows: These sensors are microfabricated from silicon and other materials compatible with silicon. Typically, the sensors are fabricated in arrays in silicon wafers on glass plates. Each sensor in the array can be individually electrically addressed, without interference with its neighbors. Each sensor includes a well covered by a thin layer of silicon nitride, in which is made a pinhole for the formation of a lipid bilayer membrane. In one stage of fabrication, the lower half of the well is filled with agarose, which is allowed to harden. Then the upper half of the well is filled with a liquid electrolyte (which thereafter remains liquid) and a lipid bilayer is painted over the pinhole. The liquid contains a protein that forms an ion channel on top of the hardened agarose. The combination of enclosure in the well and support by the hardened agarose provides the stability needed to keep the membrane functional for times as long as days or even weeks. An electrode above the well, another electrode below the well, and all the materials between the electrodes together constitute a capacitor. What is measured is the capacitive transient current in response to an applied voltage pulse. One notable feature of this sensor, in comparison with prior such sensors, is a

  16. Producing highly charged ions without solvent using laserspray ionization: a total solvent-free analysis approach at atmospheric pressure.

    Science.gov (United States)

    Wang, Beixi; Lietz, Christopher B; Inutan, Ellen D; Leach, Samantha M; Trimpin, Sarah

    2011-06-01

    First examples of highly charged ions in mass spectrometry (MS) produced from the solid state without using solvent during either sample preparation or mass measurement are reported. Matrix material, matrix/analyte homogenization time and frequency, atmospheric pressure (AP) to vacuum inlet temperature, and mass analyzer ion trap conditions are factors that influence the abundance of the highly charged ions created by laserspray ionization (LSI). LSI, like matrix-assisted laser desorption/ionization (MALDI), uses laser ablation of a matrix/analyte mixture from a surface to produce ions. Preparing the matrix/analyte sample without the use of solvent provides the ability to perform total solvent-free analysis (TSA) consisting of solvent-free ionization and solvent-free gas-phase separation using ion mobility spectrometry (IMS) MS. Peptides and small proteins such as non-β-amyloid components of Alzheimer's disease and bovine insulin are examples in which LSI and TSA were combined to produce multiply charged ions, similar to electrospray ionization, but without the use of solvent. Advantages using solvent-free LSI and IMS-MS include simplicity, rapid data acquisition, reduction of sample complexity, and the potential for an enhanced effective dynamic range. This is achieved by more inclusive ionization and improved separation of mixture components as a result of multiple charging.

  17. Charge breeding investigation in EBIS/T and collision study of ions with cold atoms for HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Alexey

    2010-01-29

    Highly charged ions (HCI) at low velocities or at rest are interesting systems for various atomic physics experiments. For investigations on HCI of heavy stable or radioactive nuclides the HITRAP (Highly charged Ion TRAP) decelerator facility has been set up at GSI to deliver cooled beams of HCI at an energy of 5 keV/q. The HCI are produced in a stripper foil at relativistic energies and are decelerated in several steps at ESR storage ring and HITRAP before they are delivered to experimental setups. One of the experiments is the investigation of multi-electron charge exchange in collisions of heavy HCI with cold atoms using novel MOTRIMS technique. Collision experiments on light ions from an ECR ion source colliding with cold atoms in a MOT have been performed and the results are described. An electron beam ion trap (EBIT) has been tested and optimized for commissioning of the HITRAP physics experiments. The process of charge breeding in the EBIT has been successfully studied with gaseous elements and with an alkaline element injected from an external ion source. (orig.)

  18. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  19. Progress on Bayesian Inference of the Fast Ion Distribution Function

    DEFF Research Database (Denmark)

    Stagner, L.; Heidbrink, W.W,; Chen, X.;

    2013-01-01

    The fast-ion distribution function (DF) has a complicated dependence on several phase-space variables. The standard analysis procedure in energetic particle research is to compute the DF theoretically, use that DF in forward modeling to predict diagnostic signals, then compare with measured data...... sensitivity of the measurements are incorporated into Bayesian likelihood probabilities. Prior probabilities describe physical constraints. This poster will show reconstructions of classically described, low-power, MHD-quiescent distribution functions from actual FIDA measurements. A description of the full...

  20. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose.

    Science.gov (United States)

    Bacchus-Montabonel, Marie-Christine

    2014-08-21

    Modeling-induced radiation damage in biological systems, in particular, in DNA building blocks, is of major concern in cancer therapy studies. Ion-induced charge-transfer dynamics may indeed be involved in proton and hadrontherapy treatments. We have thus performed a theoretical approach of the charge-transfer dynamics in collision of C(4+) ions and protons with isolated 2-deoxy-D-ribose in a wide collision energy range by means of ab initio quantum chemistry molecular methods. The comparison of both projectile ions has been performed with regard to previous theoretical and experimental results. The charge transfer appears markedly less efficient with the 2-deoxy-D-ribose target than that with pyrimidine nucleobases, which would induce an enhancement of the fragmentation process in agreement with experimental measurements. The mechanism has been analyzed with regard to inner orbital excitations, and qualitative tendencies have been pointed out for studies on DNA buiding block damage.

  1. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  2. Ion Trap Quantum Computers: Performance Limits and Experimental Progress

    Science.gov (United States)

    Hughes, Richard

    1998-03-01

    In a quantum computer information would be represented by the quantum mechanical states of suitable atomic-scale systems. (A single bit of information represented by a two-level quantum system is known as a qubit.) This notion leads to the possibility of computing with quantum mechanical superpositions of numbers ("quantum parallelism"), which for certain problems would make Quantum/quantum.html>quantum computation very much more efficient than classical computation. The possibility of rapidly factoring the large integers used in public-key cryptography is an important example. (Public key cryptosystems derive their security from the difficuty of factoring, and similar problems, with conventional computers.) Quantum computational hardware development is in its infancy, but an experimental study of quantum computation with laser-cooled trapped calcium ions that is under way at Los Alamos will be described. One of the pricipal obstacles to practical quantum computation is the inevitable loss of quantum coherence of the complex quantum states involved. The results of a theoretical analysis showing that quantum factoring of small integers should be possible with trapped ions will be presented. The prospects for larger-scale computations will be discussed.

  3. Ion Behavior and Gas Mixing in electron cyclotron resonance plasmas as sources of highly charged ions (concept

    OpenAIRE

    Melin, G.; Drentje, A. G.; Girard, A; Hitz, D.

    1999-01-01

    Abstract: An ECR ion source is basically an ECR heated plasma confinement machine, with hot electrons and cold ions. The main parameters of the ion population have been analyzed, including temperature, losses, and confinement time. The "gas mixing" effect has been studied in this context. An expression is derived for determining the ion temperature from the values of all extracted ion currents. One aim is to study the ion temperature behavior in argon plasmas without and with mixing different...

  4. Kadomstev–Petviashvili (KP) equation in warm dusty plasma with variable dust charge, two-temperature ion and nonthermal electron

    Indian Academy of Sciences (India)

    Hamid Reza Pakzad

    2010-04-01

    In this work, the propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ion and nonthermal electron is studied. By using the reductive perturbation theory, the Kadomstev–Petviashvili (KP) equation is derived. The energy of the soliton and the linear dispersion relation are obtained. The effects of variable dust charge on the energy of soliton and the angular frequency of linear wave are also discussed.

  5. Li-Ion Battery Charging with a Buck-Boost Power Converter for a Solar Powered Battery Management System

    OpenAIRE

    2013-01-01

    This paper analyzes and simulates the Li-ion battery charging process for a solar powered battery management system. The battery is charged using a non-inverting synchronous buck-boost DC/DC power converter. The system operates in buck, buck-boost, or boost mode, according to the supply voltage conditions from the solar panels. Rapid changes in atmospheric conditions or sunlight incident angle cause supply voltage variations. This study develops an electrochemical-based equivalent circuit mod...

  6. Flow-background subtraction in the charge-separation measurements in heavy-ion collisions

    Science.gov (United States)

    Wen, Fufang

    2016-09-01

    Recent azimuthal-angle correlation measurements in high-energy heavy-ion collisions have observed charge-separation signals perpendicular to the reaction plane, and the observations have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background contributions due to the collective motion (flow) of the collision system, and it remains elusive to effectively remove the background from the correlation. In this poster, we present a method study with a simple Monte Carlo simulation and the AMPT model. We develop a scheme to reveal the true CME signal via the event-shape engineering with the magnitude of the flow vector, Q: the flow-background is removed at Q = 0. Artificial signal/background effects will also be discussed.

  7. Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction

    Science.gov (United States)

    Asakawa, Masayuki; Kitazawa, Masakiyo

    2016-09-01

    Bulk fluctuations of conserved charges measured by event-by-event analysis in relativistic heavy ion collisions are observables which are believed to carry significant amount of information on the hot medium created by the collisions. Active studies have been done recently experimentally, theoretically, and on the lattice. In particular, non-Gaussianity of the fluctuations has acquired much attention recently. In this review, we give a pedagogical introduction to these issues, and survey recent developments in this field of research. Starting from the definition of cumulants, basic concepts in fluctuation physics, such as thermal fluctuations in statistical mechanics and time evolution of fluctuations in diffusive systems, are described. Phenomena which are expected to occur in finite temperature and/or density QCD matter and their measurement by event-by-event analyses are also elucidated.

  8. Measurement and analyses of the mean effective ion charge in the centre of tokamak discharges

    Institute of Scientific and Technical Information of China (English)

    Zheng Yong-Zhen; Ding Xuan-Tong; Zhuo Yan

    2007-01-01

    There are two different definitions for specifying the mean effective ion charge Zeff in plasmas: a) from the Spizer electrical resistivity of the plasma and b) from bremsstrahlung radiation losses of the plasma. In this paper Zeff in the centre of tokamak ohmic discharges has been determined from information on sawtooth-relaxations of the steady state plasma, based on the analysis for the power balance of the plasma electrons in the plasma centre during the period of recovery after the sawtooth crashes. This method is found to supply reliable results for tokamak parameters. While its application requires some efforts in data analysis, it can provide a reliable determination of Zeff, independent of the information from bremsstrahlung radiation losses of the plasma.

  9. Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction

    CERN Document Server

    Asakawa, Masayuki

    2015-01-01

    Bulk fluctuations of conserved charges measured by event-by-event analysis in relativistic heavy ion collisions are observables which are believed to carry significant information on the primordial thermodynamics of the hot medium created by the collisions. Active studies have been done recently experimentally, theoretically, and on the lattice. In particular, non-Gaussianity of the fluctuations aquires much attention recently. In this review, we give a pedagogical introduction to these physics, and overview recent developments in this field of research. Starting from the definition of cumulants, basic concepts in fluctuation physics, such as thermal fluctuations in statistical mechanics and time evolution of fluctuations in diffusive systems, are described. Physics which are expected to occur in the QCD phase diagram and their measurement by event-by-event analyses are also elucidated.

  10. Ionization and single electron capture in collision of highly charged Ar16+ ions with helium

    Institute of Scientific and Technical Information of China (English)

    Wang Fei; Gou Bing-Cong

    2008-01-01

    This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar16+ ions with He atoms in the velocity range of 1.2-1.9 a.u.. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u..

  11. Recombination-cascade X-ray spectra of highly charged helium-like ions

    Science.gov (United States)

    Pradhan, A. K.

    1985-01-01

    It is shown that the relative intensity distribution among the X-ray spectral lines of helium-like ions from the n = 2 states produced through recombination processes such as radiative and charge transfer recombination may be given by considering in detail the radiative cascades following recombination. Model calculations are presented with predicted line ratios for Ar XVII and Fe XXV in recombination-dominated noncoronal plasmas. In particular, compared to coronal intensities, the singlet resonance line (w) should be much weaker relative to the triplet intercombination (x, y) and forbidden (z) lines, yielding large values for the ratio G = (x + y + z)/w. Accurate configuration interaction type wave functions are employed to calculate the eigenenergies, transition probabilities, and cascade coefficients. Certain relevant tokamak and astrophysical observations are discussed.

  12. Phase diagram for nanostructuring CaF(2) surfaces by slow highly charged ions.

    Science.gov (United States)

    El-Said, A S; Wilhelm, R A; Heller, R; Facsko, S; Lemell, C; Wachter, G; Burgdörfer, J; Ritter, R; Aumayr, F

    2012-09-14

    The impact of individual slow highly charged ions (HCI) on alkaline earth halide and alkali halide surfaces creates nano-scale surface modifications. For different materials and impact energies a wide variety of topographic alterations have been observed, ranging from regularly shaped pits to nanohillocks. We present experimental evidence for the creation of thermodynamically stable defect agglomerations initially hidden after irradiation but becoming visible as pits upon subsequent etching. A well defined threshold separating regions with and without etch-pit formation is found as a function of potential and kinetic energies of the projectile. Combining this novel type of surface defects with the previously identified hillock formation, a phase diagram for HCI induced surface restructuring emerges. The simulation of the energy deposition by the HCI in the crystal provides insight into the early stages of the dynamics of the surface modification and its dependence on the kinetic and potential energies.

  13. Note: Multi channel Doppler tuned spectrometer to study highly charged ions.

    Science.gov (United States)

    Karn, Ranjeet K; Mishra, C N; Ahmad, Nissar; Saini, S K; Safvan, C P; Nandi, T

    2014-06-01

    We describe the design and implementation of a multi channel Doppler tuned spectrometer setup to study physics of highly charged ions at high resolution in a direct way. A unique Soller slit assembly coupled with a long one dimensional position sensitive proportional counter enables us to get distinct x-ray peaks at different angles, which allows us to cover large number of angle in one shot. By using this setup, 1s2s (3)S1 - 1s(2) (1)S0 M1 transition in He-like Fe has been resolved from its satellite line 1s2s2p ⁴P(5/2)⁰ - 1s(2)2s (2)S(1/2) M2 transition in Li-like Fe and measured the lifetime of their respective upper levels with high precision.

  14. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  15. Charge-exchange-induced perturbations of ion and atom distribution functions in the heliospheric interface

    CERN Document Server

    Fahr, H J

    2004-01-01

    Various hydrodynamic models of the heliospheric interface have been presented meanwhile, numerically simulating the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In these model approaches the resulting interface flows are found by the use of hydrodynamic simulation codes trying to consistently describe the dynamic and thermodynamic coupling of the different interacting fluids of protons, H-atoms and pick-up ions. Within such approaches, the fluids are generally expected to be correctly described by the three lowest velocity moments, i.e., by shifted Maxwellians. We shall show that in these approaches the charge-exchange-induced momentum coupling is treated in an unsatisfactory representation valid only at supersonic differential flow speeds. Though this flaw can be removed by an improved coupling term, we shall further demonstrate that the assumption of shifted Maxwellians in some regions of the interface is insufficiently well fulfilled both for ...

  16. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    Science.gov (United States)

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  17. X-ray resonant photoexcitation: line widths and energies of K{\\alpha} transitions in highly charged Fe ions

    CERN Document Server

    Rudolph, J K; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H -C; Yavas, H; Ullrich, J; López-Urrutia, J R Crespo

    2013-01-01

    Photoabsorption by and fluorescence of the K{\\alpha} transitions in highly charged iron ions are essential mechanisms for X-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main K{\\alpha} transitions in highly charged iron ions from heliumlike to fluorinelike (Fe 24+...17+) using monochromatic X-rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in X-ray binaries and active galactic nuclei.

  18. Structures and Stabilities of Doubly-Charged $(MgO)nMg^{2+}$ (n=1-29) Cluster Ions

    CERN Document Server

    López, F; López, J M; Lopez, Francisco; Aguado, Andres; Lopez, Jose M.

    1999-01-01

    Ab initio perturbed ion plus polarization calculations are reported for doubly-charged nonstoichiometric (MgO)nMg2+ (n=1--29) cluster ions. We consider a large number of isomers with full relaxations of the geometries, and add the correlation correction to the Hartree-Fock energies for all cluster sizes. The polarization contribution is included at a semiempirical level also for all cluster sizes. Comparison is made with theoretical results for neutral (MgO)n clusters and singly-charged alkali-halide cluster ions. Our method is also compared to phenomenological pair potential models in order to asses their reliability for calculations on small ionic systems. Bulk-like rocksalt structures are predominant from n=13 on. The relative stabilities of the cluster ions against evaporation of a MgO molecule shows variations that are in excellent agreement with the experimental abundance spectra.

  19. Measurement of short lifetimes in highly-charged ions using a two-foil target

    Energy Technology Data Exchange (ETDEWEB)

    Berry, H.G.; Dunford, R.W.; Gemmell, D.S. [and others

    1995-08-01

    One of the frontiers in the study of the atomic physics of highly-charged ions is the measurement of lifetimes in the 100 fs to 10 ps regime. The standard technique for measuring lifetimes of states in highly-charged ions is the beam-foil time-of-flight method in which the intensity of an emission line is monitored as a function of the separation between the exciting foil and the portion of the beam being viewed by the detector. This method becomes increasingly difficult as the decay lengths of the states of interest become shorter. At a typical beam velocity of 10% of the speed of light, the beam travels 30 microns in a picosecond. The standard beam-foil time-of-flight method necessitates observation of the decay radiation within one or two decay lengths from the foil while preventing the detectors from observing the beam spot at the foil. For short-lived states this requires tight collimation of the detector with a resulting loss in solid angle. We are developing a method for measuring ultrashort atomic lifetimes utilizing a two-foil target. As a specific case to demonstrate the feasibility of our method, we are studying the decay of the 2 {sup 3}P{sub 2} level in helium-like Kr{sup 34+}. This level has a calculated lifetime of 9.5 ps which corresponds to a decay length of 380 {mu}m. For krypton, theory predicts that 90% of the 2 {sup 3}P{sub 2} states decay via M2 radiation to the ground state. A measurement of the lifetime of this state would contribute to an important current problem which concerns the understanding of atomic structure when both electron correlations and relativistic effects are simultaneously important.

  20. Aerosol charging state at an urban site: new analytical approach and implications for ion-induced nucleation

    Directory of Open Access Journals (Sweden)

    S. Gagné

    2012-05-01

    Full Text Available The charging state of aerosol populations was determined using an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010. We extrapolated the charging state and calculated the ion-induced nucleation fraction to be around 1.3 % ± 0.4 % at 2 nm and 1.3 % ± 0.5 % at 1.5 nm, on average. We present a new method to retrieve the average charging state for a new particle formation event, at a given size and polarity. We improve the uncertainty assessment and fitting technique used previously with an Ion-DMPS. We also use a new theoretical framework that allows for different concentrations of small ions for different polarities (polarity asymmetry. We extrapolate the ion-induced fraction using polarity symmetry and asymmetry. Finally, a method to calculate the growth rates from the behaviour of the charging state as a function of the particle diameter using polarity symmetry and asymmetry is presented and used on a selection of new particle formation events.