WorldWideScience

Sample records for charged fullerenes produced

  1. Combustion method for producing fullerenes

    Science.gov (United States)

    Howard, Jack B.; McKinnon, J. Thomas

    1993-01-01

    A method for synthesizing fullerenes in flames is provided. Fullerenes are prepared by burning carbon-containing compounds in a flame and collecting the condensibles. The condensibles contain the desired fullerenes. Fullerene yields can be optimized and fullerene composition can be selectively varied. Fullerene yields and compositions are determined by selectively controlling flame conditions and parameters such as C/O ratio, pressure, temperature, residence time, diluent concentration and gas velocity.

  2. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  3. Electrochemical Charging of Nanocarbons: Fullerenes, Nanotubes, Paepods

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Dunsch, L.

    Dordrecht : Kluwer Academic, 2004, s. 51-62. ISBN 1-4020-2172-0. - (NATO Science Series. Mathematics, Physics and Chemistry. 152) R&D Projects: GA AV ČR IAA4040306 Institutional research plan: CEZ:AV0Z4040901 Keywords : fullerenes * nanotubes * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Optical vortex driven charge current loop and optomagnetism in fullerenes

    CERN Document Server

    Wätzel, Jonas; Schäffer, Alexander; Berakdar, Jamal

    2016-01-01

    Endohedral molecular magnets, e.g. as realized in fullerenes containing $\\rm DySc_{2}N$, are promising candidates for molecular electronics and quantum information processing. For their functionalization an ultrafast local magnetization control is essential. Using full ab-initio quantum chemistry calculations we predict the emergence of charge current loops in fullerenes with an associated orbital magnetic moment upon irradiation with weak light vortex pulses that transfer orbital angular momentum. The generated current is controllable by the frequency, the vortex topological charge, and the intensity of the light. Numerical and analytical results show that an ultraviolet vortex femtosecond pulse with an intensity $\\sim10^{13}$ W/cm$^2$ generates non-invasively nA unidirectional surface current with an associated magnetic field of hundreds $\\mu$T at the center of the fullerene.

  5. Charge transfer energies of tetraphenyl-porphyrin-fullerene dyads

    Science.gov (United States)

    Zope, Rajendra; Olguin, Marco; Baruah, Tunna

    2011-03-01

    Porphyrin-fullerene dyads are extensively studied for their photoinduced charge transfer properties. They form a donor-acceptor pair where the fullerene is the acceptor. Accurate theoretical estimate of the charge transfer energies in such systems has proven to be a challenge. In this study we examine the charge transfer energetics for such dyads using our recently developed density functional based excited state method which can yield reliable estimates of charge transfer energetics. In this study the effect of varying both the donor and acceptor components are studied by changing the tetra-phenyl-porphyrin (TPP) to Zn-TPP. Similarly the acceptor component is changed from C60 to C70. The structures were optimized using DFT-D3 theory at the all-electron level. Among the donor-acceptor pairs studied, we find that the ZnTPP-C60 has the lowest charge transfer energy (1.69 eV) and the TPP-C70 (2.13 eV) has the highest charge transfer energy. Supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences of the US Department of Energy through grant DE-SC0002168.

  6. Cage connectivity and frontier π orbitals govern the relative stability of charged fullerene isomers

    Science.gov (United States)

    Wang, Yang; Díaz-Tendero, Sergio; Alcamí, Manuel; Martín, Fernando

    2015-11-01

    Fullerene anions and cations have unique structural, electronic, magnetic and chemical properties that make them substantially different from neutral fullerenes. Although much theoretical effort has been devoted to characterizing and predicting their properties, this has been limited to a fraction of isomeric forms, mostly for fullerene anions, and has practically ignored fullerene cations. Here we show that the concepts of cage connectivity and frontier π orbitals allow one to understand the relative stability of charged fullerene isomers without performing elaborate quantum chemistry calculations. The latter is not a trivial matter, as the number of possible isomers for a medium-sized fullerene is many more than 100,000. The model correctly predicts the structures observed experimentally and explains why the isolated pentagon rule is often violated for fullerene anions, but the opposite is found for fullerene cations. These predictions are relevant in fields as diverse as astrophysics, electrochemistry and supramolecular chemistry.

  7. Photochemical charge separation in closely positioned donor-boron dipyrrin-fullerene triads.

    Science.gov (United States)

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Subbaiyan, Navaneetha K; Supur, Mustafa; Zandler, Melvin E; Ohkubo, Kei; Fukuzumi, Shunichi; D'Souza, Francis

    2011-03-01

    A series of molecular triads, composed of closely positioned boron dipyrrin-fullerene units, covalently linked to either an electron donor (donor(1)-acceptor(1)-acceptor(2)-type triads) or an energy donor (antenna-donor(1)-acceptor(1)-type triads) was synthesized and photoinduced energy/electron transfer leading to stabilization of the charge-separated state was demonstrated by using femtosecond and nanosecond transient spectroscopic techniques. The structures of the newly synthesized triads were visualized by DFT calculations, whereas the energies of the excited states were determined from spectral and electrochemical studies. In the case of the antenna-donor(1)-acceptor(1)-type triads, excitation of the antenna moiety results in efficient energy transfer to the boron dipyrrin entity. The singlet-excited boron dipyrrin thus generated, undergoes subsequent energy and electron transfer to fullerene to produce a boron dipyrrin radical cation and a fullerene radical anion as charge-separated species. Stabilization of the charge-separated state in these molecular triads was observed to some extent. PMID:21322069

  8. Charge stabilization in a closely spaced ferrocene-boron dipyrrin-fullerene triad.

    Science.gov (United States)

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Blakemore, James D; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2010-05-21

    New molecular triads composed of closely spaced ferrocene-boron dipyrrin-fullerene, 1 and triphenylamine-boron dipyrrin-fullerene, 2 are synthesized, and photoinduced electron transfer leading to charge stabilization is demonstrated using a femtosecond transient spectroscopic technique. PMID:20442893

  9. Magnetic ordering in fullerene charge-transfer complexes

    Science.gov (United States)

    Sato, Tohru; Yamabe, Tokio; Tanaka, Kazuyoshi

    1997-07-01

    We have determined the ground states of the charge-transfer (CT) complexes in which the energy levels of the highest occupied molecular orbital (HOMO) of donors and the lowest unoccupied MO (LUMO) of acceptors are closely located, and examined some fullerene complexes consisting of C60, C70, tetrakis(dimethylamino)ethylene (TDAE), and 1,1',3,3'-tetramethyl-Δ2,2'-bi(imidazolidine) (TMBI). The observed magnetic properties of TDAE-C60, TMBI-C60, and TDAE-C70 can be accounted for by employing realistic parameters. The effective Hamiltonian including up to the fourth-order perturbation has also been derived in the fourfold degenerate model space. The effective Hamiltonian can plausibly reproduce the magnetic phase diagram obtained by the variational treatment of TDAE-C60. It has been shown that the third and the fourth processes contribute to the stabilization of the antiferromagnetic state.

  10. Fullerenes

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  11. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.

    Science.gov (United States)

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-07-15

    A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. PMID:23754703

  12. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    The fate and transport of colloidal fullerenes (n-C60) in the environment is likely to be guided by electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of n-C60 nanoparticles. Although the ef...

  13. Direct Observation of Sub-100 fs Mobile Charge Generation in a Polymer-Fullerene Film

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    The formation of mobile charges in a roll-to-roll processed poly-3-hexylthiophene-fullerene bulk heterojunction film is observed directly by using transient terahertz spectroscopy with sub-100 fs temporal resolution. The transient terahertz ac conductivity reveals that 20% of the incident pump ph...

  14. Fullerene-Based Photoactive Layers for Heterojunction Solar Cells: Structure, Absorption Spectra and Charge Transfer Process

    Directory of Open Access Journals (Sweden)

    Yuanzuo Li

    2014-12-01

    Full Text Available The electronic structure and optical absorption spectra of polymer APFO3, [70]PCBM/APFO3 and [60]PCBM/APFO3, were studied with density functional theory (DFT, and the vertical excitation energies were calculated within the framework of the time-dependent DFT (TD-DFT. Visualized charge difference density analysis can be used to label the charge density redistribution for individual fullerene and fullerene/polymer complexes. The results of current work indicate that there is a difference between [60]PCBM and [70]PCBM, and a new charge transfer process is observed. Meanwhile, for the fullerene/polymer complex, all calculations of the twenty excited states were analyzed to reveal all possible charge transfer processes in depth. We also estimated the electronic coupling matrix, reorganization and Gibbs free energy to further calculate the rates of the charge transfer and the recombination. Our results give a clear picture of the structure, absorption spectra, charge transfer (CT process and its influencing factors, and provide a theoretical guideline for designing further photoactive layers of solar cells.

  15. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  16. Corrole-fullerene dyads: formation of long-lived charge-separated states in nonpolar solvents.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Ohkubo, Kei; Tasior, Mariusz; Subbaiyan, Navaneetha K; Zandler, Melvin E; Rogacki, Maciek K; Gryko, Daniel T; Fukuzumi, Shunichi

    2008-10-29

    The first example of covalently linked free-base corrole-fullerene dyads is reported. In the newly synthesized dyads, the free-energy calculations performed by employing the redox and singlet excited-state energy in both polar and nonpolar solvents suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity. Accordingly, steady-state and time-resolved emission studies revealed efficient fluorescence quenching of the corrole entity in the dyads. Further studies involving femtosecond laser flash photolysis and nanosecond transient absorption studies confirmed electron transfer to be the quenching mechanism, in which the electron-transfer product, the fullerene anion radical, was able to be spectrally characterized. The rate of charge separation, kCS, was found to be on the order of 10(10)-10(11) s(-1), suggesting an efficient photoinduced electron-transfer process. Interestingly, the rate of charge recombination, kCR, was slower by 5 orders of magnitude in nonpolar solvents, cyclohexane and toluene, resulting in a radical ion-pair lasting for several microseconds. Careful analysis of the kinetic and thermodynamic data using the Marcus approach revealed that this novel feature is due to appropriately positioning the energy level of the charge-separated state below the triplet states of either of the donor and acceptor entities in both polar and nonpolar solvents, a feature that was not evident in donor-acceptor dyads constructed using symmetric tetrapyrroles as electron donors. PMID:18837500

  17. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Uchida, Takashi [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Yoshikazu [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan)

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60} ion beam in tandem-type ECRIS for the first time.

  18. Stabilising the lowest energy charge-separated state in a {metal chromophore – fullerene} assembly: a tuneable panchromatic absorbing donor–acceptor triad

    OpenAIRE

    Lebedeva, MA; Chamberlain, TW; Scattergood, PA; Delor, M; Sazanovich, IV; Davies, ES; Suyetin, M.; Besley, E; Schroder, M.; Weinstein, J; Khlobystov, AN

    2016-01-01

    Photoreduction of fullerene and the consequent stabilisation of a charge-separated state in a donor–acceptor assembly have been achieved, overcoming the common problem of a fullerene-based triplet state being an energy sink that prevents charge-separation. A route to incorporate a C60-fullerene electron acceptor moiety into a catecholate-Pt(II)-diimine photoactive dyad, which contains an unusually strong electron donor, 3,5-di-tert-butylcatecholate, has been developed. The synthetic methodolo...

  19. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    Science.gov (United States)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  20. Neutral and charged boron-doped fullerenes for CO2 adsorption

    OpenAIRE

    de Silva, Suchitra W; Du, Aijun; Senadeera, Wijitha; Gu, Yuantong

    2014-01-01

    Recently, the capture and storage of CO2 have attracted research interest as a strategy to reduce the global emissions of greenhouse gases. It is crucial to find suitable materials to achieve an efficient CO2 capture. Here we report our study of CO2 adsorption on boron-doped C60 fullerene in the neutral state and in the 1e −-charged state. We use first principle density functional calculations to simulate the CO2 adsorption. The results show that CO2 can form weak interactions with the BC5...

  1. Effect of geometrical orientation on the charge transfer energetics of supramolecular (tetraphenyl)-porphyrin/fullerens dyads

    Science.gov (United States)

    Olguin, Marco; Zope, Rajendra; Baruah, Tunna

    2013-03-01

    We present our study of several low lying charge-transfer (CT) excitation energies for a widely used donor-acceptor system composed of a porphyrin-fullerene pair. The dyad systems consist of C60 and C70 acceptor systems coupled to tetraphenyl-porphyrin (TPP) and tetraphenyl-(zinc)porphyrin (ZnTPP) donor systems in a co-facial orientation. We find that replacing C60 by C70 in a given dyad may increase the lowest charge transfer excitation energy by about 0.27 eV, whereas varying the donor in these complexes had marginal effect on the lowest charge transfer excitation energy. Additionally, we examined the effect of geometrical orientation on the CT energy by calculating several CT excited state energies for an end-on orientation of the porphyrin-fullerene dyads. The CT excitation energies are larger for the end-on orientation in comparison to the co-facial orientation by 0.6 eV - 0.75 eV. The difference is attributed to a reduced exciton binding energy in going from the co-facial to the end-on orientation. Supported by Office of Basic Energy Sciences of the US Department of Energy.

  2. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  3. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-01

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions. PMID:12689221

  4. Neutral and charged boron-doped fullerenes for CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Suchitra W. de Silva

    2014-04-01

    Full Text Available Recently, the capture and storage of CO2 have attracted research interest as a strategy to reduce the global emissions of greenhouse gases. It is crucial to find suitable materials to achieve an efficient CO2 capture. Here we report our study of CO2 adsorption on boron-doped C60 fullerene in the neutral state and in the 1e−-charged state. We use first principle density functional calculations to simulate the CO2 adsorption. The results show that CO2 can form weak interactions with the BC59 cage in its neutral state and the interactions can be enhanced significantly by introducing an extra electron to the system.

  5. Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions

    KAUST Repository

    Provencher, Françoise

    2014-07-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 300 fs. Surprisingly, further structural evolution on ≤50-ps timescales is modest, indicating that the polymer conformation hosting nascent polarons is not significantly different from that near equilibrium. We interpret this as suggestive that charges are free from their mutual Coulomb potential because we would expect rich vibrational dynamics associated with charge-pair relaxation. We address current debates on the photocarrier generation mechanism at molecular heterojunctions, and our work is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  6. Electronic charge transfer in cobalt doped fullerene thin films and effect of energetic ion impacts by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    We report on the electronic charge transfer in cobalt doped fullerene thin films by means of near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy measurement. Co-doped fullerene films were prepared by co-deposition technique and subjected to energetic ion irradiation (120 MeV Au) for possibly alignment or interconnect of randomly distributed metal particles. Polarization dependent NEXAFS spectra revealed the alignment of Co and C atoms along the irradiated ionic path. The structural changes in Co-doped as-deposited and ion irradiated fullerene films were investigated by means of Raman spectroscopy measurements. Downshift of pentagonal pinch mode Ag(2) in Raman spectroscopy indicated the electronic charge transfer from Co atom to fullerene molecules, which is further confirmed by NEXAFS at C K-edge for Co-doped fullerene films.

  7. Design and studies on supramolecular ferrocene-porphyrin-fullerene constructs for generating long-lived charge separated states.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; Islam, D-M Shafiqul; Schumacher, Amy L; Zandler, Melvin E; Araki, Yasuyuki; Ito, Osamu

    2006-12-21

    Supramolecular ferrocene-porphyrin-fullerene constructs, in which covalently linked ferrocene-porphyrin-crown ether compounds were self-assembled with alkylammonium cation functionalized fullerenes, have been designed to achieve stepwise electron transfer and hole shift to generate long-lived charge separated states. The adopted crown ether-alkylammonium cation binding strategy resulted in stable conjugates as revealed by computational studies performed by the DFT B3LYP/3-21G(*) method in addition to the binding constants obtained from fluorescence quenching studies. The free-energy changes for charge-separation and charge-recombination were varied by the choice of different metal ions in the porphyrin cavity. Free-energy calculations suggested that the light-induced electron-transfer processes from the singlet excited state of porphyrins to be exothermic in all of the investigated supramolecular dyads and triads. Photoinduced charge-separation and charge-recombination processes have been confirmed by the combination of the time-resolved fluorescence and nanosecond transient absorption spectral measurements. In case of the triads, the charge-recombination processes of the radical anion of the fullerene moiety take place in two steps, viz., a direct charge recombination from the porphyrin cation radical and a slower step involving distant charge recombination from the ferrocene cation moiety. The rates of charge recombination for the second route were found to be an order of magnitude slower than the former route, thus fulfilling the condition for charge migration to generate long-lived charge-separated states in supramolecular systems. PMID:17165968

  8. Multi-triphenylamine-substituted porphyrin-fullerene conjugates as charge stabilizing "antenna-reaction center" mimics.

    Science.gov (United States)

    D'Souza, Francis; Gadde, Suresh; Islam, D-M Shafiqul; Wijesinghe, Channa A; Schumacher, Amy L; Zandler, Melvin E; Araki, Yasuyaki; Ito, Osamu

    2007-09-01

    A new concept of charge stabilization via delocalization of the pi-cation radical species over the donor macrocycle substituents in a relatively simple donor-acceptor bearing multimodular conjugates is reported. The newly synthesized multimodular systems were composed of three covalently linked triphenylamine entities at the meso position of the porphyrin ring and one fulleropyrrolidine at the fourth meso position. The triphenylamine entities were expected to act as energy transferring antenna units and to enhance the electron donating ability of both free-base and zinc(II) porphyrin derivatives of these pentads. Appreciable electronic interactions between the meso-substituted triphenylamine entities and the porphyrin pi-system were observed, and as a consequence, these moieties acted together as an electron-donor while the fullerene moiety acted as an electron-acceptor in the multimodular conjugates. In agreement with the spectral and electrochemical results, the computational studies performed by the DFT B3LYP/3-21G(*) method revealed delocalization of the frontier highest occupied molecular orbital (HOMO) over the triphenylamine entities in addition to the porphyrin macrocycle. Free-energy calculations suggested that the light-induced processes from the singlet excited state of porphyrins are exothermic in the investigated multimodular conjugates. The occurrence of photoinduced charge-separation and charge-recombination processes was confirmed by the combination of time-resolved fluorescence and nanosecond transient absorption spectral measurements. Charge-separated states, on the order of a few microseconds, were observed as a result of the delocalization of the pi-cation radical species over the porphyrin macrocycle and the meso-substituted triphenylamine entities. The present study successfully demonstrates a novel approach of charge-stabilization in donor-acceptor multimodular conjugates. PMID:17608464

  9. Quantum dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction

    Science.gov (United States)

    Tamura, Hiroyuki; Martinazzo, Rocco; Ruckenbauer, Matthias; Burghardt, Irene

    2012-12-01

    Following up on our recent study of ultrafast charge separation at oligothiophene-fullerene interfaces [H. Tamura, I. Burghardt, and M. Tsukada, J. Phys. Chem. C 115, 10205 (2011), 10.1021/jp203174e], we present here a detailed quantum dynamical perspective on the charge transfer process. To this end, electron-phonon coupling is included non-perturbatively, by an explicit quantum dynamical treatment using the multi-configuration time-dependent Hartree (MCTDH) method. Based upon a distribution of electron-phonon couplings determined from electronic structure studies, a spectral density is constructed and employed to parametrize a linear vibronic coupling Hamiltonian. The diabatic coupling is found to depend noticeably on the inter-fragment distance, whose effect on the dynamics is here investigated. MCTDH calculations of the nonadiabatic transfer dynamics are carried out for the two most relevant electronic states and 60 phonon modes. The electron transfer process is found to be ultrafast and mediated by electronic coherence, resulting in characteristic oscillatory features during a period of about 100 fs.

  10. Two-step charge photogeneration dynamics in polymer/fullerene blends for photovoltaic applications

    Science.gov (United States)

    Singh, Sanjeev; Pandit, Bill; Basel, Tek P.; Li, Sergey; Laird, Darin; Vardeny, Z. Valy

    2012-05-01

    We measured the picoseconds (ps) transient dynamics of photoexcitations in blends of poly(3-hexyl-thiophene) (P3HT; donors-D) and fullerene [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor-A), using the transient pump/probe photomodulation technique in an unprecedented broad spectral range from 0.25 to 2.5 eV, and compared the results with organic solar cell performance based on the same blends. In D-A blends with maximum domain separation such as regio-regular P3HT/PCBM with (1.2:1) weight ratio having solar cell power conversion efficiency of ˜4%, we found that, although the photogenerated intrachain excitons in the polymer nano-domains decay within ˜10 ps, no charge polarons are generated on their expense up to ˜2 ns. Instead, there is a buildup of charge transfer (CT) excitons at the D-A interfaces having the same kinetics as the exciton decay, which dissociate into separate polarons in the D and A domains at a much later time (≫1 ns). This two-step charge photogeneration process may be typical in organic bulk heterojunction cells. Although the CT excitons are photogenerated on the exciton expense much faster in D-A blends having smaller domain size such as in regio-random P3HT/PCBM, their dissociation is less efficient because of larger binding energy. This explains the poor solar cell power conversion efficiency (CT binding energy in generating free charge polarons in organic solar cells.

  11. Thermally evaporated fullerene (C70) to bridge the charge transport in between nanostructured zinc oxide and conjugated copolymer in hybrid solar cell

    International Nuclear Information System (INIS)

    We have investigated the effect of incorporating thin fullerene (C70) layer in between nanostructured ZnO and conjugated co-polymer PCDTBT (Poly [[9-(1-octylnonyl)-9H–carbazole-2,7-diyl]-2,5-thophenediyl-2,1, 3-benzothiadiazole- 4,7-diyl-2,5-thiophenediyl]) for photovoltaic device performance. The addition of the fullerene layer enhances the electron transfer at the heterojunction from polymer to the metal oxide. The reason for the enhanced performance is investigated and it is observed that the fullerene layer can improve charge transfer process thorough the reduction of the trap induced interfacial recombination. The fullerene introduction is also helping in effective charge transfer (CT) excitons dissociation and transport at the interface. Encouraging improvement of the device performance was observed with the incorporation of C70 in this kind of hybrid solar cells. (papers)

  12. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    Mukherjee, B.; Weaver, J. W.

    2009-12-01

    The fate and transport of colloidal fullerenes (n-C60) in the environment are likely to be guided by their electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of dispersed n-C60. Although the effects of cations on the behavior of n-C60 have been studied extensively; studies on the effect of anions are relatively few and thus were the focus of our investigation. The effects of anions (e.g., Cl- , SO42-) on average aggregate size (DH) and zeta potential (ZP) of n-C60 were found to be absent in presence of monovalent cations (e.g., Na+) over the tested range of pH (3-to-12) and ionic strength (0-to-20 mM). Similar observations were noted in the presence of multivalent cations (e.g., Mg2+) near acidic and neutral pH conditions. However, under alkaline conditions (pH~10) a strong anion-dependent reversal of surface charge was noted. The ZP of n-C60 changed from -65 mV, when dispersed in DI water, to +4 mV and +40 mV in the presence of SO42- and Cl-, respectively in a 10mM salt concentration (i.e., MgCl2 and MgSO4). The corresponding DH of the dispersed n-C60 changed simultaneously from 115 nm, in DI water, to 1450 nm and 225 nm for the MgSO4 and MgCl2 electrolytes. These findings provide a better understanding of interfacial interaction characteristics of n-C60 NPs, and may lead to remediation strategies for n-C60 NPs in the environment.

  13. Investigation on the interactions between fullerene and β-CD-g-hyperbranched polyglycerol to produce water-soluble fullerene

    Science.gov (United States)

    Eskandari, Mohammad; Najdian, Atena; Soleyman, Rouhollah

    2016-06-01

    Developing a successful way to solubilize C60 in water is a longstanding, critical, and challenging issue in nanotechnology, biological, and medicine applications because of the great potential of fullerene derivatives in anti-viral therapy. In the current study, an efficient strategy for the preparing of water-soluble C60 at room temperature has been developed by complexion of C60 with hyperbranched polyglycerol linked to the β-cyclodextrin core (β-CD-g-HPG). The interactions between C60 and β-CD-g-HPG were investigated using a range of analytical techniques such as FTIR, NMR, UV-vis spectroscopy as well as visual techniques including SEM and AFM images. The particle size for a 1:2 (C60: β-CD-g-HPG) complex was also determined to be monodisperse ∼60 nm from DLS, and it was appropriately matched with the size obtained from SEM pictures. The results show our synthesized hybrid nanomaterials will hopefully find interesting applications in biomedicine.

  14. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    Considering the photoionization of a two-layer fullerene-onion system, C60-C240, strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  15. Ab initio infrared vibrational modes for neutral and charged small fullerenes (C20, C24, C26, C28, C30 and C60).

    Science.gov (United States)

    Adjizian, Jean-Joseph; Vlandas, Alexis; Rio, Jeremy; Charlier, Jean-Christophe; Ewels, Chris P

    2016-09-13

    We calculate the infrared (IR) absorption spectra using DFT B3LYP(6-311G) for a range of small closed-cage fullerenes, Cn, n=20, 24, 26, 28, 30 and 60, in both neutral and multiple positive and negative charge states. The results are of use, notably, for direct comparison with observed IR absorption in the interstellar medium. Frequencies fall typically into two ranges, with C-C stretch modes around 1100-1500 cm(-1) (6.7-9.1 μm) and fullerene-specific radial motion associated with under-coordinated carbon at pentagonal sites in the range 600-800 cm(-1) (12.5-16.7 μm). Notably, negatively charged fullerenes show significantly stronger absorption intensities than neutral species. The results suggest that small cage fullerenes, and notably metallic endofullerenes, may be responsible for many of the unassigned interstellar IR spectral lines.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501975

  16. The structure of fullerene compounds

    Science.gov (United States)

    Avent, A. G.; Benito, A. M.; Birkett, P. R.; Darwish, A. D.; Hitchcock, P. B.; Kroto, H. W.; Locke, I. W.; Meidine, M. F.; O'Donovan, B. F.; Prassides, K.; Taylor, R.; Walton, D. R. M.; van Wijnkoop, M.

    1997-12-01

    This account reviews fullerene chemistry research at Sussex. C 60Ph 2 and C 60Ph 4 have been isolated as minor products from the reaction of C 60Cl 6 with C 6H 6 and FeCl 3. [70]Fullerene reacts with ICl in C 6H 6 producing a single isomer of C 70Cl 10 in high yield. C 70Ph 8, which has a [5,6] cage double bond that can be selectively functionalized, or C 70Ph 10 are produced by the electrophilic substitution of C 70Cl 10 into C 6H 6 in the presence of FeCl 3. C 70Ph 9OH is isolated as a minor component of foregoing reaction mixtures. Autoxidation of C 70Ph 8 yields the bislactone, C 70Ph 8O 4, which has an eleven atom ring in the surface of the cage, Cycloaddition to the [5,6] double bond of C 70Ph 8 with anthracene, C 14H 10, in C 6H 6 produces C 70Ph 8(C 14H 10). Two new methanofullerenes, C 60(CBr 2), and C 60(CHCN), are produced by treating [60]fullerene in C 6H 6 with either CH 2BrCN or CHBr 2 in the presence of LDA. Reaction of [60]fullerene with alkyl buta-2,3-dienoates in the presence of a phosphine results in [3 + 2] cycloadditions which produce alkyl 3'H-1,2-([1',2']cyclopenta)[60]fullerene-5'-carboxylates. [60]Fullerene reacts with Pt(cod) 2, producing an insoluble precipitate of PtC 60, further reaction with the bidentate ligand, Ph 2P(CH 2) nPPh 2) [ n = 2 or 3] in PhMe yields the low solubility complexes Pt( η2-C 60)[Ph 2P(CH 2) nPPh 2)] ( n = 2 or 3). Mixing of C 6H 6 solutions of [60]fullerene with P 4 or vapour-solid reaction of [60]fullerene with P 4 results in the formation of the intercalate C 60(P 4) 2; there is no evidence for significant charge-transfer between the donor (P 4) and acceptor (C 60) molecules.

  17. Prospects of commercial methods of fullerene production

    International Nuclear Information System (INIS)

    One studies the currently available techniques to procedure fullerenes. Paper describes the process of fullerene production in arc discharge with graphite electrodes followed by their extraction from carbon soot using organic solvents, the hybrid procedure to produce fullerenes in flame under plasma heating, graphite evaporation by solar radiation, as well as, various chemical procedures to synthesize fullerenes. One discusses the reasons of expensiveness of fullerenes and the developed horizons of fullerene production procedures

  18. Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative

    NARCIS (Netherlands)

    Loi, Maria Antonietta; Toffanin, Stefano; Muccini, Michele; Forster, Michael; Scherf, Ulrich; Scharber, Markus

    2007-01-01

    The photophysical properties of blends of fluorene copolymer and the fullerene derivative PCBM are analyzed with a particular attention to photovoltaic applications. The properties of the blends are determined by the relative alignment of the HOMO energy levels. In the blend where the HOMO levels of

  19. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya

    2015-08-10

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  20. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system. PMID:26237431

  1. The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems

    KAUST Repository

    Dou, Fei

    2015-01-01

    In this work, we investigate the effect of phase morphology on the nature of charges in poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2,-b]thiophene) (pBTTT-C16) and phenyl-C61-butyric acid methyl ester (PC61BM) blends over timescales greater than hundreds of microseconds by quasi-steady-state photoinduced absorption spectroscopy. Specifically, we compare an essentially fully intermixed, one-phase system based on a 1 : 1 (by weight) pBTTT-C16 : PC61BM blend, known to form a co-crystal structure, with a two-phase morphology composed of relatively material-pure domains of the neat polymer and neat fullerene. The co-crystal occurs at a composition of up to 50 wt% PC61BM, because pBTTT-C16 is capable of hosting fullerene derivatives such as PC61BM in the cavities between its side chains. In contrast, the predominantly two-phase system can be obtained by manipulating a 1 : 1 polymer : fullerene blend with the assistance of a fatty acid methyl ester (dodecanoic acid methyl ester, Me12) as additive, which hinders co-crystal formation. We find that triplet excitons and polarons are generated in both phase morphologies. However, polarons are generated in the predominantly two-phase system at higher photon energy than for the structure based on the co-crystal phase. By means of a quasi-steady-state solution of a mesoscopic rate model, we demonstrate that the steady-state polaron generation efficiency and recombination rates are higher in the finely intermixed, one-phase system compared to the predominantly phase-pure, two-phase morphology. We suggest that the polarons generated in highly intermixed structures, such as the co-crystal investigated here, are localised polarons while those generated in the phase-separated polymer and fullerene systems are delocalised polarons. We expect this picture to apply generally to other organic-based heterojunctions of complex phase morphologies including donor:acceptor systems that form, for instance, molecularly mixed amorphous solid

  2. Roughening Conjugated Polymer Surface for Enhancing the Charge Collection Efficiency of Sequentially Deposited Polymer/Fullerene Photovoltaics

    Directory of Open Access Journals (Sweden)

    Yoonhee Jang

    2015-08-01

    Full Text Available A method that enables the formation of a rough nano-scale surface for conjugated polymers is developed through the utilization of a polymer chain ordering agent (OA. 1-Chloronaphthalene (1-CN is used as the OA for the poly(3-hexylthiophene-2,5-diyl (P3HT layer. The addition of 1-CN to the P3HT solution improves the chain ordering of the P3HT during the film formation process and increases the surface roughness of the P3HT film compared to the film prepared without 1-CN. The roughened surface of the P3HT film is utilized to construct a P3HT/fullerene bilayer organic photovoltaic (OPV by sequential solution deposition (SqSD without thermal annealing process. The power conversion efficiency (PCE of the SqSD-processed OPV utilizing roughened P3HT layer is 25% higher than that utilizing a plain P3HT layer. It is revealed that the roughened surface of the P3HT increases the heterojunction area at the P3HT/fullerene interface and this resulted in improved internal charge collection efficiency, as well as light absorption efficiency. This method proposes a novel way to improve the PCE of the SqSD-processed OPV, which can be applied for OPV utilizing low band gap polymers. In addition, this method allows for the reassessment of polymers, which have shown insufficient performance in the BSD process.

  3. Photoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems.

    Science.gov (United States)

    Obondi, Christopher O; Lim, Gary N; Karr, Paul A; Nesterov, Vladimir N; D'Souza, Francis

    2016-07-21

    A new series of multi-modular donor-acceptor systems capable of exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques. In this series, the electron donor was a BF2-chelated dipyrromethene (BODIPY) appended with two styryl linkers carrying two electron rich triphenylamine or phenothiazine entities. Fulleropyrrolidine linked at the meso-position of the BODIPY ring served as an electron acceptor. As a result of extended conjugation and multiple electroactive chromophore entities, the bis-styryl BODIPY revealed absorbance and emission well-into the near-infrared region covering a 300-850 nm spectral range. Using redox, computational, absorbance and emission data, an energy level diagram was constructed that helped in envisioning the different photochemical events. Spectral evidence for photoinduced charge separation in these systems was established from femtosecond and nanosecond transient absorption studies. The measured rate constants indicated fast charge separation and relatively slow charge recombination revealing their usefulness in light energy harvesting and optoelectronic device building applications. The bis(donor styryl)BODIPY-fullerene systems populated BODIPY triplet excited states during the process of charge recombination. PMID:27333163

  4. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends.

    Science.gov (United States)

    Huo, Ming-Ming; Hu, Rong; Xing, Ya-Dong; Liu, Yu-Chen; Ai, Xi-Cheng; Zhang, Jian-Ping; Hou, Jian-Hui

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b(')]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ∼0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P(•+) yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC61BM and PBDTTT-C:PC61BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC61BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P(•+) migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC61BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation. PMID:24588194

  5. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Ming-Ming, E-mail: hithuomm@163.com; Zhang, Jian-Ping, E-mail: jpzhang@chem.ruc.edu.cn, E-mail: hjhzlz@iccas.ac.cn [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Chemistry, Renmin University of China, Beijing 100872 (China); Hu, Rong, E-mail: hurong-82@163.com; Xing, Ya-Dong, E-mail: xingyadong1130@126.com; Liu, Yu-Chen, E-mail: liuych@ruc.edu.cn; Ai, Xi-Cheng, E-mail: xcai@chem.ruc.edu.cn [Department of Chemistry, Renmin University of China, Beijing 100872 (China); Hou, Jian-Hui, E-mail: jpzhang@chem.ruc.edu.cn, E-mail: hjhzlz@iccas.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b{sup ′}]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ∼0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P{sup •+} yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC{sub 61}BM and PBDTTT-C:PC{sub 61}BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC{sub 61}BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P{sup •+} migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC{sub 61}BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

  6. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong

  7. Mass and charge transfer in systems containing nanocluster molybdenum polyoxometallates with a fullerene structure

    Science.gov (United States)

    Ostroushko, A. A.; Tonkushina, M. O.; Martynova, N. A.

    2010-06-01

    The sorption capacity of polyoxometallates with a buckyball structure (fullerene) (NH_4 )_{42} [Mo_{72}^{VI} Mo_{60}^V O_{372} (H_3 CCOO)_{30} (H_0 O)_{72} ] \\cdot 30H_3 CCOONH_4 \\cdot 250H_2 O and (NH_4 )_{42} [Mo_{72}^{VI} Mo_{60}^V O_{372} (ClCH_2 COO)_{30} (H_2 O)_{72} ] \\cdot 250H_2 O \\cdot 15ClCH_2 COONa with respect to organic substances and nitrogen was studied. The alcohol molecules were found to have at least two types of bond with the sorbent. Some of the molecules evaporate in air, while the rest are held more tightly. It was suggested that the adsorption involved both the outer and inner spheres of buckyballs and that the chemical interaction of the sorbate and sorbent contributed significantly to the process. It was established that the sorption largely depended on the nature of the stabilizing ligands of buckyballs. The parameters of the electrical transfer of the buckyball anions in water solutions were measured; the electric mobility, the transfer number, and the diffusion coefficient were determined.

  8. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  9. Photogeneration and recombination of charge carrier pairs and free charge carriers in polymer/fullerene bulk heterojunction films

    Energy Technology Data Exchange (ETDEWEB)

    Sliauzys, Gytis; Gulbinas, Vidmantas [Center for Physical Sciences and Technology, Savanoriu av. 231, 02300 Vilnius (Lithuania); Arlauskas, Kestutis [Department of Solid State Electronics, Vilnius University, Sauletekio al. 9, Build. 3, 10222 Vilnius (Lithuania)

    2012-07-15

    Photo-generation and recombination of free charge carriers in poly-3 (hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) blend films has been studied at different PCBM concentrations by means of fluorescence spectroscopy and transient photocurrent methods. We show that more than 80% of excitons form charge transfer (CT) states at PCBM concentrations above 4%. Efficiency of the CT state dissociation into free charge carries strongly depends on the PCBM concentration; the dissociation efficiency increases more than 30 times when PCBM concentration increases from 1 to 32%. We attribute the strong concentration dependence to formation of PCBM clusters facilitating electron migration and/or delocalization. Reduced charge carrier recombination coefficient has also been observed at high PCBM concentrations. We suggest that this may be partly caused by the reduced stability of reformed Coulombicaly bound charge pairs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Experimental evidence for the influence of charge on the adsorption capacity of carbon dioxide on charged fullerenes

    CERN Document Server

    Ralser, Stefan; Probst, Michael; Postler, Johannes; Renzler, Michael; Bohme, Diethard K; Scheier, Paul

    2016-01-01

    We show, with both experiment and theory, that adsorption of $CO_2$ is sensitive to charge on a capturing model carbonaceous surface. In the experiment we dope superfluid helium droplets with $C_{60}$ and $CO_2$ and expose them to ionising free electrons. Both positively and negatively charged $C_{60}(CO_2)_n^{+/-}$ cluster ion distributions are observed with a high-resolution mass spectrometer and these show remarkable and reproducible anomalies in intensities that are strongly dependent on the charge. The highest adsorption capacity is seen with $C_{60}^+$. Complementary density functional theory calculations and molecular dynamics simulations provided insight into the nature of the interaction of charged $C_{60}$ with $CO_2$ as well as trends in the packing of $C_{60}^+$ and $C_{60}^-$. The quadrupole moment of $CO_2$ itself was seen to be decisive in determining the charge dependence of the observed adsorption features. Our findings are expected to apply to adsorption of $CO_2$ by charged surfaces in gene...

  11. Extraction of photo-generated charge carriers from polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Mihailetchi, VD; Blom, PWM; Heremans, PL; Muccini, M; Hofstraat, H

    2004-01-01

    Two models describing charge extraction from insulators have been used to interpret the experimental photocurrent data of 20:80 wt% blends of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) and [6,6]phenyl C-61,-butyric acid methyl ester (PCBM) bulk heterojunction solar ce

  12. Electrical and optical properties of monomeric and polymerized fullerenes. Review

    CERN Document Server

    Makarova, T L

    2001-01-01

    Paper presents the survey of properties of monomeric and polymerized fullerenes as materials with semiconducting zone structures. Electronic structure of fullerenes is studied in detail. One analyzes the absorption spectra of fullerenes. Paper contains data on the transport parameters of fullerenes and discusses, as well, models of conductivity in these materials. Peculiar attention is given to the processes occurring in fullerenes under polymerization through photoexcitation, charge transfer and pressure

  13. Fullerenes formation in flames

    Science.gov (United States)

    Howard, Jack B.

    1993-01-01

    Fullerenes are composed of carbon atoms arranged in approximately spherical or ellipsoidal cages resembling the geodesic domes designed by Buckminster Fuller, after whom the molecules were named. The approximately spherical fullerene, which resembles a soccer ball and contains sixty atoms (C60), is called buckminsterfullerene. The fullerene containing seventy carbon atoms (C70) is approximately ellipsoidal, similar to a rugby ball. Fullerenes were first detected in 1985, in carbon vapor produced by laser evaporation of graphite. The closed shell structure, which has no edge atoms vulnerable to reaction, was proposed to explain the observed high stability of certain carbon clusters relative to that of others at high temperatures and in the presence of an oxidizing gas.

  14. The role of spin exchange in charge transfer in low-bandgap polymer: Fullerene bulk heterojunctions

    International Nuclear Information System (INIS)

    Formation, relaxation and dynamics of polarons and methanofullerene anion radicals photoinitiated in poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′, 3′-benzothiadiazole)]:-[6,6]-phenyl-C61-butyric acid methyl ester (PCDTBT:PC61BM) bulk heterojunctions were studied mainly by light-induced EPR (LEPR) spectroscopy in wide photon energy and temperature ranges. Some polarons are pinned by spin traps whose number and depth are governed by the composite morphology and photon energy. The proximity of the photon energy and the polymer bandgap reduces the number of such traps, inhibits recombination of mobile charge carriers, and facilitates their mobility in polymer network. Spin relaxation and charge carrier dynamics were studied by the steady-state saturation method at wide range of temperature and photon energy. These processes were shown to be governed by spin exchange as well as by the photon energy. Charge transfer in the composite is governed by the polaron scattering on the lattice phonons of crystalline domains embedded into amorphous polymer matrix and its activation hopping between polymer layers. The energy barrier required for polaron interchain hopping exceeds that of its intrachain diffusion. Anisotropy of polaron dynamics in the PCDTBT:PC61BM composite is less than that of poly(3-alkylthiophenes)-based systems that evidences for better ordering of the former. Lorentzian shape of LEPR lines of both charge carriers, lower concentration of spin traps as well as behaviours of the main magnetic resonance parameters were explained by layer ordered morphology of polymer matrix

  15. Program Fullerene

    DEFF Research Database (Denmark)

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  16. Cobalt/fullerene spinterfaces

    NARCIS (Netherlands)

    Wang, Kai

    2015-01-01

    Spintronics is a multidisciplinary research field and it explores phenomena that interlink the spin and charge degrees of freedom. The thesis focuses on spin-polarized electronic transports in cobalt (Co) and fullerene (C60) based vertical spintronic devices. It starts with a review about spin-trans

  17. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    Energy Technology Data Exchange (ETDEWEB)

    Shames, Alexander I. [Department of Physics, Ben-Gurion University of the Negev, Beersheba 84105 (Israel); Bounioux, Celine [Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990 (Israel); Katz, Eugene A. [Department of Solar Energy and Environmental Physics, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990 (Israel); Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yerushalmi-Rozen, Rachel [Ilze Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Zussman, Eyal [Department of Mechanical Engineering, Technion, Haifa 32000 (Israel)

    2012-03-12

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  18. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    International Nuclear Information System (INIS)

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  19. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends

    NARCIS (Netherlands)

    Veldman, D.; Ipek, Ö.; Meskers, S.C.J.; Sweelssen, J.; Koetse, M.M.; Veenstra, S.C.; Kroon, J.M.; Bavel, S.S. van; Loos, J.; Janssen, R.A.J.

    2008-01-01

    The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all concentra

  20. Modulating the generation of long-lived charge separated states exclusively from the triplet excited states in palladium porphyrin-fullerene conjugates

    Science.gov (United States)

    O. Obondi, Christopher; Lim, Gary N.; Churchill, Brittani; Poddutoori, Prashanth K.; van der Est, Art; D'Souza, Francis

    2016-04-01

    This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state. By tuning the rate of intersystem crossing (ISC) and the donor-acceptor distance, electron transfer can be made to occur exclusively from the triplet excited state of the electron donor resulting in long-lived charge separation. To achieve this, three new palladium porphyrin-fullerene donor-acceptor systems were synthesized. The heavy Pd atom enhances the rate of ISC in the porphyrin and the rates of electron and energy transfer are modulated by varying the redox potential of the porphyrin and the porphyrin-fullerene distance. In the case of the meso-tris(tolyl)porphyrinato palladium(ii)-fulleropyrrolidine, the donor-acceptor distance is relatively long (13.1 Å) and the driving force for electron transfer is low. As a result, excitation of the porphyrin leads to rapid ISC followed by triplet-triplet energy transfer to fullerene. When the fullerene is bound directly to the porphyrin shortening the donor-acceptor distance to 2.6 Å electron transfer from the singlet excited palladium porphyrin leading to the generation of a short-lived charge separated state is the main process. Finally, when the palladium porphyrin is substituted with three electron rich triphenylamine entities, the lower oxidation potential of the porphyrin and appropriate donor-acceptor distance (~13 Å), lead to electron transfer exclusively from the triplet excited state of palladium porphyrin with high quantum yield. The results show that when electron transfer occurs from the triplet state, its increased lifetime allows the distance between the donor and acceptor to be increased which results in a longer lifetime for the charge separated state.This study demonstrates molecular engineering of a series of donor-acceptor systems to allow control of the lifetime and initial spin multiplicity of the charge-separated state

  1. Fullerenic structures and such structures tethered to carbon materials

    Science.gov (United States)

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  2. Effect of axial ligation or pi-pi-type interactions on photochemical charge stabilization in "two-point" bound supramolecular porphyrin-fullerene conjugates.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; Zandler, Melvin E; McCarty, Amy L; Sandanayaka, Atula S D; Araki, Yasuyaki; Ito, Osamu

    2005-07-18

    Two types of structurally well-defined, self-assembled zinc porphyrin-fullerene conjugates were formed by "two-point" binding strategies to probe the effect of axial ligation or pi-pi-type interactions on the photochemical charge stabilization in the supramolecular dyads. To achieve this, meso-tetraphenylporphyrin was functionalized to possess one or four [18]crown-6 moieties at different locations on the porphyrin macrocycle while fullerene was functionalized to possess an alkyl ammonium cation, and a pyridine or phenyl entities. As a result of the crown ether-ammonium cation complexation, and zinc-pyridine coordination or pi-pi-type interactions, stable zinc porphyrin-fullerene conjugates with defined distance and orientation were formed. Evidence for the zinc-pyridine complexation or pi-pi-type interactions was obtained from the spectral and computational studies. Steady-state and time-resolved emission studies revealed efficient quenching of the zinc-porphyrin singlet excited state in these dyads, and the measured rates of charge separation, k(CS) were found to be slightly better in the case of the dyads held by axial coordination and crown ether-cation complexation. Nanosecond transient absorption studies provided evidence for the electron transfer reactions, and these studies also revealed charge stabilization in these dyads. The lifetimes of the radical ion pairs were found to depend upon the type of porphyrins utilized to form the dyads, that is, porphyrin possessing the crown ether moiety at the ortho position of one of the phenyl rings yielded prolonged charge stabilized states. Addition of pyridine to the supramolecular dyads eliminated the zinc-pyridine coordination or pi-pi-type interactions of the "two-point" bound systems due to the formation of a new zinc-pyridine axial bond thus giving a unique opportunity to probe the effect of axial coordination or pi-pi interactions on k(CS) and k(CR). Under these conditions, the measured electron transfer rates

  3. Multiple charge states of titanium ions in laser produced plasma

    International Nuclear Information System (INIS)

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 KeV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy (λ = 0.53 μm) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space ∼ 3m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2. (author)

  4. Herstellung und Charakterizierung endohedraler Li-Fullerene

    OpenAIRE

    Krawez, Nela

    2010-01-01

    Endohedral Alkali-Fullerenes are produced by exposing fullerene monolayers which were formed by vapour deposition to a low energy ion beam during the deposition process. This method, compared to laser vaporisation or the arc discharge, has the advantage of limiting the products to very few endohedral species which are determined by the deposited fullerenes and the ions used for bombardment. The films produced by this method were characterised by optical sp...

  5. Jahn-Teller effects and surface interactions in multiply-charged fullerene anions and the effect on scanning tunneling microscopy images

    Science.gov (United States)

    Dunn, Janette L.; Alqannas, Haifa S.; Lakin, Andrew J.

    2015-10-01

    We investigate the combined effects of Jahn-Teller (JT) coupling and interactions with a surface substrate on fullerene anions C602- to C604-. JT coupling alone causes the C60 ions to instantaneously distort from the icosahedral symmetry of the neutral molecule to a lower symmetry, with the molecule moving dynamically between a set of equivalent distortions. When adsorbed on a surface, the number of equivalent minimum-energy distortions is reduced. The implications of this on observed scanning tunneling microscopy (STM) images will be discussed, and comparisons made with existing experimental data. We show that a consistent interpretation of the images from all of the charge states of C60 can only be obtained using a JT model in which the symmetry is further reduced by surface interactions. The comparison with experimental data also allows us to determine relationships between the quadratic Jahn-Teller coupling and surface interaction parameters.

  6. Photosynthetic reaction center mimicry: low reorganization energy driven charge stabilization in self-assembled cofacial zinc phthalocyanine dimer-fullerene conjugate.

    Science.gov (United States)

    D'Souza, Francis; Maligaspe, Eranda; Ohkubo, Kei; Zandler, Melvin E; Subbaiyan, Navaneetha K; Fukuzumi, Shunichi

    2009-07-01

    By employing well-defined self-assembly methods, a biomimetic bacterial photosynthetic reaction center complex has been constructed, and photoinduced electron transfer originating in this supramolecular donor-acceptor conjugate has been investigated. The biomimetic model of the bacterial "special pair" donor, a cofacial zinc phthalocyanine dimer, was formed via potassium ion induced dimerization of 4,5,4',5',4'', 5'',4''',5'''-zinc tetrakis(1,4,7,10,13-pentaoxatridecamethylene)phthalocyanine. The dimer was subsequently self-assembled with functionalized fullerenes via "two-point" binding involving axial coordination and crown ether-alkyl ammonium cation complexation to form the donor-acceptor pair, mimicking the noncovalently bound entities of the bacterial photosynthetic reaction center. The adopted self-assembly methodology yielded a supramolecular complex of higher stability with defined geometry and orientation as revealed by the binding constant and computational optimized structure. Unlike the previously reported porphyrin analog, the present phthalocyanine macrocycle based model system exhibited superior electron-transfer properties including formation of a long-lived charge-separated state, a key step of the photosynthetic light energy conversion process. Detailed analysis of the kinetic data in light of the Marcus theory of electron transfer revealed that small reorganization energy of the relatively rigid phthalocyanine is primarily responsible for slower charge-recombination process. The importance of the cofacial dimer in stabilizing the charge-separated state is borne out in the present all-supramolecular "reaction center" donor-acceptor mimic. PMID:19505071

  7. Negatively charged nanoparticles produced by splashing of water

    Science.gov (United States)

    Tammet, H.; Hõrrak, U.; Kulmala, M.

    2009-01-01

    The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids) had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanoparticles. By different measurements, the diameter mode of these particles was 2.2-2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanoparticle surface is suppressed by a number of magnitudes due to the internal structure of the particles near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  8. Negatively charged nanoparticles produced by splashing of water

    Directory of Open Access Journals (Sweden)

    H. Tammet

    2008-09-01

    Full Text Available The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanodroplets. By different measurements, the diameter mode of these droplets was 2.2–2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanodroplet surface is suppressed by a number of magnitudes due to the internal structure of the droplets near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  9. Negatively charged nanoparticles produced by splashing of water

    Directory of Open Access Journals (Sweden)

    H. Tammet

    2009-01-01

    Full Text Available The production of splashing-generated balloelectric intermediate ions was studied by means of mobility spectrometry in the atmosphere during the rain and in a laboratory experiment simulating the heavy rain. The partial neutralization of intermediate ions with cluster ions generated by beta rays suppressed the space charge of intermediate ions but preserved the shape of the mobility distribution. The balloelectric ions produced from the waterworks water of high TDS (Total Dissolved Solids had about the same mobilities as the ions produced from the rainwater of low TDS. This suggests that the balloelectric ions can be considered as singly charged water nanoparticles. By different measurements, the diameter mode of these particles was 2.2–2.7 nm, which is close to the diameter of 2.5 nm of the Chaplin's 280-molecule magic icosahedron superclusters. The measurements can be explained by a hypothesis that the pressure of saturated vapor over the nanoparticle surface is suppressed by a number of magnitudes due to the internal structure of the particles near the size of 2.5 nm. The records of the concentration bursts of balloelectric ions in the atmosphere are formally similar to the records of the nucleation bursts but they cannot be qualified as nucleation bursts because the particles are not growing but shrinking.

  10. Interstellar Fullerene Compounds and Diffuse Interstellar Bands

    CERN Document Server

    Omont, Alain

    2015-01-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed, especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interstellar fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerenes is complex. In addition to formation in shock shattering, fully dehydrogenated PAHs in diffuse interstellar (IS) clouds could perhaps efficiently transform into fullerenes including EEHFs. But it is extremely difficult to assess their expected abundance, composition and size distribution, except for C60+. As often suggested, EEHFs share many properties with C60, as regards stability, formation/destruction, chemical processes and many basic spectral features. We address the importance of various EEHFs as possible DIB carriers. Specifically, we discuss IS properties and the contributions of fullerenes of various sizes and charge su...

  11. Development of Advanced Alloys using Fullerenes

    Science.gov (United States)

    Sims, J.; Wasz, M.; O'Brien, J.; Callahan, D. L.; Barrera, E. V.

    1994-01-01

    Development of advanced alloys using fullerenes is currently underway to produce materials for use in the extravehicular mobility unit (EMU). These materials will be directed toward commercial usages as they are continually developed. Fullerenes (of which the most common is C(sub 60)) are lightweight, nanometer size, hollow molecules of carbon which can be dispersed in conventional alloy systems to enhance strength and reduce weight. In this research, fullerene interaction with aluminum is investigated and a fullerene-reinforced aluminum alloy is being developed for possible use on the EMU. The samples were manufactured using standard commercial approaches including powder metallurgy and casting. Alloys have been processed having 1.3, 4.0 and 8.0 volume fractions of fullerenes. It has been observed that fullerene dispersion is related to the processing approach and that they are stable for the processing conditions used in this research. Emphasis will be given to differential thermal analysis and wavelength dispersive analysis of the processed alloys. These two techniques are particularly useful in determining the condition of the fullerenes during and after processing. Some discussion will be given as to electrical properties of fullerene-reinforced materials. Although the aluminum and other advanced alloys with fullerenes are being developed for NASA and the EMU, the properties of these materials will be of interest for commercial applications where specific Dual-Use will be given.

  12. Study of the contact charge transfer behavior between cryptophanes (A and E) and fullerene by absorption, fluorescence and {sup 1}H NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Caihong; Shen Weili; Fan Ruying; Zhang Guomei; Shangguan Lingzhi; Chao Jianbin; Shuang Shaomin [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong Chuan, E-mail: dc@sxu.edu.cn [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mfchoi@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2009-09-14

    A group of novel cage-like compounds cryptophanes A and E were synthesized from vanillin by a three-step method. The intermolecular interaction between cryptophanes (A and E) and fullerene (C{sub 60}) was investigated in detail by absorption, fluorescence and {sup 1}H NMR spectroscopy. The absorption of C{sub 60} at 410-650 nm decreased in the presence of cryptophanes A or E. The decrease in absorption intensity was proportional to the concentration of cryptophanes A or E. On the other hand, the fluorescence intensity of cryptophanes A or E decreased and the emission maxima were blue-shifted with the increase in C{sub 60} concentration. These results suggest that contact charge transfer (CCT) complexes can be formed from C{sub 60} with cryptophanes A or E. In addition, the electrochemical behavior of cryptophanes (A and E) and C{sub 60} was studied by cyclic voltammetry. The redox currents of cryptophanes (A and E) decreased and the peak potentials were shifted on addition of C{sub 60}. The changes in the chemical shifts ({Delta}{delta}) of aromatic protons of cryptophanes (A and E) in their NMR spectra further support that CCT complexes were formed with cryptophanes as the electron donors and C{sub 60} as the electron acceptor.

  13. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination.

    Science.gov (United States)

    Aoyagi, Hideki; Ugwu, Charles U

    2011-01-01

    Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains was inhibited by the adhesion of fullerene fine particles. PMID:24198486

  14. The samarium fullerene family

    International Nuclear Information System (INIS)

    Among the rare earth metals samarium is expected to form an ion of the two-valent redox state in endohedral fullerene structures. As compared to thulium and europium metallofullerenes a similar distribution of carbon cage structures is expected for samarium. The samarium fullerene structures produced by the Kraetschmer-Huffman method were studied with respect to the influence of the Sm-carbon ratio on the type and yield of the metallofullerenes. The chromatographic separation carried out by a two step HPLC resulted in a larger family of Sm-fullerenes (C2n, 2n=74, 78, 82, 84, 86, 88, 90, 92) encapsulating one ion as detected by mass spectrometry. Only the Sm-C76 structure was missing. No dimetallofullerenes of Sm were found. The samarium structures of C74 and C82 were characterized by UV-Vis and IR spectroscopy. The results were compared with those of Eu at C74 and Tm at C82. The redox state of the metal ion in the metallofullerene was shown to be Sm2+

  15. Flattened fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Chistyakov, A.L.; Stankevich, I.V. [A.N. Nesmeyanov Institute of Organoelement Compounds, Moscow (Russian Federation)

    1995-09-01

    Quantum-chemical calculations of giant flattened fullerenes C{sub n} (lentil-shaped) have been carried out. The topology, molecular and electronic structure of these fullerenes have been studied. Such molecules consist of two identical coronenoid fragments of a graphite layer, which are arranged one above the other, and a system of polycondensed five- and six-pentagons of three symmetry types (D{sub 6h}, D{sub 6d}, and D{sub 3h}) have been considered. The topology of these structures is described in terms of planar molecular graphs. Electronic structures of eleven flattened lentil-shaped C{sub n} clusters (n = 72-216) have been studied in the {pi} approximation. Most of the considered systems have closed or quasi-closed electron shells (according to Hueckel) and rather large energy gaps separating the highest occupied and lowest unoccupied MO, which is indicative of their kinetic stability. Fragments of the potential energy surfaces of the C{sub 72} and C{sub 96} fullerenes have been studied by the MNDO, AM1, and MNDO/PM3 methods. For the C{sub 96} cluster, two local energy minima, which correspond to the lentil-shaped isomers with D{sub 6h} and D{sub 6d} symmetry, have been determined. As a result of optimization of geometric parameters, it was found that all three methods give close value of heights (H = 6.7 {angstrom}) and diameters (D = 9.8 {angstrom}) for both isomers. The clusters change to quasi-two-dimensional systems (H {much_lt} D) with increasing sizes of coronenoid fragments.

  16. Fullerene ion chemistry: a journey of discovery and achievement.

    Science.gov (United States)

    Böhme, Diethard K

    2016-09-13

    An account is provided of the extraordinary features of buckminster fullerene cations and their chemistry that we discovered in our Ion Chemistry Laboratory at York University (Canada) during a 'golden' period of research in the early 1990s, just after C60 powder became available. We identified new chemical ways of C60 ionization and tracked novel chemistry of C60 (n+) as a function of charge state (n=1-3) with some 50 different reagent molecules. We found that multiple charges enhance reaction rates and diversify reaction products and mechanisms. Strong electrostatic interactions with reagent molecules were seen to reduce barriers to carbon surface bonding and charge-separation reactions, while intramolecular Coulomb repulsion appeared to localize charge on the surface or the substituent and so influence higher order chemistry, including 'spindle', 'star', 'fuzzy ball', 'ball-and-chain' and dimer ion formation. We introduced the notion of 'apparent' gas-phase acidity with measurements of proton-transfer reactions of multiply charged fullerene cations. We also explored the attachment of atomic metal cations to C60 and their subsequent reactions. All these findings were applied to the possible chemistry of fullerene cations in the interstellar medium with a focus on multiply charged fullerene ion formation and the intervention of fullerene cations in fullerene derivatization and molecular synthesis, with a view to their possible future detection.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501972

  17. A supramolecular tetrad featuring covalently linked ferrocene-zinc porphyrin-BODIPY coordinated to fullerene: a charge stabilizing, photosynthetic antenna-reaction center mimic.

    Science.gov (United States)

    Lim, Gary N; Maligaspe, Eranda; Zandler, Melvin E; D'Souza, Francis

    2014-12-15

    A novel photosynthetic-antenna-reaction-center model compound, comprised of BF2 -chelated dipyrromethene (BODIPY) as an energy-harvesting antenna, zinc porphyrin (ZnP) as the primary electron donor, ferrocene (Fc) as a hole-shifting agent, and phenylimidazole-functionalized fulleropyrrolidine (C60 Im) as an electron acceptor, has been synthesized and characterized. Optical absorption and emission, computational structure optimization, and cyclic voltammetry studies were systematically performed to establish the role of each entity in the multistep photochemical reactions. The energy-level diagram established from optical and redox data helped identifying different photochemical events. Selective excitation of BODIPY resulted in efficient singlet energy transfer to the ZnP entity. Ultrafast electron transfer from the (1) ZnP* (formed either as a result of singlet-singlet energy transfer or direct excitation) or (1) C60 * of the coordinated fullerene resulting into the formation of the Fc-(C60 (.) (-) Im:ZnP(.) (+) )-BODIPY radical ion pair was witnessed by femtosecond transient absorption studies. Subsequent hole migration to the ferrocene entity resulted in the Fc(+) -(C60 (.) (+) Im:ZnP)-BODIPY radical ion pair that persisted for 7-15 μs, depending upon the solvent conditions and contributions from the triplet excited states of ZnP and ImC60 , as revealed by the nanosecond transient spectral studies. Better utilization of light energy in generating the long-lived charge-separated state with the help of the present "antenna-reaction-center" model system has been successfully demonstrated. PMID:25339606

  18. A New Mechanism of Higgs Bosons in Producing Charge Particles

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time.......A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time....

  19. Fullerenes in an impact crater on the LDEF spacecraft

    Science.gov (United States)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  20. Fullerene - Porphyrin constructs

    OpenAIRE

    Boyd, PDW; Reed, CA

    2005-01-01

    Porphyrins and fullerenes are spontaneously attracted to each other. This new supramolecular recognition element can be used to construct discrete host-guest complexes, as well as ordered arrays of interleaved porphyrins and fullerenes. The fullerene-porphyrin interaction underlies successful Chromatographic separations of fullerenes, and there are promising applications in the areas of porous framework solids and photovoltaic devices. © 2005 American Chemical Society.

  1. Memory operation mechanism of fullerene-containing polymer memory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Anri, E-mail: anakajima@hiroshima-u.ac.jp; Fujii, Daiki [Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527 (Japan)

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  2. Conversion of fullerenes to diamond

    Science.gov (United States)

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  3. Recursive generation of IPR fullerenes

    OpenAIRE

    Goedgebeur, Jan; McKay, Brendan D.

    2015-01-01

    We describe a new construction algorithm for the recursive generation of all non-isomorphic IPR fullerenes. Unlike previous algorithms, the new algorithm stays entirely within the class of IPR fullerenes, that is: every IPR fullerene is constructed by expanding a smaller IPR fullerene unless it belongs to limited class of irreducible IPR fullerenes that can easily be made separately. The class of irreducible IPR fullerenes consists of 36 fullerenes with up to 112 vertices and 4 infinite famil...

  4. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  5. Charge transfer, excitation and evaporation in low energy collisions of simple metal clusters and fullerenes with atomic targets

    International Nuclear Information System (INIS)

    We present charge transfer, excitation and evaporation cross sections in low energy collisions of small and medium-size metal clusters (Nanq+, Linq+) and C60 with atomic targets (H+, He2+ and Cs) using a molecular close-coupling formalism and a post-collision rate equation model. The theoretical model benefits from different time scales associated with the collision and the internal motion of the cluster nuclei. The collision description includes the many-electron aspect of the problem and makes use of a realistic cluster potential obtained with density functional theory and a spherical jellium model. The evaporation model takes into account the non-harmonic effects of the ionic motion and describes sequential evaporation to any order within the framework of the microcanonical statistical model of Weisskopf. We show that the relative abundance of different fragments depends critically on the cluster temperature and the spectrometer time of flight window. We have found good agreement with recent experimental results [Eur. Phys. J. D 12 (2000) 185

  6. New Supercharging Reagents Produce Highly Charged Protein Ions in Native Mass Spectrometry

    OpenAIRE

    Going, Catherine C; Xia, Zijie; Williams, Evan R.

    2015-01-01

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol...

  7. Interstellar fullerene compounds and diffuse interstellar bands

    Science.gov (United States)

    Omont, Alain

    2016-05-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed and new findings suggest that these fullerenes may possibly form from polycyclic aromatic hydrocarbons (PAHs) in the ISM. Moreover, the first confirmed identification of two strong diffuse interstellar bands (DIBs) with the fullerene, C60+, connects the long standing suggestion that various fullerenes could be DIB carriers. These new discoveries justify reassessing the overall importance of interstellar fullerene compounds, including fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerene compounds is complex. In addition to fullerene formation in grain shattering, fullerene formation from fully dehydrogenated PAHs in diffuse interstellar clouds could perhaps transform a significant percentage of the tail of low-mass PAH distribution into fullerenes including EEHFs. But many uncertain processes make it extremely difficult to assess their expected abundance, composition and size distribution, except for the substantial abundance measured for C60+. EEHFs share many properties with pure fullerenes, such as C60, as regards stability, formation/destruction and chemical processes, as well as many basic spectral features. Because DIBs are ubiquitous in all lines of sight in the ISM, we address several questions about the interstellar importance of various EEHFs, especially as possible carriers of diffuse interstellar bands. Specifically, we discuss basic interstellar properties and the likely contributions of fullerenes of various sizes and their charged counterparts such as C60+, and then in turn: 1) metallofullerenes; 2) heterofullerenes; 3) fulleranes; 4) fullerene-PAH compounds; 5) H2@C60. From this reassessment of the literature and from combining it with known DIB line identifications, we conclude that the general landscape of interstellar fullerene compounds is probably much richer than heretofore realized

  8. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  9. Fullerenes in Allende Meteorite

    Science.gov (United States)

    Becker, L.; Bada, J. L.; Winans, R. E.; Bunch, T. E.

    1994-01-01

    The detection of fullerenes in deposits from meteor impacts has led to renewed interest in the possibility that fullerenes are present in meteorites. Although fullerenes have not previously been detected in the Murchison and Allende meteorites, the Allende meteorite is known to contain several well-ordered graphite particles which are remarkably similar in size and appearance to the fullerene-related structures carbon onions and nanotubes. We report that fullerenes are in fact present in trace amounts in the Allende meteorite. In addition to fullerenes, we detected many polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite, consistent with previous reports. In particular, we detected benzofluoranthene and corannulene (C20H10), five-membered ring structures which have been proposed as precursors to the formation of fullerene synthesis, perhaps within circumstellar envelopes or other sites in the interstellar medium.

  10. Thermomechanical Stresses in Fullerenes at Nanotube

    OpenAIRE

    Pugno, Nicola M.

    2008-01-01

    The thermomechanical stresses acting between a nanotube and fullerenes encapsulated on it are computed. After a general formulation, based on elasticity, we have applied the analysis to C82000040(10,10) or C60000040(10,10) peapods finding stresses in the gigapascal range or vanishing, respectively. The analysis suggests that a thermal control could be used to produce smart fullerenes at nanotube systems, for example, as two-stage nanovectors for drug delivery.

  11. Thermomechanical Stresses in Fullerenes at Nanotube

    Directory of Open Access Journals (Sweden)

    Nicola M. Pugno

    2008-01-01

    Full Text Available The thermomechanical stresses acting between a nanotube and fullerenes encapsulated on it are computed. After a general formulation, based on elasticity, we have applied the analysis to C82000040(10,10 or C60000040(10,10 peapods finding stresses in the gigapascal range or vanishing, respectively. The analysis suggests that a thermal control could be used to produce smart fullerenes at nanotube systems, for example, as two-stage nanovectors for drug delivery.

  12. A floating water bridge produces water with excess charge

    International Nuclear Information System (INIS)

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ατερ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (∼kV cm−1) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum. (paper)

  13. Mapping of charge density of ion beams produced by laser

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Parys, P.; Velyhan, Andriy; Margarone, Daniele; Krouský, Eduard; Ullschmied, Jiří

    Vol. 38F. Mulhouse : European Physical Society, 2014 - (Ratynskaia, S.; Mantica, P.; Benuzzi-Mounaix, A.; Dilecce, G.; Bingham, R.; Hirsch, M.; Kemnitz, B.; Klinger, T.), "P2.094-1"-"P2.094-4" ISBN 2-914771-90-8. - (Europhysics Conference Abstracts (ECA)). [EPS Conference on Plasma Physics/41./. Berlin (DE), 23.06.2014-27.06.2014] R&D Projects: GA MŠk EE2.3.20.0279; GA ČR GAP205/12/0454 Grant ostatní: LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser ion sources * map of ion charge density * ion expansion * modeling Subject RIV: BL - Plasma and Gas Discharge Physics http://ocs.ciemat.es/EPS2014PAP/pdf/P2.094.pdf

  14. A floating water bridge produces water with excess charge

    Science.gov (United States)

    Fuchs, Elmar C.; Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Woisetschläger, Jakob

    2016-03-01

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ἄ'τɛρ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (~kV cm-1) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum.

  15. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination

    Directory of Open Access Journals (Sweden)

    Aoyagi H

    2011-05-01

    Full Text Available Hideki Aoyagi, Charles U UgwuLife Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, JapanAbstract: Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains was inhibited by the adhesion of fullerene fine particles.Keywords: Cryptomeria japonica, Chamaecyparis obtusa, Camellia japonica, autofluorescence, pollen grains, fullerene fine particle

  16. Measurement of Charged Pions from Neutrino-produced Nuclear Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Clifford N. [Univ. of California, Irvine, CA (United States)

    2014-01-01

    A method for identifying stopped pions in a high-resolution scintillator bar detector is presented. I apply my technique to measure the axial mass MΔAfor production of the Δ(1232) resonance by neutrino, with the result MΔA = 1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from the measured spectrum of reconstructed momentum-transfer Q2. I proceed by varying the value of MΔA in a Rein-Sehgal-based Monte Carlo to produce the best agreement, using shape only (not normalization). The consistency of this result with recent reanalyses of previous bubble-chamber experiments is discussed.

  17. Photodiodes based on fullerene semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Voz, C. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)], E-mail: cvoz@eel.upc.edu; Puigdollers, J. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO- Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av. del Canal Olimpic s/n, 08860-Castelldefels (Spain); Fonrodona, M.; Stella, M.; Andreu, J. [Solar Energy Group, Departament Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, 08028-Barcelona (Spain); Alcubilla, R. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)

    2007-07-16

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum.

  18. Polyhydroxy fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, Angelina T., E-mail: angelinageorgieva2009@gmail.com [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States); Pappu, Vijay [University of Florida, Center for Applied Optimization (United States); Krishna, Vijay [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States); Georgiev, Pando G. [University of Florida, Center for Applied Optimization (United States); Ghiviriga, Ion [University of Florida, NMR Facility, Department of Chemistry (United States); Indeglia, Paul [Agency for Sustainable Systems in Science and Technology, Inc. (United States); Xu, Xin; Fan, Z. Hugh [University of Florida, Department of Mechanical and Aerospace Engineering (United States); Koopman, Ben [University of Florida, Department of Environmental Engineering Sciences (United States); Pardalos, Panos M. [University of Florida, Center for Applied Optimization (United States); Moudgil, Brij [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States)

    2013-07-15

    Characterization of C{sub 60} polyhydroxyfullerenes (PHF) prepared in alkaline media, preparation facilitated by phase-transfer catalyst, presents challenges in determining the chemical structure resulting from the possibility of multiple isomers or analogs with greater or fewer hydroxyl groups from a single reaction mixture. This paper presents the utilization of analytical methods employed in tandem, especially X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy for semi-quantitative analysis on the number of hydroxyl groups present in PHF. Capillary Electrophoresis was used for purity estimation of the material. Multiple spectra and electropherograms were analyzed using a new simultaneous curve fitting method. The most accurate estimate of hydroxyl groups for C{sub 60} polyhydroxy fullerenes obtained is between 16 and 18 allylic hydroxyl groups by combining analytical methods' results with 5 % accuracy. High precision (reproducibility) of the experiments is observed. Purity of 98 % is estimated by capillary electrophoresis. The size of PHF nanoparticles or aggregates has been determined by atomic force microscopy to be 7.4-14.2 nm. According to the elemental analysis the average probable empirical formula for the most pure PHF at pH 7.1 is C{sub 60}O{sub 17}H{sub 12}Na{sub 5}(NaHCO{sub 3}){sub 3}(H{sub 2}O){sub 13} and the average formula weight is 1,605.9 g/mol. This is the first thorough characterization of PHF in terms of purity.

  19. Recent advances in fullerene science (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Dunk, P. W.; Marshall, A. G. [Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, USA and Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive (United States); Mulet-Gas, M.; Rodriguez-Fortea, A.; Poblet, J. M. [Departament de Química Físicai Inorgànica, Universitat Rovirai Virgili c/Marcellí Domingo s/n, 43007 Tarragona (Spain); Kroto, H. W. [Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306 (United States)

    2014-12-09

    The development of very high resolution FT-ICR mass spectrometers (Marshall et al, 1998) has made a wide range of new measurements possible and by combining this new technology with laser vaporization supersonic beam methods of producing carbon species (chains, rings and fullerenes), new advances in understanding of the fullerene creation mechanisms and their reactivity have been possible. In this overview, new understanding has been developed with regard to: a) closed-network growth of fullerenes (Dunk et al, 2012a); b) small endohedral species such as MαC{sub 28} (Dunk et al., 2012b); c) metallofullerene and fullerene formation under conditions in stellar outflows with relevance to stardust (Dunk et al., 2013a) and d) The formation of heterofullerenes by direct exposure of C{sub 60} toboron vapor (Dunk et al., 2013b)

  20. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  1. Biological activities of water-soluble fullerene derivatives

    Science.gov (United States)

    Nakamura, S.; Mashino, T.

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  2. Biological activities of water-soluble fullerene derivatives

    International Nuclear Information System (INIS)

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  3. Fullerene derivatives as electron donor for organic photovoltaic cells

    International Nuclear Information System (INIS)

    We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C60 bisadduct (ICBA) and phenyl C61-butyric acid methyl ester as the electron donors with fullerene C70 as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C70 PHJ cell gives clear external quantum efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells

  4. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  5. Characterization of naturally-occurring and modified fullerenes by Fourier transform mass spectrometry

    Science.gov (United States)

    Hettich, Robert L.; Jin, Changming; Compton, Robert N.; Buseck, Peter R.; Tsipursky, Semeon J.

    1993-10-01

    Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C60Fx (x=44,46) and C70Fy (y=52,54) were found to be substantially higher than the values for the parent fullerenes.

  6. Studies on Preparation of Onion-like Fullerenes by Vacuum Heat-treatment

    Institute of Scientific and Technical Information of China (English)

    Zhang Yan; Hou Li-feng; Wang Xiao-min; Liu Xu-guang; Xu Bing-she

    2004-01-01

    Onion-like Fullerenes were produced at high-temperature in vacuum. The morphology of the carbon nano onion-like fullerenes was examined and characterized by high-resolution transmission electron microscopy (HRTEM). It can be seen that the nano-sized, onion-like fullerenes possess high degree of graphization. The results suggested that the catalyst is the main factor affecting the size and yield of the fullerenes. The method is very promising for simple mass production.

  7. The Generation of Fullerenes

    OpenAIRE

    Brinkmann, Gunnar; Goedgebeur, Jan; McKay, Brendan D.

    2012-01-01

    We describe an efficient new algorithm for the generation of fullerenes. Our implementation of this algorithm is more than 3.5 times faster than the previously fastest generator for fullerenes -- fullgen -- and the first program since fullgen to be useful for more than 100 vertices. We also note a programming error in fullgen that caused problems for 136 or more vertices. We tabulate the numbers of fullerenes and IPR fullerenes up to 400 vertices. We also check up to 316 vertices a conjecture...

  8. Forward charge distributions associated with hadronically produced J/psi particles

    International Nuclear Information System (INIS)

    We have measured the forward charge as a function of x/sub F/ of the psi for events produced by 225 Gev/c π-Be interactions. The forward charge is the average difference between the number of positive hadrons and negative hadrons produced in the forward hemisphere. The standard Drell-Yan model predicts that the forward charge should become less negative as the x/sub F/ of the J/psi increases. The measured forward charge becomes more negative as the x/sub F/ of the J/psi increases although it is consistent with being flat as a function of x/sub F/. Hence the data is not consistent with any Drell-Yan type model which assumes the forward charge is not strongly dependent on the hadronic energy left over after the J/psi is formed. 45 references

  9. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  10. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar...... graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this...... paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems....

  11. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2014-07-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  12. The charge state of the ions produced by a saddle field ion source

    International Nuclear Information System (INIS)

    The thesis is concerned with an analysis of the charge state and energy of the ions produced by a saddle field ion source, and its application to the measurement of the sputtering yield. The subject is discussed under the topic headings: production of multicharged ions, saddle field ion sources, experimental conditions, ionic charge state, energy for argon, and sputtering yield of gold for Ar+ and Ar2+ ions. (U.K.)

  13. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  14. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs+ is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C60 in the energy range from 8 to 12 eV results in C60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  15. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  16. Fullerenes with distant pentagons

    OpenAIRE

    Goedgebeur, Jan; McKay, Brendan D.

    2015-01-01

    For each $d>0$, we find all the smallest fullerenes for which the least distance between two pentagons is $d$. We also show that for each $d$ there is an $h_d$ such that fullerenes with pentagons at least distance $d$ apart and any number of hexagons greater than or equal to $h_d$ exist. We also determine the number of fullerenes where the minimum distance between any two pentagons is at least $d$, for $1 \\le d \\le 5$, up to 400 vertices.

  17. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  18. Conversion of fullerenes to diamonds

    Science.gov (United States)

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  19. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  20. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation

    Science.gov (United States)

    Lu, Gaopeng; Cummer, Steven A.; Tian, Ye; Zhang, Hongbo; Lyu, Fanchao; Wang, Tao; Stanley, Mark A.; Yang, Jing; Lyons, Walter A.

    2016-04-01

    On the morning of 5 June 2013, two cameras of the SpriteCam network concurrently captured a red sprite with diffuse halo over a mesoscale convective system (MCS) passing the panhandle area of Oklahoma. This sprite was produced by a negative cloud-to-ground (CG) stroke with peak current of -103 kA in a manner different from previous observations in several aspects. First of all, the causative stroke of sprite is located by the National Lightning Detection Network (NLDN) in the trailing stratiform of MCS, instead of the deep convection typically for negative sprites. Second, the sprite-producing stroke was likely the first stroke of a multistroke negative CG flash (with ≥6 CG strokes) whose evolution was mainly confined in the lower part of thunderstorm; although the parent flash of sprite might contain relatively long in-cloud evolution prior to the first stroke, there is no evidence that the negative leader had propagated into the upper positive region of thundercloud as typically observed for the sprite-producing/class negative CG strokes. Third, as shown by the simulation with a two-dimensional full-wave electrodynamic model, although the impulse charge moment change (-190 C km) produced by the main stroke was not sufficient to induce conventional breakdown in the mesosphere, a second impulse charge transfer occurred with ~2 ms delay to cause a substantial charge transfer (-290 C km) so that the overall charge moment change (-480 C km) exceeded the threshold for sprite production; this is a scenario different from the typical case discussed by Li et al. (2012). As for the source of the second current pulse that played a critical role to produce the sprite, it could be an M component whose charge source was at least 9 km horizontally displaced from the main stroke or a negative CG stroke (with weak peak current for the return stroke) that was not detected by the NLDN.

  1. Interstellar and circumstellar fullerenes

    OpenAIRE

    Bernard-Salas, J.; Cami, J.; Jones, A. P.; E. Peeters; Micelotta, E. R.; Otsuka, M; Sloan, G. C.; Kemper, F.; Groenewegen, M.

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide var...

  2. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    International Nuclear Information System (INIS)

    Argon recoil ions produced by beams of 0.8 MeV/u Cl5+ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly-charged ions produced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find the inclusion of Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to projectile-electron loss. These conclusions are consistent with impact parameters inferred from determinations of mean recoil energy. 11 refs., 5 figs

  3. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  4. Search for fractionally charged particles produced in e+e- annihilation

    International Nuclear Information System (INIS)

    A search has been made for particles with charge Q = 1/3, Q = 2/3 and Q = 4/3 produced in e+e- annihilation using the ARGUS detector at the e+e- storage ring DORIS, operating at a centre of mass energy around 10 GeV. No candidate events were found in 84.5 pb-1 of collected data. Upper limits are established for the cross section for the production of fractionally charged particles with masses up to 4 GeV/c2, improving on previously obtained limits. (orig.)

  5. A search for charged scalar particles pair produced in e+e- annihilation

    International Nuclear Information System (INIS)

    We have searched for unstable charged scalar particles (S+-) such as techni-pions or charged Higgs particles pair produced in high energy e+e- annihilation. No evidence for such particles was observed in both decay modes e+e- → S+S- → (tauν)(hadrons) and → (tauν)(tauν). Upper limits of 4 to 11% are obtained for the branching ratio S+- → (tauν) in the S+- mass range between 4 to 12 GeV. (orig.)

  6. Influence of organic acids on UV-Vis spectra of pyrrolidino- [60]fullerene derivatives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pyrrolidino[60]fullerene 1 with pyrrolidine group was synthesized and characterized. The UV-Vis spectra showed that the blue shift of absorption peaks was first observed when strong organic acids such as p-toluene sulfonic or trifluoroacetic acid were added to the solution of pyrrolidino[60]fullerene 1 in dichloromethane. The results indicated that the pyrrolidino[60]fullerene derivatives without pyrrolidine group also possess the same phenomenon. Experiments and computation with the MOPAC 7.0 semi-em- pirical PM3 method demonstrated the reason that some energy gaps on [60]fullerene skeleton were increased because electronic charges on [60]fullerene framework transferred to pyrrolidine ring when strong organic acids were added into pyrrolidino[60]fullerene derivatives' solution; as the result, the complexes could be formed and some absorption wave-lengths blue shifted in the UV-Vis spectrum.

  7. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    International Nuclear Information System (INIS)

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton–nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates

  8. On double bonds in fullerenes

    OpenAIRE

    Stepenshchikov D. G.; Voytekhovsky Yu. L.

    2016-01-01

    Various distributions of double carbon bonds in the fullerenes have been considered in the paper from the point that they are absent in the pentagonal rings. The appropriate classification of the fullerenes has been built. The results may be used when modeling the fullerenes of a given topology and calculating their physical-chemical properties

  9. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    International Nuclear Information System (INIS)

    Argon recoil ions produced by beams of 0.8 MeV/u Cl5+ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly charged ions poduced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the dependent-electron-ejection model, we find the inclusion Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to the projectile-electron loss. These conclusions are consistent with impact parameters inferred from determination of mean recoil energy. (orig.)

  10. Synthesis of fullerenic nanocapsules from bio-molecule carbonisation

    Science.gov (United States)

    Tsang, Shik Chi; Qiu, Jieshan; Harris, Peter J. F.; Fu, Qi Jia; Zhang, Ning

    2000-06-01

    There has been great interest in the incorporation of foreign materials into fullerene structures (C 60, nanotubes, nanoparticles, onions). This interest has been driven by the potential applications of the filled fullerenes, which lie in areas as diverse as optical, electronic, magnetic recording materials and nuclear medicine. In particular, the onion structures of extreme strength may offer excellent protection to their encapsulated nanomaterials for applications. Here, we describe controlled carbonisation of an iron-containing biomolecule, ferritin, at elevated temperatures. This simple technique produces macroscopic quantities of quasi-spherical fullerenic shells (onions) that encapsulate iron nanoparticles of a very narrow range of particle diameters.

  11. Process for the removal of impurities from combustion fullerenes

    Science.gov (United States)

    Alford, J. Michael; Bolskar, Robert

    2005-08-02

    The invention generally relates to purification of carbon nanomaterials, particularly fullerenes, by removal of PAHs and other hydrocarbon impurities. The inventive process involves extracting a sample containing carbon nanomaterials with a solvent in which the PAHs are substantially soluble but in which the carbon nanomaterials are not substantially soluble. The sample can be repeatedly or continuously extracted with one or more solvents to remove a greater amount of impurities. Preferred solvents include ethanol, diethyl ether, and acetone. The invention also provides a process for efficiently separating solvent extractable fullerenes from samples containing fullerenes and PAHs wherein the sample is extracted with a solvent in which both fullerenes and PAHs are substantially soluble and the sample extract then undergoes selective extraction to remove PAHs. Suitable solvents in which both fullerenes and PAHs are soluble include o-xylene, toluene, and o-dichlorobenzene. The purification process is capable of treating quantities of combustion soot in excess of one kilogram and can produce fullerenes or fullerenic soot of suitable purity for many applications.

  12. Effects of Solvent on the Maximum Charge State and Charge State Distribution of Protein Ions Produced by Electrospray Ionization

    OpenAIRE

    Iavarone, Anthony T.; Jurchen, John C.; Williams, Evan R.

    2000-01-01

    The effects of solvent composition on both the maximum charge states and charge state distributions of analyte ions formed by electrospray ionization were investigated using a quadrupole mass spectrometer. The charge state distributions of cytochrome c and myoglobin, formed from 47%/50%/3% water/solvent/acetic acid solutions, shift to lower charge (higher m/z) when the 50% solvent fraction is changed from water to methanol, to acetonitrile, to isopropanol. This is also the order of increasing...

  13. Interaction between fullerene halves Cn (n ≤ 40) and single wall carbon nanotube

    Science.gov (United States)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-05-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves Cn (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  14. Telescope for studying charged particles produced by 14 MeV neutrons

    International Nuclear Information System (INIS)

    We have developed a telescope using semi-conductor detectors for studying the charged particles produced in a thin radiator by 14 MeV neutrons. It consists of a proportional CO2-counter and two cooled semiconductor detectors (one of the ΔE/ΔX type, the other of the E type). This low-noise telescope has good energy resolution (370 keV). Used in conjunction with a bi-parametric recording (ΔE - E) it gives a satisfactory identification and discrimination of the charged particles (p,d) detected. This telescope has been used to observe the spectrum of protons from the reaction D(n,p)2n emitted at 0 deg. (En 13.9 MeV) in the energy range 4 - 14 MeV. (author)

  15. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  16. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination

    OpenAIRE

    Aoyagi H; Ugwu CU

    2011-01-01

    Hideki Aoyagi, Charles U UgwuLife Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, JapanAbstract: Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the po...

  17. New supercharging reagents produce highly charged protein ions in native mass spectrometry.

    Science.gov (United States)

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2015-11-01

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods. PMID:26421324

  18. Charge exchange produced emission of carbon in the extreme ultraviolet spectral region

    International Nuclear Information System (INIS)

    We used a time-reolving high-resolution grating spectrometer to study extreme ultraviolet emission from plasmas in the National Spherical Tokamak Experiment (NSTX). The NSTX spectral range from 150-250 Å is typically dominated by emission from M-shell iron lines, L- shell transitions of oxygen, or K-shell lines of lithium. However, we also observed several intense emission lines, which we now attribute to transitions in C V and C VI. Collisional-radiative modeling shows that electron-impact excitation is far too weak to account for the features we observed. Instead, these lines appear to be produced by charge exchange with neutral hydrogen

  19. Geological occurrence of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, P.R.; Tsipursky, S.J.; Wang, S. (Arizona State Univ., Tempe, AZ (United States)); Hettich, R. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    Using HRTEM imaging, the authors found C[sub 60] and C[sub 70] fullerenes in shungite, a Precambrian carbon-rich rock from Karelia, Russia. Compositionally, shungite represents coals of the meta-anthracite rank, characterized by low ash and sulfur contents, low volatile yields, and high carbon contents. The shungite occurs within metamorphosed sediments. The overlying rocks consist of gray dolomitized sandstones and poorly sorted silts and clays; the underlying rocks are not exposed. The shungite consists of masses containing up to 99% carbon. Diabase is interstratified with shungite-bearing rocks, and the shungite concentration increases with proximity to the diabase. Their sample comes from inclusions in the diabase. In the HRTEM images the fullerenes appear round (presumably roughly spherical in three dimensions), with white rims and black centers, almost identical to images of synthetic C[sub 60] molecules. Following the HRTEM observations, the fullerene identities were confirmed, first by time-of-flight mass spectrometry and then by more precise laser ablation, laser desorption, and thermal desorption ionization plus Fourier transform (FT) mass spectrometry. These measurements verified that the fullerenes were not generated by the laser ionization event. HRTEM images show that locally they occur in ordered arrays that resemble crystals of synthetic C[sub 60]. FT mass spectra show that the C-13/C-12 isotopic ratios for C[sub 60] and C[sub 70] fall within the normal range of terrestrial isotopic values.

  20. Synthesis of Fullerene by Pyrolysis of Acetylene in Thermal HF-Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanjuan; ZHANG Guofu; ZHANG Wei; LIN Tianjin; XIE Hongbo; LIU Qiuxiang; ZHANG Haiyan

    2007-01-01

    Carbon soot containing fullerene was continuously produced in volume by pyrolyzing acetylene in thermal HF-Plasma. The characteristics of the carbon soot and C60 were analyzed by thtransmission electron microscopy, UV/visible, IR and Raman spectroscopy. The results show that the main ingredients of the carbon soot with size of about 25 nm are amorphous carbon, graphite and fullerene. The fullerene yield in carbon soot is about 2.5 g·h-1. Compared with the graphite arc discharge method, the acetylene thermal plasma method is a preferential one for synthesis of fullerene.

  1. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.;

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  2. Using Static Charge on Pyroelectric Crystals to Produce Self Focusing Electron and Ion Beams and Transport Through Tubes

    OpenAIRE

    Brownridge, James D.; Shafroth, Stephen M.

    2004-01-01

    Static charge in and on the surface of pyroelectric crystals of LiNbO3 and LiTaO3 in a dilute gas has been shown to ionize gas molecules via electron tunneling. The released electrons and positive ions are focused and accelerated according to the sign of the static uncompensated charge. The uncompensated charge is produced when the temperature of the crystal is changed from any initial temperature between about 500K and about 15K. It may be either polarization charge that is inside the crysta...

  3. Characterization of naturally-occurring and modified fullerenes by Fourier transform mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.L.; Jin, C.; Compton, R.N. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6120 (United States)); Buseck, P.R.; Tsipursky, S.J. (Department of Geology, Arizona State University, Tempe, Arizona 85287 (United States))

    1993-10-10

    Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C[sub 60]F[sub x] (x=44,46) and C[sub 70]F[sub y] (y=52,54) were found to be substantially higher than the values for the parent fullerenes.

  4. Plasma-Chemical Synthesis of Nanosized Powders-Nitrides, Carbides, Oxides, Carbon Nanotubes and Fullerenes

    International Nuclear Information System (INIS)

    In this article the plasma-chemical synthesis of nanosized powders (nitrides, carbides, oxides, carbon nanotubes and fullerenes) is reviewed. Nanosized powders - nitrides, carbides, oxides, carbon nanotubes and fullerenes have been successfully produced using different techniques, technological apparatuses and conditions for their plasma-chemical synthesis. (plasma technology)

  5. Magnetic fields produced by rotating symmetrical bodies with homogeneous surface charge density

    Science.gov (United States)

    Espejel-Morales, R.; Murguía-Romero, G.; Calles, A.; Cabrera-Bravo, E.; Morán-López, J. L.

    2016-07-01

    We present a numerical calculation for the stationary magnetic field produced by different rotating bodies with homogeneous and constant surface charge density. The calculation is done by superposing the magnetic field produced by a set of loops of current which mimic the magnetic field produced by belts of current defined by slices of fixed width. We consider the cases of a sphere, ellipsoids, open and closed cylinders and a combination of these in a dumbbell-like shell. We also plot their magnetic field lines using a technique that make use of the Runge–Kutta fourth-order method. Up to our knowledge, the case of closed cylinders was not calculated before. In contrast to previous results, we find that the magnetic field inside finite hollow bodies is homogeneous only in the case of a sphere. This is consequence of the fact that, for the sphere, the surface of any slice taken perpendicularly to the rotation axis, depends only on its thickness, like in the case of an infinite cylinder.

  6. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectroscopic observation of highly-charged ions produced by cluster target

    International Nuclear Information System (INIS)

    High-density nitrogen gas was irradiated with an ultrashort high-intensity pulse laser (pulse width: 1.5 ps, intensity: >1015 W/cm2). It was found that highly charged ions were produced effectively as the gas density became higher. From distribution of population densities of high-lying levels of lithium like ions, the electron temperature in a recombining phase was estimated. This electron temperature together with a calculation using a collisional-radiative model, in which doubly excited levels of beryllium like ions are included, indicated that the electron density was ne=3x1019 cm-3. Moreover, the spectra also showed that population inversions between some excited states of hydrogen-, helium-, lithium like nitrogen ions were generated under this plasma conditions. (author)

  8. Study on space charge effect in an electrostatic ion analyzer applied to measure laser produced ions

    International Nuclear Information System (INIS)

    The abundance of different ions produced by laser ion sources is usually analyzed by an electrostatic ion analyzer (EIA). Ion current intensities in the range of several mA/cm2 at the position of the EIA have been achieved from the laser ion source developed by the Institute of Modern Physics; this indicates that a noticeable influence of space charge effect during the ion transmission will occur. Hence, while the parameters of the EIA or the beams are changed, such as ion species, current intensity, the ions’ transmission efficiency through the EIA is different, which will result in an uncertainty in the estimation of the ions’ yields. Special attention is focused on this issue in this paper. Ion's transmissions through the EIA under different circumstances are studied with simulations and experiments, the results of which are consistent with each other

  9. Velocity-space pictures of continuum electrons produced by slow, bare, highly charged ions

    International Nuclear Information System (INIS)

    Velocity-space pictures of the electron continua produced by the impact of ions on He and Ne have been measured for the bare projectiles of p, He, C, O, and Ne at a projectile velocity of 1.63 a.u. For the three highly charged projectiles, this velocity lies in the ionization open-quotes thresholdclose quotes region where electron capture dominates the reaction. The electron velocity-space distributions for these cases are concentrated near the velocity of the projectile, not near the saddle-point velocity, and seem to open-quotes saturateclose quotes at a nearly universal shape. The data are in qualitative agreement with CDW-EIS calculations. copyright 1997 The American Physical Society

  10. Iodine laser pumped with light from a shock front produced by explosive charge detonation

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, V.P.; Borovich, B.L.; Zuev, V.S.; Kazanskii, V.M.; Katulin, V.A.; Kirillov, G.A.; Kormer, S.B.; Kuratov, IU.V.; Kuriapin, A.I.; Nosach, O.IU. (VNII Eksperimental' noi Fiziki, Arzamas (Russian Federation) Fizicheskii Inst., Moscow (Russian Federation))

    1992-02-01

    The paper presents results of experimental research undertaken during 1965-1966 which concerned a pulsed photodissociation iodine laser using CF3I and C3F7I molecules pumped with light from a shock front produced by explosive charge detonation. These lasers are shown to feature a unique combination of the high energy and the high power of the radiation pulse. Two types of lasers were investigated, in one of which the active medium was pumped with light from the shock front in xenon, while in the other the shock wave propagated through a mixture of the active medium with a rare gas. The energy characteristics of the second type of laser substantially surpassed those of the first type of laser. 6 refs.

  11. Problems with fullerenes modeling

    Czech Academy of Sciences Publication Activity Database

    Kaminský, Jakub; Buděšínský, Miloš; Taubert, S.; Bouř, Petr; Straka, Michal

    Brno : Masaryk University, 2014 - (Novotný, J.; Foroutan -Nejad, C.; Marek, R.). C5 ISBN 978-80-86441-45-0. [NMR Valtice. Central European NMR Meeting /29./. 27.4.-30.4.2014, Valtice] R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : fullerenes * NMR * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry

  12. Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: Experimental and theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Basabe, Y.; Borges, B. G. A. L.; Rocco, M. L. M., E-mail: lsroman@fisica.ufpr.br, E-mail: luiza@iq.ufrj.br [Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909 (Brazil); Marchiori, C. F. N.; Yamamoto, N. A. D.; Koehler, M.; Roman, L. S., E-mail: lsroman@fisica.ufpr.br, E-mail: luiza@iq.ufrj.br [Departament of Physics, Federal University of Paraná, Curitiba 81531-990 (Brazil); Macedo, A. G. [Departament of Physics, Technological Federal University of Paraná, Curitiba 80230-901 (Brazil)

    2014-04-07

    By combining experimental and theoretical approaches, the electronic structure, molecular orientation, charge transfer dynamics and solar cell performance in donor/acceptor copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl) benzo-2,1,3-thiadiazole] (PSiF-DBT) films and blended with 6,6.-phenyl-C 61-butyric acid methyl ester (PSiF-DBT:PCBM) were investigated. Good agreement between experimental and theoretical PSiF-DBT UV-Vis absorption spectrum is observed and the main molecular orbitals contributing to the spectrum were determined using DFT single point calculations. Non-coplanar configuration was determined by geometric optimization calculation in isolated PSiF-DBT pentamer and corroborated by angular variation of the sulphur 1s near-edge X-ray absorption fine structure (NEXAFS) spectra. Edge-on and plane-on molecular orientations were obtained for thiophene and benzothiadiazole units, respectively. A power conversion efficiency up to 1.58%, open circuit voltage of 0.51 V, short circuit current of 8.71 mA/cm{sup 2} and a fill factor of 35% was obtained using blended PSiF-DBT:PCBM as active layer in a bulk heterojunction solar cell. Ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core-hole clock methodology around sulphur 1s absorption edge. Electron delocalization times for PSiF-DBT and PSiF-DBT:PCBM polymeric films were derived for selected excitation energies corresponding to the main transitions in the sulphur 1s NEXAFS spectra. The mixture of PSiF-DBT with PCBM improves the charge transfer process involving the π* molecular orbital of the thiophene units.

  13. Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: Experimental and theoretical approaches

    International Nuclear Information System (INIS)

    By combining experimental and theoretical approaches, the electronic structure, molecular orientation, charge transfer dynamics and solar cell performance in donor/acceptor copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl) benzo-2,1,3-thiadiazole] (PSiF-DBT) films and blended with 6,6.-phenyl-C 61-butyric acid methyl ester (PSiF-DBT:PCBM) were investigated. Good agreement between experimental and theoretical PSiF-DBT UV-Vis absorption spectrum is observed and the main molecular orbitals contributing to the spectrum were determined using DFT single point calculations. Non-coplanar configuration was determined by geometric optimization calculation in isolated PSiF-DBT pentamer and corroborated by angular variation of the sulphur 1s near-edge X-ray absorption fine structure (NEXAFS) spectra. Edge-on and plane-on molecular orientations were obtained for thiophene and benzothiadiazole units, respectively. A power conversion efficiency up to 1.58%, open circuit voltage of 0.51 V, short circuit current of 8.71 mA/cm2 and a fill factor of 35% was obtained using blended PSiF-DBT:PCBM as active layer in a bulk heterojunction solar cell. Ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core-hole clock methodology around sulphur 1s absorption edge. Electron delocalization times for PSiF-DBT and PSiF-DBT:PCBM polymeric films were derived for selected excitation energies corresponding to the main transitions in the sulphur 1s NEXAFS spectra. The mixture of PSiF-DBT with PCBM improves the charge transfer process involving the π* molecular orbital of the thiophene units

  14. Adverse effects of fullerenes (nC{sub 60}) spiked to sediments on Lumbriculus variegatus (Oligochaeta)

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, K., E-mail: kukka.tervonen@uef.fi [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Leppaenen, M.T.; Akkanen, J.; Kukkonen, J.V.K. [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland)

    2011-12-15

    Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes' disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants. - Highlights: > Effects of fullerene-spiked sediment on black worms were investigated. > Survival, growth, reproduction, and feeding rates were measured. > Exposure did not impact worm survival or reproduction. > Feeding rates and depuration efficiency were decreased. > Worms transferred fullerenes from the sediment to the sediment surface. - Exposure to fullerene-spiked sediment decreased black worms' feeding and depuration efficiency, but fullerenes did not appear to be absorbed into the microvilli.

  15. Spectroscopic investigation of new fullerene based acceptors for organic solar cells; Spektroskopische Untersuchung neuartiger Fullerenakzeptoren fuer organische Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Liedte, Moritz Nils

    2012-04-27

    high open circuit voltage of 835 mV in the devices produced, but also a rather low current density. I tried to understand the processes in the charge carrier generation and extraction process causing this. Using several measurement techniques, combined with general knowledge about comparable endohedral fullerenes from the literature, I was able to identify an internal charge transfer of electrons from the lutetium atoms encaged in the C{sub 80} to the fullerene bulk as origin The results presented in this work give further indications for the advantages of using C{sub 70} based fullerene acceptors in organic solar cells to raise the total power conversion efficiencies of these devices, despite the higher production costs. The identification of anion signatures of different fullerenes show an additional method to monitor the excitation processes by optical spectroscopy in bulk-heterojunction devices. My research regarding the Lu{sub 3}N rate at C{sub 80} molecule showed a general effect regarding this class of molecules, that will be important for any further synthesizes or application of such molecules in organic photovoltaics. While the projects regarding the dimer acceptors and the Lu{sub 3}N rate at C{sub 80} molecule were completed in this work, the analysis of spectroscopic anion signatures left some open questions, especially for large fullerenes. Further investigations using spin sensitive or time resolved techniques, as available in our research group, could be useful to gather more detailed information on this topic. Also trying to get some PC{sub 81}BM for photoinduced absorption measurements, alone and in blend with several polymers, might be another way to energetically pinpoint the anion signature on C{sub 80}.

  16. Dust charge measurement in a strongly coupled dusty plasma produced by an rf discharge

    International Nuclear Information System (INIS)

    The electric charge on silica microparticles (5 µm in diameter) levitating in the sheath of an rf discharge plasma is determined in a newly installed device for dusty plasma experiments at the IASST. The sheath potential profile is measured using an emissive probe and the electric field is obtained in order to determine the dust charge. The measured dust charge in the pressure range 0.50–5.0 Pa using the electric field value at the levitation height is found to be of the order of 104 elementary charges. Dust charge is also examined using the vertical resonance method which gives a similar order of charges. The experimentally measured charge is compared with the estimated values based on the orbital motion limited charging model. The coupling strength between the particles forming a 2D plasma crystal lattice is estimated using the measured dust charge. (paper)

  17. Chemical bonding and electronic structure of fullerene-based compounds

    International Nuclear Information System (INIS)

    This talk will focus on the nature of bonding of fullerenes with other materials as demonstrated by synchrotron radiation and x-ray photoemission. Adsorption of C60 on metallic and semiconducting substrates occurs via charge transfer from the substrate to a LUMO-derived resonance, resulting in Fermi level alignment and dipole formation. Bonding of metal atoms to C60 depends on the metal work function and bulk cohesive energy. Evaporation of high cohesive energy materials onto a fullerene substrate results in metal cluster nucleation and limited C60 disruption for transition metals. Low cohesive energy metals form compounds with a degree of ionic character related to the metal work function. Photoemission results show the formation of ionic K-fulleride compounds while greater hybridization is observed for Ca-rich fullerides. Finally the electronic structure of fluorinated and hydrogenated fullerenes demonstrate changes in states derived from C60 π bonds due to reaction of dangling bonds

  18. Nonlinear photonics of fullerene solutions

    OpenAIRE

    Sheka, E. F.; RAZBIRIN B.S.; STARUKHIN A.N.; NELSON D.K.; Degunov, M. Yu.; Lyubovskaya, R.N.; Troshin, P. A.; Kamanina, N. V.

    2009-01-01

    Newly observed enhanced linear optical features of fullerene solutions (Raman scattering and one-photon luminescence) are due to clusterization of fullerene molecules themselves as well as their composites with solvent molecules. A direct connection between the enhanced linear effects and nonlinear behavior of the solutions is discussed and empirical and computational tests of the solutions nonlinear optics efficacy are suggested.

  19. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins. PMID:19904915

  20. Similarity and a Duality for Fullerenes

    OpenAIRE

    Jennifer J. Edmond; Graver, Jack E.

    2015-01-01

    Fullerenes are molecules of carbon that are modeled by trivalent plane graphs with only pentagonal and hexagonal faces. Scaling up a fullerene gives a notion of similarity, and fullerenes are partitioned into similarity classes. In this expository article, we illustrate how the values of two important fullerene parameters can be deduced for all fullerenes in a similarity class by computing the values of these parameters for just the three smallest representatives of that class. In addition, i...

  1. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  2. Se-atom incorporation in fullerene and the MD simulation

    International Nuclear Information System (INIS)

    The formation of Se atom-incorporated fullerenes has been investigated by using radionuclides produced by nuclear reactions. From the trace of radioactivities of 75Se after High Performance Liquid Chromatography (HPLC), it was found that the formation of endohedral fullerenes or hetrofullerenes is possible by a recoil process following the nuclear reaction. To confirm the produced materials, ab initio molecular-dynamics simulations based on an all-electron mixed-basis approach were carried out. We found that the insertion of Se atom into C60 cage is much easier than that of As and Ge atoms. (author)

  3. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P.; Brown, G. V.; Clementson, J. [Physics Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Kilbourne, C. A.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Schweikhard, L. [Institute of Physics, Ernst-Moritz-Arndt University, D-17487 Greifswald (Germany)

    2013-04-19

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  4. Unresolved puzzles in the x-ray emission produced by charge exchange measured on electron beam ion traps

    International Nuclear Information System (INIS)

    Charge exchange recombination, the transfer of one or more electrons from an atomic or molecular system to a positive ion, is a common phenomenon affecting laboratory and astrophysical plasmas. Controlled studies of this process in electron beam ion traps during the past one and a half decades have produced multiple observations that are difficult to explain with available spectral models. Some of the most recent observations are so puzzling that they bring in doubt the existence of a coherent predictive capability for line formation by charge exchange, making investigations of charge exchange a fertile ground for continued measurements and theoretical development.

  5. Charge distribution on plutonium-containing aerosols produced in mixed-oxide reactor fuel fabrication and the laboratory

    International Nuclear Information System (INIS)

    The inhalation toxicity of potentially toxic aerosols may be affected by the electrostatic charge on the particles. Charge may influence the deposition site during inhalation and therefore its subsequent clearance and dose patterns. The electrostatic charge distributions on plutonium-containing aerosols were measured with a miniature, parallel plate, aerosol electrical mobility spectrometer. Two aerosols were studied: a laboratory-produced 238PuO2 aerosol (15.8 Ci/g) and a plutonium mixed-oxide aerosol (PU-MOX, natural UO2 plus PuO2, 0.02 Ci/g) formed during industrial centerless grinding of mixed-oxide reactor fuel pellets. Plutonium-238 dioxide particles produced in the laboratory exhibited a small net positive charge within a few minutes after passing through a 85Kr discharger due to alpha particle emission removal of valence electrons. PU-MOX aerosols produced during centerless grinding showed a charge distribution essentially in Boltzmann equilibrium. The gross alpha aerosol concentrations (960-1200 nCi/l) within the glove box were sufficient to provide high ion concentrations capable of discharging the charge induced by mechanical and/or nuclear decay processes

  6. Doped golden fullerene cages

    OpenAIRE

    Baletto, Francesca; Ferrando, Riccardo

    2015-01-01

    A first-principles investigation of the effect of the doping of golden cages of 32 atoms is proposed. It is shown that Ag and Cu doping affects the geometrical stability of the icosahedral fullerene Au-32 cage, where Ag-doping leads to a new, low symmetric, and prolate motif while Cu-doping leads to a lump, incomplete decahedral shape. Most significantly, the HOMO-LUMO gap depends strongly on the cluster geometry while its dependence on the cluster chemical composition seems to be weaker.

  7. Modifications of poly (vinilydene fluoride) under electronic excitations produced by charged particles (heavy ions and electrons)

    International Nuclear Information System (INIS)

    Some of the physico-chemical properties of organic solids like conductivity or permeation can be improved by irradiation. The aim of this work is to characterize modifications induced in poly (vinylidene fluoride) films (PVDF) by charged particles (ions and electrons), with electronic stopping power, for doses ranging from zero to twenty G-Grays. Influence of dose, density of electronic excitations, and flux (in particles per square centimeter), and the nature of defects induced by the beam, were studied with two methods: X-ray Photoelectron Spectroscopy (or XPS) for surface analysis, and electron Spin Resonance (or ESR) to probe the bulk of the film. Three ranges of doses are revealed in view of experimental results. At lower doses, PVDF undergoes deshydrofluorination induced by desorption; it is a low modifications regime. For intermediate range doses, conjugated carbon backbones of polyene compounds are produced. At higher doses, intermolecular interactions between the resulting fragments give a crosslinked network. For the upper limit of doses used, bond breaking results in a non reversible degradation of PVDF. In this last situation, direct atomic displacement of target atoms, is not negligible

  8. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  9. Fullerenes: from carbon to nanomedicine.

    Science.gov (United States)

    Chawla, Pooja; Chawla, Viney; Maheshwari, Radhika; Saraf, Shubhini A; Saraf, Shailendra K

    2010-07-01

    Fullerenes, the third carbon allotrope, have emerged as agents which could revolutionize the treatment of many diseases. Fullerenes possess different biological applications like neuroprotective agents, antioxidants, anti-HIV activity, enzyme inhibition, antiapoptotic activity and the list is ever increasing. Moreover, they are being utilized as drug carrier systems and also for many non-biological applications like superconductors, catalysis and so on. Their size has made them promising agents for nanotechnology. This article aims at outlining the chemistry, properties and non-biological applications of fullerenes and their evolution to biological applications, thereby traversing their evolution from simple carbon allotropes to present day nano-medicinal agents. PMID:20236059

  10. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  11. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    Science.gov (United States)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  12. Hollow Gold Cages and Their Topological Relationship to Dual Fullerenes.

    Science.gov (United States)

    Trombach, Lukas; Rampino, Sergio; Wang, Lai-Sheng; Schwerdtfeger, Peter

    2016-06-20

    Golden fullerenes have recently been identified by photoelectron spectra by Bulusu et al. [S. Bulusu, X. Li, L.-S. Wang, X. C. Zeng, PNAS 2006, 103, 8326-8330]. These unique triangulations of a sphere are related to fullerene duals having exactly 12 vertices of degree five, and the icosahedral hollow gold cages previously postulated are related to the Goldberg-Coxeter transforms of C20 starting from a triangulated surface (hexagonal lattice, dual of a graphene sheet). This also relates topologically the (chiral) gold nanowires observed to the (chiral) carbon nanotubes. In fact, the Mackay icosahedra well known in gold cluster chemistry are related topologically to the dual halma transforms of the smallest possible fullerene C20 . The basic building block here is the (111) fcc sheet of bulk gold which is dual to graphene. Because of this interesting one-to-one relationship through Euler's polyhedral formula, there are as many golden fullerene isomers as there are fullerene isomers, with the number of isomers Niso increasing polynomially as O(Niso9 ). For the recently observed Au16- , Au17- , and Au18- we present simulated photoelectron spectra including all isomers. We also predict the photoelectron spectrum of Au32- . The stability of the golden fullerenes is discussed in relation with the more compact structures for the neutral and negatively charged Au12 to Au20 and Au32 clusters. As for the compact gold clusters we observe a clear trend in stability of the hollow gold cages towards the (111) fcc sheet. The high stability of the (111) fcc sheet of gold compared to the bulk 3D structure explains the unusual stability of these hollow gold cages. PMID:27244703

  13. 30 years of cosmic fullerenes

    CERN Document Server

    Berne, O; Mulas, G; Joblin, C

    2015-01-01

    In 1985, "During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells", Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C$_{60}$ "buckminsterfullerene"), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offers the opportunity to study the ...

  14. Experimental determination of rate coefficients of charge exchange from x-dips in laser-produced plasmas

    Czech Academy of Sciences Publication Activity Database

    Dalimier, E.; Oks, E.; Renner, Oldřich; Schott, R.

    2007-01-01

    Roč. 40, - (2007), s. 909-919. ISSN 0953-4075 R&D Projects: GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * x-ray emission * high-resolution spectroscopy * charge exchange phenomena Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.012, year: 2007

  15. Functionalization of pentagon-pentagon edges of fullerenes by cyclic polysulfides: A DFT study

    Science.gov (United States)

    Anafcheh, Maryam; Khodadadi, Zahra; Ektefa, Fatemeh; Ghafouri, Reza

    2016-05-01

    We have performed a computational study to investigate the cyclosulfurization of the pentagon-pentagon (p-p) junctions in the non-IPR fullerenes C60(D3) and C70(C2v), and also Stone-Wales defective C60 fullerene. Our results indicate the exothermic character of cyclosulfurization processes which can be related to the increase of pyramidalization angle (spherical excesses) and p characters of natural hybrid orbitals of C atoms at the p-p junctions. In fact these lead to the structural strain relief and stability of the cyclosulfurization derivatives of the non-IPR fullerenes. Moreover, the cyclosulfurization reaction of p-p bonds on the C70(C2v) is more energetically favorable than that of C60(D3), due to the higher curvature of carbon sites and the larger values of the p characters of natural hybrid orbitals in the C70(C2v). On the other hand, localization of the excess electrons on the C atoms at the p-p junctions leads to the low tendency of the charged non-IPR fullerenes to cyclosulfurization process. The desulfurization pathway of the exohedral derivatives of C70(C2v) indicates that it is energetically unfavorable for the functionalized fullerenes to break into individual fullerene and sulfur molecules. HOMO-LUMO gaps almost are independent of the number of pentathiepin rings while sensitive to the type of parent fullerene.

  16. A bench arc-furnace facility for fullerene and single-wall nanotubes synthesis

    Directory of Open Access Journals (Sweden)

    Huber John G

    2001-01-01

    Full Text Available A metallic-sample arc-furnace was modified to synthesize fullerenes and nanotubes. The (reversible changes and the process for producing single-wall nanotubes (SWNTs are described.

  17. Scintillation light produced by low-energy beams of highly-charged ions

    OpenAIRE

    M. Vogel; Winters, D.F.A.; Ernst, H.; H. Zimmermann; Kester, O.

    2007-01-01

    Measurements have been performed of scintillation light intensities emitted from various inorganic scintillators irradiated with low-energy beams of highly-charged ions from an electron beam ion source (EBIS) and an electron cyclotron resonance ion source (ECRIS). Beams of xenon ions Xe$^{q+}$ with various charge states between $q$=2 and $q$=18 have been used at energies between 5 keV and 17.5 keV per charge generated by the ECRIS. The intensity of the beam was typically varied between 1 and ...

  18. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-01

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory. PMID:12791989

  19. Metal-organic charge transfer can produce biradical states and is mediated by conical intersections

    OpenAIRE

    Tishchenko, Oksana; Li, Ruifang; Truhlar, Donald G.

    2010-01-01

    The present paper illustrates key features of charge transfer between calcium atoms and prototype conjugated hydrocarbons (ethylene, benzene, and coronene) as elucidated by electronic structure calculations. One- and two-electron charge transfer is controlled by two sequential conical intersections. The two lowest electronic states that undergo a conical intersection have closed-shell and open-shell dominant configurations correlating with the 4s2 and 4s13d1 states of Ca, respectively. Unlike...

  20. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  1. Method of producing weakly acidic cation exchange resin particles charged with uranyl ions

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmonem, N.; Ringel, H.; Zimmer, E.

    1981-07-21

    Weakly acidic cationic ion exchange resin particles are charged with uranyl ions by contacting the particles step wise with aqueous uranyl nitrate solution at higher uranium concentrations from stage to stage. An alkaline medium is added to the uranyl nitrate solution in each stage to increase the successive pH values of the uranyl nitrate solution contacting the particles in dependence upon the uranium concentration effective for maximum charging of the particles with uranyl ions.

  2. Similarity and a Duality for Fullerenes

    Directory of Open Access Journals (Sweden)

    Jennifer J. Edmond

    2015-11-01

    Full Text Available Fullerenes are molecules of carbon that are modeled by trivalent plane graphs with only pentagonal and hexagonal faces. Scaling up a fullerene gives a notion of similarity, and fullerenes are partitioned into similarity classes. In this expository article, we illustrate how the values of two important fullerene parameters can be deduced for all fullerenes in a similarity class by computing the values of these parameters for just the three smallest representatives of that class. In addition, it turns out that there is a natural duality theory for similarity classes of fullerenes based on one of the most important fullerene construction techniques: leapfrog construction. The literature on fullerenes is very extensive, and since this is a general interest journal, we will summarize and illustrate the fundamental results that we will need to develop similarity and this duality.

  3. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    Science.gov (United States)

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  4. Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions*

    OpenAIRE

    Trimpin, Sarah; Inutan, Ellen D.; Herath, Thushani N.; McEwen, Charles N.

    2009-01-01

    The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols...

  5. Modeling bilayer polymer/fullerene photovoltaic devices

    Science.gov (United States)

    Koehler, M.; Roman, L. S.; Inganäs, O.; da Luz, M. G. E.

    2004-07-01

    We investigate the transport properties of organic photovoltaic devices formed by a heterojunction of a semiconducting polymer poly {3-[4'-(1″,4″,7″-trioxaoctyl) phenyl] thiophene} and the fullerene (C60). Under monochromatic light of different wavelengths we measure the current-voltage (I-V) characteristic of diodes with variable thickness of the C60 layer. We propose an analytical model assuming that; (i) holes are created in the polymer by charge carrier generation at the heterojunction; and (ii) the C60 layer behaves like a photoconductor under illumination. By using the electrical conductivity of the C60 layer as fitting parameter we reproduce quite well the experimental data, including the I-V curves and the changes of the open-circuit voltage with the variation of the C60 layer thickness. We show that the values of the conductivity are closely related to the fullerene optical absorption coefficient, implying a large contribution of the C60 film to the diode photocurrent.

  6. Charge-changing reactions of secondary fragments produced in high-energy heavy ion collisions

    International Nuclear Information System (INIS)

    The authors have begun a program to measure charge changing cross sections of projectile fragments using a quite different technique that is capable of much higher data acquisition rates. The primary beam impinges on a stack of 50 Lucite strips having an average thickness of 3.17 mm, emitting Cerenkov light as its passes through them. Since at a given velocity the intensity of light is proportional to Z2, where Z is the charge of the particle, a fragmentation reaction in a particular strip will be registered as a drop in the light output from that and subsequent strips. The authors use total internal reflection to transport the light to photomultiplier tubes so that there is no wrapping between the strips. Since the energy threshold of the device is approx.1.1 GeV/nucleon, low energy target fragments will not contribute to the signal, a distinct advantage over similar schemes using energy loss to measure the fragment charge. The resolution of the individual strips is typically 0.58 charge units, full width at half maximum, allowing reactions to be well localized even for single unit charge changes. In addition to the C detectors, scintillators and Si(Li) detectors were used to measure precisely the position and charge of the incoming beam particle. The authors have taken data using two beams, 56Fe and 40Ar, at 1.88 and 1.82 GeV/nucleon respectively, and two trigger modes, a free trigger to measure the reaction rate of the incoming beam and an inelastic trigger in which a reaction was required to occur in one of the first 14 C detectors. A total of 909,000 56Fe interactions and 460,000 40Ar interactions have been analyzed so far

  7. Applications of Functionalized Fullerenes in Tumor Theranostics

    OpenAIRE

    Chen, Zhiyun; Ma, Lijing; Liu, Ying; Chen, Chunying

    2012-01-01

    Functionalized fullerenes with specific physicochemical properties have been developed for cancer diagnosis and therapy. Notably, metallofullerene is a new class of magnetic resonance imaging (MRI) contrast-enhancing agent, and may have promising applications for clinical diagnosis. Polyhydroxylated and carboxyl fullerenes have been applied to photoacoustic imaging. Moreover, in recent years, functionalized fullerenes have shown potential in tumor therapies, such as photodynamic therapy, phot...

  8. 30 years of cosmic fullerenes

    Science.gov (United States)

    Berné, O.; Montillaud, J.; Mulas, G.; Joblin, C.

    2015-12-01

    In 1985, ``During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells'', Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C_{60} ``buckminsterfullerene''), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offered the opportunity to study the molecular physics of fullerenes in the unique physical conditions provided by space, and to make the link with other large carbonaceous molecules thought to be present in space : polycyclic aromatic hydrocarbons.

  9. Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self-Assembly

    Science.gov (United States)

    Aguirre, Jordan Christopher

    Organic photovoltaics are a potential source for cheap renewable energy. However one of the main limitations to the field thus far has been scalability. Power conversion efficiencies of photovoltaic films made on the laboratory scale of a couple of mm2 can be as high as 10%. However when the device area is increased to even tens of mm2 power conversion efficiency plummets. This work presented in this dissertation focuses on understanding and circumventing the issues limiting the expansion of photovoltaic processing to larger device areas. One method of maintaining photovoltaic efficiency over a large range of device areas is to use self-assembling materials to control the active layer morphology. These materials should give the preferred morphology regardless of substrate size. I first study photovoltaic devices utilizing self-assembling fullerenes designed to form nanometer-scale wires within the film active layer. I show that fullerene that are able to form these nano-wires give a higher device range electron mobility through measuring the space charge limited current through a photovoltaic device. However the photovoltaic efficiencies of devices using these fullerenes remains low. I use time resolved microwave conductivity to measure the local nm-scale mobility of these fullerenes to show that there exists two ranges of mobilities in organic photovoltaic films. The nm-scale mobility, governed by electronic overlap of neighboring molecules, and the device range mobility, governed by film morphology. I show that device performance is maximized when both mobility scales are taken into account. Self-assembly is not the only method to achieve scalable organic photovoltaic devices. Next, I show that the fabrication method of sequential processing can give identical device performance between films fabricated on 7.2 mm 2 and 34 mm2 substrates. This is because films produced by sequential processing allows the polymer layer to form prior to fullerene deposition, giving

  10. Gamma Cherenkov-transition radiation produced by charged particles at an interface and in a stack of plates

    International Nuclear Information System (INIS)

    The spectral and angular distributions as well as the total number of photons of gamma-ray Cherenkov-transition radiation (GCTR) in the photon energy region (1÷10) MeV produced by charged particles passing through an interface between two media and a stack of plates are calculated using the formulae of X-ray transition radiation. The concept of formation length for GCTR is discussed.

  11. A partial wave analysis of the $\\pi ^0\\pi ^0$ system produced in $\\pi ^-p$ charge exchange collisions

    OpenAIRE

    E791 Collaboration; Gunter, J.; Dzierba, A.

    2000-01-01

    A partial wave analysis of the of the $\\pi ^0\\pi ^0$ system produced in the charge exchange reaction: $\\pi ^-p\\to \\pi ^0\\pi ^0n$ at an incident momentum of $18.3 GeV/c$ is presented as a function of ${\\pi ^0\\pi ^0}$ invariant mass, $m_{\\pi^0\\pi^0}$, and momentum transfer squared, $| {t} |$, from the incident $\\pi^-$ to the outgoing ${\\pi ^0\\pi ^0}$ system.

  12. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    OpenAIRE

    Minh Y Nguyen; Dinh Hung Nguyen; Yong Tae Yoon

    2012-01-01

    Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging) problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind pow...

  13. Fullerenes, PAH, Carbon Nanostructures, and Soot in Low Pressure Diffusion Flames

    Science.gov (United States)

    Grieco, William J.; Lafleur, Arthur L.; Rainey, Lenore C.; Taghizadeh, Koli; VanderSande, John B.; Howard, Jack B.

    1997-01-01

    The formation of fullerenes C60 and C7O is known to occur in premixed laminar benzene/oxygen/argon flames operated at reduced pressures. High resolution transmission electron microscopy (HRTEM) images of material collected from these flames has identified a variety of multishelled nanotubes and fullerene 'onions' as well as some trigonous structures. These fullerenes and nanostructures resemble the material that results from commercial fullerene production systems using graphite vaporization. As a result, combustion is an interesting method for fullerenes synthesis. If commercial scale operation is to be considered, the use of diffusion flames might be safer and less cumbersome than premixed flames. However, it is not known whether diffusion flames produce the types and yields of fullerenes obtained from premixed benzene/oxygen flames. Therefore, the formation of fullerenes and carbon nanostructures, as well as polycyclic aromatic hydrocarbons (PAH) and soot, in acetylene and benzene diffusion flames is being studied using high performance liquid chromatography (HPLC) and high resolution transmission electron microscopy (HRTEM).

  14. Characteristics of transitory multi-charged molecular ions produced by an intense femtosecond laser impulse

    International Nuclear Information System (INIS)

    The study of the molecular multi-ionization is narrowly linked to the dynamics of excitation and fragmentation for which the experimental observables rest on the characteristics of the fragmentation products, these characteristics are: intern energy, kinetic energy and charge states. The first chapter sets the problem. The second chapter presents the experimental tools used and developed in this work, the technologies of the detection of ions or of fluorescence are also described. The chapter 3 gathers the theoretical aspects: quantum chemistry and CASSCF (complete active space self consistent field) methods have been used to compute the potential energy curves of multi-charged ions, the two-dimensional hydrodynamic model derived from the Thomas-Fermi model is introduced to tackle the molecular re-orientation. The chapter 4 presents the experimental study of highly excited states by using fluorescence detection methods. The chapter 5 is dedicated to the study of low excited states by measuring kinetic energy spectra and by comparison with potential energy curves of molecular multi-charged ions. The chapter 6 presents experiments with 2 impulses and the results given by the Thomas-Fermi model applied to the re-orientation of the N2O molecule. (A.C.)

  15. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  16. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  17. Fullerenes as unique nanopharmaceuticals for disease treatment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As unique nanoparticles,fullerenes have attracted much attention due to their unparalleled physical,chemical and biological properties.Various functionalized fullerenes with OH,NH2,COOH,and peptide modifications were developed.It summarized the biological activities of fullerenes derivatives in cancer therapy with high efficiency and low toxicity,as reactive oxygen species scavenger and lipid peroxidation inhibitor,to inhibit human immunodeficiency virus and to suppress bacteria and microbial at low concentration.In addition,the mechanism for fullerene to enter cells and biodistribution of fullerene in vivo was also discussed.This research focuses on the current understanding of fullerenes-based nanomaterials in the potential clinical application as well as biological mechanism of fullerenes and its derivatives in disease therapy.

  18. A simple theory of molecular organization in fullerene containing liquid crystals

    OpenAIRE

    Peroukidis, S. D.; Vanakaras, A. G.; Photinos, D.J.

    2005-01-01

    Systematic efforts to synthesise fullerene containing LCs have produced a variety of successful model compounds. We present a simple molecular theory relating the self-organisation observed in these systems to their molecular structure. The interactions are modelled by dividing each molecule into a number of sub-molecular blocks to which specific interactions are assigned. Three types of blocks are introduced, corresponding to fullerene units, mesogenic units, and non-mesogenic linkage units....

  19. Clar Structure and Fries Set of Fullerenes and (4,6)-Fullerenes on Surfaces

    OpenAIRE

    Yang Gao; Heping Zhang

    2014-01-01

    Fowler and Pisanski showed that the Fries number for a fullerene on surface Σ is bounded above by $|V|/3$ , and fullerenes which attain this bound are exactly the class of leapfrog fullerenes on surface Σ. We showed that the Clar number of a fullerene on surface Σ is bounded above by $(|V|/6)-\\chi (\\mathrm{\\Sigma })$ , where $\\chi (\\mathrm{\\Sigma })$ stands for the Euler characteristic of Σ. By establishing a relation between the extremal fullerenes and the extremal (4,6)-fullerenes on the sp...

  20. Measurement of the Lepton Charge Asymmetry in W -Boson Decays Produced in pp Collisions

    International Nuclear Information System (INIS)

    We describe a measurement of the charge asymmetry of leptons from W -boson decays in the rapidity range 0ln-tilde-1 of data collected by the CDF detector during 1992 endash 1995. The asymmetry data constrain the ratio of d and u quark momentum distributions in the proton over the x range of 0.006 to 0.34 at Q2∼M2W . The asymmetry predictions that use parton distribution functions obtained from previously published CDF data in the central rapidity region (0.0ln-tildeln-tilde>1.1 ). copyright 1998 The American Physical Society

  1. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Pang, L.S.K.; Wilson, M.A.; Quezada, R.A. [CSIRO Petroleum, North Ryde (Australia)] [and others

    1995-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  2. Interaction of Fullerenes and Fullerene-Metal Composites with Cells

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Kopová, Ivana; Vacík, Jiří; Lavrentiev, Vasyl

    New York : Nova Science Publishers, 2014 - (Ellis, S.), s. 1-33 ISBN 978-1-63321-386-9 R&D Projects: GA ČR(CZ) GAP107/11/1856; GA ČR(CZ) GAP108/12/1168 Institutional support: RVO:67985823 ; RVO:61389005 Keywords : fullerenes * biocompatibility * cytotoxicity Subject RIV: EI - Biotechnology ; Bionics

  3. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    Science.gov (United States)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  4. Interface engineering for efficient fullerene-free organic solar cells

    International Nuclear Information System (INIS)

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell

  5. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  6. Protein-directed self-assembly of a fullerene crystal

    Science.gov (United States)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; Degrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  7. Inorganic Fullerenes, Onions, and Tubes

    Science.gov (United States)

    York, Andrew P. E.

    2004-01-01

    Buckminsterfullerene, which is in the shape of a soccer-ball was first discovered in 1985, has many applications as a good lubricant, or as a new superconductor. The synthesis of these inorganic fullerenes involves a great deal of interdisciplinary research between physicists, material scientists, engineers and chemists from various fields.

  8. Investigation of temporal-resolved emission spectra of highly charged Al ions from laser-produced plasmas

    Science.gov (United States)

    Su, M. G.; Cao, S. Q.; Sun, D. X.; Min, Q.; Dong, C. Z.

    2016-03-01

    Temporal evolution of extreme ultraviolet emission from laser-produced aluminum (Al) plasma has been experimentally and theoretically investigated. Al plasmas have been measured by using the temporal-spatially resolved laser-produced plasma technique. The emission lines can be identified from 2p-3s, 3d, 4s, 4d, 5d transition lines from Al3+ to Al6+ ions. In order to quickly diagnose the plasma, the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model are used to estimate the values of electron temperature and electron density in plasma. We succeeded in reproducing the simulated spectra related to the different time delays, which are in good agreement with experiments. Temporal evolution behavior of highly charged Al ions in plasma has been analyzed, and the exponential decay about electron temperature and electron density has been obtained. The results indicate that the temporal-spatially resolved measurement is essential for accurate understanding of evolution behavior of highly charged ions in laser-produced plasmas.

  9. Development of Mass Spectrometric Ionization Methods for Fullerenes and Fullerene Derivatives

    Science.gov (United States)

    Currently investigations into the environmental behavior of fullerenes and fullerene derivatives is hampered by the lack of well characterized standards and by the lack of readily available quantitative analytical methods. Reported herein are investigations into the utility of ma...

  10. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    CERN Document Server

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Elbakian, G; Ellinghaus, F; Fantoni, A; Felawka, L; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Imazu, Y; Ivanilov, A; Jackson, H E; Jo, H S; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Manfré, L; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Murray, M; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T -A; Stancari, M; Statera, M; Steijger, J J M; Stewart, J; Stinzing, F; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2012-01-01

    The azimuthal cos{\\phi} and cos2{\\phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the HERMES experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  11. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2012-04-15

    The azimuthal cos {phi} and cos 2{phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the Hermes experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  12. Spectra of neutrons and fusion charged products produced in a dense laser plasma

    International Nuclear Information System (INIS)

    The possibility of laser-produced plasma diagnostics has been investigated by measuring spectra of neutrons and alpha particles produced in the T(d,n)4He reaction. Using the Monte Carlo method the spectra have been calculated for nine states of the deuterium-tritium plasma with the temperature of 1;5 and 10 keV and the density of 0.2; 1 and 10 g/cm3 respectively. The initial radius of the target was assumed to be 0.01 cm at the density of 0.2 g/cm3. It is shown that the neutron and alpha spectra can serve as plasma diagnostics parameters in laser fusion

  13. A study of temperature coefficients of reactivity for a Savannah River Site tritium-producing charge

    International Nuclear Information System (INIS)

    Temperature coefficients of reactivity have been calculated for the Mark 22 assembly in the K-14 charge at the Savannah River Site. Temperature coefficients are the most important reactivity feedback mechanism in SRS reactors; they are used in all safety analyses performed in support of the Safety Analysis Report, and in operations to predict reactivity changes with control rod moves. The effects of the radial location of the assembly in the reactor, isotope depletion, and thermal expansion of the metal components on the temperature coefficients have also been investigated. With the exception of the dead space coefficient, all of the regional temperature coefficients were found to be negative or zero. All of the temperature coefficients become more negative with isotopic depletion over the fuel cycle. Coefficients also become more negative with increasing radial distance of the assembly from the center of the core; this is proven from first principles and confirmed by calculations. It was found that axial and radial thermal expansion effects on the metal fuel and target tubes counteract one another, indicating these effects do not need to be considered in future temperature coefficient calculations for the Mark 22 assembly. The moderator coefficient was found to be nonlinear with temperature; thus, the values derived for accidents involving increases in moderator temperature are significantly different than those for decreases in moderator temperature, although the moderator coefficient is always negative

  14. Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO

    Science.gov (United States)

    Zakhidov, Erkin; Kokhkharov, Abdumutallib; Kuvondikov, Vakhobjon; Nematov, Sherzod; Nusretov, Rafael

    2015-10-01

    The efficiency of solar radiation conversion in a model system of artificial photosynthesis, the porphyrin-fullerene assembly, is analyzed. A study of the optical absorption spectra of the porphyrin and the fullerene molecules, as well as their assembly in organic solutions, made it possible to estimate the energy efficiency of the conversion. Numerical values of the energy efficiency, defined as the fraction of the light quantum energy converted to the chemical potential of separated charges, are calculated for low- and high-concentration solutions of such a supramolecular system. The possibility of the efficient utilization of long-wavelength solar radiation in the high-concentration porphyrin-fullerene assembly solution in toluene and benzene is shown. In the photovoltaic system consisting of such a supramolecular active element, a thin ZnO film with a nanostructured surface may be introduced as a secondary acceptor of electrons from fullerene molecules. An enhancement of the transformation of separated charges of the porphyrin-fullerene assembly into electrical current by means of the ZnO film deposited on the surface of the anode electrode in such a heterogenic photovoltaic unit is proposed.

  15. The climatology of lightning producing large impulse charge moment changes with an emphasis on mesoscale convective systems

    Science.gov (United States)

    Beavis, Nicholas

    The use of both total charge moment change (CMC) and impulse charge moment change (iCMC) magnitudes to assess the potential of a cloud-to-ground (CG) lightning stroke to induce a mesospheric sprite has been well described in literature. However, this work has primarily been carried out on a case study basis. To complement these previous case studies, climatologies of regional, seasonal, and diurnal observations of large-iCMC discharges are presented. In this study, large-iCMC discharges for thresholds > 100 and > 300 C km in both positive and negative polarities are analyzed on a seasonal basis using density maps of 2o by 2o resolution across the conterminous U.S. using data from the Charge Moment Change Network (CMCN). Also produced were local solar time diurnal distributions in eight different regions covering the lower 48 states as well as the Atlantic Ocean, including the Gulf Stream. In addition, National Lightning Detection Network (NLDN) cloud-to-ground (CG) flash diurnal distributions were included. The seasonal maps show the predisposition of large positive iCMCs to dominate across the Northern Great Plains, with large negative iCMCs favored in the Southeastern U.S. year-round. During summer, the highest frequency of large positive iCMCs across the Upper Midwest aligns closely with the preferred tracks of nocturnal mesoscale convective systems (MCSs). As iCMC values increase above 300 C km, the maximum shifts eastward of the 100 C km maximum in the Central Plains. The Southwestern U.S. also experiences significant numbers of large-iCMC discharges in summer, presumably due to convection associated with the North American Monsoon (NAM). The Gulf Stream is active year round, with a bias towards more large positive iCMCs in winter. Diurnal distributions in the eight regions support these conclusions, with a nocturnal peak in large-iCMC discharges in the Northern Great Plains and Great Lakes, an early- to mid-afternoon peak in the Intermountain West and the

  16. Molecular packing and electronic processes in amorphous-like polymer bulk heterojunction solar cells with fullerene intercalation.

    Science.gov (United States)

    Xiao, Ting; Xu, Haihua; Grancini, Giulia; Mai, Jiangquan; Petrozza, Annamaria; Jeng, U-Ser; Wang, Yan; Xin, Xin; Lu, Yong; Choon, Ng Siu; Xiao, Hu; Ong, Beng S; Lu, Xinhui; Zhao, Ni

    2014-01-01

    The interpenetrating morphology formed by the electron donor and acceptor materials is critical for the performance of polymer:fullerene bulk heterojunction (BHJ) photovoltaic (PV) cells. In this work we carried out a systematic investigation on a high PV efficiency (>6%) BHJ system consisting of a newly developed 5,6-difluorobenzo[c] thiadiazole-based copolymer, PFBT-T20TT, and a fullerene derivative. Grazing incidence X-ray scattering measurements reveal the lower-ordered nature of the BHJ system as well as an intermixing morphology with intercalation of fullerene molecules between the PFBT-T20TT lamella. Steady-state and transient photo-induced absorption spectroscopy reveal ultrafast charge transfer (CT) at the PFBT-T20TT/fullerene interface, indicating that the CT process is no longer limited by exciton diffusion. Furthermore, we extracted the hole mobility based on the space limited current (SCLC) model and found that more efficient hole transport is achieved in the PFBT-T20TT:fullerene BHJ as compared to pure PFBT-T20TT, showing a different trend as compared to the previously reported highly crystalline polymer:fullerene blend with a similar intercalation manner. Our study correlates the fullerene intercalated polymer lamella morphology with device performance and provides a coherent model to interpret the high photovoltaic performance of some of the recently developed weakly-ordered BHJ systems based on conjugated polymers with branched side-chain. PMID:24909640

  17. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  18. Nonlinear optical response in higher fullerenes

    OpenAIRE

    Harigaya, K.

    1997-01-01

    Nonlinear optical properties of extracted higher fullerenes - C70, C76, C78, and C84 - are theoretically investigated. Magnitudes of off-resonant third-harmonic-generation are calculated by the intermediate exciton theory. We find that optical nonlinearities of higher fullerenes are a few times larger than those of C60. The magnitudes of nonlinearity tend to increase as the optical gap decreases in higher fullerenes.

  19. Spheroidal geometry approach to fullerene molecules

    OpenAIRE

    Pincak, R.

    2007-01-01

    Graphite is an example of a layered material that can be bent to form fullerenes which promise important applications in electronic nanodevices. The spheroidal geometry of a slightly elliptically deformed sphere was used as a possible approach to fullerenes. We assumed that for a small deformation the eccentricity of the spheroid is smaller than one. We are interested here in the big elliptically deformed fullerenes.The low-lying electronic levels are described by the Dirac equation in (2+1) ...

  20. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  1. Momentum dependence of spin polarization for beta emitting nuclei produced through charge exchange reaction at intermediate energy

    Energy Technology Data Exchange (ETDEWEB)

    Momota, S., E-mail: momota.sadao@kochi-tech.ac.jp [Kochi University of Tech. (Japan); Mihara, M. [Osaka University (Japan); Nishimura, D. [RIKEN (Japan); Fukuda, M.; Kamisho, Y.; Wakabayashi, M.; Matsuta, K. [Osaka University (Japan); Suzuki, S.; Nagashima, M. [Niigata University (Japan); Zhu, Shengyun; Yuan, Daqing; Zheng, Yongnan; Yi, Zuo; Fan, Ping [CIAE (China); Izumikawa, T. [Niigata University, RI Center (Japan); Kitagawa, A.; Sato, S.; Kanazawa, M.; Torikoshi, M. [NIRS (Japan); Minamisono, T. [Osaka University (Japan); and others

    2013-05-15

    In order to investigate the polarization process in charge exchange reactions, we observed the momentum and angular distribution as well as the nuclear polarization of a proton-rich beta-emitting nucleus, {sup 28}P (I{sup {pi}} = 3{sup +}, T{sub 1/2} = 270 msec), produced through the reaction {sup 28}Si+ {sup 9}Be at E = 100 MeV/u, by selecting the momentum and the ejection angle. An analysis by using double Gaussian functions resolved the observed momentum distribution into two reaction components, nucleon knockout and pick-up abrasion reactions, as suggested in a previous study. The behavior of the observed angular distribution and nuclear polarization implies the influence of those two components. The momentum dependence of the observed nuclear polarization of {sup 28}P could be consistently reproduced by a simple model, in which two reaction components are considered. The present study also shows that the charge exchange reaction at intermediate energy is a useful method to produce polarized beta-emitting nuclei, especially for proton-rich nuclei.

  2. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    International Nuclear Information System (INIS)

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O4+, O2-, and O4- and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions

  3. Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites

    NARCIS (Netherlands)

    Chirvase, D.; Parisi, J.; Hummelen, J.C.; Dyakonov, V.

    2004-01-01

    Composites of conjugated poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) demonstrate an efficient photogeneration of mobile charge carriers. Thermal annealing of P3HT:PCBM based devices gives rise to a significant increase of the photovolt

  4. Photocurrent increase by doping a liquid crystal host with a functionalized fullerene

    Czech Academy of Sciences Publication Activity Database

    Szydlowska, J.; Trzcinska, K.; Bílková, Petra; Mieczkowski, J.; Pociecha, D.; Gorecka, E.

    2006-01-01

    Roč. 33, č. 3 (2006), s. 335-339. ISSN 0267-8292 Grant ostatní: Research Training Network (XE) HPRN-CT-2002- 00171 Institutional research plan: CEZ:AV0Z10100520 Keywords : photocurrent * LESR * charge-separated state * fullerene * liquid crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.417, year: 2006

  5. Fullerene-Related Nanocarbons and Their Applications

    DEFF Research Database (Denmark)

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng;

    2012-01-01

    The discovery of fullerene (C60) in 1985 spurred on the subsequent discoveries of a number of fullerene-related novel carbons at the nanometre scale. These nanocarbons are related to one another in structure, providing an interesting spectrum of variants which display an array of unique properties....... From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries...

  6. Three, four and five-dimensional fullerenes

    OpenAIRE

    Deza, M.; Shtogrin, M. I.

    1999-01-01

    We explore some generalizations of fullerenes F_v (simple polyhedra with v vertices and only 5- and 6-gonal faces) seen as (d-1)-dimensional simple manifolds (preferably, spherical or polytopal) with only 5- and 6-gonal 2-faces. First, finite and planar (infinite) 3-fullerenes are described. Three infinite families of spherical 4-fullerenes are presented in Constructions A,B,C. The Construction A gives 4-polytopes by suitable insertion of fullerenes F_{30}(D_{5h}) into glued 120-cells. The Co...

  7. Supramolecular porphyrin-fullerene via 'two-point' binding strategy: axial-coordination and cation-crown ether complexation.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; Zandler, Melvin E; Sandanayaka, Atula S D; Araki, Yasuyuki; Ito, Osamu

    2005-03-14

    A highly stable porphyrin-fullerene conjugate with defined distance and orientation, was formed using a newly developed 'two-point' binding strategy involving axial-coordination and cation-crown ether complexation; photochemical studies performed in benzonitrile revealed efficient charge separation and slow charge-recombination in the supramolecular complex. PMID:15742051

  8. The interaction of He{sup −} with fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Mauracher, Andreas; Daxner, Matthias; Huber, Stefan E.; Postler, Johannes; Renzler, Michael; Denifl, Stephan; Scheier, Paul, E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Ellis, Andrew M., E-mail: Paul.Scheier@uibk.ac.at, E-mail: andrew.ellis@le.ac.uk [Department of Chemistry, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2015-03-14

    The effects of interactions between He{sup −} and clusters of fullerenes in helium nanodroplets are described. Electron transfer from He{sup −} to (C{sub 60}){sub n} and (C{sub 70}){sub n} clusters results in the formation of the corresponding fullerene cluster dianions. This unusual double electron transfer appears to be concerted and is most likely guided by electron correlation between the two very weakly bound outer electrons in He{sup −}. We suggest a mechanism which involves long range electron transfer followed by the conversion of He{sup +}into He{sub 2}{sup +}, where formation of the He–He bond in He{sub 2}{sup +} releases sufficient kinetic energy for the cation and the dianion to escape their Coulombic attraction. By analogy with the corresponding dications, the observation of a threshold size of n ≥ 5 for formation of both (C{sub 60}){sub n}{sup 2−} and (C{sub 70}){sub n}{sup 2−} is attributed to Coulomb explosion rather than an energetic constraint. We also find that smaller dianions can be observed if water is added as a co-dopant. Other aspects of He{sup −} chemistry that are explored include its role in the formation of multiply charged fullerene cluster cations and the sensitivity of cluster dianion formation on the incident electron energy.

  9. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size.

    Science.gov (United States)

    Roehling, John D; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J; Moulé, Adam J

    2016-01-01

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all. PMID:27498880

  10. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, I. N.; Filippov, A. V., E-mail: fav@triniti.ru [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  11. Production of a high energy beam of multiply charged Cn+60 ions

    International Nuclear Information System (INIS)

    For the first time fullerene ions have been accelerated to high energy (14-50 MeV). Negative ions of C-60 were produced in the ion source with a Cs gun and injected into the tandem accelerator. The change of charge from negative to positive was achieved in a N2 gas cell at the high voltage terminal before the second acceleration. To identify the accelerated molecular ions, the injected beam was pulsed, and time of flight measurements were performed. Unambiguous mass and charge assignments were obtained

  12. High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor.

    Science.gov (United States)

    Meng, Dong; Sun, Dan; Zhong, Chengmei; Liu, Tao; Fan, Bingbing; Huo, Lijun; Li, Yan; Jiang, Wei; Choi, Hyosung; Kim, Taehyo; Kim, Jin Young; Sun, Yanming; Wang, Zhaohui; Heeger, Alan J

    2016-01-13

    Non-fullerene acceptors have recently attracted tremendous interest because of their potential as alternatives to fullerene derivatives in bulk heterojunction organic solar cells. However, the power conversion efficiencies (PCEs) have lagged far behind those of the polymer/fullerene system, mainly because of the low fill factor (FF) and photocurrent. Here we report a novel perylene bisimide (PBI) acceptor, SdiPBI-Se, in which selenium atoms were introduced into the perylene core. With a well-established wide-band-gap polymer (PDBT-T1) as the donor, a high efficiency of 8.4% with an unprecedented high FF of 70.2% is achieved for solution-processed non-fullerene organic solar cells. Efficient photon absorption, high and balanced charge carrier mobility, and ultrafast charge generation processes in PDBT-T1:SdiPBI-Se films account for the high photovoltaic performance. Our results suggest that non-fullerene acceptors have enormous potential to rival or even surpass the performance of their fullerene counterparts. PMID:26652276

  13. A DNA-Fullerene Conjugate as a Template for Supramolecular Chromophore Assemblies: Towards DNA-Based Solar Cells.

    Science.gov (United States)

    Ensslen, Philipp; Gärtner, Stefan; Glaser, Konstantin; Colsmann, Alexander; Wagenknecht, Hans-Achim

    2016-01-01

    A fullerene was covalently attached to a (dA)20 template that serves as structural scaffold to self-assemble an ordered and mixed array of ethynyl-pyrene- and ethynyl-Nile-red-nucleoside conjugates. Fluorescence spectroscopy revealed evidence for energy transfer between the two different chromophores. Moreover, fluorescence quenching is significantly enhanced by the attached fullerene in mixed assemblies of different chromophore ratios. This indicates exciton dissociation by electron transfer from the photo-generated exciton on the chromophore stack to the fullerene. The fullerene-DNA-conjugate was integrated as a photo-active layer in solar cells that showed charge-carrier generation in the spectral regime of all three components of the conjugate. This work clearly demonstrates that DNA is suitable as structural element for chromophore assemblies in future organic optoelectronic devices, such as solar cells. PMID:26689149

  14. Modulation of the work function of fullerenes C60 and C70 by alkali-metal adsorption: A theoretical study

    International Nuclear Information System (INIS)

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C60 and C70 was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C60 and C70 decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C60 and C70. The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C60 and C70.

  15. Multiply charged ion beams from solid substances

    International Nuclear Information System (INIS)

    The mVINIS Ion Source has enabled us to obtain multiply charged ion beams from gases as well as from solid materials. The solid substance ion beams were produced by using two techniques: a) the evaporation of metals by using the inlet system based on mini-oven and b) the metal-ions-from volatile-compounds method (MIVOC) by using the modified gas inlet system. In the production of high current stable ion beams of solids with relatively high melting points (over 1000 deg) were made great efforts. The B3+ ion beam current of over 300 μA is one of the most intensive beams extracted until now. The obtained multiply charged ion beam spectra of solid substances (B, Fe and Zn) are presented as well as some of the corresponding experimental results achieved during the modification of polymers, carbon materials and fullerenes. (author)

  16. Electronic structure evolution in doping of fullerene (C60) by ultra-thin layer molybdenum trioxide

    International Nuclear Information System (INIS)

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C60 to MoOx and Mo6+ oxides is the basis as hole dopants

  17. Fluorous fullerenes and their properties

    Science.gov (United States)

    Yurchenko, Michael E.

    We report the first synthesis of a well-characterized "Teflon ponytail" fullerene adducts via the Hirsch-Bingel reaction with a malonate bearing two perfluorinated alkyl chains. Out of 3 different adducts synthesized, C3 tris-adduct shows excellent solubility in perfluorinated solvents, such as FC-72 and FC-75. It was found to be an efficient sensitizer for singlet oxygen formation in fluorous media, which has potential in biphasic systems and in photobiology. In attempts to develop Fluorous/Organic phase transport systems, several approaches were investigated. Reversible solubilization of Fullerene (C60) in fluorous media by Diels-Alder addition to perfluoroalkylated 1,3-cyclopentadiene was shown to be an unsuitable system, because the Diels-Alder addition of the fluorous diene was accompanied by extensive oxidation of the fullerene core, as revealed by MALDI-TOF data. Perfluoroalkyl substituted alpha and beta-cyclodextrins were synthesized and characterized. Host-guest properties of fluorous cyclodextrins synthesized were investigated in fluorous and mixed fluorous/organic media. The ability of fluorous cyclodextrins to complex small solvent molecules, perfluorocarbon chains and an azo-dye (4,4'-dihydroxyazobenzene) at homogeneous conditions was revealed. However, biphasic extraction of organic substrates by fluorous cyclodextrins from organic into fluorous phase has not been yet achieved.

  18. Design, syntheses, and studies of supramolecular porphyrin-fullerene conjugates, using bis-18-crown-6 appended porphyrins and pyridine or alkyl ammonium functionalized fullerenes.

    Science.gov (United States)

    D'Souza, Francis; Chitta, Raghu; Gadde, Suresh; McCarty, Amy L; Karr, Paul A; Zandler, Melvin E; Sandanayaka, Atula S D; Araki, Yasuyaki; Ito, Osamu

    2006-03-30

    Photoinduced electron-transfer processes in cis and trans functionalized bis-18-crown-6 porphyrin self-assembled with fullerene functionalized with pyridine or alkylammonium cation entities are reported. The structural integrity of the newly formed supramolecular conjugates was accomplished by optical absorption and emission, electron spray ionization mass, electrochemistry, and semiempirical PM3 calculations. A 1:2 stoichiometry of the supramolecular porphyrin:fullerene conjugates was deduced from these studies. The conjugates revealed stable "two-point"' binding involving metal-ligand coordination and alkylammonium cation-crown ether binding or only the latter type of binding depending upon the functionality of the fullerene and metal ion in the porphyrin cavity. The effect of the variation on free energy changes of charge separation and the charge recombination was achieved by varying the metal ion in the porphyrin cavity. The charge-separation rates (k(CS)) determined from the picosecond time-resolved emission studies were generally higher for the cis bis-crown functionalized porphyrins than those of the corresponding trans ones. A comparison of the k(CS) values reported earlier for 1:1 porphyrin-fullerene conjugates with a similar self-assembly mechanism suggested that employing a higher number of acceptor entities improves the electron-transfer rates. The calculated charge-recombination rates (k(CR)) were 2-3 orders of magnitude smaller than the k(CS) values, suggesting the occurrence of the charge recombination process in the Marcus inverted region. The lifetimes of the radical ion pair (tau(RIP)) ranged between 46 and 233 ns indicating charge stabilization in the studied conjugates. PMID:16553397

  19. Effects of non-Maxwellian electron distributions on charge-state populations in laser-produced plasmas

    International Nuclear Information System (INIS)

    The effects of a non-Maxwellian electron distribution on the charge-state populations in a plasma with the distribution characterized by the function f(v)=Fm exp[-(v/vm)m] with 2≤m≤5 are investigated. In the underdense region of a laser produced plasma, the parameter m would depend on the electron temperature, electron density, and the average ionization state of the plasma in addition to the optical laser intensity and wavelength. The ion populations are obtained by solving the rate equations in which the coefficients are evaluated by integrating the cross sections over the non-Maxwellian electron distributions. The scaling of m with column density and optical laser intensity in laser exploding foils is obtained. The effects of a non-Maxwellian electron distribution on the charge-state populations in both selenium and molybdenum foils, similar to those used to model recent x-ray laser experiments, are calculated. The effects on the dominant populations are found to be small, less than a dozen of percents

  20. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 4He and 12C ion beams in a PMMA target at large angle

    CERN Document Server

    Rucinski, A; Battistoni, G; Collamati, F; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Marafini, M; Mattei, I; Muraro, S; Paramatti, R; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Sciubba, A; Camillocci, E Solfaroli; Toppi, M; Traini, G; Voena, C; Patera, V

    2016-01-01

    Measurements performed with the purpose of characterizing the charged secondary radiation for dose release monitoring in particle therapy are reported. Charged secondary yields, energy spectra and emission profiles produced in poly-methyl methacrylate (PMMA) target by 4He and 12C beams of different therapeutic energies were measured at 60 and 90 degree with respect to the primary beam direction. The secondary yields of protons produced along the primary beam path in PMMA target were obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The measured charged secondary yields and emission profiles are in agreement with the results reported in literature and confirm the feasibility of ion beam therapy range monitoring using 12C ion beam. The feasibility of range monitoring using charged secondary particles is also suggested for 4He ion beam.

  1. OSCAR, a code for the calculation of the yield of radioisotopes produced by charged-particle induced nuclear reactions

    International Nuclear Information System (INIS)

    A computer code OSCAR, operated on a main frame computer was developed for the calculation of the yield of radioisotopes produced by charged-particle induced nuclear reactions. The excitation functions required for calculating the yield were evaluated by means of an empirical rule which we developed on the basis of a systematics derived from a number of experimental data reported in the literature. The rule is valid for light ion (Z ≤ 2)-induced reactions followed by neutron emission processes. Other excitation functions are also obtainable from the data file in OSCAR. In addition, the code possesses functions useful for the calculation of the stopping power and range. The energy loss and the distribution of recoil products in stacked targets are also provided as options. The formalism, structure, and direction for the usage of the code are described together with the explanation of the functions of some routines. (author)

  2. Hydrodynamic description for the pseudorapidity distributions of the charged particles produced in nucleus + nucleus collisions at high energy

    International Nuclear Information System (INIS)

    By using the revised Landau hydrodynamic model and taking into account the effect of leading particles, we discuss the pseudorapidity distributions of the charged particles produced in high energy heavy-ion collisions. The leading particles are assumed to have the rapidity distributions with Gaussian forms with the normalization constant being equal to the number of participants, which can be figured out in theory. The results from the revised Landau hydrodynamic model, together with the contributions from leading particles, were found to be consistent with the experimental data obtained by the PHOBOS Collaboration on RHIC (Relativistic Heavy Ion Collider) at BNL (Brookhaven National Laboratory) in different centrality Cu + Cu and Au + Au collisions at high energies.

  3. Transverse momentum and transverse mass distributions of charged hadrons produced in Au-Au collisions at high energies

    Institute of Scientific and Technical Information of China (English)

    Liu Fu-Hu

    2008-01-01

    The transverse momentum distribution and the transverse mass distribution of charged hadrons produced in nucleus-nucleus collisions at high energies are described by using a two-cylinder model. The results calculated by the model are compared and found to be in agreement with the experimental data of the STAR and E895 Collaborations, measured in Au-Au collisions at the relativistic heavy ion collider (RHIC) and alternating-gradient synchrotron (AGS) energies, respectively. In the energy range concerned, the excitation degree of emission source close to the central axis of cylinders increases obviously with the collision centrality and incident energy increasing, but it does not show any obvious change with the increase of the (pseudo) rapidity in central collisions. The excitation degree of emission source close to the side-surface of cylinders does not show any obvious change with the collision centrality, the (pseudo) rapidity, and the incident energy increasing.

  4. Fullerenes: An introduction and overview of their biological properties

    OpenAIRE

    Thakral Seema; Mehta R

    2006-01-01

    Ever since their experimental discovery in 1985, fullerenes have attracted considerable attention in different fields of sciences. Investigations of chemical, physical and biological properties of fullerenes have yielded promising information. Their unique carbon cage structure coupled with immense scope for derivatization makes fullerenes a potential therapeutic agent. Henceforth various potential therapeutic applications of fullerenes have been reviewed in the present paper. These include a...

  5. Comparison of Bond Character in Hydrocarbons and Fullerenes

    OpenAIRE

    Snoke, D. W.; Cardona, M.; Sanguinetti, S.; Benedek, G

    1996-01-01

    We present a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two different models for the fullerene Raman spectrum and the results of Raman measurements on ethane and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well, while the double bonds in fullerenes have greater polarizability than in ethylene.

  6. Theory of Spontaneous Polarization of Endohedral Fullerenes

    OpenAIRE

    Clougherty, Dennis P.; Anderson, Frederick G.

    1997-01-01

    A pseudo-Jahn-Teller model describing central atom distortions is proposed for endohedral fullerenes of the form A@C$_{60}$ where A is either a rare gas or a metal atom. A critical (dimensionless) coupling $g_c$ is found, below which the symmetric configuration is stable and above which inversion symmetry is broken. Vibronic parameters are given for selected endohedral fullerenes.

  7. Synthesis of [60]Fullerene-Podophyllotoxin Derivative

    Institute of Scientific and Technical Information of China (English)

    GUO,Li-Wei(郭礼伟); GAO,Xiang(高翔); ZHANG,Dan-Wei(张丹维); WU,Shi-Hui(吴世晖); WU,Hou-Ming(吴厚铭)

    2002-01-01

    The [60]fullerene-podophyllotoxin derivative (3) was obtained by the phosphine promeoted[2 + 3]cycloaddition reaction ofpodophyllotoxin buta-2,3-dienoate (2) and [60]fullerene. The structures of starting mateerial (2) and product (3) were confirmed by UV-vis, IR, NMR and MS spectroscopies.

  8. The first stable lower fullerene: C36

    Science.gov (United States)

    Piskoti, C.; Zettl, A.

    1998-08-01

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C60. However, unlike other known fullerenes, any closed, fullerene-like C36 cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem and the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C36 in arced graphite soot.

  9. The first stable lower fullerene: C36

    International Nuclear Information System (INIS)

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C60. However, unlike other known fullerenes, any closed, fullerene-like C36 cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem and the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C36 in arced graphite soot. copyright 1998 American Institute of Physics

  10. Inhibition of inflammatory arthritis using fullerene nanomaterials.

    Directory of Open Access Journals (Sweden)

    Anthony L Dellinger

    Full Text Available Inflammatory arthritis (e.g. rheumatoid arthritis; RA is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC. Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  11. Clar Structure and Fries Set of Fullerenes and (4,6-Fullerenes on Surfaces

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-01-01

    Full Text Available Fowler and Pisanski showed that the Fries number for a fullerene on surface Σ is bounded above by |V|/3, and fullerenes which attain this bound are exactly the class of leapfrog fullerenes on surface Σ. We showed that the Clar number of a fullerene on surface Σ is bounded above by (|V|/6-χ(Σ, where χ(Σ stands for the Euler characteristic of Σ. By establishing a relation between the extremal fullerenes and the extremal (4,6-fullerenes on the sphere, Hartung characterized the fullerenes on the sphere S0 for which Clar numbers attain (|V|/6-χ(S0. We prove that, for a (4,6-fullerene on surface Σ, its Clar number is bounded above by (|V|/6+χ(Σ and its Fries number is bounded above by (|V|/3+χ(Σ, and we characterize the (4,6-fullerenes on surface Σ attaining these two bounds in terms of perfect Clar structure. Moreover, we characterize the fullerenes on the projective plane N1 for which Clar numbers attain (|V|/6-χ(N1 in Hartung’s method.

  12. CHARACTERIZATION OF FULLERENE DERIVATIVES BY MALDI FRAGMENT MASS SPECTRA

    OpenAIRE

    Milman, B. L.; Piotrovsky, L. B.; Nikolaev, D. N.; Dumpis, M. A.; LITASOVA E.V.; LUGOVKINA N.V.

    2014-01-01

    MALDI and MALDI LIFT-TOF/TOF mass spectra of fullerene C60 and five its derivatives,  methano[60]fullerene carboxylic acid, its ethyl ester, diethyl methano[60]fullerene dicarboxylate, and two isomeric tetraethyl bis-methano[60]fullerene tetracarboxylates (compounds I-VI, respectively) as model analytes were recorded and discussed. The technique of MALDI LIFT used in mass spectrometry of fullerenes for the first time is proposed for their characterization, structure elucidation, and non-targe...

  13. On using the coherent far IR radiation produced by a charged-particle bunch to determine its shape. I. Analysis

    International Nuclear Information System (INIS)

    Because a short bunch of relativistic charged particles produces characteristic far infrared radiation when appropriately perturbed, the resulting spectrum can be related to the bunch form factor to provide information on the longitudinal shape. An important question which we address here regards the accuracy of the shape determined from such a spectroscopic measurement. Once the frequency dependence of the intensity of the emitted radiation has been obtained, there are two analysis methods which have been used to produce the longitudinal shape. Both make use of extrapolation into frequency regions where data is not available. One approach relies on the assumption that the bunch is symmetric so that a cosine Fourier transform can be used to find the shape. In the second approach, which we have proposed, a Kramers-Kronig relation is applied to the spectral form-factor data to find the minimal phase and then the asymmetric bunch shape is determined from the complete Fourier transform. By studying a variety of possible symmetric bunch shapes and extrapolations we have been able to identify the source of possible errors inherent in this phase determination process. For all reasonable shaped bunches and extrapolations we find that the actual phase is well represented by the minimal phase obtained from the Kramers-Kronig analysis. A straightforward extension illustrates how spectral measurements at different angles with respect to the beam trajectory may be used to define the 3-D bunch shape. (orig.)

  14. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    Science.gov (United States)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-04-01

    We study the electronic structure of C60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C60-pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C61-butyric acid methyl ester (PCBM)-P3MT complex.

  15. Metal quinolinolate-fullerene(s) donor-acceptor complexes: evidence for organic LED molecules acting as electron donors in photoinduced electron-transfer reactions.

    Science.gov (United States)

    D'Souza, Francis; Maligaspe, Eranda; Zandler, Melvin E; Subbaiyan, Navaneetha K; Ohkubo, Kei; Fukuzumi, Shunichi

    2008-12-17

    Tris(quinolinolate)aluminum(III) (AlQ3) is the most widely used molecule in organic light-emitting devices. There exists a strong demand for understanding the photochemical and photophysical events originating from this class of molecules. This paper provides the first report on the electron donor ability of MQ(n) (M = Al or Zn for n = 3 or 2) complexes covalently connected to a well-known electron acceptor, fullerene. To accomplish this, fullerene was functionalized with 8-hydroxyquinoline at different ligand positions and their corresponding zinc(II) and aluminum(III) complexes were formed in situ. The weakly fluorescent metal quinolinolate-fullerene complexes formed a new class of donor-acceptor conjugates. The stoichiometry and structure of the newly formed metal quinolinolate-fullerene complexes were established from various spectroscopic methods including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and computational density functional theory studies. Electrochemical studies involving free-energy calculations suggested the possibility of photoinduced electron transfer from excited metal-quinolinolate complex to the appended fullerene entity. Femtosecond transient absorption studies confirmed such a claim and analysis of the kinetic data allowed us to establish the different photophysical events in sufficient detail. The novel features of this class of donor-acceptor conjugates include faster charge recombination compared to charge separation and decay of the charge-separated state to populate the low-lying fullerene triplet state in competition with direct charge recombination to the ground state. PMID:19053486

  16. Rare Earth Oxide-Treated Fullerene and Titania Composites with Enhanced Photocatalytic Activity for the Degradation of Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    MENG Zada; ZHU Lei; CHOI Jong-geun; PARK Chong-yeon; OH Won-chun

    2011-01-01

    Rare earth oxide-treated fullerene and titania composites (Y-fullerene/TiO2) were prepared by the sol-gel method.The products had interesting surface compositions.X-ray diffraction patterns of the composites showed that the Y-fullerene/TiO2 composites contained a single and clear anatase phase.The surface properties were observed by scanning electron microscopy,which gave a characterization of the texture on the Y-fullerene/TiO2 composites and showed a homogenous distribution of titanium particles.The energy-dispersive X-ray spectra showed the presence of C and Ti with strong Y peaks.The composite obtained was also characterized with transmission electron microscopy and UV-Vis spectroscopy.The photocatalytic results showed that the y-fullerene/TiO2 composites had excellent activity for the degradation of methylene blue under visible light irradiation.This was attributed to both the effects on the photocatalysis of the supported TiO2 by charge transfer by the fullerene,and the introduction of yttrium to enhance photo-generated electron transfer.

  17. Fusion mechanism in fullerene-fullerene collisions -- The deciding role of giant oblate-prolate motion

    CERN Document Server

    Handt, Jan

    2015-01-01

    We provide answers to long-lasting questions in the puzzling behavior of fullerene-fullerene fusion: Why are the fusion barriers so exceptionally high and the fusion cross sections so extremely small? An ab initio nonadiabatic quantum molecular dynamics (NA-QMD) analysis of C$_{60}$+C$_{60}$ collisions reveals that the dominant excitation of an exceptionally "giant" oblate-prolate H$_g(1)$ mode plays the key role in answering both questions. From these microscopic calculations, a macroscopic collision model is derived, which reproduces the NA-QMD results. Moreover, it predicts analytically fusion barriers for different fullerene-fullerene combinations in excellent agreement with experiments.

  18. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  19. Crystalline Fullerenes. Round Pegs in Square Holes

    OpenAIRE

    Fleming, R. M.; Hessen, B.; Siegrist, T.; Kortan, A.R.; Marsh, P; Tycko, R.; Dabbagh, G.; Haddon, R C

    1992-01-01

    The fullerenes C60 and C70 act as spherical building blocks in crystalline solids to form a variety of crystal structures. In many cases, the icosahedral molecular symmetry of C60 appears to play little role in determining the crystal structure. In this chapter we discuss our results on the crystallography of pure and solvated fullerenes and some general features of fullerenes as building units in crystalline solids. For pure C60 or C70, the face-centered cubic arrangement is preferred. In so...

  20. Pseudorapidity distributions of charged particles produced in bar pp interactions at √s =630 and 1800 GeV

    International Nuclear Information System (INIS)

    We present measurements of the pseudorapidity (η) distribution of charged particles (dNch/dη) produced with |η|≤3.5 in proton-antiproton collisions at √s of 630 and 1800 GeV. We measure dNch/dη at η=0 to be 3.18±0.06(stat)±0.10(syst) at 630 GeV, and 3.95±0.03(stat)±0.13(syst) at 1800 GeV. Many systematic errors in the ratio of dNch/dη at the two energies cancel, and we measure 1.26±0.01±0.04 for the ratio of dNch/dη at 1800 GeV to that at 630 GeV within |η|≤3. Comparing to lower-energy data, we observe an increase faster than ln(s) in dNch/dη at η=0

  1. Creation and destruction of C{sub 60} and other fullerene solids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.R.

    1996-06-05

    The 1990 announcement of the Huffman-Kratschmer fullerene-production technique set off a world-wide explosion of research into the properties and potential applications of C{sub 60} and C{sub 70}. In the last five years, 4,000+ fullerene articles have appeared in the scientific literature dealing with these fascinating molecules and their condensed phases. They possess a complex chemistry reminiscent of the alkenes, and this has led to the syntheses of numerous new compounds and fullerene-based materials, with suggested applications ranging from medicine to photo-conducting polymers to rocket fuel. The work summarized in this report focused on the creation and destruction of fullerene-based materials, for the purpose of producing new materials of interest. This three year project was supported by a grant from the Advanced Energy Projects Division, Office of Basic Energy Sciences, U.S. Department of Energy (DE-FG03-93ER12133). Following are outlines of the work completed in each of the three years, a section devoted to the professional and educational development of those involved, a brief section on the outlook for fullerene-based materials, and an appendix listing the publications resulting from this project.

  2. Organic light-emitting diodes with nanostructured fullerene ultrathin layers

    Science.gov (United States)

    Lü, Zhaoyue; Deng, Zhenbo; Zheng, Jianjie; Yin, Yuehong; Chen, Yanli; Wang, Yongsheng

    2010-01-01

    Organic light-emitting diodes (OLEDs) with nanostructured fullerene (C 60) ultrathin layers were fabricated. The luminance and efficiency are decreased due to exciton quenching in the OLEDs with C 60 layers at the N,N‧-Di (naphth-2-yl)-N, N‧-diphenyl-benzidine (NPB)/8-hydroxyquinoline aluminum (Alq 3) interface. It is opposite to the results reported by Kato [K. Kato, K. Takahashi, K. Suzuki, T. Sato, K. Shinbo, F. Kaneko et al., Curr. Appl. Phys. 5, 2005, 321]. And C 60 ultrathin layers play a role of weak p-type delta-dopant in the NPB layer due to forming of a charge transfer complex C 60-:NPB +. The current density and luminance are enhanced in the OLEDs with 0.7 nm C 60 ultrathin layers inserted in NPB layer. A suggested explanation is p-type delta-doping effect in the NPB layer which increases the charge mobility of NPB films.

  3. On the sextet polynomial of fullerenes

    OpenAIRE

    Sereni, Jean-Sébastien; Stehlík, Matej

    2010-01-01

    International audience We show that the sextet pattern count of every fullerene is strictly smaller than the Kekulé structure count. This proves a conjecture of Zhang and He [J Math Chem 38(3):315-324 (2005)].

  4. Characterizing Fullerene Nanoparticles in Aqueous Suspensions

    Science.gov (United States)

    Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...

  5. Photoionization of the fullerene ion C60+

    OpenAIRE

    Polozkov, R. G.; Ivanov, V. K.; Solov'yov, A. V.

    2004-01-01

    Photoionization cross section of the fullerene ion C60+ has been calculated within a single-electron approximation and also by using a consistent many-body theory accounting for many-electron correlations.

  6. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  7. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films with...

  8. Ferromagnetism in metallocene-doped fullerenes

    CERN Document Server

    Mihailovic, D

    2003-01-01

    Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between pi electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)

  9. Water-soluble fullerenes for medical applications

    OpenAIRE

    Rašović, I

    2016-01-01

    Research on fullerenes occupies a unique position in the scientific arena. Synthesis and characterisation of this nanomaterial blur the line between materials science and chemistry; careful tuning of the processing methods gives birth to a whole family of molecules and their functionalised derivatives, whose unusual properties at this nanoscopic scale can be exploited in cutting-edge technological applications. This review focuses on the functionalisation of fullerenes for use in medical appl...

  10. Amphiphilic Fullerenes for Biomedical and Optoelectronical Applications

    OpenAIRE

    Witte, Patrick

    2009-01-01

    Fullerenes have an enormous potential in applications to physics and biology. Specifically [60]fullerene with its unique electronic, optical and structural properties has attracted considerable attention for its application in biomedical materials and optoelectronic devices. In this context the selective functionalization of C60, which allows to combine the parent properties with new attributes like water-solubility or amphiphilicity is still a challenging topic for the synthetic chemist. In ...

  11. Fullerene photoemission time delay explores molecular cavity in attoseconds

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed El-Amine; Chakraborty, Himadri S

    2014-01-01

    Time-resolved photoelectron spectroscopy can probe interference oscillations in C60 valence emissions that produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. These findings provide a way to utilize temporal information to access the fullerene cavity size, that is making the time to "see" the space, and can be generalized to photoemissions from clusters and nanostructures.

  12. Energy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells.

    Science.gov (United States)

    Cnops, Kjell; Zango, German; Genoe, Jan; Heremans, Paul; Martinez-Diaz, M Victoria; Torres, Tomas; Cheyns, David

    2015-07-22

    The use of non-fullerene acceptors in organic photovoltaic (OPV) devices could lead to enhanced efficiencies due to increased open-circuit voltage (VOC) and improved absorption of solar light. Here we systematically investigate planar heterojunction devices comprising peripherally substituted subphthalocyanines as acceptors and correlate the device performance with the heterojunction energetics. As a result of a balance between VOC and the photocurrent, tuning of the interface energy gap is necessary to optimize the power conversion efficiency in these devices. In addition, we explore the role of the charge transport layers in the device architecture. It is found that non-fullerene acceptors require adjusted buffer layers with aligned electron transport levels to enable efficient charge extraction, while the insertion of an exciton-blocking layer at the anode interface further boosts photocurrent generation. These adjustments result in a planar-heterojunction OPV device with an efficiency of 6.9% and a VOC above 1 V. PMID:26104833

  13. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  14. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  15. Search for Charged Higgs bosons produced in top quark decays with the ATLAS detector at the LHC

    CERN Document Server

    Biscarat, C

    2003-01-01

    The sensitivity of the ATLAS detector to a signal of MSSM charged Higgs bosons in the low mass region (m_H+/-WbHb-->(qq)b(tau nu)b are used. This channel provides a complete coverage of the tanb range if BR(t --> H+/- b) is greater than a few percents, enhancing the ATLAS sensitivity to H+/- in a non covered region. The possibility to measure the charged Higgs mass and the achievable precision are also discussed.

  16. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Science.gov (United States)

    Sarmah, Amrit; Roy, Ram Kinkar

    2016-06-01

    In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C32) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost-effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C32 fullerene and its site of covalent attachment to the SWCNT.

  17. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    International Nuclear Information System (INIS)

    Fullerene C60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  18. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  19. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions. A Combined EPR and DFT Study

    Energy Technology Data Exchange (ETDEWEB)

    Mardis, Kristy L. [Chicago State Univ., IL (United States); Webb, J. [Chicago State Univ., IL (United States); Holloway, Tarita [Chicago State Univ., IL (United States); Niklas, Jens [Argonne National Lab. (ANL), Argonne, IL (United States); Poluektov, Oleg G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-11-16

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  20. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.

    Science.gov (United States)

    Mardis, Kristy L; Webb, Jeremy N; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G

    2015-12-01

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM. PMID:26569578

  1. Enumeration of a class of IPR hetero-fullerenes

    OpenAIRE

    ALI REZA ASHRAFI; MODJTABA GHORBANI

    2010-01-01

    Hetero-fullerenes are fullerenes in which some of the carbon atoms are replaced by other atoms. This paper uses the Pólya theorem to count the number of their possible positional isomers and chiral isomers. To do this, the computer algebra system GAP was applied to compute this number for a class of IPR hetero-fullerenes with Ih point group symmetry. These fullerenes were constructed by means of the leapfrog principle.

  2. Synthesis and photoinduced electron transfer studies of a tri(phenothiazine)-subphthalocyanine-fullerene pentad.

    Science.gov (United States)

    KC, Chandra B; Lim, Gary N; Zandler, Melvin E; D'Souza, Francis

    2013-09-01

    A novel donor-acceptor pentad featuring subphthalocyanine and fullerene as the primary electron donor and acceptor, and three phenothiazine entities as secondary hole transferring agents, have been newly synthesized and characterized as an photosynthetic reaction center model compound. Occurrences of ultrafast photoinduced electron transfer (PET) and slower charge recombination are witnessed in the pentad from the femtosecond and nanosecond transient absorption studies. PMID:23981125

  3. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong; Kauppi, John [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  5. Protein-directed self-assembly of a fullerene crystal

    Science.gov (United States)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; DeGrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-01-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. PMID:27113637

  6. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    Science.gov (United States)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The molecular structure of fullerene (C60) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electron affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.

  7. Constructing I[subscript h] Symmetrical Fullerenes from Pentagons

    Science.gov (United States)

    Gan, Li-Hua

    2008-01-01

    Twelve pentagons are sufficient and necessary to form a fullerene cage. According to this structural feature of fullerenes, we propose a simple and efficient method for the construction of I[subscript h] symmetrical fullerenes from pentagons. This method does not require complicated mathematical knowledge; yet it provides an excellent paradigm for…

  8. Transient Spectroscopic Properties of [60]Fullerene-Containing Cyclic Sulphoxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the triplet excited state of [60]fullerene-containing cyclic sulphoxide have been investigated by time-resolved absorption spectroscopy. Transient absorption bands of [60]fullerene-containing cyclic sulphoxide showed two decay-components, which were attributed to triplet excited states of different spin multiplicity. The properties of photoexcited states of [60]fullerene-containing cyclic sulphoxide are also reported.

  9. Precursor soot synthesis of fullerenes and nanotubes without formation of carbonaceous soot

    Science.gov (United States)

    Reilly, Peter T. A.

    2007-03-20

    The present invention is a method for the synthesis of fullerenes and/or nanotubes from precursor soot without the formation of carbonaceous soot. The method comprises the pyrolysis of a hydrocarbon fuel source by heating the fuel source at a sufficient temperature to transform the fuel source to a condensed hydrocarbon. The condensed hydrocarbon is a reaction medium comprising precursor soot wherein hydrogen exchange occurs within the reaction medium to form reactive radicals which cause continuous rearrangement of the carbon skeletal structure of the condensed hydrocarbon. Then, inducing dehydrogenation of the precursor soot to form fullerenes and/or nanotubes free from the formation of carbonaceous soot by continued heating at the sufficient temperature and by regulating the carbon to hydrogen ratio within the reaction medium. The dehydrogenation process produces hydrogen gas as a by-product. The method of the present invention in another embodiment is also a continuous synthesis process having a continuous supply of the fuel source. The method of the present invention can also be a continuous cyclic synthesis process wherein the reaction medium is fed back into the system as a fuel source after extraction of the fullerenes and/or nanotube products. The method of the present invention is also a method for producing precursor soot in bulk quantity, then forming fullerenes and/or nanotubes from the precursor bulk.

  10. Nanobionics of Pharmacologically Active Derivatives of Fullerene C60

    International Nuclear Information System (INIS)

    The physical-chemical mechanisms of pharmacologic functioning of amino acid derivatives of fullerene C60 (ADF) have been studied. ADF were shown to penetrate through the lipid bilayer of liposomes without destruction of membrane integrity. ADF are able to carry bivalent metal ions through phospholipid bilayer owing to the formation of complexes. It was shown that stereoisomers of ADF selectively penetrate into phospholipid membranes. In contrast to D-isomers, L-isomers penetrate through the phosphatidylcholine membrane into liposome interior. Stereo-specific effect of ADF enantiomers was also observed in reaction of peroxidation of lipids. Besides that, ADF bring about a substantial increase in the catalytic activity of monoaminoxidases A and B. The directed intraprotein electron transfer was studied by creating a donor-acceptor pair in a water solution in the presence of ADF. To realize the intraprotein electron transfer, the model system was produced on the base of apomyoglobin by incorporating ADF (electron acceptor) into the heme pocket of protein instead of removed heme. It was established that the fullerene C60 and its derivatives did not produce specific anti-C60 antibodies, both IgG and IgE classes, while ADF themselves are efficient adjuvants, i.e. they increased the antibody response to poor antigens. Some ADF were found to inhibit the human immunodeficiency virus and human cytomegalovirus infection

  11. Charge injection properties of iridium oxide films produced on Ti-6Al-4V alloy substrates by ion-beam mixing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.M. (Oak Ridge National Lab., TN (United States)); Lee, I-S.; Buchanan, R.A. (Tennessee Univ., Knoxville, TN (United States))

    1991-10-01

    The charge injection capabilities of iridium oxide films, as produced on Ti6Al-4V alloy substrates by ion beam mixing techniques, have been investigated. Iridium oxide is a valence change oxide, and therefore has high values of charge injection density upon voltage cycling in electrolytes. Because of this property, iridium oxide films are useful as working elements in neural prostheses. Iridium films of three thicknesses, produced by sputter deposition followed by ion beam mixing, were tested in cyclic voltammetry out to 1000 cycles or more. Two surface preparations, mechanical polishing and an acid passivation treatment, were also used as controls. Surface analysis was primarily by Rutherford backscattering spectrometry. Both the ion- beam mixing and the acid pretreatment increased the lifetimes of films, in comparison with the mechanically polished standards. Reductions in charge injection capability, when they occurred, were attributed to loss of Ir from the films, and there was a close correlation between the charge injection density and the Ir inventory. 13 refs., 5 figs.

  12. Fullerenes: An introduction and overview of their biological properties

    Directory of Open Access Journals (Sweden)

    Thakral Seema

    2006-01-01

    Full Text Available Ever since their experimental discovery in 1985, fullerenes have attracted considerable attention in different fields of sciences. Investigations of chemical, physical and biological properties of fullerenes have yielded promising information. Their unique carbon cage structure coupled with immense scope for derivatization makes fullerenes a potential therapeutic agent. Henceforth various potential therapeutic applications of fullerenes have been reviewed in the present paper. These include antiHIV- protease activity, photodynamic DNA cleavage, free radical scavenger, antimicrobial action and use of fullerenes as diagnostic agents.

  13. Photophysical and theoretical insights on non-covalently linked fullerene-zinc phthalocyanine complexes

    Science.gov (United States)

    Ray, A.; Chattopadhyay, S.; Bhattacharya, S.

    2011-09-01

    The photo-physical aspects of non-covalently linked assemblies of a series of fullerenes, namely, C 60, C 70, tert-butyl-(1,2-methanofullerene)-61-carboxylate ( 1) and [6,6]-phenyl C 70 butyric acid methyl ester ( 2) with a designed zinc phthalocyanine (ZnPc), viz., zinc-1,4,8,11,15,18,22,25-octabutoxy-29 H,31 H-phthalocyanine ( 3) in toluene medium are studied employing absorption spectrophotometric, steady state and time resolved fluorescence spectroscopic measurements. Of central interest in these investigations is the preferential binding of various fullerenes with ZnPc in toluene. The ground state interaction between fullerenes and 3 is first evidenced from UV-Vis measurements. Steady state fluorescence experiment reveals efficient quenching of the excited singlet state of 3 in presence of both underivatized and derivatized fullerenes. K values for the complexes of C 60, C 70, 1 and 2 with 3 are determined to be 6500, 22,230, 47,800 and 54,770 dm 3 mol -1, respectively. The magnitude of K suggests that 3 preferentially binds C 70 and derivatized C 70 in comparison to C 60 and 1. Time resolved emission measurements establish that C 70- 3 and 2- 3 complexes are stabilized much more in comparison to C 60- 3 and 1- 3 systems in terms of charge separation process. Semi empirical calculations employing third parametric method substantiate the strong binding of C 70 and its derivative with 3 in terms of heat of formation values of the respective complexes, and at the same time, determine the orientation of bound guest (here fullerenes) with the molecular plane of 3.

  14. Characterization of Hydrogenated Fullerenes by NMR Spectroscopy

    Science.gov (United States)

    Hedenström, Mattias; Wågberg, Thomas; Johnels, Dan

    NMR spectroscopy is so far the only analytical technique that has been used to get a detailed structural characterization of hydrogenated fullerenes. A substantial amount of information derived from different NMR experiments can thus be found in the literature for a number of fullerenes hydrogenated to various degrees. These studies have benefitted from the fact that chemical shifts of 1H and 13C and in some cases also 3He can be used to obtain structural information of these compounds. Such results, together with discussions about different NMR experiments and general considerations regarding sample preparations, are summarized in this chapter. The unique information, both structural and physicochemical, that can be derived from different NMR experiments ensures that this technique will continue to be of central importance in characterization of hydrogenated fullerenes.

  15. Fascinating serendipity some adventures in fullerene chemistry

    International Nuclear Information System (INIS)

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of *X at C60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  16. Experimental studies of emission of highly charged Au-ions and of X-rays from the laser-produced plasma at high laser intensities

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Cavallaro, S.; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Margarone, D.; Mezzasalma, A.; Pfeifer, Miroslav; Rohlena, Karel; Ryc, L.; Skála, Jiří; Torrisi, L.; Ullschmied, Jiří; Velyhan, Andriy; Verona-Rinati, G.

    2009-01-01

    Roč. 54, č. 2 (2009), 487-492. ISSN 1434-6060 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-produced plasma * highly charged ions * x-ray generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.420, year: 2009

  17. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon : potential application to PET

    OpenAIRE

    Amaudruz, P.; Bryman, D.; Kurchaninov, L.; P. Lu; Marshal, C.; Martin, J. P.; Muennich, A.; Retiere, F.; Sher, A

    2009-01-01

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resoluti...

  18. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  19. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  20. Charge-state and energy enhancment of laser-produced ions due to nonlinear processes in performed plasma

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Jungwirth, Karel; Krása, Josef; Pfeifer, Miroslav; Rohlena, Karel; Ullschmied, Jiří; Badziak, J.; Parys, P.; Wolowski, J.; Gammino, S.; Torrisi, L.; Boody, F. P.

    2005-01-01

    Roč. 86, č. 8 (2005), 081502/1-081502/3. ISSN 0003-6951 R&D Projects: GA AV ČR(CZ) IAA1010405; GA MŠk(CZ) LN00A100; GA AV ČR(CZ) KSK2043105 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-beam interaction * non-linear processes * highly - charged ions Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.127, year: 2005

  1. Energy spectrum of C60 fullerene

    Science.gov (United States)

    Mironov, G. I.; Murzashev, A. I.

    2011-11-01

    The energy spectrum of the C60 fullerene has been calculated in terms of the Shubin-Vonsovskii-Hubbard model using an approximation of static fluctuations. Based on the spectrum, the optical absorption bands at 4.84, 5.88, and 6.30 eV observed experimentally have been successfully explained. It has been concluded that the model used is applicable for the calculation of the energy spectrum and the energy properties of other nanosystems, such as fullerenes of higher orders, carbon nanotubes, and grafen planes.

  2. Applications of Anti/Prooxidant Fullerenes in Nanomedicine along with Fullerenes Influence on the Immune System

    OpenAIRE

    Danijela Petrovic; Mariana Seke; Branislava Srdjenovic; Aleksandar Djordjevic

    2015-01-01

    Fullerenes are molecules that, due to their unique structure, have very specific chemical properties which offer them very wide array of applications in nanomedicine. The most prominent are protection from radiation-induced injury, neuroprotection, drug and gene delivery, anticancer therapy, adjuvant within different treatments, photosensitizing, sonosensitizing, bone reparation, and biosensing. However, it is of crucial importance to be elucidated how fullerenes immunomodulate human system o...

  3. Study of the photochemically generated of oxygen species by fullerene photosensitized CoS2 nanocompounds

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Reactive oxygen species was detected through oxidation reaction from DPCI to DPCO. • Generated reactive oxygen species and hydroxyl radicals can be analysis by DPCI degradation. • C60 has good effect during the photo-degradation processes. • Photocatalytic activity attributed to photo-absorption effect by C60 and cooperative effect of CoS2. - Abstract: Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substance in natural water environment and can completely destroy various organic pollutants in wastewaters. In this study, CoS2 and CoS2–fullerene were irradiated by visible light respectively. The generation of reactive oxygen species were detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). In comparison with the separate effects of CoS2 and fullerene nanoparticles, the photochemically effect of the fullerene photosensitized CoS2 composites is increased significantly due to the synergetic effect between the fullerene and the CoS2 nanoparticles

  4. Nano tracks in fullerene film by dense electronic excitations

    International Nuclear Information System (INIS)

    Highlights: • Observation of nano track in C60 thin film irradiated with 30 MeV C60 cluster beam by HRTEM. • Average track diameter is around 20 nm in C60 thin films by 30 MeV cluster (C60) ion beam irradiation. • No track observed in C60 thin film irradiated with 120 MeV Au mono atomic beam. • Delta electrons produced during the ion irradiation play crucial role in nano-track formation. - Abstract: In the present work, we investigate the formation of nano tracks by cluster and mono-atomic ion beams in the fullerene (C60) thin films by High Resolution Transmission Electron Microscopy (HRTEM). The fullerene films on carbon coated grids were irradiated by 30 MeV C60 cluster beam and 120 MeV Au mono-atomic beams at normal and grazing angle to the incident ion beams. The studies show that the cluster beam creates latent tracks of an average diameter of around 20 nm. The formation of large size nano tracks by cluster beam is attributed to the deposition of large electronic energy density as compared to mono-atomic beams

  5. Nano tracks in fullerene film by dense electronic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P., E-mail: pawan.iit13@gmail.com [School of Material Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005 (India); Avasthi, D.K. [Inter-University Accelerator Centre, PB-10502, New Delhi 110067 (India); Ghatak, J.; Satyam, P.V. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Prakash, R. [School of Material Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005 (India); Kumar, A., E-mail: amit.mst@iitbhu.ac.in [School of Material Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005 (India)

    2014-09-15

    Highlights: • Observation of nano track in C{sub 60} thin film irradiated with 30 MeV C{sub 60} cluster beam by HRTEM. • Average track diameter is around 20 nm in C{sub 60} thin films by 30 MeV cluster (C{sub 60}) ion beam irradiation. • No track observed in C{sub 60} thin film irradiated with 120 MeV Au mono atomic beam. • Delta electrons produced during the ion irradiation play crucial role in nano-track formation. - Abstract: In the present work, we investigate the formation of nano tracks by cluster and mono-atomic ion beams in the fullerene (C{sub 60}) thin films by High Resolution Transmission Electron Microscopy (HRTEM). The fullerene films on carbon coated grids were irradiated by 30 MeV C{sub 60} cluster beam and 120 MeV Au mono-atomic beams at normal and grazing angle to the incident ion beams. The studies show that the cluster beam creates latent tracks of an average diameter of around 20 nm. The formation of large size nano tracks by cluster beam is attributed to the deposition of large electronic energy density as compared to mono-atomic beams.

  6. Inclusive analysis of negative charged particles produced in sulfur-lead interactions at 200 GeV/c per nucleon

    International Nuclear Information System (INIS)

    After a first theoretical part about the physics of quark-gluon plasma, and after a description of CERN experiments (NA34, NA35, NA38, WA80, WA85), the author presents in a second part, the experiment NA36. He describes, with details, the spectrometers and studies the production of negative charged particles in Sulfur-Lead interactions at 200 GeV/c per nucleon. Reconstruction of trajectories in TPC, correction of multiplicity, correction of transverse momentum distribution, correction of pseudo-rapidity distribution and method of maximum entropy are presented and explained

  7. Laser ablation synthesis of zinc oxide clusters: a new family of fullerenes?

    CERN Document Server

    Bulgakov, A V; Bulgakov, Alexander V.; Ozerov, Igor; Proxy, Wladimir Marine; ccsd-00000864, ccsd

    2003-01-01

    Positively charged zinc oxide clusters ZnnOm (up to n = 16, m <= n) of various stoichiometry were synthesized in the gas phase by excimer ArF laser ablation of a ZnO target and investigated using time-of-flight mass spectrometry. Depending on ablation conditions, either metal rich or stoichiometric clusters dominate in the mass spectrum. When the irradiated target surface is fairly fresh, the most abundant clusters are metal rich with Zn(n+1)On and Zn(n+3)On being the major series. The stoichiometric clusters are observed with an etched ablated surface. The magic numbers at n = 9, 11 and 15 in mass spectra of (ZnO)n clusters indicate that the clusters have hollow spheroid structures related to fullerenes. A local abundance minimum at n = 13 provides an additional evidence for the presence in the ablation plume of fullerene-like (ZnO)n clusters.

  8. Beam energy dependence of pseudorapidity distributions of charged particles produced in heavy-ion collisions at RHIC and LHC energies

    CERN Document Server

    Basu, Sumit; Datta, Kaustuv

    2016-01-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged particle multiplicity and pseudorapidity ($\\eta$) distributions. We have shown that the available experimental data on beam energy and centrality dependence of \\Eta-distributions in heavy-ion (Au+Au or Pb+Pb) collisions from \\sNN=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the \\Eta-distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of \\sNN~=~5.02 TeV, we have obtained the charged particle multiplicity densities, \\Eta-distributions and energy densities for various centralities. Incident...

  9. Charge Exchange Produced Emission of Carbon in the Iron M-shell Dominated 150-200 Å Extreme Ultraviolet Region

    Science.gov (United States)

    Lepson, Jaan K.; Beiersdorfer, Peter; Bitter, Manfred; Roquemore, A. Lane; Kaita, Robert

    2015-08-01

    We report on emission spectra in the extreme ultraviolet region 150-200 Å recorded at the National Spherical Torus Experiment (NSTX). This region is typically dominated by M-shell iron emission that is used extensively for solar observations, e.g. Hinode and the Solar Dynamics Observatory, and stellar atmospheres, e.g., the Extreme Ultraviolet Explorer (EUVE). We find that significant emission occurs from several heretofore unmeasured lines, which can persist throughout the plasma duration. We attribute these lines to emission from K-shell carbon ions (C V and C VI). Spectral modeling of collisional excitation fails to account for these lines, but modeling of charge exchange provides a good match with the observation. Our spectral model shows that the lines are formed by charge exchange of bare and hydrogenlike carbon with neutral hydrogen. The high abundance of bare and hydrogenlike carbon in the solar wind suggests that these lines may be formed in the heliosphere and may be part of the soft X-ray background. They may thus be observed by energy dispersive instruments, such as microcalorimeters.This work was supported by the DOE General Plasma Science program. Work was performed by Lawrence Livermore National Laboratory and Princeton Plasma Physics Laboratory under the auspices of the U. S. Department of Energy under Contracts DEAC52-07NA27344 and DE-AC02-09CH11466.

  10. Fullerene derivatives with increased dielectric constants

    NARCIS (Netherlands)

    Jahani, Fatemeh; Torabi, Solmaz; Chiechi, Ryan C; Koster, L Jan Anton; Hummelen, Jan C

    2014-01-01

    The invention of new organic materials with high dielectric constants is of extreme importance for the development of organic-based devices such as organic solar cells. We report on a synthetic way to increase the dielectric constant of fullerene derivatives. It is demonstrated that introducing trie

  11. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7. ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  12. Crystalline Fullerenes. Round Pegs in Square Holes

    NARCIS (Netherlands)

    Fleming, R.M.; Hessen, B.; Siegrist, T.; Kortan, A.R.; Marsh, P.; Tycko, R.; Dabbagh, G.; Haddon, R.C.

    1992-01-01

    The fullerenes C60 and C70 act as spherical building blocks in crystalline solids to form a variety of crystal structures. In many cases, the icosahedral molecular symmetry of C60 appears to play little role in determining the crystal structure. In this chapter we discuss our results on the crystall

  13. Organic nanocolloidal polyaniline dispersions containing fullerene

    Czech Academy of Sciences Publication Activity Database

    Sapurina, I. Yu.; Stejskal, Jaroslav; Trchová, Miroslava; Hlavatá, Drahomíra; Biryulin, Yu.

    2006-01-01

    Roč. 14, 2-3 (2006), s. 447-455. ISSN 1536-383X R&D Projects: GA AV ČR IAA4050313; GA AV ČR IAA400500504 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * fulleren e * nanostructure Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.462, year: 2006

  14. Nuclear spin circular dichroism in fullerenes

    Czech Academy of Sciences Publication Activity Database

    Straka, Michal

    Brno : Masaryk University Press, 2015 - (Sklenář, V.). s. 153 ISBN 978-80-210-7890-1. [EUROMAR 2015. 05.07.2015-10.07.2015, Praha] R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : nuclear spin circular dichroism * fullerenes Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  16. Synthesis and properties of polydiphenylsilane/fullerene C60 nanocomposites

    International Nuclear Information System (INIS)

    The efficiency of bulk heterojunction solar cells based on polysilane/C60 nanocomposites could be improved by delaying the radiative recombination of the charge carriers using aromatic side groups as mediators. This paper presents a study of such nanocomposites prepared with a soluble polydiphenylsilane, a polymer that contains a high number of phenyl groups attached to the main chain. Synthesis of this polysilane is challenging and was done by microwave-assisted Wurtz coupling of diphenyldichlorosilanes in the presence of low amounts of methyldichlorosilane. The nanocomposites were obtained in solution by mixing the polymer with C60 of various concentrations. The UV–vis profile shows formation of the intermolecular charge transfer complex between polysilane and C60 which acts as a dopant. Photoluminescence experiments at different concentrations of C60 revealed details concerning the emission from charge transfer states at the interface. Thin films of polysilane/C60 nanocomposites were casted from solutions and studied by AFM and TEM to evidence the main aspects of their microstructure. The obtained results confirmed the high potential of these materials for electro-optical devices. - Highlights: • Fullerene interaction with phenyl saturated polysilanes. • Microwave-assisted heterogeneous Wurtz-type polymerization. • UV–VIS and fluorescence spectroscopy of polydiphenylsilane/C60 nanocomposites. • Phenyls' mechanism to increase efficiency of polysilane/C60 based solar cells

  17. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  18. Effect of the jet production on pseudorapidity, transverse momentum and transverse mass distributions of charged particles produced in pp-collisions at Tevatron energy

    Institute of Scientific and Technical Information of China (English)

    Ali Zaman; Mais Suleymanov; Muhammad Ajaz; Kamal Hussain Khan

    2015-01-01

    We investigate the effects of jet production on the following parameters:pseudorapidity,transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 TeV,using the HIJING code.These distributions are analyzed for the whole range and for six selected regions of the polar angle as a function of the different number of jets.The obtained simulation results for these parameters are interpreted and discussed in connection to the increase observed in the multiplicity of secondary charged particles as a result of its multi-jet dependence,and are also discussed in comparison with the experimental results from the CDF Collaboration.

  19. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    Energy Technology Data Exchange (ETDEWEB)

    Amaudruz, P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: amaudruz@triumf.ca; Bryman, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: bryman@phas.ubc.ca; Kurchaninov, L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: kurchan@triumf.ca; Lu, P. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: philipfl@phas.ubc.ca; Marshall, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cammarsh@triumf.ca; Martin, J.P. [University of Montreal, CP 6128 Succursale Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada)], E-mail: jpmartin@lps.umontreal.ca; Muennich, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: muennich@triumf.ca; Retiere, F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: fretiere@triumf.ca; Sher, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: sher@triumf.ca

    2009-08-21

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  20. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    International Nuclear Information System (INIS)

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  1. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon : potential application to PET

    CERN Document Server

    Amaudruz, P; Kurchaninov, L; Lu, P; Marshal, C; Martin, J P; Muennich, A; Retière, F; Sher, A

    2009-01-01

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10 % (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  2. Collins asymmetries in inclusive charged $KK$ and $K\\pi$ pairs produced in $e^+e^-$ annihilation

    CERN Document Server

    Aubert, B

    2015-01-01

    We present measurements of Collins asymmetries in the inclusive process $e^+e^- \\rightarrow h_1 h_2 X$, $h_1h_2=KK,\\, K\\pi,\\, \\pi\\pi$, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb$^{-1}$ collected by the BaBar experiment at the PEP-II $B$ factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike- to like-sign, and unlike- to all charged $h_1 h_2$ pairs, which increase with hadron energies. The $K\\pi$ asymmetries are similar to those measured for the $\\pi\\pi$ pairs, whereas those measured for high-energy $KK$ pairs are, in general, larger.

  3. Collins asymmetries in inclusive charged K K and K π pairs produced in e+e- annihilation

    Science.gov (United States)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Dey, B.; Gary, J. W.; Long, O.; Franco Sevilla, M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Röhrken, M.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.; Contri, R.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H. M.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Cheaib, R.; Patel, P. M.; Robertson, S. H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Summers, D. J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Hess, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wulsin, H. W.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.; BaBar Collaboration

    2015-12-01

    We present measurements of Collins asymmetries in the inclusive process e+e- →h1h2X , h1h2=K K , K π , π π , at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb-1 collected by the BABAR experiment at the PEP-II B factory at SLAC National Accelerator Center. Considering hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries in the ratio of unlike sign to like sign, and unlike sign to all charged h1h2 pairs, which increase with hadron energies. The K π asymmetries are similar to those measured for the π π pairs, whereas those measured for high-energy K K pairs are, in general, larger.

  4. Physical picture of the electromagnetic fields between two infinite conducting plates produced by a point charge moving at the speed of light

    International Nuclear Information System (INIS)

    In the study of beam-cavity coupling effects, one must solve Maxwell's equations for the fields produced by a given beam shape and given cavity geometry. A recent paper that treats the effect on the bunch shape has considered the longitudinal electric field in a pill box cavity produced by a step function charge pulse traveling at the speed of light. In order to obtain a clear physical picture of how the fields are produced in the cavity, we treat the problem of a point charge traveling at the speed of light, c, between two infinite plates. This must, of course give the same result as the closed pill box cavity for values of time t such that ct is less than the cavity radius. In this paper, the longitudinal and radial electric field components and the azimuthal magnetic field component are derived from Maxwell's equation for this idealized case. We use the eigenmode expansion method and include some details of the tricks used in the computation of the sums. We also discuss the physical picture of the electromagnetic fields that were derived. 5 refs., 3 figs

  5. Aggregation and Charge Behavior of Metallic and Nonmetallic Nanoparticles in the Presence of Competing Similarly-Charged Inorganic Ions

    Science.gov (United States)

    The influence of competing, similarly charged, inorganic ions on the size and charge behavior of suspended titanium-dioxide (nTiO2), silver (nAg) and fullerene (nC60) nanoparticles (NPs) was investigated. Under pH and ionic conditions similar to natural water bodies, Ca2+ induced...

  6. Unstable Isomer of C90 Fullerene Isolated as Chloro Derivatives, C90 (1)Cl10/12.

    Science.gov (United States)

    Chilingarov, Norbert S; Troyanov, Sergey I

    2016-07-01

    High-temperature chlorination of C90 -containing fullerene fraction resulted in the isolation and X-ray structural characterization of C90 (1)Cl10/12 , the first derivatives of a relatively unstable isomer D5h -C90 (1) with a nanotubular shape. In the crystal structure, three isomers of both C90 (1)Cl10 and C90 (1)Cl12 with similar chlorination patterns co-crystallize in the same crystallographic site. Thus, in contrast to the previous reports, D5h -C90 (1) is present, though with a low abundance, in the fullerene soot produced by arc-discharge method with undoped graphite rods. PMID:27311795

  7. A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources

    International Nuclear Information System (INIS)

    Nanoparticle aggregates collected by thermophoretic precipitation from natural gas-air and propane-air kitchen stove top flame exhausts, natural gas-air water heater roof-top exhausts, and other common fuel-gas combustion sources were observed by transmission electron microscopy to consist of occasional aggregates of mostly turbostratic carbon spherules, aggregates of crystalline graphite nanoparticles mixed with other fullerene nanoforms; and aggregates of various sizes of multiwall carbon nanotubes and other multishell, fullerene polyhedra for optimal blue-flame combustion. The carbon nanotube structures and end cap variations as well as fullerene polyhedral structures were observed to be the same as those for arc-evaporation produced nanoaggregates. Nanoparticle aggregation or the occurrence of carbon nanoforms always occurred as aggregates with nominal sizes ranging from about 0.5 μm to 1.5 μm

  8. Effect of dielectronic recombination on the charge-state distribution and soft X-ray line intensity of laser-produced carbon plasma

    Indian Academy of Sciences (India)

    A Chowdhury; G P Gupta; P A Naik; P D Gupta

    2005-01-01

    The effect of dielectronic recombination in determining charge-state distribution and radiative emission from a laser-produced carbon plasma has been investigated in the collisional radiative ionization equilibrium. It is observed that the relative abundances of different ions in the plasma, and soft X-ray emission intensity get significantly altered when dielectronic recombination is included. Theoretical estimates of the relative population of CVI to CV ions and ratio of line intensity emitted from them for two representative formulations of dielectronic recombination are presented.

  9. Temperature dependence of charge carrier generation in organic photovoltaics.

    Science.gov (United States)

    Gao, Feng; Tress, Wolfgang; Wang, Jianpu; Inganäs, Olle

    2015-03-27

    The charge generation mechanism in organic photovoltaics is a fundamental yet heavily debated issue. All the generated charges recombine at the open-circuit voltage (V_{OC}), so that investigation of recombined charges at V_{OC} provides a unique approach to understanding charge generation. At low temperatures, we observe a decrease of V_{OC}, which is attributed to reduced charge separation. Comparison between benchmark polymer:fullerene and polymer:polymer blends highlights the critical role of charge delocalization in charge separation and emphasizes the importance of entropy in charge generation. PMID:25860774

  10. Electron capture by fluorinated fullerene anions in collisions with Xe atoms

    DEFF Research Database (Denmark)

    Boltalina, OV; Hvelplund, P; Jørgensen, Thomas J. D.;

    2000-01-01

    Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18produced in either a plasma or an electrospray ion source hits been studied in collisions with Xe atoms, The relative importance of nondissociative vs dissociative electron capture was found to depend strongly on the ion pro...... production method and on the number of attached F atoms. The absolute size of the cross section similar to 10(-16) cm(2) has been modeled within the over-the-barrier model......Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18produced in either a plasma or an electrospray ion source hits been studied in collisions with Xe atoms, The relative importance of nondissociative vs dissociative electron capture was found to depend strongly on the ion...

  11. Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions

    OpenAIRE

    Andelkovic, Z.; Cazan, R.; Nörtershäuser, W.(Institut für Kernchemie, Universität Mainz, D-55128 Mainz, Germany); Bharadia, S.; Segal, D. M.; Thompson, R. C.; Jöhren, R. (Raphael); Vollbrecht, J.; Hannen, V.; M. Vogel

    2012-01-01

    We have performed laser cooling of Mg ions confined in a Penning trap. The externally produced ions were captured in flight, stored and laser cooled. Laser-induced fluorescence was observed perpendicular to the cooling laser axis. Optical detection down to the single ion level together with electronic detection of the ion oscillations inside the Penning trap have been used to acquire information on the ion storage time, ion number and ion temperature. Evidence for formation of ion crystals ha...

  12. Measurement of topological muonic branching ratios of charmed hadrons produced in neutrino-induced charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Oldeman, R G C; Güler, M; Köse, U; Tolun, P; Catanesi, M G; Muciaccia, M T; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Artamonov, A V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Myanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Scotto-Lavina, L; Strolin, P; Tioukov, V; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2005-01-01

    From 1994 to 1997, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events based on the data acquired by new automatic scanning systems, 2013 charm-decay events were selected by a pattern recognition program. They were confirmed as decays through visual inspection. Based on these events, the effective branching ratio of charmed particles into muons was determined to be Bμ = [7.3 ± 0.8 (stat) ± 0.2 (syst)] × 10âˆ'2. In addition, the muonic branching ratios are presented for dominating charm decay topologies. Normalization of the muonic decays to chargedcurrent interactions provides _μâˆ'μ+/_cc = [3.16 ± 0.34 (stat) ± 0.09 (syst)] × 10âˆ'3. Selecting only events with visible energy greater than 30 GeV gives a value of Bμ that is less affected by the charm production threshold ...

  13. Generation, Characterization and Applications of Fullerenes

    Science.gov (United States)

    Liu, Shengzhong

    A contact-arc sputtering configuration has been adopted and optimized in order to generate fullerene-containing soot. Several stages of design improvements have made our equipment more effective in terms of yield and production rate. Upon modification of Wudl's Soxhlet separation procedure, we have been able to significantly speed up C_ {60} separation and higher fullerene enrichment. At least ten more separable HPLC peaks after C_ {84} have been observed for the first time. Preliminary laser desorption time of flight mass spectra suggest that our enriched higher fullerene sample possibly contains, C_{86}, C_{88}, C_ {90}, C_{92} , C_{94} and C _{96} in addition to the previously isolated smaller fullerenes C_ {60}, C_{70} , C_{76}, C _{78}(D_2), C_{78}(C_ {rm 2v}) and C_{84 }. Among these, C_{86 }, C_{88}, C_{92} show up for the first time in separable amounts and the controversial species --C_{94} appears present too. HPLC has been successfully used for high fullerene separation, pure C_{76}, C_{84} samples so far having been obtained. Fullerene decomposition (especially of higher fullerenes) in the column has been clearly identified. We defined HPLC peaks indicate that the oxidation process may follow certain "well defined" routes. A yellow epoxide band containing various oxides of C_{60 } has been extracted and characterized using mass spectrometry. Characterizations of pure C _{60} and C_{70 } include HPLC, mass spectrometry, vibrational IR and Raman spectroscopy, STM, TEM etc. Our Raman measurements completed the full assignment of C_{60 } fundamental modes and supplied more structural information on C_{70}. STM imaging supplied clear pictures of both C_ {60} and C_{70} molecular topologies. Especially for C _{70}, both the long and the short axes of the molecule have been clearly resolved. TEM observations involving imaging, diffraction and electron energy loss spectroscopy of crystalline C_{60} and C_{70} were performed. The room temperature lattice

  14. Evidence for fullerene in a coal of Yunnan, Southwestern China

    International Nuclear Information System (INIS)

    In two types of coal from a coal mine in Yunnan Province, Southwestern China, the presence of fullerene is confirmed. The fullerene had been suggested earlier by its characteristic infrared absorption spectrum. The present work reports verification by a high performance liquid chromatograph. A critical step leading to the confirmation is in the process of preparation of the liquid solution from the coal for chromatography and this is described. Possible conditions for the search of natural fullerenes are suggested. (orig.)

  15. A poly(p-phenylene ethynylene vinylene) with pendant fullerenes

    OpenAIRE

    Marcos Ramos, A.; Rispens, M.T; Hummelen, J.C.; Janssen, R. A. J.

    2001-01-01

    In order to obtain a predefined nanoscopic phase segregation of semiconducting polymers and fullerenes for application in photovoltaic devices we have prepared a conjugated polymer with dangling fullerenes. For this purpose an oligo(p-phenylene vinylene) with acetylene end groups has been polymerized with a diiodo-aryl-fullerene derivative via a Pd-catalyzed coupling reaction. Photoinduced absorption (PIA) and photoluminescence spectra give evidence of a photoinduced electron transfer in this...

  16. Using water-soluble C60 fullerenes in anticancer therapy

    OpenAIRE

    Prylutska, S. V.; Burlaka, A. P.; Klymenko, P. P.; Grynyuk, I. I.; Prylutskyy, Yu I.; Schütze, Ch.; Ritter, U.

    2011-01-01

    Growth experiments of transplanted malignant tumors in the presence of water-soluble C60 fullerenes were performed on groups of mice. It was found that C60 fullerenes efficiently inhibit the growth of transplanted malignant tumors. This behavior can be explained through their high antioxidant activity and the blocking of the specific cell receptors (for example, endothelial growth factor). The findings demonstrate the possibility of using C60 fullerenes in anticancer therapy.

  17. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    OpenAIRE

    Reshef Tenne; Enyashin, Andrey N.

    2014-01-01

    Fullerene-like nanoparticles (inorganic fullerenes; IF) and nanotubes of inorganic layered compounds (inorganic nanotubes; INT) combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects...

  18. Surface chemical modification of fullerene by mechanochemical treatment

    International Nuclear Information System (INIS)

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C60 after surface functionalization.

  19. On the excitation and formation of circumstellar fullerenes

    OpenAIRE

    Bernard-Salas, J.; Cami, J.; E. Peeters; Jones, A.P.; Micelotta, E. R.; Groenewegen, M. A. T.

    2012-01-01

    We compare and analyze the Spitzer mid-infrared spectrum of three fullerene-rich planetary nebulae in the Milky Way and the Magellanic Clouds; Tc1, SMP SMC 16, and SMP LMC 56. The three planetary nebulae share many spectroscopic similarities. The strongest circumstellar emission bands correspond to the infrared active vibrational modes of the fullerene species C60 and little or no emission is present from Polycyclic Aromatic Hydrocarbons (PAHs). The strength of the fullerene bands in the thre...

  20. The Use of Solar Energy for the Production of Fullerenes and Porous Silicon

    OpenAIRE

    Laplaze, D.; Bernier, P.; Journet, C.; Sauvajol, J.; Bormann, D.; G. Flamant; Lebrun, M

    1997-01-01

    We have previously shown that the high intensity of solar radiation, obtained with the Odeillo (France) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere and to produce fullerenes. After a short survey of the vaporization-condensation method used here, we discuss some of the mechanisms of formation of these molecules and the possibility of increasing the yield, which currently reaches 20%. This technique which presents substantial advantages (use of powders, s...

  1. NOVEL SYNTHESIS AND CHARACTERIZATION OF INORGANIC FULLERENE TYPE WS2 AND GRAPHENE HYBRIDS

    OpenAIRE

    Maxson, Ashley R.

    2013-01-01

    Approved for public release; distribution is unlimited With the aim to develop personal protection systems with improved mechanical properties and reduced weight, this research combined graphene with tungsten disulfide, and studied this hybrid system included in epoxy resin. A novel plasma production process generated nanometric size tungsten oxide (WO3) spherical particles. The nanospheres were sulfurized to produce inorganic-fullerene type tungsten disulfide (IF-WS2). The plasma IF-WS2 p...

  2. Growth of thin fullerene films by Matrix Assisted Pulsed Laser Evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was di-rected onto a frozen target...... favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal contamination....

  3. Biomedical applications of functionalized fullerene-based nanomaterials

    Directory of Open Access Journals (Sweden)

    Ranga Partha

    2009-11-01

    Full Text Available Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullerenes in the diagnosis and therapy of human diseases. Functionalized fullerenes are one of the many different classes of compounds that are currently being investigated in the rapidly emerging field of nanomedicine. In this review, the focus is on the three categories of drug delivery, reactive oxygen species quenching, and targeted imaging for which functionalized fullerenes have been studied in depth. In addition, an exhaustive list of the different classes of functionalized fullerenes along with their applications is provided. We will also discuss and summarize the unique approaches, mechanisms, advantages, and the aspect of toxicity behind utilizing functionalized fullerenes for biomedical applications.Keywords: fullerenes, functionalized fullerenes, nanomedicine, drug delivery, buckysomes, radiation protection

  4. A search for hydrogenated fullerenes in fullerene-containing planetary nebulae

    CERN Document Server

    Díaz-Luis, J J; Manchado, A; Cataldo, F

    2016-01-01

    Detections of C60 and C70 fullerenes in planetary nebulae (PNe) of the Magellanic Clouds and of our own Galaxy have raised the idea that other forms of carbon such as hydrogenated fullerenes (fulleranes like C60H36 and C60H18), buckyonions, and carbon nanotubes, may be widespread in the Universe. Here we present VLT/ISAAC spectra (R ~600) in the 2.9-4.1 microns spectral region for the Galactic PNe Tc 1 and M 1-20, which have been used to search for fullerene-based molecules in their fullerene-rich circumstellar environments. We report the non-detection of the most intense infrared bands of several fulleranes around ~3.4-3.6 microns in both PNe. We conclude that if fulleranes are present in the fullerene-containing circumstellar environments of these PNe, then they seem to be by far less abundant than C60 and C70. Our non-detections together with the (tentative) fulleranes detection in the proto-PN IRAS 01005+7910 suggest that fulleranes may be formed in the short transition phase between AGB stars and PNe but...

  5. Supramolecular solubilization of fullerenes and radio-fullerenes in aqueous media

    International Nuclear Information System (INIS)

    In this paper we are dealing with the supramolecular complexation of fullerenes C60, C70, some functionalized fullerenes and of the dumbbell structured C120 dimer, with two host molecules, namely γ-cyclo-dextrin (GCD), and sulfocalix[8]arene in order to make them soluble in water. Previous investigations by others have shown that the reactions of some mentioned fullerenes and cyclo-dextrins and calixarenes are very slow and tedious in liquid phase as a result of solvatation effects. That we have decided to pursue the supramolecular complexation as solid-solid reactions by using mechanochemical activation in a ball mill. A mechanochemical treatment was used to enhance chemical reactivity in solid-solid reactions in which GCD give a complex with the C60 as 2:1 host-guest complex. The calix[8]arene complex with C60 molecule has been prepared. The sulfonated form of the host is well soluble in water. Endohedral radio-fullerenes of the XandC60 type (where *X is a rare gas, e.g. Ar, Xe, Kr, radionuclide) were prepared by nuclear recoil after neutron irradiation, a method developed by the author The endohedrally labelled fullerenes were then mechanochemically complexed into a labelled supramolecular complex with cyclo-dextrin and calixarene hosts. (author)

  6. A search for hydrogenated fullerenes in fullerene-containing planetary nebulae

    Science.gov (United States)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; Cataldo, F.

    2016-05-01

    Detections of C60 and C70 fullerenes in planetary nebulae (PNe) of the Magellanic Clouds and of our own Galaxy have raised the idea that other forms of carbon, such as hydrogenated fullerenes (fulleranes like C60H36 and C60H18), buckyonions, and carbon nanotubes, may be widespread in the Universe. Here we present VLT/ISAAC spectra (R ~ 600) in the 2.9-4.1 μm spectral region for the Galactic PNe Tc 1 and M 1-20, which have been used to search for fullerene-based molecules in their fullerene-rich circumstellar environments. We report the non-detection of the most intense infrared bands of several fulleranes around ~3.4-3.6 μm in both PNe. We conclude that if fulleranes are present in the fullerene-containing circumstellar environments of these PNe, then they seem to be much less abundant than C60 and C70. Our non-detections, together with the (tentative) fulleranes detection in the proto-PN IRAS 01005+7910, suggest that fulleranes may be formed in the short transition phase between AGB stars and PNe, but they are quickly destroyed by the UV radiation field from the central star.

  7. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze;

    2016-01-01

    these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll......-coating fabrication procedures for flexible OSCs based on non-fullerene acceptors with the PCE exceeding 2%. The fullerene-free OSCs exhibited better dark storage stability than the fullerene-based control devices....

  8. Higher fullerenes : isolation, halogenation and structural studies

    OpenAIRE

    Simeonov, Kalin

    2009-01-01

    The present work might formally be subdivided into two sections. Within the frames of the first section, the chromatographic methods, systems and techniques used in obtaining of isomerically pure fullerene species in preparative amounts are widely discussed. The following eleven fullerene isomers have been obtained in bulk amounts: D2-C76(1), D3-C78(1), C2v-C78(2), C2v-C78(3), D3h-C78(5), D2-C80(2), a C2-C82, a C2-C84, Cs-C84(14), a D2-C84 and a D2d-C84. Among these, D3h-C78(5) has been isola...

  9. Interaction between fullerene-wheeled nanocar and gold substrate: A DFT study

    Science.gov (United States)

    Ahangari, M. Ghorbanzadeh; Ganji, M. Darvish; Jalali, A.

    2016-09-01

    Since the successful synthesis of nanocar and its surprising movement on the gold surface, several theoretical investigations have been devoted to explain the interaction properties as well as its movement mechanism on the substrate. All of them failed, however, to gain a clear theoretical insight into the respected challenges because of the weak computational methods implemented for this complex system including heavy metal atoms and giant size of the whole system. In this work, we have investigated the adsorption of fullerene-wheeled nanocar onto a Au (1 1 1) substrate using the comprehensive first-principles density functional theory (DFT) simulations. The binding energy between the nanocar and Au (1 1 1) surface was determined to be -9.43 eV (-217.45 kcal/mol). The net charge transfer from the nanocar to the gold substrate was calculated to be about 9.56 electrons. Furthermore, the equilibrium distances between the Au surface and the C60 molecule and nanocar chassis were estimated to be 2.20 Å and 2.30 Å, respectively. The BSSE correction was also considered in the binding energy estimation and the result show that the BSSE correction significantly affects the calculated binding energy for such systems. Finally, we have performed ab initio molecular dynamics simulation for a single C60 fullerene on the gold surface at room temperature. Our first-principles result shows that ambient condition affect remarkably on the adsorption property of fullerene on the gold surface. We also observed that the C60 fullerene wheel slips by approximately 3.90 Å within 5 ps of simulation time at 300 K.

  10. Fullerene in aqueous medium: good redox mediator

    Czech Academy of Sciences Publication Activity Database

    Kocábová, Jana; Gál, Miroslav; Hromadová, Magdaléna; Pospíšil, Lubomír; Sokolová, Romana

    Lausanne : International Society of Electrochemistry, 2008. s04-P-10. ISBN -. [The Annual Meeting of the International Society of Electrochemistry, Symposium S04 – Molecular Electrochemistry /59./. 07.09.2008-12.09.2008, Seville] R&D Projects: GA AV ČR IAA400400505; GA MŠk OC 140; GA AV ČR KJB400400603; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : fullerenes * gamma- cyclodextrin * electrochemistry Subject RIV: CG - Electrochemistry

  11. Fullerenes surface gratings for liquid crystal alignment

    International Nuclear Information System (INIS)

    We report on the formation of surface structures by photopolymerization of C60 and C70 in isotropic solutions. The structures show the same periodicity of the interference patterns used for photopolymerization and behave as diffraction gratings. Mass spectrometry confirmed that the deposited material contains polymerized fullerenes, while the structure of the deposit was investigated by atomic force microscopy. We have also shown that these periodic structures are useful for inducing mesophase orientation

  12. Search for electroweakly produced supersymmetric particles in final states including two charged leptons with the ATLAS experiment at the LHC

    CERN Document Server

    Wittkowski, Josephine

    Three analyses searching for electroweakly produced supersymmetric particles in proton-proton collisions are presented. The collisions were recorded by the ATLAS experiment at the Large Hadron Collider. Two leptons (electrons or muons), jets and missing transverse energy are expected in the final states. Simplified models as well as the phenomenological Minimal Supersymmetric Standard Model (pMSSM) are used to study the production and decay of pairs of gauginos, i.e. charginos and neutralinos. The first analysis is performed with an integrated luminosity of 4.7 fb^-1 of ATLAS data, recorded in 2011 at a centre-of-mass energy of sqrt(s) = 7 TeV. Direct slepton production and three scenarios in which pairs of gauginos decay via intermediate sleptons are addressed. Particular attention is paid to the trigger strategy. No excess is observed in the number of data events. In the simplified model that assumes the direct slepton production, left-handed slepton masses between 85 and 195 GeV are excluded at 95% confide...

  13. Ultrafast photophysics of pi-conjugated polymers and polythiophene/fullerene blends for organic photovoltaic applications

    Science.gov (United States)

    Singh, Sanjeev

    The present work reports studies of the ultrafast photoexcitations in various pristine n-conjugated polymers as well as compounds of polythiophene/fullerene blends, which act as the active layer of donor/acceptor in organic photovoltaic applications. The main technique used is the ultrafast (˜150 fs) transient photomodulation (PM) spectroscopy in the range of 0.25 to 2.5 eV using two different laser systems. In addition, two-photon-absorption and electroabsorption have also been complementary used. In organic photovoltaic studies, two different donor polymers namely, Regio-Regular-poly(3-hexylthiophene) (RR-P3HT) that forms lamellae, and Regio-Random-poly(3-hexylthiophene) (RRa-P3HT) that forms lamellae with lesser extent have been compared. The transient PM measurement of the most efficient RR-P3HT/fullerene blend shows that the decay of exciton does not result in the generation of polarons in the donor and acceptor materials, as assumed by the present model of charge dissociation in photovoltaic devices. On the contrary, the decay of exciton fits very well to the build-up of charge-transfer (CT) state in the fullerene phase, which indicates the migration of the photoexcited exciton in the polymer phase to the fullerene nano-domains. The transient PM measurement of RRa-P3HT/fullerene blend, which does not form phase-separated nano-domains, shows the formation of a CT state at the interface following by ultrafast geminate recombination. The transient PM measurement of poly(phenylene-vinylene) (PPV) derivatives show that in 2-methoxy-5-(2'-ethylhexyloxy) PPV (MEH-PPV) film there are two kinds of primary photoexcitations, namely, intrachain exciton and excimer, but only intra-chain exciton in other PPV derivative polymers. Furthermore the high-pressure study of MEHPPV film shows two kinds of polymer chain orders: isolated-chains and closely packed-chains. The high pressure mainly affects photoexcited excimers in the closely packed-chains. In contrast there is no

  14. Fullerene and fullerites. New modern materials

    International Nuclear Information System (INIS)

    The discovery of a new form of pure carbon - giant molecules called fullerenes and subsequently of a new crystalline form of carbon - fullerite crystals - has been a full-scale scientific boom over the past few years. Hundreds of laboratories all over the world are being engaged in synthesizing and studying fullerenes and fullerites and their derivatives, the number of publications amounts to two thousand, and the rate and scope of researches goes on growing. This report is not a scientific review and it is not my aim to establish scientific priorities. This is rather a popular lecture that better fits in with the spirit of this session. In view of this, not to overburden my report, I shall not make individual references in the text and figures since, to be exact and consistent, the number of such references must be very large. At the end of my lecture I shall give references to several recent very good reviews devoted to individual problems of fullerene physics and chemistry. The reader will find the necessary references to originals in these reviews. (orig.)

  15. Response to light charged particles and heavy ions of thin, large area ΔE strip detectors produced by the PPPP process

    International Nuclear Information System (INIS)

    Large area thin strip detectors with build-in electric field are among possible choices to provide radiation-hard detectors for future high-energy physics experiments and heavy ion applications. Among the advantages of thin detectors with build in field are the very low detector bias voltage and reduced material cost. A new technology for silicon detector production called Planar Process Partially Performed on the Thin Silicon Membrane (PPPP process) is described. Using this method the transmission ΔE, 52 and 22μm thick strip detectors operated at 5V bias potential were produced and tested. The n--n+ structures produced by about 50μm of high resistivity (2000Ωcm) layer epitaxially grown on 400μm of low resistivity substrate were used for the detector construction. The n--n+ wafers were manufactured in the Institute of Electronic Materials Technology. The detectors performance as E-ΔE telescopes (associated with an independent 400μmE detector) was tested using the light charged particles from the reaction 12C(14N,X) and heavy ions (Li, Be, B, C, N) produced in the 9B(14N,X) reaction at 89.6MeV beam energy. An energy resolution of the ΔE detector measured with the 6.05 and 6.09MeV α-particles from 212Bi was about 110keV. This paper describes the new technological approach used for fabrication of the devices and reports some results from light charged particles and heavy ion measurements

  16. Carbon nanostructures produced through ion irradiation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several nanostructures we produced by ion irradiation have been reviewed in this paper. By using ions to irradiate two ultrahigh molecular weight polyethylene targets respectively, it was found that small fullerenes C20 and C26 were grown, adding two members to the fullerene family. Meanwhile, crystalline diamonds also have been produced by Ar+ ions irradiation of graphite. In the experiment of double ions Ni+ and Ar+ irradiation, nanoscale argon bubbles formed. On the other side, when multi-wall carbon nanotubes were irradiated by C+, many MWCNTs evolved to amorphous carbon nanowires and amorphous carbon nanotubes. And there are possible welding in the crossed nanotubes.

  17. Applications of Anti/Prooxidant Fullerenes in Nanomedicine along with Fullerenes Influence on the Immune System

    Directory of Open Access Journals (Sweden)

    Danijela Petrovic

    2015-01-01

    Full Text Available Fullerenes are molecules that, due to their unique structure, have very specific chemical properties which offer them very wide array of applications in nanomedicine. The most prominent are protection from radiation-induced injury, neuroprotection, drug and gene delivery, anticancer therapy, adjuvant within different treatments, photosensitizing, sonosensitizing, bone reparation, and biosensing. However, it is of crucial importance to be elucidated how fullerenes immunomodulate human system of defense. In addition, the most current research, merging immunology and nanomedicine, results in development of nanovaccines, which may represent the milestone of future treatment of diseases.

  18. Redox potentials and binding enhancement of fullerene and fullerene-cyclodextrin systems in water and dimethylsulfoxide

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Hromadová, Magdaléna; Gál, Miroslav; Kocábová, Jana; Sokolová, Romana; Filippone, S.; Yang, J.; Guan, Z.; Rassat, A.; Zhang, Y.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 153-162. ISSN 0008-6223 R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA ČR GP203/09/P502; GA MŠk LC510; GA MŠk ME09114; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerenes * fullerene- cyclodextrin systems Subject RIV: CG - Electrochemistry Impact factor: 4.893, year: 2010

  19. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    Science.gov (United States)

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1). PMID:27324274

  20. Nanotribological performance of fullerene-like carbon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico); Chiñas-Castillo, Fernando, E-mail: fernandochinas@gmail.com [Department of Mechanical Engineering, Instituto Tecnológico de Oaxaca, Oaxaca, Oax. Calz. Tecnológico No. 125, CP. 68030, Oaxaca, Oax. (Mexico); Espinoza-Beltrán, Francisco Javier [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico)

    2014-09-30

    Highlights: • Fullerene-like CNx samples show an elastic recovery of 92.5% and 94.5% while amorphous CNx samples had only 75% elastic recovery. • Fullerene-like CNx films show an increment of 34.86% and 50.57% in fractions of C 1s and N 1s. • Fullerene-like CNx samples show a lower friction coefficient compared to amorphous CNx samples. • Friction reduction characteristics of fullerene-like CNx films are strongly related to the increase of sp{sup 3} CN bonds. - Abstract: Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009–0.022) that is lower than amorphous CNx films (CoF ∼ 0.028–0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp{sup 3} CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  1. Synthesis and Characterization of [60]Fullerene Ferrocenylmethyl Derivatives

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two new [60]fullerene ferrocenylmethyl derivatives have been prepared via different approaches and characterized by UV-Vis、 FT-IR、 NMR、 FAB-MS spectra and VPO. The second approach , i.e reacting fullerene with ferrocenylmethyl azide directly, was never reported as yet.

  2. Fullerenes and Noble Gases in the Murchison and Allende Meteorites

    Science.gov (United States)

    Becker, Luann; Poreda, Robert J.; Bunch, Ted E.

    2000-01-01

    In this work we report the detection of fullerenes (C60 to C250) in the Murchison and Allende meteorites. By exploiting the unique ability of these molecules to trap noble gases, we have determined that fullerene is indeed a new carrier phase for noble gases in meteorites.

  3. New Penta(tetrathiafulvalenyl)[60]fullerenes for Supramolecular Materials.

    Science.gov (United States)

    Busseau, Antoine; Villegas, Carmen; Dabos-Seignon, Sylvie; Cabanetos, Clément; Hudhomme, Piétrick; Legoupy, Stéphanie

    2016-06-13

    New penta(organo)fullerenes donor-acceptor systems bearing five tetrathiafulvalene recognition units have been synthesized to promote self-assemblies similar in appearance to shuttlecocks nested into each other thanks to the conical host cavity created around the fullerene together with the π-π and electronic interactions. PMID:27061313

  4. In vivo biology and toxicology of fullerenes and their derivatives

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup;

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme...

  5. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    Science.gov (United States)

    Saidi, Wissam A.; Norman, Patrick

    2016-07-01

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  6. Development of a semiconductor counter telescope with low background for the investigations of charged particles produced in reactions induced by neutrons

    International Nuclear Information System (INIS)

    A AE-E counter telescope for charged particles (p, d, t) produced in reactions with neutrons has been constructed. The semiconductor counter telescope method allows the investigations of two and three-body reactions 6Li(n,p), D(n,np)n induced by 14 MeV neutrons. By using a coincidence of associated alpha particle pulses with those (δE,E) in the telescope, the background is considerably reduced for all angles outside the coincidence cone, i.e. larger than 15 deg. (L). For forward angles, the same telescope (δE2/E) plus a thin semiconductor (δE1) allows keeping a low background. The multiparameter analysing method (δE1, δE2, E) from the experimental range-energy data gives a linearity, an efficiency and an identifying power which are satisfactory. The identification is performed by differed time on a IBM 7044 computer. (author)

  7. The role of fullerene shell upon stuffed atom polarization potential

    Science.gov (United States)

    Amusia, Miron; Chernysheva, Larissa

    2016-05-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering upon endohedrals that are formed when Ne and Ar atom are stuffed inside fullerene C60. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the endohedrals polarization potential. By applying this approach, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential. Using concrete examples we have demonstrated that the elastic scattering of electrons upon endohedrals is an entirely quantum mechanical process, where addition of even a single atom can qualitatively alter the multi-particle cross-section.

  8. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  9. Effects of Germanium Tetrabromide Addition to Zinc Tetraphenyl Porphyrin / Fullerene Bulk Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Atsushi Suzuki

    2014-03-01

    Full Text Available The effects of germanium tetrabromide addition to tetraphenyl porphyrin zinc (Zn-TPP/fullerene (C60 bulk heterojunction solar cells were characterized. The light-induced charge separation and charge transfer were investigated by current density and optical absorption. Addition of germanium tetrabromide inserted into active layer of Zn-TPP/C60 as bulk heterojunction had a positive effect on the photovoltaic and optical properties. The photovoltaic mechanism of the solar cells was discussed by experimental results. The photovoltaic performance was due to light-induced exciton promoted by insert of GeBr4 and charge transfer from HOMO of Zn-TPP to LUMO of C60 in the active layer.

  10. Endohedral fullerenes: a concurrent characterization by means of synchrotron radiation X-ray and IR spectroscopy

    Science.gov (United States)

    Xu, Wei; Marcelli, Augusto; Liu, Lei; Wang, Chunru; Wu, Ziyu

    2013-04-01

    Endohedral Metal Fullerenes exhibit a great variety of physical and chemical properties depending on the metal inserted into the cage. These systems are molecular conductors, magnets, ferroelectrics and also superconductors representing extremely promising materials for advanced technologies such as nano-medicine. Here we present temperature-dependent XANES and FTIR investigations of two La@C82 EMF isomers. The combinatorial investigation shows that guest ions move inside the cage perturbing the vibrational states of the carbon cage due to the charge transfer dynamics. Moreover, the principal component analysis points out a discrepancy between temperature-dependent FTIR and XANES based on the occurrence of a non-equilibrium process between charge transfer and cage dynamics. We propose to perform simultaneous time-resolved X-ray and infrared spectroscopy studies to resolve the complex interplay among charge, structure and electric properties of these systems.

  11. Ultrafast carrier photogeneration dynamics in polymer: fullerene solar cells probed by photocurrent-detected two-dimensional coherence spectroscopy (Presentation Recording)

    Science.gov (United States)

    Silva, Carlos

    2015-08-01

    In solar cells that incorporate semiconductor polymers as electron donors and fullerene derivatives as acceptors, a number of reports based on ultrafast optical probes reveal that charges can be generated on timescales significantly faster than ~100 fs in certain solid-state microstructures. Techniques that have been applied in these studies include variants of visible transient absorption and photoluminescence spectroscopy, terahertz spectroscopy, time-resolved infrared spectroscopy, and femtosecond stimulated Raman spectroscopy. These probes allow measurement of population dynamics of relevant photoexcitations (excitons, polarons) but do not reveal directly how these interact to produce photocarriers. Here, we present a non-linear coherent spectroscopy, photocurrent-detected two-dimensional spectroscopy (2DPC), which is an ultrafast optical thechnique belonging to a family of 2D Fourier- domain spectroscopies that allows measurement of correlations between optical transitions induced by short optical pulses. In our implementation, spectral correlations are detected via the time-integrated photocurrent produced in a photovoltaic diode. Four collinear ultrashort laser pulses (10 fs, centered at 600 nm in our experimental setup) excite the semiconductor polymer in the solar cell, with a variable delay that is independently controlled between each pulse in the sequence. Each pulse separately excites a quantum wavepacket with spectral phase and amplitude imparted by that pulse, while the effect of the pulse sequence is to collectively excite multiple quantum coherences. Interferences between the various combinations of the wavepackets determine linear and non-linear contributions to the material optical response. The fourth-order signal terms of the detected photocurrent are read using phase-sensitive detection schemes with reference waveforms corresponding to a modulation of specific phase combinations of the four femtosecond excitation pulses. By scanning the time

  12. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Yaowen; Zhao, Yue; Chen, Qi; Yang, Yang Michael; Liu, Yongsheng; Hong, Ziruo; Liu, Zonghao; Hsieh, Yao-Tsung; Meng, Lei; Li, Yongfang; Yang, Yang

    2015-12-16

    In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells. PMID:26592525

  13. CHARACTERIZATION OF FULLERENE DERIVATIVES BY MALDI LIFT-TOF/TOF MASS SPECTROMETRY

    OpenAIRE

    PIOTROVSKY L.B.; MILMAN B.L.; NIKOLAEV D.N.; LUGOVKINA N.V.; LITASOVA E.V.; DUMPIS M.A.

    2014-01-01

    MALDI LIFT-TOF/TOF mass spectra of fullerene C 60 and six of its derivatives, methano[60]fullerene carboxylic acid, its ethyl ester, diethyl methano[60]fullerene dicarboxylate, and three isomeric tetraethyl bis-methano[60]fullerene tetracarboxylates (compounds I-VII, respectively) as model analytes were recorded and discussed. This technique used in mass spectrometry for the first time is proposed for the characterization, structure elucidation, and non-target screening of fullerenes.

  14. Fullerenes as alternative acceptors by transfer doping of diamond surfaces; Fullerene als alternative Akzeptoren bei der Transferdotierung von Diamantoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Paul

    2008-06-06

    The topic of this thesis is the fullerene induced surface conductivity on hydrogen terminated diamond. A systematic investigation of C{sub 60}, C{sub 60}F{sub 18}, C{sub 60}F{sub 36} and C{sub 60}F{sub 48} as transfer dopants on hydrogenated diamond has been performed. For C{sub 60}, the doping mechanism is more accurately described as a charge exchange in an extreme type II heterojunction. On the other hand a molecular surface acceptor model that takes the degeneracy of holes and the electric field caused by charge separation into account has been performed for the case of C{sub 60}F{sub 48} in excellent agreement with experimental results. Using in situ Hall Effect measurements of air, C{sub 60}, and C{sub 60}F{sub 48} induced conductivity the sign of the charge carriers that dominate the transport properties was determined. At ambient temperature the hole mobility {mu} as a function of the induced charge carrier density p between p=5.10{sup 10} cm{sup -2} and p=3.10{sup 13} cm{sup -2} was measured. A maximum of the mobility of 130-150 cm{sup 2}V{sup -1}s{sup -1} occurs for p=2.10{sup 1} cm{sup -2}. Temperature dependent Hall measurements between 77 and 350 K show a non-activated, constant charge carrier density on all examinated samples, independently of the kind of adsorbates. On the other hand, both the conductivity and the mobility exhibit temperature dependence, varying with the charge carrier concentration. An essential part of this thesis addressed the investigation and the improvement of the thermal stability of the fullerene layers. In order to achieve the covalent attachment of C{sub 60}F{sub 48} to a hydrogen terminated diamond surface a process for controlled partially hydrolisation was developed. Functionalization with hydroxyl groups could be achieved by using a remote water vapour plasma at room temperature for a few seconds as demonstrated by photoelectron spectroscopy. Prolonged water plasma exposure, however, as well as annealing at temperatures

  15. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  16. Penning-trap Q-value determination of the 71Ga(ν,e−)71Ge reaction using threshold charge breeding of on-line produced isotopes

    International Nuclear Information System (INIS)

    We present a first direct Q-value measurement of the 71Ga(ν,e−)71Ge reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like 71Ga21+ and 71Ge22+ using isobar separation of the on-line produced mother and daughter nuclei through threshold charge breeding in an electron-beam ion trap. In addition, isoionic samples of 71Ga21+ and 71Ge21+ were stored concurrently in the Penning trap and provided a separate Q-value measurement. Both independent measurements result in a combined Q-value of 233.5±1.2 keV, which is in agreement with the previously accepted Q-value for the ν cross-section calculations. Together with a recent measurement of the ν-response from the excited states in 71Ge, we conclude that there are no further uncertainties in the nuclear structure, which could remove the persistent discrepancy between the SAGE and GALLEX calibration measurements performed with neutrinos from reactor-produced 51Cr and 37Ar sources and the theoretical expectation

  17. Is the 21-micron Feature Observed in Some Post-AGB Stars Caused by the Interaction Between Ti Atoms and Fullerenes?

    Science.gov (United States)

    Kimura, Yuki; Nuth, Joseph A. III; Ferguson, Frank T.

    2005-01-01

    Recent measurements of fullerenes and Ti atoms recorded in our laboratory have demonstrated the presence of an infrared feature near 21 pm. The feature observed has nearly the same shape and position as is observed for one of the most enigmatic features in post-asymptotic giant blanch (AGB) stars. In our experimental system large cage carbon particles, such as large fullerenes, were produced from CO gas by the Boudouard reaction. Large-cage carbon particles intermixed with Ti atoms were produced by the evaporation of a Ti metal wrapped carbon electrode in CO gas. The infrared spectra of large fullerenes interacting with Ti atoms show a characteristic feature at 20.3 micron that closely corresponds to the 20.1 micron feature observed in post-AGB stars. Both the lab- oratory and stellar spectra also show a small but significant peak at 19.0 micron, which is attributed to fullerenes. Here, we propose that the interaction between fullerenes and Ti atoms may be a plausible explanation for the 21-micron feature seen in some post-AGB stars.

  18. Water clusters confined in icosahedral fullerene cavities

    International Nuclear Information System (INIS)

    Graphical abstract: ■ Display Omitted Highlights: ► We model the interaction energy of water clusters confined in fullerene cavities. ► C60 and C180 are chosen as icosahedral cavities. ► The rigid TIP4P and flexible q-TIP4P/F water–water potentials are used. ► While C60 can confine exothermically only one water molecule, C180 does up to 17. ► New global minimum structures are reported for water clusters inside C180. - Abstract: Likely candidates for the global energy minima of endohedral (H2O)N-C60 and (H2O)N-C180, and exohedral (H2O)NC180 water–fullerene clusters with N ⩽ 20, are found using basin-hopping global optimization. The potential energy surfaces are constructed using both the rigid TIP4P and the flexible q-TIP4P/F potentials to model the water–water interaction, together with a Lennard–Jones potential for the water–fullerene interaction. In agreement with previous ab initio studies, we find that the small C60 cavity is able to encapsulate exothermically only one water molecule. On the other hand, the larger C180 cavity can encapsulate up to 17 water molecules exothermically. This threshold value is higher than that reported in a previous ab initio study (N ⩽ 12). New confined water cluster structures are found. One which is particularly interesting is the structure of (H2O)14-C180, with the water molecules forming an internal cage in which six oxygen atoms are located at the vertices of an almost regular octahedron and the eight remaining ones lie on top of the octahedron faces. For N ⩾ 15 one water molecule is always present at the center of the water cage, which is distorted to accommodate the extra molecules.

  19. Inhibition of DNA restrictive endonucleases by aqueous nanoparticle suspension of methanophosphonate fullerene derivatives and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aqueous nanoparticle suspension of fullerene and its derivatives are currently attracting much attention. To determine the effects of aqueous nanoparticle suspension of a mono-methanophosphonate fullerene and bis-methanophosphonate fullerene (denoted as n-MMPF and n-BMPF, respectively) on the activities of DNA restrictive endonucleases, plasmid pEGFP-N1 was cleaved at a single but differently restrictive site by EcoR I, BamH I, and isozymes Cfr9 I and Xma I, respectively. Both n-MMPF and n-BMPF inhibited the activity of EcoR I, while n-BMPF exhibited stronger inhibition than n-MMPF. Addition of n-BMPF into reaction mixtures inhibited the activities of all the four enzymes, and IC50 values for EcoR I, BamH I, Cfr9 I and Xma I were 4.3, >30, 11.7 and 8.3 μmol/L, respectively. When EcoR I was completely inhibited by n-BMPF, addition of excess amounts of pEGFP-N1 could not produce the product linear plasmid; however, increase of EcoR I amounts antagonized EcoR I inhibition of n-BMPF. Two scavengers of reactive oxygen species (ROS), mannitol and sodium azide at the concentrations of 2-10 mmol/L, did not reverse inhibition of n-BMPF, implying that this inhibition probably is not correlated to ROS. These results suggested that aqueous nano-fullerenes might act as inhibitors of DNA restrictive endonucleases.

  20. Fullerene C60 in Aqueous Medium

    Czech Academy of Sciences Publication Activity Database

    Kocábová, Jana; Gál, Miroslav; Hromadová, Magdaléna; Kavan, Ladislav; Pospíšil, Lubomír; Sokolová, Romana

    Ústí nad Labem: BEST servis, 2010 - (Navrátil, T.; Barek, J.), s. 15-18 ISBN 978-80-254-6710-7. [Modern Electroanalytical Methods /30./. Jetřichovice (CZ), 24.05.2010-28.05.2010] R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA ČR GP203/09/P502; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : fullerene C60 * aqueous solution * electron transfer Subject RIV: CG - Electrochemistry

  1. FULLERENE POLYMERS WITH TUNABLE OPTICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    PENG Han; LEUNG Shukmei; TANG Benzhong

    1997-01-01

    Light transmission spectra of THF solutions of poly (C60-co-methyl methacrylate)s and poly(C60-co-styrene)s continuously red-shift with increasing concentration. Formation of fullerene nanoclusters may be responsible for the unusual spectral shift with concentration.It has long been scientists' dream to "tune" material's properties by simple means, and the C60-containing polymers represent such a group of novel materials whose optical properties are predictably and reversibly tunable by a simple change in concentration.

  2. Simple band model of doped fullerene crystal

    International Nuclear Information System (INIS)

    We used quantum billiard with many scattering centers to describe conducting electrons properties in AC60 crystals, where A denotes alkali metal. We focus our attention on the A3C60 crystal, for which we calculate the band structure, density of states, and conductivity for normal electrons. Conductivity shows linear dependence on temperature in this model, which agrees well with experimental data. We also discuss consequences of our results for superconductivity mechanism in A3C60 and possibilities of analogous approach to describe electron properties in fused fullerenes and multiply connected carbon clusters. (author)

  3. Oxygen intake in ion irradiated fullerene films

    International Nuclear Information System (INIS)

    The present work reports the change in the oxygen content in energetic ion irradiated fullerene films. The oxygen contents in irradiated films have been studied using on-line elastic recoil detection analysis (ERDA) and off-line X-ray photo electron emission (XPS) and nuclear reaction analysis (NRA) techniques. The XPS and NRA techniques show that the oxygen content increases with ion fluence, whereas on-line ERDA measurements reveal that the oxygen content decreases with ion fluence. These experiments give clear evidence that oxygen content in irradiated films increases after exposure to the atmospheric oxygen

  4. Electrochemical characterization of water soluble fullerenes

    Czech Academy of Sciences Publication Activity Database

    Kocábová, Jana; Gál, Miroslav; Hromadová, Magdaléna; Pospíšil, Lubomír

    Ústí nad Labem : Best Servis, 2009 - (Barek, J.; Navrátil, T.), s. 14-14 ISBN 978-80-254-3997-5. [Moderní elektrochemické metody /29./. Jetřichovice (CZ), 25.05.2009-29.05.2009] R&D Projects: GA AV ČR IAA400400505; GA AV ČR KJB400400603; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerenes * gamma- cyclodextrin Subject RIV: CG - Electrochemistry

  5. Engineering the physical parameters for continuous synthesis of fullerene peapods

    Science.gov (United States)

    Tiwari, Neeru; Pandey, Nayancee; Roy, Debmalya; Mukhopadhyay, K.; Eswara Prasad, N.

    2016-05-01

    Previous efforts to insert fullerenes into a carbon nanotube (CNT) involved the isolated synthesis of CNTs and fullerenes and then annealing CNTs and fullerenes together for encapsulation. We demonstrated the process for the continuous production of fullerene peapods inside the arc instrument by modifying the conventional arc ablation system, which can be repeated to obtain the desired mass scale product. Inside the arc discharge unit, by using the tunable external magnetic field, the double-walled CNTs (DWCNTs) were first synthesized and then directed to deposit onto the water cooled aluminium (Al) plate. The openings were created on DWCNTs by controlled heating of the Al plate and then fullerenes were synthesized and deposited on DWCNTs. In the arc instrument, fullerenes were finally directed to enter into DWCNTs from the defect sites by heating the Al plate in a vacuum. The formation of the peapod was established by the structure-property studies despite the huge deposition of metal catalyst nanoparticles and fullerenes on the surface of the nanotube which were a serious challenge for molecular level characterization of the grown peapod structures.

  6. Identification of a positive-Seebeck-coefficient exohedral fullerene.

    Science.gov (United States)

    Almutlaq, Nasser; Al-Galiby, Qusiy; Bailey, Steven; Lambert, Colin J

    2016-07-14

    If fullerene-based thermoelectricity is to become a viable technology, then fullerenes exhibiting both positive and negative Seebeck coefficients are needed. C60 is known to have a negative Seebeck coefficient and therefore in this paper we address the challenge of identifying a positive-Seebeck-coefficient fullerene. We investigated the thermoelectric properties of single-molecule junctions of the exohedral fullerene C50Cl10 connected to gold electrodes and found that it indeed possesses a positive Seebeck coefficient. Furthermore, in common with C60, the Seebeck coefficient can be increased by placing more than one C50Cl10 in series. For a single C50Cl10, we find S = +8 μV K(-1) and for two C50Cl10's in series we find S = +30 μV K(-1). We also find that the C50Cl10 monomer and dimer have power factors of 0.5 × 10(-5) W m(-1) K(-2) and 6.0 × 10(-5) W m(-1) K(-2) respectively. These results demonstrate that exohedral fullerenes provide a new class of thermoelectric materials with desirable properties, which complement those of all-carbon fullerenes, thereby enabling the boosting of the thermovoltage in all-fullerene tandem structures. PMID:27357101

  7. A semi-empirical concept for the calculation of electron-impact ionization cross sections of neutral and ionized fullerenes

    International Nuclear Information System (INIS)

    A semi-empirical approach to the calculation of cross section functions (absolute value and energy dependence) for the electron-impact ionization of several neutral and ionized fullerenes C60n+ (n =0-3) was developed, for which reliable experimental data have been reported. In particular, it is proposed a modification of the simplistic assumption that the ionization cross section of a cluster/fullerene is given as the product of the monomer ionization cross section and a factor ma, where 'm' is the number of monomers in the ensemble and 'a' is a constant. A comparison between these calculations and the available experimental data reveals good agreement for n = 0,103. In the case of ionization of C602+ (n = 2) the calculation lies significantly below the measured cross section which it was interpret as an indication that additional indirect ionization processes are present for this charge state. (nevyjel)

  8. Spectral, electrochemical, and photophysical studies of a magnesium porphyrin-fullerene dyad.

    Science.gov (United States)

    El-Khouly, Mohamed E; Araki, Yasuyuki; Ito, Osamu; Gadde, Suresh; McCarty, Amy L; Karr, Paul A; Zandler, Melvin E; D'Souza, Francis

    2005-09-01

    A covalently linked magnesium porphyrin-fullerene (MgPo-C60) dyad was synthesized and its spectral, electrochemical, molecular orbital, and photophysical properties were investigated and the results were compared to the earlier reported zinc porphyrin-fullerene (ZnPo-C60) dyad. The ab initio B3LYP/3-21G(*) computed geometry and electronic structure of the dyad predicted that the HOMO and LUMO are mainly localized on the MgP and C60 units, respectively. In o-dichlorobenzene containing 0.1 M (n-Bu)4NClO4, the synthesized dyad exhibited six one-electron reversible redox reactions within the potential window of the solvent. The oxidation and reduction potentials of the MgP and C60 units indicate stabilization of the charge-separated state. The emission, monitored by both steady-state and time-resolved techniques, revealed efficient quenching of the singlet excited state of the MgP and C60 units. The quenching pathway of the singlet excited MgP moiety involved energy transfer to the appended C60 moiety, generating the singlet excited C60 moiety, from which subsequent charge-separation occurred. The charge recombination rates, k(CR), evaluated from nanosecond transient absorption studies, were found to be 2-3 orders of magnitude smaller than the charge separation rate, k(CS). In o-dichlorobenzene, the lifetime of the radical ion-pair, MgPo*+-C60*-, was found to be 520 ns which is longer than that of ZnPo*+-C60*- indicating better charge stabilization in MgPo-C60. Additional prolongation of the lifetime of MgPo*+-C60*- was achieved by coordinating nitrogenous axial ligands. The solvent effect in controlling the rates of forward and reverse electron transfer is also investigated. PMID:16240027

  9. Fourth-rank hypermagnetizability of medium-size planar conjugated molecules and fullerene

    Science.gov (United States)

    Pagola, G. I.; Pelloni, S.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2005-09-01

    The fourth-rank hypermagnetizability tensor of a series of planar conjugated molecules—i.e., aromatic naphthalene, nonaromatic borazine, antiaromatic flattened cyclo-octatetraene, pentalene, indacene, and the 60-carbon fullerene,—has been evaluated at the coupled Hartree-Fock level of accuracy, within the conventional common-origin approach, via extended Gaussian basis sets. The theoretical predictions indicate that antiaromatic molecules are characterized by out-of-plane hypermagnetizability components much bigger than benzene’s. The fullerene cage has a hypermagnetizability exceeding that of planar aromatics by three orders of magnitude. However, the experimental determination of the hypermagnetizabilities constitutes a big challenge. Chemically substituted carbon clusters seem good candidates for detection of cubic magnetic response. Understanding of the calculated hypermagnetizabilities is eased by plots of the differential electron density induced by the applied field. It is found that a strong magnetic field perpendicular to the plane of antiaromatic molecules causes a distortion of the electron charge density, which tends to break C-C double bonds. This charge stretching has a dynamical origin and may be qualitatively explained as a feedback effect due to the Lorentz force acting on the electron current density.

  10. Fourth-rank hypermagnetizability of medium-size planar conjugated molecules and fullerene

    International Nuclear Information System (INIS)

    The fourth-rank hypermagnetizability tensor of a series of planar conjugated molecules--i.e., aromatic naphthalene, nonaromatic borazine, antiaromatic flattened cyclo-octatetraene, pentalene, indacene, and the 60-carbon fullerene,--has been evaluated at the coupled Hartree-Fock level of accuracy, within the conventional common-origin approach, via extended Gaussian basis sets. The theoretical predictions indicate that antiaromatic molecules are characterized by out-of-plane hypermagnetizability components much bigger than benzene's. The fullerene cage has a hypermagnetizability exceeding that of planar aromatics by three orders of magnitude. However, the experimental determination of the hypermagnetizabilities constitutes a big challenge. Chemically substituted carbon clusters seem good candidates for detection of cubic magnetic response. Understanding of the calculated hypermagnetizabilities is eased by plots of the differential electron density induced by the applied field. It is found that a strong magnetic field perpendicular to the plane of antiaromatic molecules causes a distortion of the electron charge density, which tends to break C-C double bonds. This charge stretching has a dynamical origin and may be qualitatively explained as a feedback effect due to the Lorentz force acting on the electron current density

  11. Topological edge properties of C60+12n fullerenes

    Directory of Open Access Journals (Sweden)

    A. Mottaghi

    2013-06-01

    Full Text Available A molecular graph M is a simple graph in which atoms and chemical bonds are the vertices and edges of M, respectively. The molecular graph M is called a fullerene graph, if M is the molecular graph of a fullerene molecule. It is well-known that such molecules exist for even integers n ≥ 24 or n = 20. The aim of this paper is to investigate the topological properties of a class of fullerene molecules containing 60 + 12n carbon atoms.

  12. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  13. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.;

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as...... computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  14. The planimetric unfold method of fullerene cage structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two kinds of planimetric diagrams, which consist of the boat form F6 and F5, the storm petrel form F6 and F5, respectively, were proposed to express the geometric structure of fullerene cage in this study. There are two chief advantages using the diagrams: (ⅰ) the spatial symmetrical characteristic of fullerene cage is not destroyed; (ⅱ) the coordination forms of F5 and F6 in the structure can be clearly expressed. This work has laid the foundation for studying the structural geometry of fullerene cage and its quantum chemistry and property.

  15. Spontaneous formation and stability of small GaP fullerenes

    OpenAIRE

    V. Tozzini; Buda, F.; Fasolino, A.

    2000-01-01

    We report the spontaneous formation of a GaP fullerene cage in ab-initio Molecular Dynamics simulations starting from a bulk fragment. A systematic study of the geometric and electronic properties of neutral and ionized GaP clusters suggests the stability of hetero-fullerenes formed by a compound with zincblend bulk structure. We find that GaP fullerenes up to 28 atoms have high symmetry, closed electronic shells, large HOMO-LUMO energy gaps and do not dissociate when ionized. We compare our ...

  16. Fullerenes: prospects of using in medicine, biology and ecology

    Directory of Open Access Journals (Sweden)

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  17. Superconductivity in alkali-doped fullerene nanowhiskers.

    Science.gov (United States)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe. PMID:27385220

  18. The interaction of $He^{-}$ with fullerenes

    CERN Document Server

    Mauracher, A; Huber, S E; Postler, J; Renzler, M; Denifl, S; Scheier, P; Ellis, A M

    2016-01-01

    The effects of interactions between He- and clusters of fullerenes in helium nanodroplets are described. Electron transfer from $He^{-}$ to $(C_{60})_n$ and $(C_{70})_n$ clusters results in the formation of the corresponding fullerene cluster dianions. This unusual double electron transfer appears to be concerted and is most likely guided by electron correlation between the two very weakly bound outer electrons in $He^{-}$. We suggest a mechanism which involves long range electron transfer followed by the conversion of $He^{+}$ into $He_{2}^{+}$, where formation of the $He-He$ bond in $He_{2}^{+}$ releases sufficient kinetic energy for the cation and the dianion to escape their Coulombic attraction. By analogy with the corresponding dications, the observation of a threshold size of n \\geq 5 for formation of both $(C_{60})_n^{2-}$ and $(C_{70})_n^{2-}$ is attributed to Coulomb explosion rather than an energetic constraint. We also find that smaller dianions can be observed if water is added as a co-dopant. Oth...

  19. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Biasotto, Massimo; Bisello, Dario; Branca, Antonio; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gozzelino, Andrea; Gulmini, Michele; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Maron, Gaetano; Meneguzzo, Anna Teresa; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-01-01

    The anisotropy of the azimuthal distributions of charged particles produced in PbPb collisions with a nucleon-nucleon center-of-mass energy of 2.76 TeV is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee--Yang zeros. The anisotropy is presented as a function of transverse momentum (pt), pseudorapidity (eta) over a broad kinematic range: 0.3 < pt < 20 GeV, abs(eta) < 2.4, and in 12 classes of collision centrality from 0 to 80%. The results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.

  20. Dissociation dynamics of highly excited molecules produced by charge exchange: Two-body dynamics of CH5 and three-body dynamics of sym-triazine

    International Nuclear Information System (INIS)

    Translational spectroscopy and coincidence detection of the neutral photofragments have been used to observe the dissociation dynamics of highly excited neutrals produced by charge exchange between keV cation beams with Cs, and the results from two novel systems are presented. CH5 is formed slightly above the 3s Rydberg level and dissociates into two possible fragmentation channels, H loss and H2 loss. The kinetic energy release distributions of the two products are presented and the branching ratio between the two is found to be 11.4 ± 1.5 : 1 with the H loss being the dominant channel. Production of the highly symmetric azabenzene sym-triazine in its 3s Rydberg state has been shown to induce dissociation to 3 HCN(Σ+). Examination of momentum correlation in the dissociation products shows that this dissociation occurs by two distinct mechanisms. Evidence from Monte Carlo simulations suggest a sequential mechanism occurs creating products accompanied by a kinetic energy release of ∼1.5-5 eV. A symmetric concerted mechanism is also observed and is associated with products receiving a 2-4 eV kinetic energy release.

  1. Detection of 1 - 100 keV x-rays from high intensity, 500 fs laser- produced plasmas using charge-coupled devices

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.; Young, B.K.F.; Conder, A.D.; Stewart, R.E.

    1996-01-01

    We describe a compact, vacuum compatible, large format, charge- coupled device (CCD) camera for scientific imaging and detection of 1- 100 keV x rays in experiments at LLNL JANUS-1ps laser. A standard, front-illuminated, multi-pin phase device with 250 k electron full well capacity, low dark current (10 pA/cm{sup 2} at 20 C) and low read noise (5 electron rms) is cooled to -35 C to give the camera excellent 15-bit dynamic range and signal-to-noise response. Intensity and x-ray energy linear response were determined for optical and x-ray (<65 keV) photons and are in excellent agreement. Departure from linearity was less than 0.7%. Inherent linearity and energy dispersive characteristics of CCD cameras are well suited for hard x-ray photon counting. X-rays absorbed within the depletion and field-free regions can be distinguished by studying the pulse height spectrum. Results are presented for the detection of 1-100 keV Bremsstrahlung continuum, K-shell and L-shell fluorescence spectra emitted from high intensity (10{sup 18}W cm{sup -2}), 500 fs laser- produced plasmas.

  2. A method and apparatus for high-throughput controlled synthesis of fullerenes and endohedral metal fullerenes

    Science.gov (United States)

    Churilov, G. N.; Popov, A. A.; Vnukova, N. G.; Dudnik, A. I.; Glushchenko, G. A.; Samoylova, N. A.; Dubinina, I. A.; Gulyaeva, U. E.

    2016-05-01

    A method for synthesis of carbon nanostructures in a high-frequency arc discharge in the flow of helium (3-4 L/min) is presented. It is shown that the plasma-chemical synthesis of fullerenes and endohedral metal fullerenes (EMFs) can be controlled by changing helium pressure in the chamber. Temperature and electron concentration along the line normal to the discharge axis decrease upon moving away from the axis to the periphery; the larger the pressure, the sharper is the decrease in these parameters. The optimal helium pressure of 98 kPa was found in obtaining the Gd@C82 EMF which corresponds to the maximal EMF yield of 5 wt %.

  3. Simple and Onion-type Fullerenes shells as resonators and amplifiers

    CERN Document Server

    Amusia, M Ya

    2009-01-01

    We discuss the influence of a single or double fullerenes shell upon photoionization and vacancy decay of an atom, stuffed inside the fullerenes construction. The main manifestations of this influence are additional structures in the photoionization cross-section and variation of the vacancy decay probability. The main mechanisms, with which fullerenes shells affect the processes in caged atoms is the scattering of the outgoing electrons by the fullerenes shell and modification of the photon beam due to fullerenes shell polarization. General consideration will be illustrated by numeric calculations where C60 and C240 will be chosen as fullerenes and Ar and Xe as caged atoms.

  4. Production and Consumption of Reactive Oxygen Species by Fullerenes

    Science.gov (United States)

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  5. The role of fullerene shell upon stuffed atom polarization potential

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Neon and Argon endohedrals polarization potential. As a result, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential.

  6. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501970

  7. Synthesis of a new class of fullerene derivative Li+@C60O-(OH)7 as a ``cation-encapsulated anion nanoparticle''

    Science.gov (United States)

    Ueno, Hiroshi; Kokubo, Ken; Kwon, Eunsang; Nakamura, Yuji; Ikuma, Naohiko; Oshima, Takumi

    2013-02-01

    Metal encapsulation into a cage and chemical modification on the outer surface of fullerenes endow them with some unique characteristic properties. Although the derivatization of endohedral fullerenes holds promise for producing novel new nano-carbon materials, there are few reports about such compounds. Herein, we report the synthesis of lithium encapsulated fullerenol Li+@C60O-(OH)7 using a fuming sulfuric acid method from [Li+@C60](PF6-) and characterization of its structure by IR, NMR, FAB mass spectroscopy, and elemental analysis. The hydroxylation of [Li+@C60](PF6-) is site-selective to preferentially give a single isomer (ca. 70%) with two minor isomers in marked contrast to the reaction of empty C60. We conclude from the analysis of radical species produced in the reaction of a C60 cage with fuming sulfuric acid that this unusual site-selective hydroxylation is caused by the lower HOMO level of Li+@C60 than that of empty C60. Furthermore, our results clearly indicate that the internal lithium cation is interacted with the introduced hydroxyl groups, and thus the properties of endohedral fullerenes can be controlled by the external modification of a fullerene cage.Metal encapsulation into a cage and chemical modification on the outer surface of fullerenes endow them with some unique characteristic properties. Although the derivatization of endohedral fullerenes holds promise for producing novel new nano-carbon materials, there are few reports about such compounds. Herein, we report the synthesis of lithium encapsulated fullerenol Li+@C60O-(OH)7 using a fuming sulfuric acid method from [Li+@C60](PF6-) and characterization of its structure by IR, NMR, FAB mass spectroscopy, and elemental analysis. The hydroxylation of [Li+@C60](PF6-) is site-selective to preferentially give a single isomer (ca. 70%) with two minor isomers in marked contrast to the reaction of empty C60. We conclude from the analysis of radical species produced in the reaction of a C60 cage

  8. Switching Molecular Orientation of Individual Fullerene at Room Temperature

    OpenAIRE

    Liu, Lacheng; Liu, Shuyi; Chen, Xiu; Li, Chao; Ling, Jie; Liu, Xiaoqing; Cai, Yingxiang; Wang, Li

    2013-01-01

    Reversible molecular switches with molecular orientation as the information carrier have been achieved on individual fullerene molecules adsorbed on Si (111) surface at room temperature. Scanning tunneling microscopy imaging directly demonstrates that the orientation of individual fullerene with an adsorption geometry of 5-6 bond is rotated by integral times as 30 degree after a pulse bias is applied between the STM tip and the molecule. Dependences of the molecular rotation probability on th...

  9. Polynuclear aromatic hydrocarbons for fullerene synthesis in flames

    Science.gov (United States)

    Alford, J. Michael; Diener, Michael D.

    2006-12-19

    This invention provides improved methods for combustion synthesis of carbon nanomaterials, including fullerenes, employing multiple-ring aromatic hydrocarbon fuels selected for high carbon conversion to extractable fullerenes. The multiple-ring aromatic hydrocarbon fuels include those that contain polynuclear aromatic hydrocarbons. More specifically, multiple-ring aromatic hydrocarbon fuels contain a substantial amount of indene, methylnapthalenes or mixtures thereof. Coal tar and petroleum distillate fractions provide low cost hydrocarbon fuels containing polynuclear aromatic hydrocarbons, including without limitation, indene, methylnapthalenes or mixtures thereof.

  10. Icosadeltahedral geometry of fullerenes, viruses and geodesic domes

    OpenAIRE

    Siber, Antonio

    2007-01-01

    I discuss the symmetry of fullerenes, viruses and geodesic domes within a unified framework of icosadeltahedral representation of these objects. The icosadeltahedral symmetry is explained in details by examination of all of these structures. Using Euler's theorem on polyhedra, it is shown how to calculate the number of vertices, edges, and faces in domes, and number of atoms, bonds and pentagonal and hexagonal rings in fullerenes. Caspar-Klug classification of viruses is elaborated as a speci...

  11. Biomedical applications of functionalized fullerene-based nanomaterials

    OpenAIRE

    Ranga Partha; Conyers, Jodie L.

    2009-01-01

    Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullere...

  12. Fullerenes: prospects of using in medicine, biology and ecology

    OpenAIRE

    D. V. Schur; Z. Z. Matysina; S. Y. Zaginaichenko; N. P. Botsva; О. V. Elina

    2012-01-01

    Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydro...

  13. New approaches to the multiple functionalization of fullerene

    OpenAIRE

    Carini, Marco

    2014-01-01

    Fullerene C60 is a charming molecule, its beautiful symmetry and its unique properties are still intriguing scientific community after almost three decades from its discovery. Investigation of its properties and applications is still an active field. In our group we are interested especially in the biological aspect of fullerene sciences. In this field, polyfunctional derivatives are particularly attractive, for the increased solubility and for the possibility to attach different biologica...

  14. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B36N36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B36N36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li6B36N36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li6B36N36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  15. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    Science.gov (United States)

    Kurpiers, Jona; Neher, Dieter

    2016-05-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions.

  16. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Directory of Open Access Journals (Sweden)

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  17. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Science.gov (United States)

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-01

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. PMID:26991031

  18. Chemistry of fullerene epoxides: synthesis, structure, and nucleophilic substitution-addition reactivity.

    Science.gov (United States)

    Tajima, Yusuke; Takeshi, Kazumasa; Shigemitsu, Yasuo; Numata, Youhei

    2012-01-01

    Fullerene epoxides, C₆₀O(n), having epoxide groups directly attached to the fullerene cage, constitute an interesting class of fullerene derivatives. In particular, the chemical transformations of fullerene epoxides are expected to play an important role in the development of functionalized fullerenes. This is because such transformations can readily afford a variety of mono- or polyfunctionalized fullerene derivatives while conserving the epoxy ring arrangement on the fullerene surface, as seen in representative regioisomeric fullerene polyepoxides. The first part of this review addresses the synthesis and structural characterization of fullerene epoxides. The formation of fullerene epoxides through different oxidation reactions is then explored. Adequate characterization of the isolated fullerene epoxides was achieved by concerted use of NMR and LC-MS techniques. The second part of this review addresses the substitution of fullerene epoxides in the presence of a Lewis acid catalyst. Most major substitution products have been isolated as pure compounds and their structures established through spectroscopic methods. The correlation between the structure of the substitution product and the oxygenation pattern of the starting materials allows elucidation of the mechanistic features of this transformation. This approach promises to lead to rigorous regioselective production of various fullerene derivatives for a wide range of applications. PMID:22634847

  19. An N-ethylated barbituric acid end-capped bithiophene as an electron-acceptor material in fullerene-free organic photovoltaics.

    Science.gov (United States)

    Sullivan, Paul; Collis, Gavin E; Rochford, Luke A; Arantes, Junior Ferreira; Kemppinen, Peter; Jones, Tim S; Winzenberg, Kevin N

    2015-04-11

    A new evaporable electron acceptor material for organic photovoltaics based on N-ethyl barbituric acid bithiophene (EBB) has been demonstrated. Bilayer devices fabricated with this non-fullerene acceptor and boron subphthalocyanine chloride (SubPc) donor produce power conversion efficiencies as high as 2.6% with an extremely large open-circuit voltage approaching 1.4 V. PMID:25761144

  20. Status seminar on the application potential of fullerenes. Status seminar and panel discussion; Statusseminar Anwendungspotential der Fullerene. Vortraege und Podiumsdiskussion

    Energy Technology Data Exchange (ETDEWEB)

    Hoffschulz, H. [comp.

    1996-12-31

    The application potential of fullerenes extends to the following areas: Owing to their similarity to active carbon the use of fullerenes as well as of the soot arising during their production in catalytic applications appears an interesting possibility. Structural modifications will permit influencing the catalytic properties of the employed substances. Addition of functional groups has led to a wide range of fullerne variants whose chemical properties and application potentials are still being studied. Polymers can be altered in their structure and properties by the integration of fullerenes. The possibility of increasing the photoconductivity of polymers in this way could be applied to photodetectors and solar cells, for example. Exposure to light causes fullerenes to polymerise and drastically reduces their solubility in commercial solvents. This may render them useful as a masking material in microstructuring. Diamond layers from fullerene vapour are very durable and can be manufactured in large sheets at comparatively low cost. In spite of their low density nanotubes are of incredible stiffness and as such an ideal component for composite materials. In monitors nanotubes can function as electron sources and replace the traditional cathode ray tube. A prerequisite for studying the properties of endohedral fullerenes is their availability in macroscopic amounts. In order to assess their potential it will first be necessary to develop suitable production methods. (orig./SR) [Deutsch] Folgende Anwendungspotentiale fuer Fullorene sind denkbar: - Die Verwandtschaft der Fullerene und des bei ihrer Erzeugung anfallenden Russes zur Aktivkohle sind fuer katalytische Anwendungen interessant, wobei die Katalyseeigenschaften durch Modifizierungen der Struktur veraendert werden koennen. - Mittlerweile stehen eine Vielzahl verschiedener Fulleren-Modifikationen durch Anbringen von funktionellen Gruppen zur Verfuegung, deren chemische Eigenschaften und Anwendungspotentiale

  1. Isotopic and velocity distributions of 83Bi produced in charge-pickup reactions of 20882PB at 1 A GeV

    International Nuclear Information System (INIS)

    Isotopically resolved cross sections and velocity distributions have been measured in charge-pickup reactions of 1 A GeV 208Pb with proton, deuterium and titanium target. The total and partial charge-pickup cross sections in the reactions 208Pb + 1H and 208Pb + 2H are measured to be the same in the limits of the error bars. A weak increase in the total charge-pickup cross section is seen in the reaction of 208Pb with the titanium target. The measured velocity distributions show different contributions - quasi-elastic scattering and Δ-resonance excitation - to the charge-pickup production. Data on total and partial charge-pickup cross sections from these three reactions are compared with other existing data and also with model calculations based on the coupling of different intra-nuclear cascade codes and an evaporation code. (orig.)

  2. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh

    2016-07-15

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.

  3. Fullerene Embedded Shape Memory Nanolens Array

    Science.gov (United States)

    Jeon, Sohee; Jang, Jun Young; Youn, Jae Ryoun; Jeong, Jun-Ho; Brenner, Howard; Song, Young Seok

    2013-11-01

    Securing fragile nanostructures against external impact is indispensable for offering sufficiently long lifetime in service to nanoengineering products, especially when coming in contact with other substances. Indeed, this problem still remains a challenging task, which may be resolved with the help of smart materials such as shape memory and self-healing materials. Here, we demonstrate a shape memory nanostructure that can recover its shape by absorbing electromagnetic energy. Fullerenes were embedded into the fabricated nanolens array. Beside the energy absorption, such addition enables a remarkable enhancement in mechanical properties of shape memory polymer. The shape memory nanolens was numerically modeled to impart more in-depth understanding on the physics regarding shape recovery behavior of the fabricated nanolens. We anticipate that our strategy of combining the shape memory property with the microwave irradiation feature can provide a new pathway for nanostructured systems able to ensure a long-term durability.

  4. Comparative Study of APFO-3 Solar Cells Using Mono- and Bisadduct Fullerenes as Acceptor

    OpenAIRE

    Hsu, Yu-Te

    2010-01-01

    The urgent need for new, sustainable energy source intrigues scientists to provide the solution by developing new technology. Polymer solar cell appears to be the most promising candidate for its low cost, flexibility, and massive producibility. Novel polymers have been constantly synthesized and investigated, while the use of PCBM as acceptor seems to be the universal choice. Here, we studied the use of four dierent fullerene derivatives - [60]PCBM, [70]PCBM, and their bisadduct analogues - ...

  5. Combined Computational Approach Based on Density Functional Theory and Artificial Neural Networks for Predicting The Solubility Parameters of Fullerenes.

    Science.gov (United States)

    Perea, J Darío; Langner, Stefan; Salvador, Michael; Kontos, Janos; Jarvas, Gabor; Winkler, Florian; Machui, Florian; Görling, Andreas; Dallos, Andras; Ameri, Tayebeh; Brabec, Christoph J

    2016-05-19

    The solubility of organic semiconductors in environmentally benign solvents is an important prerequisite for the widespread adoption of organic electronic appliances. Solubility can be determined by considering the cohesive forces in a liquid via Hansen solubility parameters (HSP). We report a numerical approach to determine the HSP of fullerenes using a mathematical tool based on artificial neural networks (ANN). ANN transforms the molecular surface charge density distribution (σ-profile) as determined by density functional theory (DFT) calculations within the framework of a continuum solvation model into solubility parameters. We validate our model with experimentally determined HSP of the fullerenes C60, PC61BM, bisPC61BM, ICMA, ICBA, and PC71BM and through comparison with previously reported molecular dynamics calculations. Most excitingly, the ANN is able to correctly predict the dispersive contributions to the solubility parameters of the fullerenes although no explicit information on the van der Waals forces is present in the σ-profile. The presented theoretical DFT calculation in combination with the ANN mathematical tool can be easily extended to other π-conjugated, electronic material classes and offers a fast and reliable toolbox for future pathways that may include the design of green ink formulations for solution-processed optoelectronic devices. PMID:27070101

  6. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...

  7. Potential applications of fullerenes. Fullerenes in large-surface photodetectors and solar cells. Final report; Anwendungspotential der Fullerene. Einsatz von Fullerenen in grossflaechigen Photodetektoren und Solarzellen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, U.; Feldmann, J.

    1999-02-01

    In combination with conjugated polymers, fullerenes can play an important role in active optoelectronic layers, e.g. in photodiodes and solar cells where they act as electron acceptors in a photo-induced electron transfer process. The contribution investigates the specific effects of morphology and attempts to define optimized preparation conditions. The dynamics of electron transfer (ET) was investigated directly by means of time-resolved optical measurements. It was shown that the ET takes place on a time scale of a few picoseconds depending on the fullerene concentration, and that it is preceded by a diffusion process of optical excitation in the conjugated polymer. For selective control of the morphology of fullerene/polymer composite systems, a multilayer deposition technique based on the principle of self-organisation was developed. The first components based on this method had a quantum efficiency of 7% electrons. [Deutsch] Fullerene koennen in Kombination mit konjugierten Polymeren eine wichtige Rolle in aktiven optoelektronischen Schichten, z.B. in Photodioden und Solarzellen spielen. Die Fullerene fungieren hierbei als Elektronenakzeptoren in einem photoinduzierten Elektronentransferprozess. Ziel der Untersuchungen war ein tieferes Verstaendnis der Elektronentransferprozesse und der relevanten Zeit- und Laengenskalen. Es sollte der spezifische Einfluss der Morphologie herausgearbeitet werden, bzw. optimierte Praeparationsbedingungen gefunden werden. Durch zeitaufgeloeste optische Messungen wurde direkt die Dynamik des Elektronentransfers (ET) untersucht. Es wurde gezeigt, dass in Abhaengigkeit von der Fullerenkonzentration der ET auf einer Zeitskala von wenigen Pikosekunden ablaeuft. Dem eigentlichen ET geht ein Diffusionsprozess der optischen Anregung im konjugierten Polymer voraus. Fuer eine gezielte Kontrolle der Morphologie der Fulleren/Polymer-Kompositsysteme wurde eine auf dem Prinzip der Selbstorganisation beruhende Multilagendepositionstechnik

  8. Charge exchange produced K-shell x-ray emission from Ar16+ in a tokamak plasma with neutral beam injection

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Bitter, M; Marion, M; Olson, R E

    2004-12-27

    High-resolution spectroscopy of hot tokamak plasma seeded with argon ions and interacting with an energetic, short-pulse neutral hydrogen beam was used to obtain the first high-resolution K-shell x-ray spectrum formed solely by charge exchange. The observed K-shell emission of Ar{sup 16+} is dominated by the intercombination and forbidden lines, providing clear signatures of charge exchange. Results from an ab initio atomic cascade model provide excellent agreement, validating a semiclassical approach for calculating charge exchange cross sections.

  9. Photoinduced electron transfer in porous organic salt crystals impregnated with fullerenes.

    Science.gov (United States)

    Hasegawa, Tetsuya; Ohkubo, Kei; Hisaki, Ichiro; Miyata, Mikiji; Tohnai, Norimitsu; Fukuzumi, Shunichi

    2016-06-28

    Porous organic salt (POS) crystals composed of 9-(4-sulfophenyl)anthracene (SPA) and triphenylmethylamine (TPMA) were impregnated with fullerenes (C60 and C70), which were arranged in one dimensional close contact. POS crystals of SPA and TPMA without fullerenes exhibit blue fluorescence due to SPA, whereas the fluorescence was quenched in POS with fullerenes due to electron transfer from the singlet excited state of SPA to fullerenes. PMID:27182038

  10. Electron-state control of carbon nanotubes by space and encapsulated fullerenes

    OpenAIRE

    Okada, Susumu; Otani, Minoru; Oshiyama, Atsushi

    2003-01-01

    We report total-energy electronic structure calculations that provide energetics of encapsulation of various fullerenes in carbon nanotubes and electronic structures of resulting carbon peapods. We find that the electron states of the peapods depend on the space in the nanotubes and that they reflect electron states of the encapsulated fullerenes. The deep energy position of the lowest unoccupied state of fullerenes as well as hybridization between π states of the fullerenes and the nearly fr...

  11. Simple and Onion-type Fullerenes shells as resonators and amplifiers

    OpenAIRE

    Amusia, M. Ya.

    2009-01-01

    We discuss the influence of a single or double fullerenes shell upon photoionization and vacancy decay of an atom, stuffed inside the fullerenes construction. The main manifestations of this influence are additional structures in the photoionization cross-section and variation of the vacancy decay probability. The main mechanisms, with which fullerenes shells affect the processes in caged atoms is the scattering of the outgoing electrons by the fullerenes shell and modification of the photon ...

  12. Coulomb interaction effects on nonlinear optical response in C60, C70, and higher fullerenes

    OpenAIRE

    Harigaya, Kikuo

    1998-01-01

    Nonlinear optical properties in the fullerene C$_{60}$ and the extracted higher fullerenes -- C$_{70}$, C$_{76}$, C$_{78}$, and C$_{84}$ -- are theoretically investigated by using the exciton formalism and the sum-over-states method. We find that off-resonant third order susceptibilities of higher fullerenes are a few times larger than those of C$_{60}$. The magnitude of nonlinearity increases as the optical gap decreases in higher fullerenes. The nonlinearity is nearly proportional to the fo...

  13. A novel BF2-chelated azadipyrromethene-fullerene dyad: synthesis, electrochemistry and photodynamics.

    Science.gov (United States)

    Amin, Anu N; El-Khouly, Mohamed E; Subbaiyan, Navaneetha K; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2012-01-01

    The synthesis, structure, electrochemistry and photodynamics of a BF(2)-chelated azadipyrromethene-fullerene dyad are reported in comparison with BF(2)-chelated azadipyrromethene without fullerene. The attachment of fullerene resulted in efficient generation of the triplet excited state of the azadipyrromethene via photoinduced electron transfer. PMID:22083226

  14. Kinetics of structural change and properties of fullerene soots on conservation at atmospheric conditions

    International Nuclear Information System (INIS)

    By using X-ray Scattering method the long time change of structure and properties of fullerene soots take place with together decreasing of dissolvant process of fullerenes are shown. It is proposed the provenance of these phenomena connected with oxidation and hydro oxidation processes of fullerenes on conservation at atmospheric conditions. (author)

  15. Thermodynamic, kinetic and electronic structure aspects of a charge-transfer active bichromophoric organofullerene

    Indian Academy of Sciences (India)

    K Senthil Kumar; Archita Patnaik

    2013-03-01

    Our recent work on charge transfer in the electronically push-pull dimethylaminoazobenzene-fullerene C60 donor-bridge-acceptor dyad through orbital picture revealed charge displacement from the n(N=N) (non-bonding) and (N=N) type orbitals centred on the donor part to the purely fullerene centred LUMOs and (LUMO+n) orbitals, delocalized over the entire molecule. Consequently, this investigation centres around the kinetic and thermodynamic parameters involved in the solvent polarity dependent intramolecular photo-induced electron transfer processes in the dyad, indispensable for artificial photosynthetic systems. A quasi-reversible electron transfer pathway was elucidated with electrode-specific heterogeneous electron transfer rate constants.

  16. Measuring the Thickness and Potential Profiles of the Space-Charge Layer at Organic/Organic Interfaces under Illumination and in the Dark by Scanning Kelvin Probe Microscopy.

    Science.gov (United States)

    Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel

    2016-03-01

    Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates. PMID:26890658

  17. Role of electronic structure in ionization and fragmentation of endohedral fullerenes Ho3 N@ C80 in an intense femtosecond laser field

    Science.gov (United States)

    Xiong, Hui; Fang, Li; Osipov, Timur; Sistruk, Emily; Wolf, Thomas; Mignolet, Benoit; Remacle, Francoise; Gühr, Markus; Berrah, Nora

    2016-05-01

    The ionization and fragmentation of gas phase endohedral fullerene Ho3 N@ C80wasinvestigated using ultrashort 800 nm laser pulses with an ion velocity map imaging (VMI) spectrometer. The power law's dependence In on laser intensity of the singly, doubly, and triply charged Ho3 N@ C80 molecule and Ho+ ion fragments have been experimentally determined. Theoretical calculation indicates that the superatom molecular orbitals (SAMOs) electronic states in Ho3 N@ C80 can be populated through direct multiphoton excitation. The ionization power law essentially reflects the photoexcitation step to the SAMOs. In addition to the molecular nuclear frame heating by electron-vibrational coupling, we observe a rapid heating process, which could be an `avalanche' process, produced via semi-free electrons impacting the molecular nuclear frame at high laser intensity. This work is funded by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Grants No. DE-SC0012376 and DE-SC0012628.

  18. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages

    Science.gov (United States)

    Russ, K. A.; Elvati, P.; Parsonage, T. L.; Dews, A.; Jarvis, J. A.; Ray, M.; Schneider, B.; Smith, P. J. S.; Williamson, P. T. F.; Violi, A.; Philbert, M. A.

    2016-02-01

    There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.7 immortalized murine macrophage were used as a canonical model of immune-competent cells that are likely to provide the first line of defense following inhalation. Modes of entry studied were endocytosis/pinocytosis and passive permeation of cellular membranes. The evidence suggests marginal uptake of C60 clusters is achieved through endocytosis/pinocytosis, and that passive diffusion into membranes provides a significant source of biologically-available nanomaterial. Computational modeling of both a single molecule and a small cluster of fullerenes predicts that low concentrations of fullerenes enter the membrane individually and produce limited perturbation; however, at higher concentrations the clusters in the membrane causes deformation of the membrane. These findings are bolstered by nuclear magnetic resonance (NMR) of model membranes that reveal deformation of the cell membrane upon exposure to high concentrations of fullerenes. The atomistic and NMR models fail to explain escape of the particle out of biological membranes, but are limited to idealized systems that do not completely recapitulate the complexity of cell membranes. The surprising contribution of passive modes of cellular entry provides new avenues for toxicological research that go beyond the pharmacological inhibition of bulk transport systems such as pinocytosis.There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern

  19. Forward produced hadrons in μp and μd scattering and investigation of the charge structure of the nucleon

    International Nuclear Information System (INIS)

    Final data measured with the EMC forward spectrometer are presented on the production of forward charged hardons in μp and μd scattering at incident beam energies between 100 and 280 GeV. The large statistics of 373 000 events allows a study of the semi-inclusive hadron production as a function of z, pT2 and T2> in small Q2, xBj and W bins. Charge multiplicity ratios and differences as a function of z and xBj are given for p, d and n-targets. From the differences of charge multiplicities the ratio of the valence quark distributions of the proton dv(x)/uv(x) is determined for the first time in charged lepton scattering. The Gronau et al. sum rule is tested, the measured sum being 0.31±0.06 stat.±0.05 syst., compared with the theoretical expectation of 2/7≅0.286. The measured sum corresponds to an absolute value of the ratio of the d and u quark charge of 0.44±0.10 stat.±0.08 syst. (orig.)

  20. Fullerene exposures with oysters: embryonic, adult, and cellular responses.

    Science.gov (United States)

    Ringwood, Amy H; Levi-Polyachenko, Nicole; Carroll, David L

    2009-09-15

    Oysters are an ecologically important group of filter-feeders, and a valuable toxicology model for characterizing the potential impacts of nanoparticles to marine organisms. Fullerene (C60) exposure studies with oysters, Crassostrea virginica, were conducted with a variety of biological levels, e.g., developmental studies with embryos, whole organism exposures with adults, and isolated hepatopancreas cells. Significant effects on embryonic development and lysosomal destabilization were observed at concentrations as low as 10 ppb. Moreover, based on our extensive experience with the lysosomal assay, the lysosomal destabilization rates at fullerene concentrations > or = 100 ppb were regarded as biologically significant as they are associated with reproductive failure. Interestingly, there was no significant increase in lipid peroxidation levels in hepatopancreas tissues. Oyster hepatopancreas tissues are composed of lysosomal rich cells, and confocal microscopy studies indicated thatthe fullerene particles readily accumulated inside hepatopancreas cells within 4 h. Fullerene aggregates tended to be localized and concentrated into lysosomes. The microscopic work in conjunction with the lysosomal function assays supports the premise that endocytotic and lysosomal pathways may be major targets of fullerenes and other nanoparticles. Nanoparticles that affect normal lysosomal and autophagic processes may contribute to long-term, chronic problems for individual health as well as ecosystem health. PMID:19806754

  1. Fluorescence quenching of fulvic acids by fullerene in water

    International Nuclear Information System (INIS)

    Fullerene can be suspended in water as nanoscaled-fullerene-aggregates (nC60). However, little is known about its biogeochemical cycling in natural waters. In this paper, the interactions between nC60 and fulvic acids were investigated using fluorescence spectroscopy and fluorescence quenching titration. The results show that the intrinsic fluorescence of fulvic acids was static quenched by adding nC60. The association constants (log K) of fulvic acids and nC60 were estimated using a modified Ryan–Weber nonlinear model, and ranged from 6.76 to 7.41 l/mol. The log K was not significantly affected by the concentration levels of fulvic acids from 5.0 to 20.0 mg/l. The log K increased at low pH 3–5, but remained constant at high pH ranging from 5 to 11. The hydrophobic and π–π interactions were the likely primary mechanisms. The present observation will be helpful in understanding the environmental behavior of fullerene in natural aquatic ecosystems. - Highlights: ► Fluorescence of fulvic acids can be quenched by nanoscaled-fullerene-aggregates. ► Static quenching was the main fluorescence quenching mechanism. ► Association constants were estimated with fluorescence quenching titration. ► Hydrophobic and π–π interactions control the interaction. - Interactions between nanoscaled-fullerene-aggregates and fulvic acids in water were quantitatively investigated by fluorescence quenching titration.

  2. Excitation-wavelength-dependent, ultrafast photoinduced electron transfer in bisferrocene/BF2-chelated-azadipyrromethene/fullerene tetrads.

    Science.gov (United States)

    Bandi, Venugopal; El-Khouly, Mohamed E; Ohkubo, Kei; Nesterov, Vladimir N; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-05-27

    Donor-acceptor distance, orientation, and photoexcitation wavelength are key factors in governing the efficiency and mechanism of electron-transfer reactions both in natural and synthetic systems. Although distance and orientation effects have been successfully demonstrated in simple donor-acceptor dyads, revealing excitation-wavelength-dependent photochemical properties demands multimodular, photosynthetic-reaction-center model compounds. Here, we successfully demonstrate donor- acceptor excitation-wavelength-dependent, ultrafast charge separation and charge recombination in newly synthesized, novel tetrads featuring bisferrocene, BF2 -chelated azadipyrromethene, and fullerene entities. The tetrads synthesized using multistep synthetic procedure revealed characteristic optical, redox, and photo reactivities of the individual components and featured "closely" and "distantly" positioned donor-acceptor systems. The near-IR-emitting BF2-chelated azadipyrromethene acted as a photosensitizing electron acceptor along with fullerene, while the ferrocene entities acted as electron donors. Both tetrads revealed excitation-wavelength-dependent, photoinduced, electron-transfer events as probed by femtosecond transient absorption spectroscopy. That is, formation of the Fc(+)-ADP-C60(.-) charge-separated state upon C60 excitation, and Fc(+)-ADP(.-)-C60 formation upon ADP excitation is demonstrated. PMID:23554157

  3. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    The interaction of submonolayer, monolayer and multilayer coverages of C60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  4. Nanobionics of Pharmacologically Active Derivatives of Fullerene C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikova, R.A., E-mail: kotel@icp.ac.ru; Bogdanov, G.N.; Frog, E.C.; Kotelnikov, A.I.; Shtolko, V.N. [Institute of Problems of Chemical Physics RAS, Chernogolovka (Russian Federation); Romanova, V.S. [Institute of Organoelement Compounds RAS (Russian Federation); Andreev, S.M. [NRC Institute of Immunology (Russian Federation); Kushch, A.A; Fedorova, N.E.; Medzhidova, A.A. [Ivanovski Institute of Virology RAMS (Russian Federation); Miller, G.G. [Institute of Epidemiology and Microbiology RAMS (Russian Federation)

    2003-12-15

    The physical-chemical mechanisms of pharmacologic functioning of amino acid derivatives of fullerene C{sub 60} (ADF) have been studied. ADF were shown to penetrate through the lipid bilayer of liposomes without destruction of membrane integrity. ADF are able to carry bivalent metal ions through phospholipid bilayer owing to the formation of complexes. It was shown that stereoisomers of ADF selectively penetrate into phospholipid membranes. In contrast to D-isomers, L-isomers penetrate through the phosphatidylcholine membrane into liposome interior. Stereo-specific effect of ADF enantiomers was also observed in reaction of peroxidation of lipids. Besides that, ADF bring about a substantial increase in the catalytic activity of monoaminoxidases A and B. The directed intraprotein electron transfer was studied by creating a donor-acceptor pair in a water solution in the presence of ADF. To realize the intraprotein electron transfer, the model system was produced on the base of apomyoglobin by incorporating ADF (electron acceptor) into the heme pocket of protein instead of removed heme. It was established that the fullerene C{sub 60} and its derivatives did not produce specific anti-C{sub 60} antibodies, both IgG and IgE classes, while ADF themselves are efficient adjuvants, i.e. they increased the antibody response to poor antigens. Some ADF were found to inhibit the human immunodeficiency virus and human cytomegalovirus infection.

  5. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhou

    2013-10-01

    Full Text Available Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging.

  6. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  7. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  8. Ih Symmetrical (4,6)-Fullerenes and Their Local Ring Aromaticity: A First Principle Study

    OpenAIRE

    Jing Wang; Haigang Lu; Yingfang Fan; Si-Dian Li

    2015-01-01

    As the natural extension of carbon fullerene, a series of Ih symmetrical (4,6)-fullerenes were constructed and investigated using first principle methods. These Ih (4,6)-fullerenes consist of many four- and six-membered rings and are classified into two types: (1) those with isolated four- and six-membered rings and (2) those with connected four- and/or six-membered rings. Though these (4,6)-fullerenes are less stable than Ih C60 and C240 (5,6)-fullerene, it is possible to synthesize them fro...

  9. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    CERN Document Server

    Asaji, T; Uchida, T; Minezaki, H; Ishihara, S; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2015-01-01

    A synthesis technology of endohedral fullerenes such as Fe@C60 has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C60 was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  10. From the "Brazuca" ball to Octahedral Fullerenes: Their Construction and Classification

    CERN Document Server

    Fan, Yuan-Jia

    2014-01-01

    A simple cut-and-patch method is presented for the construction and classification for fullerenes belonging to the octahedral point groups, $O$ or $O_h$. In order to satisfy the symmetry requirement of the octahedral group, suitable numbers of four- and eight-member rings, in addition to the hexagons and pentagons, have to be introduced. An index consisting of four integers is introduced to specify an octahedral fullerenes. However, to specify an octahedral fullerene uniquely, we also found certain symmetry rules for these indices. Based on the transformation properties under the symmetry operations that an octahedral fullerene belongs to, we can identify four structural types of octahedral fullerenes.

  11. Synergistic Effect of Fullerene-Capped Gold Nanoparticles on Graphene Electrochemical Supercapacitors

    OpenAIRE

    Yong, Virginia; Hahn, H. Thomas

    2013-01-01

    We report the synthesis of graphene/fullerene-capped gold nanoparticle nanocomposite film which was used to construct supercapacitor electrodes. The fullerene-based self-assembled monolayers on gold nanoparticles (AuNPs) were attained via the fullerene(C60)-gold interaction. The fullerene-capped AuNPs effectively separated the graphene sheets preventing aggregation. A synergistic effect was observed—the specific capacitance of graphene/fullerene-capped AuNP electrode is 197 F/g, which is high...

  12. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene.

    Science.gov (United States)

    Maligaspe, Eranda; Tkachenko, Nikolai V; Subbaiyan, Navaneetha K; Chitta, Raghu; Zandler, Melvin E; Lemmetyinen, Helge; D'Souza, Francis

    2009-07-30

    A self-assembled supramolecular triad, a model to mimic the photochemical events of photosynthetic antenna-reaction center, viz., sequential energy and electron transfer, has been newly constructed and studied. Boron dipyrrin, zinc porphyrin, and fullerene respectively constitute the energy donor, electron donor, and electron acceptor segments of the antenna-reaction center mimicry. For the construction, first, boron dipyrrin was covalently attached to a zinc porphyrin entity bearing a benzo-18-crown-6 host segment at the opposite end of the porphyrin ring. Next, an alkyl ammonium functionalized fullerene was used to self-assemble the crown ether entity via ion-dipole interactions. The newly formed supramolecular triad was fully characterized by spectroscopic, computational, and electrochemical methods. Selective excitation of the boron dipyrrin moiety in the dyad resulted in energy transfer over 97% efficiency creating singlet excited zinc porphyrin. The rate of energy transfer from the decay measurements of time-correlated singlet photon counting (TCSPC) and up-conversion techniques agreed well with that obtained by the pump-probe technique and revealed efficient photoinduced energy transfer in the dyad (time constant in the order of 10-60 ps depending upon the conformer). Upon forming the supramolecular triad by self-assembling fullerene, the excited zinc porphyrin resulted in electron transfer to the coordinated fullerene yielding a charge-separated state, thus mimicking the antenna-reaction center functionalities of photosynthesis. Nanosecond transient absorption studies yielded a lifetime of the charge-separated state to be 23 micros indicating charge stabilization in the supramolecular triad. The present supramolecular system represents a successful model to mimic the rather complex "combined antenna-reaction center" events of photosynthesis. PMID:19580310

  13. ANALYTICAL EXPRESSIONS FOR BULK MODULI AND FREQUENCIES OF VOLUMETRICAL VIBRATIONS OF FULLERENES C20 AND C60

    OpenAIRE

    KOVALEV OLEG; KUZKIN VITALY

    2011-01-01

    In the present paper simple analytical expressions connecting bulk moduli for fullerenes C20 and C60 with stiffness of interatomic bond and geometrical characteristics of the fullerenes are derived. Ambiguities related to definition of the bulk modulus are discussed. Nonlinear volumetrical deformation of the fullerenes is considered. Pressure-volume dependence for the fullerenes under volumetrical compression are derived. Simple analytical model for volumetrical vibrations of the fullerenes i...

  14. N-Block Separable Random Phase Approximation: Application to metal clusters and C60 fullerene

    CERN Document Server

    Palade, D I

    2015-01-01

    Starting from the Random Phase Approximation (RPA), we generalize the schematic model of separable interaction defning subspaces of ph excitations with different coupling constants between them. This ansatz simplifies the RPA eigenvalue problem to a finite, small dimensional system of equations which reduces the numerical effort. Associated dispersion relation and the normalization condition are derived for the new defined unknowns of the system. In contrast with the standard separable approach, the present formalism is able to describe more than one collective excitation even in the degenerate limit. The theoretical framework is applied to neutral and singly charged spherical sodium clusters and C60 fullerene with results in good agreement with full RPA calculations and experimental data.

  15. N-block separable random phase approximation: dipole oscillations in sodium clusters and {C}_{60} fullerene

    Science.gov (United States)

    Palade, D. I.; Baran, V.

    2016-09-01

    We generalize the schematic model based on the Random Phase Approximation (RPA) with separable interaction, to a collection of subspaces of ph excitations which interact with different coupling constants. This ansatz notably lowers the numerical effort involved, by reducing the RPA eigenvalue problem to a finite small dimensional system of equation. We derive the associated dispersion relation and the normalization condition for the newly defined unknowns of the system. In contrast with the standard separable approach, the present formalism is able to describe more than one collective excitation even in the degenerate limit, giving also access to the nature of the resonance. The theoretical framework is tested investigating the dipolar oscillations in various neutral and singly charged sodium clusters and C 60 fullerene with results in good agreement with full RPA calculations and experimental data. It is proven that the 40 eV resonance present in photoabsorption spectra of C 60 is a localized surface plasmon.

  16. High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2011-01-01

    Full Text Available This paper introduces the fundamental physical characteristics of organic photovoltaic (OPV devices. Photoelectric conversion efficiency is crucial to the evaluation of quality in OPV devices, and enhancing efficiency has been spurring on researchers to seek alternatives to this problem. In this paper, we focus on organic photovoltaic (OPV devices and review several approaches to enhance the energy conversion efficiency of small molecular heterojunction OPV devices based on an optimal metal-phthalocyanine/fullerene (C60 planar heterojunction thin film structure. For the sake of discussion, these mechanisms have been divided into electrical and optical sections: (1 Electrical: Modification on electrodes or active regions to benefit carrier injection, charge transport and exciton dissociation; (2 Optical: Optional architectures or infilling to promote photon confinement and enhance absorption.

  17. Reduced working electrode based on fullerene C60 nanotubes-DNA: Characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuzhi [Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao 266071, Shandong (China); Qu Yongtao [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Piao Guangzhe, E-mail: piao@qust.edu.cn [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Jian [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Jiao Kui, E-mail: Kjiao@qust.edu.cn [Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2010-11-25

    Fullerene C{sub 60} nanotubes (FNTs) were functionalized with sequence-specific single-stranded DNA to form a kind of complexes (FNT-DNA), which could be brought efficiently into aqueous solution. The dispersed FNT-DNA could form a layer of stable film on the surface of glassy carbon electrode (GCE). In the Britton-Robinson buffer solution of pH {>=}7.0, the FNT-DNA modified on the GCE presented an irreversible two-step six-electron transfer reduction reaction. The reduced modified electrode had a rather wide electrochemical window and could be used as a functionalized working electrode, which showed a good enrichment capability towards the positively charged molecules. The selective detection of dopamine in the presence of a high amount of ascorbic acid could be realized at the reduced FNT-DNA-modified GCE in neutral buffer solution.

  18. The formation of cosmic fullerenes from arophatic clusters

    CERN Document Server

    Micelotta, Elisabetta R; Cami, Jan; Peeters, Els; Bernard-Salas, Jeronimo; Fanchini, Giovanni

    2012-01-01

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae (RNe) and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nano-particles and their specific derivative structures, which we name "arophatics", in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  19. Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative

    Institute of Scientific and Technical Information of China (English)

    刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华

    2003-01-01

    Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.

  20. Ultrafast transient spectroscopy of nano-domains of polymer/fullerene blend for organic photovoltaic applications

    Science.gov (United States)

    Singh, Sanjeev; Pandit, Bill; Hukic-Markosian, Golda; Basel, Tek P.; Valy Vardeny, Z.; Li, Sergey; Laird, Darin

    2012-12-01

    We measured the picoseconds (ps) transient photomodulation (PM) dynamics of photoexcitations in blends of regio-regular poly(3-hexyl-thiophene) [RR-P3HT] (donors-D) and indene-C60 bisadduct (fullerene derivative) [ICBA] (acceptor-A) that phase-separate into D- and A-nano-domains, in a broad spectral range from 0.25 to 2.5 eV; in comparison with steady state PM spectra. We correlate our measurements with organic photovoltaic solar cell performance made from the same D and A materials. In D-A blends of RR-P3HT/ICBA with (1.2:1) weight ratio having solar cell power conversion efficiency of ˜5.1%, we found that although the intrachain excitons in the polymer nano-domains decay within ˜10 ps, no charge polarons are generated on their expense up to ˜1 ns. Instead, there is a built-up of charge-transfer (CT) excitons at the D-A domain interfaces that occurs with the same kinetics as the exciton decay. The CT excitons dissociate into separate polarons in the D- and A-nano-domains at a much later time (≫1 ns). This "two-step" charge photogeneration process is typical in organic bulk heterojunction cells. Our results emphasize the important role of the CT state in generating free charge polarons in organic solar cells.

  1. Toxicity of polyhydroxylated fullerene to mitochondria.

    Science.gov (United States)

    Yang, Li-Yun; Gao, Jia-Ling; Gao, Tian; Dong, Ping; Ma, Long; Jiang, Feng-Lei; Liu, Yi

    2016-01-15

    Mitochondrial dysfunction is considered as a crucial mechanism of nanomaterial toxicity. Herein, we investigated the effects of polyhydroxylated fullerene (C60(OH)44, fullerenol), a model carbon-based nanomaterial with high water solubility, on isolated mitochondria. Our study demonstrated that fullerenol enhanced the permeabilization of mitochondrial inner membrane to H(+) and K(+) and induced mitochondrial permeability transition (MPT). The fullerenol-induced swelling was dose-dependent and could be effectively inhibited by MPT inhibitors such as cyclosporin A (CsA), adenosine diphosphate (ADP), ruthenium red (RR) and ethylenediaminetetraacetic acid (EDTA). After treating the mitochondria with fullerenol, the mitochondrial membrane potential (MMP) was found collapsed in a concentration-independent manner. The fluorescence anisotropy of hematoporphyrin (HP) changed significantly with the addition of fullerenol, while that of 1,6-diphenyl-hexatriene (DPH) changed slightly. Moreover, a decrease of respiration state 3 and increase of respiration state 4 were observed when mitochondria were energized with complex II substrate succinate. The results of transmission electron microscopy (TEM) provided direct evidence that fullerenol damaged the mitochondrial ultrastructure. The investigations can provide comprehensive information to elucidate the possible toxic mechanism of fullerenols at subcellular level. PMID:26348144

  2. Intratracheal administration of fullerene nanoparticles activates splenic CD11b+ cells

    International Nuclear Information System (INIS)

    Highlights: → Fullerene administration triggered splenic responses. → Splenic responses occurred at different time-points than in the lung tissue. → CD11b+ cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-α. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-κB and NFAT in splenocytes at 6 days post-administration. Finally, CD11b+ cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  3. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  4. Physicochemical insights in supramolecular interaction of fullerenes C60 and C70 with a monoporphyrin in presence of silver nanoparticles

    Science.gov (United States)

    Mitra, Ratul; Chattopadhyay, Subrata; Bhattacharya, Sumanta

    2012-04-01

    The present article reports for the first time on supramolecular interaction between fullerenes (C60 and C70) and a designed monoporphyrin in solution, e.g., 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine (1), in absence and presence of silver nanoparticles (AgNp) having varying diameter of range between 3 and 7 nm. Ground state electronic interaction between fullerenes and 1 has been evidenced from the observation of decrease in the intensity of the Soret absorption band of 1 after complexation with C60 and C70 in toluene. However, in presence of AgNp, extent of decrease in the intensity of Soret absorption band of 1 has been reduced following its complexation with fullerenes. Steady state fluorescence measurements establish quenching of fluorescence of 1 by fullerenes and the most interesting aspect of the present work is that quenching efficiencies of C60 and C70 are found to be less in presence of AgNp. Steady state fluorescence measurement reveals reduction in the binding constant (K) value for both C60-1 (K-1=2355 dm mol) and C70-1 complex (K-1=11,980 dm mol) in presence of AgNp (K-1=340   and   K-1=7380 dm mol). The new physical insight of the present studies is that 1 acts as excellent discriminator molecule for C70 in presence of AgNp as selectivity in binding is estimated to be ˜21.7 in presence of AgNp compared to the situation when fullerene-1 mixture does not contain any AgNp (i.e., selectivity in binding = ˜5.0) in solution. Time-resolved fluorescence studies establish the role of static quenching mechanism behind fluorescence decay of 1 by fullerenes in absence and presence of AgNp. Magnitude of rate constant for charge separation and quantum yield of charge separation indicates that C70-1 complex exhibits highest value of such parameters in absence of AgNp compared to the situation when AgNp particles are present in the composite mixture of C70 and 1. Dynamic light scattering (DLS) measurement reveals while particle size of AgNp is

  5. Fullerene and nanotube growth: new insights using first principles and molecular dynamics.

    Science.gov (United States)

    Cruz-Silva, Rodolfo; Araki, Takumi; Hayashi, Takuya; Terrones, Humberto; Terrones, Mauricio; Endo, Morinobu

    2016-09-13

    Shortly after the discovery of fullerenes, many researchers pointed out that carbon nanotubes could be considered as elongated fullerenes. However, the detailed formation mechanism for both structures has been a topic of debate for several years, and consequently it has been difficult to draw a clear connection between the two systems. While the synthesis conditions appear to be different for both fullerenes and nanotubes, here, we demonstrate that it is highly likely that, at an initial growth stage, single-walled carbon nanotubes begin to grow from a hemisphere-like fullerene cap. More importantly, by analysing the minimum-energy path, it is shown that the insertion of C2 fragments drives the transformation of this fullerene cap into an elongated structure that leads to the formation of very short carbon nanotubes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501974

  6. Thermal management technology for hydrogen storage: Fullerene option

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C.; Chen, F.C.; Murphy, R.W. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Fullerenes are selected as the first option for investigating advanced thermal management technologies for hydrogen storage because of their potentially high volumetric and gravimetric densities. Experimental results indicate that about 6 wt% of hydrogen (corresponding to C{sub 60}H{sub 48}) can be added to and taken out of fullerenes. A model assuming thermally activated hydrogenation and dehydrogenation processes was developed to explain the experimental findings. The activation energies were estimated to be 100 and 160 kJ/mole (1.0 and 1.6 eV/H{sub 2}) for the hydrogenation and dehydrogenation processes, respectively. The difference is interpreted as the heat released during hydrogenation. There are indications that the activation energies and the heat of hydrogenation can be modified by the use of catalysts. Preliminary hydrogen storage simulations for a conceptually simple device were performed. A 1-m long hollow metal cylinder with an inner diameter of 0.02 m was assumed to be filled with fullerene powders. The results indicate that the thermal diffusivity of the fullerenes controls the hydrogenation and dehydrogenation rates. The rates can be significantly modified by changing the thermal diffusivity of the material inside the cylinder, e.g., by incorporating a metal mesh. Results from the simulation suggest that thermal management is essential for efficient hydrogen storage devices using fullerenes. While the preliminary models developed in this study explain some of the observation, more controlled experiments, rigorous model development, and physical property determinations are needed for the development of practical hydrogen storage devices. The use of catalysts to optimize the hydrogen storage characteristics of fullerenes also needs to be pursued. Future cooperative work between Oak Ridge National Laboratory (ORNL) and Material & Electrochemical Research Corporation (MER) is planned to address these needs.

  7. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  8. Mechanochemical Reactions of Fullerenes under High-Speed Vibration Milling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ting-Hu; LI Yu-Jin; PENG Ru-Fang; LU Ping; CHEN Zhong-Xiu; WANG Guan-Wu

    2003-01-01

    @@ Since a novel technique called "high-speed vibration milling" (HSVM) was first applied to the Reformatskytype reaction of C60 in 1996, [1] this technique has been applied to various kinds of fullerene functionalizations including the preparation of C120. [2] Most recent reactions of fullerenes under HSVM conditions will be discussed: (1)reaction of C60/C70 with N-alkylglycines and aldehydes (Scheme 1); (2) reaction of C60 with active methylene compounds in the presence of bases (Scheme 2); (3) reaction of C6o with diazo compounds (Scheme 3); (4) reaction of C6o with anthracene derivatives (Scheme 4).

  9. Properties of Natural Rubber-Based Composites Containing Fullerene

    Directory of Open Access Journals (Sweden)

    Omar A. Al-Hartomy

    2012-01-01

    Full Text Available In this study the influence of fullerenes in concentrations from 0.5 to 1.5 phr on both the vulcanization characteristics of the compounds and physicomechanical, dynamic, and dielectric properties and thermal aging resistance of nanocomposites on the basis of natural rubber has been investigated. The effect of the filler dispersion in the elastomeric matrix has been also investigated. Neat fullerene and the composites comprising it have been studied and characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM.

  10. Fullerenes: A New Carrier Phase for Noble Gases in Meteorites

    Science.gov (United States)

    Becker, Luann

    2004-01-01

    The major focus of our research effort has been to measure the noble gases encapsulated within fullerenes, a new carbon carrier phase and compare it to the myriad of components found in the bulk meteorite acid residues. We have concentrated on the carbonaceous chondrites (Allende, Murchison and Tagish Lake) since they have abundant noble gases, typically with a planetary signature that dominates the stepped-release of the meteorite bulk acid residue. They also contain an extractable fullerene component that can be isolated and purified from the same bulk material.

  11. Studies of the charge instabilities in the complex nano-objects: clusters and bio-molecular systems

    International Nuclear Information System (INIS)

    For the last 6 years, my main research works focused on i) the Coulomb instabilities and the fragmentation processes of fullerenes and clusters of fullerenes ii) the stability and the reactivity of complex bio-molecular systems. Concerning the clusters of fullerenes, which are van der Waals type clusters, we have shown that the multiply charged species, obtained in collisions with slow highly charged ions, keep their structural properties but become very good electric conductor. In another hand, with the aim to understand the role of the biologic environment at the molecular scale in the irradiation damage of complex biomolecules, we have studied the charge stabilities of clusters of small biomolecules and the dissociation processes of larger nano-hydrated biomolecules. Theses studies have shown that first, specific molecular recognition mechanisms continue to exist in gas phase and secondly, a small and very simple biochemical environment is enough to change the dynamics of instabilities. (author)

  12. Study of the mass, nuclear charge and kinetic energy distribution of the fission fragments produced in the reaction 237 Np (2n th, f)

    International Nuclear Information System (INIS)

    In this work, we report fission fragment mass, energy and charge distributions measured for the fissioning nucleus: 239 Np 146, This odd Z nucleus is formed after double thermal neutron capture on to the 237 Np 144 target nucleus. These measurements were performed at the I.L.L. recoil mass spectrometer ''Lohengrin'' in Grenoble. The fission fragments were registered by an ionisation chamber placed at the focal plane of the spectrometer. The obtained distributions are compared to the 240 Pu 146 fragment mass, energy and charge distributions. They are discussed within the Wilkins' scission-point model. Cold fission has been studied while selecting fragmentations with final kinetic energies close to the maximum energy released in the reaction. These cold fission events are discussed according to a calculation based on the Wilkins' scission-point model extrapolated to the cold fragmentation case. 51 refs

  13. Analysis of linear energy transfers and quality factors of charged particles produced by spontaneous fission neutrons from 252Cf and 244Pu in the human body

    International Nuclear Information System (INIS)

    Absorbed doses, linear energy transfers (LETs) and quality factors of secondary charged particles in organs and tissues, generated via the interactions of the spontaneous fission neutrons from. 252Cf and. 244Pu within the human body, were studied using the Particle and Heavy Ion Transport Code System (PHITS) coupled with the ICRP Reference Phantom. Both the absorbed doses and the quality factors in target organs generally decrease with increasing distance from the source organ. The analysis of LET distributions of secondary charged particles led to the identification of the relationship between LET spectra and target-source organ locations. A comparison between human body-averaged mean quality factors and fluence-averaged radiation weighting factors showed that the current numerical conventions for the radiation weighting factors of neutrons, updated in ICRP103, and the quality factors for internal exposure are valid. (authors)

  14. Partial wave analysis of the low-mass Kππ systems produced diffractively and by charge-exchange in 4.2 GeV/c K-p interactions

    International Nuclear Information System (INIS)

    In this thesis the author studies the (antiKππ)- system diffractively produced in the reactions K-p → K-π-π+p and K-p → anti K0π-π0p as well as the (anti Kππ)0 system produced by charge-exchange: K-p → anti K0π+π-n. The data are obtained in a high statistics experiment with incident K- mesons at 4.2 GeV/c, using the CERN 2-metre hydrogen bubble chamber. (Auth.)

  15. K x-ray transitions from highly charged very slow Ne recoil ions produced by 1.4 MeV/amu very heavy ion impact

    International Nuclear Information System (INIS)

    K x-ray transitions in highly charged neon recoil ions have been observed in collisions of 1.4 MeV/amu Ar12+, Ti14+, Ni16+, Kr18+, Xe24+, Pb36+ and U40+ with a neon gas target. The spectral lines are attributed to excited states of Ne9+, Ne8+ and Ne7+. Experimental evidence is given for a secondary selective electron capture into outer shells of fully stripped slow target ions. (author)

  16. Photophysical properties of fullerene in the presence of high excitation densities; Photophysikalische Eigenschaften von Fulleren bei hohen Anregungsdichten

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M.

    1993-07-09

    The study`s main objective was the production and characterization of rather closely defined solid-state fullerenes as well as the examination of their photoconductivity and luminescence in the presence of low and high excitation densities. The study was so designed as to throw further light on the changes to be observed for photophysical properties, when the excitation densities are high. (orig.) [Deutsch] Gegenstand dieser Arbeit ist im wesentlichen die Herstellung und Charakterisierung von moeglichst gut definierten Fulleren-Festkoerpern sowie die Untersuchung der Photoleitung und der Lumineszenz bei niedrigen und hohen Anregungsdichten. Ziel ist es, die Veraenderungen der photophysikalischen Eigenschaften bei hohen Anregungsdichten zu verstehen. (orig.)

  17. A SEARCH FOR NEAR INFRARED BANDS OF THE FULLERENE CATION C{sub 60}{sup +} IN THE PROTOPLANETARY NEBULA IRAS 01005+7910

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias-Groth, S.; Esposito, M., E-mail: sigroth@iac.es [Instituto de Astrofísica de Canarias, C/Via Láctea s/n, E-38200 La Laguna (Spain)

    2013-10-10

    IRAS 01005+7910 is a carbon-rich protoplanetary nebula with a recently reported detection of mid-IR vibrational transitions of the fullerene C{sub 60} by Zhang and Kwok. We present new high spectral resolution (R ∼ 57, 000) observations of this object obtained at the 3.6 m Telescopio Nazionale Galileo, showing the presence of two absorption bands at 9577 and 9632 Å which are consistent with laboratory measurements of the C{sub 60}{sup +} cation. If these two bands were produced by C{sub 60}{sup +} in the material surrounding the central post-asymptotic giant branch star, we estimate that ∼1% of carbon could be trapped in this ionized form of fullerenes which would be more abundant than the neutral species in this protoplanetary nebulae. The central star with an effective temperature of T ≥ 20, 000 K can provide the ionizing photons required. These observations bring further evidence for the presence of fullerenes in protoplanetary nebulae and suggest that a significant production takes place in this late stage of stellar evolution. Mid-IR bands of C{sub 60}{sup +} could be present in the 7-20 μm spectrum of IRAS 01005+7910 and are also likely to be detected in the spectra of planetary nebulae. High-resolution spectroscopy will be required for a reliable determination of the excitation temperatures and the relative abundance of neutral and ionized fullerenes in these objects.

  18. A simple theory of molecular organization in fullerene-containing liquid crystals

    Science.gov (United States)

    Peroukidis, S. D.; Vanakaras, A. G.; Photinos, D. J.

    2005-10-01

    Systematic efforts to synthesize fullerene-containing liquid crystals have produced a variety of successful model compounds. We present a simple molecular theory, based on the interconverting shape approach [Vanakaras and Photinos, J. Mater. Chem. 15, 2002 (2005)], that relates the self-organization observed in these systems to their molecular structure. The interactions are modeled by dividing each molecule into a number of submolecular blocks to which specific interactions are assigned. Three types of blocks are introduced, corresponding to fullerene units, mesogenic units, and nonmesogenic linkage units. The blocks are constrained to move on a cubic three-dimensional lattice and molecular flexibility is allowed by retaining a number of representative conformations within the block representation of the molecule. Calculations are presented for a variety of molecular architectures including twin mesogenic branch monoadducts of C60, twin dendromesogenic branch monoadducts, and conical (badminton shuttlecock) multiadducts of C60. The dependence of the phase diagrams on the interaction parameters is explored. In spite of its many simplifications and the minimal molecular modeling used (three types of chemically distinct submolecular blocks with only repulsive interactions), the theory accounts remarkably well for the phase behavior of these systems.

  19. Encapsulation of Formaldehyde and Hydrogen Cyanide in an Open-Cage Fullerene.

    Science.gov (United States)

    Chen, Chi-Shian; Kuo, Ting-Shen; Yeh, Wen-Yann

    2016-06-20

    Reaction of C63 NO2 (Ph)2 (Py) (1) with o-phenylenediamine and pyridine produces a mixture of C63 H4 NO2 (Ph)2 (Py)(N2 C6 H4 ) (2) and H2 O@2. Compound 2 is a new open-cage fullerene containing a 20-membered heterocyclic orifice, which has been fully characterized by NMR spectroscopy, high-resolution mass spectrometry, and X-ray crystallography. The elliptical orifice of 2 spans 7.45 Å along the major axis and 5.62 Å along the minor axis, which is large enough to trap water and small organic molecules. Thus, heating a mixture of 2 and H2 O@2 with hydrogen cyanide and formaldehyde in chlorobenzene affords HCN@2 and H2 CO@2, respectively. The (1) H NMR spectroscopy reveals substantial upfield shifts for the endohedral species (δ=-1.30 to -11.30 ppm), owing to the strong shielding effect of the fullerene cage. PMID:27123778

  20. Fullerenes, Organics and the Diffuse Interstellar Bands

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The status of DIB research has strongly advanced since 20 years [1], as well as the quest for fullerenes, PAHs and large organics in space. In 1994 we reported the discovery of two near IR diffuse bands coincident with C60+, confirmed in subsequent years [2-6] and now by latest laboratory experiments. A number of DIB observational studies have been published, dealing with: DIB surveys [1,7-10]; measurements of DIB families, correlations and environment dependences [11-14]; extragalactic DIBs [15, 16]. Resolved substructures were detected [17,18] and compared to predicted rotational contours by large molecules [19]. Polarisation studies provided upper limits constraints [20, 21]. DIBs carriers have been linked with organic molecules observed in the interstellar medium [22-25] such as IR bands (assigned to PAHs), Extended Red Emission or recently detected Anomalous Microwave Emission (AME, assigned to spinning dust) and with spectroscopic IR emission bands measured with ISO or Spitzer. Fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched in DIB spectra [eg 2-6, 26-31]. These could be present in various dehydrogenation and ionisation conditions [32,33]. Experiments in the laboratory and in space [eg 34-36] allow to measure the survival and by-products of these molecules. We review DIB observational results and their interpretation, and discuss the presence of large organics, fullerenes, PAHs, graphenes in space. References [1] Herbig, G. 1995 ARA&A33, 19; [2] Foing, B. & Ehrenfreund, P. 1994 Natur 369, 296; [3] Foing, B. & Ehrenfreund, P. 1997 A&A317, L59; [4] Foing, B. & Ehrenfreund, P. 1995 ASSL202, 65; [5] Ehrenfreund, P., Foing, B. H. 1997 AdSpR19, 1033; [6] Galazutdinov, G. A. et al. 2000 MNRAS317, 750; [7] Jenniskens, P., Desert, F.-X. 1994 A&AS106, 39; [8] Ehrenfreund, P. et al. 1997 A&A318, L28; [9] Tuairisg, S. Ó. et al. 2000 A&AS142, 225; [10] Cox, N. et al. 2005 A&A438, 187; [11] Cami, J. et al. 1997A&A.326, 822

  1. Ultrafast charge separation in organic photovoltaics enhanced by charge delocalization and vibronically hot exciton dissociation

    CERN Document Server

    Tamura, Hiroyuki

    2013-01-01

    In organic photovoltaics, the mechanism by which free electrons and holes are generated overcoming the Coulomb attraction is a currently much debated topic. To elucidate this mechanism at a molecular level, we carried out a combined electronic structure and quantum dynamical analysis that captures the elementary events from the exciton dissociation to the free carrier generation at polymer/fullerene donor-acceptor heterojunctions. Our calculations show that experimentally observed efficient charge separations can be explained by a combination of two effects: First, the delocalization of charges which substantially reduces the Coulomb barrier, and second, the vibronically hot nature of the charge transfer state which promotes charge dissociation beyond the barrier. These effects facilitate an ultrafast charge separation even at low-band-offset heterojunctions.

  2. Are Biogenic PAHs Precursors for Fullerenes on Earth?

    Science.gov (United States)

    Heymann, D.

    2002-03-01

    C60 fullerene in shungite and in bitumen from the Bohemian Massif could have formed in situ in two steps: 1. Cyclotrimerization of the PAH C20H12. 2. Dehydrogenation of C60H30 to C60. The necessary heat was provided during metamorphism.

  3. Enhanced efficiency in double junction polymer: Fullerene solar cells

    NARCIS (Netherlands)

    Moet, D.J.D.; Bruyn, P. de; Kotlarski, J.D.; Blom, P.W.M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the photoac

  4. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    2004-01-01

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical mode

  5. Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite

    Science.gov (United States)

    Becker, L.; Bunch, T. E.

    1997-01-01

    In this paper, we confirm our earlier observations of fullerenes (C60 and C70) in the Allende meteorite (Becker et al., 1994a, 1995). Fullerene C60 was also detected in two separate C-rich (approximately 0.5-1.0%) dark inclusions (Heymann et al., 1987) that were hand picked from the Allende sample. The amounts of C60 detected were approximately 5 and approximately 10 ppb, respectively, which is considerably less than what was detected in the Allende 15/21 sample (approximately 100 ppb; Becker et al., 1994a, 1995). This suggests that fullerenes are heterogeneously distributed in the meteorite. In addition, we present evidence for fulleranes, (C60Hx), detected in separate samples by laser desorption (reflectron) time-of-flight (TOF) mass spectrometry (LDMS). The LDMS spectra for the Allende extracts were remarkably similar to the spectra generated for the synthetic fullerane mixtures. Several fullerane products were synthesized using a Rh catalyst (Becker et al., 1993a) and separated using high-performance liquid chromatography (HPLC). Polycyclic aromatic hydrocarbons (PAHs) were also observed ppm levels) that included benzofluoranthene and corannulene, a cup-shaped molecule that has been proposed as a precursor molecule to the formation of fullerenes in the gas phase (Pope et al., 1993).

  6. Nuclear spin-induced circular dichroism in fullerene compounds

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, Petr; Vaara, J.; Coriani, S.; Straka, Michal

    Brno : Masaryk University, 2014 - (Novotný, J.; Foroutan -Nejad, C.; Marek, R.). C2 ISBN 978-80-86441-45-0. [NMR Valtice. Central European NMR Meeting /29./. 27.4.-30.4.2014, Valtice] Institutional support: RVO:61388963 Keywords : NSCD * fullerenes Subject RIV: CF - Physical ; Theoretical Chemistry

  7. Coordination Modes and Different Hapticities for Fullerene Organometallic Complexes

    Directory of Open Access Journals (Sweden)

    Delia Soto

    2012-06-01

    Full Text Available The different coordination modes in fullerene organometallic complexes are reviewed. The main modes are η2 and η5, but there are some interesting studies about the other four, all of them are revised in order to show which is the state of art of this kind of compounds with the respect of the hapticity.

  8. Transport properties of fullerene-polyphenylene oxide homogeneous membranes

    Czech Academy of Sciences Publication Activity Database

    Polotskaya, G.; Biryulin, Yu.; Pientka, Zbyněk; Brožová, Libuše; Bleha, Miroslav

    2004-01-01

    Roč. 12, č. 1 (2004), s. 371-376. ISSN 1536-383X R&D Projects: GA AV ČR KSK4050111 Keywords : fulleren e * polyphenylene oxide * homogeneous membranes Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.117, year: 2004

  9. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger;

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  10. Charge-energy distribution of Ta ions from plasmas produced by 1.omega. and 3.omega. frequencies of a high-power iodine laser

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Jungwirth, Karel; Králiková, Božena; Krása, Josef; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Ullschmied, Jiří; Badziak, J.; Parys, P.; Wolowski, J.; Woryna, E.; Torrisi, L.; Gammino, S.; Boody, F. P.

    2004-01-01

    Roč. 75, č. 5 (2004), s. 1588-1591. ISSN 0034-6748. [International Conference on Ion Sources, ICIS 03 /10./. Dubna, 07.09.2003-14.09.2003] R&D Projects: GA AV ČR IAA1010105; GA MŠk LN00A100 Grant ostatní: INFN(XX) ECLISSE Institutional research plan: CEZ:AV0Z1010921 Keywords : PALS * highly charged Ta ions * self-focusing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.226, year: 2004

  11. Correlation of highly charged ion and x-ray emissions from the laser-produced plasma in the presence of non-linear phenomena

    Czech Academy of Sciences Publication Activity Database

    Láska, Leoš; Ryc, L.; Badziak, J.; Boody, F. P.; Gammino, S.; Jungwirth, Karel; Krása, Josef; Krouský, Eduard; Mezzasalma, A.; Parys, P.; Pfeifer, Miroslav; Rohlena, Karel; Torrisi, L.; Ullschmied, Jiří; Wolowski, J.

    2005-01-01

    Roč. 160, 10-12 (2005), s. 557-566. ISSN 1042-0150. [Workshop PIBHI 2005 /2./. Giardini Naxos, 08.06.06-11.06.06] R&D Projects: GA MŠk(CZ) LC528; GA AV ČR(CZ) IAA1010405 Institutional research plan: CEZ:AV0Z10100523 Keywords : laser beam interactions * non-linear processes * self-focusing * highly charged ions * soft and hard x-rays Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.353, year: 2005

  12. Further evidence for jet production from the charged particles produced in pp collisions at √s=63 GeV triggered on large transverse energy

    International Nuclear Information System (INIS)

    The detailed shape of events triggered by a 1.7 sr hadron calorimeter is studied using charged track information in the Axial Field Spectrometer at the CERN ISR. With increasing transverse energy (Esub(T)) a large fraction of the events are seen to have a limited transverse momentum relative to the trigger direction. A comparison of the circularity of the events with a prediction of a QCD-motivated Monte Carlo model shows that at high Esub(T) the events originate predominantly from two-constituent scattering. (orig.)

  13. Photoionization of endohedral fullerenes using soft x-ray coincidence spectroscopy

    Science.gov (United States)

    Obaid, Razib; Xiong, Hui; Ablikim, Utuq; Augustin, Sven; Schnorr, Kirsten; Battistoni, Andrea; Wolf, Thomas; Carroll, Ann Marie; Bilodeau, Rene; Osipov, Timur; Rolles, Daniel; Berrah, Nora

    2016-05-01

    Endohedral fullerenes are a model system to understand the reorganization dynamics of highly charged molecular systems with delocalized electronic clouds in the multiphoton excitation regime. Previous experiments at the Linac Coherent Light Source (LCLS) using free-electron laser (FEL) and ultrafast IR laser pulses studied this feature in Ho3N@C80. The question remains whether these dynamics can be studied in the site-specific single photo-ionization regime. Ho3N@C80 is particularly interesting since the inner molecule, Ho3N, is unstable in its natural form. The presence of the encapsulating cage, with the charge exchange characteristics of Holmium, stabilizes the whole molecule. In this study, we will present the charge fragmentation dynamics of this species in the single photoionization process of inner shell electrons (4d) of Holmium using the Advanced Light Source (ALS) at LBNL. Photoion-photoion correlation data, alongside with qualitative electron data will be presented. Funded by the DoE-BES, Grant No. DE-SC0012376.

  14. Synthesis and properties of polydiphenylsilane/fullerene C{sub 60} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Sacarescu, Liviu, E-mail: livius@icmpp.ro [Institute of Macromolecular Chemistry “Petru Poni” of the Romanian Academy, Aleea Grigore Ghica Voda 41A, RO 700487 Iasi (Romania); Kostromin, Sergei; Bronnikov, Sergei [Institute of Macromolecular Compounds of the Russian Academy of Sciences, V. O. Bolshoi Pr. 31, 199004 St. Petersburg (Russian Federation)

    2015-01-15

    The efficiency of bulk heterojunction solar cells based on polysilane/C{sub 60} nanocomposites could be improved by delaying the radiative recombination of the charge carriers using aromatic side groups as mediators. This paper presents a study of such nanocomposites prepared with a soluble polydiphenylsilane, a polymer that contains a high number of phenyl groups attached to the main chain. Synthesis of this polysilane is challenging and was done by microwave-assisted Wurtz coupling of diphenyldichlorosilanes in the presence of low amounts of methyldichlorosilane. The nanocomposites were obtained in solution by mixing the polymer with C{sub 60} of various concentrations. The UV–vis profile shows formation of the intermolecular charge transfer complex between polysilane and C{sub 60} which acts as a dopant. Photoluminescence experiments at different concentrations of C{sub 60} revealed details concerning the emission from charge transfer states at the interface. Thin films of polysilane/C{sub 60} nanocomposites were casted from solutions and studied by AFM and TEM to evidence the main aspects of their microstructure. The obtained results confirmed the high potential of these materials for electro-optical devices. - Highlights: • Fullerene interaction with phenyl saturated polysilanes. • Microwave-assisted heterogeneous Wurtz-type polymerization. • UV–VIS and fluorescence spectroscopy of polydiphenylsilane/C{sub 60} nanocomposites. • Phenyls' mechanism to increase efficiency of polysilane/C{sub 60} based solar cells.

  15. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers.

    Science.gov (United States)

    Raggi, G; Besley, E; Stace, A J

    2016-09-13

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4](+) isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501967

  16. Anomalous Photofragmentation of Fullerene Doped in Silica Aerogel-Enhanced Formation of Odd-Numbered "Fullerene" Fragments

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬; 王钰

    2001-01-01

    Photofragmentation of fullerene-doped silica aerogels has been investigated by the excimer laser ablation reflectron time-of-flight mass spectrometric technique. Great enhancement in the formation of odd-numbered 'fullerene' fragments has been observed in the negative-ion channel for the chemically doped aerogel sample. Generally, oddnumbered species C57, C55, C53 and C51 appeared in the mass spectra. Under optimM experimental conditions C55 can be even more intense than the neighbouring even-numbered carbon clusters. In contrast, for the physicallydoped sample, just like pristine C6o, only weak odd-numbered fragments were observed. In the positive-ion channel, the behaviour of all these samples is similar, no odd-numbered species was ever detected. A mechanism related to the interaction between the fullerene dopant and the silica aerogel host is suggested for the anomalous enhancement of the odd-numbered duster formation. A preliminary discussion on the structures of the oddnumbered 'fullerene' fragments is given.

  17. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  18. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  19. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    International Nuclear Information System (INIS)

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron

  20. Effect of Spacer Connecting the Secondary Electron Donor Phenothiazine in Subphthalocyanine-Fullerene Conjugates in Promoting Electron Transfer Followed by Hole Shift Process.

    Science.gov (United States)

    Kc, Chandra B; Lim, Gary N; D'Souza, Francis

    2016-04-20

    Sequential electron/hole transfer between energetically well-positioned entities of photosynthetic reaction center models is one of the commonly employed mechanisms to generate long-lived charge-separated states. A wealth of information, applicable towards light energy harvesting and building optoelectronic devices, has been acquired from such studies. In the present study, we report on the effect of spacer (direct or via phenoxy linkage) connecting the hole shifting agent, phenothiazine (PTZ), on photoinduced charge stabilization in subphthalocyanine-fullerene donor-acceptor conjugates. In these conjugates, the subphthalocyanine (SubPc) and fullerene (C60 ) served as primary electron donor and acceptor, respectively, while the phenothiazine entities act as hole shifting agents. The newly synthesized compounds were characterized by optical absorption and emission, computational, and electrochemical methods. The redox potentials measured using differential pulse voltammetry were used to estimate free-energy changes for charge separation, hole migration, and charge recombination processes. Using femto- and nanosecond transient absorption techniques, evidence for charge separation, and kinetics of charge separation and recombination were obtained in polar benzonitrile and nonpolar toluene solvents. In the conjugate where the phenothiazine entities are directly linked to SubPc, evidence for sequential electron transfer followed by hole shift leading to long-lived charge separated state was weak, primarily due to the delocalization of HOMO on both SubPc and PTZ entities. However, in case of the conjugate where the PTZ and SubPc are linked via phenoxy spacers, sequential electron transfer/hole shift was observed leading to the formation of long-lived charge-separated states. The present study brings out the importance of the spacer group connecting the hole shifting agent in model donor-acceptor conjugates to generate long-lived charge-separated states. PMID:27037628