WorldWideScience

Sample records for charged fullerenes produced

  1. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  2. Molecular dynamics study of self-agglomeration of charged fullerenes in solvents.

    Science.gov (United States)

    Banerjee, Soumik

    2013-01-28

    The agglomeration of fullerenes in solvents is an important phenomenon that is relevant to controlled synthesis of fullerene-based nanowires as well as fullerene-based composites. The molecular aggregation in solvents depends on the atomistic interactions of fullerene with the solvent and is made complicated by the fact that fullerenes accrue negative surface charges when present in solvents such as water. In the present work, we simulated fullerenes of varying size and shape (C60, C180, C240, and C540) with and without surface charges in polar protic (water), polar aprotic (acetone), and nonpolar (toluene) solvents using molecular dynamics method. Our results demonstrate that uncharged fullerenes form agglomerates in polar solvents such as water and acetone and remain relatively dispersed in nonpolar toluene. The presence of surface charge significantly reduces agglomerate size in water and acetone. Additionally, the relative influence of surface charge on fullerene agglomeration depends on the size and geometry of the fullerene with larger fullerenes forming relatively smaller agglomerates. We evaluated the diffusion coefficients of solvent molecules within the solvation shell of fullerenes and observed that they are much lower than the bulk solvent and are strongly associated with the fullerenes as seen in the corresponding radial distribution functions. To correlate agglomerate size with the binding energy between fullerenes, we evaluated the potential of mean force between fullerenes in each solvent. Consistent with the solubility of fullerenes, binding energy between fullerenes is the greatest in water followed by acetone and toluene. The presence of charge decreases the binding energy of fullerenes in water and thus results in dispersed fullerenes.

  3. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands.

    Science.gov (United States)

    Hosseini, Ali; Taylor, Steven; Accorsi, Gianluca; Armaroli, Nicola; Reed, Christopher A; Boyd, Peter D W

    2006-12-13

    A calix[4]arene scaffolding has been used to construct bisporphyrin ("jaws" porphyrin) hosts for supramolecular binding of fullerene guests. Fullerene affinities were optimized by varying the nature of the covalent linkage of the porphyrins to the calixarenes. Binding constants for C60 and C70 in toluene were explored as a function of substituents at the periphery of the porphyrin, and 3,5-di-tert-butylphenyl groups gave rise to the highest fullerene affinities (26,000 M(-1) for C60). The origin of this high fullerene affinity has been traced to differential solvation effects rather than to electronic effects. Studies of binding constants as a function of solvent (toluene solubility, indicating that desolvation of the fullerene is a major factor determining the magnitude of binding constants. The energetics of fullerene binding have been determined in terms of DelatH and DeltaS and are consistent with an enthalpy-driven, solvation-dependent process. A direct relationship between supramolecular binding of a fullerene guest to a bisporphyrin host and the appearance of a broad NIR absorption band have been established. The energy of this band moves in a predictable manner as a function of the electronic structure of the porphyrin, thereby establishing its origin in porphyrin-to-fullerene charge transfer.

  4. The interactions of high-energy, highly-charged ions with fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, R.; Berry, H.G.; Cheng, S. [and others

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

  5. Fullerenes

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  6. Inter-Fullerene Electronic Coupling Controls the Efficiency of Photoinduced Charge Generation in Organic Bulk Heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Bryon W. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Reid, Obadiah G. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Coffey, David C. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Department of Chemistry and Physics, Warren Wilson College, Swannanoa NC 28778 USA; Avdoshenko, Stanislav M. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Popov, Alexey A. [Liebniz Institute for Solid State and Materials Research, Dresden D01069 Germany; Boltalina, Olga V. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Strauss, Steven H. [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Kopidakis, Nikos [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Rumbles, Garry [Department of Chemistry, Colorado State University, 200 W Lake Street Fort Collins CO 80523 USA; Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA

    2016-09-26

    Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3-hexylthiophene) and measure the PCG dynamics in 50 fs-500 ns time scales with time-resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter-fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.

  7. Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Tracey M.; Shoaee, Safa; Soon, Ying W.; Durrant, James R. [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Ballantyne, Amy; Nelson, Jenny [Centre for Plastic Electronics, Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Duffy, Warren; Heeney, Martin; McCulloch, Iain [Centre for Plastic Electronics, Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Merck Chemicals, Chilworth Science Park, Southampton SO16 7QD (United Kingdom)

    2010-12-07

    Charge photogeneration: The correlation between the efficiency of photogeneration of dissociated polarons and photocurrent densities for organic solar cells based on polymer:fullerene blend films is investigated. Optical assays of polaron yield measured in films without electrodes show a remarkably clear correlation with short circuit density and quantum yield measured in complete devices. For the blend films studied herein, the primary determinant of photocurrent generation is the efficiency of dissociation of photogenerated charges away from the polymer/fullerene interface and the primary loss pathway is geminate recombination. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Anion-Dependent Aggregate Formation and Charge Behavior of Colloidal Fullerenes (n-C60)

    Science.gov (United States)

    The fate and transport of colloidal fullerenes (n-C60) in the environment is likely to be guided by electrokinetic and aggregation behavior. In natural water bodies inorganic ions exert significant effects in determining the size and charge of n-C60 nanoparticles. Although the ef...

  9. Photoinduced charge carriers in conjugated polymer-fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.C.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  10. Photoinduced charge carriers in conjugated polymer–fullerene composites studied with light-induced electron-spin resonance

    NARCIS (Netherlands)

    Dyakonov, V.; Zoriniants, G.; Scharber, M.; Brabec, C.J.; Janssen, R.A.J.; Hummelen, J.C.; Sariciftci, N.S.

    1999-01-01

    Detailed studies on photoinduced spins in conjugated polymer/fullerene composites using (cw) light-induced electron-spin-resonance (LESR) technique are reported. Two overlapping LESR lines are observed, from positive polarons on the polymer chains and negative charges on the fullerene moieties. Micr

  11. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  12. Intramolecular Charge Transfer of Carotene-porphyrin-fullerene Triad: Sequential or Superexchange Cechanism

    Institute of Scientific and Technical Information of China (English)

    SUN,Yu; CHEN,Yue-Hui; LI,Yuan-Zuo; LI,Yong-Qing; MA,Feng-Cai

    2008-01-01

    As an excellent artificial photosynthetic reaction center,the carotene (C)-porphyrin (P)-fullerene (F) triad was extensively investigated experimentally.To reveal the mechanism of the intramolecular charge transfer (ICT) on the mimic of photosynthetic solar energy conversion (such as singlet energy transfer between pigments,and photoinduced electron transfer from excited singlet states to give long-lived charge-separated states),the ICT mechanisms of C-P-F triad on the exciton were theoretically studied with quantum chemical methods as well as the 2D and 3D real space analysis approaches.The results of quantum chemical methods reveal that the excited states are the ICT states,since the densities of HOMO are localized in the carotene or porphyrin unit,and the densities of LUMO are localized in the fullerene unit.Furthermore,the excited states should be the intramolecular superexchange charge transfer (ISCT) states for the orbital transition from the HOMO whose densities are localized in the carotene to the LUMO whose densities are localized in the fullerene unit.The 3D charge difference densities can clearly show that some excited states are ISCT excited states,since the electron and hole are resident in the fullerene and carotene units,respectively.From the results of the electron-hole coherence of the 2D transition density matrix,not only 3D results are supported,but also the delocalization size on the exciton can be observed.These phenomena were further interpreted with non-linear optical effect.The large changes of the linear and non-linear polarizabilities on the exciton result in the charge separate states,and if their changes are large enough,the ICT mechanism can become the ISCT on the exciton.

  13. Origin and impact of recombination via charge transfer excitons in polymer/fullerene solar cells

    Science.gov (United States)

    Hallermann, Markus; da Como, Enrico; Feldmann, Jochen

    2010-03-01

    To further advance the performances of organic photovoltaic cells a thorough understanding of loss mechanisms in polymer/fullerene blends is mandatory. Recombination via charge transfer excitons (CTEs) appears to be a fundamental loss, potentially impacting the open circuit voltage (VOC) and the short circuit current (ISC) of cells. We unravel the origin of CTEs forming in polymer/fullerene blends and discuss their importance in recombination processes considering binding energy [1], polymer conformation [2], and energetic position. CTE photoluminescence (PL) is observed in material combinations such as P3HT and PPV blended with fullerene acceptors. By combining electron microscopy and PL spectroscopy, we show that CTE recombination is only slightly influenced by the mesoscopic morphology, whereas strongly by the polymer chain conformation [2]. By shifting the orbital energies of the fullerene, we tune the CTE PL characteristics. High energy CTE emission results in cells with a beneficial increase in VOC. On the other hand, high energy CTE emission leads to a more efficient recombination impacting directly the ISC. The results highlight a fundamental limit in the efficiency of organic solar cells with CTE recombination. [1] Hallermann et al. APL 2008 [2] Hallermann et al. AFM 2009

  14. The role of ionic functionality on charge injection processes in conjugated polymers and fullerenes

    Science.gov (United States)

    Weber, Christopher David

    Understanding the fundamental chemistry of conjugated polymers and fullerenes has been the subject of intense research for the last three decades, with the last ten years seeing increased research toward the application of these materials into functional organic electronic devices such as organic photovoltaic devices (OPVs). This field has seen significant advances is cell efficiency in just the last few years (to >10%), in large part due to the development of new donor and acceptor materials, the fine tuning of fabrication parameters to control material nanostructure, as well as the introduction of new interfacial materials such as ionically functionalized conjugated polymers, also known as conjugated polyelectrolytes (CPEs). This dissertation aims to further understand the fundamental chemistry associated with charge injection processes in CPEs and ionically functionalized fullerenes. The role of ionic functionality on electrochemical, chemical, and interfacial charge injection processes is explored. The results presented demonstrate the use of ionic functionality to control the spatial doping profile of a bilayer structure of anionically and cationically functionalized CPEs to fabricate a p-n junction (Chapter II). The role of ionic functionality on chemical charge injection processes is explored via the reaction of polyacetylene and polythiophene based CPEs with molecular oxygen (Chapters III and IV). The results show the dramatic effect of ionic functionality, as well as the specific role of the counterion, on the photooxidative stability of CPEs. The control of reaction pathway via counterion charge density is also explored (Chapter IV) and shows a continuum of reaction pathways based on the charge density of the counter cation. Finally, the role of ionic functionality on interfacial charge injection processes in a functional OPV is explored using a cationically functionalized fullerene derivative (Chapters V and VI). Cell performance increases due to an

  15. Adsorption of hydrogen on neutral and charged fullerene: experiment and theory.

    Science.gov (United States)

    Kaiser, A; Leidlmair, C; Bartl, P; Zöttl, S; Denifl, S; Mauracher, A; Probst, M; Scheier, P; Echt, O

    2013-02-21

    Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)(n)HC(m)(+) where m = 60 or 70. Another series of even-numbered ions, (H2)(n)C(m)(+), is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)(n)(+) is barely detectable. The ion series (H2)(n)HC(m)(+) and (H2)(n)C(m)(+) exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60(+); the corresponding value for C70(+) is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60(+) and (H2)2C60(+), and slightly above 70 meV for H2HC60(+) and (H2)2HC60(+). The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well.

  16. Direct observation of ultrafast long-range charge separation at polymer:fullerene heterojunctions

    Science.gov (United States)

    Silva, Carlos

    2014-03-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This effect results in distinctive signatures in the vibrational modes of the polymer. We probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 200 fs, which is nearly two orders of magnitude faster than exciton localisation in the neat polymer film. Surprisingly, further vibrational evolution on polarons is not significantly different from that in equilibrium. This suggests that charges are free from their mutual Coulomb potential, under which vibrational dynamics would report charge-pair relaxation. Our work addresses current debates on the photocarrier generation mechanism at organic semiconductor heterojunctions, and is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials.

  17. Direct observation of ultrafast long-range charge separation at polymer-fullerene heterojunctions

    Science.gov (United States)

    Provencher, Françoise; Bérubé, Nicolas; Parker, Anthony W.; Greetham, Gregory M.; Towrie, Michael; Hellmann, Christoph; Côté, Michel; Stingelin, Natalie; Silva, Carlos; Hayes, Sophia C.

    2014-07-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 300 fs. Surprisingly, further structural evolution on ≲50-ps timescales is modest, indicating that the polymer conformation hosting nascent polarons is not significantly different from that near equilibrium. We interpret this as suggestive that charges are free from their mutual Coulomb potential because we would expect rich vibrational dynamics associated with charge-pair relaxation. We address current debates on the photocarrier generation mechanism at molecular heterojunctions, and our work is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials.

  18. Photoinduced charge transfer in donor-acceptor (DA) copolymer: fullerene bis-adduct polymer solar cells.

    Science.gov (United States)

    Kang, Tae Eui; Cho, Han-Hee; Cho, Chul-Hee; Kim, Ki-Hyun; Kang, Hyunbum; Lee, Myounghee; Lee, Sunae; Kim, Bongsoo; Im, Chan; Kim, Bumjoon J

    2013-02-01

    Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in

  19. Direct detection of photoinduced charge transfer complexes in polymer fullerene blends

    Science.gov (United States)

    Behrends, Jan; Sperlich, Andreas; Schnegg, Alexander; Biskup, Till; Teutloff, Christian; Lips, Klaus; Dyakonov, Vladimir; Bittl, Robert

    2012-03-01

    We report transient electron paramagnetic resonance (trEPR) measurements with submicrosecond time resolution performed on a polymer:fullerene blend consisting of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) at low temperatures. The trEPR spectrum immediately following photoexcitation reveals signatures of spin-correlated polaron pairs. The pair partners (positive polarons in P3HT and negative polarons in PCBM) can be identified by their characteristic g values. The fact that the polaron pair states exhibit strong non-Boltzmann population unambiguously shows that the constituents of each pair are geminate, i.e., originate from one exciton. We demonstrate that coupled polaron pairs are present even several microseconds after charge transfer and suggest that they embody the intermediate charge transfer complexes that form at the donor/acceptor interface and mediate the conversion from excitons into free charge carriers.

  20. Producing multicharged fullerene ion beam extracted from the second stage of tandem-type ECRIS

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, Tomoki, E-mail: nagaya@nf.eie.eng.osaka-u.ac.jp; Nishiokada, Takuya; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu; Kato, Yushi [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Uchida, Takashi [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Muramatsu, Masayuki; Kitagawa, Atsushi [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Yoshida, Yoshikazu [Graduate School of Interdisciplinary New Science, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, 2100, Kujirai, Kawagoe-shi, Saitama 350-8585 (Japan)

    2016-02-15

    We have been constructing the tandem-type electron cyclotron resonance ion source (ECRIS). Two ion sources of the tandem-type ECRIS are possible to generate plasma individually, and they also confined individual ion species by each different plasma parameter. Hence, it is considered to be suitable for new materials production. As the first step, we try to produce and extract multicharged C{sub 60} ions by supplying pure C{sub 60} vapor in the second stage plasma because our main target is producing the endohedral fullerenes. We developed a new evaporator to supply fullerene vapor, and we succeeded in observation about multicharged C{sub 60} ion beam in tandem-type ECRIS for the first time.

  1. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  2. Charge transfer complexes of fullerene[60] with porphyrins as molecular rectifiers. A theoretical study.

    Science.gov (United States)

    Montiel, Filiberto; Fomina, Lioudmila; Fomine, Serguei

    2015-01-01

    Molecular diodes based on charge transfer complexes of fullerene[60] with different metalloporphyrins have been modeled. Their current-voltage characteristics and the rectification ratios (RR) were calculated using direct ab initio method at PBE/def2-SVP level of theory with D3 dispersion correction, for voltages ranging from -2 to +2 V. The highest RR of 32.5 was determined for the complex of fullerene[60] with zinc tetraphenylporphyrin at 0.8 V. Other molecular diodes possessed lower RR, however, all complexes showed RR higher than 1 at all bias voltages. The asymmetric evolutions and alignment of the molecular orbitals with the applied bias were found to be essential for generating the molecular diode rectification behavior. Metal nature of metalloporphyrins and the interaction porphyrin-electrode significantly affect RR of molecular diode. Large metal ions like Cd(2+) and Ag(2+) in metalloporphyrins disfavor rectification creating conducting channels in two directions, while smaller ions Zn(2+) and Cu(2+) favor rectification increasing the interaction between gold electrode and porphyrin macrocycle.

  3. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  4. Direct observation of ultrafast long-range charge separation at polymer–fullerene heterojunctions

    KAUST Repository

    Provencher, Françoise

    2014-07-01

    In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This results in distinctive signatures in the vibrational modes of the polymer. Here, we probe polaron photogeneration dynamics at polymer:fullerene heterojunctions by monitoring its time-resolved resonance-Raman spectrum following ultrafast photoexcitation. We conclude that polarons emerge within 300 fs. Surprisingly, further structural evolution on ≤50-ps timescales is modest, indicating that the polymer conformation hosting nascent polarons is not significantly different from that near equilibrium. We interpret this as suggestive that charges are free from their mutual Coulomb potential because we would expect rich vibrational dynamics associated with charge-pair relaxation. We address current debates on the photocarrier generation mechanism at molecular heterojunctions, and our work is, to our knowledge, the first direct probe of molecular conformation dynamics during this fundamentally important process in these materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  5. Charge generation measured for fullerene-helical nanofilament liquid crystal heterojunctions.

    Science.gov (United States)

    Callahan, Rebecca A; Coffey, David C; Chen, Dong; Clark, Noel A; Rumbles, Garry; Walba, David M

    2014-04-01

    The helical nanofilament (HNF) liquid crystal phase is an ordered architecture exhibiting interesting properties for charge transport. It is a small molecule self-assembly of stacked and twisted crystalline layers, which form alignable organic nanorods with half the surface area of the filaments consisting of aromatic sublayer edges. HNFs mixed with an electron acceptor generate an intriguing network for photoinduced electron transfer (PET). In this work, we characterize the structure of the HNF phase as processed into thin films with transmission electron microscopy (TEM) and X-ray diffraction (XRD). Additionally, we measure the flash-photolysis time-resolved microwave conductivity (TRMC) in samples where the HNF phase is fabricated into heterojunctions with the fullerenes C60 and PC60BM, prototypical electron acceptors for organic photovoltaics. Two distinct microstructures of the thin films were identified and compared for PET. A near-unity charge generation yield is observed in a bilayer of HNFs with C60. Moreover, the HNF phase is shown to be 10× better at charge generation than a lamellar structuring of the same components. Thus, the HNF phase is shown to be a good charge-generation interface.

  6. Optical studies of the charge transfer complex in polythiophene/fullerene blends for organic photovoltaic applications

    Science.gov (United States)

    Drori, T.; Holt, J.; Vardeny, Z. V.

    2010-08-01

    We studied the photophysics of regioregular polythiophene/ C61 (RR-P3HT/PCBM) blend films utilized for organic photovoltaic applications using the femtosecond transient and steady-state photomodulation techniques with above-gap and below-gap pump excitations and electroabsorption spectroscopy. We provide strong evidence for the existence of charge transfer complex (CTC) state in the blend that is formed deep inside the optical gap of the polymer and fullerene constituents, which is clearly revealed in the electroabsorption spectrum with an onset at 1.2 eV. We identify this “midgap” band as the lowest lying CTC state formed at the interfaces separating the polymer and fullerene phases. With above-gap pump excitation the primary photoexcitations in the blend are excitons and polarons in the polymer domains that are generated within the experimental time resolution (150 fs), having distinguishable photoinduced absorption (PA) bands in the mid-IR. The photogenerated excitons subsequently decay within ˜10ps , consistent with the polymer weak photoluminescence in the blend. In contrast, with below-gap pump excitation, a new PA band in the mid-IR is generated within our time resolution, which is associated with photogenerated species that decay into polarons at much later times; also no PA of excitons is observed. We interpret the photoexcitations as CT excitons, which with below-gap pump excitation are resonantly generated on the CTC states at the interfaces, as the first step for polaron generation, without involving intrachain excitons in the polymer phase. We found that the polarons generated with below-gap pump excitation are trapped at the interfaces with relatively long lifetime, and thus may generate polarons on the polymer chains and fullerene molecules with a different mechanism than with above-gap excitation. In any case the interfacial polarons generated with below-gap excitation do not substantially contribute to the photocurrent density in photovoltaic

  7. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.

    2015-11-09

    A profound understanding of charge transfer (CT) at semiconductor quantum dots (QDs) and nanoclusters (NCs) interfaces is extremely important to optimize the energy conversion efficiency in QDs and NCs-based solar cell devices. Here, we report on the ground- and excited-state interactions at the interface of two different bimolecular non-covalent donor-acceptor (D-A) systems using steady-state and femtosecond transient absorption (fs-TA) spectroscopy with broadband capabilities. We systematically investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum dots (QDs). For comparison purposes, we also monitor the interaction of each donor molecule with the neutral fullerene derivative C60-(malonic acid)n, which has minimal electrostatic interactions. Our steady-state and time-resolved data demonstrate that both QDs and NCs have strong interfacial electrostatic interactions and dramatic fluorescence quenching when the CF derivative is present. In other words, our results reveal that only CF can be in close molecular proximity with the QDs and NCs, allowing ultrafast photoinduced CT to occur. It turned out that the intermolecular distances, electronic coupling and subsequently CT from the excited QDs or NCs to fullerene derivatives can be controlled by the interfacial electrostatic interactions. Our findings highlight some of the key variable components for optimizing CT at QDs and NCs interfaces, which can also be applied to other D-A systems that rely on interfacial CT. © The Royal Society of Chemistry 2016.

  8. Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer:fullerene solar cells

    Science.gov (United States)

    Müller, J. G.; Lupton, J. M.; Feldmann, J.; Lemmer, U.; Scharber, M. C.; Sariciftci, N. S.; Brabec, C. J.; Scherf, U.

    2005-11-01

    We investigate the nature of ultrafast exciton dissociation and carrier generation in acceptor-doped conjugated polymers. Using a combination of two-pulse femtosecond spectroscopy with photocurrent detection, we compare the exciton dissociation and geminate charge recombination dynamics in blends of two conjugated polymers, MeLPPP [methyl-substituted ladder-type poly( p -phenylene)] and MDMO-PPV [poly(2-methoxy,5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene], with the electron accepting fullerene derivative PCBM [1-(3-methoxycarbonyl)-propyl-1-phenyl- (6,6)C61 ]. This technique allows us to distinguish between free charge carriers and Coulombically bound polaron pairs. Our results highlight the importance of geminate pair recombination in photovoltaic devices, which limits the device performance. The comparison of different materials allows us to address the dependence of geminate recombination on the film morphology directly at the polymer:fullerene interface. We find that in the MeLPPP:PCBM blend exciton dissociation generates Coulombically bound geminate polaron pairs with a high probability for recombination, which explains the low photocurrent yield found in these samples. In contrast, in the highly efficient MDMO-PPV:PCBM blend the electron transfer leads to the formation of free carriers. The anisotropy dynamics of electronic transitions from neutral and charged states indicate that polarons in MDMO-PPV relax to delocalized states in ordered domains within 500fs . The results suggest that this relaxation enlarges the distance of carrier separation within the geminate pair, lowering its binding energy and favoring full dissociation. The difference in geminate pair recombination concurs with distinct dissociation dynamics. The electron transfer is preceded by exciton migration towards the PCBM sites. In MeLPPP:PCBM the exciton migration time decays smoothly with increasing PCBM concentration, indicating a trap-free exciton hopping. In MDMO-PPV:PCBM, however

  9. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen

    Science.gov (United States)

    Voevodin, A. A.; Jones, J. G.; Zabinski, J. S.; Czigany, Zs.; Hultman, L.

    2002-11-01

    The growth and structure of fullerene-like CNx films produced by laser ablation of graphite in low pressure nitrogen were investigated. Deposition conditions were selected based on investigations of CN and C2 concentration at the condensation surface, vibrational temperature of CN radicals, and kinetic energies of atomic and molecular species. Films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, nanoindentation, and stress analyses. The nitrogen content in CNx films directly depended on the concentration of CN radicals at the condensation surface. Formation of fullerene-like structures required a high vibrational temperature of these radicals, which was maximized at about 4 eV for depositions at 10 mTorr N2 and laser fluences of approx7 J/cm2. The presence of C2 had only a minor effect on film composition and structure. Optimization of plasma characteristics and a substrate temperature of 300 degC helped to produce about 1-mum-thick solid films of CNx (N/C ratioapproximately0.2-0.3) and pure carbon consisting of fullerene-like fragments and packages. In contrast to carbon films, fullerene-like CNx films exhibited a high elastic recovery of about 80% in using a Berkovich tip at 5 mN load and indentation depths up to 150 nm. Their elastic modulus was about 160 GPa measured from the unloading portion of an indentation curve, and about 250 GPa measured with a 40 Hz tip oscillation during nanoindentation tests. The difference was related to time dependent processes of shape restoration of fullerene-like fragments, and an analogy was made to the behavior of elastomer polymers. However, unlike elastomers, CNx film hardness was as high as 30 GPa, which was twice that of fullerene-like carbon films. The unusual combination of high elasticity and hardness of CNx films was explained by crosslinking of fullerene fragments induced by the incorporated nitrogen and stored compressive stress. The

  10. Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination

    Science.gov (United States)

    Li, Cong; Wang, Fuzhi; Xu, Jia; Yao, Jianxi; Zhang, Bing; Zhang, Chunfeng; Xiao, Min; Dai, Songyuan; Li, Yongfang; Tan, Zhan'ao

    2015-05-01

    Alcohol soluble titanium chelate TIPD (titanium (diisopropoxide) bis(2,4-pentanedionate)) was used as an electron transporting layer to form an ohmic contact with the negative electrode, aiming to enhance the charge extraction and suppress the charge recombination for high performance CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. The TIPD layer shows excellent suitability to CH3NH3PbI3 perovskite synthesized by different methods. For one-step synthesized CH3NH3PbI3, the power conversion efficiency (PCE) of the device with the TIPD buffer reaches 8.75%, with a nearly 33% increase in comparison with the device without the buffer layer (6.58%). For two-step synthesized CH3NH3PbI3, an open-circuit voltage (Voc) of 0.89 V, a short-circuit current density (Jsc) of 22.57 mA cm-2, and a fill factor (FF) of 64.5%, corresponding to a PCE of 12.95% for the device with a TIPD buffer layer were achieved, which is among the best performances reported in the literature for CH3NH3PbI3/PCBM-based PHJ perovskite solar cells.Alcohol soluble titanium chelate TIPD (titanium (diisopropoxide) bis(2,4-pentanedionate)) was used as an electron transporting layer to form an ohmic contact with the negative electrode, aiming to enhance the charge extraction and suppress the charge recombination for high performance CH3NH3PbI3/PCBM-based PHJ perovskite solar cells. The TIPD layer shows excellent suitability to CH3NH3PbI3 perovskite synthesized by different methods. For one-step synthesized CH3NH3PbI3, the power conversion efficiency (PCE) of the device with the TIPD buffer reaches 8.75%, with a nearly 33% increase in comparison with the device without the buffer layer (6.58%). For two-step synthesized CH3NH3PbI3, an open-circuit voltage (Voc) of 0.89 V, a short-circuit current density (Jsc) of 22.57 mA cm-2, and a fill factor (FF) of 64.5%, corresponding to a PCE of 12.95% for the device with a TIPD buffer layer were achieved, which is among the best performances reported in the literature

  11. Addressing asymmetry of the charge and strain in a two-dimensional fullerene peapod

    Science.gov (United States)

    Valeš, V.; Verhagen, T.; Vejpravová, J.; Frank, O.; Kalbáč, M.

    2015-12-01

    We prepared a two-dimensional C70 fullerene peapod by the sequential assembly of 12C graphene, C70 fullerenes and 13C graphene. The local changes in the strain and doping were correlated with local roughness revealing asymmetry in the strain and doping with respect to the top and bottom graphene layers of the peapod.We prepared a two-dimensional C70 fullerene peapod by the sequential assembly of 12C graphene, C70 fullerenes and 13C graphene. The local changes in the strain and doping were correlated with local roughness revealing asymmetry in the strain and doping with respect to the top and bottom graphene layers of the peapod. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06271c

  12. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix.

    Science.gov (United States)

    Mollahosseini, Mehdi; Karunaratne, Erandika; Gibson, George N; Gascón, Jose A; Papadimitrakopoulos, Fotios

    2016-05-11

    One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices.

  13. Charge Carrier Generation, Recombination, and Extraction in Polymer–Fullerene Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Laquai, Frederic

    2016-12-20

    In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer–fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.

  14. The Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells

    KAUST Repository

    Baran, Derya

    2015-08-10

    Non-radiative recombination reduces the open-circuit voltage relative to its theoretical limit and leads to reduced luminescence emission at a given excitation. Therefore it is possible to correlate changes in luminescence emission with changes in open-circuit voltage and in the charge carrier lifetime. Here we use luminescence studies combined with transient photovoltage and differential charging analyses to study the effect of polymer fractionation in indacenoedithiophene-co-benzothiadiazole (IDTBT):fullerene solar cells. In this system, polymer fractionation increases electroluminescence and reduces non-radiative recombination. High molecular weight and fractionated IDTBT polymers exhibit higher carrier lifetime-mobility product compared to their non-fractionated analogues, resulting in improved solar cell performance.

  15. The Effect of Interfacial Geometry on Charge-Transfer States in the Phthalocyanine/Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Geva, Eitan; Dunietz, Barry D

    2016-05-19

    The dependence of charge-transfer states on interfacial geometry at the phthalocyanine/fullerene organic photovoltaic system is investigated. The effect of deviations from the equilibrium geometry of the donor-donor-acceptor trimer on the energies of and electronic coupling between different types of interfacial electronic excited states is calculated from first-principles. Deviations from the equilibrium geometry are found to destabilize the donor-to-donor charge transfer states and to weaken their coupling to the photoexcited donor-localized states, thereby reducing their ability to serve as charge traps. At the same time, we find that the energies of donor-to-acceptor charge transfer states and their coupling to the donor-localized photoexcited states are either less sensitive to the interfacial geometry or become more favorable due to modifications relative to the equilibrium geometry, thereby enhancing their ability to serve as gateway states for charge separation. Through these findings, we eludicate how interfacial geometry modifications can play a key role in achieving charge separation in this widely studied organic photovoltaic system.

  16. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency.

    Science.gov (United States)

    Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui

    2017-02-01

    Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation.

  17. Roughening Conjugated Polymer Surface for Enhancing the Charge Collection Efficiency of Sequentially Deposited Polymer/Fullerene Photovoltaics

    Directory of Open Access Journals (Sweden)

    Yoonhee Jang

    2015-08-01

    Full Text Available A method that enables the formation of a rough nano-scale surface for conjugated polymers is developed through the utilization of a polymer chain ordering agent (OA. 1-Chloronaphthalene (1-CN is used as the OA for the poly(3-hexylthiophene-2,5-diyl (P3HT layer. The addition of 1-CN to the P3HT solution improves the chain ordering of the P3HT during the film formation process and increases the surface roughness of the P3HT film compared to the film prepared without 1-CN. The roughened surface of the P3HT film is utilized to construct a P3HT/fullerene bilayer organic photovoltaic (OPV by sequential solution deposition (SqSD without thermal annealing process. The power conversion efficiency (PCE of the SqSD-processed OPV utilizing roughened P3HT layer is 25% higher than that utilizing a plain P3HT layer. It is revealed that the roughened surface of the P3HT increases the heterojunction area at the P3HT/fullerene interface and this resulted in improved internal charge collection efficiency, as well as light absorption efficiency. This method proposes a novel way to improve the PCE of the SqSD-processed OPV, which can be applied for OPV utilizing low band gap polymers. In addition, this method allows for the reassessment of polymers, which have shown insufficient performance in the BSD process.

  18. Physically adsorbed fullerene layer on positively charged sites on zinc oxide cathode affords efficiency enhancement in inverted polymer solar cell.

    Science.gov (United States)

    Cheng, Yu-Shan; Liao, Sih-Hao; Li, Yi-Lun; Chen, Show-An

    2013-07-24

    We present a novel idea for overcoming the drawback of poor contact between the ZnO cathode and active layer interface in an inverted polymer solar cell (i-PSC), simply by incorporating an electron-acceptor self-assembled monolayer (SAM)--tetrafluoroterephthalic acid (TFTPA)--on the ZnO cathode surface to create an electron-poor surface of TFTPA on ZnO. The TFTPA molecules on ZnO are anchored on the ZnO surface by reacting its carboxyl groups with hydroxyl groups on the ZnO surface, such that the tetrafluoroterephthalate moieties lay on the surface with plane-on electron-poor benzene rings acting as positive charge centers. Upon coating a layer of fullerenes on top of it, the fullerene molecules can be physically adsorbed by Coulombic interaction and facilitate a promoted electron collection from the bulk. The active layer is composed of the mid bandgap polymer poly(3-hexylthiophene) (P3HT) or low bandgap polymer, poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl

  19. The effect of phase morphology on the nature of long-lived charges in semiconductor polymer:fullerene systems

    KAUST Repository

    Dou, Fei

    2015-01-01

    In this work, we investigate the effect of phase morphology on the nature of charges in poly(2,5-bis(3-tetradecyl-thiophen-2-yl)thieno[3,2,-b]thiophene) (pBTTT-C16) and phenyl-C61-butyric acid methyl ester (PC61BM) blends over timescales greater than hundreds of microseconds by quasi-steady-state photoinduced absorption spectroscopy. Specifically, we compare an essentially fully intermixed, one-phase system based on a 1 : 1 (by weight) pBTTT-C16 : PC61BM blend, known to form a co-crystal structure, with a two-phase morphology composed of relatively material-pure domains of the neat polymer and neat fullerene. The co-crystal occurs at a composition of up to 50 wt% PC61BM, because pBTTT-C16 is capable of hosting fullerene derivatives such as PC61BM in the cavities between its side chains. In contrast, the predominantly two-phase system can be obtained by manipulating a 1 : 1 polymer : fullerene blend with the assistance of a fatty acid methyl ester (dodecanoic acid methyl ester, Me12) as additive, which hinders co-crystal formation. We find that triplet excitons and polarons are generated in both phase morphologies. However, polarons are generated in the predominantly two-phase system at higher photon energy than for the structure based on the co-crystal phase. By means of a quasi-steady-state solution of a mesoscopic rate model, we demonstrate that the steady-state polaron generation efficiency and recombination rates are higher in the finely intermixed, one-phase system compared to the predominantly phase-pure, two-phase morphology. We suggest that the polarons generated in highly intermixed structures, such as the co-crystal investigated here, are localised polarons while those generated in the phase-separated polymer and fullerene systems are delocalised polarons. We expect this picture to apply generally to other organic-based heterojunctions of complex phase morphologies including donor:acceptor systems that form, for instance, molecularly mixed amorphous solid

  20. Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Ming-Ming, E-mail: hithuomm@163.com; Zhang, Jian-Ping, E-mail: jpzhang@chem.ruc.edu.cn, E-mail: hjhzlz@iccas.ac.cn [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Department of Chemistry, Renmin University of China, Beijing 100872 (China); Hu, Rong, E-mail: hurong-82@163.com; Xing, Ya-Dong, E-mail: xingyadong1130@126.com; Liu, Yu-Chen, E-mail: liuych@ruc.edu.cn; Ai, Xi-Cheng, E-mail: xcai@chem.ruc.edu.cn [Department of Chemistry, Renmin University of China, Beijing 100872 (China); Hou, Jian-Hui, E-mail: jpzhang@chem.ruc.edu.cn, E-mail: hjhzlz@iccas.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-28

    Primary charge photogeneration dynamics in neat and fullerene-blended films of a pair of alternating benzo[1,2-b:4,5-b{sup ′}]dithiophene (BDT) and thieno[3,4-b]thiophene (TT) copolymers are comparatively studied by using near-infrared, time-resolved absorption (TA) spectroscopy under low excitation photon fluence. PBDTTT-E and PBDTTT-C, differed merely in the respective TT-substituents of ester (-E) and carbonyl (-C), show distinctly different charge photogeneration dynamics. The pair of neat PBDTTT films show exciton lifetimes of ∼0.1 ns and fluorescence quantum yields below 0.2%, as well as prominent excess-energy enhanced exciton dissociation. In addition, PBDTTT-C gives rise to >50% higher P{sup •+} yield than PBDTTT-E does irrespective to the excitation photon energy. Both PBDTTT-E:PC{sub 61}BM and PBDTTT-C:PC{sub 61}BM blends show subpicosecond exciton lifetimes and nearly unitary fluorescence quenching efficiency and, with respect to the former blend, the latter one shows substantially higher branching ratio of charge separated (CS) state over interfacial charge transfer (ICT) state, and hence more efficient exciton-to-CS conversion. For PBDTTT-C:PC{sub 61}BM, the ultrafast charge dynamics clearly show the processes of ICT-CS interconversion and P{sup •+} migration, which are possibly influenced by the ICT excess energy. However, such processes are relatively indistinctive in the case of PBDTTT-E:PC{sub 61}BM. The results strongly prove the importance of ICT dissociation in yielding free charges, and are discussed in terms of the film morphology and the precursory solution-phase macromolecular conformation.

  1. Donor-to-Donor vs Donor-to-Acceptor Interfacial Charge Transfer States in the Phthalocyanine-Fullerene Organic Photovoltaic System.

    Science.gov (United States)

    Lee, Myeong H; Dunietz, Barry D; Geva, Eitan

    2014-11-06

    Charge transfer (CT) states formed at the donor/acceptor heterointerface are key for photocurrent generation in organic photovoltaics (OPV). Our calculations show that interfacial donor-to-donor CT states in the phthalocyanine-fullerene OPV system may be more stable than donor-to-acceptor CT states and that they may rapidly recombine, thereby constituting a potentially critical and thus far overlooked loss mechanism. Our results provide new insight into processes that may compete with charge separation, and suggest that the efficiency for charge separation may be improved by destabilizing donor-to-donor CT states or decoupling them from other states.

  2. Quadrimolecular recombination kinetics of photogenerated charge carriers in the composites of regioregular polythiophene derivatives and soluble fullerene

    Science.gov (United States)

    Tanaka, Hisaaki; Yokoi, Yuki; Hasegawa, Naoki; Kuroda, Shin-ichi; Iijima, Takayuki; Sato, Takao; Yamamoto, Takakazu

    2010-04-01

    Light-induced electron spin resonance (LESR) measurements have been performed on the composites of regioregular polythiophene derivatives and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in order to study the recombination kinetics of photogenerated charge carriers. We adopt two regioregular polymers with different side chains; head-to-tail poly(3-hexylthiophene) (RR-P3HT) and head-to-head poly(3-dodecynylthiophene-2,5-diyl) [HH-P3(C≡CDec)Th]. In both systems, two LESR signals due to positive polarons on the polymer (g ˜2.002) and fullerene radical anions (g ˜2.000) have been observed. Quadrimolecular recombination (QR) kinetics, previously reported for RR-P3HT/C60 composites, where two positive polarons and two radical anions recombine simultaneously, has been confirmed in both systems by the observation of Iex0.25 dependence of the LESR intensity on the excitation light intensity (Iex) and the decay curve of the LESR intensity. This process implies the formation of doubly-charged states such as bipolarons or polaron pairs on the polymer to attract two radical anions. Temperature dependence of the QR rate constant, γ, in both systems has exhibited a crossover of the transport mechanism from low temperature tunneling to high temperature hopping process, as in the case of RR-P3HT/C60 composites. In the RR-P3HT/PCBM composites, γ has exhibited marked dependencies on the PCBM concentration or annealing, which may be related to the change of the crystallinity of the phase-separated polymer and fullerene domains as well as their interface structures, affecting the carrier mobilities or the trap states at the interface. Associated change of the molecular orientation of RR-P3HT crystalline domains with the lamellar structure has been further confirmed from the anisotropic LESR signals of the cast films on the substrates, exhibiting a qualitative agreement with the reported x-ray or optical analyses. In the HH-P3(C≡CDec)Th/PCBM composite, γ has been smaller

  3. Highly-Efficient Charge Separation and Polaron Delocalization in Polymer-Fullerene Bulk-Heterojunctions: A Comparative Multi-Frequency EPR & DFT Study

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L.; Banks, Brian P.; Grooms, Gregory M.; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G.

    2016-01-01

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Under illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P+, and negative, P-, polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of 1H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40 - 60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR. Strong

  4. Highly-efficient charge separation and polaron delocalization in polymer-fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study.

    Science.gov (United States)

    Niklas, Jens; Mardis, Kristy L; Banks, Brian P; Grooms, Gregory M; Sperlich, Andreas; Dyakonov, Vladimir; Beaupré, Serge; Leclerc, Mario; Xu, Tao; Yu, Luping; Poluektov, Oleg G

    2013-06-28

    The ongoing depletion of fossil fuels has led to an intensive search for additional renewable energy sources. Solar-based technologies could provide sufficient energy to satisfy the global economic demands in the near future. Photovoltaic (PV) cells are the most promising man-made devices for direct solar energy utilization. Understanding the charge separation and charge transport in PV materials at a molecular level is crucial for improving the efficiency of the solar cells. Here, we use light-induced EPR spectroscopy combined with DFT calculations to study the electronic structure of charge separated states in blends of polymers (P3HT, PCDTBT, and PTB7) and fullerene derivatives (C60-PCBM and C70-PCBM). Solar cells made with the same composites as active layers show power conversion efficiencies of 3.3% (P3HT), 6.1% (PCDTBT), and 7.3% (PTB7), respectively. Upon illumination of these composites, two paramagnetic species are formed due to photo-induced electron transfer between the conjugated polymer and the fullerene. They are the positive, P(+), and negative, P(-), polarons on the polymer backbone and fullerene cage, respectively, and correspond to radical cations and radical anions. Using the high spectral resolution of high-frequency EPR (130 GHz), the EPR spectra of these species were resolved and principal components of the g-tensors were assigned. Light-induced pulsed ENDOR spectroscopy allowed the determination of (1)H hyperfine coupling constants of photogenerated positive and negative polarons. The experimental results obtained for the different polymer-fullerene composites have been compared with DFT calculations, revealing that in all three systems the positive polaron is distributed over distances of 40-60 Å on the polymer chain. This corresponds to about 15 thiophene units for P3HT, approximately three units for PCDTBT, and about three to four units for PTB7. No spin density delocalization between neighboring fullerene molecules was detected by EPR

  5. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells

    KAUST Repository

    Yi, Yuanping

    2011-01-01

    The exciton-dissociation and charge-recombination processes in donor-acceptor complexes found in α-sexithienyl/C60 and α-sexithienyl/perylenetetracarboxydiimide (PDI) solar cells are investigated by means of quantum-chemical methods. The electronic couplings and exciton-dissociation and charge-recombination rates have been evaluated for various configurations of the complexes. The results suggest that the decay of the lowest charge-transfer state to the ground state in the PDI-based devices: (i) is faster than that in the fullerene-based devices and (ii) in most cases, can compete with the dissociation of the charge-transfer state into mobile charge carriers. This faster charge-recombination process is consistent with the lower performance observed experimentally for the devices using PDI derivatives as the acceptor. © 2011 The Royal Society of Chemistry.

  6. Experimental evidence for the influence of charge on the adsorption capacity of carbon dioxide on charged fullerenes

    CERN Document Server

    Ralser, Stefan; Probst, Michael; Postler, Johannes; Renzler, Michael; Bohme, Diethard K; Scheier, Paul

    2016-01-01

    We show, with both experiment and theory, that adsorption of $CO_2$ is sensitive to charge on a capturing model carbonaceous surface. In the experiment we dope superfluid helium droplets with $C_{60}$ and $CO_2$ and expose them to ionising free electrons. Both positively and negatively charged $C_{60}(CO_2)_n^{+/-}$ cluster ion distributions are observed with a high-resolution mass spectrometer and these show remarkable and reproducible anomalies in intensities that are strongly dependent on the charge. The highest adsorption capacity is seen with $C_{60}^+$. Complementary density functional theory calculations and molecular dynamics simulations provided insight into the nature of the interaction of charged $C_{60}$ with $CO_2$ as well as trends in the packing of $C_{60}^+$ and $C_{60}^-$. The quadrupole moment of $CO_2$ itself was seen to be decisive in determining the charge dependence of the observed adsorption features. Our findings are expected to apply to adsorption of $CO_2$ by charged surfaces in gene...

  7. Direct and charge transfer state mediated photogeneration in polymer-fullerene bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Walter, S.; Dyakonov, V.; Deibel, C.

    2012-05-01

    We investigated photogeneration yield and recombination dynamics in blends of poly(3-hexyl thiophene) (P3HT) and poly[2-methoxy-5 -(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) with [6,6]-phenyl-C61butyric acid methyl ester (PC61BM) by means of temperature dependent time delayed collection field measurements. In MDMO-PPV:PC61BM, we find a strongly field dependent polaron pair dissociation which can be attributed to geminate recombination in the device. Our findings are in good agreement with field dependent photoluminescence measurements published before, supporting a scenario of polaron pair dissociation via an intermediate charge transfer state. In contrast, polaron pair dissociation in P3HT:PC61BM shows only a very weak field dependence, indicating an almost field independent polaron pair dissociation or a direct photogeneration. Furthermore, we found Langevin recombination for MDMO-PPV:PC61BM and strongly reduced Langevin recombination for P3HT:PC61BM.

  8. Light-induced electron paramagnetic resonance evidence of charge transfer in electrospun fibers containing conjugated polymer/fullerene and conjugated polymer/fullerene/carbon nanotube blends

    Science.gov (United States)

    Shames, Alexander I.; Bounioux, Céline; Katz, Eugene A.; Yerushalmi-Rozen, Rachel; Zussman, Eyal

    2012-03-01

    Electrospun sub-micron fibers containing conjugated polymer (poly(3-hexylthiophene), P3HT) with a fullerene derivative, phenyl-C61-butyric acid methylester (PCBM) or a mixture of PCBM and single-walled carbon nanotubes (SWCNTs) were studied by light-induced electron paramagnetic resonance spectroscopy. The results provide experimental evidence of electron transfer between PCBM and P3HT components in both fiber systems and suggest that the presence of a dispersing block-copolymer, which acts via physical adsorption onto the PCBM and SWCNT moieties, does not prevent electron transfer at the P3HT-PCBM interface. These findings suggest a research perspective towards utilization of fibers of functional nanocomposites in fiber-based organic optoelectronic and photovoltaic devices. The latter can be developed in the textile-type large area photovoltaics or individual fiber-based solar cells that will broaden energy applications from macro-power tools to micro-nanoscale power conversion devices and smart textiles.

  9. Program Fullerene

    DEFF Research Database (Denmark)

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph, an......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  10. Fullerene Nanogears

    Science.gov (United States)

    1997-01-01

    The Numerical Aerospace Simulation Systems Division (NAS) of the NASA Ames Research Center, Moffett Field, California is conducting research into molecular-sized devices known as Nanotechnology. This photograph depicts two 'Fullerene Nano-gears' with multiple teeth. The hope is that one day, products can be constructed made of thousands of tiny machines that could self-repair and adapt to the environment in which they exist. Researchers have simulated attaching benzyne molecules to the outside of a nanotube to form gear teeth. Nanotubes are molecular-sized pipes made of carbon atoms. To 'drive' the gears, the supercomputer simulated a laser that served as a motor. The laser creates an electric field around the nanotube. A positively charged atom is placed on one side of the nanotube, and a negatively charged atom on the other side. The electric field drags the nanotube around like a shaft turning. Jie Han, Al Globus, Richard Jaffe and Glenn Deardorff are the authors of a technical paper detailing this technology which appears in The Journal of Nanotechnology.

  11. Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends

    NARCIS (Netherlands)

    Veldman, D.; Ipek, Ö.; Meskers, S.C.J.; Sweelssen, J.; Koetse, M.M.; Veenstra, S.C.; Kroon, J.M.; Bavel, S.S. van; Loos, J.; Janssen, R.A.J.

    2008-01-01

    The electro-optical properties of thin films of electron donor-acceptor blends of a fluorene copolymer (PF10TBT) and a fullerene derivative (PCBM) were studied. Transmission electron microscopy shows that in these films nanocrystalline PCBM clusters are formed at high PCBM content. For all concentra

  12. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  13. POLARON DYNAMICS. Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies.

    Science.gov (United States)

    Huber, Rachel C; Ferreira, Amy S; Thompson, Robert; Kilbride, Daniel; Knutson, Nicholas S; Devi, Lekshmi Sudha; Toso, Daniel B; Challa, J Reddy; Zhou, Z Hong; Rubin, Yves; Schwartz, Benjamin J; Tolbert, Sarah H

    2015-06-19

    The efficiency of biological photosynthesis results from the exquisite organization of photoactive elements that promote rapid movement of charge carriers out of a critical recombination range. If synthetic organic photovoltaic materials could mimic this assembly, charge separation and collection could be markedly enhanced. We show that micelle-forming cationic semiconducting polymers can coassemble in water with cationic fullerene derivatives to create photoinduced electron-transfer cascades that lead to exceptionally long-lived polarons. The stability of the polarons depends on the organization of the polymer-fullerene assembly. Properly designed assemblies can produce separated polaronic charges that are stable for days or weeks in aqueous solution.

  14. The effect of thermal annealing on the charge transfer dynamics of a donor-acceptor copolymer and fullerene: F8T2 and F8T2:PCBM.

    Science.gov (United States)

    Garcia-Basabe, Yunier; Yamamoto, Natasha A D; Roman, Lucimara S; Rocco, Maria Luiza M

    2015-05-07

    Ultrafast charge delocalization dynamics in an internal donor-acceptor copolymer poly(9,9-dioctylfluorenyl-co-bithiophene) (F8T2) and its blend with the fullerene derivative [6,6]-phenyl C61 butyric acid methyl ester (PCBM) was studied by resonant Auger spectroscopy measured around sulfur K-edge using the core-hole clock approach. The effect of thermal annealing on the charge transfer delocalization times (τCT) was also investigated. Two main transitions with S 1s → π* and S 1s → σ*(S-C) character were measured at the S 1s NEXAFS spectra. Poor charge delocalization was observed for as cast polymeric films at photon energies corresponding to the S 1s → π* transition, which may suggest a weak π-electronic coupling due to weak polymer crystallinity and chain stacking. Enhancement in the charge transfer process for photon energies close to the resonance maximum was observed for thermally annealed F8T2 and its blends. Atomic Force Microscopy (AFM) topography for as cast F8T2:PCBM shows a top position of PCBM units relative to the polymer, homogeneously distributed on the film surface. This configuration improves the charge delocalization through S 1s → π* molecular orbitals for the as cast blended film, suggesting a strong π-electronic coupling. A new rearrangement of F8T2:PCBM film was found after thermal annealing, leading to a more efficient electron transfer channel through σ* molecular orbitals.

  15. Charge transfer to ground-state ions produces free electrons

    Science.gov (United States)

    You, D.; Fukuzawa, H.; Sakakibara, Y.; Takanashi, T.; Ito, Y.; Maliyar, G. G.; Motomura, K.; Nagaya, K.; Nishiyama, T.; Asa, K.; Sato, Y.; Saito, N.; Oura, M.; Schöffler, M.; Kastirke, G.; Hergenhahn, U.; Stumpf, V.; Gokhberg, K.; Kuleff, A. I.; Cederbaum, L. S.; Ueda, K.

    2017-01-01

    Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment, for example, a liquid or a van der Waals bonded system, this process will be modified, and becomes part of a complex cascade of relaxation steps. Understanding these steps is important, as they determine the production of slow electrons and singly charged radicals, the most abundant products in radiation chemistry. In this communication, we present experimental evidence for a so-far unobserved, but potentially very important step in such relaxation cascades: Multiply charged ionic states after Auger decay may partially be neutralized by electron transfer, simultaneously evoking the creation of a low-energy free electron (electron transfer-mediated decay). This process is effective even after Auger decay into the dicationic ground state. In our experiment, we observe the decay of Ne2+ produced after Ne 1s photoionization in Ne-Kr mixed clusters.

  16. Selective modulation of charge-carrier transport of a photoanode in a photoelectrochemical cell by a graphitized fullerene interfacial layer.

    Science.gov (United States)

    Park, Sun-Young; Lim, Dong Chan; Hong, Eun Mi; Lee, Joo-Yeoul; Heo, Jinhee; Lim, Jae Hong; Lee, Chang-Lyoul; Kim, Young Dok; Mul, Guido

    2015-01-01

    We show that a graphitic carbon interfacial layer, derived from C70 by annealing at 500 °C, results in a significant increase in the attainable photocurrent of a photoelectrochemical cell that contains a WO3 -functionalized fluorine-doped tin oxide (FTO) photoanode. Time-resolved photoluminescence spectroscopy, photoconductive atomic force microscopy, Hall measurements, and electrochemical impedance spectroscopy show that the increase in photocurrent is the result of fast and selective electron transport from optically excited WO3 through the graphitic carbon interfacial layer to the FTO-coated glass electrode. Thus the energy efficiency of perspective solar-to-fuel devices can be improved by modification of the interface of semiconductors and conducting substrate electrodes by using graphitized fullerene derivatives.

  17. Production of anti-fullerene C60 polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Science.gov (United States)

    Hendrickson, O. D.; Fedyunina, N. S.; Martianov, A. A.; Zherdev, A. V.; Dzantiev, B. B.

    2011-09-01

    The aim of this study was to produce anti-fullerene C60 antibodies for the development of detection systems for fullerene C60 derivatives. To produce anti-fullerene C60 antibodies, conjugates of the fullerene C60 carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C60) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  18. Study of the contact charge transfer behavior between cryptophanes (A and E) and fullerene by absorption, fluorescence and {sup 1}H NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Caihong; Shen Weili; Fan Ruying; Zhang Guomei; Shangguan Lingzhi; Chao Jianbin; Shuang Shaomin [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong Chuan, E-mail: dc@sxu.edu.cn [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mfchoi@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2009-09-14

    A group of novel cage-like compounds cryptophanes A and E were synthesized from vanillin by a three-step method. The intermolecular interaction between cryptophanes (A and E) and fullerene (C{sub 60}) was investigated in detail by absorption, fluorescence and {sup 1}H NMR spectroscopy. The absorption of C{sub 60} at 410-650 nm decreased in the presence of cryptophanes A or E. The decrease in absorption intensity was proportional to the concentration of cryptophanes A or E. On the other hand, the fluorescence intensity of cryptophanes A or E decreased and the emission maxima were blue-shifted with the increase in C{sub 60} concentration. These results suggest that contact charge transfer (CCT) complexes can be formed from C{sub 60} with cryptophanes A or E. In addition, the electrochemical behavior of cryptophanes (A and E) and C{sub 60} was studied by cyclic voltammetry. The redox currents of cryptophanes (A and E) decreased and the peak potentials were shifted on addition of C{sub 60}. The changes in the chemical shifts ({Delta}{delta}) of aromatic protons of cryptophanes (A and E) in their NMR spectra further support that CCT complexes were formed with cryptophanes as the electron donors and C{sub 60} as the electron acceptor.

  19. Interstellar Fullerene Compounds and Diffuse Interstellar Bands

    CERN Document Server

    Omont, Alain

    2015-01-01

    Recently, the presence of fullerenes in the interstellar medium (ISM) has been confirmed, especially with the first confirmed identification of two strong diffuse interstellar bands (DIBs) with C60+. This justifies reassesing the importance of interstellar fullerenes of various sizes with endohedral or exohedral inclusions and heterofullerenes (EEHFs). The phenomenology of fullerenes is complex. In addition to formation in shock shattering, fully dehydrogenated PAHs in diffuse interstellar (IS) clouds could perhaps efficiently transform into fullerenes including EEHFs. But it is extremely difficult to assess their expected abundance, composition and size distribution, except for C60+. As often suggested, EEHFs share many properties with C60, as regards stability, formation/destruction, chemical processes and many basic spectral features. We address the importance of various EEHFs as possible DIB carriers. Specifically, we discuss IS properties and the contributions of fullerenes of various sizes and charge su...

  20. Relation fullerene-PAH-soot in laser pyrolysis: FTIR investigations

    Science.gov (United States)

    Alexandrescu, Rodica; Armand, Xavier; Dumitrache, Florian V.; Fleaca, Claudiu T.; Herlin-Boime, Nathalie; Marino, Emanuela; Mayne, Martine; Morjan, Ion G.; Reynaud, Cecile; Sandu, Ion C.; Soare, Iuliana; Tenegal, Francois; Voicu, Ion N.

    2004-10-01

    Laser pyrolysis of a hydrocarbon-based mixture is a continuous method for the synthesis of soot-containing fullerene. In this synthesis process, the mechanism of fullerene formation and soot is the radical mechanism of the PAH formation. In the flames producing both fullerenes and soot, exactly forming carbon cages require particular types of reaction sequences. The fullerene concentrations are strongly correlated with those of PAHs in the flame. The equilibrium soot-PAHs-fullerene is dependent on experimental parameters. FTIR spectra of soot extracts and exhaust gases are discussed in the frame of this dependence.

  1. The role of emissive charge transfer states in two polymer-fullerene organic photovoltaic blends : tuning charge photogeneration through the use of processing additives

    NARCIS (Netherlands)

    Clarke, Tracey M.; Peet, Jeff; Lungenschmied, Christoph; Drolet, Nicolas; Lu, Xinhui; Ocko, Benjamin M.; Mozer, Attila J.; Loi, Maria Antonietta

    2014-01-01

    The role of charge transfer (CT) states in organic photovoltaic systems has been debated in the recent literature. In this paper the device performances of two structurally analogous polymers PDTSiTTz (also known as KP115) and PCPDTTTz blended with PCBM are investigated, focusing on the effect the p

  2. Impact of Fullerene Mixing Behavior on the Microstructure, Photophysics, and Device Performance of Polymer/Fullerene Solar Cells.

    Science.gov (United States)

    Huang, Wenchao; Chandrasekaran, Naresh; Prasad, Shyamal K K; Gann, Eliot; Thomsen, Lars; Kabra, Dinesh; Hodgkiss, Justin M; Cheng, Yi-Bing; McNeill, Christopher R

    2016-11-02

    Here, a comprehensive study of the influence of polymer:fullerene mixing behavior on the performance, thin-film microstructure, photophysics, and device physics of polymer solar cells is presented. In particular, blends of the donor polymer PBDTTT-EFT with the acceptor PC71BM that exhibit power conversion efficiencies over 9% are investigated. Through tuning of the fullerene concentration in PBDTTT-EFT:PC71BM blends, the impact of fullerene mixing behavior is systematically investigated via a combination of synchrotron-based X-ray scattering and spectroscopy techniques. The impact of fullerene loading on photophysics and device physics is further explored with steady-state photoluminescence measurements, ultrafast transient absorption spectroscopy, and transient photovoltage measurements. In the low fullerene concentration regime (70 wt %), large fullerene domains result in incomplete PC71BM exciton harvesting with the presence of fullerene molecules also disrupting the molecular packing of polymer crystallites. The optimum fullerene concentration of ∼60-67 wt % balances the requirements of charge generation and charge collection. These findings demonstrate that controlling the fullerene concentration in the mixed phase and optimizing the balance between pure and mixed phases are critical for maximizing the efficiency of highly mixed polymer/fullerene solar cells.

  3. A New Mechanism of Higgs Bosons in Producing Charge Particles

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time.......A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time....

  4. Infrared spectroscopy of fullerene C60/anthracene adducts

    CERN Document Server

    Garcia-Hernandez, D A; Manchado, A

    2013-01-01

    Recent Spitzer Space Telescope observations of several astrophysical environments such as Planetary Nebulae, Reflection Nebulae, and R Coronae Borealis stars show the simultaneous presence of mid-infrared features attributed to neutral fullerene molecules (i.e., C60) and polycyclic aromatic hydrocarbons (PAHs). If C60 fullerenes and PAHs coexist in fullerene-rich space environments, then C60 may easily form adducts with a number of different PAH molecules; at least with catacondensed PAHs. Here we present the laboratory infrared spectra (~2-25 um) of C60 fullerene and anthracene Dies-Alder mono- and bis-adducts as produced by sonochemical synthesis. We find that C60/anthracene Diels-Alder adducts display spectral features strikingly similar to those from C60 (and C70) fullerenes and other unidentified infrared emission features. Thus, fullerene-adducts - if formed under astrophysical conditions and stable/abundant enough - may contribute to the infrared emission features observed in fullerene-containing circu...

  5. A floating water bridge produces water with excess charge

    Science.gov (United States)

    Fuchs, Elmar C.; Sammer, Martina; Wexler, Adam D.; Kuntke, Philipp; Woisetschläger, Jakob

    2016-03-01

    Excess positive and negative Bjerrum-defect like charge (protonic and ‘aterprotonic’, from ancient Greek ἄ'τɛρ, ‘without’) in anolyte and catholyte of high voltage electrolysis of highly pure water was found during the so-called ‘floating water bridge’ experiment. The floating water bridge is a special case of an electrohydrodynamic liquid bridge and constitutes an intriguing phenomenon that occurs when a high potential difference (~kV cm-1) is applied between two beakers of water. To obtain such results impedance spectroscopy was used. This measurement technique allows the depiction and simulation of complex aqueous systems as simple electric circuits. In the present work we show that there is an additional small contribution from the difference in conductivity between anolyte and catholyte which cannot be measured with a conductivity meter, but is clearly visible in an impedance spectrum.

  6. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  7. Measurement of Charged Pions from Neutrino-produced Nuclear Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Clifford N. [Univ. of California, Irvine, CA (United States)

    2014-01-01

    A method for identifying stopped pions in a high-resolution scintillator bar detector is presented. I apply my technique to measure the axial mass MΔAfor production of the Δ(1232) resonance by neutrino, with the result MΔA = 1.16±0.20 GeV (68% CL) (limited by statistics). The result is produced from the measured spectrum of reconstructed momentum-transfer Q2. I proceed by varying the value of MΔA in a Rein-Sehgal-based Monte Carlo to produce the best agreement, using shape only (not normalization). The consistency of this result with recent reanalyses of previous bubble-chamber experiments is discussed.

  8. Information Entropy of Fullerenes.

    Science.gov (United States)

    Sabirov, Denis Sh; Ōsawa, Eiji

    2015-08-24

    The reasons for the formation of the highly symmetric C60 molecule under nonequilibrium conditions are widely discussed as it dominates over numerous similar fullerene structures. In such conditions, evolution of structure rather than energy defines the processes. We have first studied the diversity of fullerenes in terms of information entropy. Sorting 2079 structures from An Atlas of Fullerenes [ Fowler , P. W. ; Manolopoulos , D. E. An Atlas of Fullerenes ; Oxford : Clarendon , 1995 . ], we have found that the information entropies of only 14 fullerenes (entropy, i.e., an exclusive compound among the other members of the fullerene family. Such an efficient sorting demonstrates possible relevance of information entropy to chemical processes. For this reason, we have introduced an algorithm for calculating changes in information entropy at chemical transformations. The preliminary calculations of changes in information entropy at the selected fullerene reactions show good agreement with thermochemical data.

  9. Polyhydroxy fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, Angelina T., E-mail: angelinageorgieva2009@gmail.com [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States); Pappu, Vijay [University of Florida, Center for Applied Optimization (United States); Krishna, Vijay [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States); Georgiev, Pando G. [University of Florida, Center for Applied Optimization (United States); Ghiviriga, Ion [University of Florida, NMR Facility, Department of Chemistry (United States); Indeglia, Paul [Agency for Sustainable Systems in Science and Technology, Inc. (United States); Xu, Xin; Fan, Z. Hugh [University of Florida, Department of Mechanical and Aerospace Engineering (United States); Koopman, Ben [University of Florida, Department of Environmental Engineering Sciences (United States); Pardalos, Panos M. [University of Florida, Center for Applied Optimization (United States); Moudgil, Brij [University of Florida, Department of Materials Science and Engineering, Particle Engineering Research Center (United States)

    2013-07-15

    Characterization of C{sub 60} polyhydroxyfullerenes (PHF) prepared in alkaline media, preparation facilitated by phase-transfer catalyst, presents challenges in determining the chemical structure resulting from the possibility of multiple isomers or analogs with greater or fewer hydroxyl groups from a single reaction mixture. This paper presents the utilization of analytical methods employed in tandem, especially X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy for semi-quantitative analysis on the number of hydroxyl groups present in PHF. Capillary Electrophoresis was used for purity estimation of the material. Multiple spectra and electropherograms were analyzed using a new simultaneous curve fitting method. The most accurate estimate of hydroxyl groups for C{sub 60} polyhydroxy fullerenes obtained is between 16 and 18 allylic hydroxyl groups by combining analytical methods' results with 5 % accuracy. High precision (reproducibility) of the experiments is observed. Purity of 98 % is estimated by capillary electrophoresis. The size of PHF nanoparticles or aggregates has been determined by atomic force microscopy to be 7.4-14.2 nm. According to the elemental analysis the average probable empirical formula for the most pure PHF at pH 7.1 is C{sub 60}O{sub 17}H{sub 12}Na{sub 5}(NaHCO{sub 3}){sub 3}(H{sub 2}O){sub 13} and the average formula weight is 1,605.9 g/mol. This is the first thorough characterization of PHF in terms of purity.

  10. Photodiodes based on fullerene semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Voz, C. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)], E-mail: cvoz@eel.upc.edu; Puigdollers, J. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO- Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av. del Canal Olimpic s/n, 08860-Castelldefels (Spain); Fonrodona, M.; Stella, M.; Andreu, J. [Solar Energy Group, Departament Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, 08028-Barcelona (Spain); Alcubilla, R. [Micro and Nano Technology Group (MNT), Departament Enginyeria Electronica, Universitat Politecnica Catalunya, c/ Jordi Girona 1-3 Campus Nord C4, 08034-Barcelona (Spain)

    2007-07-16

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum.

  11. Fullerene fine particles adhere to pollen grains and affect their autofluorescence and germination

    Directory of Open Access Journals (Sweden)

    Aoyagi H

    2011-05-01

    Full Text Available Hideki Aoyagi, Charles U UgwuLife Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, JapanAbstract: Adhesion of commercially produced fullerene fine particles to Cryptomeria japonica, Chamaecyparis obtusa and Camellia japonica pollen grains was investigated. The autofluorescence of pollen grains was affected by the adhesion of fullerene fine particles to the pollen grains. The degree of adhesion of fullerene fine particles to the pollen grains varied depending on the type of fullerene. Furthermore, germination of Camellia japonica pollen grains was inhibited by the adhesion of fullerene fine particles.Keywords: Cryptomeria japonica, Chamaecyparis obtusa, Camellia japonica, autofluorescence, pollen grains, fullerene fine particle

  12. Recent advances in fullerene science (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Dunk, P. W.; Marshall, A. G. [Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306, USA and Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive (United States); Mulet-Gas, M.; Rodriguez-Fortea, A.; Poblet, J. M. [Departament de Química Físicai Inorgànica, Universitat Rovirai Virgili c/Marcellí Domingo s/n, 43007 Tarragona (Spain); Kroto, H. W. [Department of Chemistry and Biochemistry, 95 Chieftain Way, Florida State University, Tallahassee, Florida 32306 (United States)

    2014-12-09

    The development of very high resolution FT-ICR mass spectrometers (Marshall et al, 1998) has made a wide range of new measurements possible and by combining this new technology with laser vaporization supersonic beam methods of producing carbon species (chains, rings and fullerenes), new advances in understanding of the fullerene creation mechanisms and their reactivity have been possible. In this overview, new understanding has been developed with regard to: a) closed-network growth of fullerenes (Dunk et al, 2012a); b) small endohedral species such as MαC{sub 28} (Dunk et al., 2012b); c) metallofullerene and fullerene formation under conditions in stellar outflows with relevance to stardust (Dunk et al., 2013a) and d) The formation of heterofullerenes by direct exposure of C{sub 60} toboron vapor (Dunk et al., 2013b)

  13. Beyond fullerenes: design of nonfullerene acceptors for efficient organic photovoltaics.

    Science.gov (United States)

    Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang; Saeki, Akinori; Yoshikawa, Saya; Murari, Nishit M; Subramaniyan, Selvam; Crane, Matthew J; Seki, Shu; Jenekhe, Samson A

    2014-10-15

    New electron-acceptor materials are long sought to overcome the small photovoltage, high-cost, poor photochemical stability, and other limitations of fullerene-based organic photovoltaics. However, all known nonfullerene acceptors have so far shown inferior photovoltaic properties compared to fullerene benchmark [6,6]-phenyl-C60-butyric acid methyl ester (PC60BM), and there are as yet no established design principles for realizing improved materials. Herein we report a design strategy that has produced a novel multichromophoric, large size, nonplanar three-dimensional (3D) organic molecule, DBFI-T, whose π-conjugated framework occupies space comparable to an aggregate of 9 [C60]-fullerene molecules. Comparative studies of DBFI-T with its planar monomeric analogue (BFI-P2) and PC60BM in bulk heterojunction (BHJ) solar cells, by using a common thiazolothiazole-dithienosilole copolymer donor (PSEHTT), showed that DBFI-T has superior charge photogeneration and photovoltaic properties; PSEHTT:DBFI-T solar cells combined a high short-circuit current (10.14 mA/cm(2)) with a high open-circuit voltage (0.86 V) to give a power conversion efficiency of 5.0%. The external quantum efficiency spectrum of PSEHTT:DBFI-T devices had peaks of 60-65% in the 380-620 nm range, demonstrating that both hole transfer from photoexcited DBFI-T to PSEHTT and electron transfer from photoexcited PSEHTT to DBFI-T contribute substantially to charge photogeneration. The superior charge photogeneration and electron-accepting properties of DBFI-T were further confirmed by independent Xenon-flash time-resolved microwave conductivity measurements, which correctly predict the relative magnitudes of the conversion efficiencies of the BHJ solar cells: PSEHTT:DBFI-T > PSEHTT:PC60BM > PSEHTT:BFI-P2. The results demonstrate that the large size, multichromophoric, nonplanar 3D molecular design is a promising approach to more efficient organic photovoltaic materials.

  14. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  15. Interstellar and circumstellar fullerenes

    CERN Document Server

    Bernard-Salas, J; Jones, A P; Peeters, E; Micelotta, E R; Otsuka, M; Sloan, G C; Kemper, F; Groenewegen, M

    2014-01-01

    Fullerenes are a particularly stable class of carbon molecules in the shape of a hollow sphere or ellipsoid that might be formed in the outflows of carbon stars. Once injected into the interstellar medium (ISM), these stable species survive and are thus likely to be widespread in the Galaxy where they contribute to interstellar extinction, heating processes, and complex chemical reactions. In recent years, the fullerene species C60 (and to a lesser extent C70) have been detected in a wide variety of circumstellar and interstellar environments showing that when conditions are favourable, fullerenes are formed efficiently. Fullerenes are the first and only large aromatics firmly identified in space. The detection of fullerenes is thus crucial to provide clues as to the key chemical pathways leading to the formation of large complex organic molecules in space, and offers a great diagnostic tool to describe the environment in which they reside. Since fullerenes share many physical properties with PAHs, understand...

  16. Characterization of naturally-occurring and modified fullerenes by Fourier transform mass spectrometry

    Science.gov (United States)

    Hettich, Robert L.; Jin, Changming; Compton, Robert N.; Buseck, Peter R.; Tsipursky, Semeon J.

    1993-10-01

    Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C60Fx (x=44,46) and C70Fy (y=52,54) were found to be substantially higher than the values for the parent fullerenes.

  17. Morphology of nested fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.; Homyonfer, M.; Tenne, R. (Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100 (Israel))

    1995-03-06

    We introduce a continuum model which shows that dislocations and/or grain boundaries are intrinsic features of nested fullerenes whose thickness exceeds a critical value to relieve the large inherent strains in these structures. The ratio of the thickness to the radius of the nested fullerenes is determined by the ratio of the surface to curvature and dislocation (or grain boundary) energies. Confirming experimental evidence is presented for nested fullerenes with small thicknesses and with spherosymmetric shapes.

  18. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open...

  19. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  20. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2014-07-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  1. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  2. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  3. The Dependence of Average Multiplicity of Produced Charged Particles on Interacting Projectile Nucleons in Nuclear Collisions

    Directory of Open Access Journals (Sweden)

    Mohammad Ayaz Ahmad

    2016-11-01

    Full Text Available In the present articles an attempt has been made for the determination of multiplicity distributions of the secondary charged particles produced in the central region of relativistic heavy ion collisions. Due to sophisticated measurement in the nuclear emulsion experiment only some particles having special criteria could be selected as central collision events with consenting accuracy.

  4. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  5. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  6. Stereochemistry of spiro-acetalized [60]fullerenes: how the exo and endo stereoisomers influence organic solar cell performance.

    Science.gov (United States)

    Mikie, Tsubasa; Saeki, Akinori; Yamazaki, Yu; Ikuma, Naohiko; Kokubo, Ken; Seki, Shu

    2015-04-29

    Exploiting bis-addition products of fullerenes is a rational way to improve the efficiency of bulk heterojunction-type organic photovoltaic cells (OPV); however, this design inherently produces regio- and stereoisomers that may impair the ultimate performance and fabrication reproducibility. Here, we report unprecedented exo and endo stereoisomers of the spiro-acetalized [60]fullerene monoadduct with methyl- or phenyl-substituted 1,3-dioxane (SAF6). Although there is no chiral carbon in either the reagent or the fullerene, equatorial (eq) rather than axial (ax) isomers are selectively produced at an exo-eq:endo-eq ratio of approximately 1:1 and can be easily separated using silica gel column chromatography. Nuclear Overhauser effect measurements identified the conformations of the straight exo isomer and bent endo isomer. We discuss the origin of stereoselectivity, the anomeric effect, intermolecular ordering in the film state, and the performance of poly(3-hexylthiophene):substituted SAF6 OPV devices. Despite their identical optical and electrochemical properties, their solubilities and space-charge limited current mobilities are largely influenced by the stereoisomers, which leads to variation in the OPV efficiency. This study emphasizes the importance of fullerene stereochemistry for understanding the relationship between stereochemical structures and device output.

  7. Properties of cold ions produced by synchrotron radiation and by charged particle impact

    Science.gov (United States)

    Levin, J. C.; Biedermann, C.; Cederquist, H.; O, C.-S.; Short, R. T.; Sellin, I. A.

    1989-04-01

    Argon recoil ions produced by beams of 0.8 MeV/u Cl 5+ have been detected by time-of-flight (TOF) techniques in coincidence with the loss of from one to five projectile electrons. Recoil-ion energies have been determined to be more than an order of magnitude higher than those of highly charged ions produced by unmonochromatized synchrotron radiation. Charge-state distributions, however, show similarities, suggesting that loss of projectile electrons corresponds, in some cases, to inner-shell target ionization producing vacancy cascades. In an essential improvement to the usual multinomial description of ionization in the independent-electron-ejection model, we find the inclusion of Auger vacancy cascades significantly alters the description of the recoil ion spectra corresponding to the projectile-electron loss. These conclusions are consistent with impact parameters inferred from determination of mean recoil energy.

  8. Laser Plasmas : Multiple charge states of titanium ions in laser produced plasma

    Indian Academy of Sciences (India)

    M Shukla; S Bandhyopadhyay; V N Rai; A V Kilpio; H C Pant

    2000-11-01

    An intense laser radiation (1012 to 1014 W/cm-2) focused on the solid target creates a hot (≥ 1 keV) and dense plasma having high ionization state. The multiple charged ions with high current densities produced during laser matter interaction have potential application in accelerators as an ion source. This paper presents generation and detection of highly stripped titanium ions (Ti) in laser produced plasma. An Nd:glass laser (KAMETRON) delivering 50 J energy ( = 0.53 m) in 2.5 ns was focused onto a titanium target to produce plasma. This plasma was allowed to drift across a space of ∼ 3 m through a diagnostic hole in the focusing mirror before ions are finally detected with the help of electrostatic ion analyzer. Maximum current density was detected for the charge states of +16 and +17 of Ti ions for laser intensity of ∼ 1014 W/cm-2.

  9. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    Energy Technology Data Exchange (ETDEWEB)

    Wysocka-Zolopa, Monika [Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok (Poland); Winkler, Krzysztof, E-mail: winkler@uwb.edu.pl [Institute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok (Poland); Caballero, Ruben [Instituto de Nanociencia, Nanotecnologia y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071 Toledo (Spain); Langa, Fernando, E-mail: Fernando.lpuente@uclm.es [Instituto de Nanociencia, Nanotecnologia y Materiales Moleculares (INAMOL), Universidad de Castilla-La Mancha, 45071 Toledo (Spain)

    2011-06-30

    Highlights: > Formation of redox active films of ferrocene derivatives of C{sub 60} and palladium. > Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. > Electrochemical activity at both positive and negative potentials. > Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C{sub 60} (Fc-C{sub 60} and bis-Fc-C{sub 60}). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C{sub 60}/Pd and bis-Fc-C{sub 60}/Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C{sub 60} moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  10. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2014-07-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  11. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  12. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  13. Prolongation of the lifetime of the charge-separated state at low temperatures in a photoinduced electron-transfer system of [60]fullerene and ferrocene moieties tethered by rotaxane structures.

    Science.gov (United States)

    Rajkumar, G Abraham; Sandanayaka, Atula S D; Ikeshita, Kei-ichiro; Araki, Yasuyuki; Furusho, Yoshio; Takata, Toshikazu; Ito, Osamu

    2006-04-06

    A rotaxane tethering both fullerene (C60) and ferrocene (Fc) moieties (abbreviated as (C60;Fc)rotax+) was synthesized in a good yield by the urethane end-capping of pseudorotaxane based on the crown ether-secondary amine motif. In (C60;Fc)rotax+, the C60 group serving as an electron acceptor is attached to the crown ether wheel, through which the axle with a Fc group acting as an electron donor on its end penetrates. The intrarotaxane photoinduced energy-transfer and electron-transfer processes between C60 and Fc in (C60;Fc)rotax+ have been investigated by time-resolved transient absorption and fluorescence measurements with changing solvent polarity. Nanosecond transient absorption measurements of the rotaxane demonstrated that the charge-separated state (C60*-;Fc*+)rotax+ is formed mainly via the excited triplet state of C60 in polar solvents. The lifetime of (C60*-;Fc*+)rotax+ was evaluated to be 20 ns in dimethylformamide (DMF) at room temperature. With lowing temperature, the lifetime of (C60*-;Fc*+)rotax+ extends to 270 ns in DMF at -65 degrees C, due to the structural changes leaving C60*- and Fc*+ at a relatively long distance in the low-temperature region.

  14. Incorporation of Pure Fullerene into Organoclays : Towards C60-Pillared Clay Structures

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Georgakilas, Vasileios; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Rudolf, Petra; Gournis, Dimitrios

    2013-01-01

    In this work, we demonstrate the successful incorporation of pure fullerene from solution into two-dimensional layered aluminosilicate minerals. Pure fullerenes are insoluble in water and neutral in terms of charge, hence they cannot be introduced into the clay galleries by ion exchange or intercala

  15. Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene

    NARCIS (Netherlands)

    Gocalinska, Agnieszka; Saba, Michele; Quochi, Francesco; Marceddu, Marco; Szendrei, Krisztina; Gao, Jia; Loi, Maria A.; Yarema, Maksym; Seyrkammer, Robert; Heiss, Wolfgang; Mura, Andrea; Bongiovanni, Giovanni; Gocalińska, Agnieszka

    2010-01-01

    We investigate a promising organic/inorganic hybrid composite for solution-processable optoelectronics made by lead sulphide nanoparticles and fullerene derivatives, which combine the sensitivity of PbS to the infrared spectrum with the good electron transport properties of fullerenes. Charge separa

  16. On double bonds in fullerenes

    Directory of Open Access Journals (Sweden)

    Stepenshchikov D. G.

    2016-03-01

    Full Text Available Various distributions of double carbon bonds in the fullerenes have been considered in the paper from the point that they are absent in the pentagonal rings. The appropriate classification of the fullerenes has been built. The results may be used when modeling the fullerenes of a given topology and calculating their physical-chemical properties

  17. Influence of organic acids on UV-Vis spectra of pyrrolidino- [60]fullerene derivatives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A pyrrolidino[60]fullerene 1 with pyrrolidine group was synthesized and characterized. The UV-Vis spectra showed that the blue shift of absorption peaks was first observed when strong organic acids such as p-toluene sulfonic or trifluoroacetic acid were added to the solution of pyrrolidino[60]fullerene 1 in dichloromethane. The results indicated that the pyrrolidino[60]fullerene derivatives without pyrrolidine group also possess the same phenomenon. Experiments and computation with the MOPAC 7.0 semi-em- pirical PM3 method demonstrated the reason that some energy gaps on [60]fullerene skeleton were increased because electronic charges on [60]fullerene framework transferred to pyrrolidine ring when strong organic acids were added into pyrrolidino[60]fullerene derivatives' solution; as the result, the complexes could be formed and some absorption wave-lengths blue shifted in the UV-Vis spectrum.

  18. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  19. New supercharging reagents produce highly charged protein ions in native mass spectrometry.

    Science.gov (United States)

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2015-11-07

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods.

  20. A zeta potential value determines the aggregate’s size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells

    OpenAIRE

    Deryabin, Dmitry G.; Ludmila V. Efremova; Vasilchenko, Alexey S.; Saidakova, Evgeniya V; Sizova, Elena A.; Pavel A. Troshin; Zhilenkov, Alexander V; Khakina, Ekaterina E

    2015-01-01

    Background The cause–effect relationships between physicochemical properties of amphiphilic [60]fullerene derivatives and their toxicity against bacterial cells have not yet been clarified. In this study, we report how the differences in the chemical structure of organic addends in 10 originally synthesized penta-substituted [60]fullerene derivatives modulate their zeta potential and aggregate’s size in salt-free and salt-added aqueous suspensions as well as how these physicochemical characte...

  1. Polymer:fullerene bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Jenny Nelson

    2011-10-01

    Full Text Available The efficiency of solar cells made from a conjugated polymer blended with a fullerene derivative has risen from around 1 % to over 9 % in the last ten years, making organic photovoltaic technology a viable contender for commercialization. The efficiency increases have resulted from the development of new materials with lower optical gaps, new polymer:fullerene combinations with higher charge separated state energies, and new approaches to control the blend microstructure, all driven by a qualitative understanding of the principles governing organic solar cell operation. In parallel, a device physics framework has been developed that enables the rational design of device structures and materials for improved organic photovoltaic devices. We review developments in both materials science and device physics for organic photovoltaics.

  2. Radiation properties and hydrodynamics evolution of highly charged ions in laser-produced silicon plasma.

    Science.gov (United States)

    Min, Qi; Su, Maogen; Cao, Shiquan; Sun, Duixiong; O'Sullivan, Gerry; Dong, Chenzhong

    2016-11-15

    We present a simplified radiation hydrodynamic model based on the fluid dynamic equations and the radiative transfer equation, which can be used to investigate the radiation properties and dynamics evolution of highly charged ions in a laser-produced plasma in vacuum. The outputs of the model consist of the evolution of the electron temperature, atom, and ion density, and the temporal and spatial evolution of various transient particles in plasma, as well as the simulated spectrum related to certain experimental conditions in a specified spectral window. In order to test the model and provide valuable experimental feedback, a series of EUV emission spectra of silicon plasmas have been measured using the spatio-temporally resolved laser produced plasma technique. The temporal and spatial evolution of the plasma is reliably reconstructed by using this model.

  3. Geological occurrence of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Buseck, P.R.; Tsipursky, S.J.; Wang, S. (Arizona State Univ., Tempe, AZ (United States)); Hettich, R. (Oak Ridge National Lab., TN (United States))

    1992-01-01

    Using HRTEM imaging, the authors found C[sub 60] and C[sub 70] fullerenes in shungite, a Precambrian carbon-rich rock from Karelia, Russia. Compositionally, shungite represents coals of the meta-anthracite rank, characterized by low ash and sulfur contents, low volatile yields, and high carbon contents. The shungite occurs within metamorphosed sediments. The overlying rocks consist of gray dolomitized sandstones and poorly sorted silts and clays; the underlying rocks are not exposed. The shungite consists of masses containing up to 99% carbon. Diabase is interstratified with shungite-bearing rocks, and the shungite concentration increases with proximity to the diabase. Their sample comes from inclusions in the diabase. In the HRTEM images the fullerenes appear round (presumably roughly spherical in three dimensions), with white rims and black centers, almost identical to images of synthetic C[sub 60] molecules. Following the HRTEM observations, the fullerene identities were confirmed, first by time-of-flight mass spectrometry and then by more precise laser ablation, laser desorption, and thermal desorption ionization plus Fourier transform (FT) mass spectrometry. These measurements verified that the fullerenes were not generated by the laser ionization event. HRTEM images show that locally they occur in ordered arrays that resemble crystals of synthetic C[sub 60]. FT mass spectra show that the C-13/C-12 isotopic ratios for C[sub 60] and C[sub 70] fall within the normal range of terrestrial isotopic values.

  4. Combustion Synthesis of Fullerenes and Fullerenic Nanostructures In Microgravity

    Science.gov (United States)

    Howard, Jack B.; Brooker, John E. (Technical Monitor)

    2002-01-01

    The objectives of the proposed research were to determine the effects of gravity on fullerenes formation in flames and, based on the observed effects, to develop fundamental understanding of fullerenes formation and to identify engineering principles for fullerenes production. The research method consisted of the operation of laminar diffusion flames under normal- and reduced-gravity conditions, and the collection from the flames and subsequent analysis of condensables including any fullerenes present, using coupled high performance liquid chromatography/mass spectrometry and high resolution transmission electron microscopy. The focus included fullerene molecules C60 and C70 and fullerenic nanostructures including tubes, spherules and other shapes. The normal-gravity experiments were performed at MIT and complementary reduced-gravity experiments were to have been contributed by NASA. The independent variables of interest are gravity, fuel type, fuel/oxygen ratio, pressure, gas velocity at burner, diluent type and concentration. Given the large number of variables and the absence of data on either fullerene formation in diffusion flames or gravitational effects on fullerene formation in diffusion or premixed flames, the first part of the work was exploratory while the later part involved detailed study of the most interesting mechanisms. Samples of condensable material from laminar low pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chromatography to determine the yields of fullerenes, and by high-resolution transmission electron microscopy (HRTEM) to characterize the fullerenic material, i.e., curved-layer nanostructures, on and within the soot particles. The highest concentration of fullerenes was always detected just above the visible stoichiometric surface of a flame. The percentage of fullerenes in the condensable material increases with decreasing pressure. The overall highest amount of fullerenes was found

  5. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection UV

    NARCIS (Netherlands)

    Carboni, A.; Emke, E.; Parsons, J.R.; Kalbitz, K.; de Voogt, P.

    2014-01-01

    Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specifi

  6. Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: Experimental and theoretical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Basabe, Y.; Borges, B. G. A. L.; Rocco, M. L. M., E-mail: lsroman@fisica.ufpr.br, E-mail: luiza@iq.ufrj.br [Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909 (Brazil); Marchiori, C. F. N.; Yamamoto, N. A. D.; Koehler, M.; Roman, L. S., E-mail: lsroman@fisica.ufpr.br, E-mail: luiza@iq.ufrj.br [Departament of Physics, Federal University of Paraná, Curitiba 81531-990 (Brazil); Macedo, A. G. [Departament of Physics, Technological Federal University of Paraná, Curitiba 80230-901 (Brazil)

    2014-04-07

    By combining experimental and theoretical approaches, the electronic structure, molecular orientation, charge transfer dynamics and solar cell performance in donor/acceptor copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl) benzo-2,1,3-thiadiazole] (PSiF-DBT) films and blended with 6,6.-phenyl-C 61-butyric acid methyl ester (PSiF-DBT:PCBM) were investigated. Good agreement between experimental and theoretical PSiF-DBT UV-Vis absorption spectrum is observed and the main molecular orbitals contributing to the spectrum were determined using DFT single point calculations. Non-coplanar configuration was determined by geometric optimization calculation in isolated PSiF-DBT pentamer and corroborated by angular variation of the sulphur 1s near-edge X-ray absorption fine structure (NEXAFS) spectra. Edge-on and plane-on molecular orientations were obtained for thiophene and benzothiadiazole units, respectively. A power conversion efficiency up to 1.58%, open circuit voltage of 0.51 V, short circuit current of 8.71 mA/cm{sup 2} and a fill factor of 35% was obtained using blended PSiF-DBT:PCBM as active layer in a bulk heterojunction solar cell. Ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core-hole clock methodology around sulphur 1s absorption edge. Electron delocalization times for PSiF-DBT and PSiF-DBT:PCBM polymeric films were derived for selected excitation energies corresponding to the main transitions in the sulphur 1s NEXAFS spectra. The mixture of PSiF-DBT with PCBM improves the charge transfer process involving the π* molecular orbital of the thiophene units.

  7. Synthesis of Fullerene by Pyrolysis of Acetylene in Thermal HF-Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanjuan; ZHANG Guofu; ZHANG Wei; LIN Tianjin; XIE Hongbo; LIU Qiuxiang; ZHANG Haiyan

    2007-01-01

    Carbon soot containing fullerene was continuously produced in volume by pyrolyzing acetylene in thermal HF-Plasma. The characteristics of the carbon soot and C60 were analyzed by thtransmission electron microscopy, UV/visible, IR and Raman spectroscopy. The results show that the main ingredients of the carbon soot with size of about 25 nm are amorphous carbon, graphite and fullerene. The fullerene yield in carbon soot is about 2.5 g·h-1. Compared with the graphite arc discharge method, the acetylene thermal plasma method is a preferential one for synthesis of fullerene.

  8. Electric discharges produced by clouds of charged water droplets in the presence of moving conducting object

    Science.gov (United States)

    Kostinskiy, Alexander Y.; Syssoev, Vladimir S.; Mareev, Eugene A.; Rakov, Vladimir A.; Andreev, Mikhail G.; Bogatov, Nikolai A.; Makal'sky, Leonid M.; Sukharevsky, Dmitry I.; Aleshchenko, Alexander S.; Kuznetsov, Vladimir E.; Shatalina, Maria V.

    2015-12-01

    The possibility of initiation of electric discharges by a crossbow bolt (projectile) moving in the electric field of a cloud of negatively charged water droplets has been demonstrated for the first time. Over one hundred of discharges have been produced. For each event, a high-speed video camera recorded the images of upward positive leaders developing from both the nearby grounded sphere and the projectile, followed by the return-stroke-like process. Corresponding currents were measured and integrated photos of the events were obtained. The results can help to improve our understanding of lightning initiation by airborne vehicles and by a vertical conductor rapidly extended below the thundercloud in order to trigger lightning with the rocket-and-wire technique.

  9. Characterization of naturally-occurring and modified fullerenes by Fourier transform mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.L.; Jin, C.; Compton, R.N. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6120 (United States)); Buseck, P.R.; Tsipursky, S.J. (Department of Geology, Arizona State University, Tempe, Arizona 85287 (United States))

    1993-10-10

    Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C[sub 60]F[sub x] (x=44,46) and C[sub 70]F[sub y] (y=52,54) were found to be substantially higher than the values for the parent fullerenes.

  10. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Activated carbons produced from depleted fullerene soot by carbon dioxide activation and their electrochemical properties%富勒烯烟灰萃余物的二氧化碳活化及其电化学性能

    Institute of Scientific and Technical Information of China (English)

    孙利; 王春雷; 周颖; 张旭; 邱介山

    2014-01-01

    以富勒烯烟灰萃余物(DFS)为前驱体,CO2为活化剂,制备出高比表面积纳米级颗粒炭(ADFS)。采用TEM、XRD、氮气吸附技术对材料进行结构表征。研究产品作为电化学电容器电极材料的性能,考察制备工艺及条件对材料性能的影响。结果表明:活化温度和时间是影响产品比表面积和孔结构的主要因素。 ADFS作为电化学电容器电极材料表现出理想的双电层性能和优异的快速充放电性能:经1173 K,CO2活化2 h的样品,在400 mV·s-1扫描速率下,循环伏安曲线依然表现为准矩形特性,在4 A·g-1的电流密度下材料的质量比电容为126 F·g-1。%Activated carbons (ACs) were prepared by CO2 activation using depleted fullerene soot as precursor. The structure of the ACs was investigated by TEM, XRD, and nitrogen adsorption. Their electrochemical properties in electrochemical capacitors were tested by cyclic voltammetry (CV) and galvanostatic charge/discharge methods in a three-electrode cell. Activation temperature and time were proved to be key parameters in controling the development of porosity and surface area of the ACs. The ACs have an excellent electro-chemical performance with fast charge/discharge characteristics. AC activated at 1173 K for 2 h exhibits an excellent electrochemical per-formance even at a high scanning rate of 400 mV·s-1 with a quasi-rectangular CV curve and its specific capacitance is up to 126 F·g-1 at a high current density of 4 A·g-1 .

  12. Search for Fractional Charges Produced in Heavy-Ion Collisions at 1.9 GeV/nucleon

    Science.gov (United States)

    Lindgren, Michael A.; Joyce, David C.; Abrams, Peter C.; Bland, Roger W.; Johnson, Robert T.; Knoop, Tanya D.; Savage, Maureen H.; Scholz, Marion H.; Young, Betty A.; Hodges, Christopher L.; Hahn, Alan A.; Shaw, Gordon L.; Lackner, Klaus S.; Pugh, Howel G.; Slansky, Richard

    1983-10-01

    An experiment was performed to capture fractionally charged particles produced in heavy-ion collisions and to concentrate them in samples suitable for analysis by various techniques. Two of the samples so produced have been searched, with use of an automated version of Millikan's oil-drop apparatus. The beam was 56Fe at 1.9 GeV/nucleon, incident on a lead target. Less than one fractional charge per 1.0×104 Fe-Pb collisions was found to be produced, and, with further assumptions, less than one per 2.0×106 collisions.

  13. Search for fractional charges produced in heavy-ion collisions at 1. 9 GeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, M.A.; Joyce, D.C.; Abrams, P.C.; Bland, R.W.; Johnson, R.T.; Knoop, T.D.; Savage, M.H.; Scholz, M.H.; Young, B.A.; Hodges, C.L.

    1983-10-31

    An experiment was performed to capture fractionally charged particles produced in heavy-ion collisions and to concentrate them in samples suitable for analysis by various techniques. Two of the samples so produced have been searched, with use of an automated version of Millikan's oil drop apparatus. The beam was /sup 56/Fe at 1.9 GeV/nucleon, incident on a lead target. Less than one fractional charge per 1.0 x 10/sup 4/ Fe-Pb collisions was found to be produced, and, with further assumptions, less than one per 2.0 x 10/sup 6/ collisions.

  14. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins.

  15. Distance distributions of photogenerated charge pairs in organic photovoltaic cells.

    Science.gov (United States)

    Barker, Alex J; Chen, Kai; Hodgkiss, Justin M

    2014-08-27

    Strong Coulomb interactions in organic photovoltaic cells dictate that charges must separate over relatively long distances in order to circumvent geminate recombination and produce photocurrent. In this article, we measure the distance distributions of thermalized charge pairs by accessing a regime at low temperature where charge pairs are frozen out following the primary charge separation step and recombine monomolecularly via tunneling. The exponential attenuation of tunneling rate with distance provides a sensitive probe of the distance distribution of primary charge pairs, reminiscent of electron transfer studies in proteins. By fitting recombination dynamics to distributions of recombination rates, we identified populations of charge-transfer states and well-separated charge pairs. For the wide range of materials we studied, the yield of separated charges in the tunneling regime is strongly correlated with the yield of free charges measured via their intensity-dependent bimolecular recombination dynamics at room temperature. We therefore conclude that populations of free charges are established via long-range charge separation within the thermalization time scale, thus invoking early branching between free and bound charges across an energetic barrier. Subject to assumed values of the electron tunneling attenuation constant, we estimate critical charge separation distances of ∼3-4 nm in all materials. In some blends, large fullerene crystals can enhance charge separation yields; however, the important role of the polymers is also highlighted in blends that achieved significant charge separation with minimal fullerene concentration. We expect that our approach of isolating the intrinsic properties of primary charge pairs will be of considerable value in guiding new material development and testing the validity of proposed mechanisms for long-range charge separation.

  16. Spectroscopic investigation of new fullerene based acceptors for organic solar cells; Spektroskopische Untersuchung neuartiger Fullerenakzeptoren fuer organische Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Liedte, Moritz Nils

    2012-04-27

    high open circuit voltage of 835 mV in the devices produced, but also a rather low current density. I tried to understand the processes in the charge carrier generation and extraction process causing this. Using several measurement techniques, combined with general knowledge about comparable endohedral fullerenes from the literature, I was able to identify an internal charge transfer of electrons from the lutetium atoms encaged in the C{sub 80} to the fullerene bulk as origin The results presented in this work give further indications for the advantages of using C{sub 70} based fullerene acceptors in organic solar cells to raise the total power conversion efficiencies of these devices, despite the higher production costs. The identification of anion signatures of different fullerenes show an additional method to monitor the excitation processes by optical spectroscopy in bulk-heterojunction devices. My research regarding the Lu{sub 3}N rate at C{sub 80} molecule showed a general effect regarding this class of molecules, that will be important for any further synthesizes or application of such molecules in organic photovoltaics. While the projects regarding the dimer acceptors and the Lu{sub 3}N rate at C{sub 80} molecule were completed in this work, the analysis of spectroscopic anion signatures left some open questions, especially for large fullerenes. Further investigations using spin sensitive or time resolved techniques, as available in our research group, could be useful to gather more detailed information on this topic. Also trying to get some PC{sub 81}BM for photoinduced absorption measurements, alone and in blend with several polymers, might be another way to energetically pinpoint the anion signature on C{sub 80}.

  17. Cooperative Tin Oxide Fullerene Electron Selective Layers for High-Performance Planar Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; Wang, Changlei; Cimaroli, Alexander J.; Grice, Corey R.; Yang, Mengjin; Li, Zhen; Jiang, Chun-Sheng; Al-Jassim, Mowafak; Zhu, Kai; Kanatzidis, Mercouri G.; Fang, Guojia; Yan, Yanfa

    2016-10-07

    Both tin oxide (SnO2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO2/perovskite interface and perovskite grain boundaries. With careful device optimization, the best-performing planar perovskite solar cell using a fullerene passivated SnO2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm-2, and a fill factor of 75.8% when measured under reverse voltage scanning. We find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.

  18. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  19. Phase Separation in Bulk Heterojunctions of Semiconducting Polymers and Fullerenes for Photovoltaics

    Science.gov (United States)

    Treat, Neil D.; Chabinyc, Michael L.

    2014-04-01

    Thin-film solar cells are an important source of renewable energy. The most efficient thin-film solar cells made with organic materials are blends of semiconducting polymers and fullerenes called the bulk heterojunction (BHJ). Efficient BHJs have a nanoscale phase-separated morphology that is formed during solution casting. This article reviews recent work to understand the nature of the phase-separation process resulting in the formation of the domains in polymer-fullerene BHJs. The BHJ is now viewed as a mixture of polymer-rich, fullerene-rich, and mixed polymer-fullerene domains. The formation of this structure can be understood through fundamental knowledge of polymer physics. The implications of this structure for charge transport and charge generation are given.

  20. Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation.

    Science.gov (United States)

    Wang, Min; Maragani, Satyanarayana; Huang, Liyi; Jeon, Seaho; Canteenwala, Taizoon; Hamblin, Michael R; Chiang, Long Y

    2013-05-01

    We report a novel class of highly water-soluble decacationic methano[60]fullerene decaiodides C60[>M(C3N6(+)C3)2]-(I(-))10 [1-(I(-))10] capable of co-producing singlet oxygen (Type-II) and highly reactive hydroxyl radicals, formed from superoxide radicals in Type-I photosensitizing reactions, upon illumination at both UVA and white light wavelengths. The O2(-)·-production efficiency of 1-(I(-))10 was confirmed by using an O2(-)·-reactive bis(2,4-dinitrobenzenesulfonyl)tetrafluorofluorescein probe and correlated to the photoinduced electron-transfer event going from iodide anions to (3)C60*[>M(C3N6(+)C3)2] leading to C60(-)·[>M(C3N6(+)C3)2]. Incorporation of a defined number (ten) of quaternary ammonium cationic charges per C60 in 1 was aimed to enhance its ability to target pathogenic Gram-positive and Gram-negative bacterial cells. We used the well-characterized malonato[60]fullerene diester monoadduct C60[>M(t-Bu)2] as the starting fullerene derivative to provide a better synthetic route to C60[>M(C3N6(+)C3)2] via transesterification reaction under trifluoroacetic acid catalyzed conditions. These compounds may be used as effective photosensitizers and nano-PDT drugs for photoinactivation of pathogens.

  1. Commercial intermediate pressure MALDI ion mobility spectrometry mass spectrometer capable of producing highly charged laserspray ionization ions.

    Science.gov (United States)

    Inutan, Ellen D; Wang, Beixi; Trimpin, Sarah

    2011-02-01

    The first examples of highly charged ions observed under intermediate pressure (IP) vacuum conditions are reported using laser ablation of matrix/analyte mixtures. The method and results are similar to those obtained at atmospheric pressure (AP) using laserspray ionization (LSI) and/or matrix assisted inlet ionization (MAII). Electrospray ionization (ESI), LSI, and MAII are methods operating at AP and have been shown, with or without the use of a voltage or a laser, to produce highly charged ions with very similar ion abundance and charge states. A commercial matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) mass spectrometry (MS) instrument (SYNAPT G2) was used for the IP developments. The necessary conditions for producing highly charged ions of peptides and small proteins at IP appear to be a pressure drop region and the use of suitable matrixes and laser fluence. Ionization to produce these highly charged ions under the low pressure conditions of IP does not require specific heating or a special inlet ion transfer region. However, under the current setup, ubiquitin is the highest molecular weight protein observed. These findings are in accord with the need to provide thermal energy in the pressure drop region, similar to LSI and MAII, to improve sensitivity and extend the types of compounds that produce highly charged ions. The practical utility of IP-LSI in combination with IMS-MS is demonstrated for the analysis of model mixtures composed of a lipid, peptides, and a protein. Further, endogenous multiply charged peptides are observed directly from delipified mouse brain tissue with drift time distributions that are nearly identical in appearance to those obtained from a synthesized neuropeptide standard analyzed by either LSI- or ESI-IMS-MS at AP. Efficient solvent-free gas-phase separation enabled by the IMS dimension separates the multiply charged peptides from lipids that remained on the delipified tissue. Lipid and peptide

  2. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    Energy Technology Data Exchange (ETDEWEB)

    Carboni, Andrea, E-mail: A.carboni@uva.nl [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); Emke, Erik [KWR, Watercycle Research Institute, P.O. Box 1072, 3433 PE Nieuwegein (Netherlands); Parsons, John R.; Kalbitz, Karsten [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); Voogt, Pim de [University of Amsterdam - IBED, Sciencepark 904, 1098 XH Amsterdam (Netherlands); KWR, Watercycle Research Institute, P.O. Box 1072, 3433 PE Nieuwegein (Netherlands)

    2014-01-07

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg{sup −1} and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L{sup −1} and 15–24 μg L{sup −1} respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg{sup −1} and 10 μg kg{sup −1} respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of

  3. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  4. Importance of the donor:fullerene intermolecular arrangement for high-efficiency organic photovoltaics.

    Science.gov (United States)

    Graham, Kenneth R; Cabanetos, Clement; Jahnke, Justin P; Idso, Matthew N; El Labban, Abdulrahman; Ngongang Ndjawa, Guy O; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F; Amassian, Aram; Beaujuge, Pierre M; McGehee, Michael D

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) (13)C{(1)H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material

  5. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  6. Metal Evaporation-Induced Degradation of Fullerene Acceptors in Polymer/Fullerene Solar Cells.

    Science.gov (United States)

    Huang, Wenchao; Gann, Eliot; Thomsen, Lars; Tadich, Anton; Cheng, Yi-Bing; McNeill, Christopher R

    2016-01-27

    Surface-sensitive NEXAFS spectroscopy is used to probe the interaction between low work function metal electrodes and fullerene derivatives in organic solar cells. Evaporation of either Ca or Al electrodes onto films of the fullerene derivatives (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and indene-C60 bisadduct (ICBA) leads to a dramatic change in the observed NEXAFS spectrum. The observed changes cannot be explained only in terms of interfacial electronic doping or charge transfer, but rather point to the formation of new chemical bonds that destroy the extensive electron delocalization on the C60 cage. A combination of ex situ and in situ ultrahigh vacuum measurements indicates that metal evaporation results in a change in the electronic structure of PCBM that then facilitates chemical degradation and oxidation in the presence of oxygen. To investigate the effect of this chemical interaction on device performance, a unique transfer method to laminate the Al electrode to the top of polymer blend is used, in which case, the chemical degradation of the fullerene is not observed. Device performance of P3HT/PCBM blend solar cells in which the top metal electrode has either been thermally evaporated or transferred is then compared. These results highlight that chemical, as well as electronic, interactions between metals and organic semiconductors must be considered.

  7. Charge distribution of Kr ions produced upon photoionization around the 2s edge

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.C.F., E-mail: toni@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21991-972 (Brazil); Pilling, S. [Laboratório Nacional de Luz Síncroton, Campinas 13084-971 (Brazil); Almeida, D.P. [Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-979 (Brazil)

    2015-08-15

    Highlights: • Charge spectra of Kr after photoionization of the L shell have been measured. • Multiple photoionization of krypton around the 2s edge is a collective process. • Electron correlation plays an important role in multiple ionization of heavy atoms. - Abstract: Charge state spectra of krypton ions generated after ionization (by a single photon) of the L shell have been measured by using the PEPICO technique. Relative abundances of Kr{sup q+} ions in charge state up to 8+ were obtained using monochromatized synchrotron radiation. A comparison with other experimental and theoretical data is presented.

  8. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  9. A New Technique for Diagnosing Multi-charged Ion Beams Produced by ECR Ion Source

    Institute of Scientific and Technical Information of China (English)

    ZhangZimin; ZhaoHongwei; CaoYun; MaLei; MaBaohua; LiJinyu; WangHui; FengYucheng; DuJunfeng

    2003-01-01

    In order to study the transmission properties of multi-charged ion beams between the ECR ion source and the analyzing magnet, a new diagnostic system composed of three Wien-filters with three single-wires has been built and installed on the IMP ECR source test bcnch. The single-wire is used to measure the beam profile and the beam density distribution, and the Wien-filter is used to measure the charge state distribution of ion beam.

  10. Testing for fullerenes in geologic materials: Oklo carbonaceous substances, Karelian shungites, Sudbury Black Tuff

    Science.gov (United States)

    Mossman, David; Eigendorf, Guenter; Tokaryk, Dennis; Gauthier-Lafaye, François; Guckert, Kristal D.; Melezhik, Victor; Farrow, Catharine E. G.

    2003-03-01

    Fullerenes have been reported from diverse geologic environments since their discovery in shungite from Karelian Russia. Our investigation is prompted by the presence of onionskin-like structures in some carbonaceous substances associated with the fossil nuclear fission reactors of Oklo, Gabon. The same series of extractions and the same instrumental techniques, laser desorption ionization and high-resolution mass spectroscopy (electron-impact mass spectroscopy), were employed to test for fullerenes in samples from three different localities: two sites containing putative fullerenes (Sudbury Basin and Russian Karelia) and one new location (Oklo, Gabon). We confirm the presence of fullerenes (C60 and C70) in the Black Tuff of the Onaping Formation impact breccia in the Sudbury Basin, but we find no evidence of fullerenes in shungite samples from various locations in Russian Karelia. Analysis of carbonaceous substances associated with the natural nuclear fission reactors of Oklo yields no definitive signals for fullerenes. If fullerenes were produced during sustained nuclear fission at Oklo, then they are present below the detection limit (˜100 fmol), or they have destabilized since formation. Contrary to some expectations, geologic occurrences of fullerenes are not commonplace.

  11. 30 years of cosmic fullerenes

    CERN Document Server

    Berne, O; Mulas, G; Joblin, C

    2015-01-01

    In 1985, "During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells", Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C$_{60}$ "buckminsterfullerene"), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offers the opportunity to study the ...

  12. Producing highly charged ions without solvent using laserspray ionization: a total solvent-free analysis approach at atmospheric pressure.

    Science.gov (United States)

    Wang, Beixi; Lietz, Christopher B; Inutan, Ellen D; Leach, Samantha M; Trimpin, Sarah

    2011-06-01

    First examples of highly charged ions in mass spectrometry (MS) produced from the solid state without using solvent during either sample preparation or mass measurement are reported. Matrix material, matrix/analyte homogenization time and frequency, atmospheric pressure (AP) to vacuum inlet temperature, and mass analyzer ion trap conditions are factors that influence the abundance of the highly charged ions created by laserspray ionization (LSI). LSI, like matrix-assisted laser desorption/ionization (MALDI), uses laser ablation of a matrix/analyte mixture from a surface to produce ions. Preparing the matrix/analyte sample without the use of solvent provides the ability to perform total solvent-free analysis (TSA) consisting of solvent-free ionization and solvent-free gas-phase separation using ion mobility spectrometry (IMS) MS. Peptides and small proteins such as non-β-amyloid components of Alzheimer's disease and bovine insulin are examples in which LSI and TSA were combined to produce multiply charged ions, similar to electrospray ionization, but without the use of solvent. Advantages using solvent-free LSI and IMS-MS include simplicity, rapid data acquisition, reduction of sample complexity, and the potential for an enhanced effective dynamic range. This is achieved by more inclusive ionization and improved separation of mixture components as a result of multiple charging.

  13. Ways to produce new superheavy isotopes with Z = 111-117 in charged particle evaporation channels

    Science.gov (United States)

    Hong, Juhee; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The excitation functions of the production of new heaviest isotopes of superheavy nuclei with charge numbers 111-117 in the pxn and αxn evaporation channels of the 48Ca-induced hot fusion reactions are predicted for the first time for future experiments.

  14. Fullerene-based symmetry in Hibiscus rosa-sinensis pollen.

    Directory of Open Access Journals (Sweden)

    Kleber Andrade

    Full Text Available The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid's "Elements" book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process.

  15. Synthesis and photophysical properties of polyamides containing in-chain porphyrin and [60]fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Haiying; Chen Chen; Zhu Yizhou; Shi Mingzhu; Zheng Jianyu, E-mail: jyzheng@nankai.edu.cn [Nankai University, State Key Laboratory and Institute of Elemento-Organic Chemistry (China)

    2012-03-15

    Conjugated polyamides containing porphyrin and [60]fullerene (C{sub 60}) in the main chain were prepared by a direct polycondensation of the 3 Prime H,3 Double-Prime H-dicyclopropa[1, 9:16, 17; 5, 6]fullerene-C{sub 60}-I{sub h}-3 Prime ,3 Double-Prime -dicarboxylic acid and 5,15-bis(4-aminophenyl)-10,20-bis(3,5-dialkoxyphenyl)porphyrin in the presence of triphenyl phosphite and pyridine. Gel permeation chromatography (GPC) analysis of the polyamides showed the weight-average molecular weight was about 23,626-23,736, and the temperature at 5% weight loss determined by thermogravimetric analysis (TGA) was above 216 Degree-Sign C. The transmission electron microscopy (TEM) images displayed the regular one-dimensional linear arrays of the polyamides with lengths exceeded 200 nm. The photoinduced electron transfer from porphyrin to C{sub 60} in the polyamides was observed in nanosecond laser-flash photolysis experiments at ambient temperature, which produced a charge-separated state (porphyrin radical cation-C{sub 60} radical anion pair) with a lifetime as long as 40 {mu}s. The calculated ratio of k{sub CS}/k{sub CR} was found to be 2.1 Multiplication-Sign 10{sup 4}. They could have potential applications for photoelectronic devices, organic solar cells and so on.

  16. Applications of Functionalized Fullerenes in Tumor Theranostics

    OpenAIRE

    Chen, Zhiyun; Ma, Lijing; Liu, Ying; Chen, Chunying

    2012-01-01

    Functionalized fullerenes with specific physicochemical properties have been developed for cancer diagnosis and therapy. Notably, metallofullerene is a new class of magnetic resonance imaging (MRI) contrast-enhancing agent, and may have promising applications for clinical diagnosis. Polyhydroxylated and carboxyl fullerenes have been applied to photoacoustic imaging. Moreover, in recent years, functionalized fullerenes have shown potential in tumor therapies, such as photodynamic therapy, phot...

  17. A new method for measuring ion clusters produced by charged particles in nanometre track sections of DNA size

    Science.gov (United States)

    Pszona, S.; Kula, J.; Marjanska, S.

    2000-06-01

    A new method is presented for measuring the frequency distribution of ion clusters, formed in nanometre sections of track, by charged particles. The simulated nanometer-size sites are produced in a device, called the Jet Counter. It consists of a pulse-operated valve which injects an expanding jet of nitrogen gas into an interaction chamber. The resulting distributions of ion clusters produced by alpha particle tracks (from 241Am) in sections ranging from 2 to around 10 nm at unit density in nitrogen gas have been measured. Analysis of the experimental results confirm that the primary ionisation distributions produced in the nanometer sections comply with the Poisson distribution. The ionisation cluster distributions produced in the 2-10 nm track-segments are the first ever to be determined experimentally.

  18. A new method for measuring ion clusters produced by charged particles in nanometre track sections of DNA size

    Energy Technology Data Exchange (ETDEWEB)

    Pszona, S. E-mail: pszona@ipj.gov.pl; Kula, J.; Marjanska, S

    2000-06-11

    A new method is presented for measuring the frequency distribution of ion clusters, formed in nanometre sections of track, by charged particles. The simulated nanometer-size sites are produced in a device, called the Jet Counter. It consists of a pulse-operated valve which injects an expanding jet of nitrogen gas into an interaction chamber. The resulting distributions of ion clusters produced by alpha particle tracks (from {sup 241}Am) in sections ranging from 2 to around 10 nm at unit density in nitrogen gas have been measured. Analysis of the experimental results confirm that the primary ionisation distributions produced in the nanometer sections comply with the Poisson distribution. The ionisation cluster distributions produced in the 2-10 nm track-segments are the first ever to be determined experimentally.

  19. Insights into the Rational Design of Multi-Functional Fullerene Systems for Application in Blended Heterojunction Organic Solar Cells

    Science.gov (United States)

    Cowart, John S., Jr.

    Elucidating the structure-function relationships of organic semiconductors has been central to the advancement of organic photovoltaics (OPVs). In particular, enhancing the performance of p-type materials in disordered heterojunctions is broadly acknowledged as the principal factor leading to current trends of improved power conversion efficiencies (PCEs). However, two additional factors are crucially important for the next step forward in improving PCEs. First, investigating the influence, design and synthesis of new n-type materials, specifically fullerene acceptors, is of high importance. Second, because fullerene performance is often compromised by the morphological disorder of bulk heterojunctions, developing fullerenes systems that retain fidelity within disordered blends is also of broad interest. In light of these challenges, the field has witnessed a notable shift towards developing a comprehensive understanding of the design rules needed to advance the performance of fullerene acceptors in bulk heterojunctions. This work spotlights two multi-functional fullerene systems designed for blended heterojunctions. First, the synthesis of several novel fullerene-dye adducts with enhanced photon absorption will be presented. The ability of these adducts to absorb visible light in their pure state was evaluated and systematically examined versus their capacity to complement the absorption of low band gap donors and mediate charge transport in bulk heterojunctions. Second, mixed fullerene ternary blends were introduced as a strategy to stabilize the morphology in bulk heterojunctions and prolong operational lifetimes of OPV devices. Combined, these two systems offer unique insight into the rational design of fullerenes for their application in blended systems.

  20. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma

    Science.gov (United States)

    Deng, Z. G.; Zhang, Z. M.; Zhang, B.; He, S. K.; Teng, J.; Hong, W.; Dong, K. G.; Wu, Y. C.; Zhu, B.; Gu, Y. Q.

    2017-02-01

    Electrons can be efficiently injected into a plasma wave by colliding two counterpropagating laser pulses in a laser wakefield acceleration. However, the generation of a high-quality electron beam with a large charge is difficult in the traditional on-axis colliding scheme due to the growth of the electron beam duration coming from the increase of the beam charge. To solve this problem, we propose an off-axis colliding scheme, in which the collision point is away from the axis of the driver pulse. We show that the electrons injected from the off-axis region are highly concentered on the tail of the bubble even for a large trapped charge, thus feeling almost the same accelerating field. As a result, quasimonoenergetic electron beams with a large charge can be produced. The validity of this scheme is confirmed by both the particle-in-cell simulations and the Hamiltonian model. Furthermore, it is shown that a Laguerre-Gauss (LG) laser can be adopted as the injection pulse to realize the off-axis colliding injection in three dimensions symmetrically, which may be useful in simplifying the technical layout of the real experiment setup.

  1. Functionalized fullerene (C₆₀) as a potential nanomediator in the fabrication of highly sensitive biosensors.

    Science.gov (United States)

    Afreen, Sadia; Muthoosamy, Kasturi; Manickam, Sivakumar; Hashim, Uda

    2015-01-15

    Designing a biosensor for versatile biomedical applications is a sophisticated task and how dedicatedly functionalized fullerene (C60) can perform on this stage is a challenge for today and tomorrow's nanoscience and nanotechnology. Since the invention of biosensor, many ideas and methods have been invested to upgrade the functionality of biosensors. Due to special physicochemical characteristics, the novel carbon material "fullerene" adds a new dimension to the construction of highly sensitive biosensors. The prominent aspects of fullerene explain its outstanding performance in biosensing devices as a mediator, e.g. fullerene in organic solvents exhibits five stages of reversible oxidation/reduction, and hence fullerene can work either as an electrophile or nucleophile. Fullerene is stable and its spherical structure produces an angle strain which allows it to undergo characteristic reactions of addition to double bonds (hybridization which turns from sp(2) to sp(3)). Research activities are being conducted worldwide to invent a variety of methods of fullerene functionalization with a purpose of incorporating it effectively in biosensor devices. The different types of functionalization methods include modification of fullerene into water soluble derivatives and conjugation with enzymes and/or other biomolecules, e.g. urease, glucose oxidase, hemoglobin, myoglobin (Mb), conjugation with metals e.g. gold (Au), chitosan (CS), ferrocene (Fc), etc. to enhance the sensitivity of biosensors. The state-of-the-art research on fullerene functionalization and its application in sensor devices has proven that fullerene can be implemented successfully in preparing biosensors to detect glucose level in blood serum, urea level in urine solution, hemoglobin, immunoglobulin, glutathione in real sample for pathological purpose, to identify doping abuse, to analyze pharmaceutical preparation and even to detect cancer and tumor cells at an earlier stage. Employing fullerene

  2. Fullerenes as unique nanopharmaceuticals for disease treatment

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As unique nanoparticles,fullerenes have attracted much attention due to their unparalleled physical,chemical and biological properties.Various functionalized fullerenes with OH,NH2,COOH,and peptide modifications were developed.It summarized the biological activities of fullerenes derivatives in cancer therapy with high efficiency and low toxicity,as reactive oxygen species scavenger and lipid peroxidation inhibitor,to inhibit human immunodeficiency virus and to suppress bacteria and microbial at low concentration.In addition,the mechanism for fullerene to enter cells and biodistribution of fullerene in vivo was also discussed.This research focuses on the current understanding of fullerenes-based nanomaterials in the potential clinical application as well as biological mechanism of fullerenes and its derivatives in disease therapy.

  3. Size of craters produced by explosive charges on or above the ground surface

    Science.gov (United States)

    Ambrosini, R. D.; Luccioni, B. M.; Danesi, R. F.; Riera, J. D.; Rocha, M. M.

    The results of a series of tests performed with different amounts of explosive at short distances above and below ground level, as well as on the soil surface are briefly described. After an introductory description of both the main features of the blast wave and the mechanics of crater formation, a brief review of empirical methods for crater size prediction is presented. Next, the experimental design and the results obtained are described. The crater dimensions for underground explosions coincide with those found in the literature. For explosions at ground level the results are qualitatively described by empirical equations. For explosive charges situated above ground level, the dimensions of the craters are smaller than those observed in underground and near the surface explosions. Two new single prediction equations for this case are presented.

  4. Azimuthal asymmetries of charged hadrons produced in high-energy muon scattering off longitudinally polarised deuterons

    CERN Document Server

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A

    2016-01-01

    Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...

  5. Unfolding DNA condensates produced by DNA-like charged depletants: A force spectroscopy study

    Science.gov (United States)

    Lima, C. H. M.; Rocha, M. S.; Ramos, E. B.

    2017-02-01

    In this work, we have measured, by means of optical tweezers, forces acting on depletion-induced DNA condensates due to the presence of the DNA-like charged protein bovine serum albumin (BSA). The stretching and unfolding measurements performed on the semi-flexible DNA chain reveal (1) the softening of the uncondensed DNA contour length and (2) a mechanical behavior strikingly different from those previously observed: the force-extension curves of BSA-induced DNA condensates lack the "saw-tooth" pattern and applied external forces as high as ≈80 pN are unable to fully unfold the condensed DNA contour length. This last mechanical experimental finding is in agreement with force-induced "unpacking" detailed Langevin dynamics simulations recently performed by Cortini et al. on model rod-like shaped condensates. Furthermore, a simple thermodynamics analysis of the unfolding process has enabled us to estimate the free energy involved in the DNA condensation: the estimated depletion-induced interactions vary linearly with both the condensed DNA contour length and the BSA concentration, in agreement with the analytical and numerical analysis performed on model DNA condensates. We hope that future additional experiments can decide whether the rod-like morphology is the actual one we are dealing with (e.g. pulling experiments coupled with super-resolution fluorescence microscopy).

  6. Optical, structural and electrical properties of polyaniline systems doped with C{sub 60} and small gap C{sub 60} fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Politakos, Nikolaos; Zalakain, Iñaki; Fernandez d' Arlas, Borja; Eceiza, Arantxa; Kortaberria, Galder, E-mail: galder.cortaberria@ehu.es

    2013-10-01

    In this work two systems consisting on polyaniline (Pani) doped with simple and small gap C{sub 60} fullerenes have been prepared and characterized. Composites with different doping amounts of 1,2,4 and 8 wt% have been analyzed in order to evaluate their structure together with their optical and electrical properties and the effect of fullerene type and amount on them. The shift and change of shape in Fourier transform infrared spectroscopy (FTIR) bands and solid {sup 13}C NMR spectroscopy signals showed the presence of interactions between matrix and fullerenes by electron density transfer among them. Optical properties have also been analyzed in terms of ultraviolet (UV) spectroscopy. The blue shift of several bands confirmed the charge transfer. Obtained structures have been analyzed by optical microscopy (OM) showing the different way in which both types of fullerenes have been incorporated into the polymer chains. Finally, conductivity has been measured by the four probe technique, relating obtained values with the structure of the composite and the different degree of crystallinity of simple and small gap fullerenes. - Highlights: • Use of small gap fullerenes as doping agent with polyaniline (Pani). • Electrical properties comparison between simple C{sub 60} and small gap fullerenes systems with polyaniline. • Different conductive behavior for small gap fullerenes and simple C{sub 60} depending on their size. • Study of optical and structural properties of different Pani/fullerenes composite systems. • Enhanced electrical properties for both systems in respect to the neat polyaniline (Pani)

  7. Analysis of the Hysteresis Behavior of Perovskite Solar Cells with Interfacial Fullerene Self-Assembled Monolayers.

    Science.gov (United States)

    Valles-Pelarda, Marta; Hames, Bruno Clasen; García-Benito, Inés; Almora, Osbel; Molina-Ontoria, Agustin; Sánchez, Rafael S; Garcia-Belmonte, Germà; Martín, Nazario; Mora-Sero, Ivan

    2016-11-17

    The use of self-assembled monolayers (SAMs) of fullerene derivatives reduces the hysteresis of perovskite solar cells (PSCs). We have investigated three different fullerene derivatives observing a decrease on hysteresis for all the cases. Several processes can contribute to the hysteresis behavior on PSCs. We have determined that the reduced hysteresis observed for devices with SAMs is produced by a decrease of the capacitive hysteresis. In addition, with an appropriated functionalization, SAMs can increase photocurrent even when no electron selective contact (ESC) is present and a SAM is deposited just on top of the transparent conductive oxide. Appropriated functionalization of the fullerene derivative, as introducing -CN groups, can enhance cell performance and reduce hysteresis. This work paves the way for a future enhancement of PSCs by a tailored design of the fullerene molecules that could actuate as an ESC by themselves.

  8. Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer.

    Science.gov (United States)

    Trimpin, Sarah; Ren, Yue; Wang, Beixi; Lietz, Christopher B; Richards, Alicia L; Marshall, Darrell D; Inutan, Ellen D

    2011-07-15

    A new matrix compound, 2-nitrophloroglucinol, is reported which not only produces highly charged ions similar to electrospray ionization (ESI) under atmospheric pressure (AP) and intermediate pressure (IP) laserspray ionization (LSI) conditions but also the most highly charged ions so far observed for small proteins in mass spectrometry (MS) under high vacuum (HV) conditions. This new matrix extends the compounds that can successfully be employed as matrixes with LSI, as demonstrated on an LTQ Velos (Thermo) at AP, a matrix-assisted laser desorption/ionization (MALDI)-ion mobility spectrometry (IMS) time-of-flight (TOF) SYNAPT G2 (Waters) at IP, and MALDI-TOF Ultraflex, UltrafleXtreme, and Autoflex Speed (Bruker) mass spectrometers at HV. Measurements show that stable multiple charged molecular ions of proteins are formed under all pressure conditions indicating softer ionization than MALDI, which suffers a high degree of metastable fragmentation when multiply charged ions are produced. An important analytical advantage of this new LSI matrix are the potential for high sensitivity equivalent or better than AP-LSI and vacuum MALDI and the potential for enhanced mass selected fragmentation of the abundant highly charged protein ions. A second new LSI matrix, 4,6-dinitropyrogallol, produces abundant multiply charged ions at AP but not under HV conditions. The differences in these similar compounds ability to produce multiply charged ions under HV conditions is believed to be related to their relative ability to evaporate from charged matrix/analyte clusters.

  9. Organic chemistry of fullerenes: the major reactions, types of fullerene derivatives and prospects for practical use

    Energy Technology Data Exchange (ETDEWEB)

    Troshin, P A; Lyubovskaya, R N [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2008-04-30

    Data on the methods of functionalisation of C{sub 60} and C{sub 70} fullerenes published over the last 15 years are summarised. The general analysis of fullerene reactivity is performed. Nucleophilic and radical addition and cycloaddition reactions are considered in detail. The prospects of using fullerene derivatives as medical drug and photoactive materials for light converting devices are demonstrated.

  10. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  11. Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites

    NARCIS (Netherlands)

    Chirvase, D.; Parisi, J.; Hummelen, J.C.; Dyakonov, V.

    2004-01-01

    Composites of conjugated poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) demonstrate an efficient photogeneration of mobile charge carriers. Thermal annealing of P3HT:PCBM based devices gives rise to a significant increase of the photovolt

  12. Temperature dependent characteristics of poly(3 hexylthiophene)-fullerene based heterojunction organic solar cells

    NARCIS (Netherlands)

    Chirvase, D; Chiguvare, Z; Knipper, M; Parisi, J; Dyakonov, [No Value; Hummelen, JC

    2003-01-01

    Electrical and optical properties of poly(3-hexylthiophene-2.5diyl) (P3HT) used as the main component in a polymer/fullerene solar cell were studied. From the study of space-charge limited current behavior of indium-tin-oxide (ITO)/P3HT/Au hole-only devices, the hole mobility and density were estima

  13. Device model for the operation of polymer/fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Koster, LJA; Smits, ECP; Mihailetchi, VD; Blom, PWM

    2005-01-01

    We have developed a numerical device model that consistently describes the current-voltage characteristics of polymer:fullerene bulk heterojunction solar cells. Bimolecular recombination and a temperature- and field-dependent generation mechanism of free charges are incorporated. It is demonstrated

  14. Fullerene-Related Nanocarbons and Their Applications

    DEFF Research Database (Denmark)

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng;

    2012-01-01

    . From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries......The discovery of fullerene (C60) in 1985 spurred on the subsequent discoveries of a number of fullerene-related novel carbons at the nanometre scale. These nanocarbons are related to one another in structure, providing an interesting spectrum of variants which display an array of unique properties...

  15. Toxicological Effects of Fullerenes on Caenorhabditis elegans

    Science.gov (United States)

    Schomaker, Justin; Snook, Renee; Howell, Carina

    2014-03-01

    The nematode species Caenorhabditis elegans is a useful genetic model organism due to its simplicity and the substantial molecular, genetic, and developmental knowledge about the species. In this study, this species was used to test the toxicological effects of C60 fullerene nanoparticles. In previous studies using rats, a solution of C60 fullerenes in olive oil proved to extend the life of the subjects. The purpose of this experiment was to subject C. elegans to varying concentrations of C60 fullerenes and observe their toxicological effects. Initial findings indicate a link between fullerene exposure and enlargement of the vulva as well as the formation of a small nodule at the base of the tail in some individuals. While the fullerenes are not lethally toxic in C. elegans, results will be presented that pertain to changes in life span and progeny of the nematodes exposed to varying concentrations of fullerenes as well as the mechanisms of toxicity. High magnification imaging via SEM and/or AFM will be used to characterize the fullerene nanoparticles. Testing the toxicity of fullerenes in a wide variety of organisms will lead to a more complete understanding of the effects of fullerenes on living organisms to ultimately understand their effects in humans. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047, DUE-0806660 and Lock Haven FPDC grants.

  16. Laserspray ionization, a new atmospheric pressure MALDI method for producing highly charged gas-phase ions of peptides and proteins directly from solid solutions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-02-01

    The first example of a matrix-assisted laser desorption/ionization (MALDI) process producing multiply charged mass spectra nearly identical to those observed with electrospray ionization (ESI) is presented. MALDI is noted for its ability to produce singly charged ions, but in the experiments described here multiply charged ions are produced by laser ablation of analyte incorporated into a common MALDI matrix, 2,5-dihydroxybenzoic acid, using standard solvent-based sample preparation protocols. Laser ablation is known to produce matrix clusters in MALDI provided a threshold energy is achieved. We propose that these clusters (liquid droplets) are highly charged, and under conditions that produce sufficient matrix evaporation, ions are field-evaporated from the droplets similarly to ESI. Because of the multiple charging, advanced mass spectrometers with limited mass-to-charge range can be used for protein characterization. Thus, using an Orbitrap mass spectrometer, low femtomole quantities of proteins produce full-range mass spectra at 100,000 mass resolution with <5-ppm mass accuracy and with 1-s acquisition. Furthermore, the first example of protein fragmentation using electron transfer dissociation with MALDI is presented.

  17. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 4He and 12C ion beams in a PMMA target at large angle

    CERN Document Server

    Rucinski, A; Battistoni, G; Collamati, F; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Marafini, M; Mattei, I; Muraro, S; Paramatti, R; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Sciubba, A; Camillocci, E Solfaroli; Toppi, M; Traini, G; Voena, C; Patera, V

    2016-01-01

    Measurements performed with the purpose of characterizing the charged secondary radiation for dose release monitoring in particle therapy are reported. Charged secondary yields, energy spectra and emission profiles produced in poly-methyl methacrylate (PMMA) target by 4He and 12C beams of different therapeutic energies were measured at 60 and 90 degree with respect to the primary beam direction. The secondary yields of protons produced along the primary beam path in PMMA target were obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The measured charged secondary yields and emission profiles are in agreement with the results reported in literature and confirm the feasibility of ion beam therapy range monitoring using 12C ion beam. The feasibility of range monitoring using charged secondary particles is also suggested for 4He ion beam.

  18. Transverse momentum and transverse mass distributions of charged hadrons produced in Au-Au collisions at high energies

    Institute of Scientific and Technical Information of China (English)

    Liu Fu-Hu

    2008-01-01

    The transverse momentum distribution and the transverse mass distribution of charged hadrons produced in nucleus-nucleus collisions at high energies are described by using a two-cylinder model. The results calculated by the model are compared and found to be in agreement with the experimental data of the STAR and E895 Collaborations, measured in Au-Au collisions at the relativistic heavy ion collider (RHIC) and alternating-gradient synchrotron (AGS) energies, respectively. In the energy range concerned, the excitation degree of emission source close to the central axis of cylinders increases obviously with the collision centrality and incident energy increasing, but it does not show any obvious change with the increase of the (pseudo) rapidity in central collisions. The excitation degree of emission source close to the side-surface of cylinders does not show any obvious change with the collision centrality, the (pseudo) rapidity, and the incident energy increasing.

  19. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size.

    Science.gov (United States)

    Roehling, John D; Baran, Derya; Sit, Joseph; Kassar, Thaer; Ameri, Tayebeh; Unruh, Tobias; Brabec, Christoph J; Moulé, Adam J

    2016-08-08

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100's of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu3N@PC80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu3N@PC80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaic devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu3N@PC80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu3N@PC80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.

  20. Influence of Natural Organic Matter on Aggregation, Deposition, and Transport of Fullerene Colloids in Aqueous Systems

    Science.gov (United States)

    Zhang, W.; Rattanaudompol, U.; Powell, T.; Bouchard, D.

    2011-12-01

    Engineered fullerenes are increasingly being used in commercial products (e.g., skin and eye creams, tennis racquets, and lubricants) that may become a significant source for environmental release. A thorough understanding of fullerenes' aggregation in aqueous phase and deposition/transport in porous media is needed for evaluating the environmental persistence of fullerenes and subsequent human or ecological exposure. A number of recent studies have shown that fullerenes form stable colloidal aggregates in aqueous media and that their environmental behaviors largely depend on solution chemistry including ionic strength, solution pH, and the presence of natural organic matter (NOM). Nonetheless, the lack of systematic studies on NOM interaction with fullerene colloids and the coupling of this interaction with ionic strength and solution pH make predicting environmental behaviors of fullerenes a difficult task. In this study, electrophoretic mobility (EM), particle size, and aggregation kinetics of C60 colloidal suspensions were measured under a range of ionic strength (1.5-500.5 mM), solution pH (4, 7.8, and 10), and humic (0-9 mg C/L) or fulvic (0-11 mg C/L) acid concentrations. The EM data could be modeled with Ohshima's soft particle theory to probe thickness, softness, and charge density of adsorbed NOM layers on fullerene colloids. Under select conditions that represent low and high mobility, deposition studies using a quartz crystal microbalance and transport experiments in saturated and unsaturated sand columns will be conducted. It is anticipated that NOM may alter the transport of fullerene C60 differently in unsaturated media compared with saturated media. Our preliminary results showed that humic acid is more effective than fulvic acid in stabilizing fullerene suspensions and the extent of this stabilizing effect is a function of ionic strength when buffered at pH 7.8 with 0.5 mM NaHCO3. The findings of this study will help better assess the fate and

  1. Hydration behaviour of polyhydroxylated fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Zavala, J G [Departamento de Ciencias Exactas y Tecnologicas, Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon S/N, 47460 Jalisco (Mexico); Barajas-Barraza, R E [Departamento de Matematicas y Fisica, Instituto Tecnologico y de Estudios Superiores de Occidente, Periferico Sur, Manuel Gomez MorIn No 8585, 45604 Jalisco (Mexico); Padilla-Osuna, I; Guirado-Lopez, R A, E-mail: jgrz@culagos.udg.mx, E-mail: ebarajas@iteso.mx, E-mail: ismael@ifisica.uaslp.mx, E-mail: guirado@ifisica.uaslp.mx [Instituto de Fisica ' Manuel Sandoval Vallarta' , Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2011-10-28

    We have performed semi-empirical as well as density functional theory calculations in order to analyse the hydration properties of both bare C{sub 60} and highly hydroxylated C{sub 60}(OH){sub 26} fullerenes. In all of our calculations, a total of 42 and 98 water molecules are always surrounding our here-considered carbon nanostructures. We found different wetting properties as a function of the chemical composition and structure of the OH-molecular over-layer covering the fullerene surface. In the case of bare C{sub 60}, water adsorption reveals that the H{sub 2}O species are not uniformly arranged around the carbon network but rather forms water droplets of different sizes, clearly revealing the hydrophobic nature of the C{sub 60} structure. In contrast, in the polyhydroxylated C{sub 60}(OH){sub 26} fullerenes, the degree of wetting is strongly influenced by the precise location of the hydroxyl groups. We found that different adsorbed configurations for the OH-molecular coating can lead to the formation of partially hydrated or completely covered C{sub 60}(OH){sub 26} compounds, a result that could be used to synthesize fullerene materials with different degrees of wettability. By comparing the relative stability of our hydroxylated structures in both bare and hydrated conditions we obtain that the energy ordering of the C{sub 60}(OH){sub 26} isomers can change in the presence of water. The radial distribution function of our hydrated fullerenes reveals that water near these kinds of surfaces is densely packed. In fact, by counting the number of H{sub 2}O molecules which are adsorbed, by means of hydrogen bonds, to the surface of our more stable C{sub 60}(OH){sub 26} isomer, we found that it varies in the range of 5-10, in good agreement with experiments. Finally, by comparing the calculated optical absorption spectra of various C{sub 60}(OH){sub 26} structures in the presence and absence of water molecules, we note that only slight variations in the position and

  2. Analysis of unresolved transition arrays in XUV spectral region from highly charged lead ions produced by subnanosecond laser pulse

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2017-02-01

    Soft x-ray and extreme ultraviolet (XUV) spectra from lead (Pb, Z=82) laser-produced plasmas (LPPs) were measured in the 1.0-7.0 nm wavelength region employing a 150-ps, 1064-nm Nd:YAG laser with focused power densities in the range from 3.1×1013 W/cm2 to 1.4×1014 W/cm2. The flexible atomic code (FAC) and the Cowan's suite of atomic structure codes were applied to compute and explain the radiation properties of the lead spectra observed. The most prominent structure in the spectra is a broad double peak, which is produced by Δn=0, n=4-4 and Δn=1, n=4-5 transition arrays emitted from highly charged lead ions. The emission characteristics of Δn=1, n=4-5 transitions were investigated by the use of the unresolved transition arrays (UTAs) model. Numerous new spectral features generated by Δn=1, n=4-5 transitions in ions from Pb21+ to Pb45+ are discerned with the aid of the results from present computations as well as consideration of previous theoretical predictions and experimental data.

  3. Evaporation of graphite using a solar furnace: production of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Laplaze, D.; Bernier, P.; Journet, C.; Vie, V. [Groupe de Dynamique des Phases Condensees, Univ. de Montpellier II (France); Flamant, G.; Philippot, E.; Lebrun, M. [Inst. de Sciences et de Genie des Materiaux et Procedes, Centre du Four Solaire Felix Trombe, 66 - Font-Romeu (France)

    1997-12-31

    We have previously shown that the high intensity of solar radiation, obtained with the Odeillo (France) solar furnace facilities, can be used to vaporize graphite in inert gas atmosphere to produce fullerenes. After a short survey of the possible mechanisms of formation of these molecules, we report some experimental results in agreement with the proposed model and discuss the possibilities of increasing the fullerenes yield which currently reaches 20%. One of these possibilities consists in the use of the 1000 kW solar furnace of the Institute and we report results of simulation for this furnace which show that temperature of the sublimation zone can be greater than the needed 3300 K necessary to have convenient efficiency. (orig.)

  4. Synthesis of [60]Fullerene-Podophyllotoxin Derivative

    Institute of Scientific and Technical Information of China (English)

    GUO,Li-Wei(郭礼伟); GAO,Xiang(高翔); ZHANG,Dan-Wei(张丹维); WU,Shi-Hui(吴世晖); WU,Hou-Ming(吴厚铭)

    2002-01-01

    The [60]fullerene-podophyllotoxin derivative (3) was obtained by the phosphine promeoted[2 + 3]cycloaddition reaction ofpodophyllotoxin buta-2,3-dienoate (2) and [60]fullerene. The structures of starting mateerial (2) and product (3) were confirmed by UV-vis, IR, NMR and MS spectroscopies.

  5. Fullerenes: An introduction and overview of their biological properties

    OpenAIRE

    Thakral Seema; Mehta R

    2006-01-01

    Ever since their experimental discovery in 1985, fullerenes have attracted considerable attention in different fields of sciences. Investigations of chemical, physical and biological properties of fullerenes have yielded promising information. Their unique carbon cage structure coupled with immense scope for derivatization makes fullerenes a potential therapeutic agent. Henceforth various potential therapeutic applications of fullerenes have been reviewed in the present paper. These include a...

  6. Interaction Mechanism Insights on the Solvation of Fullerene B(80)with Choline-based Ionic Liquids.

    Science.gov (United States)

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2015-09-24

    Beyond carbon allotropes, other nanostructures such as fullerene B80 are attracting a growing interest due to their potential applications. The use of new materials based on fullerene B80 is still in a premature stage; however many of these applications would require the use of B80 in solution. This paper reports an unprecedented density functional theory (DFT) analysis on the interaction mechanism between B80 and two choline-based ionic liquids as a first insight for the fullerene B80 solvation by ionic liquids. The analysis of properties such as binding energies, charge distributions or intermolecular interactions shed light on the main features, which should govern interaction between ionic liquids and fullerene B80. In addition, the optimization of systems composed by six ionic pairs around a fullerene B80 has supplied some information about the first solvation shell at the molecular level. As a summary, this paper provides the first insights in the rational design of ionic liquids with suitable properties for the solvation of B80.

  7. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  8. Inhibition of inflammatory arthritis using fullerene nanomaterials.

    Directory of Open Access Journals (Sweden)

    Anthony L Dellinger

    Full Text Available Inflammatory arthritis (e.g. rheumatoid arthritis; RA is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC. Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  9. Inhibition of inflammatory arthritis using fullerene nanomaterials.

    Science.gov (United States)

    Dellinger, Anthony L; Cunin, Pierre; Lee, David; Kung, Andrew L; Brooks, D Bradford; Zhou, Zhiguo; Nigrovic, Peter A; Kepley, Christopher L

    2015-01-01

    Inflammatory arthritis (e.g. rheumatoid arthritis; RA) is a complex disease driven by the interplay of multiple cellular lineages. Fullerene derivatives have previously been shown to have anti-inflammatory capabilities mediated, in part, by their ability to prevent inflammatory mediator release by mast cells (MC). Recognizing that MC can serve as a cellular link between autoantibodies, soluble mediators, and other effector populations in inflammatory arthritis, it was hypothesized that fullerene derivatives might be used to target this inflammatory disease. A panel of fullerene derivatives was tested for their ability to affect the function of human skin-derived MC as well as other lineages implicated in arthritis, synovial fibroblasts and osteoclasts. It is shown that certain fullerene derivatives blocked FcγR- and TNF-α-induced mediator release from MC; TNF-α-induced mediator release from RA synovial fibroblasts; and maturation of human osteoclasts. MC inhibition by fullerene derivatives was mediated through the reduction of mitochondrial membrane potential and FcγR-mediated increases in cellular reactive oxygen species and NF-κB activation. Based on these in vitro data, two fullerene derivatives (ALM and TGA) were selected for in vivo studies using K/BxN serum transfer arthritis in C57BL/6 mice and collagen-induced arthritis (CIA) in DBA/1 mice. Dye-conjugated fullerenes confirmed localization to affected joints in arthritic animals but not in healthy controls. In the K/BxN moldel, fullerenes attenuated arthritis, an effect accompanied by reduced histologic inflammation, cartilage/bone erosion, and serum levels of TNF-α. Fullerenes remained capable of attenuating K/BxN arthritis in mast cell-deficient mice Cre-Master mice, suggesting that lineages beyond the MC represent relevant targets in this system. These studies suggest that fullerene derivatives may hold promise both as an assessment tool and as anti-inflammatory therapy of arthritis.

  10. On the photoconductivity of layered molecular complex of fullerene C{sub 60} with saturated amine TMPDA

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Yu.I.; Lopatin, D.V.; Rodaev, V.V. [Tambov State University, 392000 Tambov (Russian Federation); Konarev, D.V.; Litvinov, A.L.; Lyubovskaya, R.N. [Institute of Problems of Chemical Physics, Russian Academy of Science, 142432 Chernogolovka, Moscow (Russian Federation)

    2007-03-15

    It was revealed that the photoconductivity of layered molecular complex of fullerene C{sub 60} with saturated amine TMPDA: TMPDA.C{sub 60} is caused by intermolecular electronic processes in the fullerene layers. The intermediate magneto-sensitive stage of photogenerating free charge carriers was found to be due to the effect of magnetic field on the rate constant of the triplet charge transfer exciton annihilation process. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells.

    Science.gov (United States)

    Hedley, Gordon J; Ward, Alexander J; Alekseev, Alexander; Howells, Calvyn T; Martins, Emiliano R; Serrano, Luis A; Cooke, Graeme; Ruseckas, Arvydas; Samuel, Ifor D W

    2013-01-01

    The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performance blend of PTB7:PC71BM. We show that optimized blends consist of elongated fullerene-rich and polymer-rich fibre-like domains, which are 10-50 nm wide and 200-400 nm long. These elongated domains provide a concentration gradient for directional charge diffusion that helps in the extraction of charge pairs with 80% efficiency. In contrast, blends with agglomerated fullerene domains show a much lower efficiency of charge extraction of ~45%, which is attributed to poor electron and hole transport. Our results show that the formation of narrow and elongated domains is desirable for efficient bulk heterojunction solar cells.

  12. Rare Earth Oxide-Treated Fullerene and Titania Composites with Enhanced Photocatalytic Activity for the Degradation of Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    MENG Zada; ZHU Lei; CHOI Jong-geun; PARK Chong-yeon; OH Won-chun

    2011-01-01

    Rare earth oxide-treated fullerene and titania composites (Y-fullerene/TiO2) were prepared by the sol-gel method.The products had interesting surface compositions.X-ray diffraction patterns of the composites showed that the Y-fullerene/TiO2 composites contained a single and clear anatase phase.The surface properties were observed by scanning electron microscopy,which gave a characterization of the texture on the Y-fullerene/TiO2 composites and showed a homogenous distribution of titanium particles.The energy-dispersive X-ray spectra showed the presence of C and Ti with strong Y peaks.The composite obtained was also characterized with transmission electron microscopy and UV-Vis spectroscopy.The photocatalytic results showed that the y-fullerene/TiO2 composites had excellent activity for the degradation of methylene blue under visible light irradiation.This was attributed to both the effects on the photocatalysis of the supported TiO2 by charge transfer by the fullerene,and the introduction of yttrium to enhance photo-generated electron transfer.

  13. Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: Structural stability, physicochemistry and drug delivery perspectives

    Science.gov (United States)

    Chigo-Anota, E.; Escobedo-Morales, A.; Hernández-Cocoletzi, H.; López y López, J. G.

    2015-11-01

    The structural stability and physicochemical properties of the N-rich BN fullerene, B24N36, have been analyzed by means of the density functional theory at the level of the generalized gradient approximation. For this purpose, the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid density functional and the 6-31G(d) basis set were used. The results indicate that the B24N36 fullerene is stable and behaves as a semiconductor compound. It has been found that while the polarity of the B24N36 fullerene is comparable with that of C60 fullerene, its chemical reactivity is notoriously higher. The spatial charge distribution of the BN fullerene allows nitric oxide adsorption, without compromising structural stability. Although the interaction between the NO molecule and BN fullerene is through van der Waals forces (dipole-dipole attraction), it has strong influence on the dipole moment, vibrational modes, HOMO-LUMO gap and work function energy; suggesting that this nanostructure could be used as a molecular sensor or drug carrier with enhanced bioavailability.

  14. Adsorption Mechanism of Hydrogen on Boron-Doped Fullerenes

    Institute of Scientific and Technical Information of China (English)

    YU Liu-Min; SHI Guo-Sheng; WANG Zhi-Gang; JI Guang-Fu; LU Zhi-Peng

    2009-01-01

    The C35BH-H2 complex and two other possible isomers,C34BCαH-H2 and C34BCbH-H2,are investigated using the local-spin-density approximation (LSDA) method.The results indicate that a single hydrogen molecule could be strongly adsorbed on two isomers,C34BCaH and C34BCbH,with binding energies of 0.42 and 0.47eV,respectively,and that these calculated binding energies are suitable for reversible hydrogen adsorption/desorption near room temperature.However,it is difficult for the H2 molecule to be firmly adsorbed on C35BH.We analyze the interaction between C34BCxH (x = a,b) and the H2 molecule using dipole moments and molecular orbitals.The charge analysis showed there was a partial charge (about 0.32e)transfer from H2 to the doped fullerenes.These calculation results should broaden our understanding of the mechanisms of hydrogen storage using borondoped fullerenes.

  15. High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor.

    Science.gov (United States)

    Liu, Tao; Meng, Dong; Cai, Yunhao; Sun, Xiaobo; Li, Yan; Huo, Lijun; Liu, Feng; Wang, Zhaohui; Russell, Thomas P; Sun, Yanming

    2016-09-01

    A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells.

  16. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions with pure and mixed phases

    KAUST Repository

    Sweetnam, Sean

    2014-10-08

    Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV-vis absorption, and ultraviolet photoelectron spectroscopy to characterize hole energy levels in the polymer phases of polymer:fullerene bulk heterojunctions. We observe an energetic offset of up to 150 meV between amorphous and crystalline polymer due to bandgap widening associated primarily with changes in polymer conjugation length. We also observe an energetic offset of up to 350 meV associated with polymer:fullerene intermolecular interactions. The first effect has been widely observed, but the second effect is not always considered despite being larger in magnitude for some systems. These energy level shifts may play a major role in PSC performance and must be thoroughly characterized for a complete understanding of PSC function.

  17. [2]Catenanes decorated with porphyrin and [60]fullerene groups: design, convergent synthesis, and photoinduced processes.

    Science.gov (United States)

    Megiatto, Jackson D; Schuster, David I; Abwandner, Silke; de Miguel, Gustavo; Guldi, Dirk M

    2010-03-24

    A new class of [2]catenanes containing zinc(II)-porphyrin (ZnP) and/or [60]fullerene (C(60)) as appended groups has been prepared. A complete description of the convergent synthetic approach based on Cu(I) template methodology and "click" 1,3-dipolar cycloaddition chemistry is described. This new electron donor-acceptor catenane family has been subjected to extensive spectroscopic, computational, electrochemical and photophysical studies. (1)H NMR spectroscopy and computational analysis have revealed that the ZnP-C(60)-[2]catenane adopts an extended conformation with the chromophores as far as possible from each other. A detailed photophysical investigation has revealed that upon irradiation the ZnP singlet excited state initially transfers energy to the (phenanthroline)(2)-Cu(I) complex core, producing a metal-to-ligand charge transfer (MLCT) excited state, which in turn transfers an electron to the C(60) group, generating the ZnP-[Cu(phen)(2)](2+)-C(60)(*-) charge-separated state. A further charge shift from the [Cu(phen)(2)](2+) complex to the ZnP subunit, competitive with decay to the ground state, leads to the isoenergetic long distance ZnP(*+)-[Cu(phen)(2)](+)-C(60)(*-) charge-separated radical pair state, which slowly decays back to the ground state on the microsecond time scale. The slow rate of back-electron transfer indicates that in this interlocked system, as in previously studied covalently linked ZnP-C(60) hybrid materials, this process occurs in the Marcus-inverted region.

  18. Applications of Functionalized Fullerenes in Tumor Theranostics

    Directory of Open Access Journals (Sweden)

    Zhiyun Chen, Lijing Ma, Ying Liu, Chunying Chen

    2012-01-01

    Full Text Available Functionalized fullerenes with specific physicochemical properties have been developed for cancer diagnosis and therapy. Notably, metallofullerene is a new class of magnetic resonance imaging (MRI contrast-enhancing agent, and may have promising applications for clinical diagnosis. Polyhydroxylated and carboxyl fullerenes have been applied to photoacoustic imaging. Moreover, in recent years, functionalized fullerenes have shown potential in tumor therapies, such as photodynamic therapy, photothermal treatment, radiotherapy and chemotherapeutics. Their antitumor effects may be associated with the modulation of oxidative stress, anti-angiogenesis, and immunostimulatory activity. While various types of novel nanoparticle agents have been exploited in tumor theranostics, their distribution, metabolism and toxicity in organisms have also been a source of concern among researchers. The present review summarizes the potential of fullerenes as tumor theranostics agents and their possible underlying mechanisms are discussed.

  19. Creation and destruction of C{sub 60} and other fullerene solids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, D.R.

    1996-06-05

    The 1990 announcement of the Huffman-Kratschmer fullerene-production technique set off a world-wide explosion of research into the properties and potential applications of C{sub 60} and C{sub 70}. In the last five years, 4,000+ fullerene articles have appeared in the scientific literature dealing with these fascinating molecules and their condensed phases. They possess a complex chemistry reminiscent of the alkenes, and this has led to the syntheses of numerous new compounds and fullerene-based materials, with suggested applications ranging from medicine to photo-conducting polymers to rocket fuel. The work summarized in this report focused on the creation and destruction of fullerene-based materials, for the purpose of producing new materials of interest. This three year project was supported by a grant from the Advanced Energy Projects Division, Office of Basic Energy Sciences, U.S. Department of Energy (DE-FG03-93ER12133). Following are outlines of the work completed in each of the three years, a section devoted to the professional and educational development of those involved, a brief section on the outlook for fullerene-based materials, and an appendix listing the publications resulting from this project.

  20. Water-soluble fullerenes for medical applications

    OpenAIRE

    Rašović, I

    2016-01-01

    Research on fullerenes occupies a unique position in the scientific arena. Synthesis and characterisation of this nanomaterial blur the line between materials science and chemistry; careful tuning of the processing methods gives birth to a whole family of molecules and their functionalised derivatives, whose unusual properties at this nanoscopic scale can be exploited in cutting-edge technological applications. This review focuses on the functionalisation of fullerenes for use in medical appl...

  1. Ferromagnetism in metallocene-doped fullerenes

    CERN Document Server

    Mihailovic, D

    2003-01-01

    Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between pi electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)

  2. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  3. Observation of transverse space charge effects in a multi-beamlet electron bunch produced in a photo-emission electron source

    Energy Technology Data Exchange (ETDEWEB)

    Rihaoui, M.; /Northern Illinois U. /NICADD, DeKalb; Gai, W.; /Argonne; Piot, P.; /Northern Illinois U. /NICADD, DeKalb /FERMILAB; Power, J.G.; /Argonne; Ysof, Z.; /Argonne

    2008-09-01

    A 'multiple beamlet' experiment aimed at investigating the transverse space charge effect was recently conducted at the Argonne Wakefield Accelerator. The experiment generated a symmetric pattern of 5 beamlets on the photocathode of the RF gun with the drive laser. We explored the evolution of the thereby produced 5 MeV, space-charge dominated electron beamlets in the 2m drift following the RF photocathode gun for various external focusing. Two important effects were observed and benchmarked using the particle-in-cell beam dynamics code IMPACT-T. In this paper, we present our experimental observation and their benchmarking with Impact-T.

  4. Ultrafast dynamics in blends of π-conjugated polymers/fullerenes

    Science.gov (United States)

    Singh, Sanjeev; Tong, Minghong; Sheng, Chuanxiang; Vardeny, Zeev

    2008-03-01

    We have studied the ultrafast dynamics of photogenerated charges and excitons in a variety of π-conjugated polymer/fullerene blends using the transient pump-probe photomodulation (PM) spectroscopy with ˜ 100 fs resolution. These composites serve as active layers in organic photovoltaic devices with high power conversion quantum yield, due to the existence of a photoinduced charge transfer (PCT) reaction between the polymer and the fullerene molecules. Our transient PM spectrum spans a broad energy range from 0.1-2.4 eV, and this allows us to monitor the transient behavior of the various photoinduced absorption (PA) bands of polarons and excitons in the PM spectrum; as well as the transient exciton stimulated emission, and photobleaching (PB) of the ground state. The PB dynamics reflect the ground state recovery; hence, it can be used to determine the long-lived polaron photogeneration quantum efficiency in these systems.

  5. Ubiquitous diffraction resonances in positronium formation from fullerenes

    CERN Document Server

    Hervieux, Paul-Antoine; Chakraborty, Himadri S

    2016-01-01

    Due to the dominant electron capture by positrons from the molecular wall and the spatial dephasing across the wall-width, a powerful diffraction effect universally underlies the positronium (Ps) formation from fullerenes. This results into trains of resonances in the Ps formation cross section as a function of the positron beam energy, producing uniform structures in recoil momenta in analogy with classical single-slit diffraction fringes in the configuration space. The prediction opens a hitherto unknown avenue of Ps spectroscopy with nanomaterials.

  6. Ubiquitous diffraction resonances in positronium formation from fullerenes

    Science.gov (United States)

    Hervieux, Paul-Antoine; Chakraborty, Anzumaan R.; Chakraborty, Himadri S.

    2017-02-01

    Due to the dominant electron capture by positrons from the molecular shell and the spatial dephasing across the shell width, a powerful diffraction effect universally underlies the positronium (Ps) formation from fullerenes. This results in trains of resonances in the Ps formation cross section as a function of the positron beam energy, producing structures in recoil momenta in analogy with classical single-slit diffraction fringes in the configuration space. This work opens a hitherto unknown avenue of Ps spectroscopy with nanomaterials and motivates level-differential measurements.

  7. Fullerene photoemission time delay explores molecular cavity in attoseconds

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed El-Amine; Chakraborty, Himadri S

    2014-01-01

    Time-resolved photoelectron spectroscopy can probe interference oscillations in C60 valence emissions that produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. These findings provide a way to utilize temporal information to access the fullerene cavity size, that is making the time to "see" the space, and can be generalized to photoemissions from clusters and nanostructures.

  8. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  9. Fullerene surfactants and their use in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  10. Stochastic heating of a single Brownian particle by charge fluctuations in a radio-frequency produced plasma sheath.

    Science.gov (United States)

    Schmidt, Christian; Piel, Alexander

    2015-10-01

    The Brownian motion of a single particle in the plasma sheath is studied to separate the effect of stochastic heating by charge fluctuations from heating by collective effects. By measuring the particle velocities in the ballistic regime and by carefully determining the particle mass from the Epstein drag it is shown that for a pressure of 10 Pa, which is typical of many experiments, the proper kinetic temperature of the Brownian particle remains close to the gas temperature and rises only slightly with particle size. This weak effect is confirmed by a detailed model for charging and charge fluctuations in the sheath. A substantial temperature rise is found for decreasing pressure, which approximately shows the expected scaling with p(-2). The system under study is an example for non-equilibrium Brownian motion under the influence of white noise without corresponding dissipation.

  11. Vibrational spectroscopic and structural investigations on fullerene: A DFT approach

    Science.gov (United States)

    Christy, P. Anto; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The molecular structure of fullerene (C60) molecule was optimized by the DFT/B3LYP method with 6-31G and 6-31G(d,p) basis sets using Gaussian 09 program. The vibrational frequencies were calculated for the optimized molecular structure of the molecule. The calculated vibrational frequencies confirm that the molecular structure of the molecule was located at the minimum energy potential energy surface. The calculated vibrational frequencies were assigned on the basis of functional group analysis and also confirmed using the GaussView 05 software. The frontier molecular orbitals analysis was carried out. The FMOs related molecular properties were predicted. The higher ionization potential, higher electron affinity, higher softness, lower band gap energy and lower hardness values were obtained, which confirm that the fullerene molecule has a higher molecular reactivity. The Mulliken atomic charge distribution of the molecule was also calculated. Hence, these results play an important role due to its potential applications as drug delivery devices.

  12. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-01-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix. PMID:25822809

  13. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell.

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-30

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  14. Electronic Structure of Fullerene Acceptors in Organic Bulk-Heterojunctions: A Combined EPR and DFT Study.

    Science.gov (United States)

    Mardis, Kristy L; Webb, Jeremy N; Holloway, Tarita; Niklas, Jens; Poluektov, Oleg G

    2015-12-03

    Organic photovoltaic (OPV) devices are a promising alternative energy source. Attempts to improve their performance have focused on the optimization of electron-donating polymers, while electron-accepting fullerenes have received less attention. Here, we report an electronic structure study of the widely used soluble fullerene derivatives PC61BM and PC71BM in their singly reduced state, that are generated in the polymer:fullerene blends upon light-induced charge separation. Density functional theory (DFT) calculations characterize the electronic structures of the fullerene radical anions through spin density distributions and magnetic resonance parameters. The good agreement of the calculated magnetic resonance parameters with those determined experimentally by advanced electron paramagnetic resonance (EPR) allows the validation of the DFT calculations. Thus, for the first time, the complete set of magnetic resonance parameters including directions of the principal g-tensor axes were determined. For both molecules, no spin density is present on the PCBM side chain, and the axis of the largest g-value lies along the PCBM molecular axis. While the spin density distribution is largely uniform for PC61BM, it is not evenly distributed for PC71BM.

  15. Pressure induced manifold enhancement of Li-kinetics in FCC fullerene.

    Science.gov (United States)

    Das, Deya; Han, Sang Soo; Lee, Kwang-Ryeol; Singh, Abhishek K

    2014-10-21

    The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.

  16. Fullerene mixing effect on carrier formation in bulk-hetero organic solar cell

    Science.gov (United States)

    Moritomo, Yutaka; Yasuda, Takeshi; Yonezawa, Kouhei; Sakurai, Takeaki; Takeichi, Yasuo; Suga, Hiroki; Takahashi, Yoshio; Inami, Nobuyuki; Mase, Kazuhiko; Ono, Kanta

    2015-03-01

    Organic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan. The TEM-S mapping image suggests that the polymer matrix consist of polymer clusters of several nm and fullerene. We found that the charge formation efficiency (ΦCF), internal quantum efficiency (ΦIQ), and power conversion efficiency (PCE) are dominantly determined by ΦFullerene. We interpreted these observations in terms of the polymer clusters within the polymer matrix.

  17. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Poly(2-methoxy-5-(2‧-ethyl-hexyloxy)-1,4-phenylene vinylene)(MEH-PPV) /Nitrogen Containing Derivatives of Fullerene Composites: Optical Characterization and Application in Flexible Polymer Solar Cells

    Science.gov (United States)

    Spitsina, N.; Romanova, I.; Lobach, A.; Yakuschenko, I.; Kaplunov, M.; Tolstov, I.; Triebel, M.; Frankevich, E.

    2006-02-01

    New soluble organofullerenes were synthesized by the reaction of organic amines and azides with the [60]fullerene. The comparative investigations of the IR- and optical absorption spectra of blends MEH-PPV/fullerene derivative in solutions and in films showed no ground-state interaction between the components. Photoluminescence (PL) experiments, and photocurrent-voltage measurements were performed on model photovoltaic (PV) cells. We found that PL of MEH-PPV is completely quenched by a small admixture of fullerene derivative which assumes a high efficiency of charge separation in the composite material. The photocurrent in the PV device containing fullerene derivative is two orders of magnitude higher than that in pure MEH-PPV. An attempt to observe the magnetic field spin effect (MFSE) on the photocurrent in MEH-PPV/fullerene composites was made.

  19. Ab initio quantum chemical studies of fullerene molecules with substitutes C59X [XSi, Ge, Sn], C59X- [XB, Al, Ga, In], and C59X [XN, P, As, Sb

    Science.gov (United States)

    Simeon, Tomekia M.; Yanov, Ilya; Leszczynski, Jerzy

    This article presents the results of systematic ab initio quantum chemical study of charged and neutral analogues of fullerene molecules: C59X[XSi, Ge, Sn], C59X- [XB, Al, Ga, In], and C59X+ [XN, P, As, Sb]. Hartree-Fock (HF) and density functional theory (DFT) levels of theory with Stuttgart-Dresden basis set were used to investigate the structure and properties of substituted fullerene molecules. A replacement of fullerene carbon atom with a heteroatom results in a unique chemical site on the fullerene surface, which may be used as a reactive center or to modify the electronic properties. We show the possibility of utilization of substituted fullerenes as atom-like building units. Heteroatom substitution allows the tuning of the physical and chemical properties of original molecule for different material science and nanotechnology applications.

  20. Modulation of the work function of fullerenes C{sub 60} and C{sub 70} by alkali-metal adsorption: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Hong [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Xu, Shunfu, E-mail: xushunfu2009@gmail.com [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Liu, Weihui [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Sun, Yueqiang; Liu, Xiangfa; Zheng, Xinqing; Li, Sen; Zhang, Qiang; Zhu, Ziliang; Zhang, Xiaochun; Dong, Chengguo [Institute of Architecture and Engineering, Weifang University of Science and Technology, Weifang 262700 (China); Li, Chun [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yuan, Guang, E-mail: yuanguang@ouc.edu.cn [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China); Research Institute of Electronics, University of Shizuoka, Hamamasu 432-8011 (Japan); Mimura, Hitenori [Department of Physics, Institute of Information Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2013-11-15

    The impact of alkali-metal (Li/Na/Cs) adsorption on work function of fullerenes C{sub 60} and C{sub 70} was investigated by first-principles calculations. After adsorption, the work functions of fullerenes C{sub 60} and C{sub 70} decrease distinctly and vary linearly with the electronegativity of the alkali metal elements, and the positions where the alkali atoms are adsorbed considerably influence the work functions. On the contrary, a vacancy defect elevates the work functions of the fullerenes C{sub 60} and C{sub 70}. The variation in the work functions rests with variation in Fermi level (which are attributed to charge transfer) and variation in vacuum levels (which are attributed to the induced dipole moments). Moreover, alkali-metal adsorption can also improve the electric conductivity of a fullerene mixture of C{sub 60} and C{sub 70}.

  1. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Science.gov (United States)

    Sarmah, Amrit; Roy, Ram Kinkar

    2016-06-01

    In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C32) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost-effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C32 fullerene and its site of covalent attachment to the SWCNT.

  2. Modified fullerenes for Efficient Electron Transport Layer-Free Perovskite:Fullerene Blend-Based Solar Cells.

    Science.gov (United States)

    Delgado, Juan L; Sandoval-Torrientes, Rafael; Martín, Nazario; Tena-Zaera, Ramón; Collavini, Silvia; Kosta, Ivet; Pascual, Jorge; García-Benito, Inés

    2017-03-15

    A variety of novel chemically modified fullerenes, showing different electron accepting capabilities, has been synthesized and used to prepare electron transport layer(ETL)-free solar cells based on perovskite:fullerene blends. In particular, isoxazolino[60] fullerenes are proven to be a good candidate for processing blend films with CH3NH3PbI3 and obtaining enhanced power conversion efficiency (PCE) ETL-free perovskite solar cells, improving state-of-the-art PCE (i.e. 14.3%) for this simplified device architecture. Beneficial impact for pyrazolino and methano[60]fullerene derivatives versus pristine [60]fullerene is also shown. Furthermore, a clear correlation between the LUMO energy level of the fullerene component and the open circuit voltage of the solar cells is found. Apart from the new knowledge on innovative fullerene derivatives for perovskite solar cells, the universality and versatility of perovskite:fullerene blend films to obtain efficient ETL-free perovskite solar cells is demonstrated.

  3. Transient Spectroscopic Properties of [60]Fullerene-Containing Cyclic Sulphoxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The properties of the triplet excited state of [60]fullerene-containing cyclic sulphoxide have been investigated by time-resolved absorption spectroscopy. Transient absorption bands of [60]fullerene-containing cyclic sulphoxide showed two decay-components, which were attributed to triplet excited states of different spin multiplicity. The properties of photoexcited states of [60]fullerene-containing cyclic sulphoxide are also reported.

  4. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    Science.gov (United States)

    Tucker, Mark D.; Czigány, Zsolt; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna

    2014-04-01

    Carbon and carbon nitride films (CNx, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A "fullerene-like" (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CNx films, was observed in films deposited at 175 °C and above, with N2 pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp3-hybridized films to sp2 films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CNx films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  5. Filtered pulsed cathodic arc deposition of fullerene-like carbon and carbon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Mark D., E-mail: martu@ifm.liu.se; Broitman, Esteban; Näslund, Lars-Åke; Hultman, Lars; Rosen, Johanna [Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Czigány, Zsolt [Institute for Technical Physics and Materials Science, RCNS, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2014-04-14

    Carbon and carbon nitride films (CN{sub x}, 0 ≤ x ≤ 0.26) were deposited by filtered pulsed cathodic arc and were investigated using transmission electron microscopy and X-ray photoelectron spectroscopy. A “fullerene-like” (FL) structure of ordered graphitic planes, similar to that of magnetron sputtered FL-CN{sub x} films, was observed in films deposited at 175 °C and above, with N{sub 2} pressures of 0 and 0.5 mTorr. Higher substrate temperatures and significant nitrogen incorporation are required to produce similar FL structure by sputtering, which may, at least in part, be explained by the high ion charge states and ion energies characteristic of arc deposition. A gradual transition from majority sp{sup 3}-hybridized films to sp{sup 2} films was observed with increasing substrate temperature. High elastic recovery, an attractive characteristic mechanical property of FL-CN{sub x} films, is evident in arc-deposited films both with and without nitrogen content, and both with and without FL structure.

  6. Extraterrestrial Helium (He@C60) Trapped in Fullerenes in the Sudbury Impact Structure

    Science.gov (United States)

    Becker, L.; Bada, J. L.; Poreda, R. J.; Bunch, T. E.

    1997-01-01

    Fullerenes (C60 and C70) have recently been identified in a shock-produced breccia (Onaping Formation) associated with the 1.85-Ga Sudbury Impact Crater. The presence of parts-per-million levels of fullerenes in this impact structure raises interesting questions about the processes that led to the formation of fullerenes and the potential for delivery of intact organic material to the Earth by a large bolide (e.g., asteroid or comet). Two possible scenarios for the presence of fullerenes in the Sudbury impact deposits are that (1) fullerenes are synthesized within the impact plume from the C contained in the bolide; or (2) fullerenes are already present in the bolide and survived the impact event. The correlation of C and trapped noble gas atoms in meteorites is well established. Primitive meteorites contain several trapped noble gas components that have anomalous isotopic compositions, some of which may have a presolar origin. Several C-bearing phases, including SiC, graphite, and diamond, have been recognized as carriers of trapped noble gases. It has also been suggested that fullerenes (C60 and C70) might be a carrier of noble gas components in carbonaceous chondrites. Recently, fullerenes have been detected in separate samples in the Allende meteorite. Carbon-60 is large enough to enclose the noble gases He, Ne, Ar, Kr, and Xe, but it is too small to contain diatomic gases such as N2 or triatomic gases such as CO2. Recent experimental work has demonstrated that noble gases of a specific isotopic composition can be introduced into synthetic fullerenes at high temperatures and pressures; these encapsulated gases can then be released by the breaking of one or more C bonds during step-heating under vacuum. These thermal-release patterns for He encapsulated within the C60 molecule (He@C60) are similar to the patterns for acid residues of carbonaceous chondrites, suggesting that fullerenes could be an additional carrier of trapped noble gases in acid residues of

  7. Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces.

    Science.gov (United States)

    Li, Jing; Inutan, Ellen D; Wang, Beixi; Lietz, Christopher B; Green, Daniel R; Manly, Cory D; Richards, Alicia L; Marshall, Darrell D; Lingenfelter, Steven; Ren, Yue; Trimpin, Sarah

    2012-10-01

    Matrix assisted inlet ionization (MAII) is a method in which a matrix:analyte mixture produces mass spectra nearly identical to electrospray ionization without the application of a voltage or the use of a laser as is required in laserspray ionization (LSI), a subset of MAII. In MAII, the sample is introduced by, for example, tapping particles of dried matrix:analyte into the inlet of the mass spectrometer and, therefore, permits the study of conditions pertinent to the formation of multiply charged ions without the need of absorption at a laser wavelength. Crucial for the production of highly charged ions are desolvation conditions to remove matrix molecules from charged matrix:analyte clusters. Important factors affecting desolvation include heat, vacuum, collisions with gases and surfaces, and even radio frequency fields. Other parameters affecting multiply charged ion production is sample preparation, including pH and solvent composition. Here, findings from over 100 compounds found to produce multiply charged analyte ions using MAII with the inlet tube set at 450 °C are presented. Of the compounds tested, many have -OH or -NH(2) functionality, but several have neither (e.g., anthracene), nor aromaticity or conjugation. Binary matrices are shown to be applicable for LSI and solvent-free sample preparation can be applied to solubility restricted compounds, and matrix compounds too volatile to allow drying from common solvents. Our findings suggest that the physical properties of the matrix such as its morphology after evaporation of the solvent, its propensity to evaporate/sublime, and its acidity are more important than its structure and functional groups.

  8. Electronic structure of multi-walled carbon fullerenes

    Science.gov (United States)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  9. Fullerenes studied by radiochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Sueki, Keisuke; Nakahara, Hiromichi [Tokyo Metropolitan Univ. Hachioji (Japan). Graduate School of Science; Sato, Wataru

    2001-10-01

    Synthesis of radiolabeled fullerenes (C{sub 2n}) and their application for studies of their properties are described. Radiocarbon-labeled C{sub 2n} are synthesized from either {sup 14}C-labeled materials or recoil radiocarbon generated, for example, by the reaction {sup 12}C({gamma}, n) {sup 11}C in electron linear accelerator. Neutron activation reactions like {sup 6}Li(n, {alpha}) {sup 3}H and {sup 40}Ar(n, {gamma}) {sup 41}Ar enable to introduce those elements into C{sub 2n}. In addition, metallofullerenes (M@C{sub 2n}) can be synthesized by recoiled metals of lanthanoids and actinoids, of which optical properties are elucidated. Using the M@C{sub 2n}, there are studies of hot atom effects on those metals in a reactor and of effects of beta-decay to other element. Properties of M@C{sub 2n} are also investigated with uses of Moessbauer effect and time-differential perturbed angular correlation method. Application studies will be continued using their provision of highly sensitive radiometric properties. (K.H.)

  10. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    Science.gov (United States)

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  11. Fullerene assemblies toward photo-energy conversions.

    Science.gov (United States)

    Shen, Yanfei; Nakanishi, Takashi

    2014-04-28

    Manipulating molecular interaction and assembly for developing various functional nanostructures with controlled dimensionality, morphology and tailored properties is currently a research focus in molecular science and materials chemistry. Particularly, the self-organization of fullerenes (i.e. C60) to form various functional assemblies has received intense interest since it can provide excellent optoelectronic properties for photo-energy conversion-induced applications such as solar cells and field effect transistors (FET). In this perspective, we describe our recent efforts toward the development in the area of fullerene molecular design and assemblies aimed at improving the photoconductivity and photo-energy (electric and thermal) conversion systems.

  12. Supramolecular frameworks based on [60]fullerene hexakisadducts

    Science.gov (United States)

    Kraft, Andreas; Stangl, Johannes; Krause, Ana-Maria; Müller-Buschbaum, Klaus

    2017-01-01

    Summary [60]Fullerene hexakisadducts possessing 12 carboxylic acid side chains form crystalline hydrogen-bonding frameworks in the solid state. Depending on the length of the linker between the reactive sites and the malonate units, the distance of the [60]fullerene nodes and thereby the spacing of the frameworks can be controlled and for the most elongated derivative, continuous channels are obtained within the structure. Stability, structural integrity and porosity of the material were investigated by powder X-ray diffraction, thermogravimetry and sorption measurements.

  13. Synthesis and characterization of novel fullerenes and carbon nanotubes

    Science.gov (United States)

    Piskoti, Charles Richard

    Since the discovery of Buckminsterfullerene, the soccerball shaped carbon-caged molecule consisting of 60 carbon atoms, there has been much speculation about the stability of other "fullerenes" with less than 60 carbon atoms. Although several fullerenes with greater than 60 carbon atoms have since been isolated in bulk, the only evidence of lower fullerenes has come from minute-quantity gas phase experiments. This thesis presents work on the first ever bulk synthesis, extraction and characterization of a lower fullerene: C36. By exploring the parameter space of the Kratschmer-Huffman graphite arc-discharge method, C36 was produced in milligram quantities. This new material which was extracted with pyridine was found by electron diffraction to form a covalently bonded solid with a d-spacing of 6.68 A. This material is electrically insulating in its pure form but it becomes conducting upon intercalation with alkali metals. The resistance vs temperature behavior of the alkali intercalated samples is consistent with variable range hopping. From microwave-loss measurements and current vs. voltage data, there are preliminary results that may indicate the presence of a very small superconducting fraction in these alkali doped samples. This result would be consistent with predictions by Grossman, Cote, Cohen and Louie that a certain isomer of C 36 with D6h symmetry has an exceptionally strong electron-phonon coupling constant. Other developments described in this thesis include a method of synthesizing multi-walled carbon nanotubes in high yield at an accelerated rate using a low pressure mixture of nitrogen and helium as the buffer gas. Also, a simple technique has been developed for synthesizing magnetic nickel-iron clusters that are coated with both electrical insulators and electrical conductors. These clusters may have a variety of applications in the fields of magnetic recording and biochemistry where magnetic manipulation of cells is important. Finally, a

  14. Beam energy dependence of pseudorapidity distributions of charged particles produced in heavy-ion collisions at RHIC and LHC energies

    CERN Document Server

    Basu, Sumit; Datta, Kaustuv

    2016-01-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged particle multiplicity and pseudorapidity ($\\eta$) distributions. We have shown that the available experimental data on beam energy and centrality dependence of \\Eta-distributions in heavy-ion (Au+Au or Pb+Pb) collisions from \\sNN=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the \\Eta-distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of \\sNN~=~5.02 TeV, we have obtained the charged particle multiplicity densities, \\Eta-distributions and energy densities for various centralities. Incident...

  15. Explosion Production of Fullerenes from Carbonaceous Bullet in Vacuum Using Rail Gun

    Science.gov (United States)

    Mieno, Tetsu; Yamori, Akira

    2006-04-01

    A carbonaceous bullet is accelerated using a rail gun in vacuum and collides with a metal or carbon target at a speed of approximately 6 km/s, at which the bullet explodes and the high-temperature reaction of carbon particles takes place. As a result, C60 and higher fullerenes are produced. Using a carbonaceous bullet containing metal-oxide powder, endohedral metallofullerenes are also produced by this method.

  16. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  17. Porphyrin-beta-oligo-ethynylenephenylene-[60]fullerene triads: synthesis and electrochemical and photophysical characterization of the new porphyrin-oligo-PPE-[60]fullerene systems.

    Science.gov (United States)

    Lembo, Angelo; Tagliatesta, Pietro; Guldi, Dirk M; Wielopolski, Mateusz; Nuccetelli, Marzia

    2009-03-05

    The synthesis and electrochemical and photophysical studies of new electron donor-acceptor arrays, bearing porphyrins covalently linked to fullerene, are described. In the reported investigation, phenyleneethynylene subunits were chosen as a linking bridge to guarantee a high conjugation degree between the donor (i.e., porphyrin), the molecular bridge (i.e., oligo-phenyleneethynylenes), and the acceptor (i.e., fullerene). To enhance the electronic interactions through the extended pi-system, the molecular bridge has been directly linked to the beta-pyrrole position of the porphyrin ring, generating a new example of donor-bridge-acceptor systems where, for the first time, the meso-phenyl ring of the macrocycle is not used to hold the "bridge" between porphyrin and fullerene moieties. This modification allows altering the chemical and physical properties of the tetrapyrrole ring. Steady-state and time-resolved fluorescence studies together with transient absorption measurements reveal that in nonpolar media (i.e., toluene) transduction of singlet excited-state energy governs the excited-state deactivation, whereas in polar media (i.e., tetrahydrofuran) charge transfer prevails generating a long-lived radical ion pair state. The lifetimes hereof range from 300 to 700 ns. The study also sheds light onto the wirelike behavior of the oligo-phenyleneethynylene bridges, for which a damping factor (beta) of 0.11 +/- 0.05 A(-1) has been determined in the current study.

  18. Applications of Anti/Prooxidant Fullerenes in Nanomedicine along with Fullerenes Influence on the Immune System

    OpenAIRE

    Danijela Petrovic; Mariana Seke; Branislava Srdjenovic; Aleksandar Djordjevic

    2015-01-01

    Fullerenes are molecules that, due to their unique structure, have very specific chemical properties which offer them very wide array of applications in nanomedicine. The most prominent are protection from radiation-induced injury, neuroprotection, drug and gene delivery, anticancer therapy, adjuvant within different treatments, photosensitizing, sonosensitizing, bone reparation, and biosensing. However, it is of crucial importance to be elucidated how fullerenes immunomodulate human system o...

  19. Effect of the jet production on pseudorapidity, transverse momentum and transverse mass distributions of charged particles produced in pp-collisions at Tevatron energy

    Institute of Scientific and Technical Information of China (English)

    Ali Zaman; Mais Suleymanov; Muhammad Ajaz; Kamal Hussain Khan

    2015-01-01

    We investigate the effects of jet production on the following parameters:pseudorapidity,transverse momentum and transverse mass distributions of secondary charged particles produced in pp-collisions at 1.8 TeV,using the HIJING code.These distributions are analyzed for the whole range and for six selected regions of the polar angle as a function of the different number of jets.The obtained simulation results for these parameters are interpreted and discussed in connection to the increase observed in the multiplicity of secondary charged particles as a result of its multi-jet dependence,and are also discussed in comparison with the experimental results from the CDF Collaboration.

  20. Simultaneous reconstruction of scintillation light and ionization charge produced by 511 keV photons in liquid xenon: Potential application to PET

    Energy Technology Data Exchange (ETDEWEB)

    Amaudruz, P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: amaudruz@triumf.ca; Bryman, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: bryman@phas.ubc.ca; Kurchaninov, L. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: kurchan@triumf.ca; Lu, P. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada)], E-mail: philipfl@phas.ubc.ca; Marshall, C. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: cammarsh@triumf.ca; Martin, J.P. [University of Montreal, CP 6128 Succursale Centre-Ville, Montreal, Quebec, H3C 3J7 (Canada)], E-mail: jpmartin@lps.umontreal.ca; Muennich, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: muennich@triumf.ca; Retiere, F. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: fretiere@triumf.ca; Sher, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)], E-mail: sher@triumf.ca

    2009-08-21

    In order to assess the performance of liquid xenon detectors for use in positron emission tomography we studied the scintillation light and ionization charge produced by 511 keV photons in a small prototype detector. Scintillation light was detected with large area avalanche photodiodes while ionization electrons were collected on an anode instrumented with low noise electronics after drifting up to 3 cm. Operational conditions were studied as a function of the electric field. Energy resolutions of <10% (FWHM) were achieved by combining the scintillation light and ionization charge signals. The relationship between scintillation light and ionization signals was investigated. An analysis of the sources of fluctuations was performed in order to optimize future detector designs.

  1. Organic field effect transistor composed by fullerene C60 and heterojunctions

    Science.gov (United States)

    Vasconcelos, Railson C.; Aleixo, Vicente F. P.; Del Nero, Jordan

    2017-02-01

    We present a study of the complex electronic behavior of a fullerene (C60) molecule attached to six leads (heterojunctions), which works as a three-dimension rectifier. In addition, we confirmed that the fullerene works not only as an electron donor, but also as barrier and transport channel to electrons through the molecule. Moreover, when the phenylpropanodinilla (PPP) lead is orthogonally subjected to bias voltage, the charge distribution and the current displays regions of saturation and resonance similar to semiconductor devices. In order to understand the electronic transport in the molecule, we applied non-equilibrium green function (NEGF) method and performed Fowler-Nordheim (FN) and Millikan-Lauritsen (ML) analyses. The ML curves proved to be sufficient to describe the FN characteristics. In this work, we report the theoretical design for electronic transport of a 3D device (6-terminal).

  2. Unraveling the electrical conduction of C-40 quasi-fullerene molecular junction

    Science.gov (United States)

    Kaur, Rupan Preet; Sawhney, Ravinder Singh; Engles, Derick

    2016-07-01

    In this paper, we present the state of art theoretical calculations of charge transport through quasi-fullerene molecule C40 coupled rigidly between two 3D gold electrodes by applying different electro-chemical potentials. The methodology we adopted has been based on density functional theory approach combined with Keldysh’s non-equilibrium Green’s function (NEGF) framework suggested for mesoscopic systems. The results exhibited by this molecular junction confirmed it to be highly metallic and showed prominent conduction of the order of twice of the quantum conductance, i.e., 2*G0 at zero bias. Our results are consistent with theoretical predictions in ab initiocalculations with some variants of quasi-fullerenes.

  3. Laser ablation synthesis of zinc oxide clusters: a new family of fullerenes?

    CERN Document Server

    Bulgakov, A V; Bulgakov, Alexander V.; Ozerov, Igor; Proxy, Wladimir Marine; ccsd-00000864, ccsd

    2003-01-01

    Positively charged zinc oxide clusters ZnnOm (up to n = 16, m <= n) of various stoichiometry were synthesized in the gas phase by excimer ArF laser ablation of a ZnO target and investigated using time-of-flight mass spectrometry. Depending on ablation conditions, either metal rich or stoichiometric clusters dominate in the mass spectrum. When the irradiated target surface is fairly fresh, the most abundant clusters are metal rich with Zn(n+1)On and Zn(n+3)On being the major series. The stoichiometric clusters are observed with an etched ablated surface. The magic numbers at n = 9, 11 and 15 in mass spectra of (ZnO)n clusters indicate that the clusters have hollow spheroid structures related to fullerenes. A local abundance minimum at n = 13 provides an additional evidence for the presence in the ablation plume of fullerene-like (ZnO)n clusters.

  4. The Activity of [60]Fullerene Derivatives Bearing Amine and Carboxylic Solubilizing Groups against Escherichia coli: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Dmitry G. Deryabin

    2014-01-01

    Full Text Available We report a comparative investigation of the antibacterial activity of two water-soluble fullerene derivatives bearing protonated amine (AF and deprotonated carboxylic (CF groups appended to the fullerene cage via organic linkers. The negatively charged fullerene derivative CF showed no tendency to bind to the bacterial cells and, consequently, no significant antibacterial activity. In contrast, the compound AF loaded with cationic groups showed strong and partially irreversible binding to the negatively charged Escherichia coli K12 TG1 cells and to human erythrocytes, also possessing negative zeta potential. Adsorption of AF on the bacterial surface was visualized by atomic force microscopy revealing the formation of specific clusters (AF aggregates surrounding the bacterial cell. Incubation of E. coli K12 TG1 with AF led to a dose-dependent bactericidal effect with LD50 = 79.1 µM. The presence of human erythrocytes in the test medium decreased the AF antibacterial activity. Thus we reveal that the water-soluble cationic fullerene derivative AF possesses promising antibacterial activity, which might be utilized in the development of novel types of chemical disinfectants.

  5. Polaron pair mediated triplet generation in polymer/fullerene blends

    KAUST Repository

    Dimitrov, Stoichko D.

    2015-03-04

    Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.

  6. Fluorescence of fullerene derivatives at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.K.; Shiu, L.L.; Chien, K.M.; Luh, T.Y.; Lin, T.I. (National Taiwan Univ., Taipei (Taiwan, Province of China))

    1995-01-05

    The absorption and fluorescence spectral properties of fullerene (C[sub 60]) and its derivatives C[sub 60]C[sub 4]H[sub 6], C[sub 60]C[sub 5]H[sub 6], C[sub 60]CHCO[sub 2]Et, and C[sub 60]NCO[sub 2]Et at room temperature were investigated. Breaking the structural symmetry of C[sub 60] results in enhancing the fluorescence quantum yield 2-3-fold in some derivatives. Thus, the room temperature fluorescence of fullerene compounds could be detected more rapidly. New absorption bands and altered fluorescence spectra were observed in the derivatives. The Stokes' shifts of the derivatives are small, about 4-5 nm, compared to 68 nm for the parent compound. The time-resolved fluorescence decay study indicates that all four fullerene derivatives have a single fluorescence lifetime of ca. 1.2-1.4 as, which is about the same as that for C[sub 60] (ca. 1.3 ns). Aliphatic solvents have little influence on the absorption or fluorescence spectral profile except on the extinction coefficient whereas aromatic and polar solvents strongly interact with the fullerene derivatives, causing a peak broadening effect. 31 refs., 7 figs., 3 tabs.

  7. COANP-fullerenes system for optical modulation

    Science.gov (United States)

    Likhomanova, S. V.; Kamanina, N. V.

    2016-08-01

    The advanced investigations of ϕ-conjugated organic molecule COANP sensitized with fullerenes have been revealed to consider this system as an affective medium for optical limiting and phase modulation. The special accent has been given to influence of the nanostructured relief at the interface on the spectral and photoconductive features.

  8. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the ad

  9. Fullerenes and nanostructured plastic solar cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a bul

  10. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    2005-01-01

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of substrate

  11. Arranging pseudorotaxanes octahedrally around 60 fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Dey, S.K.; Beurle, F.; Olson, M.A.; Stoddart, J. F.

    2010-01-01

    The formation of both [2]- and [7]pseudorotaxanes, which are obtained by mixing of a dibenzylammonium derivative with mono- and hexakis-adducts of [60]fullerene bearing malonato-benzo[25]crown-8 rings, has been monitored in dichloromethane by both 1D and 2D ¹H NMR spectroscopies.

  12. Arranging pseudorotaxanes octahedrally around [60]fullerene.

    Science.gov (United States)

    Dey, Sanjeev K; Beuerle, Florian; Olson, Mark A; Stoddart, J Fraser

    2011-02-07

    The formation of both [2]- and [7]pseudorotaxanes, which are obtained by mixing of a dibenzylammonium derivative with mono- and hexakis-adducts of [60]fullerene bearing malonato-benzo[25]crown-8 rings, has been monitored in dichloromethane by both 1D and 2D (1)H NMR spectroscopies.

  13. An Infrared Study of Fullerene Planetary Nebulae

    CERN Document Server

    Garcia-Hernandez, D A; Garcia-Lario, P; Acosta-Pulido, J A; Manchado, A; Stanghellini, L; Shaw, R A; Cataldo, F

    2012-01-01

    We present a study of 16 PNe where fullerenes have been detected in their Spitzer spectra. This large sample of objects offers an unique opportunity to test conditions of fullerene formation and survival under different metallicity environments as we are analyzing five sources in our own Galaxy, four in the LMC, and seven in the SMC. Among the 16 PNe under study, we present the first detection of C60 (possibly also C70) fullerenes in the PN M 1-60 as well as of the unusual 6.6, 9.8, and 20 um features (possible planar C24) in the PN K 3-54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (5% in the Galaxy, 20% in the LMC, and 44% in the SMC). CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (30,000-45,000 K), suggesting a common evo...

  14. Effect of dielectronic recombination on the charge-state distribution and soft X-ray line intensity of laser-produced carbon plasma

    Indian Academy of Sciences (India)

    A Chowdhury; G P Gupta; P A Naik; P D Gupta

    2005-01-01

    The effect of dielectronic recombination in determining charge-state distribution and radiative emission from a laser-produced carbon plasma has been investigated in the collisional radiative ionization equilibrium. It is observed that the relative abundances of different ions in the plasma, and soft X-ray emission intensity get significantly altered when dielectronic recombination is included. Theoretical estimates of the relative population of CVI to CV ions and ratio of line intensity emitted from them for two representative formulations of dielectronic recombination are presented.

  15. Measurement of topological muonic branching ratios of charmed hadrons produced in neutrino-induced charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Oldeman, R G C; Güler, M; Köse, U; Tolun, P; Catanesi, M G; Muciaccia, M T; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Artamonov, A V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Myanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Scotto-Lavina, L; Strolin, P; Tioukov, V; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2005-01-01

    From 1994 to 1997, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events based on the data acquired by new automatic scanning systems, 2013 charm-decay events were selected by a pattern recognition program. They were confirmed as decays through visual inspection. Based on these events, the effective branching ratio of charmed particles into muons was determined to be Bμ = [7.3 ± 0.8 (stat) ± 0.2 (syst)] × 10âˆ'2. In addition, the muonic branching ratios are presented for dominating charm decay topologies. Normalization of the muonic decays to chargedcurrent interactions provides _μâˆ'μ+/_cc = [3.16 ± 0.34 (stat) ± 0.09 (syst)] × 10âˆ'3. Selecting only events with visible energy greater than 30 GeV gives a value of Bμ that is less affected by the charm production threshold ...

  16. The Charge Asymmetry In W Bosons Produced In Proton- Antiproton Collisions At Center Of Mass Energy = 1.96 Tev

    CERN Document Server

    Torborg, J

    2005-01-01

    The primary mode of production of W+ bosons in a pp¯ collider is u + d¯ → W+. The u quark generally carries more momentum than the d and the resultant W+ tends to be boosted in the proton direction. Similarly, W- bosons are boosted in the anti-proton direction. This is observed as an asymmetry in the rapidity distributions of positive and negative W bosons. Measurement of this asymmetry serves as a. probe of the momentum distribution of partons within the proton. These distributions are required as input to the calculation of every pp¯ production cross section. This thesis presents the first measurement at DØ of the charge asymmetry of the W boson production cross section as measured in W → eν decays in 0.3 fb-1 of pp¯ collisions collected with the DØ Detector. Theoretical predictions made using the CTEQ6.1M and MRST(2004) proton distribution functions are compared with the measurement.

  17. Optical study of pi-conjugated polymers and pi-conjugated polymers/fullerene blends

    Science.gov (United States)

    Drori, Tomer

    In this research, we studied the optical properties of a variety of pi-conjugated polymers and pi-conjugated polymers/fullerene blends, using various continuous wave optical spectroscopies. We found an illumination-induced metastable polaron-supporting phase in films of a soluble derivative of poly-p-phenylene vinylene (MEH-PPV). Pristine, MEH-PPV polymer films in the dark do not show long-lived photogenerated polarons. Prolonged UV illumination, however, is found to induce a reversible, metastable phase characterized by its ability to support abundant long-lived photogenerated polarons. We also discovered a photobleaching band in our photomodulation measurement around 0.9eV that scales with and thus is related to the observed polaron band. In the dark, the illumination-induced metastable phase reverts back to the phase of the original MEH-PPV within about 30 min at room temperature. We also applied our experimental techniques in polymer/fullerene blends for studying the photophysics of bulk heterostructures with below-gap excitation. In contrast to the traditional view, we found that below-gap excitation, which is incapable of generating intrachain excitons, nevertheless efficiently generates polarons on the polymer chains and fullerene molecules. Using frequency dependence photomodulation, we distinguished between the two mechanisms of photoinduced charge transfer using above-gap and below-gap excitations, and found a distinguishable long polaron lifetime when photogenerated with below-gap excitation. The polaron action spectrum extends deep inside the gap as a result of a charge-transfer complex state formed between the polymer chain and fullerene molecule. Using the electroabsorption technique, we were able to detect the optical transition of the charge transfer complex state that lies below the gap of the polymer and the fullerene. With appropriate design engineering the long-lived polarons might be harvested in solar cell devices. Another system studied was

  18. Polyelectrolyte membranes based on hydrocarbon polymer containing fullerene

    Science.gov (United States)

    Saga, Shota; Matsumoto, Hidetoshi; Saito, Keiichiro; Minagawa, Mie; Tanioka, Akihiko

    In the present study, composite polyelectrolyte membranes were prepared from sulfonated polystyrene and fullerene. The additive effect of the fullerene on the membrane properties - electric resistance, mechanical strength, oxidation resistance, and methanol permeability - were measured. The addition of fullerene improved the oxidation resistance, and reduced the methanol crossover. The mechanical strength of the fullerene-composite membrane, on the other hand, was not improved. The direct methanol fuel cell (DMFC) based on a 1.4 wt% fullerene-composite membrane showed the highest power density of 47 mW cm -2 at the current density of 200 mA cm -2 (this value is 60% of the Nafion-based DMFC). The transmission electron microscopy (TEM) observations suggest that the improved dispersity of the fullerene and the reduced number of micropores in the membranes would improve its performance in the fuel cell.

  19. Structure property relationships for the nonlinear optical response of fullerenes

    Science.gov (United States)

    Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.

    1994-11-01

    We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.

  20. Molecular photovoltaic system based on fullerenes and carotenoids co-assembled in lipid/alkanethiol hybrid bilayers.

    Science.gov (United States)

    Liu, Lixia; Zhan, Wei

    2012-03-13

    A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.

  1. Surface chemical modification of fullerene by mechanochemical treatment

    Science.gov (United States)

    Todorović Marković, B.; Jokanović, V.; Jovanović, S.; Kleut, D.; Dramićanin, M.; Marković, Z.

    2009-06-01

    In this study different encapsulating agents have been used for chemical modification of fullerenes. Fullerenes have reacted with tetrahydrofuran, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate and ethylene vinyl acetate-ethylene vinyl versatate at room temperature under mechanical milling. The obtained powder has been dispersed in water by ultrasonication. The fullerene based colloids have been characterized by UV-vis, FTIR, Raman spectroscopy and atomic force microscopy. FTIR and Raman analysis have shown the presence of C 60 after surface functionalization.

  2. Electrical and optical design and characterisation of regioregular poly(3-hexylthiophene-2,5diyl)/fullerene-based heterojunction polymer solar cells

    NARCIS (Netherlands)

    Chirvase, D; Chiguvare, Z; Knipper, A; Parisi, J; Dyakonov, [No Value; Hummelen, JC; Knipper, M.

    2003-01-01

    Electrical and optical properties of poly(3-hexylthiophene-2,5diyl) (P3HT-2,5diyl) used as the main component in a bulk heterojunction polymer/fullerene solar cell were investigated. The HOMO level of the polymer was estimated at about 4.7-5.1 eV, from the observed space charge limited current (SCLC

  3. A search for hydrogenated fullerenes in fullerene-containing planetary nebulae

    CERN Document Server

    Díaz-Luis, J J; Manchado, A; Cataldo, F

    2016-01-01

    Detections of C60 and C70 fullerenes in planetary nebulae (PNe) of the Magellanic Clouds and of our own Galaxy have raised the idea that other forms of carbon such as hydrogenated fullerenes (fulleranes like C60H36 and C60H18), buckyonions, and carbon nanotubes, may be widespread in the Universe. Here we present VLT/ISAAC spectra (R ~600) in the 2.9-4.1 microns spectral region for the Galactic PNe Tc 1 and M 1-20, which have been used to search for fullerene-based molecules in their fullerene-rich circumstellar environments. We report the non-detection of the most intense infrared bands of several fulleranes around ~3.4-3.6 microns in both PNe. We conclude that if fulleranes are present in the fullerene-containing circumstellar environments of these PNe, then they seem to be by far less abundant than C60 and C70. Our non-detections together with the (tentative) fulleranes detection in the proto-PN IRAS 01005+7910 suggest that fulleranes may be formed in the short transition phase between AGB stars and PNe but...

  4. Device Physics and Recombination in Polymer:Fullerene Bulk-Heterojunction Solar Cells

    Science.gov (United States)

    Hawks, Steven Aaron

    , like those discussed above. My analysis reveals that the apparent free-carrier concentration obtained via the usual integral approach is altered by a non-trivial factor of two, sometimes leading to misinterpretations of the charge densities and overall device physics. This new perspective could have far-reaching effects on semiconductor research and technology. Finally, in the last two chapters, I discuss the device physics associated with a relatively novel method for fabricating nanoscale polymer:fullerene BHJs: solution sequential processing (SqP). In particular, I compare recombination in SqP vs. traditionally processed blend-cast devices, and demonstrate that SqP is a more scalable method for making BHJ solar cells. In the final chapter, I examine an unexpected discovery that occurred while working on the content in Chapter 5. Specifically, Chapter 6 examines electrode metal penetration in the SqP quasi-bilayer active layer architecture. Therein, we unexpectedly found that evaporated metal can readily penetrate into fullerene-rich layers, up to ˜70 nm or more. The details and consequences of this surprising occurrence are discussed in detail.

  5. Oscillations of spherical fullerenes interacting with graphene sheet

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  6. Super-atom molecular orbital excited states of fullerenes.

    Science.gov (United States)

    Johansson, J Olof; Bohl, Elvira; Campbell, Eleanor E B

    2016-09-13

    Super-atom molecular orbitals are orbitals that form diffuse hydrogenic excited electronic states of fullerenes with their electron density centred at the centre of the hollow carbon cage and a significant electron density inside the cage. This is a consequence of the high symmetry and hollow structure of the molecules and distinguishes them from typical low-lying molecular Rydberg states. This review summarizes the current experimental and theoretical studies related to these exotic excited electronic states with emphasis on femtosecond photoelectron spectroscopy experiments on gas-phase fullerenes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  7. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Directory of Open Access Journals (Sweden)

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  8. Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes

    Science.gov (United States)

    Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef

    2013-01-01

    Mo2C nanoparticles encapsulated within MoS2 inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.

  9. High-Performance Organic Solar Cells Based on a Non-Fullerene Acceptor with a Spiro Core.

    Science.gov (United States)

    Sun, Hua; Sun, Po; Zhang, Cong; Yang, Yingguo; Gao, Xingyu; Chen, Fei; Xu, Zongxiang; Chen, Zhi-Kuan; Huang, Wei

    2017-01-26

    Derived from perylenediimide (PDI) building blocks, 3D PDI molecules are considered as a type of promising structure to overcome molecular aggregation, thus improving the performance of organic solar cells. Herein, we report a novel PDI-based derivative, SCPDT-PDI4 , with four PDI units connected to a unique spiro core. Attributed to this novel molecular design, SCPDT-PDI4 exhibits a rigid 3D structure, in which the aggregation tendency of PDI chromophores could be effectively attenuated. Additionally, strong intramolecular charge transfer and high charge mobility are achieved due to the well-conjugated structure and electron-rich property of SCPDT. Therefore, fullerene-free organic solar cells based on SCPDT-PDI4 and PTB7-Th achieve a remarkable high efficiency of 7.11 %. Such an excellent result demonstrates the opportunity of SCPDT to be a promising building block for non-fullerene acceptors.

  10. Search for electroweakly produced supersymmetric particles in final states including two charged leptons with the ATLAS experiment at the LHC

    CERN Document Server

    Wittkowski, Josephine

    Three analyses searching for electroweakly produced supersymmetric particles in proton-proton collisions are presented. The collisions were recorded by the ATLAS experiment at the Large Hadron Collider. Two leptons (electrons or muons), jets and missing transverse energy are expected in the final states. Simplified models as well as the phenomenological Minimal Supersymmetric Standard Model (pMSSM) are used to study the production and decay of pairs of gauginos, i.e. charginos and neutralinos. The first analysis is performed with an integrated luminosity of 4.7 fb^-1 of ATLAS data, recorded in 2011 at a centre-of-mass energy of sqrt(s) = 7 TeV. Direct slepton production and three scenarios in which pairs of gauginos decay via intermediate sleptons are addressed. Particular attention is paid to the trigger strategy. No excess is observed in the number of data events. In the simplified model that assumes the direct slepton production, left-handed slepton masses between 85 and 195 GeV are excluded at 95% confide...

  11. Interaction between fullerene-wheeled nanocar and gold substrate: A DFT study

    Science.gov (United States)

    Ahangari, M. Ghorbanzadeh; Ganji, M. Darvish; Jalali, A.

    2016-09-01

    Since the successful synthesis of nanocar and its surprising movement on the gold surface, several theoretical investigations have been devoted to explain the interaction properties as well as its movement mechanism on the substrate. All of them failed, however, to gain a clear theoretical insight into the respected challenges because of the weak computational methods implemented for this complex system including heavy metal atoms and giant size of the whole system. In this work, we have investigated the adsorption of fullerene-wheeled nanocar onto a Au (1 1 1) substrate using the comprehensive first-principles density functional theory (DFT) simulations. The binding energy between the nanocar and Au (1 1 1) surface was determined to be -9.43 eV (-217.45 kcal/mol). The net charge transfer from the nanocar to the gold substrate was calculated to be about 9.56 electrons. Furthermore, the equilibrium distances between the Au surface and the C60 molecule and nanocar chassis were estimated to be 2.20 Å and 2.30 Å, respectively. The BSSE correction was also considered in the binding energy estimation and the result show that the BSSE correction significantly affects the calculated binding energy for such systems. Finally, we have performed ab initio molecular dynamics simulation for a single C60 fullerene on the gold surface at room temperature. Our first-principles result shows that ambient condition affect remarkably on the adsorption property of fullerene on the gold surface. We also observed that the C60 fullerene wheel slips by approximately 3.90 Å within 5 ps of simulation time at 300 K.

  12. Synthesis of fullerene-acene dyads

    Science.gov (United States)

    Cho, Claire Eunhye

    Organic photovoltaic (OPV) cells present potential for industrial use because of their possible low cost production. However, their relatively low efficiencies render them impractical for implementation. A comprehensive understanding of the photophysical process is necessary for eventual development of high efficiency OPV cells. Studying photophysical processes of well-defined structures such as dyad or triad molecules may give insight into their photophysical processes. In this study, we selected pentacene derivatives as electron donors and fullerenes as electron acceptors for dyad and triad molecules with well-defined structures. Several new types of organothiosubstituted 6,13-dihydropentacenes with terminal functionality including carboxylic acid, alcohol and amine groups were synthesized. A sterically hindered pentacene derivative was also prepared in order to prevent cycloaddition between C60 and pentacene. Functionalized fullerenes were synthesized for use as electron acceptors. Numerous reaction methods were attempted toward the synthesis of a donor/acceptor dyad with pentacene and fullerene derivatives. However, hydroamination of pristine C 60 using a diamino dihydropentacene derivative was the only successful method demonstrated to link C60 and dihydropentacene derivatives.

  13. A hydrodynamical model including phase transition and the transverse momentum spectra of identified charged particles produced in Au-Au collisions at RHIC energies

    CERN Document Server

    Jiang, Zhi-Jin; Zhang, Yu

    2016-01-01

    It is widely believed that the quark-gluon plasma (QGP) might be formed in heavy ion collisions. It is also widely recognized that the relativistic hydrodynamics is one of the best tools for describing the process of expansion and particlization of QGP. In this paper, one dimensional hydrodynamic model involving the phase transition from QGP state to hadronic state is used to analyze the transverse momentum spectra of identified charged particles produced in heavy ion collisions. The analytical solutions are presented. A comparison is made between the theoretical predictions and experimental data. The theoretical model works well in Au-Au collisions at sqrt(s_NN)=200 and 130 GeV at RHIC.

  14. Measurement of the azimuthal anisotropy of charged particles produced in 5.02~TeV Pb+Pb collisions with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    The data collected by the ATLAS experiment during the 2015 heavy ion LHC run offers new opportunities to probe properties of the Quark-Gluon Plasma at unprecedented high temperatures and densities. Study of the azimuthal anisotropy of produced particles not only constrains our understanding of initial conditions of nuclear collisions and soft particle collective dynamics, but also sheds light on jet-quenching phenomena via measurement of flow harmonics at high transverse momenta. A new ATLAS measurement of elliptic flow and higher-order Fourier harmonics of charged particles in Pb+Pb collisions at $\\sqrt{s_{\\mathrm{NN}}}$ = 5.02~TeV in a wide range of transverse momenta, pseudorapidity ($|\\eta| <$ 2.5) and collision centrality is presented. These measurements are based on the Scalar Product and Two Particle Correlation methods. The measurements are compared with the results for Pb+Pb collisions at the lower energy.

  15. Understanding Local and Macroscopic Electron Mobilities in the Fullerene Network of Conjugated Polymer-based Solar Cells. Time-Resolved Microwave Conductivity and Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Jordan C. [Univ. of California, Los Angeles, CA (United States); Arntsen, Christopher D. [Univ. of California, Los Angeles, CA (United States); Hernandez, Samuel [Univ. of California, Los Angeles, CA (United States); Huber, Rachel [Univ. of California, Los Angeles, CA (United States); Nardes, Alexandre M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Halim, Merissa [Univ. of California, Los Angeles, CA (United States); Kilbride, Daniel [Univ. of California, Los Angeles, CA (United States); Rubin, Yves [Univ. of California, Los Angeles, CA (United States); Tolbert, Sarah H. [Univ. of California, Los Angeles, CA (United States); Kopidakis, Nikos [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwartz, Benjamin J. [Univ. of California, Los Angeles, CA (United States); Neuhauser, Daniel [Univ. of California, Los Angeles, CA (United States)

    2013-09-23

    The efficiency of bulk heterojunction (BHJ) organic photovoltaics is sensitive to the morphology of the fullerene network that transports electrons through the device. This sensitivity makes it difficult to distinguish the contrasting roles of local electron mobility (how easily electrons can transfer between neighboring fullerene molecules) and macroscopic electron mobility (how well-connected is the fullerene network on device length scales) in solar cell performance. In this work, a combination of density functional theory (DFT) calculations, flash-photolysis time-resolved microwave conductivity (TRMC) experiments, and space-charge-limit current (SCLC) mobility estimates are used to examine the roles of local and macroscopic electron mobility in conjugated polymer/fullerene BHJ photovoltaics. The local mobility of different pentaaryl fullerene derivatives (so-called ‘shuttlecock’ molecules) is similar, so that differences in solar cell efficiency and SCLC mobilities result directly from the different propensities of these molecules to self-assemble on macroscopic length scales. These experiments and calculations also demonstrate that the local mobility of phenyl-C60 butyl methyl ester (PCBM) is an order of magnitude higher than that of other fullerene derivatives, explaining why PCBM has been the acceptor of choice for conjugated polymer BHJ devices even though it does not form an optimal macroscopic network. The DFT calculations indicate that PCBM's superior local mobility comes from the near-spherical nature of its molecular orbitals, which allow strong electronic coupling between adjacent molecules. In combination, DFT and TRMC techniques provide a tool for screening new fullerene derivatives for good local mobility when designing new molecules that can improve on the macroscopic electron mobility offered by PCBM.

  16. Comparative study of bulk and interface transport in disordered fullerene films

    Energy Technology Data Exchange (ETDEWEB)

    Pivrikas, Almantas [Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz (Austria); School of Chemistry and Molecular Biosciences, COPE, The University of Queensland (Australia); Ullah, Mujeeb; Simbrunner, Clemens; Sitter, Helmut [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz (Austria); Neugebauer, Helmut; Sariciftci, N. Serdar [Linz Institute of Organic Solar Cells (LIOS), Johannes Kepler University Linz (Austria)

    2011-11-15

    The characterization of the charge carrier transport in disordered fullerene films, grown by physical vapor deposition, is important for organic electronics in order to improve carrier mobility and understand transport processes. In this contribution, the electron mobility in the bulk of the fullerene film and at the interface with dielectrics are compared. The bulk mobility is measured in diode structures using the Charge Extraction by Linearly Increasing Voltage (CELIV) technique, which allows a simultaneous study of the electric field, concentration and temperature dependence. The interface mobility is determined using organic field effect transistor (OFET) geometry. The electron mobility values are lower and the dependence on carrier density, field and temperature is stronger in diodes compared to OFETs. In both structures different temperature dependence of the mobility on the carrier concentration and on the electric field is obtained. The dependence shows Meyer-Neldel rule (MN-rule) behavior with similar MN temperatures and MN energies. Activation energy for electron transport plotted as a function of the square root of electric field is linear (Gill's law behavior), in accordance with Poole-Frenkel-type charge carrier transport. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Functionalized O6-Corona[6]arenes: Synthesis, Structure, and Fullerene Complexation Property.

    Science.gov (United States)

    Ren, Wen-Sheng; Zhao, Liang; Wang, Mei-Xiang

    2016-07-01

    The synthesis, structure, and fullerene complexation property of novel and functionalized On-corona[n]arenes were reported. Based on the fragment coupling strategy, ester-containing On-corona[n]arenes (n = 6, 8) were obtained readily starting from 1,4-hydroquinone and diethyl 2,5-difluoroterephthalate. Reduction of esters with LiAlH4 produced almost quantitatively hydroxymethylated On-corona[n]arenes, which underwent etherification with MeI to afford methoxymethyl-substituted On-corona[n]arenes (n = 6, 8) in good yields. The macrocycles adopt unique corona-type conformation with a large cylindroid cavity. They are strong macrocyclic host molecules to form 1:1 complexes with fullerenes C60 and C70 in toluene with an associate constant up to (1.59 ± 0.04) × 10(5) M(-1).

  18. Matrix Assisted Pulsed Laser Evaporation for growth of fullerene thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster Nielsen, Søren

    C60 fullerene thin films of average thickness of more than 100 nm can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant...... fraction of the film molecules are C60 transferred to the substrate without any fragmentation. Highresolution SEM images of MAPLE deposited films reveal large circular droplets on the surface with high amount of material concentrated at edges (Fig. 1A). These features, observed over a wide range of laser...... fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in production of films with smooth surfaces and minimal...

  19. Growth of thin fullerene films by matrix assisted pulsed laser evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    C60 fullerene thin films of average thickness of more than 100 nm on silicon substrates can be produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target of anisole with a concentration of 0.67 wt% C60. At laser fluences below 1.......5 J/cm2 the dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. For high fluences high-resolution SEM images of MAPLE deposited films reveal large circular features on the surface with high amount of material concentrated at edges. These features......, observed over a wide range of laser fluences, are caused by ejection of large matrix-fullerene liquid droplets into the gas-phase and subsequent deposition. At similar laser energies, but using an unfocused laser beam, MAPLE favours evaporation of matrix and organic molecules, resulting in films...

  20. Microstructural analysis of carbon films obtained from C{sub 60} fullerene ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Huck, H.; Halac, E.B.; Reinoso, M.; Dall' Asen, A.G.; Somoza, A.; Deng, W.; Brusa, R.S.; Karwasz, G.P.; Zecca, A

    2003-04-30

    Carbon films have been produced by accelerating C{sub 60}{sup +} ions on silicon substrates with energies between 100 and 800 eV. Furthermore some samples have been vacuum-annealed at 600 deg. C. The samples have been characterized by Raman and positron annihilation spectroscopies (RS-PAS). The measurements for the as-deposited material show that there is a coexistence of polymerized fullerenes and amorphous-carbon islands and that the structure depends on the energy of the incident ions. At low energies, fullerenes are deposited preserving the molecular identity and some intermolecular covalent bonds begin to insinuate; at higher energies, the amount of these covalent bonds increases and the amorphous islands predominate. After the annealing process, the amorphous phase organizes in graphitic clusters and the unbroken C{sub 60} cages are transformed back to pristine and slightly polymerized C{sub 60}.

  1. A liquid-crystalline hexa-adduct of [60]fullerene

    OpenAIRE

    Chuard, Thierry; Deschenaux, Robert; Hirsch, Andreas; Schönberger, Hubert

    2006-01-01

    A hexa-adduct of [60]fullerene was synthesized by addition of a mesomorphic twin cyanobiphenyl malonate derivative to C60; whereas the malonate derivative gave a monotropic nematic phase, the fullerene hexa-adduct showed an enantiotropic smectic A phase.

  2. In vivo biology and toxicology of fullerenes and their derivatives

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme i...

  3. Nanotribological performance of fullerene-like carbon nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico); Chiñas-Castillo, Fernando, E-mail: fernandochinas@gmail.com [Department of Mechanical Engineering, Instituto Tecnológico de Oaxaca, Oaxaca, Oax. Calz. Tecnológico No. 125, CP. 68030, Oaxaca, Oax. (Mexico); Espinoza-Beltrán, Francisco Javier [Centro de Investigación y Estudios Avanzados (CINVESTAV) IPN, Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, C.P. 76230, Querétaro, Qro., México (Mexico)

    2014-09-30

    Highlights: • Fullerene-like CNx samples show an elastic recovery of 92.5% and 94.5% while amorphous CNx samples had only 75% elastic recovery. • Fullerene-like CNx films show an increment of 34.86% and 50.57% in fractions of C 1s and N 1s. • Fullerene-like CNx samples show a lower friction coefficient compared to amorphous CNx samples. • Friction reduction characteristics of fullerene-like CNx films are strongly related to the increase of sp{sup 3} CN bonds. - Abstract: Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009–0.022) that is lower than amorphous CNx films (CoF ∼ 0.028–0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp{sup 3} CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  4. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms.

    Science.gov (United States)

    Saidi, Wissam A; Norman, Patrick

    2016-07-14

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N(2.2) as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N(2.75) as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N(2.8), which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  5. Polarizabilities and van der Waals C6 coefficients of fullerenes from an atomistic electrodynamics model: Anomalous scaling with number of carbon atoms

    Science.gov (United States)

    Saidi, Wissam A.; Norman, Patrick

    2016-07-01

    The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6 ∝ N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6 ∝ N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole-dipole term scales almost linearly with the number of carbon atoms.

  6. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Science.gov (United States)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C60 fullerene. This was confirmed from fluorescence energy transfer studies. UV Vis studies further supported this observation that it is possible to selectively remove the C60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  7. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, C. N. [M.S. University of Baroda, Applied Chemistry Department, Faculty of Technology and Engineering (India)

    2005-01-15

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C{sub 60} fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C{sub 60} fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C{sub 60} fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C{sub 60} fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  8. Formation of fullerenes in H-containing Planetary Nebulae

    CERN Document Server

    Garcia-Hernandez, D A; Garcia-Lario, P; Stanghellini, L; Villaver, E; Shaw, R A; Szczerba, R; Perea-Calderon, J V

    2010-01-01

    Hydrogen depleted environments are considered an essential requirement for the formation of fullerenes. The recent detection of C60 and C70 fullerenes in what was incorrectly interpreted as a hydrogen-poor Planetary Nebula (PN) seemed to confirm this picture. Here, we present strong evidence that challenges the current paradigm regarding fullerene formation, showing that it can take place in circumstellar environments containing hydrogen. We report the simultaneous detection of Polycyclic Aromatic Hydrocarbons (PAHs) and fullerenes towards C-rich and H-containing PNe belonging to environments with very different chemical histories such as our own Galaxy and the Small Magellanic Cloud. We suggest that PAHs and fullerenes may be formed by the photochemical processing of hydrogenated amorphous carbon. These observations have profound implications on our current understanding of the chemistry of large organic molecules as well as the chemical processing in space.

  9. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.

    Science.gov (United States)

    Li, Yaowen; Zhao, Yue; Chen, Qi; Yang, Yang Michael; Liu, Yongsheng; Hong, Ziruo; Liu, Zonghao; Hsieh, Yao-Tsung; Meng, Lei; Li, Yongfang; Yang, Yang

    2015-12-16

    In perovskite based planar heterojunction solar cells, the interface between the TiO2 compact layer and the perovskite film is critical for high photovoltaic performance. The deep trap states on the TiO2 surface induce several challenging issues, such as charge recombination loss and poor stability etc. To solve the problems, we synthesized a triblock fullerene derivative (PCBB-2CN-2C8) via rational molecular design for interface engineering in the perovskite solar cells. Modifying the TiO2 surface with the compound significantly improves charge extraction from the perovskite layer. Together with its uplifted surface work function, open circuit voltage and fill factor are dramatically increased from 0.99 to 1.06 V, and from 72.2% to 79.1%, respectively, resulting in 20.7% improvement in power conversion efficiency for the best performing devices. Scrutinizing the electrical properties of this modified interfacial layer strongly suggests that PCBB-2CN-2C8 passivates the TiO2 surface and thus reduces charge recombination loss caused by the deep trap states of TiO2. The passivation effect is further proven by stability testing of the perovskite solar cells with shelf lifetime under ambient conditions improved by a factor of more than 4, from ∼40 h to ∼200 h, using PCBB-2CN-2C8 as the TiO2 modification layer. This work offers not only a promising material for cathode interface engineering, but also provides a viable approach to address the challenges of deep trap states on TiO2 surface in planar perovskite solar cells.

  10. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  11. Fullerenes as alternative acceptors by transfer doping of diamond surfaces; Fullerene als alternative Akzeptoren bei der Transferdotierung von Diamantoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Paul

    2008-06-06

    The topic of this thesis is the fullerene induced surface conductivity on hydrogen terminated diamond. A systematic investigation of C{sub 60}, C{sub 60}F{sub 18}, C{sub 60}F{sub 36} and C{sub 60}F{sub 48} as transfer dopants on hydrogenated diamond has been performed. For C{sub 60}, the doping mechanism is more accurately described as a charge exchange in an extreme type II heterojunction. On the other hand a molecular surface acceptor model that takes the degeneracy of holes and the electric field caused by charge separation into account has been performed for the case of C{sub 60}F{sub 48} in excellent agreement with experimental results. Using in situ Hall Effect measurements of air, C{sub 60}, and C{sub 60}F{sub 48} induced conductivity the sign of the charge carriers that dominate the transport properties was determined. At ambient temperature the hole mobility {mu} as a function of the induced charge carrier density p between p=5.10{sup 10} cm{sup -2} and p=3.10{sup 13} cm{sup -2} was measured. A maximum of the mobility of 130-150 cm{sup 2}V{sup -1}s{sup -1} occurs for p=2.10{sup 1} cm{sup -2}. Temperature dependent Hall measurements between 77 and 350 K show a non-activated, constant charge carrier density on all examinated samples, independently of the kind of adsorbates. On the other hand, both the conductivity and the mobility exhibit temperature dependence, varying with the charge carrier concentration. An essential part of this thesis addressed the investigation and the improvement of the thermal stability of the fullerene layers. In order to achieve the covalent attachment of C{sub 60}F{sub 48} to a hydrogen terminated diamond surface a process for controlled partially hydrolisation was developed. Functionalization with hydroxyl groups could be achieved by using a remote water vapour plasma at room temperature for a few seconds as demonstrated by photoelectron spectroscopy. Prolonged water plasma exposure, however, as well as annealing at temperatures

  12. Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhe; Gao, Feng; Greenham, Neil C.; McNeill, Christopher R. [Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge, CB3 0HE (United Kingdom)

    2011-04-22

    We utilize transient techniques to directly compare the operation of polymer/fullerene, polymer/nanocrystal, and polymer/polymer bulk heterojunction solar cells. For all devices, poly(3-hexylthiophene) (P3HT) is used as the electron donating polymer, in combination with either the fullerene derivative phenyl-C{sub 61}-butyric acid methyl ester (PCBM) in polymer/fullerene cells, CdSe nanoparticles in polymer/nanocrystal cells, or the polyfluorene copolymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2,2-diyl) (F8TBT) in polymer/polymer cells. Transient photocurrent and photovoltage measurements are used to probe the dynamics of charge-separated carriers, with vastly different dynamic behavior observed for polymer/fullerene, polymer/polymer, and polymer/nanocrystal devices on the microsecond to millisecond timescale. Furthermore, by employing transient photocurrent analysis with different applied voltages we are also able to probe the dynamics behavior of these cells from short circuit to open circuit. P3HT/F8TBT and P3HT/CdSe devices are characterized by poor charge extraction of the long-lived carriers attributed to charge trapping. P3HT/PCBM devices, in contrast, show relatively trap-free operation with the variation in the photocurrent decay kinetics with applied bias at low intensity, consistent with the drift of free charges under a uniform electric field. Under solar conditions at the maximum power point, we see direct evidence of bimolecular recombination in the P3HT/PCBM device competing with charge extraction. Transient photovoltage measurements reveal that, at open circuit, photogenerated charges have similar lifetimes in all device types, and hence, the extraction of these long-lived charges is a limiting process in polymer/nanocrystal and polymer/polymer devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  14. On the electronic structure of fullerene anions

    Energy Technology Data Exchange (ETDEWEB)

    Bergomi, L.; Jolicoeur, T. (CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1994-02-03

    The authors study the electronic states of isolated fullerene anions C[sub 60][sup n-] (1 [<=] n [<=] 6) taking into account the effective interaction between electrons due to exchange of intramolecular phonons. If the vibronic coupling is strong enough such an effect may overwhelm Hund's rule and lead to an ordering of levels that can be interpreted as on-ball pairing, in a manner similar to the pairing in atomic nuclei. The authors suggest that such effects may be sought in solutions of fulleride ions and discuss recent experimental results.

  15. Ab initio description of photoabsorption and electron transfer in a doubly-linked porphyrin-fullerene dyad.

    Science.gov (United States)

    Cramariuc, Oana; Hukka, Terttu I; Rantala, Tapio T; Lemmetyinen, Helge

    2009-06-01

    Structure, photoabsorption and excited states of two representative conformations obtained from molecular dynamics (MD) simulations of a doubly-linked porphyrin-fullerene dyad DHD6ee are studied by using both DFT and wavefunction based methods. Charge transfer from the donor (porphyrin) to the acceptor (fullerene) and the relaxation of the excited state are of special interest. The results obtained with LDA, GGA, and hybrid functionals (SVWN, PBE, and B3LYP, respectively) are analyzed with emphasis on the performance of used functionals as well as from the point of view of their comparison with wavefunction based methods (CCS, CIS(D), and CC2). Characteristics of the MD structures are retained in DFT optimization. The relative orientation of porphyrin and fullerene is significantly influencing the MO energies, the charge transfer (CT) in the ground state of the dyad and the excitation of ground state CT complex (g-CTC). At the same time, the excitation to the locally excited state of porphyrin is only little influenced by the orientation or cc distance. TD-DFT underestimates the excitation energy of the CT state, however for some cases (with relatively short donor-acceptor separations), the use of a hybrid functional like B3LYP alleviates the problem. Wavefunction based methods and CC2 in particular appear to overestimate the CT excitation energies but the inclusion of proper solvation models can significantly improve the results.

  16. Optical evidence for chemical interaction of the polyaniline/fullerene composites with N-methyl-2-pyrrolidinone

    Science.gov (United States)

    Baibarac, M.; Baltog, I.; Daescu, M.; Lefrant, S.; Chirita, P.

    2016-12-01

    Surface enhanced Raman scattering (SERS) spectroscopic studies reveal a particular chemical interaction of the polyaniline/fullerene (PANI/C60) composite with N-methyl-2-pyrrolidinone (NMP). The chemical polymerization of aniline in the presence of sulfuric acid, potassium dichromate and fullerene has been used for the preparation of the PANI/C60 composite. The polymerization reaction involves a doping of PANI with C60 anion radicals. The interaction of the composite with NMP leads to a de-doping of PANI that involves a transformation of leucoemeraldine salt (LS) repeating units into leucoemeraldine base (LB). Additionally, a gradual increasing in the intensity of the Raman line at 1452 cm-1 associated to the Ag(2) pentagonal pinch mode of fullerene and a decrease in the intensity of the Raman lines of PANI are reported. This change arises from the formation of a charge-transfer complex C60-NMP. The subsequent chemical treatment of PANI-LB with FeCl3 leads to the formation PANI-emeraldine salt. An inhibition of the transformation of PANI doped with C60 anion radicals into a PANI-LB and the C60-NMP charge transfer complex in the presence of CdS particles dispersed in NMP is demonstrated by SERS spectroscopy.

  17. The Role of Fullerene Mixing Behavior in the Performance of Organic Rhotovoltaics: PCBM in Low-Bandgap Polymers.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huipeng [ORNL; Peet, Jeff [Konarka Technologies; Hu, Sheng [ORNL; Azoulay, Jason [University of California, Santa Barbara; Bazan, Guillermo [University of California, Santa Barbara; Dadmun, Mark D [ORNL

    2014-01-01

    This manuscript reports the mixing behavior, interdiffusion, and depth profile of 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6,6]C 61 (PCBM):low-bandgap (LBG) polymer thin fi lms that are formed by thermally annealing initial bilayers. The extent of mixing of PCBM is higher in polymers that include the 2,1,3-benzothiadiazole (BT) unit than in polymers that incorporate the 2,1,3-benzooxadiazole (BO) unit. This difference is ascribed to the enhanced mixing behavior of PCBM with the benzothiadiazole functionality than with benzooxadiazole functionality, which is attributed to preferred intermolecular interactions. The increased polymer/fullerene mixing is found to be crucial for optimal device performance. A decrease of polymer/fullerene mixing reduces the donor/acceptor interface, which lowers the probability of exciton dissociation and charge generation. Moreover, low PCBM mixing provides limited pathways for electron transport out of a miscible region, due to long distances between adjacent PCBM in such a miscible phase. This inhibits electron transport and increases the recombination of free charge carriers, resulting in a decrease in short circuit current and device performance. These results further exemplify the importance of the thermodynamic mixing behavior of the polymer:fullerene pair in designing next-generation conjugated polymers for organic photovoltaic (OPV) applications, as this controls the fi nal morphology of the OPV active layer.

  18. From astrophysics to mesoscopic physics: a sightseeing tour in the world of clusters and fullerenes

    Science.gov (United States)

    Rosen, Arne; Ostling, Daniel; Apell, P.; Tomanek, D.

    1996-12-01

    The discovery of the fullerenes in 1985 by Kroto, Heath, O'Brien, Curl and Smalley and the development of a method for production of macroscopic amounts in 1990 by Kraetschmer, Lamb, Fostiropoulos and Huffman opened a new area of carbon research with possible production of new materials with unique properties. The field has developed further later on with discoveries of nanotubes, metal filled nanotubes, carbon onions and more recently metal covered fullerenes. All these new discoveries show how cluster science opens approaches to the area of meososcopic physics. The general trend is here in the direction from small to large contrary to the general trend of modern meososcopic physics or micro-electronics where the movement is from large to small. It is especially fascinating how the whole area of fullerene research was initiated by problems in astrophysics. Originally Kraetschmer and Huffman had the intention to explain an observed strong extinction form interstellar dust and produced in experiments special carbon soot with a characteristics optical absorption known as 'the camel hump smoke'. This paper gives a short overview of some of our more recent theoretical work of the electronic properties of C60, metal covered C60 and nanotubes. In addition some results are also presented of optical properties of metal covered C60 as a function of metal coverage.

  19. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.

    Science.gov (United States)

    Fujitani, Yuji; Kobayashi, Takahiro; Arashidani, Keiichi; Kunugita, Naoki; Suemura, Kouji

    2008-06-01

    Assessment of human exposure is important for the elucidation of potential health risks. However, there is little information available on particle number concentrations and number size distributions, including those of nanoparticles, in the working environments of factories producing engineered nanomaterials. The authors used a scanning mobility particle sizer and an optical particle counter to measure the particle number size distributions of particles ranging in diameter (D(p)) from 10 nm to >5000 nm in a fullerene factory and used scanning electron microscopy to examine the morphology of the particles. Comparisons of particle size distributions and morphology during non-work periods, during work periods, during an agitation process, and in the nearby outdoor air were conducted to identify the sources of the particles and to determine their physical properties. A modal diameter of 25 nm was found in the working area during the non-work period; this result was probably influenced by ingress of outdoor air. During the removal of fullerenes from a storage tank for bagging and/or weighing, the particle number concentration at D(p)1000 nm was greater during the non-work period. When a vacuum cleaner was in use, the particle number concentration at D(p)1000 nm was no greater. Scanning electron microscopy revealed that the coarse particles emitted during bagging and/or weighing were aggregates/agglomerates of fullerenes; although origin of particles with D(p)<50 nm is unclear.

  20. Inhibition of DNA restrictive endonucleases by aqueous nanoparticle suspension of methanophosphonate fullerene derivatives and its mechanisms

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Aqueous nanoparticle suspension of fullerene and its derivatives are currently attracting much attention. To determine the effects of aqueous nanoparticle suspension of a mono-methanophosphonate fullerene and bis-methanophosphonate fullerene (denoted as n-MMPF and n-BMPF, respectively) on the activities of DNA restrictive endonucleases, plasmid pEGFP-N1 was cleaved at a single but differently restrictive site by EcoR I, BamH I, and isozymes Cfr9 I and Xma I, respectively. Both n-MMPF and n-BMPF inhibited the activity of EcoR I, while n-BMPF exhibited stronger inhibition than n-MMPF. Addition of n-BMPF into reaction mixtures inhibited the activities of all the four enzymes, and IC50 values for EcoR I, BamH I, Cfr9 I and Xma I were 4.3, >30, 11.7 and 8.3 μmol/L, respectively. When EcoR I was completely inhibited by n-BMPF, addition of excess amounts of pEGFP-N1 could not produce the product linear plasmid; however, increase of EcoR I amounts antagonized EcoR I inhibition of n-BMPF. Two scavengers of reactive oxygen species (ROS), mannitol and sodium azide at the concentrations of 2-10 mmol/L, did not reverse inhibition of n-BMPF, implying that this inhibition probably is not correlated to ROS. These results suggested that aqueous nano-fullerenes might act as inhibitors of DNA restrictive endonucleases.

  1. The Role of Super-Atom Molecular Orbitals in Doped Fullerenes in a Femtosecond Intense Laser Field.

    Science.gov (United States)

    Xiong, Hui; Mignolet, Benoit; Fang, Li; Osipov, Timur; Wolf, Thomas J A; Sistrunk, Emily; Gühr, Markus; Remacle, Francoise; Berrah, Nora

    2017-12-01

    The interaction of gas phase endohedral fullerene Ho3N@C80 with intense (0.1-5 × 10(14) W/cm(2)), short (30 fs), 800 nm laser pulses was investigated. The power law dependence of Ho3N@C80(q+), q = 1-2, was found to be different from that of C60. Time-dependent density functional theory computations revealed different light-induced ionization mechanisms. Unlike in C60, in doped fullerenes, the breaking of the cage spherical symmetry makes super atomic molecular orbital (SAMO) states optically active. Theoretical calculations suggest that the fast ionization of the SAMO states in Ho3N@C80 is responsible for the n = 3 power law for singly charged parent molecules at intensities lower than 1.2 × 10(14) W/cm(2).

  2. Photoinduced polarons in polymers. Time-resolved ESR analysis of polaron pairs in polymer:fullerene blends

    CERN Document Server

    Shushin, A I

    2016-01-01

    The work concerns the analysis of experimental time-resolved ESR spectra in photoexcited polymer:fullerene blend, consisting of poly(3-hexilthiophene) and fullerene [6,6]-phenyl C_{61} -butyric acid methyl ester (at low temperature T = 100 K). The spectra are assumed to be determined by spin-coherent pairs of charged polarons P^{+} and P^{-} generated in the singlet state. The analysis is made within simple model of a set of first order processes, in which P^{+}P$^{-}-pair spin evolution is described by the stochastic Liouville equation, allowing for fairly accurate description of experimental results. Simple analytical interpretation of obtained numerical results demonstrates that trESR spectra can be represented as a superposition of antiphase and CIDEP contributions together with the conventional thermal one. These contributions are shown to change their signs with the increase of time in agreement with experimental observations.

  3. Beyond Fullerenes: Designing Alternative Molecular Electron Acceptors for Solution-Processable Bulk Heterojunction Organic Photovoltaics.

    Science.gov (United States)

    Sauvé, Geneviève; Fernando, Roshan

    2015-09-17

    Organic photovoltaics (OPVs) are promising candidates for providing a low cost, widespread energy source by converting sunlight into electricity. Solution-processable active layers have predominantly consisted of a conjugated polymer donor blended with a fullerene derivative as the acceptor. Although fullerene derivatives have been the acceptor of choice, they have drawbacks such as weak visible light absorption and poor energy tuning that limit overall efficiencies. This has recently fueled new research to explore alternative acceptors that would overcome those limitations. During this exploration, one question arises: what are the important design principles for developing nonfullerene acceptors? It is generally accepted that acceptors should have high electron affinity, electron mobility, and absorption coefficient in the visible and near-IR region of the spectra. In this Perspective, we argue that alternative molecular acceptors, when blended with a conjugated polymer donor, should also have large nonplanar structures to promote nanoscale phase separation, charge separation and charge transport in blend films. Additionally, new material design should address the low dielectric constant of organic semiconductors that have so far limited their widespread application.

  4. Local Imaging of Optoelectronic Properties and Film Degradation in Polymer/Fullerene Solar Cells with Electrostatic Force Microscopy

    Science.gov (United States)

    Cox, Phillip Alexander

    With power conversion efficiencies on the rise, organic photovoltaics (OPVs) hold promise as a next-generation thin-film solar technology. However, both device performance and stability are inextricably linked to local film structure. Methods capable of probing nanoscale electronic properties as a function of film structure are thus a crucial component of the rational design of efficient and robust devices. This dissertation describes the use of three scanning probe methods for studying local charge generation and photodegradation in polymer/fullerene solar cells. First, we show that time-resolved electrostatic force microscopy (trEFM) is capable of resolving local photocurrent from sub-bandgap excitation down to attoampere level currents, a result unattainable by traditional contact-mode methods. We find that the local charging rates measured with trEFM are proportional to external quantum efficiency (EQE) measurements made on completed devices, making trEFM images equivalent to local EQE maps across the entire solar spectrum. For both phase-segregated and well-mixed MDMO-PPV:PCBM film morphologies, we show that the local distribution of photocurrent is invariant to excitation wavelength, providing local evidence for the controversial result that the probability of generating separated charge carriers does not depend on whether excitons are formed at the singlet state or charge transfer state. Next, we describe how local dissipation imaging can be performed with commercially-available frequency-modulated electrostatic force microscopy (FM-EFM) and show that dissipation maps are highly sensitive to photo-oxidative effects in organic semiconductors. We show that photo-oxidation induced changes in cantilever energy dissipation are proportional to device performance losses. We further develop dissipation imaging by implementing ringdown imaging, which directly measures the quality factor of the cantilever, enabling quantitative dissipation mapping. Using organic

  5. Spatial profiles of electron density, electron temperature, average ionic charge, and EUV emission of laser-produced Sn plasmas for EUV lithography

    Science.gov (United States)

    Sato, Yuta; Tomita, Kentaro; Tsukiyama, Syoichi; Eguchi, Toshiaki; Uchino, Kiichiro; Kouge, Kouichiro; Tomuro, Hiroaki; Yanagida, Tatsuya; Wada, Yasunori; Kunishima, Masahito; Kodama, Takeshi; Mizoguchi, Hakaru

    2017-03-01

    Spatial profiles of the electron density (n e), electron temperature (T e), and average ionic charge (Z) of laser-produced Sn plasmas for EUV lithography, whose conversion efficiency (CE) is sufficiently high for practical use, were measured using a collective Thomson scattering (TS) technique. For plasma production, Sn droplets of 26 µm diameter were used as a fuel. First, a picosecond-pulsed laser was used to expand a Sn target. Next, a CO2 laser was used to generate plasmas. By changing the injection timing of the picosecond and CO2 lasers, three different types of plasmas were generated. The CEs of the three types of plasmas differed, and ranged from 2.8 to 4.0%. Regarding the different plasma conditions, the spatial profiles of n e, T e, and Z clearly differed. However, under all plasma conditions, intense EUV was only observed at a sufficiently high T e (> 25 eV) and in an adequate n e range [1024–(2 × 1025) m‑3]. These plasma parameters lie in the efficient-EUV light source range, as predicted by simulations.

  6. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at sNN=2.76 TeV

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cerny, K.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, S.; Zhu, B.; Zou, W.; Avila, C.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Dzelalija, M.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Karim, M.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.

    2013-01-01

    The anisotropy of the azimuthal distributions of charged particles produced in sNN=2.76 TeV PbPb collisions is studied with the CMS experiment at the LHC. The elliptic anisotropy parameter, v2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. The anisotropy is presented as a function of transverse momentum (pT), pseudorapidity (η) over a broad kinematic range, 0.3

  7. Fullerenes: prospects of using in medicine, biology and ecology

    Directory of Open Access Journals (Sweden)

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  8. Continuum simulations of water flow past fullerene molecules

    Science.gov (United States)

    Popadić, A.; Praprotnik, M.; Koumoutsakos, P.; Walther, J. H.

    2015-09-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  9. The planimetric unfold method of fullerene cage structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Two kinds of planimetric diagrams, which consist of the boat form F6 and F5, the storm petrel form F6 and F5, respectively, were proposed to express the geometric structure of fullerene cage in this study. There are two chief advantages using the diagrams: (ⅰ) the spatial symmetrical characteristic of fullerene cage is not destroyed; (ⅱ) the coordination forms of F5 and F6 in the structure can be clearly expressed. This work has laid the foundation for studying the structural geometry of fullerene cage and its quantum chemistry and property.

  10. Superconductivity in alkali-doped fullerene nanowhiskers

    Science.gov (United States)

    Takeya, Hiroyuki; Konno, Toshio; Hirata, Chika; Wakahara, Takatsugu; Miyazawa, Kun'ichi; Yamaguchi, Takahide; Tanaka, Masashi; Takano, Yoshihiko

    2016-09-01

    Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A  =  K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

  11. Dispersive Non-Geminate Recombination in an Amorphous Polymer:Fullerene Blend

    Science.gov (United States)

    Kurpiers, Jona; Neher, Dieter

    2016-05-01

    Recombination of free charge is a key process limiting the performance of solar cells. For low mobility materials, such as organic semiconductors, the kinetics of non-geminate recombination (NGR) is strongly linked to the motion of charges. As these materials possess significant disorder, thermalization of photogenerated carriers in the inhomogeneously broadened density of state distribution is an unavoidable process. Despite its general importance, knowledge about the kinetics of NGR in complete organic solar cells is rather limited. We employ time delayed collection field (TDCF) experiments to study the recombination of photogenerated charge in the high-performance polymer:fullerene blend PCDTBT:PCBM. NGR in the bulk of this amorphous blend is shown to be highly dispersive, with a continuous reduction of the recombination coefficient throughout the entire time scale, until all charge carriers have either been extracted or recombined. Rapid, contact-mediated recombination is identified as an additional loss channel, which, if not properly taken into account, would erroneously suggest a pronounced field dependence of charge generation. These findings are in stark contrast to the results of TDCF experiments on photovoltaic devices made from ordered blends, such as P3HT:PCBM, where non-dispersive recombination was proven to dominate the charge carrier dynamics under application relevant conditions.

  12. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  13. The role of fullerene shell upon stuffed atom polarization potential

    CERN Document Server

    Amusia, M Ya

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Neon and Argon endohedrals polarization potential. As a result, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential.

  14. Water clusters confined in icosahedral fullerene cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Rojas, J., E-mail: jhrojas@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Monteseguro, V. [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Breton, J., E-mail: jbreton@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain); Gomez Llorente, J.M., E-mail: jmgomez@ull.es [Departamento de F Latin-Small-Letter-Dotless-I Acute-Accent sica Fundamental II and IUdEA, Universidad de La Laguna, 38205 Tenerife (Spain)

    2012-05-03

    Graphical abstract: Black-Square Display Omitted Highlights: Black-Right-Pointing-Pointer We model the interaction energy of water clusters confined in fullerene cavities. Black-Right-Pointing-Pointer C{sub 60} and C{sub 180} are chosen as icosahedral cavities. Black-Right-Pointing-Pointer The rigid TIP4P and flexible q-TIP4P/F water-water potentials are used. Black-Right-Pointing-Pointer While C{sub 60} can confine exothermically only one water molecule, C{sub 180} does up to 17. Black-Right-Pointing-Pointer New global minimum structures are reported for water clusters inside C{sub 180}. - Abstract: Likely candidates for the global energy minima of endohedral (H{sub 2}O){sub N}-C{sub 60} and (H{sub 2}O){sub N}-C{sub 180}, and exohedral (H{sub 2}O){sub N}C{sub 180} water-fullerene clusters with N Less-Than-Or-Slanted-Equal-To 20, are found using basin-hopping global optimization. The potential energy surfaces are constructed using both the rigid TIP4P and the flexible q-TIP4P/F potentials to model the water-water interaction, together with a Lennard-Jones potential for the water-fullerene interaction. In agreement with previous ab initio studies, we find that the small C{sub 60} cavity is able to encapsulate exothermically only one water molecule. On the other hand, the larger C{sub 180} cavity can encapsulate up to 17 water molecules exothermically. This threshold value is higher than that reported in a previous ab initio study (N Less-Than-Or-Slanted-Equal-To 12). New confined water cluster structures are found. One which is particularly interesting is the structure of (H{sub 2}O){sub 14}-C{sub 180}, with the water molecules forming an internal cage in which six oxygen atoms are located at the vertices of an almost regular octahedron and the eight remaining ones lie on top of the octahedron faces. For N Greater-Than-Or-Slanted-Equal-To 15 one water molecule is always present at the center of the water cage, which is distorted to accommodate the extra molecules.

  15. Biomedical applications of functionalized fullerene-based nanomaterials

    OpenAIRE

    Ranga Partha; Conyers, Jodie L.

    2009-01-01

    Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullere...

  16. Quenching excited triplet C{sub 60} fullerene by tetracyanoethylene in benzonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochenko, V.A.; Denisov, N.N.; Rubtsov, I.V.; Lobach, A.S.; Moravsky, A.P. [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)

    1994-01-01

    The main photophysical properties of C{sub 60} fullerene: The absorption spectra of excited singlet C{sub 60}, the inter-combinational conversion time, the quantum yield of triplet C{sub 60}, the triplet-triplet absorption spectra, and the channels and rate constants of the deactivation of triplet C{sub 60} have been established. The photochemical properties of C{sub 60} fullerene have been investigated to a lesser degree. C{sub 60} is known to be readily reduced (E{sub 1/2} = {minus}0.4 in relation to Ag/Ag{sup +}), in particular, photochemically. For example, photoexcitation of charge-transfer complexes of C{sub 60} with amines gives the radical anion C{sup {minus}}{sub 60} which is also formed in reactions of photoexcited C{sub 60} fullerene. The formation of the radical cation C{sup +}{sub 60} under the action of light has been detected in the reaction with colloidal TiO{sub 2}. The radical ion C{sup +}{sub 60} has been obtained in a homogeneous photochemical process: the reaction of unexcited C{sub 60} with excited singlet N-methylacridinium hexafluorophosphate or with the biphenyl radical cation generated in the reaction with excited singlet N-methylacridinium hexafluorophosphate. The formation of C{sup +}{sub 60} with an electron acceptor in a homogeneous process has not so far been observed. The purpose of this work has been to study the quenching of triplet {sup 3}C{sub 60} with an electron acceptor, tetracyanoethylene (TCNE), which is known to oxidize unsaturated or aromatic hydrocarbons in photochemical reactions.

  17. Hierarchically organized soft-materials based on fullerenes

    Science.gov (United States)

    Nakanishi, Takashi

    2009-04-01

    Simple chemical modifications of fullerene (C60) with long aliphatic chains provide novel type amphiphilic molecules playing in organic solvents due to the two different intermolecular interactions, namely π-π on C60 and van der Waals interactions on aliphatic chain moieties, respectively, and open a door developing supramolecular soft-materials having hierarchically organized architectures, various morphologies and functions based on fullerenes. By tuning the length and number of aliphatic chains on the derivatives as well as experimental conditions such as solvents, temperature, substrates for preparation of the assemblies, the assembled fullerenes showed various faces such as creating of many unique-shaped objects with controlled their dimensionality. For instance, nanowires and thin disks with single bilayer thickness in nanometer size, globular, fibrous, conical objects in mesoscopic (sub-micrometer) scale and flower-shaped and direction-controlled spiral objects in micrometer scale are obtained. As bulk states, thermotropic liquid crystals and room temperature (isotropic) liquid fullerenes are interestingly prepared from this molecular designs and showed not only their fluid natures and comparably high carrier mobility as fullerene-based organic-semiconductor phenomena. In addition, nano-carbon superhydrophobic surface with fractal morphology of the two-tier roughness on a nano- and microscopic scale was created from one of the supramolecular objects. The all of hierarchical supramolecular assemblies describing in this review is derived from fine-tuning intermolecular interactions of fullerene derivatives bearing long aliphatic chains.

  18. Polymer fullerene solution phase behaviour and film formation pathways.

    Science.gov (United States)

    Dattani, Rajeev; Cabral, João T

    2015-04-28

    We report the phase behaviour of polymer/fullerene/solvent ternary mixtures and its consequence for the morphology of the resulting composite thin films. We focus particularly on solutions of polystyrene (PS), C60 fullerene and toluene, which are examined by static and dynamic light scattering, and films obtained from various solution ages and thermal annealing conditions, using atomic force and light microscopy. Unexpectedly, the solution phase behaviour below the polymer overlap concentration, c*, is found to be described by a simple excluded volume argument (occupied by the polymer chains) and the neat C60/solvent miscibility. Scaling consistent with full exclusion is found when the miscibility of the fullerene in the solvent is much lower than that of the polymer, giving way to partial exclusion with more soluble fullerenes (phenyl-C61-butyric acid methyl ester, PCBM) and a less asymmetric solvent (chlorobenzene), employed in photovoltaic devices. Spun cast and drop cast films were prepared from PS/C60/toluene solutions across the phase diagram to yield an identical PS/C60 composition and film thickness, resulting in qualitatively different morphologies in agreement with our measured solution phase boundaries. Our findings are relevant to the solution processing of polymer/fullerene composites (including organic photovoltaic devices), which generally require effective solubilisation of fullerene derivatives and polymer pairs in this concentration range, and the design of well-defined thin film morphologies.

  19. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Directory of Open Access Journals (Sweden)

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  20. Histopathology of fathead minnow (Pimephales promelas) exposed to hydroxylated fullerenes.

    Science.gov (United States)

    Jovanović, Boris; Whitley, Elizabeth M; Palić, Dušan

    2014-11-01

    Hydroxylated fullerenes are reported to be very strong antioxidants, acting to quench reactive oxygen species, thus having strong potential for important and widespread applications in innovative therapies for a variety of disease processes. However, their potential for toxicological side effects is still largely controversial and unknown. Effects of hydroxylated fullerenes C60(OH)24 on the fathead minnow (Pimephales promelas) were investigated microscopically after a 72-hour (acute) exposure by intraperitoneal injection of 20 ppm of hydroxylated fullerenes per gram of body mass. Cumulative, semi-quantitative histopathologic evaluation of brain, liver, anterior kidney, posterior kidney, skin, coelom, gills and the vestibuloauditory system revealed significant differences between control and hydroxylated fullerene-treated fish. Fullerene-treated fish had much higher cumulative histopathology scores. Histopathologic changes included loss of cellularity in the interstitium of the kidney, a primary site of haematopoiesis in fish, and loss of intracytoplasmic glycogen in liver. In the coelom, variable numbers of leukocytes, including many macrophages and fewer heterophils and rodlet cells, were admixed with the nanomaterial. These findings raise concern about in vivo administration of hydroxylated fullerenes in experimental drugs and procedures in human medicine, and should be investigated in more detail.

  1. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    Science.gov (United States)

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  2. Binding of fullerenes to amyloid beta fibrils: size matters.

    Science.gov (United States)

    Huy, Pham Dinh Quoc; Li, Mai Suan

    2014-10-01

    Binding affinity of fullerenes C20, C36, C60, C70 and C84 for amyloid beta fibrils is studied by docking and all-atom molecular dynamics simulations with the Amber force field and water model TIP3P. Using the molecular mechanic-Poisson Boltzmann surface area method one can demonstrate that the binding free energy linearly decreases with the number of carbon atoms of fullerene, i.e. the larger is the fullerene size, the higher is the binding affinity. Overall, fullerenes bind to Aβ9-40 fibrils stronger than to Aβ17-42. The number of water molecules trapped in the interior of 12Aβ9-40 fibrils was found to be lower than inside pentamer 5Aβ17-42. C60 destroys Aβ17-42 fibril structure to a greater extent compared to other fullerenes. Our study revealed that the van der Waals interaction dominates over the electrostatic interaction and non-polar residues of amyloid beta peptides play the significant role in interaction with fullerenes providing novel insight into the development of drug candidates against Alzheimer's disease.

  3. Fullerene derivatives protect endothelial cells against NO-induced damage

    Energy Technology Data Exchange (ETDEWEB)

    Lao Fang; Han Dong; Qu Ying; Liu Ying; Zhao Yuliang; Chen Chunying [CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190 (China); Li Wei [CAS Key Laboratory for Nuclear Analytical Techniques, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: chenchy@nanoctr.cn

    2009-06-03

    Functional fullerene derivatives have been demonstrated with potent antioxidation properties. Nitric oxide (NO) is a free radical that plays a part in leading to brain damage when it is accumulated to a high concentration. The possible scavenging activity of NO by the hydroxylated fullerene derivative C{sub 60}(OH){sub 22} and malonic acid derivative C{sub 60}(C(COOH){sub 2}){sub 2} was investigated using primary rat brain cerebral microvessel endothelial cells (CMECs). Results demonstrate that sodium nitroprusside (SNP), used as an NO donor, caused a marked decrease in cell viability and an increase in apoptosis. However, fullerene derivatives can remarkably protect against the apoptosis induced by NO assault. In addition, fullerene derivatives can also prevent NO-induced depolymerization of cytoskeleton and damage of the nucleus and accelerate endothelial cell repair. Further investigation shows that the sudden increase of the intercellular reactive oxygen species (ROS) induced by NO was significantly attenuated by post-treatment with fullerene derivatives. Our results suggest that functional fullerene derivatives are potential applications for NO-related disorders.

  4. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Sabrina Pacor

    2015-01-01

    Full Text Available Two fullerene derivatives (fullerenes 1 and 2, bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  5. Effects of Two Fullerene Derivatives on Monocytes and Macrophages.

    Science.gov (United States)

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Lucafò, Marianna; Da Ros, Tatiana; Prato, Maurizio; Sava, Gianni

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells.

  6. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity.

    Science.gov (United States)

    Johnston, Helinor J; Hutchison, Gary R; Christensen, Frans M; Aschberger, Karin; Stone, Vicki

    2010-04-01

    This review provides a comprehensive critical review of the available literature purporting to assess the toxicity of carbon fullerenes. This is required as prior to the widespread utilization and production of fullerenes, it is necessary to consider the implications of exposure for human health. Traditionally, fullerenes are formed from 60 carbon atoms, arranged in a spherical cage-like structure. However, manipulation of surface chemistry and molecular makeup has created a diverse population of fullerenes, which exhibit drastically different behaviors. The cellular processes that underlie observed fullerene toxicity will be discussed and include oxidative, genotoxic, and cytotoxic responses. The antioxidant/cytoprotective properties of fullerenes (and the attributes responsible for driving these phenomena) have been considered and encourage their utilization within the treatment of oxidant-mediated disease. A number of studies have focused on improving the water solubility of fullerenes in order to enable their exploitation within biological systems. Manipulating fullerene water solubility has included the use of surface modifications, solvents, extended stirring, and mechanical processes. However, the ability of these processes to also impact on fullerene toxicity requires assessment, especially when considering the use of solvents, which particularly appear to enhance fullerene toxicity. A number of the discussed investigations were not conducted to reveal if fullerene behavior was due to their nanoparticle dimensions but instead addressed the biocompatibility and toxicity of fullerenes. The hazards to human health, associated with fullerene exposure, are uncertain at this time, and further investigations are required to decipher such effects before an effective risk assessment can be conducted.

  7. Towards a fullerene-based quantum computer

    CERN Document Server

    Benjamin, S C; Briggs, G A D; Britz, D A; Gunlycke, D; Jefferson, J; Jones, M A G; Khlobystov, A N; Leigh, D F; Lovett, B W; Lyon, S A; Morton, J J L; Porfyrakis, K; Sambrook, M R; Tyryshkin, A M; Ardavan, Arzhang; Benjamin, Simon C; Britz, David A; Gunlycke, Daniel; Jefferson, John; Jones, Mark A G; Khlobystov, Andrei N; Leigh, David F; Lovett, Brendon W; Morton, John J L; Porfyrakis, Kyriakos; Sambrook, Mark R; Tyryshkin, Alexei M

    2005-01-01

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realising such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input / output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.

  8. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh

    2016-07-15

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous increase in the variety of derivatives employed in these applications. Here, we use molecular dynamics (MD) simulations to examine the impact of going from mono-adducts to bis- and tris-adducts on the structural, cohesive, and packing characteristics of [6,6]-phenyl-C60-butyric acid methyl ester (PCBM) and indene-C60. The packing configurations obtained at the MD level then serve as input for density functional theory calculations that examine the solid-state energetic disorder (distribution of site energies) as a function of chemical substitution. The variations in structural and site-energy disorders reflect the fundamental materials differences among the derivatives and impact the performance of these materials in thin-film electronic devices.

  9. Towards a fullerene-based quantum computer

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, Simon C [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ardavan, Arzhang [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Briggs, G Andrew D [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Britz, David A [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Gunlycke, Daniel [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Jefferson, John [QinetiQ, St Andrews Road, Malvern, WR14 3PS (United Kingdom); Jones, Mark A G [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Leigh, David F [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lovett, Brendon W [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Khlobystov, Andrei N [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lyon, S A [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Morton, John J L [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Porfyrakis, Kyriakos [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Sambrook, Mark R [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Tyryshkin, Alexei M [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2006-05-31

    Molecular structures appear to be natural candidates for a quantum technology: individual atoms can support quantum superpositions for long periods, and such atoms can in principle be embedded in a permanent molecular scaffolding to form an array. This would be true nanotechnology, with dimensions of order of a nanometre. However, the challenges of realizing such a vision are immense. One must identify a suitable elementary unit and demonstrate its merits for qubit storage and manipulation, including input/output. These units must then be formed into large arrays corresponding to an functional quantum architecture, including a mechanism for gate operations. Here we report our efforts, both experimental and theoretical, to create such a technology based on endohedral fullerenes or 'buckyballs'. We describe our successes with respect to these criteria, along with the obstacles we are currently facing and the questions that remain to be addressed.

  10. Charge-transfer reactions between C{sub 60} and hydrophilic solutes

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrijevic, N.M.; Nedeljkovic, J.M.; Saponjic, Z.V. [Institute for Nuclear Sciences ``Vinca``, Belgrade (Yugoslavia)

    1998-10-01

    Two different procedures for dissolving fullerene molecule C{sub 60} into aqueous solutions have been developed. Embedding C{sub 60} clusters into a water-soluble host molecule of {gamma}-cyclodextrin resulted in relatively low concentration of C{sub 60} (5-10 {mu}M). Prepare of a stable ionic surfactant/water/oil microemulsion provided a method for dissolving C{sub 60} in relatively high concentrations (1 mM). In both cases charge-transfer reactions between hydrophobic molecule of C{sub 60} and hydrophilic solutes were examined. Anion radical C{sub 60}{sup -} was detected in reaction with radiolytically produced radicals (e{sub aq}{sup -}, (CH{sub 3}){sub 2}COH or MV{sup +}), and in reaction with excess electrons stored onto nanometer-sized metal (Ag) or quantized semiconductor (TiO{sub 2}) particles. (orig.) 33 refs.

  11. Combined Computational Approach Based on Density Functional Theory and Artificial Neural Networks for Predicting The Solubility Parameters of Fullerenes.

    Science.gov (United States)

    Perea, J Darío; Langner, Stefan; Salvador, Michael; Kontos, Janos; Jarvas, Gabor; Winkler, Florian; Machui, Florian; Görling, Andreas; Dallos, Andras; Ameri, Tayebeh; Brabec, Christoph J

    2016-05-19

    The solubility of organic semiconductors in environmentally benign solvents is an important prerequisite for the widespread adoption of organic electronic appliances. Solubility can be determined by considering the cohesive forces in a liquid via Hansen solubility parameters (HSP). We report a numerical approach to determine the HSP of fullerenes using a mathematical tool based on artificial neural networks (ANN). ANN transforms the molecular surface charge density distribution (σ-profile) as determined by density functional theory (DFT) calculations within the framework of a continuum solvation model into solubility parameters. We validate our model with experimentally determined HSP of the fullerenes C60, PC61BM, bisPC61BM, ICMA, ICBA, and PC71BM and through comparison with previously reported molecular dynamics calculations. Most excitingly, the ANN is able to correctly predict the dispersive contributions to the solubility parameters of the fullerenes although no explicit information on the van der Waals forces is present in the σ-profile. The presented theoretical DFT calculation in combination with the ANN mathematical tool can be easily extended to other π-conjugated, electronic material classes and offers a fast and reliable toolbox for future pathways that may include the design of green ink formulations for solution-processed optoelectronic devices.

  12. Spin signatures of photogenerated radical anions in polymer-[70]fullerene bulk-heterojunctions : high-frequency pulsed EPR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, O. G.; Filippone, S.; Martin, N.; Sperlich, A.; Deibel, C.; Dyakonov, V. (Chemical Sciences and Engineering Division); (Univ. Complutense de Madrid); (Univ. of Wurzburg)

    2010-04-14

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup -} in PHT-C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  13. Spin Signatures of Photogenerated Radical Anions in Polymer-[70]Fullerene Bulk Heterojunctions: High Frequency Pulsed EPR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, Oleg G. [Argonne National Lab. (ANL), Argonne, IL (United States); Filippone, Salvatore [Universidad Complutense de Madrid (Spain); Martin, C. R. [Universidad Complutense de Madrid (Spain); Sperlich, Andreas [Julius-Maximilians Univ. of Wurzburg (Germany); Deibel, Carsten [Julius-Maximilians Univ. of Wurzburg (Germany); Dyakonov, Vladimir [Julius-Maximilians Univ. of Wurzburg (Germany)

    2010-11-18

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C60-PCBM), and two different soluble C70-derivates: C70-PCBM and diphenylmethano[70]fullerene oligoether (C70-DPM-OE). The first experimental identification of the negative polaron localized on the C70-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P+ and P- in PHT-C70 bulk heterojunctions. Comparing signals from C70-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C70 molecule.

  14. Spin signatures of photogenerated radical anions in polymer-[70]fullerene bulk heterojunctions: high frequency pulsed EPR spectroscopy.

    Science.gov (United States)

    Poluektov, Oleg G; Filippone, Salvatore; Martín, Nazario; Sperlich, Andreas; Deibel, Carsten; Dyakonov, Vladimir

    2010-11-18

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C(60)-PCBM), and two different soluble C(70)-derivates: C(70)-PCBM and diphenylmethano[70]fullerene oligoether (C(70)-DPM-OE). The first experimental identification of the negative polaron localized on the C(70)-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P(+) and P(-) in PHT-C(70) bulk heterojunctions. Comparing signals from C(70)-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C(70) molecule.

  15. Spin signatures of photogenerated radical anions in polymer-[70] fullerene bulk-heterojunctions : high-frequency pulsed EPR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Poluektov, O. G.; Filippone, S.; Martin, N.; Sperlich, A.; Deibel, C.; Dyakonov, V. (Chemical Sciences and Engineering Division); (Univ. Complutense de Madrid); (Univ. of Wurzburg)

    2010-01-01

    Charged polarons in thin films of polymer-fullerene composites are investigated by light-induced electron paramagnetic resonance (EPR) at 9.5 GHz (X-band) and 130 GHz (D-band). The materials studied were poly(3-hexylthiophene) (PHT), [6,6]-phenyl-C61-butyric acid methyl ester (C{sub 60}-PCBM), and two different soluble C{sub 70}-derivates: C{sub 70}-PCBM and diphenylmethano[70]fullerene oligoether (C{sub 70}-DPM-OE). The first experimental identification of the negative polaron localized on the C{sub 70}-cage in polymer-fullerene bulk heterojunctions has been obtained. When recorded at conventional X-band EPR, this signal is overlapping with the signal of the positive polaron, which does not allow for its direct experimental identification. Owing to the superior spectral resolution of the high frequency D-band EPR, we were able to separate light-induced signals from P{sup +} and P{sup -} in PHT-C{sub 70} bulk heterojunctions. Comparing signals from C{sub 70}-derivatives with different side-chains, we have obtained experimental proof that the polaron is localized on the cage of the C{sub 70} molecule.

  16. Understanding the electronic structure of CdSe quantum dot-fullerene (C60) hybrid nanostructure for photovoltaic applications

    Science.gov (United States)

    Sarkar, Sunandan; Rajbanshi, Biplab; Sarkar, Pranab

    2014-09-01

    By using the density-functional tight binding method, we studied the electronic structure of CdSe quantum dot(QD)-buckminsterfullerene (C60) hybrid systems as a function of both the size of the QD and concentration of the fullerene molecule. Our calculation reveals that the lowest unoccupied molecular orbital energy level of the hybrid CdSeQD-C60 systems lies on the fullerene moiety, whereas the highest occupied molecular orbital (HOMO) energy level lies either on the QD or the fullerene depending on size of the CdSe QD. We explored the possibility of engineering the energy level alignment by varying the size of the CdSe QD. With increase in size of the QD, the HOMO level is shifted upward and crosses the HOMO level of the C60-thiol molecule resulting transition from the type-I to type-II band energy alignment. The density of states and charge density plot support these types of band gap engineering of the CdSe-C60 hybrid systems. This type II band alignment indicates the possibility of application of this nanohybrid for photovoltaic purpose.

  17. Novel applications of functionalized carbon nanotubes and fullerenes

    Science.gov (United States)

    Hu, Shunfu

    Multi-walled carbon nanotubes (MWNTs) with their extraordinary properties are only realized if they are successfully de-bundled and dispersed in common solvents. In this study, a chemical hydrogenation process was developed and optimized to successfully de-bundle MWNTs producing hydrogenated MWNTs (H-MWNTs). Homogeneous dispersion was maintained for H-MWNTs even after 6 months. Amine functionalized MWNTs (NH-MWNTs) were also successfully synthesized and NH-MWNTs with maleic anhydride grafted polyethylene (PE-MAH) polymer composites achieved 33% improvement for tensile strength at 1wt% loading. Fullerenes were introduced to create polyethyleneimine (PEI)-C60 dendrimer structure. Such structure can be coated onto PE-MAH interdigitated tapes via layer by layer technique to generate strong bonding novel fasteners after curing. The novel fasteners can be potentially functionalized with quaternary ammonia as anti-microbial feature tapes. PEI-C60 dendrimer structures were also successfully deposited onto regular aluminum foils to replace traditional thermal evaporated aluminum as cathode for organic light-emitting diode (OLED) and organic photovoltaics (OPV). OLED and OPV devices were fabricated to show the proof of concept and survey experiment was performed to better understand this novel cathode technique. A true high rate manufacturing process could be applied for this novel technique with aluminum foil.

  18. Thermodynamic, kinetic and electronic structure aspects of a charge-transfer active bichromophoric organofullerene

    Indian Academy of Sciences (India)

    K Senthil Kumar; Archita Patnaik

    2013-03-01

    Our recent work on charge transfer in the electronically push-pull dimethylaminoazobenzene-fullerene C60 donor-bridge-acceptor dyad through orbital picture revealed charge displacement from the n(N=N) (non-bonding) and (N=N) type orbitals centred on the donor part to the purely fullerene centred LUMOs and (LUMO+n) orbitals, delocalized over the entire molecule. Consequently, this investigation centres around the kinetic and thermodynamic parameters involved in the solvent polarity dependent intramolecular photo-induced electron transfer processes in the dyad, indispensable for artificial photosynthetic systems. A quasi-reversible electron transfer pathway was elucidated with electrode-specific heterogeneous electron transfer rate constants.

  19. All-boron fullerene exhibits a strong affinity to inorganic anions

    Science.gov (United States)

    Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2017-03-01

    Experimentally observed all-boron fullerene, B-80, inspires systematic investigation of its physical chemical properties and search for possible applications. We hereby report density functional theory calculations to characterize interactions of B-80 with the selected imidazolium room-temperature ionic liquids (RTILs), dimethylimidazolium nitrate and dimethylimidazolium hexafluorophosphate. Whereas the imidazolium cation exhibits a rather poor affinity to B-80, the inorganic anions form polar covalent bonds with the boron atom occupying a central position within a B-6 hexagon. Attachment of the RTIL ion pairs leads to a significant alteration of the electronic spectra, charge density distribution, valence and conduction molecular orbitals. The total binding energies keeping the RTIL@B80 complexes together range 200-250 kcal mol-1, being higher than the energies of many interactions in chemistry. The observed phenomenon predicts an excellent solubility of B-80 in the considered RTILs, but may also reveal a poor stability of B-80 in the polar media. Our results motivate further efforts in studying the behavior of the all-boron fullerene in polar environments.

  20. Hetero Bis-Addition of Spiro-Acetalized or Cyclohexanone Ring to 58π Fullerene Impacts Solubility and Mobility Balance in Polymer Solar Cells.

    Science.gov (United States)

    Mikie, Tsubasa; Saeki, Akinori; Ikuma, Naohiko; Kokubo, Ken; Seki, Shu

    2015-06-17

    Fullerene bis-adducts are increasingly being studied to gain a high open circuit voltage (Voc) in bulk heterojunction organic photovoltaics (OPVs). We designed and synthesized homo and hetero bis-adduct [60]fullerenes by combining fused cyclohexanone or a five-membered spiro-acetalized unit (SAF5) with 1,2-dihydromethano (CH2), indene, or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These new eight 56π fullerenes showed a rational rise of the lowest unoccupied molecular orbital (LUMO). We perform a systematic study on the electrochemical property, solubility, morphology, and space-charge-limited current (SCLC) mobility. The best power conversion efficiency (PCE) of 4.43% (average, 4.36%) with the Voc of 0.80 V was obtained for poly(3-hexylthiophene) (P3HT) blended with SAF5/indene hetero bis-adduct, which is a marked advancement in PCE compared to the 0.9% of SAF5 monoadduct. More importantly, we elucidate an important role of mobility balance between hole and electron that correlates with the device PCEs. Besides, an empirical equation to extrapolate the solubilities of hetero bis-adducts is proposed on the basis of those of counter monoadducts. Our work offers a guide to mitigate barriers for exploring a large number of hetero bis-adduct fullerenes for efficient OPVs.

  1. Electronic structures of some of C84 fullerene isomers and the structures of their perfluoroalkyl derivatives

    Science.gov (United States)

    Kovalenko, V. I.; Tuktamysheva, R. A.; Khamatgalimov, A. R.

    2014-01-01

    The electronic structures of the pristine fullerene molecules have been shown for the first time to be is the most important factor affecting the distribution of addends in the addition reactions of perfluoroalkyl radicals RF to C84 fullerene, and most likely positions of addends on the fullerene core are hexagons with delocalized π-bonds.

  2. Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells.

    Science.gov (United States)

    Kim, Youngkyoo; Nelson, Jenny; Zhang, Tong; Cook, Steffan; Durrant, James R; Kim, Hwajeong; Park, Jiho; Shin, Minjung; Nam, Sungho; Heeney, Martin; McCulloch, Iain; Ha, Chang-Sik; Bradley, Donal D C

    2009-09-22

    We found that 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C(61) (PCBM) molecules make a distorted asymmetric body-centered cubic crystal nanostructure in the bulk heterojunction films of reigoregular poly(3-hexylthiophene) and PCBM. The wider angle of distortion in the PCBM nanocrystals was approximately 96 degrees , which can be assigned to the influence of the attached side group to the fullerene ball of PCBM to bestow solubility. Atom concentration analysis showed that after thermal annealing the PCBM nanocrystals do preferentially distribute above the layer of P3HT nanocrystals inside devices.

  3. Fullerene-oxygen-iodine laser (FOIL): physical principles

    Science.gov (United States)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-09-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  4. Fullerene oxidation and clustering in solution induced by light.

    Science.gov (United States)

    Dattani, Rajeev; Gibson, Kirsty F; Few, Sheridan; Borg, Aaron J; DiMaggio, Peter A; Nelson, Jenny; Kazarian, Sergei G; Cabral, João T

    2015-05-15

    We investigate the environmental stability of fullerene solutions by static and dynamic light scattering, FTIR, NMR and mass spectroscopies, and quantum chemical calculations. We find that visible light exposure of fullerene solutions in toluene, a good solvent, under ambient laboratory conditions results in C60 oxidation to form fullerene epoxides, and subsequently causes fullerene clustering in solution. The clusters grow with time, even in absence of further illumination, and can reach dimensions from ≈100 nm to the μm scale over ≈1 day. Static light scattering suggests that resulting aggregates are fractal, with a characteristic power law (d(f)) that increases from approximately 1.3 to 2.0 during light exposure. The clusters are bound by weak Coulombic interactions and are found to be reversible, disintegrating by mechanical agitation and thermal stress, and reforming over time. Our findings are relevant to the solution processing of composites and organic photovoltaics, whose reproducibility and performance requires control of fullerene solution stability under storage conditions.

  5. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  6. New concepts and applications in the macromolecular chemistry of fullerenes.

    Science.gov (United States)

    Giacalone, Francesco; Martín, Nazario

    2010-10-08

    A new classification on the different types of fullerene-containing polymers is presented according to their different properties and applications they exhibit in a variety of fields. Because of their interest and novelty, water-soluble and biodegradable C(60)-polymers are discussed first, followed by polyfullerene-based membranes where unprecedented supramolecular structures are presented. Next are compounds that involve hybrid materials formed from fullerenes and other components such as silica, DNA, and carbon nanotubes (CNTs) where the most recent advances have been achieved. A most relevant topic is still that of C(60)-based donor-acceptor (D-A) polymers. Since their application in photovoltaics D-A polymers are among the most realistic applications of fullerenes in the so-called molecular electronics. The most relevant aspects in these covalently connected fullerene/polymer hybrids as well as new concepts to improve energy conversion efficiencies are presented.The last topics disccused relate to supramolecular aspects that are in involved in C(60)-polymer systems and in the self-assembly of C(60)-macromolecular structures, which open a new scenario for organizing, by means of non-covalent interactions, new supramolecular structures at the nano- and micrometric scale, in which the combination of the hydrofobicity of fullerenes with the versatility of the noncovalent chemistry afford new and spectacular superstructures.

  7. Fullerene data mining using bibliometrics and database tomography

    Science.gov (United States)

    Kostoff; Braun; Schubert; Toothman; Humenik

    2000-01-01

    Database tomography (DT) is a textual database analysis system consisting of two major components: (1) algorithms for extracting multiword phrase frequencies and phrase proximities (physical closeness of the multiword technical phrases) from any type of large textual database, to augment (2) interpretative capabilities of the expert human analyst. DT was used to derive technical intelligence from a fullerenes database derived from the Science Citation Index and the Engineering Compendex. Phrase frequency analysis by the technical domain experts provided the pervasive technical themes of the fullerenes database, and phrase proximity analysis provided the relationships among the pervasive technical themes. Bibliometric analysis of the fullerenes literature supplemented the DT results with author/journal/institution publication and citation data. Comparisons of fullerenes results with past analyses of similarly structured near-earth space, chemistry, hypersonic/supersonic flow, aircraft, and ship hydrodynamics databases are made. One important finding is that many of the normalized bibliometric distribution functions are extremely consistent across these diverse technical domains and could reasonably be expected to apply to broader chemical topics than fullerenes that span multiple structural classes. Finally, lessons learned about integrating the technical domain experts with the data mining tools are presented.

  8. C60 fullerenes from combustion of common fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Andrea J., E-mail: ajtiwari@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States); Ashraf-Khorassani, Mehdi, E-mail: mashraf@vt.edu [Department of Chemistry, Virginia Tech, 480 Davidson Hall, 900 West Campus Drive, Virginia Tech, Blacksburg, VA 24061 (United States); Marr, Linsey C., E-mail: lmarr@vt.edu [Department of Civil & Environmental Engineering, Virginia Tech, 200 Patton Hall, 750 Drillfield Drive, Blacksburg, VA 24061 (United States)

    2016-03-15

    Releases of C{sub 60} fullerenes to the environment will increase with the growth of nanotechnology. Assessing the potential risks of manufactured C{sub 60} requires an understanding of how its prevalence in the environment compares to that of natural and incidental C{sub 60}. This work describes the characterization of incidental C{sub 60} present in aerosols generated by combustion of five common fuels: coal, firewood, diesel, gasoline, and propane. C{sub 60} was found in exhaust generated by all five fuels; the highest concentrations in terms of mass of C{sub 60} per mass of particulate matter were associated with diesel and coal. Individual aerosols from these combustion processes were examined by transmission electron microscopy. No relationship was found between C{sub 60} content and either the separation of graphitic layers (lamellae) within the particles, nor the curvature of those lamellae. Estimated global emissions of incidental C{sub 60} to the atmosphere from coal and diesel combustion range from 1.6 to 6.3 t yr{sup −1}, depending upon combustion conditions. These emissions may be similar in magnitude to the total amount of manufactured C{sub 60} produced on an annual basis. Consequent loading of incidental C{sub 60} to the environment may be several orders of magnitude higher than has previously been modeled for manufactured C{sub 60}. - Highlights: • Exhaust of common fuels (coal, diesel, etc.) analyzed via chromatography for C{sub 60.} • All five fuels tested produced C{sub 60} in aerosols in mass fractions up to several ppm. • Emissions of incidental C{sub 60} may be comparable to the total amount manufactured.

  9. Reduced working electrode based on fullerene C60 nanotubes-DNA: Characterization and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuzhi [Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 106, Nanjing Road, Qingdao 266071, Shandong (China); Qu Yongtao [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Piao Guangzhe, E-mail: piao@qust.edu.cn [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Zhao Jian [Key Laboratory of Rubber-plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Jiao Kui, E-mail: Kjiao@qust.edu.cn [Key Laboratory of Eco-Chemical Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2010-11-25

    Fullerene C{sub 60} nanotubes (FNTs) were functionalized with sequence-specific single-stranded DNA to form a kind of complexes (FNT-DNA), which could be brought efficiently into aqueous solution. The dispersed FNT-DNA could form a layer of stable film on the surface of glassy carbon electrode (GCE). In the Britton-Robinson buffer solution of pH {>=}7.0, the FNT-DNA modified on the GCE presented an irreversible two-step six-electron transfer reduction reaction. The reduced modified electrode had a rather wide electrochemical window and could be used as a functionalized working electrode, which showed a good enrichment capability towards the positively charged molecules. The selective detection of dopamine in the presence of a high amount of ascorbic acid could be realized at the reduced FNT-DNA-modified GCE in neutral buffer solution.

  10. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  11. Comparative process analysis of fullerene production by the arc and the radio-frequency discharge methods.

    Science.gov (United States)

    Marković, Z; Todorović-Marković, B; Mohai, I; Farkas, Z; Kovats, E; Szepvolgyi, J; Otasević, D; Scheier, P; Feil, S; Romcević, N

    2007-01-01

    In this work, comparative analysis of processes in carbon arc and radio frequency (RF) plasma during fullerene synthesis has been presented. The kinetic model of fullerene formation developed earlier has been verified in both types of plasma reactors. The fullerene yield depended on carbon concentration, velocity of plasma flame and rotational temperature of C2 radicals predominantly. When mean rotational temperature of C2 radicals was 3000 K, the fullerene yield was the highest regardless of the type of used reactor. The zone of fullerene formation is larger significantly in RF plasma reactor compared to arc reactor.

  12. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    CERN Document Server

    Asaji, T; Uchida, T; Minezaki, H; Ishihara, S; Racz, R; Muramatsu, M; Biri, S; Kitagawa, A; Kato, Y; Yoshida, Y

    2015-01-01

    A synthesis technology of endohedral fullerenes such as Fe@C60 has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C60 was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  13. Accurate van der Waals coefficients between fullerenes and fullerene-alkali atoms and clusters: Modified single-frequency approximation

    Science.gov (United States)

    Tao, Jianmin; Mo, Yuxiang; Tian, Guocai; Ruzsinszky, Adrienn

    2016-08-01

    Long-range van der Waals (vdW) interaction is critically important for intermolecular interactions in molecular complexes and solids. However, accurate modeling of vdW coefficients presents a great challenge for nanostructures, in particular for fullerene clusters, which have huge vdW coefficients but also display very strong nonadditivity. In this work, we calculate the coefficients between fullerenes, fullerene and sodium clusters, and fullerene and alkali atoms with the hollow-sphere model within the modified single-frequency approximation (MSFA). In the MSFA, we assume that the electron density is uniform in a molecule and that only valence electrons in the outmost subshell of atoms contribute. The input to the model is the static multipole polarizability, which provides a sharp cutoff for the plasmon contribution outside the effective vdW radius. We find that the model can generate C6 in excellent agreement with expensive wave-function-based ab initio calculations, with a mean absolute relative error of only 3 % , without suffering size-dependent error. We show that the nonadditivities of the coefficients C6 between fullerenes and C60 and sodium clusters Nan revealed by the model agree remarkably well with those based on the accurate reference values. The great flexibility, simplicity, and high accuracy make the model particularly suitable for the study of the nonadditivity of vdW coefficients between nanostructures, advancing the development of better vdW corrections to conventional density functional theory.

  14. Large Enhancement of Optical Nonlinearities of New Organophosphorus Fullerene Derivative

    Institute of Scientific and Technical Information of China (English)

    刘智波; 田建国; 臧维平; 周文远; 张春平; 郑建禺; 周迎春; 徐华

    2003-01-01

    Optical nonlinearities of new organophosphorus fullerene derivative were determined by the Z-scan method with a pulsed Q-switch Nd:YAG laser at 532nm. The experimental results demonstrated that the derivative has much larger excited-states nonlinear absorption and nonlinear refraction than C60. A five-level model was utilized to fit the experimental data, and a good agreement is reached. Some parameters such as excited-state absorption cross and refraction cross were obtained. To our knowledge, the excited-state cross section of new organophosphorus fullerene derivative and its effective ratio to the ground-state cross section are the largest values among the fullerene derivatives reported to date.

  15. The Formation of Cosmic Fullerenes from Arophatic Clusters

    Science.gov (United States)

    Micelotta, Elisabetta R.; Jones, Anthony P.; Cami, Jan; Peeters, Els; Bernard-Salas, Jeronimo; Fanchini, Giovanni

    2012-12-01

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae, and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nanoparticles and their specific derivative structures, which we name "arophatics," in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  16. The formation of cosmic fullerenes from arophatic clusters

    CERN Document Server

    Micelotta, Elisabetta R; Cami, Jan; Peeters, Els; Bernard-Salas, Jeronimo; Fanchini, Giovanni

    2012-01-01

    Fullerenes have recently been identified in space and they may play a significant role in the gas and dust budget of various astrophysical objects including planetary nebulae (PNe), reflection nebulae (RNe) and H II regions. The tenuous nature of the gas in these environments precludes the formation of fullerene materials following known vaporization or combustion synthesis routes even on astronomical timescales. We have studied the processing of hydrogenated amorphous carbon (a-C:H or HAC) nano-particles and their specific derivative structures, which we name "arophatics", in the circumstellar environments of young, carbon-rich PNe. We find that UV-irradiation of such particles can result in the formation of fullerenes, consistent with the known physical conditions in PNe and with available timescales.

  17. Thermal management technology for hydrogen storage: Fullerene option

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.C.; Chen, F.C.; Murphy, R.W. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Fullerenes are selected as the first option for investigating advanced thermal management technologies for hydrogen storage because of their potentially high volumetric and gravimetric densities. Experimental results indicate that about 6 wt% of hydrogen (corresponding to C{sub 60}H{sub 48}) can be added to and taken out of fullerenes. A model assuming thermally activated hydrogenation and dehydrogenation processes was developed to explain the experimental findings. The activation energies were estimated to be 100 and 160 kJ/mole (1.0 and 1.6 eV/H{sub 2}) for the hydrogenation and dehydrogenation processes, respectively. The difference is interpreted as the heat released during hydrogenation. There are indications that the activation energies and the heat of hydrogenation can be modified by the use of catalysts. Preliminary hydrogen storage simulations for a conceptually simple device were performed. A 1-m long hollow metal cylinder with an inner diameter of 0.02 m was assumed to be filled with fullerene powders. The results indicate that the thermal diffusivity of the fullerenes controls the hydrogenation and dehydrogenation rates. The rates can be significantly modified by changing the thermal diffusivity of the material inside the cylinder, e.g., by incorporating a metal mesh. Results from the simulation suggest that thermal management is essential for efficient hydrogen storage devices using fullerenes. While the preliminary models developed in this study explain some of the observation, more controlled experiments, rigorous model development, and physical property determinations are needed for the development of practical hydrogen storage devices. The use of catalysts to optimize the hydrogen storage characteristics of fullerenes also needs to be pursued. Future cooperative work between Oak Ridge National Laboratory (ORNL) and Material & Electrochemical Research Corporation (MER) is planned to address these needs.

  18. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  19. Mapping fullerene crystallization in a photovoltaic blend: an electron tomography study

    Science.gov (United States)

    Bäcke, Olof; Lindqvist, Camilla; Diaz de Zerio Mendaza, Amaia; Gustafsson, Stefan; Wang, Ergang; Andersson, Mats R.; Müller, Christian; Olsson, Eva

    2015-04-01

    The formation of fullerene crystals represents a major degradation pathway of polymer/fullerene bulk-heterojunction thin films that inexorably deteriorates their photovoltaic performance. Currently no tools exist that reveal the origin of fullerene crystal formation vertically through the film. Here, we show that electron tomography can be used to study nucleation and growth of fullerene crystals. A model bulk-heterojunction blend based on a thiophene-quinoxaline copolymer and a fullerene derivative is examined after controlled annealing above the glass transition temperature. We image a number of fullerene nanocrystals, ranging in size from 70 to 400 nanometers, and observe that their center is located close to the free-surface of spin-coated films. The results show that the nucleation of fullerene crystals predominately occurs in the upper part of the films. Moreover, electron tomography reveals that the nucleation is preceded by more pronounced phase separation of the blend components.

  20. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  1. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  2. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust.

    Science.gov (United States)

    Dunk, Paul W; Adjizian, Jean-Joseph; Kaiser, Nathan K; Quinn, John P; Blakney, Gregory T; Ewels, Christopher P; Marshall, Alan G; Kroto, Harold W

    2013-11-01

    Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous (22)Ne in ancient meteorites. That exotic (22)Ne is, in fact, the decay isotope of relatively short-lived (22)Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe "build-up" and formation of carbon stardust, and provide insight into fullerene astrochemistry.

  3. Fullerenes, Organics and the Diffuse Interstellar Bands

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The status of DIB research has strongly advanced since 20 years [1], as well as the quest for fullerenes, PAHs and large organics in space. In 1994 we reported the discovery of two near IR diffuse bands coincident with C60+, confirmed in subsequent years [2-6] and now by latest laboratory experiments. A number of DIB observational studies have been published, dealing with: DIB surveys [1,7-10]; measurements of DIB families, correlations and environment dependences [11-14]; extragalactic DIBs [15, 16]. Resolved substructures were detected [17,18] and compared to predicted rotational contours by large molecules [19]. Polarisation studies provided upper limits constraints [20, 21]. DIBs carriers have been linked with organic molecules observed in the interstellar medium [22-25] such as IR bands (assigned to PAHs), Extended Red Emission or recently detected Anomalous Microwave Emission (AME, assigned to spinning dust) and with spectroscopic IR emission bands measured with ISO or Spitzer. Fullerenes and PAHs have been proposed to explain some DIBs and specific molecules were searched in DIB spectra [eg 2-6, 26-31]. These could be present in various dehydrogenation and ionisation conditions [32,33]. Experiments in the laboratory and in space [eg 34-36] allow to measure the survival and by-products of these molecules. We review DIB observational results and their interpretation, and discuss the presence of large organics, fullerenes, PAHs, graphenes in space. References [1] Herbig, G. 1995 ARA&A33, 19; [2] Foing, B. & Ehrenfreund, P. 1994 Natur 369, 296; [3] Foing, B. & Ehrenfreund, P. 1997 A&A317, L59; [4] Foing, B. & Ehrenfreund, P. 1995 ASSL202, 65; [5] Ehrenfreund, P., Foing, B. H. 1997 AdSpR19, 1033; [6] Galazutdinov, G. A. et al. 2000 MNRAS317, 750; [7] Jenniskens, P., Desert, F.-X. 1994 A&AS106, 39; [8] Ehrenfreund, P. et al. 1997 A&A318, L28; [9] Tuairisg, S. Ó. et al. 2000 A&AS142, 225; [10] Cox, N. et al. 2005 A&A438, 187; [11] Cami, J. et al. 1997A&A.326, 822

  4. Observation of a JPC = 1−+ exotic signal in the π−π0π0 system diffractively produced at COMPASS, and comparison to the charged decay mode

    Directory of Open Access Journals (Sweden)

    Nerling Frank

    2012-12-01

    Full Text Available The COMPASS experiment at the CERN SPS features good charged particle tracking and coverage by electromagnetic calorimetry, and our data provide excellent opportunity for simultaneous observation of new states in two different decay modes within the same experiment. The existence of the spin-exotic π1(1600 resonance in the ρπ decay channel is studied for the first time in COMPASS in both decay modes of the diffractively produced (3π− system: π− p → π−π0π0 p and π− p → π−π+π− p. A preliminary partial-wave analysis (PWA performed on the 2008 proton target data allows for a first conclusive comparison of both (3π− decay modes not only for main waves but also for small ones, including the spin-exotic 1−+ wave. We find the neutral versus charged mode results in good agreement with expectations from isospin symmetry. Both, the intensities and the relative phases to well-known resonances, are consistent for the neutral and the charged decay modes of the (3π− system. The status on the search for the spin-exotic π1(1600 resonance produced on a proton target is discussed.

  5. Anisometric C60 Fullerene Colloids Assisted by Structure-Directing Agent

    Energy Technology Data Exchange (ETDEWEB)

    Penterman, S. [Cornell Univ., Ithaca, NY (United States); Liddell Watson, Chekesha M. [Cornell Univ., Ithaca, NY (United States); Escobedo, Fernando A. [Cornell Univ., Ithaca, NY (United States); Cohen, Itai [Cornell Univ., Ithaca, NY (United States)

    2016-08-05

    Colloidal synthesis and assembly provide low cost, large area routes to mesoscale structures. In particular, shape-anisotropic particles may form crystalline, plastic crystalline, complex liquid crystalline and glassy phases. Arrangements in each order class have been used to generate photonic materials. For example, large photonic band gaps have been found for photonic crystals, hyperuniform photonic glasses, and also for plastic crystals at sufficient refractive index contrast. The latter structures support highly isotropic bandgaps that are desirable for free-form waveguides and LED out-coupling. Photonic glasses with optical gain lead to self-tuned lasing by the superposition of multiply scattered light. Typically, extrinsic media such as organic dyes, rare earths, lanthanides and quantum dots are used to impart optical gain in photonic solids. The present work advances fullerene microcrystals as a new materials platform for ‘active’ light emitting in colloid-based photonic crystals. Fullerenes support singlet excited states that recombine to produce a characteristic red photoluminescence. C60 also has a high refractive index (n ~ 2.2) and transparency (> 560 nm)9 so that inverse structures are not required.

  6. Polymer-fullerene bulk-heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, J.K.J.

    2004-03-08

    In 2000 polymer:fullerene bulk-heterojunction solar cells reached power conversion efficiencies of < 1%. Improving the performance, stability, and lifetime of bulk-heterojunction solar cells requires more insight in the preparation, and operation of these devices. This thesis discusses the preparation and the morphological and electrical characterization of devices made from MDMO-PPV (poly 2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene), PCBM (1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)-methanofullerene), and their mixtures. The understanding of the influence of morphology on the device performance should aid in obtaining insight in the fundamental issues of the bulk-heterojunction concept. Furthermore, new materials are introduced in an attempt to improve performance. In chapter 2, it is shown that bulk-heterojunction solar cells made from MDMO-PPV and PCBM reach power conversion efficiencies of 2.5% under simulated solar light. It is shown for the first time that replacing the orange MDMO-PPV with a low-bandgap conjugated material results in a more red-shifted spectral response of these solar cells. Additionally, in an attempt to control the nanoscale morphology of the photoactive layer, the first example of a covalently linked donor polymer with pendant fullerenes incorporated in working solar cells is reported. The results indicated that more fundamental questions concerning the operation of the device and the influence of morphology must be addressed, before a rational improvement in device performance can be expected. Chapter 3 discusses the influence of morphology on transport in disordered organic semiconductors. Morphological investigations on films of PCBM and several PPVs are combined with the analysis of charge-carrier-mobility data. The morphological disorder observed in the PCBM films is in agreement with its charge-transport properties. Imaging individual conjugated polymer chains and aggregates on cast films with scanning force

  7. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers.

    Science.gov (United States)

    Raggi, G; Besley, E; Stace, A J

    2016-09-13

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4](+) isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'.

  8. Are Biogenic PAHs Precursors for Fullerenes on Earth?

    Science.gov (United States)

    Heymann, D.

    2002-03-01

    C60 fullerene in shungite and in bitumen from the Bohemian Massif could have formed in situ in two steps: 1. Cyclotrimerization of the PAH C20H12. 2. Dehydrogenation of C60H30 to C60. The necessary heat was provided during metamorphism.

  9. Thermochemistry of Pt-Fullerene Complexes: Semiempirical Study

    Science.gov (United States)

    Voityuk, Alexander A.

    2009-07-01

    Modified Neglect of Differential Overlap (MNDO) and MNDO/d based semiempirical methods are widely employed to explore structure and thermochemistry of molecular systems. In this work, the AM1/d method has been parametrized for systems containing platinum. The proposed scheme delivers excellent performance for binding energies of Pt complexes with ethylene and large π conjugated hydrocarbons. The estimated bond energies accurately reproduce the results of MP4(SDQ) calculations and show significant improvement over DFT (B3LYP and M05) data. We apply the AM1/d scheme to explore the structure and thermochemistry of several Pt compounds with C60 and C70. The calculated binding energies of bare Pt atoms and [Pt(PH3)2] units to the fullerenes are 75 and 45 kcal/mol, respectively. We find that coordination of a single metal center to C60 activates the fullerene cage making subsequent coordination of Pt more favorable. The bond energy [C60-PtC60] is calculated to be 65 kcal/mol. The estimated reaction enthalpies are useful for exploring the stability of PtxC60 polymer systems and their interaction with phosphines. AM1/d predicts a very low barrier to rotation of the coordinated fullerenes in [Pt(C60)2]. The AM1/d scheme is computationally very efficient and can be employed to obtain fast quantitative estimates for binding energies and structural parameters of Pt complexes with large π conjugated systems like fullerenes and carbon nanotubes.

  10. Predicting morphologies of solution processed polymer: Fullerene blends

    NARCIS (Netherlands)

    Kouijzer, S.; Michels, J.J.; Berg, M. van den; Gevaerts, V.S.; Turbiez, M.; Wienk, M.M.; Janssen, R.A.J.

    2013-01-01

    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic

  11. Enhanced efficiency in double junction polymer: Fullerene solar cells

    NARCIS (Netherlands)

    Moet, D.J.D.; Bruyn, P. de; Kotlarski, J.D.; Blom, P.W.M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C61-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the photoac

  12. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.;

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as ...

  13. Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes.

    Science.gov (United States)

    Sun, Che-Nan; Zawodzinski, Thomas A; Tenhaeff, Wyatt E; Ren, Fei; Keum, Jong Kahk; Bi, Sheng; Li, Dawen; Ahn, Suk-Kyun; Hong, Kunlun; Rondinone, Adam J; Carrillo, Jan-Michael Y; Do, Changwoo; Sumpter, Bobby G; Chen, Jihua

    2015-03-28

    Solid polymer electrolytes, such as polyethylene oxide (PEO) based systems, have the potential to replace liquid electrolytes in secondary lithium batteries with flexible, safe, and mechanically robust designs. Previously reported PEO nanocomposite electrolytes routinely use metal oxide nanoparticles that are often 5-10 nm in diameter or larger. The mechanism of those oxide particle-based polymer nanocomposite electrolytes is under debate and the ion transport performance of these systems is still to be improved. Herein we report a 6-fold ion conductivity enhancement in PEO/lithium bis(trifluoromethanesulfonyl) imide (LiTFSI)-based solid electrolytes upon the addition of fullerene derivatives. The observed conductivity improvement correlates with nanometer-scale fullerene crystallite formation, reduced crystallinities of both the (PEO)6:LiTFSI phase and pure PEO, as well as a significantly larger PEO free volume. This improved performance is further interpreted by enhanced decoupling between ion transport and polymer segmental motion, as well as optimized permittivity and conductivity in bulk and grain boundaries. This study suggests that nanoparticle induced morphological changes, in a system with fullerene nanoparticles and no Lewis acidic sites, play critical roles in their ion conductivity enhancement. The marriage of fullerene derivatives and solid polymer electrolytes opens up significant opportunities in designing next-generation solid polymer electrolytes with improved performance.

  14. Ultimate performance of polymer: Fullerene bulk heterojunction tandem solar cells

    NARCIS (Netherlands)

    Kotlarski, J.D.; Blom, P.W.M.

    2011-01-01

    We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum

  15. Thermal decomposition of fullerene nanowhiskers protected by amorphous carbon mask

    Science.gov (United States)

    Guo, Hongxuan; Wang, Chengxiang; Miyazawa, Kun’Ichi; Wang, Hongxin; Masuda, Hideki; Fujita, Daisuke

    2016-12-01

    Fullerene nanostructures are well known for their unique morphology, physical and mechanical properties. The thermal stability of fullerene nanostructures, such as their sublimation at high temperature is also very important for studying their structures and applications. In this work, We observed fullerene nanowhiskers (FNWs) in situ with scanning helium ion microscopy (HIM) at elevated temperatures. The FNWs exhibited different stabilities with different thermal histories during the observation. The pristine FNWs were decomposed at the temperatures higher than 300 °C in a vacuum environment. Other FNWs were protected from decomposition with an amorphous carbon (aC) film deposited on the surface. Based on high spacial resolution, aC film with periodic structure was deposited by helium ion beam induced deposition (IBID) on the surface of FNWs. Annealed at the high temperature, the fullerene molecules were selectively sublimated from the FNWs. The periodic structure was formed on the surface of FNWs and observed by HIM. Monte Carlo simulation and Raman characterization proved that the morphology of the FNWs was changed by helium IBID at high temperature. This work provides a new method of fabricating artificial structure on the surface of FNWs with periodic aC film as a mask.

  16. Enhanced efficiency in double junction polymer : fullerene solar cells

    NARCIS (Netherlands)

    Moet, D. J. D.; de Bruyn, P.; Kotlarski, J. D.; Blom, P. W. M.

    2010-01-01

    Polymer solar cells based on the polyfluorene copolymer poly[9,9-didecanefluorene-alt-(bis-thienylene) benzothiadiazole] (PF10TBT) and the fullerene derivative [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) exhibit a power conversion efficiency of 4%. However, the optimum thickness of the photo

  17. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  18. A novel route towards high quality fullerene-pillared graphene

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Kang, Longtian; Diamanti, Eumorfia K.; Gengler, Regis Y.; Gournis, Dimitrios; Prato, Maurizio; Rudolf, Petra

    2013-01-01

    A new approach for the synthesis of graphite intercalation compounds (GICs), by the help of co-intercalant molecules, has been observed. In the present work, we demonstrate the successful incorporation of fullerene (C-60) molecules between the graphene sheets aided by the preceding intercalation of

  19. Restriction of the EEG appointment and release from network charges for producing companies; Begrenzung der EEG-Umlage und Stromnetzentgeltbefreiung fuer Unternehmen des produzierenden Gewerbes

    Energy Technology Data Exchange (ETDEWEB)

    Poppe, Antonia K. [Sozietaet Dr. Poppe, Stoecker, Terme - Rechtsanwaelte, Kassel (Germany)

    2012-02-15

    Due to the decided phase out of nuclear power and due to the increased efforts in the field of safe energy supply, at 1st January 2012 important regulations of the Renewable Energy Law (EEG) as well as the Ordinance on Charges for Access to Electricity Supply Grids (StromNEV) were amended. The changes significantly affect the price of electricity and are particularly important for medium-sized companies and the industries with an enhanced power consumption. The companies involved should recognize that the financial consequences of the modifications in legislation have to be recognized as early as possible and to be considered in their corporate risk management. The author of the contribution under consideration reports on the modification of the boundary conditions of the EEG apportionment considering paragraph 40 and paragraph 41 EEG 2012 as well as on the modification of the definition of the grid fees in accordance with paragraph 19 section 2 StromNEV.

  20. Anomalous Photofragmentation of Fullerene Doped in Silica Aerogel-Enhanced Formation of Odd-Numbered "Fullerene" Fragments

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬; 王钰

    2001-01-01

    Photofragmentation of fullerene-doped silica aerogels has been investigated by the excimer laser ablation reflectron time-of-flight mass spectrometric technique. Great enhancement in the formation of odd-numbered 'fullerene' fragments has been observed in the negative-ion channel for the chemically doped aerogel sample. Generally, oddnumbered species C57, C55, C53 and C51 appeared in the mass spectra. Under optimM experimental conditions C55 can be even more intense than the neighbouring even-numbered carbon clusters. In contrast, for the physicallydoped sample, just like pristine C6o, only weak odd-numbered fragments were observed. In the positive-ion channel, the behaviour of all these samples is similar, no odd-numbered species was ever detected. A mechanism related to the interaction between the fullerene dopant and the silica aerogel host is suggested for the anomalous enhancement of the odd-numbered duster formation. A preliminary discussion on the structures of the oddnumbered 'fullerene' fragments is given.

  1. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  2. Penning-trap Q-value determination of the Ga-71(v, e(-))Ge-71 reaction using threshold charge breeding of on-line produced isotopes

    NARCIS (Netherlands)

    Frekers, D.; Simon, M.C.; Andreoiu, C.; Bale, J. C.; Brodeur, M.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Lopez-Urrutia, J. R. Crespo; Delheij, P.; Ejiri, H.; Ettenauer, S.; Gallant, A. T.; Gavrin, V.; Grossheim, A.; Harakeh, M. N.; Jang, F.; Kwiatkowski, A. A.; Lassen, J.; Lennarz, A.; Luichtl, M.; Ma, T.; Macdonald, T. D.; Mane, E.; Robertson, D.; Schultz, B. E.; Simon, V. V.; Teigelhoefer, A.; Dilling, J.

    2013-01-01

    We present a first direct Q-value measurement of the Ga-71(v, e(-))Ge-71 reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like Ga-71(21+) and Ge-71(22+) using isobar separation of the on-line produced mother and daughter nuc

  3. Ultrafast Terahertz Photoconductivity of Photovoltaic Polymer-Fullerene Blends: A Comparative Study Correlated with Photovoltaic Device Performance.

    Science.gov (United States)

    Jin, Zuanming; Gehrig, Dominik; Dyer-Smith, Clare; Heilweil, Edwin J; Laquai, Frédéric; Bonn, Mischa; Turchinovich, Dmitry

    2014-11-06

    Ultrafast photoinduced carrier dynamics in prototypical low band gap polymer:fullerene photovoltaic blend films PTB7:PC70BM and P3HT:PC70BM is investigated using ultrafast terahertz (THz) spectroscopy. The subpicosecond and few-picosecond decays of THz-probed photoconductivities for both compounds are observed, attributed to the rapid formation of polaron pairs by exciton-exciton annihilation and subsequent polaron pair annihilation, respectively. The transient THz photoconductivity spectra of PTB7:PC70BM are well described by the Drude-Smith (DS) model, directly yielding the important charge transport parameters such as charge carrier density, momentum scattering time, and effective localization. By comparison with P3HT:PC70BM, we find that in PTB7:PC70BM the mobile charge carrier photoconductivity is significantly enhanced by a factor of 1.8 and prevails for longer times after charge formation, due to both improved mobile charge carrier yield and lower charge localization. In PTB7:PC70BM, a strong dependency of electron momentum scattering time on electron density was found, well parametrized by the empirical Caughey-Thomas model. The difference in ultrafast photoconductivities of both P3HT:PC70BM and PTB7:PC70BM is found to correlate very well with the performance of photovoltaic devices based on those materials.

  4. The Charge asymmetry in W bosons produced in p$\\bar{p}$ collisions at √s = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Torborg, Julie M. [Univ. of Notre Dame, IN (United States)

    2005-07-01

    The primary mode of production of W+ bosons in a p$\\bar{p}$ collider is u + $\\bar{d}$ → W+. The u quark generally carries more momentum than the $\\bar{d}$ and the resultant W+ tends to be boosted in the proton direction. Similarly, W bosons are boosted in the anti-proton direction. This is observed as an asymmetry in the rapidity distributions of positive and negative W bosons. Measurement of this asymmetry serves as a probe of the momentum distribution of partons within the proton. These distributions are required as input to the calculation of every p$\\bar{p}$ production cross section. This thesis presents the first measurement at D0 of the charge asymmetry of the W boson production cross section as measured in W → ev decays in 0.3 fb-1 of p$\\bar{p}$ collisions collected with the D0 Detector. Theoretical predictions made using the CTEQ6.1M and MRST(2004) parton distribution functions are compared with the measurement.

  5. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 um process with a high resistivity epitaxial layer

    CERN Document Server

    Senyukov, Serhiy; Besson, Auguste; Claus, Gilles; Cousin, Loic; Dorokhov, Andrei; Dulinski, Wojciech; Goffe, Mathieu; Hu-Guo, Christine; Winter, Marc

    2013-01-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 um thin CMOS Pixel Sensors (CPS) covering either the 3 innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 um CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJa...

  6. Simulation study of elliptic flow of charged hadrons produced in Au + Au collisions at energies available at the Facility for Antiproton and Ion Research

    Science.gov (United States)

    Sarkar, S.; Mali, P.; Mukhopadhyay, A.

    2017-01-01

    Centrality and system geometry dependence of azimuthal anisotropy of charged hadrons measured in terms of the elliptic flow parameter are investigated using Au+Au event samples at incident beam energy 20 A and 40 A GeV generated by ultrarelativistic quantum molecular dynamics (UrQMD) and a multiphase transport (AMPT) models. The Monte Carlo-Glauber model is employed to estimate the eccentricity of the overlapping zone at an early stage of the collisions. Anisotropies present both in the particle multiplicity distribution and in the kinetic radial expansion are examined by using standard statistical and phenomenological methods. In the context of the upcoming Compressed Baryonic Matter experiment to be held at the Facility for Antiproton and Ion Research (FAIR), the present set of simulated results provide us not only with an opportunity to examine the expected collective behavior of hadronic matter at high baryon density and moderate temperature, but when compared with similar results obtained from Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) experiments, they also allow us to investigate how anisotropy of hadronic matter may differ or agree with its low-baryon-density and high-temperature counterpart.

  7. The Charge asymmetry in W bosons produced in p anti-p collisions at center of mass energy - 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Torborg, Julie M

    2005-07-01

    The primary mode of production of W{sup +} bosons in a p{bar p} collider is u + {bar d} {yields} W{sup +}. The u quark generally carries more momentum than the {bar d} and the resultant W{sup +} tends to be boosted in the proton direction. Similarly, W bosons are boosted in the anti-proton direction. This is observed as an asymmetry in the rapidity distributions of positive and negative W bosons. Measurement of this asymmetry serves as a probe of the momentum distribution of partons within the proton. These distributions are required as input to the calculation of every p{bar p} production cross section. This thesis presents the first measurement at D0 of the charge asymmetry of the W boson production cross section as measured in W {yields} ev decays in 0.3 fb{sup -1} of p{bar p} collisions collected with the D0 Detector. Theoretical predictions made using the CTEQ6.1M and MRST(2004) parton distribution functions are compared with the measurement.

  8. Producing a background free data set for measurement of the charge current flux and day-night asymmetry at the Sudbury Neutrino Observatory

    CERN Document Server

    McCauley, N K

    2001-01-01

    The SNO detector is a 1 kilo-tonne heavy water Cerenkov detector designed to solve the solar neutrino problem. The detector is situated 2km underground in the INCO Ltd. Creighton mine near Sudbury, Ontario. The heavy water is observed by approximately 9500 photo-multiplier tubes (PMTs) to detect Cerenkov light generated by solar neutrino interactions. Using heavy water SNO can detect neutrinos in three different ways. In this thesis aspects of the charge current (a reaction sensitive to electron neutrinos only) and elastic scattering flux analysis are presented. Some models predict a difference in the detected neutrino rate between day and night. Measurement of this via the day-night asymmetry can help solve the solar neutrino problem. One of the principal problems for the solar neutrino analysis are the instrumental backgrounds; events caused by processes other than Cerenkov light. This thesis contains the descriptions of the backgrounds, the data selection cuts that have been designed to remove them and the...

  9. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Science.gov (United States)

    Uchida, T.; Rácz, R.; Muramatsu, M.; Kato, Y.; Kitagawa, A.; Biri, S.; Yoshida, Y.

    2016-02-01

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  10. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  11. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  12. Photoinduced Intramolecular Charge Transfer in Donor-acceptor Dyad and Donor-bridge-acceptor Triad

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Yuan-zuo Li; Feng-cai Ma

    2008-01-01

    The ground and excited state properties of the [60]fullerene,diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis set and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods.The 2D site representation reveals the electron-hole coherence on exci- tation.The 3D transition density shows the orientation and strength of the transition dipole moment,and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer.Also, photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations,which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.

  13. Polarization of {sup 23}Ne, {sup 24m,25}Al and {sup 28}P produced through single nucleon pickup and charge-exchange reactions at 100 AMeV

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsubo, T., E-mail: tohtsubo@np.gs.niigata-u.ac.jp; Hirano, H.; Takahashi, S. [Niigata Univ. (Japan); Matsuta, K.; Mihara, M.; Fukuda, M. [Osaka Univ. (Japan); Nagatomo, T. [RIKEN (Japan); Izumikawa, T. [Niigata Univ., RI Center (Japan); Momota, S. [Kochi Univ. of Tech. (Japan); Nishimura, D.; Komurasaki, J.; Ishikawa, D. [Osaka Univ. (Japan); Zhou, D. M.; Zheng, Y. N.; Zhu, S. Y. [China Institute of Atomic Energy (China); Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S. [Inage-ku, NIRS (Japan); Minamisono, T. [Fukui Univ. of Tech. (Japan)

    2007-11-15

    We measured the polarization of the {beta}-emitting {sup 23}Ne (I{sup {pi}} 5/2{sup +}, T{sub 1/2} = 37.24 s) and {sup 25}Al(I{sup {pi}} = 5/2{sup +}, T{sub 1/2} = 7.18 s) produced through the one nucleon pickup reactions and {sup 24m}Al(I{sup {pi}} = 1{sup +}, T{sub 1/2} 131 ms, E{sub ex} = 426 keV) and {sup 28}P(I{sup {pi}} = 3{sup +}, T{sub 1/2} = 270 ms) produced through charge-exchange reactions in the intermediate energy heavy ion collisions. We compared them with those from the projectile fragmentation process. The larger polarization seems to persistently be positive throughout the momentum distribution, and sharper momentum distributions suggest that nuclear friction mechanism is responsible for the polarization phenomena.

  14. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy.

    Science.gov (United States)

    Jiang, Guichang; Yin, Fen; Duan, Jihua; Li, Guangtao

    2015-01-01

    Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. They are completely soluble in water, yielding a clear brown solution. The products were characterized by fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV-Vis), (1)H NMR, (13)C NMR, thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The assembly behavior of water-soluble fullerene-glycine derivatives was investigated by SEM. The results show that the fullerene-glycine derivatives create morphology that is sphere-like. The cytotoxicity to cancer cell lines of the fullerene-glycine derivatives was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and flow cytometry. The results show that fullerene-glycine derivatives exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. The cytotoxicity mechanism of fullerene-glycine derivatives was investigated for the first time. Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. The products were characterized by FTIR, UV-Vis, (1)H NMR, (13)C NMR, TGA, and SEM. The bioactivities of fullerene-glycine derivative materials have been tested, and the results show that compared with the fullerene complex, the fullerene-glycine derivative materials exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. SEM images showed the macrostructure of fullerene-glycine derivative materials was spheres.

  15. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallo-fullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  16. Potentiality of the composite fulleren based carbon films as the stripper foils for tandem accelerators

    CERN Document Server

    Vasin, A V; Rusavsky, A V; Totsky, Y I; Vishnevski, I N

    2001-01-01

    The problem of the radiation resistance of the carbon stripper foils is considered. The short review of the experimental data available in literature and original experimental results of the are presented. In the paper discussed is the possibility of composite fulleren based carbon films to be used for preparation of the stripper foils. Some technological methods for preparation of composite fulleren based carbon films are proposed. Raman scattering and atom force microscopy were used for investigation of the fulleren and composite films deposited by evaporation of the C sub 6 sub 0 fulleren powder.

  17. Immobilization of [60]fullerene on silicon surfaces through a calix[8]arene layer

    Energy Technology Data Exchange (ETDEWEB)

    Busolo, Filippo; Silvestrini, Simone; Maggini, Michele [Department of Chemical Sciences, ITM-CNR University of Padova, Via F. Marzolo 1, 35131 Padova (Italy); Armelao, Lidia [Department of Chemical Sciences, IENI-CNR and INSTM, University of Padova, Via F. Marzolo 1, 35131 Padova (Italy)

    2013-10-28

    In this work, we report the functionalization of flat Si(100) surfaces with a calix[8]arene derivative through a thermal hydrosilylation process, followed by docking with [60]fullerene. Chemical grafting of calix[8]arene on silicon substrates was evaluated by X-ray photoelectron spectroscopy, whereas host-guest immobilization of fullerene was demonstrated by atomic force microscopy and sessile drop water contact angle measurements. Surface topographical variations, modelled on the basis of calix[8]arene and [60]fullerene geometrical parameters, are consistent with the observed morphological features relative to surface functionalization and to non-covalent immobilization of [60]fullerene.

  18. Residence time effect on fullerene yield in butadiene-based laser pyrolysis flame

    Science.gov (United States)

    Ténégal, F.; Voicu, I.; Armand, X.; Herlin-Boime, N.; Reynaud, C.

    2003-09-01

    A new route for fullerene synthesis by CO 2-laser pyrolysis of gas phase mixture is proposed. Small hydrocarbon molecules which absorb the laser radiation, such as butadiene, are mixed with nitrous oxide (N 2O) as oxidizer. Such a mixture allows avoiding the use of a photosensitizer as SF 6 which causes contamination of the reaction zone and possibly influences the growth of fullerenic structures. This Letter also confirms the strong influence of the C/O atomic ratio in the mixture on the fullerene yield, and shows that residence time of the reactants in the pyrolysis flame and pressure influence dramatically the fullerene formation.

  19. Fullerenes as potential collectors of noble metals in carbon-bearing geological formations

    Directory of Open Access Journals (Sweden)

    Voytekhovsky Yu.L.

    2015-06-01

    Full Text Available The results of computer modelling of fullerenes in the Bartell's restrictions have been suggested in the paper. The inner volumes of all the possible C60 to C100 fullerenes have been calculated. The numbers of dopping Au, Ag, Pt, and Pd atoms have been found for the most stable (symmetrical with no adjacent pentagons structures. The inner volume has been stated to be mostly dependent from the number of fullerene-forming atoms than from the symmetry point group. The elongated but not spherical fullerenes possess the biggest inner volumes for the given number of carbon atoms

  20. Effect of self-assembly of fullerene nano-particles on lipid membrane.

    Directory of Open Access Journals (Sweden)

    Saiqun Zhang

    Full Text Available Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1 assembly process is completely finished before penetration; 2 assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.

  1. Charged particle detection performances of CMOS pixel sensors produced in a 0.18μm process with a high resistivity epitaxial layer

    Energy Technology Data Exchange (ETDEWEB)

    Senyukov, S., E-mail: serhiy.senyukov@cern.ch; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz0.18μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 10{sup 13}n{sub eq}/cm{sup 2} was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz0.18μm CMOS process for the ALICE ITS upgrade.

  2. Charged particle detection performances of CMOS pixel sensors produced in a 0.18 μm process with a high resistivity epitaxial layer

    Science.gov (United States)

    Senyukov, S.; Baudot, J.; Besson, A.; Claus, G.; Cousin, L.; Dorokhov, A.; Dulinski, W.; Goffe, M.; Hu-Guo, C.; Winter, M.

    2013-12-01

    The apparatus of the ALICE experiment at CERN will be upgraded in 2017/18 during the second long shutdown of the LHC (LS2). A major motivation for this upgrade is to extend the physics reach for charmed and beauty particles down to low transverse momenta. This requires a substantial improvement of the spatial resolution and the data rate capability of the ALICE Inner Tracking System (ITS). To achieve this goal, the new ITS will be equipped with 50 μm thin CMOS Pixel Sensors (CPS) covering either the three innermost layers or all the 7 layers of the detector. The CPS being developed for the ITS upgrade at IPHC (Strasbourg) is derived from the MIMOSA 28 sensor realised for the STAR-PXL at RHIC in a 0.35 μm CMOS process. In order to satisfy the ITS upgrade requirements in terms of readout speed and radiation tolerance, a CMOS process with a reduced feature size and a high resistivity epitaxial layer should be exploited. In this respect, the charged particle detection performance and radiation hardness of the TowerJazz 0.18 μm CMOS process were studied with the help of the first prototype chip MIMOSA 32. The beam tests performed with negative pions of 120 GeV/c at the CERN-SPS allowed to measure a signal-to-noise ratio (SNR) for the non-irradiated chip in the range between 22 and 32 depending on the pixel design. The chip irradiated with the combined dose of 1 MRad and 1013neq /cm2 was observed to yield an SNR ranging between 11 and 23 for coolant temperatures varying from 15 °C to 30 °C. These SNR values were measured to result in particle detection efficiencies above 99.5% and 98% before and after irradiation, respectively. These satisfactory results allow to validate the TowerJazz 0.18 μm CMOS process for the ALICE ITS upgrade.

  3. On the π Coordination of Organometallic Fullerene Complexes

    Directory of Open Access Journals (Sweden)

    Bertha Molina

    2011-06-01

    Full Text Available Novel organometallic complexes of fullerene C80 and aryl ligands were simulated. The nature and characteristics of this family of complexes involving π coordination between the fullerene and a metal centre have been studied from a theoretical point of view. We are particularly interested in complexes where η6 coordination is present, this being the strangest manifestation of known coordinations, and thus we have studied several known and simulated compounds of this kind in order to understand the lack of examples. The presence of other η6 or η5 ligands on the opposite side seems to be an important element aiding the stabilization of these complexes, also inducing the conductive and semiconductive behaviour of the studied species.

  4. Fullerene thin-film transistors fabricated on polymeric gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Puigdollers, J. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain)], E-mail: jpuigd@eel.upc.edu; Voz, C. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain); Cheylan, S. [ICFO - Mediterranean Technology Park, Avda del Canal Olimpic s/n, 08860-Castelldefels (Spain); Orpella, A.; Vetter, M.; Alcubilla, R. [Micro and Nano Technology Group (MNT), Dept. Enginyeria Electronica, Universitat Politecnica Catalunya, C/ Jordi Girona 1-3, Modul C4, 08034-Barcelona (Spain)

    2007-07-16

    Thin-film transistors with fullerene as n-type organic semiconductor have been fabricated. A polymeric gate dielectric, polymethyl methacrylate, has been used as an alternative to usual inorganic dielectrics. No significant differences in the microstructure of fullerene thin-films grown on polymethyl methacrylate were observed. Devices with either gold or aluminium top electrodes have been fabricated. Although the lower work-function of aluminium compared to gold should favour electron injection, similar field-effect mobilities in the range of 10{sup -2} cm{sup 2} V{sup -1} s{sup -1} were achieved in both cases. Actually, the output characteristics indicate that organic thin-film transistors behave more linearly with gold than with aluminium electrodes. These results confirm that not only energy barriers determine carrier injection at metal/organic interfaces, but also chemical interactions.

  5. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo

    2010-11-23

    Wereport a small angle neutron scattering study of the thermodynamics of a polymer mixture in the presence of nanoparticles, both in equilibrium and during phase separation. Neutron cloud point measurements and random phase approximation (RPA) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature jump experiments that, in identical conditions, result in phase separation for the nanocomposite and stability for the neat polymer mixture. At lower C 60 loadings (viz. 0.2-0.5 mass %), stabilization of the mixture is observed. The nonmonotonic variation of the spinodal temperature with fullerene addition suggests a competitive interplay of asymmetric component interactions and nanoparticle dispersion. The stability line shift depends critically on particle dispersion and vanishes upon nanoparticle agglomeration. © 2010 American Chemical Society.

  6. Realizing Small Energy Loss of 0.55 eV, High Open-Circuit Voltage >1 V and High Efficiency >10% in Fullerene-Free Polymer Solar Cells via Energy Driver.

    Science.gov (United States)

    Cheng, Pei; Zhang, Mingyu; Lau, Tsz-Ki; Wu, Yao; Jia, Boyu; Wang, Jiayu; Yan, Cenqi; Qin, Meng; Lu, Xinhui; Zhan, Xiaowei

    2017-03-01

    A new, easy, and efficient approach is reported to enhance the driving force for charge transfer, break tradeoff between open-circuit voltage and short-circuit current, and simultaneously achieve very small energy loss (0.55 eV), very high open-circuit voltage (>1 V), and very high efficiency (>10%) in fullerene-free organic solar cells via an energy driver.

  7. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Directory of Open Access Journals (Sweden)

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  8. Continuous symmetry of C60 fullerene and its derivatives.

    Science.gov (United States)

    Sheka, E F; Razbirin, B S; Nelson, D K

    2011-04-21

    Conventionally, the I(h) symmetry of fullerene C(60) is accepted, which is supported by numerous calculations. However, this conclusion results from the consideration of the molecule electron system, of its odd electrons in particular, in a closed-shell approximation without taking the electron spin into account. Passing to the open-shell approximation has led to both the energy and the symmetry lowering up to C(i). Seemingly contradicting to a high-symmetry pattern of experimental recording, particularly concerning the molecule electronic spectra, the finding is considered in this Article from the continuous symmetry viewpoint. Exploiting continuous symmetry measure and continuous symmetry level approaches, it was shown that formal C(i) symmetry of the molecule is by 99.99% I(h). A similar continuous symmetry analysis of the fullerene monoderivatives gives a reasonable explanation of a large variety of their optical spectra patterns within the framework of the same C(1) formal symmetry exhibiting a strong stability of the C(60) skeleton. TOC color pictures present chemical portrait of C(60) in terms of atomic chemical susceptibility (Sheka, E. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics; CRC Press: Taylor and Francis Group, Boca Raton, 2011).

  9. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    Pallikara K Sudeep; James P Varkey; K George Thomas; Manappurathu V George; Prashant V Kamat

    2003-10-01

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility of any strong interaction between the two chromophores in the ground state. Both the fullerene derivatives form optically transparent clusters, absorbing in the UV-Vis region; this clustering leads to a significant increase in their molar extinction coefficients. TEM characterization of the C60-PhA showed large spherical clusters, with sizes ranging from 150-350 nm, while an elongated wire-type structure was observed for the bisfullerene derivative (C60-PhA-C60). AFM section analysis studies of isolated nanoclusters of C60-PhA-C60, deposited on mica, indicate that smaller clusters associate to form larger nanostructures.

  10. Predicting morphologies of solution processed polymer:fullerene blends.

    Science.gov (United States)

    Kouijzer, Sandra; Michels, Jasper J; van den Berg, Mauricio; Gevaerts, Veronique S; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J

    2013-08-14

    The performance of solution processed polymer:fullerene thin film photovoltaic cells is largely determined by the nanoscopic and mesoscopic morphology of these blends that is formed during the drying of the layer. Although blend morphologies have been studied in detail using a variety of microscopic, spectroscopic, and scattering techniques and a large degree of control has been obtained, the current understanding of the processes involved is limited. Hence, predicting the optimized processing conditions and the corresponding device performance remains a challenge. We present an experimental and modeling study on blends of a small band gap diketopyrrolopyrrole-quinquethiophene alternating copolymer (PDPP5T) and [6,6]-phenyl-C71-butyric acid methyl ester ([70]PCBM) cast from chloroform solution. The model uses the homogeneous Flory-Huggins free energy of the multicomponent blend and accounts for interfacial interactions between (locally) separated phases, based on physical properties of the polymer, fullerene, and solvent. We show that the spinodal liquid-liquid demixing that occurs during drying is responsible for the observed morphologies. The model predicts an increasing feature size and decreasing fullerene concentration in the polymer matrix with increasing drying time in accordance with experimental observations and device performance. The results represent a first step toward a predictive model for morphology formation.

  11. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  12. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    NARCIS (Netherlands)

    A. Astefanei; O. Núñez; M.T. Galceran; W.Th. Kok; P.J. Schoenmakers

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid (C-60-pyr

  13. Search for charged Higgs bosons produced in association with a top quark and decaying via H± → τν using pp collision data recorded at √{ s} = 13 TeV by the ATLAS detector

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Brunt, B. H.; Bruschi, M.; Bruscino, N.

    2016-08-01

    Charged Higgs bosons produced in association with a single top quark and decaying via H± → τν are searched for with the ATLAS experiment at the LHC, using proton-proton collision data at √{ s} = 13 TeV corresponding to an integrated luminosity of 3.2 fb-1. The final state is characterised by the presence of a hadronic τ decay and missing transverse momentum, as well as a hadronically decaying top quark, resulting in the absence of high-transverse-momentum electrons and muons. The data are found to be consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the production cross section times branching fraction, σ (pp → [ b ] tH±) ×BR (H± → τν), between 1.9 pb and 15 fb, for charged Higgs boson masses ranging from 200 to 2000 GeV. The exclusion limits for this search surpass those obtained with the proton-proton collision data recorded at √{ s} = 8 TeV.

  14. Search for a Charged Higgs Boson Produced in the Vector-boson Fusion Mode with Decay $H^\\pm \\to W^\\pm Z$ using $pp$ Collisions at $\\sqrt{s}=8$ TeV with the ATLAS Experiment

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-01-01

    A search for a charged Higgs boson, $H^\\pm$, decaying to a $W^\\pm$ boson and a $Z$ boson is presented. The search is based on 20.3 fb$^{-1}$ of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The $H^\\pm$ boson is assumed to be produced via vector-boson fusion and the decays $W^\\pm \\to q\\bar{q^\\prime}$ and $Z\\rightarrow e^+e^-/\\mu^+\\mu^-$ are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an $H^\\pm$ boson is observed. Upper limits of 31--1020 fb at 95\\% CL are placed on the cross section for vector-boson fusion production of an $H^\\pm$ boson times its branching fraction to $W^\\pm Z$. The limits are compared with predictions from the Georgi-Machacek Higgs Triplet Model.

  15. Search for charged Higgs bosons produced in association with a top quark and decaying via H±→τν using pp collision data recorded at s=13 TeV by the ATLAS detector

    Directory of Open Access Journals (Sweden)

    M. Aaboud

    2016-08-01

    Full Text Available Charged Higgs bosons produced in association with a single top quark and decaying via H±→τν are searched for with the ATLAS experiment at the LHC, using proton–proton collision data at s=13 TeV corresponding to an integrated luminosity of 3.2 fb−1. The final state is characterised by the presence of a hadronic τ decay and missing transverse momentum, as well as a hadronically decaying top quark, resulting in the absence of high-transverse-momentum electrons and muons. The data are found to be consistent with the expected background from Standard Model processes. A statistical analysis leads to 95% confidence-level upper limits on the production cross section times branching fraction, σ(pp→[b]tH±×BR(H±→τν, between 1.9 pb and 15 fb, for charged Higgs boson masses ranging from 200 to 2000 GeV. The exclusion limits for this search surpass those obtained with the proton–proton collision data recorded at s=8 TeV.

  16. Search for a Charged Higgs Boson Produced in the Vector-Boson Fusion Mode with Decay H(±)→W(±)Z using pp Collisions at √s=8  TeV with the ATLAS Experiment.

    Science.gov (United States)

    Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Aben, R; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Alkire, S P; Allbrooke, B M M; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balestri, T; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, M; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Bogaerts, J A; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Childers, J T; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choi, K; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Citron, Z H; Ciubancan, M; Clark, A; Clark, B L; Clark, P J; Clarke, R N; Cleland, W; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Martinez, P; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Fraternali, M; Freeborn, D; French, S T; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Geisler, M P; Gemme, C; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goujdami, D; Goussiou, A G; Govender, N; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohlfeld, M; Hohn, D; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansky, R W; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kim, Y; Kimura, N; Kind, O M; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macdonald, C M; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mantoani, M; Mapelli, L; March, L; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin dit Latour, B; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Pan, Y B; Panagiotopoulou, E; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rauscher, F; Rave, S; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saimpert, M; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Selbach, K E; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosa, D; Sosebee, M; Sotiropoulou, C L; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spalla, M; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; St Denis, R D; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thun, R P; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Truong, L; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; Wharton, A M; White, A; White, M J; White, R; White, S; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; zur Nedden, M; Zurzolo, G; Zwalinski, L

    2015-06-12

    A search for a charged Higgs boson, H(±), decaying to a W(±) boson and a Z boson is presented. The search is based on 20.3  fb(-1) of proton-proton collision data at a center-of-mass energy of 8 TeV recorded with the ATLAS detector at the LHC. The H(±) boson is assumed to be produced via vector-boson fusion and the decays W(±)→qq' and Z→e(+)e(-)/μ(+)μ(-) are considered. The search is performed in a range of charged Higgs boson masses from 200 to 1000 GeV. No evidence for the production of an H(±) boson is observed. Upper limits of 31-1020 fb at 95% C.L. are placed on the cross section for vector-boson fusion production of an H(±) boson times its branching fraction to W(±)Z. The limits are compared with predictions from the Georgi-Machacek Higgs triplet model.

  17. Does the Like Dissolves Like Rule Hold for Fullerene and Ionic Liquids?

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Maciel, C.; Fileti, E. E.

    2014-01-01

    Over 150 solvents have been probed to dissolve light fullerenes, but with a quite moderate success. We uncover unusual mutual polarizability of C-60 fullerene and selected room-temperature ionic liquids, which can be applied in numerous applications, e.g. to significantly promote solubility...

  18. Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives.

    Science.gov (United States)

    Wang, Jiaobing; Shen, Yanfei; Kessel, Stefanie; Fernandes, Paulo; Yoshida, Kaname; Yagai, Shiki; Kurth, Dirk G; Möhwald, Helmuth; Nakanishi, Takashi

    2009-01-01

    Fullerene flakes: A diacetylene-functionalized fullerene derivative self-organizes into flakelike microparticles (see picture). Both the diacetylene and C(60) moieties can be effectively cross-linked, which leads to supramolecular materials with remarkable resistivity to solvent, heat, and mechanical stress. Moreover, the surface of the cross-linked flakelike objects is highly durable and water-repellent.

  19. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.;

    2015-01-01

    behaving as pseudo-binary mixtures due to alloying of the fullerene components. This finding has vast implications for the understanding of polymer–fullerene mixtures and quite certainly also their application in organic solar cells where performance hinges critically on the blend behaviour which is also...

  1. Bottom-Up Approaches Towards Functional Fullerene-Containing Nanostructured Materials

    NARCIS (Netherlands)

    Hummelen, J.C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    2001-01-01

    Fullerenes can play an important role in functional materials, the most common being that of an electron acceptor and electron transport material. Functional feasibility of fullerene derivatives has been shown in photovoltaic, photo detection, and image scanning devices, for example. In these applic

  2. A new application area for fullerenes: voltage stabilizers for power cable insulation.

    Science.gov (United States)

    Jarvid, Markus; Johansson, Anette; Kroon, Renee; Bjuggren, Jonas M; Wutzel, Harald; Englund, Villgot; Gubanski, Stanislaw; Andersson, Mats R; Müller, Christian

    2015-02-01

    Fullerenes are shown to be efficient voltage-stabilizers for polyethylene, i.e., additives that increase the dielectric strength of the insulation material. Such compounds are highly sought-after because their use in power-cable insulation may considerably enhance the transmission efficiency of tomorrow's power grids. On a molal basis, fullerenes are the most efficient voltage stabilizers reported to date.

  3. A search of diffuse bands in fullerene planetary nebulae: evidence for diffuse circumstellar bands

    CERN Document Server

    Diaz-Luis, J J; Rao, N Kameswara; Manchado, A; Cataldo, F

    2014-01-01

    Large fullerenes and fullerene-based molecules have been proposed as carriers of diffuse interstellar bands (DIBs). The recent detection of the most common fullerenes (C60 and C70) around some Planetary Nebulae (PNe) now enable us to study the DIBs towards fullerene-rich space environments. We search DIBs in the optical spectra towards three fullerene-containing PNe (Tc 1, M 1-20, and IC 418). Special attention is given to DIBs which are found to be unusually intense towards these fullerene sources. In particular, an unusually strong 4428A absorption feature is a common charateristic to fullerene PNe. Similarly to Tc 1, the strongest optical bands of neutral C60 are not detected towards IC 418. Our high-quality (S/N > 300) spectra for PN Tc 1 together with its large radial velocity permits us to search for the presence of diffuse bands of circumstellar origin which we refer to as diffuse circumstellar bands (DCBs). We report the first tentative detection of two DCBs at 4428 and 5780 A in the fullerene-rich ci...

  4. Biodiesel: o ônus e o bônus de produzir combustível Biodiesel: the charge and the bond of the fuel producing

    Directory of Open Access Journals (Sweden)

    Paulo Regis Ferreira da Silva

    2008-06-01

    do óleo diesel, mas as vantagens ambientais e agrícolas dependem de estudos pendentes em vários elos da cadeia produtiva.The petroleum dependence and the pollution generated by its use are the big disadvantages of this fuel, which demand look for another source of energy. Biodiesel is the fuel obtained from vegetables oils or animal fat, which can substitute petroleum diesel, total or partially. Three processes are possible to obtain biodiesel: cracking, tranesterfication or esterification, having glycerin as a derivate. The Brazilian National Program for Production and Use of Biodiesel stimulates the transesterification process, which is the chemical reaction of the triglycerides with alcohols (methanol or ethanol using a catalyst (NaOH. The goal of this revision was to discuss the advantages and disadvantages that biodiesel production can bring for agriculture and environmental and the competition that could occur for natural resources between food and fuel production. The biodiesel obtained from renewable sources has as advantages the lower pollutant it gases emission and lower persistence in the soil. However, it has a higher cost production than petroleum diesel and the energy balance is less favourable, although it can vary with the system production used. The higher demand for oleaginous grains will increase the number of species used in crop production. In the south of Brazil, the species more stimulated are soybean, sunflower, canola and castor plant. Castor, that is an alternative for drought regions, is being genetically modified for fuel production, but it has the big disadvantage of ricin production, which is very poisonous for human and environment. Sunflower produces a very healthy oil for human use, with high levels of fat poliinsaturated acids. Biodiesel is a good alternative to substitute partial or totally petroleum diesel, but the environmental and agricultural advantages depend on studies in every link of its production chain.

  5. How disorder controls the kinetics of triplet charge recombination in semiconducting organic polymer photovoltaics.

    Science.gov (United States)

    Bittner, Eric R; Lankevich, Vladimir; Gélinas, Simon; Rao, Akshay; Ginger, David A; Friend, Richard H

    2014-10-14

    Recent experiments by Rao et al. (Nature, 2013, 500, 435-439) indicate that recombination of triplet charge-separated states is suppressed in organic polymer-fullerene based bulk-heterojunction (BHJ) photovoltaic cells exhibiting a high degree of crystallinity in the fullerene phase relative to systems with more disorder. In this paper, we use a series of Frenkel-exciton lattice models to rationalize these results in terms of wave-function localization, interface geometry, and density of states. In one-dimensional co-linear and co-facial models of the interface, increasing local energetic disorder in one phase localizes the interfacial triplet charge-transfer ((3)CT) states and increases the rate at which these states relax to form lower-energy triplet excitons. In two dimensional BHJ models, energetic disorder within the fullerene phase plays little role in further localizing states pinned to the interface. However, inhomogeneous broadening introduces strong coupling between the interfacial (3)CT and nearby fullerene triplet excitons and can enhance the decay of these states in systems with higher degrees of energetic disorder.

  6. Localization of the valence electron of endohedrally confined hydrogen, lithium and sodium in fullerene cages

    CERN Document Server

    Cuestas, Eloisa

    2016-01-01

    The localization of the valence electron of $H$, $Li$ and $Na$ atoms enclosed by three different fullerene molecules is studied. The structure of the fullerene molecules is used to calculate the equilibrium position of the endohedrally atom as the minimum of the classical $(N+1)$-body Lennard-Jones potential. Once the position of the guest atom is determined, the fullerene cavity is modeled by a short range attractive shell according to molecule symmetry, and the enclosed atom is modeled by an effective one-electron potential. In order to examine whether the endohedral compound is formed by a neutral atom inside a neutral fullerene molecule $X@C_{N}$ or if the valence electron of the encapsulated atom localizes in the fullerene giving rise to a state with the form $X^{+}@C_{N}^{-}$, we analyze the electronic density, the projections onto free atomic states, and the weights of partial angular waves.

  7. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  8. Fabrication and characteristics of fullerene-perylene dyad based organic photovoltaic cell.

    Science.gov (United States)

    So, Byoung Min; Chung, Chan Moon; Oh, Se Young

    2011-05-01

    Fullerene is an acceptor material which is used most usually in organic photovoltaic cell. By the way, the reduction of electron mobility and the phase separation of conducting polymer and fullerene in the actual bulk heterojunction photovoltaic cell limit further improvement of device performance. In order to overcome the problems, fabrication of hybrid planar mixed heterojunction cells and synthesis of donor-acceptor dyad have been studied. In the present work, we have synthesized fullerene-perylene dyad to improve the fullerene based photovoltaic cell. In order to explore the properties of the synthesized material, the measurements of absorption spectrum and energy level were carried out. We have investigated the energy conversion efficiency of organic photovoltaic cell consisting of ITO/PEDOT-PSS/MEH-PPV:fullerene-perylene dyad/Al.

  9. Photoionization of multishell fullerenes studied by ab initio and model approaches

    CERN Document Server

    Verkhovtsev, Alexey; Solov'yov, Andrey V

    2016-01-01

    Photoionization of two buckyonions, C$_{60}$@C$_{240}$ and C$_{20}$@C$_{60}$, is investigated by means of time-dependent density-functional theory (TDDFT). The TDDFT-based photoabsorption spectrum of C$_{60}$@C$_{240}$, calculated in a broad photon energy range, resembles the sum of spectra of the two isolated fullerenes, thus illustrating the absence of strong plasmonic coupling between the fullerenes which was proposed earlier. The calculated spectrum of the smaller buckyonion, C$_{20}$@C$_{60}$, differs significantly from the sum of the cross sections of the individual fullerenes because of strong geometrical distortion of the system. The contribution of collective electron excitations arising in individual fullerenes is evaluated by means of plasmon resonance approximation (PRA). An extension of the PRA formalism is presented, which allows for the study of collective electron excitations in multishell fullerenes under photon impact. An advanced analysis of photoionization of buckyonions, performed using m...

  10. Supramolecular [60]fullerene liquid crystals formed by self-organized two-dimensional crystals.

    Science.gov (United States)

    Zhang, Xiaoyan; Hsu, Chih-Hao; Ren, Xiangkui; Gu, Yan; Song, Bo; Sun, Hao-Jan; Yang, Shuang; Chen, Erqiang; Tu, Yingfeng; Li, Xiaohong; Yang, Xiaoming; Li, Yaowen; Zhu, Xiulin

    2015-01-02

    Fullerene-based liquid crystalline materials have both the excellent optical and electrical properties of fullerene and the self-organization and external-field-responsive properties of liquid crystals (LCs). Herein, we demonstrate a new family of thermotropic [60]fullerene supramolecular LCs with hierarchical structures. The [60]fullerene dyads undergo self-organization driven by π-π interactions to form triple-layer two-dimensional (2D) fullerene crystals sandwiched between layers of alkyl chains. The lamellar packing of 2D crystals gives rise to the formation of supramolecular LCs. This design strategy should be applicable to other molecules and lead to an enlarged family of 2D crystals and supramolecular liquid crystals.

  11. Dibenzo[f,h]thieno[3,4-b] quinoxaline-fullerene heterojunction bilayer solar cells with complementary spectrum coverage

    Energy Technology Data Exchange (ETDEWEB)

    Kekuda, Dhananjaya [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei (China); Huang, Jen-Shien [Department of Chemical Engineering, National Taiwan University (China); Velusamy, Marappan; Lin, Jiann T. [Institute of Chemistry, Academia Sinica, Nankang, Taipei (China); Chu, Chih-Wei [Research Center for Applied Sciences, Academia Sinica, Nankang, Taipei (China); Department of Photonics, National Chio-Tung University, Hsinchu 30013 (China)

    2010-10-15

    In the present article, potential of a bilayer organic solar cell has been investigated. We utilize newly synthesized small molecules, namely dibenzo[f,h]thieno[3,4-b]quinoxaline as electron donors for solar cells in heterojunction bilayer configuration. These small molecules with a narrow absorption band in the range 400-450 nm provide a complementary spectrum for the fullerene C{sub 70}, thereby leading to an overall power conversion efficiency of 2.6{+-}0.2% under 100 mW/cm{sup 2} incident radiation. Thermal annealing seems to impact the charge separation at the donor-acceptor interface, which eventually affects device performance. This work demonstrates that carefully optimized bilayer devices are comparable to the bulk heterojunction counterparts. (author)

  12. Effect of multiple adduct fullerenes on microstructure and phase behavior of P3HT:fullerene blend films for organic solar cells.

    Science.gov (United States)

    Guilbert, Anne A Y; Reynolds, Luke X; Bruno, Annalisa; MacLachlan, Andrew; King, Simon P; Faist, Mark A; Pires, Ellis; Macdonald, J Emyr; Stingelin, Natalie; Haque, Saif A; Nelson, Jenny

    2012-05-22

    The bis and tris adducts of [6,6]phenyl-C(61)-butyric acid methyl ester (PCBM) offer lower reduction potentials than PCBM and are therefore expected to offer larger open-circuit voltages and more efficient energy conversion when blended with conjugated polymers in photovoltaic devices in place of PCBM. However, poor photovoltaic device performances are commonly observed when PCBM is replaced with higher-adduct fullerenes. In this work, we use transmission electron microscopy (TEM), steady-state and ultrafast time-resolved photoluminescence spectroscopy (PL), and differential scanning calorimetry (DSC) to probe the microstructural properties of blend films of poly(3-hexylthiophene-2,5-diyl) (P3HT) with the bis and tris adducts of PCBM. TEM and PL indicate that, in as-spun blend films, fullerenes become less soluble in P3HT as the number of adducts increases. PL indicates that upon annealing crystallization leads to phase separation in P3HT:PCBM samples only. DSC studies indicate that the interactions between P3HT and the fullerene become weaker with higher-adduct fullerenes and that all systems exhibit eutectic phase behavior with a eutectic composition being shifted to higher molar fullerene content for higher-adduct fullerenes. We propose two different mechanisms of microstructure development for PCBM and higher-adduct fullerenes. P3HT:PCBM blends, phase segregation is the result of crystallization of either one or both components and is facilitated by thermal treatments. In contrast, for blends containing higher adducts, the phase separation is due to a partial demixing of the amorphous phases. We rationalize the lower photocurrent generation by the higher-adduct fullerene blends in terms of film microstructure.

  13. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Directory of Open Access Journals (Sweden)

    Jifei Zhao

    2016-06-01

    Full Text Available As an important electron source, Micro-Pulse electron Gun (MPG which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR, Free Electron Laser (FEL. The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  14. Penning-trap Q-value determination of the {sup 71}Ga(ν,e{sup −}){sup 71}Ge reaction using threshold charge breeding of on-line produced isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Frekers, D., E-mail: Frekers@Uni-Muenster.de [Institut für Kernphysik, Westfälische Wilhelms-Universität, 48149 Münster (Germany); Simon, M.C. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Andreoiu, C. [Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Bale, J.C. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6 (Canada); Brodeur, M. [NSCL, Michigan State University, East Lansing, MI 48824 (United States); Brunner, T. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Physik Department E12, Technische Universität München, 85748 Garching (Germany); Chaudhuri, A. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Chowdhury, U. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Department of Physics, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada); Crespo López-Urrutia, J.R. [Max Planck Institute for Nuclear Physics, 69117 Heidelberg (Germany); Delheij, P. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Ejiri, H. [Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 560-0047 (Japan); Ettenauer, S.; Gallant, A.T. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Gavrin, V. [Institute for Nuclear Research, Russian Academy of Sciences, Moscow, 1173122 (Russian Federation); Grossheim, A. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747 AA Groningen (Netherlands); Jang, F. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Kwiatkowski, A.A. [TRIUMF, Vancouver, BC V6T 2A3 (Canada); and others

    2013-05-24

    We present a first direct Q-value measurement of the {sup 71}Ga(ν,e{sup −}){sup 71}Ge reaction using the TITAN mass-measurement facility at ISAC/TRIUMF. The measurements were performed in a Penning trap on neon-like {sup 71}Ga{sup 21+} and {sup 71}Ge{sup 22+} using isobar separation of the on-line produced mother and daughter nuclei through threshold charge breeding in an electron-beam ion trap. In addition, isoionic samples of {sup 71}Ga{sup 21+} and {sup 71}Ge{sup 21+} were stored concurrently in the Penning trap and provided a separate Q-value measurement. Both independent measurements result in a combined Q-value of 233.5±1.2 keV, which is in agreement with the previously accepted Q-value for the ν cross-section calculations. Together with a recent measurement of the ν-response from the excited states in {sup 71}Ge, we conclude that there are no further uncertainties in the nuclear structure, which could remove the persistent discrepancy between the SAGE and GALLEX calibration measurements performed with neutrinos from reactor-produced {sup 51}Cr and {sup 37}Ar sources and the theoretical expectation.

  15. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    Science.gov (United States)

    Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia

    2016-06-01

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  16. In-situ Neutron Scattering Determination of 3D Phase-Morphology Correlations in Fullerene Block Copolymer Systems

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Alamgir [Univ. of Akron, OH (United States); Bucknall, David [Georgia Inst. of Technology, Atlanta, GA (United States); Raghavan, Dharmaraj [Howard Univ., Washington, DC (United States)

    2015-02-23

    a fundamental study that does not set out to evaluate new materials or produce devices, but rather we wish to understand from first principles how the molecular structure of polymer-fullerene mixtures determined using neutron scattering (small angle neutron scattering and neutron reflection) affects device characteristics and consequently performance. While this seems a very obvious question to ask, this critical understanding is far from being realized despite the wealth of studies into OPV’s and is severely limiting organic PV devices from achieving their theoretical potential. Despite the fundamental nature of proposed work, it is essential to remain technologically relevant and therefore to ensure we address these issues we have developed relationships on the fundamental nature of structure-processing-property paradigm as applied to future need for large area, flexible OPV devices. Nanoscale heterojunction systems consisting of fullerenes dispersed in conjugated polymers are promising materials candidates for achieving high performance organic photovoltaic (OPV) devices. In order to understand the phase behavior in these devices, neutron reflection is used to determine the behavior of model conjugated polymer-fullerene mixtures. Neutron reflection is particularly useful for these types of thin film studies since the fullerene generally have a high scattering contrast with respect to most polymers. We are studying model bulk heterojunction (BHJ) films based on mixtures of poly(3-hexyl thiophene)s (P3HT), a widely used photoconductive polymer, and different fullerenes (C60, PCBM and bis-PCBM). The characterization technique of neutron reflectivity measurements have been used to determine film morphology in a direction normal to the film surfaces. The novelty of the approach over previous studies is that the BHJ layer is sandwiched between a PEDOT/PSS and Al layers in real device configuration. Using this model system, the effect of typical thermal annealing

  17. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene

    Directory of Open Access Journals (Sweden)

    Ngan CL

    2014-09-01

    Full Text Available Cheng Loong Ngan,1 Mahiran Basri,1,2 Fui Fang Lye,1 Hamid Reza Fard Masoumi,1 Minaketan Tripathy,3,4 Roghayeh Abedi Karjiban,1 Emilia Abdul-Malek1 1Department of Chemistry, Faculty of Science, 2Halal Products Research Institute, Universiti Putra Malaysia, Selangor, Malaysia; 3Laboratory of Fundamentals of Pharmaceutics, Faculty of Pharmacy, Puncak Alam Campus, Universiti Teknologi MARA, Selangor, Malaysia; 4Brain and Neuroscience Communities of Research, Universiti Teknologi MARA, Selangor, Malaysia Abstract: This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box–Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000–5,000 rpm, sonication amplitude (20%–60%, and sonication time (30–150 seconds on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, –52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box–Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, –55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard

  18. Charge reversal Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Lobodin, Vladislav V; Savory, Joshua J; Kaiser, Nathan K; Dunk, Paul W; Marshall, Alan G

    2013-02-01

    We report the first charge reversal experiments performed by tandem-in-time rather than tandem-in-space MS/MS. Precursor odd-electron anions from fullerene C(60), and even-electron ions from 2,7-di-tert-butylfluorene-9-carboxylic acid and 3,3'-bicarbazole were converted into positive product ions ((-)CR(+)) inside the magnet of a Fourier transform ion cyclotron resonance mass spectrometer. Charge reversal was activated by irradiating precursor ions with high energy electrons or UV photons: the first reported use of those activation methods for charge reversal. We suggest that high energy electrons achieve charge reversal in one step as double electron transfer, whereas UV-activated (-)CR(+) takes place stepwise through two single electron transfers and formally corresponds to a neutralization-reionization ((-)NR(+)) experiment.

  19. Femtosecond dynamics of correlated many-body states in C60 fullerenes

    Science.gov (United States)

    Usenko, Sergey; Schüler, Michael; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L.; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal

    2016-11-01

    Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C60 by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of {τ }{el}={10}-3+5 fs. Energy dissipation towards nuclear degrees of freedom is studied with time-resolved techniques. The evaluation of the nonlinear autocorrelation trace gives a characteristic time constant of {τ }{vib}=400+/- 100 fs for the exponential decay. In line with the experiment, the observed transient dynamics is explained theoretically by nonadiabatic (vibronic) couplings involving the correlated electronic, the nuclear degrees of freedom (accounting for the Herzberg-Teller coupling), and their interplay.

  20. Femtosecond dynamics of correlated many-body states in C$_{60}$ fullerenes

    CERN Document Server

    Usenko, Sergey; Azima, Armin; Jakob, Markus; Lazzarino, Leslie L; Pavlyukh, Yaroslav; Przystawik, Andreas; Drescher, Markus; Laarmann, Tim; Berakdar, Jamal

    2016-01-01

    Fullerene complexes may play a key role in the design of future molecular electronics and nanostructured devices with potential applications in light harvesting using organic solar cells. Charge and energy flow in these systems is mediated by many-body effects. We studied the structure and dynamics of laser-induced multi-electron excitations in isolated C$_{60}$ by two-photon photoionization as a function of excitation wavelength using a tunable fs UV laser and developed a corresponding theoretical framework on the basis of ab initio calculations. The measured resonance line width gives direct information on the excited state lifetime. From the spectral deconvolution we derive a lower limit for purely electronic relaxation on the order of $\\tau_\\mathrm{el}=8^{+12}_{-5}$ fs. Energy dissipation towards nuclear degrees of freedom is studied in time-resolved experiments. The evaluation of the non-linear autocorrelation trace gives a characteristic time constant of $\\tau_\\mathrm{vib}=309\\pm31$ fs for the exponenti...

  1. Light-induced EPR study of charge transfer in P3HT/bis-PCBM bulk heterojunctions

    Directory of Open Access Journals (Sweden)

    Victor I. Krinichnyi

    2011-06-01

    Full Text Available Radical pairs, polarons and fullerene anion radicals photoinduced by photons with energy of 1.98 – 2.73 eV in bulk heterojunctions formed by poly(3-hexylthiophene (P3HT with bis(1-[3-(methoxycarbonylpropyl]-1-phenyl-[6.6]C62 (bis-PCBM fullerene derivative have been studied by direct light-induced EPR (LEPR method in a wide temperature range. A part of photoinduced polarons are pinned in trap sites which number and depth are governed by an ordering of the polymer/fullerene system and energy of initiating photons. It was shown that dynamics and recombination of mobile polarons and counter fullerene anion radicals are governed by their exchange- and multi-trap assisted diffusion. Relaxation and dynamics parameters of both the charge carriers were determined separately by the steady-state saturation method. These parameters are governed by structure and conformation of the carriers’ microenvironment as well as by the energy of irradiating photons. Longitudinal diffusion of polarons was shown to depend on lattice phonons of crystalline domains embedded into an amorphous polymer matrix. The energy barrier required for polaron interchain hopping is higher than that its intrachain diffusion. Pseudorotation of fullerene derivatives in a polymer matrix was shown to follow the activation Pike model.

  2. Synthesis of endohedral iron-fullerenes by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1, Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Rácz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), Bem tér 18/C, H-4026 Debrecen (Hungary); Asaji, T. [Oshima National College of Maritime Technology, 1091-1, Komatsu Suou Oshima-city Oshima, Yamaguchi 742-2193 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1, Yamada-oka, Suita-shi, Osaka 565-0871 (Japan); Yoshida, Y. [Graduate School of Engineering, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan); Bio-Nano Electronics Research Centre, Toyo University, 2100, Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2014-02-15

    In this paper, we discuss the results of our study of the synthesis of endohedral iron-fullerenes. A low energy Fe{sup +} ion beam was irradiated to C{sub 60} thin film by using a deceleration system. Fe{sup +}-irradiated C{sub 60} thin film was analyzed by high performance liquid chromatography and laser desorption/ ionization time-of-flight mass spectrometry. We investigated the performance of the deceleration system for using a Fe{sup +} beam with low energy. In addition, we attempted to isolate the synthesized material from a Fe{sup +}-irradiated C{sub 60} thin film by high performance liquid chromatography.

  3. Multiscale simulation of water flow past a C540 fullerene

    Science.gov (United States)

    Walther, Jens H.; Praprotnik, Matej; Kotsalis, Evangelos M.; Koumoutsakos, Petros

    2012-04-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice-Boltzmann (LB) description for the Navier-Stokes equations. The proposed method links the MD and LB domains using a fully three-dimensional interface and coupling of velocity gradients. The present overlapping domain method implicitly preserves the flux of mass and momentum and bridges flux-based and Schwarz domain decomposition algorithms. We use this method to determine the slip length and hydrodynamic radius for water flow past a buckyball.

  4. Fullerene solar cells with cholesteric liquid crystal doping

    Science.gov (United States)

    Jiang, Lulu; Jiang, Yurong; Zhang, Congcong; Chen, Zezhang; Qin, Ruiping; Ma, Heng

    2016-09-01

    This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative. With a doping ratio of 0.3 wt%, the device achieves an ideal improvement on the shunt resistor and the fill factor. Compared with the reference cell, the power conversion efficiency of the doped cell is improved 24%. The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect. Project supported by the National Natural Science Foundation of China (Grant No. 61540016).

  5. Incomplete Exciton Harvesting from Fullerenes in Bulk Heterojunction Solar Cells

    KAUST Repository

    Burkhard, George F.

    2009-12-09

    We investigate the internal quantum efficiencies (IQEs) of high efficiency poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells and find them to be lower at wavelengths where the PCBM absorbs. Because the exciton diffusion length in PCBM is too small, excitons generated in PCBM decay before reaching the donor-acceptor interface. This result has implications for most state of the art organic solar cells, since all of the most efficient devices use fullerenes as electron acceptors. © 2009 American Chemical Society.

  6. Electronic Transport Properties of Doped C28 Fullerene

    Directory of Open Access Journals (Sweden)

    Akshu Pahuja

    2014-01-01

    Full Text Available Endohedral doping of small fullerenes like C28 affects their electronic structure and increases their stability. The transport properties of Li@C28 sandwiched between two gold surfaces have been calculated using first-principles density functional theory and nonequilibrium Green’s function formalism. The transmission curves, IV characteristics, and molecular projected self-consistent Hamiltonian eigenstates of both pristine and doped molecule are computed. The current across the junction is found to decrease upon Li encapsulation, which can be attributed to change in alignment of molecular energy levels with bias voltage.

  7. Charge generation and recombination in PCDTBT:PCBM photovoltaic blends

    Energy Technology Data Exchange (ETDEWEB)

    Etzold, Fabian; Howard, Ian; Mauer, Ralf; Meister, Michael; Laquai, Frederic [Max-Planck-Institute for Polymer Research, Mainz (Germany)

    2011-07-01

    Low-bandgap donor-acceptor copolymers have recently demonstrated their potential in bulk heterojunction organic solar cells. Among them, poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) blended with fullerene derivatives proved to be very efficient, yielding power conversion efficiencies in excess of 3 % even without postproduction annealing, which is typically applied to polythiophene:fullerene blends. We investigate exciton dynamics in pristine PCDTBT and charge carrier dynamics in as-cast and annealed blends with [6,6]-phenyl C{sub 61} butyric acid methyl ester (PCBM) by transient absorption and time-resolved photoluminescence spectroscopy. We find that in PCDTBT:PCBM blends a large fraction of excitons undergoes ultrafast generation of free charge carriers as previously observed for other material systems including P3HT:PCBM. However, a fraction of interfacial charge transfer states is also created, which recombine geminately with a lifetime of 2.5 ns. By monitoring the recombination dynamics over the previously unobserved time range from 1 ns to 1 ms, we conclude that the device efficiency must be limited by geminate recombination and charge extraction.

  8. On the Mechanical Properties of WS2 and MoS2 Nanotubes and Fullerene-Like Nanoparticles: In Situ Electron Microscopy Measurements

    Science.gov (United States)

    Kaplan-Ashiri, Ifat; Tenne, Reshef

    2016-01-01

    Since the discovery of the first inorganic fullerene-like nanoparticles and nanotubes made of WS2 and then MoS2, many more compounds which produce such nanostructures have been discovered and added to the ever expanding list of this group of the layered nanomaterials. Scaling-up the synthesis of the nano-phases of WS2 and MoS2 together with their incredible mechanical properties has turned them into a most promising product for the lubrication industry. Fundamental studies on the mechanical properties of WS2 and MoS2 inorganic fullerene-like nanoparticles and nanotubes are presented in this review. A wide range of mechanical testing was conducted on WS2 and MoS2 nanoparticles. The main focus of this review will be on single nanoparticle experiments in situ electron microscopy as it enables simultaneous structure and properties characterization. Although it is quite challenging, the single nanoparticle approach provides us with the ability to elucidate the intrinsic properties of WS2 and MoS2 inorganic fullerenes and nanotubes.

  9. Search for the Standard Model Higgs boson produced in association with a W Boson in the isolated-track charged-lepton channel using the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Buzatu, Adrian [McGill Univ., Montreal, QC (Canada)

    2011-08-01

    system and not required to match a calorimeter cluster, as for a tight electron candidate, or an energy deposit in the muon detector, as for a tight muon candidate. The ISOTRK category recovers real charged leptons that otherwise would be lost in the non-instrumented regions of the detector. This allows the reconstruction of more W boson candidates, which in turn increases the number of reconstructed WH signal candidate events, and therefore improves the sensitivity of the WH search. For the TIGHT charged lepton categories, we employ charged-lepton-dedicated triggers to improve the rate of WH signal acceptance during data taking. Since there is no ISOTRK-dedicated trigger at CDF, for the ISOTRK charged lepton category we employ three MET-plus-jets-based triggers. For each trigger we first identify the jet selection where the trigger efficiency is flat with respect to jet information (transverse energy and direction of motion in the transverse plane for the two jets in the event) and then we parametrize the trigger efficiency as a function of trigger MET. On an event-by-event basis, for each trigger we compute a trigger efficiency as a function of trigger parametrization, trigger MET, jet information, trigger prescale and information about whether the trigger is defined or not. For the ISOTRK category we combine the three triggers using a novel method, which allows the combination of any number of triggers in order to maximize the event yield while avoiding trigger correlations. On an event-by-event basis, only the trigger with the largest efficiency is used. By avoiding a logical 'OR' between triggers, the loss in the yield of events accepted by the trigger combination is compensated by a smaller and easier-to-compute corresponding systematic uncertainty. The addition of the ISOTRK charged lepton category to the TIGHT category produces an increase of 33% in the WH signal yield and a decrease of 15.5% to 19.0% in the median expected 95% CL cross-section upper

  10. Search for the Standard Model Higgs boson produced in association with a W Boson in the isolated-track charged-lepton channel using the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Buzatu, Adrian [McGill Univ., Montreal, QC (Canada)

    2011-08-01

    system and not required to match a calorimeter cluster, as for a tight electron candidate, or an energy deposit in the muon detector, as for a tight muon candidate. The ISOTRK category recovers real charged leptons that otherwise would be lost in the non-instrumented regions of the detector. This allows the reconstruction of more W boson candidates, which in turn increases the number of reconstructed WH signal candidate events, and therefore improves the sensitivity of the WH search. For the TIGHT charged lepton categories, we employ charged-lepton-dedicated triggers to improve the rate of WH signal acceptance during data taking. Since there is no ISOTRK-dedicated trigger at CDF, for the ISOTRK charged lepton category we employ three MET-plus-jets-based triggers. For each trigger we first identify the jet selection where the trigger efficiency is flat with respect to jet information (transverse energy and direction of motion in the transverse plane for the two jets in the event) and then we parametrize the trigger efficiency as a function of trigger MET. On an event-by-event basis, for each trigger we compute a trigger efficiency as a function of trigger parametrization, trigger MET, jet information, trigger prescale and information about whether the trigger is defined or not. For the ISOTRK category we combine the three triggers using a novel method, which allows the combination of any number of triggers in order to maximize the event yield while avoiding trigger correlations. On an event-by-event basis, only the trigger with the largest efficiency is used. By avoiding a logical 'OR' between triggers, the loss in the yield of events accepted by the trigger combination is compensated by a smaller and easier-to-compute corresponding systematic uncertainty. The addition of the ISOTRK charged lepton category to the TIGHT category produces an increase of 33% in the WH signal yield and a decrease of 15.5% to 19.0% in the median expected 95% CL cross-section upper

  11. Low extraction recovery of fullerene from carbonaceous geological materials spiked with C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Jehlicka, J.; Frank, O.; Hamplova, V.; Pokorna, Z.; Juha, L.; Bohacek, Z.; Weishauptova, Z. [Charles University, Prague (Czech Republic). Inst. for Geochemical Mineral & Mineral Resources

    2005-08-01

    Soxhlet extraction, sonication, and ultracritical extraction were tested with respect to their capacity to extract fullerenes from natural carbonaceous materials. Toluene solutions with various contents of synthetic C{sub 60} were added to powdered graphite, shungite, bituminous coal, and quartz, with final C{sub 60} concentration 0.1-100 ppm. The C{sub 60}-doped materials were leached in three kinds of extraction apparatus. High-performance liquid chromatography (HPLC) was used to analyse the fullerene content in the obtained toluene extracts. Surprisingly low yields of the C{sub 60} extraction (most of them well below 5%) were determined for all the carbonaceous matrices and all the extraction techniques employed in the fullerene isolation. This finding has serious consequences for better understanding of the reported fullerene occurrence in the geological environment, because a greatly limited extraction yield can be responsible for some negative results of fullerene analyses in various geological samples. Both fullerene stability in solvents and fullerene interaction with the surfaces of geological carbonaceous matrices are discussed to explain the obtained results.

  12. Sandwich-Like Graphite-Fullerene Composites with Enhanced Electromagnetic Wave Absorption

    Science.gov (United States)

    Zhong, Jiachun; Jia, Kun; Pu, Zejun; Liu, Xiaobo

    2016-11-01

    Sandwich-like graphite-fullerene composites have been prepared via a simple solution mixing/evaporation method. The complex relative permittivity and permeability of the graphite-fullerene composites in the frequency range from 0.5 GHz to 18 GHz were measured using a vector network analyzer with the reflection/transmission technique. Additionally, the microwave reflection loss of the composites was calculated using the obtained complex microwave electromagnetic parameters. It was found that the microwave loss peaks in the Ku band were dependent on the concentration of fullerene nanoparticles in the composites. Maximum reflection loss of -30 dB was observed between 2 GHz and 8 GHz when the graphite composites were doped with 1 wt.% fullerene. This absorption loss dropped (-24 dB) when the composite contained 3 wt.% fullerene. In addition, the electrical properties of the graphite were independent of the presence of fullerene in the composites. The tunable microwave reflection loss indicates that these graphite-fullerene composites show promise as wideband electromagnetic wave absorption materials.

  13. Efficient polymer:fullerene bulk heterojunction solar cells with n-type doped titanium oxide as an electron transport layer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youna [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Geunjin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Heejoo, E-mail: heejook@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Sun Hee [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Kwanghee, E-mail: klee@gist.ac.kr [Heeger Center for Advanced Material & Research Institute of Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2015-05-29

    We have reported a highly n-type doped solution-processed titanium metal oxide (TiO{sub x}) for use as an efficient electron-transport layer (ETL) in polymer:fullerene bulk heterojunction (BHJ) solar cells. When the metal ions (Ti) in TiO{sub x} are partially substituted by niobium (Nb), the charge carrier density increased, by an order of magnitude, because of the large electronegativity of Nb compared to that of Ti. Therefore, the work function (WF) of Nb-doped metal oxide (Nb-TiO{sub x}) decreases from 4.75 eV (TiO{sub x}) to 4.66 eV (Nb-TiO{sub x}), leading to an enhancement in the power conversion efficiency (PCE) of BHJ solar cells with a Nb-TiO{sub x} ETL (from 7.99% to 8.40%). - Highlights: • Solution processable Nb-doped TiO{sub x} was developed by simple sol-gel synthesis. • Charge carrier density in TiO{sub x} is significantly increased by introducing Nb element. • The work function value of Nb-doped TiO{sub x} is reduced by introducing Nb element. • A charge recombination inside of PSC with Nb-TiO{sub x} was effectively suppressed.

  14. Photonics of fullerene-conducting polymer composites and multilayered structures: new results and prospects

    Science.gov (United States)

    Yoshino, Katsumi; Yoshimoto, Kenji; Tada, Kazuya; Araki, Hishashi; Kawai, Tsuyoshi; Ozaki, Masanori; Zakhidov, Anvar A.

    1995-12-01

    The general features of charge transfer processes fullerene/conducting polymer (CP) systems, such as energetics of photoinduced charge transfer (PCT) between C60 and CP (pi) - electronic states, geometry of (pi) -(pi) overlapping and the role of self-trapping effects to polaronic states on C60 and CP chains on the PCT dynamics are analyzed. Persistent photoconductivity and electroluminescence quenching recently found in C60/CP composites additionally to photoconductivity enhancement and photoluminescence quenching observed earlier, indicate that photogenerated C60 radicals may be extremely long living in CP matrices, due to multicharging of C60 as suggested by us accompanied with deep self-trapping to polaron/bipolaron states. The anisotropy of PCT is proposed to arise due to orientational modulation of overlapping between polaronic rings on C60 and CP which strongly suppresses back recombination. The strategy to increase the efficiency of C60CP donor-acceptor (DA) photocells by improving PCT is analyzed, particularly considering multilayered structures with polarization barriers at interfaces, and increased intralayer mobilities of carriers. To increase the efficiency of photons collection in photocells we suggest three layered D-M-A structures, with molecular 'photon pump' layers strongly absorbing photons. The prospects for novel photonic applications of various C60CP systems, such as NLO devices and photomodulated field effect transistors (FETs) are discussed and illustrated by the newest results. New results on superconductivity of C60/CP upon alkali metal doping are presented, and exciting possibilities for novel superconducting phases in this system are discussed.

  15. Occurrence of natural fullerenes in low grade metamorphosed Proterozoic shungite from Karelia, Russia

    Science.gov (United States)

    Parthasarathy, G.; Srinivasan, R.; Vairamani, M.; Ravikumar, K.; Kunwar, A. C.

    1998-11-01

    We report on the occurrence of fullerenes in Proterozoic shungite (˜2 Ga) from the shungite mine, Kondopoga, Karelia, Russia (62.12°N 34.17°E). The presence of fullerenes has been confirmed by mass spectrometry, with peaks at 360 and 720 amu (atomic mass unit), powder X-ray diffraction showing ten diffraction peaks corresponding to the fullerite structure with a = 1.4201(5) nm, and 13C nuclear magnetic resonance (NMR) spectroscopic studies, showing a peak at 143.2 ppm. In the Kondopoga shungite mine, fullerenes occur in silty shales that have experienced greenshist facies metamorphism.

  16. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN YiChi; GUO Liang; ZHU LiQun

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallofullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  17. Perfluoroalkylation of Fullerenes%富勒烯的全氟烷基化

    Institute of Scientific and Technical Information of China (English)

    李祥子; 余锐; 魏先文

    2011-01-01

    Perfluoroalkyl fullerenes have been become a kind of important derivatives in the field of fullerenes due to their high stabilities, high solubilities, increased electron-withdrawing property and decreased susceptibility to nucleophilic substitution.They can be used to synthesize more promising functional materials with unique optic,electronic and magnetic properties, and to explore some unknown fullerenes structures, especially for high fullerenes with poor solubility.Moreover, the research on perfluoroalkyl fullerenes also open a new direction for the derivatizations and functionalizitions of fullerenes.In this paper the progress on the synthesis, structures and properties of perfluoroalkyl fullerenes in recent years, including perfluoroalkylation of C60, C70, and high fullerenes is reviewed.Trifluoromethylation of all kinds of fullerenes is discussed in detailed.Firstly, some synthetic methods, separation strategies and research results are summed up.Secondly, the characteristic information such as infrared spectra data, ultraviolet spectra data, nuclear magnetic resonance spectra (19F NMR) data, high performance liquid chromatography (HPLC) parameters and electrochemistry data etc.for perfluoroalkyl fullerenes are presented.Thirdly, some possible structures of perfluoroalkyl fullerenes computed by density functional theory (DFT) are enumerated, and single crystal structures of all the known perfluoroalkyl fullerenes determined by X-ray crystallography are also given via Schlegel diagrams.In the end, some research and development trends in the field are proposed.%全氟烷基富勒烯具有较高的稳定性和溶解性,已成为富勒烯研究领域中逐步兴起的一类重要衍生物,有望用于合成具有特殊性能的新型富勒烯基功能材料,进而为富勒烯的衍生化和功能化研究指出了一个新方向.本文综述了近年来全氟烷基富勒烯的合成、结构及性能研究等方面取得的最新进展,重点介绍了富勒烯

  18. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    Science.gov (United States)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.; Praprotnik, M.

    2015-11-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  19. Enhanced Fullerene Yield in Plasma-Aerosol Reactor at Cryogenic Boundary Temperature

    CERN Document Server

    Jouravlev, Mikhail

    2011-01-01

    We demonstrate remarkably enhanced yield of C60 fullerenes in an aerosol discharge chamber due to the additional presence of a strong spatial temperature gradient. The role of the temperature gradients in the increased yield of C60 and fullerene-like structures is discussed. The reaction is not fully reversible and carbon soot matter is formed as a secondary product in the form of carbon aerosol particles. The increasing concentration of C60 was easily recognized from the characteristic UV-spectra. The result of this paper will be useful for improvement of fullerene synthesis technology and for application to constructing new types of aerosol-plasma reactors.

  20. Fullerene Molecules and Other Clusters of III-V Compounds

    Science.gov (United States)

    Hira, Ajit; Auxier, John, II; Lucero, Melinda

    2010-03-01

    The goal of the our work is to derive geometries of fullerene-like cages and other clusters of atoms from groups III and V of the periodic table. Our previous research focused on Carbon Fullerenes and on GanAsn clusters (n = 1 thru 12). Our research group has made an original discovery about GanAsn clusters. In our work on nanotechnology to date, we used the hybrid ab initio methods of quantum chemistry to derive the different geometries for the clusters of interest. We also calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps, and IR spectra for these geometries. Of particular significance was the magic number for GaAs cluster stability that we found at n = 8. This is important because materials containing controlled III-V nanostructures provide the capability of preparing new classes of materials with enhanced optical, magnetic, chemical sensor and photo-catalytic properties. The second phase of the investigation will examine the effects of confinement on the optical properties the clusters. It will be interesting to observe novel linear as well as nonlinear optical processes in them. The third phase of the investigation will focus on the improved design of solar cells based on the optical properties of the clusters.

  1. Tuning of electronic properties of fullerene-oligothiophene layers

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, Kornelia [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Pilarczyk, Kacper, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Podborska, Agnieszka [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kim, Tae-Dong; Lee, Kwang-Sup [Department of Advanced Materials, Hannam University, 305-811 Daejeon (Korea, Republic of); Szaciłowski, Konrad, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2015-01-26

    Electronic properties of fullerene derivatives containing oligothiophene pendant chain (1–3 thiophene moieties) were investigated using the Kelvin probe technique and quantum chemistry methods. For electrochemical examination of these systems, Langmuir–Blodgett (LB) layers were prepared by the deposition on a gold substrate. The analysis of the experimental data shows that the value of the work function depends strongly on the length of oligothiophene chain. Similar dependence was also found for the surface photovoltage measurements conducted for the layers consisting of multiple LB films of the examined compounds deposited on gold surfaces. The assumption has been made that these changes are associated with the influence of oligothiophene chain on the electrostatic potential distribution near the surface of the sample. The hypothesis was confirmed by the results of DFT calculations, which revealed that the value of Fermi level energy shifts in the opposite direction to the determined work function. The key highlights of this study are as follows: electronic structure tuning by oligothiophene side chain; DFT calculation on fullerene-thiophene system; work function measurements of thin molecular layers.

  2. Improved fullerene nanofiber electrodes used in direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q [Nano Craft Technologies Co., Ltd., Tsukuba (Japan); Zhang, Y [Nationals Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Miyazawa, K; Kato, R; Hotta, K; Wakahara, T [National Institute for Materials Science, Tsukuba (Japan)], E-mail: yi.zhang@aist.go.jp, E-mail: q.wang@aist.go.jp

    2009-04-01

    Platinum supported on fullerene nanofibers as possible electrodes for direct methanol fuel cells (DMFC) were studied. Fullerene nanofiber with 20 wt% Pt loading was mixed with 5 wt% Nafion solution. The mixture paste was coated on Nafion 117 membrane and sandwiched with silicon plates. To increase the surface reaction area of catalyst, nanoimprint was used to fabricate micro-patterns in the Nafion proton exchange membrane. Nanoimprint pattern consisted of dots of 500 nm-in-diameter, 140 nm-in-depth and 1 {mu}m-in-spacing. The nanoimprint of the treated proton exchange membrane (PEM) was carried out in a desktop thermal nanoimprint system (NI273, Nano Craft Tech. Corp., Japan) at the optimized conditions of 130 {sup 0}C and pressure of 3 MPa for 6 min. Then the Pt-coated PEM was sandwiched with micro-channelled silicon plates to form a micro-DMFC. With passively feeding of 1 M methanol solution and air at room temperature, the as-prepared cell had the open circuit voltage of 0.34 V and the maximum power density of 0.30 mW/cm{sup 2}. Compared with a fresh cell, the results shows that nanofibers used in nanoimprinted PEM have an improvement on the performance of micro fuel cells.

  3. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marcaccio, Massimo; Paolucci, Francesco (eds.) [Bologna Univ. (Italy). Dept. of Chemistry G. Ciamician

    2014-11-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene

  4. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  5. 多孔材料药型罩聚能射流的形成条件%Formation Criteria of the Jets Produced by Shaped Charges with Porous Liners

    Institute of Scientific and Technical Information of China (English)

    周鹏; 王晶禹; 李如汪

    2012-01-01

    Compressibility of the porous material considered, shocking temperature rise of the porous liner before collapse was derived based on the Herrmann equation of state, the material sound speed was calculated after the shock wave released. The formation condition of the jets produced by shaped charge with porous liners was presented. The initial shocking temperature rise will make the sound speed and material strength decrease,so that the value of velocity limits of formating jet reduce.%依据Herrmann状态方程和斜冲击波关系估算了多孔材料药型罩压垮之前的冲击温升,求解了经过冲击压缩卸载后材料的声速.给出了多孔材料药型罩聚能射流的形成条件.初始冲击温升会使材料的声速和强度降低,从而使多孔材料聚能射流形成射流的高速和低速条件降低.

  6. Growth of thin fullerene films by Matrix Assisted Pulsed Laser Evaporation

    DEFF Research Database (Denmark)

    Canulescu, Stela; Schou, Jørgen; Fæster, Søren

    . However, organic materials are usually not well suited for direct laser irradiation, since the organic molecules may suffer from fragmentation by the laser light. We have, therefore, explored the possible fragmentation of organic molecules by attempting to produce thin films of C60 which is a strongly...... bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was di-rected onto a frozen target...... of the matrix material, anisole, with a concentration of 0.67 wt% C60. At laser fluences below 1.5 J/cm2, a dominant fraction of the film molecules are C60 transferred to the substrate without any fragmentation. High-resolution SEM images of MAPLE deposited films reveal large circular features on the surface...

  7. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  8. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  9. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.;

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  10. Geometric modeling of midi-fullerenes growth from C24 to C48

    Directory of Open Access Journals (Sweden)

    Alexander I. Melker

    2016-10-01

    Full Text Available Axonometric projections together with corresponding graphs for fullerenes are constructed in the range from 24 to 48. The growth of fullerenes is studied on the basis of the mechanism, according to which a carbon dimer embeds in a hexagon of an initial fullerene. This leads to stretching and breaking the covalent bonds which are parallel to arising tensile forces. In this case, instead of the hexagon adjoining two pentagons, one obtains two adjacent pentagons adjoining two hexagons. As a result, there arises a new atomic configuration and there is mass increase of two carbon atoms. We considered direct descendants of fullerene C24; namely, C2n, where n=13–24.

  11. Fragmentation Mechanism of Fullerenes in the Positive and Negative Ion Channels

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬

    2001-01-01

    We have performed the photofragmentation studies of pristine C60 and C60/C70 composites on the reflectron time-of-flight mass spectrometer (RTOF MS) in the positive and negative ion channels. The mechanism of the formation of daughter fullerenes in the negative ion channel and the enhancement of fullerene coalescence reactions have been discussed and compared to our previous studies on the linear TOF. The 5 cm free expansion path in the RTOF experiments provides sufficient time and a favourable environment for the electrons to attach to the neutral daughter species, so it is thought to play a key role for the appearance of strong mass peaks of anionic fragmentation and aggregation fullerene products. The appearance of odd-numbered "fullerene" fragments is briefly discussed.

  12. New chemistry of carbon: fullerenes and derivates. Una nueva quimica del carbono: fullerenos y derivados

    Energy Technology Data Exchange (ETDEWEB)

    Manteca-Diego, C.; Moran, E. (Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, Madrid (Spain))

    1994-01-01

    In this paper different aspects of a recently discovered new type of carbon based materials, the so-called ''fullerenes'' which the archetype is C[sub 6]0 and that have attracted a great deal of interest, are surveyed. The discovery, synthesis, characterization and other physicochemical properties of fullerenes and related materials, have been reviewed in order to give a global approach to the field. Specially worth to mention are the alkali-intercalated compounds as some of them show superconductivity. Emphasis is given to the organic chemistry of fullerenes as their reactivity, and consequently the number and variety of derivatives, is quite high. The new tubular fullerenes ''nano tubes'' appear also very interesting. (Author) 186 refs.

  13. Controlled fabrication of fullerene derivative one-dimensional nanostructures via electrophoretic deposition of its clusters

    Institute of Scientific and Technical Information of China (English)

    GUO Yuguo; WAN Lijun; WANG Chunru; BAI Chunli; GAN Liangbing; CHEN Dongmin

    2004-01-01

    Well-defined and controllable one-dimensional (1D) nanostructures of fullerene derivative have been prepared by an electrophoretic template synthesis method. The clusters of fullerene derivative formed in mixed solvents are introduced into the channels of porous alumina templates through a dc electric field. Four types of 1D nanostructures (solid nanowires, solid-wall nanotubes, porous nanowires and porous-wall nanotubes) have been obtained by changing the deposition parameters. This approach opens a new avenue to assemble fullerene derivatives, endohedral fullerenes, as well as other functional organic compounds, which can form clusters in 1D nanostructure arrays for applications in chemical sensors, light energy conversion devices and nanoscale electronic and optoelectronic devices.

  14. Realization of Large Area Flexible Fullerene - Conjugated Polymer Photocells : A Route to Plastic Solar Cells

    NARCIS (Netherlands)

    Brabec, C.J.; Padinger, F.; Hummelen, J.C.; Janssen, R.A.J.; Sariciftci, N.S.

    1999-01-01

    Bulk donor - acceptor heterojunctions between conjugated polymers and fullerenes have been utilized for photovoltaic devices with quantum efficiencies of around 1%. These devices are based on the photoinduced, ultrafast electron transfer between non degenerate ground state conjugated polymers and fu

  15. Dichotomous Role of Exciting the Donor or the Acceptor on Charge Generation in Organic Solar Cells.

    Science.gov (United States)

    Hendriks, Koen H; Wijpkema, Alexandra S G; van Franeker, Jacobus J; Wienk, Martijn M; Janssen, René A J

    2016-08-10

    In organic solar cells, photoexcitation of the donor or acceptor phase can result in different efficiencies for charge generation. We investigate this difference for four different 2-pyridyl diketopyrrolopyrrole (DPP) polymer-fullerene solar cells. By comparing the external quantum efficiency spectra of the polymer solar cells fabricated with either [60]PCBM or [70]PCBM fullerene derivatives as acceptor, the efficiency of charge generation via donor excitation and acceptor excitation can both be quantified. Surprisingly, we find that to make charge transfer efficient, the offset in energy between the HOMO levels of donor and acceptor that govern charge transfer after excitation of the acceptor must be larger by ∼0.3 eV than the offset between the corresponding two LUMO levels when the donor is excited. As a consequence, the driving force required for efficient charge generation is significantly higher for excitation of the acceptor than for excitation of the donor. By comparing charge generation for a total of 16 different DPP polymers, we confirm that the minimal driving force, expressed as the photon energy loss, differs by about 0.3 eV for exciting the donor and exciting the acceptor. Marcus theory may explain the dichotomous role of exciting the donor or the acceptor on charge generation in these solar cells.

  16. Fullerenes for enhanced performance of novel nano-exploited aircraft materials

    OpenAIRE

    Inam, Fawad; Okolo, Chichi

    2016-01-01

    Fullerene is an allotropic form of carbon having a large spheroidal molecule consisting of a hollow case of sixty or more carbon atoms. In the past decade, this family of super carbonaceous materials is subject of significant research interest for their utilization in an increasing number of applications including energy, transportation, defense, automotive, aerospace, sporting goods, and infrastructure sectors. Carbon nanotubes and graphene are some of the common types of fullerenes. This pr...

  17. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  18. The discovery of fullerenes in the 1.85 billion-year-old Sudbury meteorite crater

    Energy Technology Data Exchange (ETDEWEB)

    Becker, L.; Bada, J.L. [Scripps Institution of Oceanography, La Jolla, CA (United States); Winans, R.E.; Hunt, J.E. [Argonne National Lab., IL (United States); Bunch, T.E. [National Aeronautics and Space Administration, Moffett Field, CA (United States). Ames Research Center; French, B.M. [National Aeronautics and Space Administration, Washington, DC (United States)

    1996-02-01

    Fullerenes (C{sub 60}, C{sub 70}) have been identified by laser time-of-flight and electron-ionization mass spectroscopy in rock samples (black tuff in the Onaping formation) from the crater. They were likely synthesized within the impact plume from carbon contained in the meteorite. The isotopic ratios suggest {sup 13}C enrichment. They are associated with sulfur which may have protected them. This is the largest known deposit of naturally occurring fullerenes.

  19. Chemistry of Fullerenes on the Earth and in the Solar System: A 1995 Review

    Science.gov (United States)

    Heymann, D.

    1996-03-01

    Fullerenes C(sub)60 and C(sub)70, the all-carbon molecules with closed-cage structures were discovered in 1990 in shungite from the Kola peninsula. Subsequent discoveries in terrestrial materials include a fulgurite from Colorado, clays and marls from several locations on the Cretaceous-Tertiary boundary, and carbon-rich breccias from the Sudbury impact structure. A search for fullerenes in the carbon-rich materials anthraxolite, shungite, and thucholite, however, failed to find them.

  20. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazuhiro

    2010-03-01

    Full Text Available Abstract Background We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs were examined in rat lungs in both studies. Results In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group. Conclusion These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.

  1. Electric-arc synthesis of soot with high content of higher fullerenes in parallel arc

    Science.gov (United States)

    Dutlov, A. E.; Nekrasov, V. M.; Sergeev, A. G.; Bubnov, V. P.; Kareev, I. E.

    2016-12-01

    Soot with a relatively high content of higher fullerenes (C76, C78, C80, C82, C84, C86, etc.) is synthesized in a parallel arc upon evaporation of pure carbon electrodes. The content of higher fullerenes in soot extract amounts to 13.8 wt % when two electrodes are simultaneously burnt in electric-arc reactor. Such a content is comparable with the content obtained upon evaporation of composite graphite electrodes with potassium carbonate impurity.

  2. Synthesis and Characterization of novel covalent Oligofullerenes and Fullerene-Hexabenzocoronene-Hybrids

    OpenAIRE

    Kratzer, Andreas

    2016-01-01

    The purpose of this thesis was the synthesis and characterization of novel covalent oligofullerenes and fullerene–hexabenzocoronene–hybrids for applications in material science. Both the advancement of synthetic procedures and the extension of the family of clustered fullerene derivatives have been successfully promoted. A new concept was pursued, in which the packing of the fullerenes should be forced by covalent pre–clustering on the one hand and the resulting intermolecular π–π– interactio...

  3. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts.

  4. Predicting Real Optimized Materials: Novel Nitrogen-Containing Fullerenes and Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Manaa, M R

    2003-07-15

    We propose to investigate the possible configurations, electronic, conducting and energetic properties of nitrogen-containing carbon fullerenes and single-walled nanotubes with nitrogen contents up to 30% using first principle density functional theoretical calculations. The proposed research allows for a predictive method to control the electronic properties of fullerenes and nanotubes that could pave the way for controlled fabrication of molecular circuits and nanotube networks.

  5. Amine reactivity with charged sulfuric acid clusters

    OpenAIRE

    Bzdek, B. R.; D. P. Ridge; Johnston, M. V.

    2011-01-01

    The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid n...

  6. ‘Horror vacui’ or topological in-out isomerism in perhydrogenated fullerenes: C60H60 and monoalkylated perhydrogenated fullerenes

    Science.gov (United States)

    Dodziuk, Helena; Nowinski, Krzysztof

    1996-02-01

    In endohedral chemistry, one of the exciting prospects offered by the cage-like structure of fullerenes, several aspects of the calculations on in-out isomerism of perhydrogenated fullerene and their consequences went unnoticed, e.g. the topological character of the isomerism, the instability of C 60F 60, which was thought to revolutionize industry as an ideal lubricant, as well as the possibility of in-out isomerism in alkylated fulleranes. Molecular mechanics calculations indicate that for smaller alkyl groups the 'in' isomer is significantly more stable extending the possibility of endohedral fullerene chemistry. C 60H 60 and its derivatives can be considered as examples of a manifestation of the ancient 'horror vacui' concept.

  7. Fullerene-containing phases obtained from aqueous dispersions of carbon nanoparticles

    Science.gov (United States)

    Rozhkov, S. P.; Kovalevskii, V. V.; Rozhkova, N. N.

    2007-06-01

    The hydration of fullerenes and shungite carbon nanoclusters in aqueous dispersions at various carbon concentrations is studied on frozen samples by EPR with spin probes. It is found that, for stable dispersions of both substances (at carbon concentrations of 0.1 mg/ml), the probe rotation frequency versus 1/T dependences exhibit a plateau in the range 243 257 K, which is probably associated with the peculiarities of freezing of water localized near hydrophobic structures of carbon nanoclusters. Solid phases isolated from supersaturated aqueous dispersions of fullerenes and shungites by slow evaporation of water at temperatures higher than 0°C are examines by electron diffraction and electron microscopy. It is established that obtained films of fullerenes contain at least two phases: fullerite with a face-centered cubic lattice and a phase similar in interplanar spacing and radically different in distribution of intensities of diffraction peaks. It is concluded that this phase is formed by the interaction of fullerenes and water (an analogous phase is found in shungite carbon films). It is found that the morphology of the new crystal phase is characterized by globules of size 20 to 70 nm, for fullerenes, and 10 to 400 nm for shungites. It is established that processes of crystallization of fullerites and fullerene-containing phases are very sensitive to temperature: a decrease in the temperature (within the range from 40 to 1°C) is accompanied by an increase in the new phase content.

  8. Recent Advances in Photoinduced Electron Transfer Processes of Fullerene-Based Molecular Assemblies and Nanocomposites

    Directory of Open Access Journals (Sweden)

    Osamu Ito

    2012-05-01

    Full Text Available Photosensitized electron-transfer processes of fullerenes hybridized with electron donating or other electron accepting molecules have been surveyed in this review on the basis of the recent results reported mainly from our laboratorie