WorldWideScience

Sample records for charged current single

  1. Single neutral pion production by charged-current $\\bar{\

    CERN Document Server

    Aliaga, L; Bercellie, A; Bodek, A; Bravar, A; Brooks, W K; Butkevich, A; Caicedo, D A Martinez; Carneiro, M F; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Miller, J; Morfín, J G; Mousseau, J; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Yepes-Ramirez, H; Zavala, G; Zhang, D; Ziemer, B P

    2015-01-01

    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \\minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\\bar{\

  2. Characterization of Charging Control of a Single Wafer High Current Spot Beam Implanter

    International Nuclear Information System (INIS)

    This paper focuses on the characterization of charging control of an Axcelis Optima HD single wafer high current spot beam implanter using MOS capacitors with attached antennas of different size and shape. Resist patterns are implemented on Infineon Technologies own charging control wafers to investigate the influence of photo resist on charging damage. Compared to batch high current implanters the design of the beamline and the beam shape are comparable to single wafer high current spot beam implanters, however due to the different scanning architecture the dose rate of the single wafer high current spot beam implanters is significantly higher compared to the batch tools. Therefore, the risk of charging damage will be higher. The charging damage was studied as a function of the energy, the beam current and the most important plasma flood gun parameters. The results have shown that for very high antenna ratios the charging damage for single wafer implanters, even spot or ribbon beam implanters, is higher than for high current batch implanters.

  3. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki; /Kyoto U.

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged

  4. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  5. Anomalous Top Charged-current Contact Interactions in Single Top Production at the LHC

    CERN Document Server

    Bach, Fabian

    2014-01-01

    In an effective theory approach, the full minimal set of leading contributions to anomalous charged-current top couplings comprises various new trilinear tbW as well as quartic tbff' interaction vertices, some of which are related to one another by equations of motion. While much effort in earlier work has gone into the extraction of the trilinear couplings from single top measurements, we argue in this article that these structures can be assessed independently by other observables, while single top production forms a unique window to the four-fermion sector. An effective theory approach is employed to infer and classify the minimal set of such couplings from dimension six operators in the minimal flavor violation scheme. In the phenomenological analysis, we present a Monte Carlo study at detector level to quantify the expected performance of the next LHC run to bound as well as distinguish the various contact couplings. Special attention is directed towards differential final state distributions including d...

  6. Anomalous top charged-current contact interactions in single top production at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Fabian [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ohl, Thorsten [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik

    2014-10-15

    In an effective theory approach, the full minimal set of leading contributions to anomalous charged-current top couplings comprises various new trilinear tbW as well as quartic tbff' interaction vertices, some of which are related to one another by equations of motion. While much effort in earlier work has gone into the extraction of the trilinear couplings from single top measurements, we argue in this article that these structures can be assessed independently by other observables, while single top production forms a unique window to the four-fermion sector. An effective theory approach is employed to infer and classify the minimal set of such couplings from dimension six operators in the minimal flavor violation scheme. In the phenomenological analysis, we present a Monte Carlo study at detector level to quantify the expected performance of the next LHC run to bound as well as distinguish the various contact couplings. Special attention is directed toward differential final state distributions including detector effects as a means to optimize the signal sensitivity as well as the discriminative power with respect to the possible coupling structures.

  7. Charged weak currents

    International Nuclear Information System (INIS)

    In this review of charged weak currents we shall concentrate on inclusive high energy neutrino physics. The plan of this review is the following: general structure of charged current; new results on total cross-section; Callan-Gross relation; antiquark distribution; scaling violations and tests of QCD. At the end we will give a very short summary on multilepton physics

  8. Single Charge Current in a Normal Mesoscopic Region Attached to Superconductor Leads via a Coupled Poisson Nonequilibrium Green Function Formalism

    Science.gov (United States)

    Marin, F. P.

    2014-01-01

    We study the I-V characteristic of mesoscopic systems or quantum dot (QD) attached to a pair of superconducting leads. Interaction effects in the QD are considered through the charging energy of the QD; that is, the treatment of current transport under a voltage bias is performed within a coupled Poisson nonequilibrium Green function (PNEGF) formalism. We derive the expression for the current in full generality but consider only the regime where transport occurs only via a single particle current. We show for this case and for various charging energies values U 0 and associated capacitances of the QD the effect on the I-V characteristic. Also the influence of the coupling constants on the I-V characteristic is investigated. Our approach puts forward a novel interpretation of experiments in the strong Coulomb regime. PMID:24977220

  9. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  10. Charged current review

    International Nuclear Information System (INIS)

    Experimental measurements of the τ lifetime and leptonic branching ratios are combined to give updated world averages for these quantities. The results are then used to test the universality of the electroweak charged current couplings to the three lepton species and are found to be consistent with Standard Model predictions at the level of 0.2%, permitting limits to be derived on non-Standard Model physics such as the mass of the τ neutrino

  11. Current suppression in a double-island single-electron transistor for detection of degenerate charge configurations of a floating double-dot

    Science.gov (United States)

    Brenner, R.; Greentree, Andrew D.; Hamilton, A. R.

    2003-12-01

    We have investigated a double-island single-electron transistor (DISET) coupled to a floating metal double-dot (DD). Low-temperature transport measurements were used to map out the charge configurations of both the DISET and the DD. A suppression of the current through the DISET was observed whenever the charge configurations of the DISET and the DD were energetically codegenerate. This effect was used to distinguish between degenerate and nondegenerate charge configurations of the DD. We also show that this detection scheme reduces the susceptibility of the DISET to interference from random charge noise.

  12. Noise in space-charge-limited current in a CdS-single crystal at low injection level

    NARCIS (Netherlands)

    Driedonks, F.

    1967-01-01

    Current noise spectra (25Hz–20MHz) of a CdS-diode, working under space-charge-limited conditions. show trapping noise at low frequencies and slightly suppressed noise in the upper frequency range. Suppression is relatively small due to the effect of traps.

  13. Analytical Evaluation of the Ratio Between Injection and Space-Charge Limited Currents in Single Carrier Organic Diodes

    OpenAIRE

    Alvarez, Angel Luis; Arredondo, Belen; Romero, Beatriz; Quintana Arregui, Patxi Xabier; Gutierrez Llorente, Araceli; Mallavia, Ricardo; Otón Sánchez, José Manuel

    2008-01-01

    An analytical, complete framework to describe the current-voltage (I-V) characteristics of organic diodes without the use of previous approaches, such as injection or bulk-limited conduction is proposed. Analytical expressions to quantify the ratio between injection and space-charge-limited current from experimental I-V characteristics in organic diodes have been derived. These are used to propose a numerical model in which both bulk transport and injection mechanisms are considered simultane...

  14. Current suppression in a double-island single-electron transistor for detection of degenerate charge configurations of a floating double-dot

    OpenAIRE

    Brenner, R.; Greentree, Andrew D.; Hamilton, A. R.

    2003-01-01

    We have investigated a double-island single-electron transistor (DISET) coupled to a floating metal double-dot (DD). Low-temperature transport measurements were used to map out the charge configurations of both the DISET and the DD. A suppression of the current through the DISET was observed whenever the charge configurations of the DISET and the DD were energetically co-degenerate. This effect was used to distinguish between degenerate and non-degenerate charge configurations of the double-d...

  15. Single neutral pion production by charged-current ν¯μ interactions on hydrocarbon at 〈Eν〉=3.6 GeV

    Directory of Open Access Journals (Sweden)

    T. Le

    2015-10-01

    Full Text Available Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH is studied using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for ν¯e appearance oscillation experiments. The differential cross sections for π0 momentum and production angle, for events with a single observed π0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0 kinematics for this process.

  16. First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

    CERN Document Server

    Abe, K; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbi, M.; Barker, G.J.; Barr, G.; Bartet-Friburg, P.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berkman, S.; Bhadra, S.; Bienstock, S.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S.B.; Brailsford, D.; Bravar, A.; Bronner, C.; Avanzini, M. Buizza; Calland, R.G.; Campbell, T.; Cao, S.; Rodríguez, J. Caravaca; Cartwright, S.L.; Castillo, R.; Catanesi, M.G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Collazuol, G.; Coplowe, D.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Dealtry, T.; Denner, P.F.; Dennis, S.R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.E.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Feusels, T.; Finch, A.J.; Fiorentini, G.A.; Friend, M.; Fujii, Y.; Fukuda, D.; Fukuda, Y.; Furmanski, A.P.; Galymov, V.; Garcia, A.; Giffin, S.G.; Giganti, C.; Gilje, K.; Gizzarelli, F.; Gonin, M.; Grant, N.; Hadley, D.R.; Haegel, L.; Haigh, M.D.; Hamilton, P.; Hansen, D.; Harada, J.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N.C.; Hayashino, T.; Hayato, Y.; Helmer, R.L.; Hierholzer, M.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Hogan, M.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A.K.; Ieki, K.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R.A.; Irvine, T.J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J.H.; Jonsson, P.; Jung, C.K.; Kabirnezhad, M.; Kaboth, A.C.; Kajita, T.; Kakuno, H.; Kameda, J.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kim, H.; Kim, J.; King, S.; Kisiel, J.; Knight, A.; Knox, A.; Kobayashi, T.; Koch, L.; Koga, T.; Konaka, A.; Kondo, K.; Kopylov, A.; Kormos, L.L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Lasorak, P.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Liptak, Z.J.; Litchfield, R.P.; Li, X.; Longhin, A.; Lopez, J.P.; Lou, T.; Ludovici, L.; Lu, X.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A.D.; Marteau, J.; Martin, J.F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W.Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K.S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C.A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K.G.; Nakamura, K.; Nakamura, K.D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Novella, P.; Nowak, J.; O'Keeffe, H.M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S.M.; Ovsyannikova, T.; Owen, R.A.; Oyama, Y.; Palladino, V.; Palomino, J.L.; Paolone, V.; Patel, N.D.; Pavin, M.; Payne, D.; Perkin, J.D.; Petrov, Y.; Pickard, L.; Pickering, L.; Guerra, E. S. Pinzon; Pistillo, C.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J. -M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radermacher, T.; Radicioni, E.; Ratoff, P.N.; Ravonel, M.; Rayner, M.A.M.; Redij, A.; Reinherz-Aronis, E.; Riccio, C.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Smy, M.; Sobczyk, J.T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Stewart, T.; Stowell, P.; Suda, Y.; Suvorov, S.; Suzuki, A.; Suzuki, K.; Suzuki, S.Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H.K.; Tanaka, H.A.; Terhorst, D.; Terri, R.; Thakore, T.; Thompson, L.F.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C.W.; Wark, D.; Warzycha, W.; Wascko, M.O.; Weber, A.; Wendell, R.; Wilkes, R.J.; Wilking, M.J.; Wilkinson, C.; Wilson, J.R.; Wilson, R.J.; Yamada, Y.; Yamamoto, K.; Yamamoto, M.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E.D.; Zito, M.; Zmuda, J. .

    2016-01-01

    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies ${\\sim}0.8$~GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by $p_{\\pi^+}>200$MeV/c, $p_{\\mu^-}>200$MeV/c, $\\cos \\theta_{\\pi^+}>0.3$ and $\\cos \\theta_{\\mu^-}>0.3$. The total flux integrated $\

  17. Stabilization of electrostatic accelerator charging belt current

    International Nuclear Information System (INIS)

    For the purpose of improving reliability and quality of electrostatic accelerator basic parameters the stabilizer of charging belt current is developed. The stabilizer consists of two units: high-voltage unit and control unit. The charging rectifier assures voltage up to 60 kV at total current load of 750 μA. For the EG- 2.5 and the EGP-10 M accelerators supply circuits of charging device with an earth screen and posAitive voltage supply the needles. t the EGP-10-1 accelerator negative charging voltage is supplied to the screens of the charging device. ''Plus'' of the rectifier is earthed. Charging and recharging are performed by means of brushes slipping over the internal belt side. At all accelerators the stability of charging current mean value is not worse 0.1%. The highest response of the system are obtained at the EG-2.5 accelerator for account of rectifier load by charging current and instrument resistor from 140 to 400 MOhm

  18. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    The coherent production of π and ρ mesons in νμ(bar νμ)--neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (bar νμ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53±9) μ±πminus-plus coherent events and (19±7) μ±πminus-plusπ0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2±0.7)x10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1±0.8)x10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at |t|2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions

  19. Single-electron charging effects

    International Nuclear Information System (INIS)

    The status of our project on single-electron tunneling is at this point excellent. As outlined in our original proposal, a key goal in the development of this project was the demonstration and exploration of the microwave properties of single-electron systems. As discussed here, such work has to date been carried out

  20. Measurement of the ratio of the numu charged-current single-pion production to quasielastic scattering with a 0.8 GeV neutrino beam on mineral oil.

    Science.gov (United States)

    Aguilar-Arevalo, A A; Anderson, C E; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; Garcia, F G; Garvey, G T; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Karagiorgi, G; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Linden, S K; Link, J M; Liu, Y; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; McGary, V T; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Nelson, R H; Nienaber, P; Nowak, J A; Osmanov, B; Ouedraogo, S; Patterson, R B; Perevalov, D; Polly, C C; Prebys, E; Raaf, J L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Soderberg, M; Sorel, M; Spentzouris, P; Spitz, J; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Van de Water, R; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D

    2009-08-21

    Using high statistics samples of charged-current numu interactions, the MiniBooNE [corrected] Collaboration reports a measurement of the single-charged-pion production to quasielastic cross section ratio on mineral oil (CH2), both with and without corrections for hadron reinteractions in the target nucleus. The result is provided as a function of neutrino energy in the range 0.4 GeV

  1. Measurement of the Ratio of the νμ Charged-Current Single-Pion Production to Quasielastic Scattering with a 0.8 GeV Neutrino Beam on Mineral Oil

    International Nuclear Information System (INIS)

    Using high statistics samples of charged-current νμ interactions, the MiniNooNE Collaboration reports a measurement of the single-charged-pion production to quasielastic cross section ratio on mineral oil (CH2), both with and without corrections for hadron reinteractions in the target nucleus. The result is provided as a function of neutrino energy in the range 0.4 GeVν<2.4 GeV with 11% precision in the region of highest statistics. The results are consistent with previous measurements and the prediction from historical neutrino calculations.

  2. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  3. Charged current weak interaction of polarized muons

    International Nuclear Information System (INIS)

    The polarization of the muon beam can be used to test the presence of right-handed couplings in charged current interaction of muons in process μ+N->#betta#+X. The experimental feasibility and the limits which can be obtained on the mass of right-handed intermediate boson are discussed. (orig.)

  4. Electroactuation with Single Charge Carrier Ionomers

    OpenAIRE

    Lee, Alpha A; Colby, Ralph H.; Kornyshev, Alexei A.

    2012-01-01

    A simple theory of electromechanical transduction for single-charge-carrier double-layer electroactuators is developed, in which the ion distribution and curvature are mutually coupled. The obtained expressions for the dependence of curvature and charge accumulation on the applied voltage, as well as the electroactuation dynamics, are compared with literature data. The mechanical- or sensor- performance of such electroactuators appears to be determined by just three cumulative parameters, wit...

  5. Electrostatic vibration energy harvester with increased charging current

    International Nuclear Information System (INIS)

    The analysis of the operation of the electrostatic vibration energy harvester to charge self-contained power supply is carried out. An analytical expression to estimate the average charging current taking into account diode's reverse current is obtained. The ways to increase the charging current were found. The harvester with increased charging current containing no switches and inductive elements is suggested

  6. Single molecule detection using charge-coupled device array technology

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  7. Strange particle production in neutrino-neon charged current interactions

    International Nuclear Information System (INIS)

    Neutral strange particle production in charged-current muon-neutrino interactions have been studied in the Fermilab 15-foot neon bubble chamber. Associated production is expected to be the major source of strange particles in charged-current neutrino interactions. σ-neutral and ξ-minus production by neutrinos was observed. The dependence on various leptonic and hadronic variables is investigated. A fit to single and associated production of s, s/anti-s, and c quarks is described based on the number of single and double strange particle production events. Inclusive neutral strange particle decays (V0) production rates as a fraction of all charged-current events are measured and are tabulated. The λ/K ratio is found to be 0.39 +- 0.04 and the fraction of λ coming from σ-neutral is (16 +- 5)%. The single- and double V0 production was used to determine the associated s anti-s production rate and single s-quark production rate. 13 refs., 7 figs., 3 tabs

  8. Charge transport in single crystal organic semiconductors

    Science.gov (United States)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form

  9. Nonrelativistic derivation of the charge current of the Pauli equation using velocity operators

    International Nuclear Information System (INIS)

    There is a single procedure, using velocity operators, for finding the charge current for both the Schroedinger and Dirac equations. However, this procedure is not directly applicable to the derivation of the charge current of the Pauli theory, which is usually carried out via non-relativistic approximation of the Dirac current. It is shown how the canonical velocity operator method does lead to the current of the Pauli theory when applied to a spin model of Bopp and Haag

  10. Heat dissipation in relativistic single charged fluids

    Science.gov (United States)

    Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.; Brun-Battistini, D.

    2015-11-01

    When the temperature of a fluid is increased its out of equilibrium behavior is significantly modified. In particular kinetic theory predicts that the heat flux is not solely driven by a temperature gradient but can also be coupled to other thermodynamic vector forces. We explore the nature of heat conduction in a single component charged fluid in special relativity, where the electromagnetic field is introduced as an external force. We obtain an electrothermal effect, similar to the mixture's cross-effect, which is not present in the non-relativistic simple fluid. The general lines of the corresponding calculation will be shown, emphasizing the importance of reference frame invariance and the origin of the extra heat sources, in particular the role of the modified inertia and the difference in fluid's and molecules' proper times. The constitutive equation for the heat flux obtained using Chapman-Enskog's expansion in Marle's approximation will be analyzed together with the corresponding transport coefficients.The impact of this effect in the overall dynamics of the system here considered will be briefly discussed. The authors acknowledge support from CONACyT through grant CB2011/167563.

  11. Sensitivities to charged-current nonstandard neutrino interactions at DUNE

    CERN Document Server

    Bakhti, Pouya

    2016-01-01

    We investigate the effects of charged-current nonstandard neutrino interactions (NSIs) at the source and at the detector in the simulated data for the planned Deep Underground Neutrino Experiment (DUNE), while neglecting the neutral-current NSIs at the propagation. We study the effects of NSIs on the simultaneous measurements of $\\theta_{23}$ and $ \\delta _{CP} $ in the DUNE. The analysis reveals that 3$\\sigma $ C.L. measurement of the correct octant of $\\theta _{23}$ in the standard mixing scenario is spoiled if NSIs are taken into account. Likewise, the NSIs can deteriorate the uncertainty of the $\\delta _{CP}$ measurement by a factor of two relative to that in the standard oscillation scenario. We further show that the source and the detector NSIs can induce a significant amount of fake CP-violation and the no fake CP-violation case can be excluded by more than 99\\% C.L. We also find the potential of DUNE to constrain the relevant charged-current NSI parameters from the single parameter fits for both neutr...

  12. Natural Limits for Currents in Charge Separated Pulsar Magnetospheres

    CERN Document Server

    Jessner, A; Kunzl, T A

    2002-01-01

    Rough estimates and upper limits on current and particle densities form the basis of most of the canonical pulsar models. Whereas the surface of the rotating neutron star is capable of supplying sufficient charges to provide a current that, given the polar cap potential, could easily fuel the observed energy loss processes, observational and theoretical constraints provide strict upper limits to the charge densities. The space charge of a current consisting solely of particles having only one sign creates a compensating potential that will make the maximum current dependent on potential and distance. In the non-relativistic case this fact is expressed in the familiar Child-Langmuir law. Its relativistic generalization and subsequent application to the inner pulsar magnetosphere provides clear limits on the strength and radial extension of charged currents originating on the polar cap. Violent Pierce-type oscillations set in, if one attempts to inject more current than the space charge limit into a given volum...

  13. Topological charge analysis of ultrafast single skyrmion creation

    Science.gov (United States)

    Yin, Gen; Li, Yufan; Kong, Lingyao; Lake, Roger K.; Chien, C. L.; Zang, Jiadong

    2016-05-01

    Magnetic skyrmions are topologically nontrivial spin textures of potential interest for future information storage applications, and for such purposes, the control and understanding of single skyrmion creation is required. A scheme is analyzed to create single Néel-type and Bloch-type skyrmions in helimagnetic thin films utilizing the dynamical excitations induced by the Oersted field and the spin transfer torque given by a vertically injected spin-polarized current. A topological charge analysis using a lattice version of the topological charge provides insight into the locally triggered transition from a trivial to a nontrivial topological spin texture of the Néel or Bloch type skyrmion. The topological protection of the magnetic skyrmion is determined by the symmetric Heisenberg exchange energy. The critical switching current density is ˜107A/cm 2 , which decreases with the easy-plane type uniaxial anisotropy and thermal fluctuations. The in-plane spin polarization of the injected current performs better than out-of-plane polarization, and it provides ultrafast switching times (within 100 ps) and reliable switching outcomes.

  14. Single charge detection in capacitively coupled integrated single electron transistors based on single-walled carbon nanotubes

    Science.gov (United States)

    Zhou, Xin; Ishibashi, Koji

    2012-09-01

    Single charge detection is demonstrated in the capacitively coupled integrated single electron transistors (SETs) in single-walled carbon nanotubes (SWCNTs) quantum dots. Two SETs are fabricated based on two different SWCNTs aligned in parallel, by taking advantage of the aligned growth of SWCNTs and subsequent transfer-printed techniques. In order to make both two SETs be capacitively coupled, a metal finger is fabricated on the top of them. The charge sensing is proved by the response of a detector current in one SWCNT-SET when the number of electrons in the other SWCNT-SET is changed by sweeping the corresponding gate voltages. In this integrated device, shifts of Coulomb oscillation peaks due to the single electron event are also observed.

  15. Charge exchange between singly ionized helium ions

    International Nuclear Information System (INIS)

    The plane-wave Born approximation was used to evaluate the charge transfer cross sections for the reaction He+ + He+ → He++ + He. The charge transfer cross section is graphed as a function of incident energy and compared with experimental measurements

  16. The effect of single-particle charge limits on charge distributions in dusty plasmas

    International Nuclear Information System (INIS)

    An analytical expression for the stationary particle charge distribution in dusty plasmas is derived that accounts for the existence of single-particle charge limits. This expression is validated by comparison with the results of Monte Carlo charging simulations. The relative importance of the existence of charge limits for various values of the ratio of electron-to-ion density and ion mass is examined, and the effect of charge limits on the transient behavior of the charge distribution is considered. It is found that the time required to reach a steady-state charge distribution strongly decreases as the charge limit decreases, and that the existence of charge limits causes high-frequency charge fluctuations to become relatively more important than in the case without charge limits. (paper)

  17. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement.

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300 Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time. PMID:24182144

  18. Ejecta from single-charge cratering explosions

    International Nuclear Information System (INIS)

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  19. Measuring charge density of electron beam single nanosecond pulses

    International Nuclear Information System (INIS)

    A description is presented of a probe design and electrometric repeater circuit and technique for measuring the charge (current) density of electron beam single pulses by integrating current at a reference capacitor with a subsequent registering of voltage across the capacitor. The probe consists of a band-type signal electrodes and two oval cross-section sleeves: external and internal with larger and smaller rectangular openings, respectively. The external sleeve has antidynatron grid located over the hole. The design employs integer nickel sleever - the cores of electron tube cathodes. The signal electrode is made of nickel band 0.15 mm thick. The probe elements are insulated from each other along the whole length with a layer of teflon band (30 μm), with rectangular openings cut in compliance with the sleeve openings. The measurement range is from 0.4x10-9 to 1x10-7 C/cm2. The rated accuracy of measurements is no worse than +-5% for the beam energy of 0.2 to 3 KeV. The ultimate parameters the charge density -6 C/cm2 and direct current density 3 mA/cm2 - are specified by the breakdown voltage (200 V) of the input capacitor and probe insulation

  20. The single risk factor approach to capital charges in case of correlated loss given default rates

    OpenAIRE

    Dirk Tasche

    2004-01-01

    A new methodology for incorporating LGD correlation effects into the Basel II risk weight functions is introduced. This methodology is based on modelling of LGD and default event with a single loss variable. The resulting formulas for capital charges are numerically compared to the current proposals by the Basel Committee on Banking Supervision. Keywords: Regulatory capital charge, loss given default (LGD).

  1. Magnetohydrodynamics and charged currents in heavy ion collisions

    International Nuclear Information System (INIS)

    The hot QCD matter produced in any heavy ion collision with a nonzero impact parameter is produced within a strong magnetic field. We study the imprint the magnetic fields produced in non-central heavy ion collisions leave on the azimuthal distributions and correlations of the produced charged hadrons. The magnetic field is time-dependent and the medium is expanding, which leads to the induction of charged currents due to the combination of Faraday and Hall effects. We find that these currents result in a charge-dependent directed flow v1 that is odd in rapidity and odd under charge exchange. It can be detected by measuring correlations between the directed flow of charged hadrons at different rapidities, 〈v1±(y1)v1±(y2)〉

  2. Charge transport in single CuO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junnan; Yin, Bo; Wu, Fei; Myung, Yoon; Banerjee, Parag, E-mail: parag.banerjee@wustl.edu [Department of Mechanical Engineering and Materials Science, One Brookings Drive, Washington University, St. Louis, Missouri 63130 (United States)

    2014-11-03

    Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K–400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (<0.89 × 10{sup 3 }V/cm), an ohmic conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, E{sub T} = 26.6 meV and trap density, N{sub T} = 3.4 × 10{sup 15 }cm{sup −3}. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm{sup 2}/V s and an effective hole concentration of 4 × 10{sup 18 }cm{sup −3} at 250 K.

  3. Charged current top quark couplings at the LHC

    International Nuclear Information System (INIS)

    The top quark plays an important role in current particle physics, from a theoretical point of view because of its uniquely large mass, but also experimentally because of the large number of top events recorded by the LHC experiments ATLAS and CMS, which makes it possible to directly measure the properties of this particle, for example its couplings to the other particles of the standard model (SM), with previously unknown precision. In this thesis, an effective field theory approach is employed to introduce a minimal and consistent parametrization of all anomalous top couplings to the SM gauge bosons and fermions which are compatible with the SM symmetries. In addition, several aspects and consequences of the underlying effective operator relations for these couplings are discussed. The resulting set of couplings has been implemented in the parton level Monte Carlo event generator WHIZARD in order to provide a tool for the quantitative assessment of the phenomenological implications at present and future colliders such as the LHC or a planned international linear collider. The phenomenological part of this thesis is focused on the charged current couplings of the top quark, namely anomalous contributions to the trilinear tbW coupling as well as quartic four-fermion contact interactions of the form tbff', both affecting single top production as well as top decays at the LHC. The study includes various aspects of inclusive cross section measurements as well as differential distributions of single tops produced in the t channel, bq → tq', and in the s channel, u anti d→t anti b. We discuss the parton level modelling of these processes as well as detector effects, and finally present the prospected LHC reach for setting limits on these couplings with 10 resp. 100 fb-1 of data recorded at √(s)=14 TeV.

  4. Charged current top quark couplings at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Fabian

    2013-07-01

    The top quark plays an important role in current particle physics, from a theoretical point of view because of its uniquely large mass, but also experimentally because of the large number of top events recorded by the LHC experiments ATLAS and CMS, which makes it possible to directly measure the properties of this particle, for example its couplings to the other particles of the standard model (SM), with previously unknown precision. In this thesis, an effective field theory approach is employed to introduce a minimal and consistent parametrization of all anomalous top couplings to the SM gauge bosons and fermions which are compatible with the SM symmetries. In addition, several aspects and consequences of the underlying effective operator relations for these couplings are discussed. The resulting set of couplings has been implemented in the parton level Monte Carlo event generator WHIZARD in order to provide a tool for the quantitative assessment of the phenomenological implications at present and future colliders such as the LHC or a planned international linear collider. The phenomenological part of this thesis is focused on the charged current couplings of the top quark, namely anomalous contributions to the trilinear tbW coupling as well as quartic four-fermion contact interactions of the form tbff', both affecting single top production as well as top decays at the LHC. The study includes various aspects of inclusive cross section measurements as well as differential distributions of single tops produced in the t channel, bq {yields} tq', and in the s channel, u anti d{yields}t anti b. We discuss the parton level modelling of these processes as well as detector effects, and finally present the prospected LHC reach for setting limits on these couplings with 10 resp. 100 fb{sup -1} of data recorded at {radical}(s)=14 TeV.

  5. Controlled transfer of single charge carriers

    International Nuclear Information System (INIS)

    This paper reports on the design and operation of two devices, the turnstile and the pump, that transfer electrons one by one. They are both based on the existence of stable electrostatic configurations in arrays of ultrasmall tunnel junctions. While the turnstile only works in the normal state the pump could in principle achieve the transfer of single Cooper pairs

  6. A singly charged ion source for radioactive 11C ion acceleration

    International Nuclear Information System (INIS)

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source

  7. A singly charged ion source for radioactive ¹¹C ion acceleration.

    Science.gov (United States)

    Katagiri, K; Noda, A; Nagatsu, K; Nakao, M; Hojo, S; Muramatsu, M; Suzuki, K; Wakui, T; Noda, K

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive (11)C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source. PMID:26932062

  8. A singly charged ion source for radioactive 11C ion acceleration

    Science.gov (United States)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  9. A singly charged ion source for radioactive {sup 11}C ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K. [National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2016-02-15

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive {sup 11}C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  10. Research and design of a novel current mode charge pump

    Institute of Scientific and Technical Information of China (English)

    Li Xianrui; Lai Xinquan; Li Yushan; Ye Qiang

    2009-01-01

    To meet the demands for a number of LEDs, a novel charge pump circuit with current mode control is proposed. Regulation is achieved by operating the current mirrors and the output current of the operational transcon ductance amplifier. In the steady state, the input current from power voltage retains constant, so reducing the noise induced on the input voltage source and improving the output voltage ripple. The charge pump small-signal model is used to describe the device's dynamic behavior and stability. Analytical predictions were verified by Hspice sim ulation and testing. Load driving is up to 800 mA with a power voltage of 3.6 V, and the output voltage ripple is less than 45 mV. The output response time is less than 8 μs, and the load current jumps from 400 to 800 mA.

  11. Research and design of a novel current mode charge pump

    International Nuclear Information System (INIS)

    To meet the demands for a number of LEDs, a novel charge pump circuit with current mode control is proposed. Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier. In the steady state, the input current from power voltage retains constant, so reducing the noise induced on the input voltage source and improving the output voltage ripple. The charge pump small-signal model is used to describe the device's dynamic behavior and stability. Analytical predictions were verified by Hspice simulation and testing. Load driving is up to 800 mA with a power voltage of 3.6 V, and the output voltage ripple is less than 45 mV. The output response time is less than 8 μs, and the load current jumps from 400 to 800 mA.

  12. Research on generation mechanism of single event transient current generated in the semiconductor using ion accelerator

    International Nuclear Information System (INIS)

    Single-event upset (SEU) is triggered when an amount of electric charges induced by energetic ion incidence exceeds a value known as a critical charge in a very short time period. Therefore, accurate evaluation of electric charge and understanding of basic mechanism of SEU are necessary for the improvement of SEU torrance of electronic devices. In this paper, the collected charges for the single event transient current induced on semiconductor by heavy ion microbeams, and application to use microbeam for single event studies are presented. (author)

  13. Kinetic control of the current through a single molecule

    International Nuclear Information System (INIS)

    A unified description is put forward for the electron transmission through a molecule that is attached to two leads with the molecule being characterized by a single level to be populated by the transferred electrons. In deriving the expression for the current the Coulomb interaction is accounted for between the two extra electrons that may occupy the molecular level. The formation of two distinct transmission channels associated with the neutral and the singly charged molecule can directly be related to this interaction. Moreover, each transmission channel comprises a sequential as well as a direct (tunneling) pathway. The first pathway is realized via hopping transitions between the molecule and the neighboring electrodes. Just this inelastic kinetic process is responsible for the kinetic charging of the molecule. Then, the second pathway takes place against the background of kinetic molecular charging. In particular, it is demonstrated that hopping transmissions which are asymmetric with respect to the two electrodes cause a kinetic current rectification. The transient population of the molecule, realized by the transferred electrons, determines the rectification; the latter becomes rather large for resonant transmission

  14. Single-parameter adiabatic charge pumping in carbon nanotube resonators

    OpenAIRE

    Perroni, C. A.; Nocera, A.; Cataudella, V.

    2013-01-01

    Single-parameter adiabatic charge pumping, induced by a nearby radio-frequency antenna, is achieved in suspended carbon nanotubes close to the mechanical resonance. The charge pumping is due to an important dynamic adjustment of the oscillating motion to the antenna signal and it is different from the mechanism active in the two-parameter pumping. Finally, the second harmonic oscillator response shows an interesting relationship with the first harmonic that should be experimentally observed.

  15. Single-step Charge Transport through DNA over Long Distances

    OpenAIRE

    Genereux, Joseph C.; Wuerth, Stephanie M.; Barton, Jacqueline K.

    2011-01-01

    Quantum yields for charge transport across adenine tracts of increasing length have been measured by monitoring hole transport in synthetic oligonucleotides between photoexcited 2-aminopurine, a fluorescent analogue of adenine, and N2-cyclopropyl guanine. Using fluorescence quenching, a measure of hole injection, and hole trapping by the cyclopropyl guanine derivative, we separate the individual contributions of single- and multi-step channels to DNA charge transport, and find that with 7 or ...

  16. Thermal energy and charge currents in multi-terminal nanorings

    Science.gov (United States)

    Kramer, Tobias; Kreisbeck, Christoph; Riha, Christian; Chiatti, Olivio; Buchholz, Sven S.; Wieck, Andreas D.; Reuter, Dirk; Fischer, Saskia F.

    2016-06-01

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  17. Charged current neutrino interactions below 30 GeV

    International Nuclear Information System (INIS)

    Charged current data of spark chamber neutrino experiment at 70 GeV Serpukhov accelerator (10200 events in ν beam and 3600 events in anti ν beam with energies up to 30 GeV) have been analyzed. Total neutrino and antineutrino cross sections and v-distributions are obtained

  18. Improving performance of charge sensitive preamplifier in liquid scintillation counter using constant current technology

    International Nuclear Information System (INIS)

    There are various charge constant current technologies for liquid scintillation circuit. The constant current technology, charge technology and their application to liquid scintillation counter are emphasized

  19. Charge Transport in Voltage-Biased Superconducting Single-Electron Transistors

    OpenAIRE

    Siewert, Jens; Schön, Gerd

    1996-01-01

    Charge is transported through superconducting SSS single-electron transistors at finite bias voltages by a combination of coherent Cooper-pair tunneling and quasiparticle tunneling. At low transport voltages the effect of an ``odd'' quasiparticle in the island leads to a $2e$-periodic dependence of the current on the gate charge. We evaluate the $I-V$ characteristic in the framework of a model which accounts for these effects as well as for the influence of the electromagnetic environment. Th...

  20. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  1. Effective Dynamics of an Electrically Charged String with a Current

    International Nuclear Information System (INIS)

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparameterization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are derived. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found

  2. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  3. Optical vortex driven charge current loop and optomagnetism in fullerenes

    CERN Document Server

    Wätzel, Jonas; Schäffer, Alexander; Berakdar, Jamal

    2016-01-01

    Endohedral molecular magnets, e.g. as realized in fullerenes containing $\\rm DySc_{2}N$, are promising candidates for molecular electronics and quantum information processing. For their functionalization an ultrafast local magnetization control is essential. Using full ab-initio quantum chemistry calculations we predict the emergence of charge current loops in fullerenes with an associated orbital magnetic moment upon irradiation with weak light vortex pulses that transfer orbital angular momentum. The generated current is controllable by the frequency, the vortex topological charge, and the intensity of the light. Numerical and analytical results show that an ultraviolet vortex femtosecond pulse with an intensity $\\sim10^{13}$ W/cm$^2$ generates non-invasively nA unidirectional surface current with an associated magnetic field of hundreds $\\mu$T at the center of the fullerene.

  4. Spin-Current to Charge-Current Conversion and Magnetoresistance in a Hybrid Structure of Graphene and Yttrium Iron Garnet

    Science.gov (United States)

    Mendes, J. B. S.; Alves Santos, O.; Meireles, L. M.; Lacerda, R. G.; Vilela-Leão, L. H.; Machado, F. L. A.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.

    2015-11-01

    The use of graphene in spintronic devices depends, among other things, on its ability to convert a spin excitation into an electric charge signal, a phenomenon that requires a spin-orbit coupling (SOC). Here we report the observation of two effects that show the existence of SOC in large-area CVD grown single-layer graphene deposited on a single crystal film of the ferrimagnetic insulator yttrium iron garnet (YIG). The first is a magnetoresistance of graphene induced by the magnetic proximity effect with YIG. The second is the detection of a dc voltage along the graphene layer resulting from the conversion of the spin current generated by spin pumping from microwave driven ferromagnetic resonance into a charge current, which is attributed to the inverse Rashba-Edelstein effect.

  5. Recent results on charged current and neutral current cross sections by the CFRR collaboration

    International Nuclear Information System (INIS)

    Results on charged current and neutral current neutrino cross sections are presented. The charged current results are parametrized by sigma/sub ν//E = 0.719 +- 0.06 (+-0.036) x 10-38 cm2/GeV/nucleon and sigma/sub ν//E = 0.371 +- 0.04 (+- .019) x 10-38 cm2/GeV/nucleon. The neutral current data was analyzed using the Paschos-Wolfenstein technique and yields sin2 theta/sub w/ = 0.243 +- 0.016

  6. Current Source Density Estimation for Single Neurons

    Directory of Open Access Journals (Sweden)

    Dorottya Cserpán

    2014-03-01

    Full Text Available Recent developments of multielectrode technology made it possible to measure the extracellular potential generated in the neural tissue with spatial precision on the order of tens of micrometers and on submillisecond time scale. Combining such measurements with imaging of single neurons within the studied tissue opens up new experimental possibilities for estimating distribution of current sources along a dendritic tree. In this work we show that if we are able to relate part of the recording of extracellular potential to a specific cell of known morphology we can estimate the spatiotemporal distribution of transmembrane currents along it. We present here an extension of the kernel CSD method (Potworowski et al., 2012 applicable in such case. We test it on several model neurons of progressively complicated morphologies from ball-and-stick to realistic, up to analysis of simulated neuron activity embedded in a substantial working network (Traub et al, 2005. We discuss the caveats and possibilities of this new approach.

  7. Ionization detector, electrode configuration and single polarity charge detection method

    Science.gov (United States)

    He, Zhong

    1998-01-01

    An ionization detector, an electrode configuration and a single polarity charge detection method each utilize a boundary electrode which symmetrically surrounds first and second central interlaced and symmetrical electrodes. All of the electrodes are held at a voltage potential of a first polarity type. The first central electrode is held at a higher potential than the second central or boundary electrodes. By forming the first and second central electrodes in a substantially interlaced and symmetrical pattern and forming the boundary electrode symmetrically about the first and second central electrodes, signals generated by charge carriers are substantially of equal strength with respect to both of the central electrodes. The only significant difference in measured signal strength occurs when the charge carriers move to within close proximity of the first central electrode and are received at the first central electrode. The measured signals are then subtracted and compared to quantitatively measure the magnitude of the charge.

  8. Charge-induced strains in single-walled carbon nanotubes.

    Science.gov (United States)

    Li, Chun-Yu; Chou, Tsu-Wei

    2006-09-28

    This paper investigates the electromechanical coupling in single-walled carbon nanotubes. In the model system, the extra electric charge of the nanotube is assumed to be uniformly distributed on carbon atoms. The electrostatic interactions between charged carbon atoms are calculated using the Coulomb law. The deformation of the charged nanotube is obtained by using the molecular structural mechanics method and considering the electrostatic interactions as an external loading acting on carbon atoms. The axial strain is found to be a symmetric function of applied charge, and our predictions are in very good agreement with those from ab initio calculations. The present results indicate that the nanotube aspect ratio has a strong effect on the axial strain when the ratio is less than 10 and the general trend is that the strain increases with the aspect ratio. The peak axial and radial strains occur at nanotube diameters of around 1.2-1.5 nm. PMID:21727586

  9. Extracting electrode space charge limited current: Charge injection into conjugated polyelectrolytes with a semiconductor electrode

    Science.gov (United States)

    Walker, Ethan M.; Lonergan, Mark C.

    2016-05-01

    Conjugated polyelectrolytes and related mixed ionic-electronic conductors (MIECs) are being explored for energy applications including solid-state lighting and photovoltaics. Fundamental models of charge injection into MIECs have been primarily developed for MIECs contacted with highly conductive or metal electrodes (MEs), despite many potential applications involving semiconductors. We theoretically and experimentally demonstrate that an appropriate semiconductor electrode (SE), n-type for electron or p-type of hole injection, can limit injection into MIECs. When the SE is the injecting electrode and is under accumulation, there is little difference from a ME. When the SE acts as the extracting electrode, however, injection into the MIEC can be limited because a fraction of any applied bias must support charge depletion in the semiconductor rather than charge injection into the MIEC. In a ME/MIEC/SE system, this can lead to significant asymmetry in current-voltage and injected charge-voltage behavior.

  10. Single molecule detection using charge-coupled device array technology. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Denton, M.B.

    1992-07-29

    A technique for the detection of single fluorescent chromophores in a flowing stream is under development. This capability is an integral facet of a rapid DNA sequencing scheme currently being developed by Los Alamos National Laboratory. In previous investigations, the detection sensitivity was limited by the background Raman emission from the water solvent. A detection scheme based on a novel mode of operating a Charge-Coupled Device (CCD) is being developed which should greatly enhance the discrimination between fluorescence from a single molecule and the background Raman scattering from the solvent. Register shifts between rows in the CCD are synchronized with the sample flow velocity so that fluorescence from a single molecule is collected in a single moving charge packet occupying an area approaching that of a single pixel while the background is spread evenly among a large number of pixels. Feasibility calculations indicate that single molecule detection should be achieved with an excellent signal-to-noise ratio.

  11. Local Charge and Spin Currents in Magnetothermal Landscapes

    Science.gov (United States)

    Weiler, Mathias; Althammer, Matthias; Czeschka, Franz D.; Huebl, Hans; Wagner, Martin S.; Opel, Matthias; Imort, Inga-Mareen; Reiss, Günter; Thomas, Andy; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2012-03-01

    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser-spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging.

  12. Local charge and spin currents in magnetothermal landscapes.

    Science.gov (United States)

    Weiler, Mathias; Althammer, Matthias; Czeschka, Franz D; Huebl, Hans; Wagner, Martin S; Opel, Matthias; Imort, Inga-Mareen; Reiss, Günter; Thomas, Andy; Gross, Rudolf; Goennenwein, Sebastian T B

    2012-03-01

    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser-spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging. PMID:22463435

  13. Measurement of $K^{+}$ production in charged-current $\

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, C.M.; et al.

    2016-07-14

    Production of K+ mesons in charged-current νμ interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K+ which decays at rest. The differential cross section in K+ kinetic energy, dσ/dTK, is observed to be relatively flat between 0 and 500 MeV. Its shape is in good agreement with the prediction by the genie neutrino event generator when final-state interactions are included, however the data rate is lower than the prediction by 15%.

  14. QCD radiative corrections to charged current heavy quark production

    International Nuclear Information System (INIS)

    The QCD radiative corrections to charged current heavy quark production are given in the limit that the weak partner is massless, i.e. using a bottom structure function for top quark production. The results for charm production in neutrino nucleon scattering agree with those published before, but our method enables us to study all outgoing particles. The corrections to top production at the proposed LEP/LHC electron-proton collider are discussed. (author). 18 refs.; 6 figs.; 2 tabs

  15. Nuclear electromagnetic charge and current operators in Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  16. Direct Neutrino Mass Experiments and Exotic Charged Current Interactions

    CERN Document Server

    Ludl, Patrick Otto

    2016-01-01

    We study the effect of exotic charged current interactions on the electron energy spectrum in tritium decay, focussing on the KATRIN experiment and a possible modified setup that has access to the full spectrum. Both sub-eV and keV neutrino masses are considered. We perform a fully relativistic calculation and take all possible new interactions into account, demonstrating the possible sizable distortions in the energy spectrum.

  17. Charged-Current and Neutral-Current Neutrino-Nucleus Scattering in a Relativistic Approach

    CERN Document Server

    Giusti, Carlotta; Pacati, Franco Davide

    2009-01-01

    Relativistic models developed for the exclusive and inclusive QuasiElastic (QE) electron scattering have been extended to Charged-Current (CC) and Neutral-Current (NC) neutrino-nucleus scattering. The results of different descriptions of Final-State Interactions (FSI) are compared.

  18. Measurement of D*+ production in charged-current neutrino interactions

    International Nuclear Information System (INIS)

    During the years 1994-1997, the emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy. In total about 100-bar 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. A high-statistics sample of neutrino interactions with a D0 in the final state was collected. Using the decay mode D*+->D0π+ a production cross-section measurement of the D*+ in neutrino-nucleon charged-current interactions was performed. The low Q-value of the decay was used to isolate a sample of candidate events containing a positive hadron with a small pT with respect to the D0 direction. A signal of 22.1+/-5.5D*+ events was obtained. The D*+ production cross-section relative to the D0 production cross-section, σ(D*+)/σ(D0), was estimated to be 0.38+/-0.09(stat)+/-0.05(syst). From this result, the fraction of D0's produced via the decay of a D* was deduced to be 0.63+/-0.17. The D*+ production cross-section relative to the νμ charged-current interaction, σ(D*+)/σ(CC), was estimated to be [1.02+/-0.25(stat)+/-0.15(syst)]%

  19. Electron impact single ionization of multiply charged iron ions

    International Nuclear Information System (INIS)

    Employing the animated crossed-beams technique, absolute cross sections for electron impact single ionization of the iron isonuclear sequence are measured for charge states q=1-6 for electron energies from threshold up to 1 keV, as well as for the intermediate charge states q=9,10 up to an electron energy of 5 keV. The cross sections observed for Feq+ ions in charge states q=1-4, 9 and 10 show a significant ionization signal below the respective ground state threshold resulting from ions in excited, long-lived metastable states in the parent ion beam. In the case of Fe5+ and Fe6+ no metastable components are found. The experimental results are in good agreement with the theoretical predictions if excitation-autoionization processes are taken into account. Our measured cross sections are also in good agreement with experimental results of other groups. (author)

  20. Space-charge-limited currents in polyimide films

    Science.gov (United States)

    Diaham, Sombel; Locatelli, Marie-Laure

    2012-12-01

    Space-charge-limited currents have been identified in thin polyimide film capacitor structures as the main conduction process in the very high temperature range from 320 °C to 400 °C before the breakdown. The transition field between the trap-filled-limit conduction and the trap-free conduction is reported versus temperature. Assuming an exponential distribution of the traps in the forbidden gap, both the characteristic temperature and trap energy are obtained at 446 °C and 62 meV, respectively. The total trap density is accurately estimated at 1.5 × 1017 cm-3 using the Kumar approximation [Kumar et al., J. Appl. Phys. 94, 1283 (2003)]. Finally, the mobility temperature dependence of free charges is reported between 1.6 × 10-6 and 2.3 × 10-6 cm2 V-1 s-1 in the range from 340 °C to 400 °C.

  1. Charged-particle spectroscopy in organic semiconducting single crystals

    Science.gov (United States)

    Ciavatti, A.; Sellin, P. J.; Basiricò, L.; Fraleoni-Morgera, A.; Fraboni, B.

    2016-04-01

    The use of organic materials as radiation detectors has grown, due to the easy processability in liquid phase at room temperature and the possibility to cover large areas by means of low cost deposition techniques. Direct charged-particle detectors based on solution-grown Organic Semiconducting Single Crystals (OSSCs) are shown to be capable to detect charged particles in pulse mode, with very good peak discrimination. The direct charged-particle detection in OSSCs has been assessed both in the planar and in the vertical axes, and a digital pulse processing algorithm has been used to perform pulse height spectroscopy and to study the charge collection efficiency as a function of the applied bias voltage. Taking advantage of the charge spectroscopy and the good peak discrimination of pulse height spectra, an Hecht-like behavior of OSSCs radiation detectors is demonstrated. It has been possible to estimate the mobility-lifetime value in organic materials, a fundamental parameter for the characterization of radiation detectors, whose results are equal to μτcoplanar = (5 .5 ± 0.6 ) × 10-6 cm2/V and μτsandwich = (1 .9 ± 0.2 ) × 10-6 cm2/V, values comparable to those of polycrystalline inorganic detectors. Moreover, alpha particles Time-of-Flight experiments have been carried out to estimate the drift mobility value. The results reported here indicate how charged-particle detectors based on OSSCs possess a great potential as low-cost, large area, solid-state direct detectors operating at room temperature. More interestingly, the good detection efficiency and peak discrimination observed for charged-particle detection in organic materials (hydrogen-rich molecules) are encouraging for their further exploitation in the detection of thermal and high-energy neutrons.

  2. Theory of Space Charge Limited Current in Fractional Dimensional Space

    Science.gov (United States)

    Zubair, Muhammad; Ang, L. K.

    The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.

  3. ``Hot spots'' growth on single nanowire controlled by electric charge

    Science.gov (United States)

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    ``Hot spots'' - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. ``hot spots'' on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag+ to form the ``hot spots'' on the nanowire during the GRR. The appearance probability of ``hot spots'' is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent ``hot spots'' is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials.``Hot spots'' - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. ``hot spots'' on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag+ to form the ``hot spots'' on the nanowire during the GRR. The appearance probability of ``hot spots'' is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent ``hot spots'' is also controlled by the charge, and obeys a

  4. Space charge limited current emission for a sharp tip

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg [Engineering Product Development, Singapore University of Technology and Design, Singapore 487372 (Singapore)

    2015-05-15

    In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2 (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.

  5. Space charge limited current emission for a sharp tip

    International Nuclear Information System (INIS)

    In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ Vg3/2/Dm, where Vg is the gap bias, D is the gap size, and m = 1.1–1.2 (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented

  6. "Hot spots" growth on single nanowire controlled by electric charge.

    Science.gov (United States)

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    "Hot spots" - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. "hot spots" on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag(+) to form the "hot spots" on the nanowire during the GRR. The appearance probability of "hot spots" is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent "hot spots" is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials. PMID:27240743

  7. A compact source for bunches of singly charged atomic ions

    Science.gov (United States)

    Murböck, T.; Schmidt, S.; Andelkovic, Z.; Birkl, G.; Nörtershäuser, W.; Vogel, M.

    2016-04-01

    We have built, operated, and characterized a compact ion source for low-energy bunches of singly charged atomic ions in a vacuum beam line. It is based on atomic evaporation from an electrically heated oven and ionization by electron impact from a heated filament inside a grid-based ionization volume. An adjacent electrode arrangement is used for ion extraction and focusing by applying positive high-voltage pulses to the grid. The method is particularly suited for experimental environments which require low electromagnetic noise. It has proven simple yet reliable and has been used to produce μs-bunches of up to 106 Mg+ ions at a repetition rate of 1 Hz. We present the concept, setup and characterizing measurements. The instrument has been operated in the framework of the SpecTrap experiment at the HITRAP facility at GSI/FAIR to provide Mg+ ions for sympathetic cooling of highly charged ions by laser-cooled 24Mg+.

  8. Measurement of charm in charged current at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Tobias

    2008-12-15

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e{sup +}p and 6253 in e{sup -}p data are selected in the kinematic range Q{sup 2}>223 GeV{sup 2} and 0.03charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are F{sub c}=9.5{+-}8.9{+-}3.0 % for e{sup +}p and F{sub c}=4.4{+-}6.9{+-}2.6 % for e{sup -}p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  9. Measurement of charm in charged current at HERA

    International Nuclear Information System (INIS)

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e+p and 6253 in e-p data are selected in the kinematic range Q2>223 GeV2 and 0.03CC=(28.9± 1.4)+Pe.(28.6±4.7) pb for e+p and σCC=(49.2±2.3)-Pe.(42.5 ±6.8) pb for e-p, where Pe is the lepton beam polarization. While the measured cross section for e+p data is in agreement with the theoretical prediction, the cross section for e-p data shows a weaker dependence on Pe than predicted. The charm fractions in the selected CC candidate event samples are extracted using the muon charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are Fc=9.5±8.9±3.0 % for e+p and Fc=4.4±6.9±2.6 % for e-p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  10. Modeling of tunneling current in ultrathin MOS structure with interface trap charge and fixed oxide charge

    Institute of Scientific and Technical Information of China (English)

    Hu Bo; Huang Shi-Hua; Wu Feng-Min

    2013-01-01

    A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure.In this model,the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account,and one-band effective mass approximation is used.The tunneling probability is obtained by employing the transfer matrix method.Further,the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated.Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than 1012 cm-2,which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region.Therefore,for real ultrathin MOS structures with ITC and FOC,this model can give a more accurate description for the tunneling current in the inversion layer.

  11. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  12. On the lepton-nucleon neutral and charged current deep inelastic scattering cross sections

    CERN Document Server

    Li, Xing-Long; Li, Xiao-Mei; Zhou, Dai-Mei; Cai, Xu; Sa, Ben-Hao

    2014-01-01

    Based on the requirement in the simulation of lepton-nucleus deep inelastic scattering (DIS), we construct a fortran program LDCS 1.0 calculating the differential and total cross sections for the unpolarized charged lepton-unpolarized nucleon and neutrino-unpolarized nucleon neutral current (charged current) DIS at leading order. Any set of the experimentally fitted parton distribution functions could be employed directly. The mass of incident and scattered leptons is taken into account and the boundary conditions calculating the single differential and total cross section are studied. The calculated results well agree with the corresponding experimental data which indicating the LDCS 1.0 program is good. It is also turned out that the effect of tauon mass is not negligible in the GeV energy level.

  13. Space-charge-limited current in DNA-surfactant complex

    Science.gov (United States)

    Chen, I.-Ching; Lin, Ting-Yu; Hung, Yu-Chueh

    2013-03-01

    In recent years, deoxyribonucleic acid (DNA) biopolymers have attracted much research attention and been considered as a promising material when being employed in many optoelectronic devices. Since performance of many DNA biopolymer-based devices relies on carrier transport, it is crucial to study the carrier mobility of these DNA-surfactant complexes for practical implement. In this work, we present hole mobility characterization of cetyltrimethylammonium (CTMA)-modified DNA biopolymer by using space-charge-limited current (SCLC) method. Devices were fabricated using a sandwich structure with a buffer layer of MoO3 to enhance hole injection and achieve ohmic contact between the anode and the DNA layer. Current-voltage (I-V) curves of the devices were analyzed. A trap-free SCLC behavior can ultimately be achieved and a quadratic dependence in I-V curve was observed. With increasing electric field, a positive field-dependent mobility was demonstrated. The correlation between mobility and temperature was also investigated and a positive relation was found. The characterization results can be further utilized for DNA-based device design and applications.

  14. Implications of current constraints on parton charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Londergan; A. W. Thomas

    2005-11-01

    For the first time, charge symmetry breaking terms in parton distribution functions have been included in a global fit to high energy data. We review the results obtained for both valence and sea quark charge symmetry violation and compare these results with the most stringent experimental upper limits on charge symmetry violation for parton distribution functions, as well as with theoretical estimates of charge symmetry violation. The limits allowed in the global fit would tolerate a rather large violation of charge symmetry. We discuss the implications of this for various observables, including extraction of the Weinberg angle in neutrino DIS and the Gottfried and Adler sum rules.

  15. Coherent (photon) vs incoherent (current) detection of multidimensional optical signals from single molecules in open junctions

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Bijay Kumar; Hua, Weijie; Zhang, Yu; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92697 (United States); Harbola, Upendra [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012 (India)

    2015-06-07

    The nonlinear optical response of a current-carrying single molecule coupled to two metal leads and driven by a sequence of impulsive optical pulses with controllable phases and time delays is calculated. Coherent (stimulated, heterodyne) detection of photons and incoherent detection of the optically induced current are compared. Using a diagrammatic Liouville space superoperator formalism, the signals are recast in terms of molecular correlation functions which are then expanded in the many-body molecular states. Two dimensional signals in benzene-1,4-dithiol molecule show cross peaks involving charged states. The correlation between optical and charge current signal is also observed.

  16. Spin-to-charge-current conversion in yttrium iron garnet-graphene hybrid structure

    Science.gov (United States)

    Mendes, Joaquim; Alves Santos, Obed; Meireles, Leonel; Lacerda, Rodrigo; Vilela-Leão, Luis; Machado, Fernando; Rodríguez-Suárez, Roberto; Azevedo, Antonio; Rezende, Sergio

    The use of graphene in spintronic devices depends, among other things, on its ability to convert a spin excitation into an electric charge signal, a phenomenon that requires a spin-orbit coupling (SOC). In this work we report the observation of two effects that show the existence of SOC in large-area CVD grown single-layer graphene (SLG) deposited on a single crystal film of the ferrimagnetic insulator yttrium iron garnet (YIG). The first is a magnetoresistance of graphene induced by the magnetic proximity effect with YIG. The second is the detection of a DC voltage along the graphene layer resulting from the conversion of the spin current generated by spin pumping from microwave driven FMR into charge current. We interpret the spin-to-charge conversion as arising from the inverse Rashba-Edelstein effect (IREE) made possible by the extrinsic spin-orbit coupling in graphene. These observations show that spin orbit coupling can be extrinsically enhanced in graphene by the proximity effect with a ferromagnetic layer. This result opens new possibilities for the use of graphene in spintronic devices with unique functionalities. Research supported in Brazil by the agencies CNPq, CAPES, FINEP, FAPEMIG, FACEPE, and in Chile by FONDECYT No. 1130705.

  17. Electron-impact single-ionization of singly and multiply charged tungsten ions

    International Nuclear Information System (INIS)

    Employing the 'crossed-beams' technique, electron-impact ionization cross sections for the single-ionization of Wq+ ions in charge states q = 1...10 have been measured. The cross sections for the ionization of ions in charge states q ≥ 5 show significant contributions below the ground-state threshold caused by the ionization of ions in excited, long-lived metastable states in the parent ion beam. In the case of W6+, the measured cross section is completely dominated by metastable contributions. For ions in charge states q = 3...7, excitation-autoionization from the ground state as well as from excited, metastable states contributes strongly to the cross sections. This results in a strong underestimation of the measured cross sections by the semiempirical Lotz formula in the energy range between the ionization threshold and the cross section maximum. (Author)

  18. Electron impact single ionisation of multiply charged krypton ions

    International Nuclear Information System (INIS)

    Absolute cross sections σsub(q,q+1) for electron impact single ionisation of Krsup(q+) ions (q = 1, 2, 3) have been measured for electron energies up to 700 eV by employing a dynamic crossed-beams technique. The experimental data significantly exceed the Lotz prediction for direct ionisation of Kr2+ and Kr3+ ions, indicating the importance of indirect processes for multiply charged Krsup(q+) ions. The observed ionisation thresholds of cross sections from the present measurements as well as of data from other workers indicate the presence of metastable ions in the parent ion beams. The influence of metastable states on the cross sections is discussed on the basis of Lotz calculations for direct ionisation from different excited states, and differences observed in the experiments are rationalised. (author)

  19. Congestion charging mechanisms for roads : an evaluation of current practice

    OpenAIRE

    Hau, Timothy D.

    1992-01-01

    The author explores 20 criteria for a good road pricing system and presents case studies illustrating the costs, revenues, and benefits of alternative congestion charging mechanisms. The author finds that manual tollbooths are not suitable for congestion charging because they are land-, labor-, and time-intensive. Cordon pricing (as in the Bergen toll ring) can be an effective instrument for charging for congestion if half the toll lanes are reserved for seasonal pass holders traveling throug...

  20. A study of inclusive charged current neutrino interactions in deuterium

    International Nuclear Information System (INIS)

    In this thesis the results of an analysis of inclusive neutrino and antineutrino interaction on deuterium nuclei are presented. The use of deuterium as a target provides a mean to study proton and neutron scattering separately. The presently accepted theory of electro-weak interactions is reviewed. Applications of the quark-parton model in the context of deep-inelastic neutrino interactions on nucleons are summarized. The concept of scaling and its consequences are treated, together with some sources of violation of scaling. The properties of the CERN wide-band neutrino beam and an overview of the elements of this beam are given. The method to determine the energy distribution and the composition of the neutrino and antineutrino beam is described. The technique employed to separate neutrino interactions on protons and neutrons is discussed. Results of the measurement of the total nucleon charged-current cross-sections and differential cross-sections are presented. The relative contributions of quarks and antiquarks to the neutrino cross-sections are deduced from y-distributions and compared to those obtained from the total cross-section measurements. Finally, the analysis of the structure functions is given. (Auth.)

  1. Measurement of charm production in neutrino charged-current interactions

    International Nuclear Information System (INIS)

    The nuclear emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy from 1994 to 1997. In total, about 100 000 charged-current (CC) neutrino interactions with at least one identified muon were located in the emulsion target and fully reconstructed, using newly developed automated scanning systems. Charmed particles were searched for by a program recognizing particle decays. The observation of the decay in nuclear emulsion makes it possible to select a sample with very low background and minimal kinematical bias. In all, 2013 CC interactions with a charmed hadron candidate in the final state were selected and confirmed through visual inspection. The charm production rate induced by neutrinos relative to the CC cross-section is measured to be σ(νμN→μ-CX)/σ(CC)=(5.75 ± 0.32(stat)±0.30(syst))%. The charm production cross-section as a function of neutrino energy is also obtained. The results are in good agreement with previous measurements. The charm-quark hadronization produces the following charmed hadrons with relative fractions (in %): fD0=43.7±4.5, fΛc+=19.2±4.2, fD+=25.3±4.2 and fDs+=11.8±4.7.

  2. Tailored charged particle beams from single-component plasmas

    OpenAIRE

    Weber, Tobin Robert

    2010-01-01

    There are currently many uses of positrons as well as a strong potential for novel applications on the horizon. Due to the scarce nature of antimatter, positron research and technology is frequently limited by the ability to collect, confine, and manipulate antiparticles. Trapping large numbers of positrons as nonneutral plasmas has proven ideal in this endeavor. This thesis focuses on exploiting the attractive properties of single-component positron plasmas to develop new tools for antimatte...

  3. Neutral strange particle production in neutrino and antineutrino charged-current interactions on neon

    International Nuclear Information System (INIS)

    A study has been made of neutral strange particle production in νμNe and bar νμNe charged-current interactions at a higher energy than any previous study. The experiment was done at the Fermilab Tevatron using the 15-ft. bubble chamber, and the data sample consists of 814(154) observed neutral strange particles from 6263(1115) ν(bar ν) charged-current events. For the ν beam (average event energy left-angle Eν right-angle=150 GeV), the average multiplicities per charged-current event have been measured to be 0.408±0.048 for K0, 0.127±0.014 for Λ, and 0.015±0.005 for bar Λ, which are significantly greater than for lower-energy experiments. The dependence of rates on kinematical variables has been measured, and shows that both K0 and Λ production increase strongly with Eν, W2, Q2, and yB. Compared to lower-energy experiments, single-particle distributions indicate that there is much more K0 production for xF>-0.2, and the enhanced Λ production spans most of the kinematic region. bar Λ production is mostly in the region |xF|F>-0.2 there is a significant excess of Λ production over the model's prediction. The Λ hyperons are found to be polarized in the production plane

  4. High-temperature characteristics of charge collection efficiency using single CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tsubota, Masakatsu, E-mail: tsubota@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Kaneko, Junichi H.; Miyazaki, Daijirou; Shimaoka, Takehiro [Graduate School of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628 (Japan); Ueno, Katsunori; Tadokoro, Takahiro [Hitachi Research Laboratory, Hitachi, Ltd., 2-1, Omika, 7-chome, Hitachi 319-1221, Ibaraki (Japan); Chayahara, Akiyoshi [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda 563-8577, Osaka (Japan); Watanabe, Hideyuki; Kato, Yukako; Shikata, Shin-ichi [Research Institute for Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8562, Ibaraki (Japan); Kuwabara, Hitoshi [Infrastructure Systems Co., Hitachi, Ltd., 2-1, Omika-cho, 5-chome, Hitachi 319-1293, Ibaraki (Japan)

    2015-07-21

    We synthesized single-crystal diamonds using microwave assisted plasma chemical vapor deposition and evaluated the temperature dependence of the diamond radiation detectors. We achieved charge collection efficiency of the hole of 96.9% with 3.0% energy resolution at 473 K. In the case of electrons, they became undetectable at temperatures higher than 373 K. It is possible that carrier trapping generated with frequency or the leakage current increased. The detector produced by the diamond in Diamond Detector Ltd. detector, operates normally at 523 K. Electrons can be measured at 573 K. We discussed the characteristics of charge carrier transport in the diamond detector to prepare for future use at higher temperatures. - Highlights: • We synthesized single-crystal diamonds and made the sandwich type detector. • Charge collection efficiency of the hole of 97% was achieved at high-temperature. • The radiation detector of the purchased diamond was stable operation at 573 K. • Increase of carrier trapping and the leakage current were the essential problems. • This study ascertains the current state of the art of diamond detectors.

  5. Neutral and charged current cross section measurements and searches for new physics at HERA

    CERN Document Server

    Malden, N; Abramowicz, H; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J; Malden, Nicholas

    2004-01-01

    HERA is the only high energy electron-proton collider in the world today and hence has unique opportunities both to probe the structure of the proton and to search for physics beyond the Standard Model. Results are presented for measurements of both neutral and charged current cross sections, and for searches for exotic processes involving direct electron-quark interactions (leptoquarks and R-parity violating SUSY), generic coupling models (contact interactions) and exclusive final states (isolated leptons and missing PT, single top production and pentaquarks). Exclusion limits on proposed models are set where no deviation from Standard Model predictions are found.

  6. Layer Charge of Clay Minerals; Selected papers from the Symposium on Current Knowledge on the Layer Charge of Clay Minerals

    Science.gov (United States)

    This Special issue contains papers based on the contributions presented during the workshop “Current Knowledge on the Layer Charge of Clay Minerals”, held on September 18 and 19, 2004, in the Smolenice Castle, Slovakia. Layer charge is one of the most important characteristics of clay minerals as it...

  7. Superscaling predictions for neutrino-induced charged-current charged pion production at MiniBooNE

    CERN Document Server

    Ivanov, M V; Antonov, A N; Caballero, J A; Barbaro, M B; de Guerra, E Moya

    2012-01-01

    Superscaling approximation (SuSA) predictions to neutrino-induced charged-current charged pion production in the \\Delta-resonance region are explored under MiniBooNE experimental conditions. The results obtained within SuSA for the flux-averaged double-differential cross sections of the \\pi+ production for the \

  8. Continuum random phase approximation approach to charged-current neutrino-nucleus scattering

    International Nuclear Information System (INIS)

    We present continuum random phase approximation (CRPA) calculations for charged-current neutrino-nucleus scattering. The CRPA formalism is based on a Green's-function approach, and the calculations can be done in a self-consistent fashion when using an effective nucleon-nucleon force of the Skyrme type. We analyze the technical aspects related to the description of charge-exchange reactions within this approach, and study the sensitivity of the results to the single-particle characteristics of the formalism. Muon capture is studied as a test case. In applications of the formalism, we concentrate on neutrino-scattering off 12C and 16O, and pay attention to interactions of experimental interest

  9. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature. PMID:27367397

  10. Nuclear isovector giant resonances excited by pion single charge exchange

    International Nuclear Information System (INIS)

    This thesis is an experimental study of isovector giant resonances in light nuclei excited by pion single charge exchange reactions. Giant dipole resonances in light nuclei are known to be highly structured. For the mass 9 and 13 giant dipole resonances, isospin considerations were found to be very important to understanding this structure. by comparing the excitation functions from cross section measurements of the (π+, π0) and (π, π0) inclusive reactions, the authors determined the dominant isospin structure of the analog IVGR's. The comparison was made after decomposing the cross section into resonant and non-resonant components. This decomposition is made in the framework of strong absorption and quasi-free scattering. Measurements in the region of the isovector giant dipole resonances (IVGDR) were made to cover the inclusive angular distributions out to the second minimum. Study of the giant resonance decay process provides further understanding of the resonances. This study was carried out by observing the (π+, π0p) coincident reactions involving the resonances of 9B and 13N excited from 9Be and 13C nuclei. These measurements determined the spectra of the decay protons. This method also permitted a decomposition of the giant resonances into their isospin components. The multipolarities of the resonances were revealed by the decay proton angular correlations which, for dipoles, are of the form 1 + A2P2(cos θ)

  11. Design of a CMOS Adaptive Charge Pump with Dynamic Current Matching

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0.25 μm 2.5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.

  12. Energy mechanism of charges analyzed in real current environment

    CERN Document Server

    Ianconescu, R; Ianconescu, Reuven

    2003-01-01

    We analyze in this work the energy transfer process of accelerated charges, the mass fluctuations accompanying this process, and their inertial properties. Based on a previous work, we use here the dipole antenna, which is a very convenient framework for such analysis, for analyzing those characteristics. We show that the radiation process can be viewed by two energy transfer processes: one from the energy source to the charges and the second from the charges into the surrounding space. Those processes, not being in phase, result in mass fluctuations. The same principle is true during absorption. We show that in a transient period between absorption and radiation the dipole antenna gains mass according to the amount of absorbed energy and loses this mass as radiated energy. We rigorously prove that the gain of mass, resulting from electrical interaction has inertial properties in the sense of Newton's third low. We arrive to this result by modeling the reacting spacetime region by an electric dipole.

  13. Charge transmission through single molecules: Effects of nonequilibrium molecular vibrations and photoinduced transitions

    International Nuclear Information System (INIS)

    A density matrix based description of charge transmission through a single molecule attached to two nano-electrodes is presented. By concentrating on a steady state situation the net current, electronic state populations and nonequilibrium vibrational distributions are computed. The dependence of these quantities on the applied voltage and on a cw-infrared as well as optical excitation is discussed. Effects are included of intra-molecular vibrational energy redistribution (IVR), of different charging states, and of an electron-hole pair generation in the leads. The considerations are valid for a sequential mechanism of charge transmission through the molecule. A possible current switch due to an infrared as well as an optical excitation is demonstrated and the crucial dependence of the switching mechanism on the strength of IVR is underlined. If the molecule attached to nano-electrodes is a part of an oligomer or supramolecular chromophore complex the current can be controlled by an external field induced Frenkel-exciton formation.

  14. Gold plasmonic effects on charge transport through single molecule junctions

    Science.gov (United States)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  15. Electrical detection of ferromagnetic resonance in single layers of permalloy: Evidence of magnonic charge pumping

    Science.gov (United States)

    Azevedo, A.; Cunha, R. O.; Estrada, F.; Alves Santos, O.; Mendes, J. B. S.; Vilela-Leão, L. H.; Rodríguez-Suárez, R. L.; Rezende, S. M.

    2015-07-01

    The generation of a DC voltage in single layers of permalloy (Ni81Fe19 ) when the magnetization is undergoing ferromagnetic resonance is investigated in a series of samples with thickness varying from 4.0 to 150 nm. By sweeping the external field at a fixed microwave frequency, we measure a DC voltage at the ends of the layer as a function of the in-plane angle for each sample. The asymmetric voltage signal generated at the resonance field is a superposition of symmetric Lorentzian and antisymmetric Lorentzian derivative line shapes. The in-plane dependence of both symmetric and antisymmetric signals cannot be explained as due to spin rectification (SRE) only. The results are well explained by a model that takes into account in addition to the SRE the contribution of the recent discovered effect of magnonic charge pumping that converts magnetization dynamics into charge current by means of the spin orbit coupling.

  16. Emission current from a single micropoint of explosive emission cathode

    International Nuclear Information System (INIS)

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 108–109 A/cm2 is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the small size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 108–109 A/cm2. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula

  17. Development of Capacitor Charging Supply Based on Constant Current Technique

    Institute of Scientific and Technical Information of China (English)

    YANG; Jing-he; ZHANG; Li-feng; YANG; Sheng; TONG; Xun-hua; YU; Guo-long

    2013-01-01

    As the pulse power supply in electron linear accelerator,the line-type pulse modulator is used to produce the high voltage pulse which come into being when the pulse forming net(PFN)is discharged.The frequency and stability is related to the PFN charging system.The breakthrough in high power switch devices makes it possible that applying switch devices are into pulse power field.In line-type high voltage

  18. Information parameters for realization of adaptive charge of secondary chemical sources of a current

    Directory of Open Access Journals (Sweden)

    Zhitnik N. E.

    2008-10-01

    Full Text Available A chrono-potentiometric method of control of the state of chemical sources of current (CSC is offered. The method allows from chrono-potentiogram (CPG, representing CSC reaction on the charge current impulse, to get practically all informative parameters, necessary for practical realization of adaptive charge.

  19. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

    Science.gov (United States)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N.; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

  20. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    Science.gov (United States)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-09-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  1. Pumped Spin-Current in Single Quantum Dot with Spin-Dependent Electron Temperature

    Science.gov (United States)

    Liu, Jia; Wang, Song; Du, Xiaohong

    2016-05-01

    Spin-dependent electron temperature effect on the spin pump in a single quantum dot connected to Normal and/or Ferromagnetic leads are investigated with the help of master equation method. Results show that spin heat accumulation breaks the tunneling rates balance at the thermal equilibrium state thus the charge current and the spin current are affected to some extent. Pure spin current can be obtained by adjusting pumping intensity or chemical potential of the lead. Spin heat accumulation of certain material can be detected by measuring the charge current strength in symmetric leads architectures. In practical devices, spin-dependent electron temperature effect is quite significant and our results should be useful in quantum information processing and spin Caloritronics.

  2. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Shanlin [Univ. of Alabama, Tuscaloosa, AL (United States)

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  3. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  4. A Measurement of the charged-current interaction cross section of the tau neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Emily O' Connor; /Minnesota U.

    2005-01-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single-prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result {sigma}{sub {nu}{sub {tau}}N}{sup const}/{sigma}{sub {nu}{sub e}N}{sup const} = 0.77 {+-} 0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result {sigma}{sub {nu}{sub {tau}}N}{sup exp} = 45 {+-} 21 x 10{sup -38} cm{sup 2} is consistent with the standard model prediction calculated in this thesis, {sigma}{sub {tau}N}{sup SM} = 48 {+-} 5 x 10{sup -38} cm{sup 2}.

  5. Exploiting the nonlinear impact dynamics of a single-electron shuttle for highly regular current transport

    OpenAIRE

    Moeckel, Michael J.; Southworth, Darren R.; Weig, Eva M.; Marquardt, Florian

    2013-01-01

    The nanomechanical single-electron shuttle is a resonant system in which a suspended metallic island oscillates between and impacts at two electrodes. This setup holds promise for one-by-one electron transport and the establishment of an absolute current standard. While the charge transported per oscillation by the nanoscale island will be quantized in the Coulomb blockade regime, the frequency of such a shuttle depends sensitively on many parameters, leading to drift and noise. Instead of co...

  6. Current feedback operational amplifiers as fast charge sensitive preamplifiers for photomultiplier read out

    International Nuclear Information System (INIS)

    Fast charge sensitive preamplifiers were built using commercial current feedback operational amplifiers for fast read out of charge pulses from a photomultiplier tube. Current feedback opamps prove to be particularly well suited for this application where the charge from the detector is large, of the order of one million electrons, and high timing resolution is required. A proper circuit arrangement allows very fast signals, with rise times down to one nanosecond, while keeping the amplifier stable. After a review of current feedback circuit topology and stability constraints, we provide a 'recipe' to build stable and very fast charge sensitive preamplifiers from any current feedback opamp by adding just a few external components. The noise performance of the circuit topology has been evaluated and is reported in terms of equivalent noise charge.

  7. Maximum time-dependent space-charge limited diode currents

    Science.gov (United States)

    Griswold, M. E.; Fisch, N. J.

    2016-01-01

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  8. Maximum time-dependent space-charge limited diode currents

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  9. Matrix-assisted laser desorption/ionization mass spectrometry method for selectively producing either singly or multiply charged molecular ions.

    Science.gov (United States)

    Trimpin, Sarah; Inutan, Ellen D; Herath, Thushani N; McEwen, Charles N

    2010-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is noted for its ability to produce primarily singly charged ions. This is an attribute when using direct ionization for complex mixtures such as protein digests or synthetic polymers. However, the ability to produce multiply charged ions, as with electrospray ionization (ESI), has advantages such as extending the mass range on mass spectrometers with limited mass-to-charge (m/z) range and enhancing fragmentation for structural characterization. We designed and fabricated a novel field free transmission geometry atmopsheric pressure (AP) MALDI source mounted to a high-mass resolution Orbitrap Exactive mass spectrometer. We report the ability to produce at will either singly charged ions or highly charged ions using a MALDI process by simply changing the matrix or the matrix preparation conditions. Mass spectra with multiply charged ions very similar to those obtained with ESI of proteins such as cytochrome c and ubiquitin are obtained with low femtomole amounts applied to the MALDI target plate and for peptides such as angiotensin I and II with application of attomole amounts. Single scan acquisitions produce sufficient ion current even from proteins. PMID:19904915

  10. Weak charged and neutral current induced one pion production off the nucleon

    CERN Document Server

    Alam, M Rafi; Chauhan, S; Singh, S K

    2015-01-01

    We present a study of neutrino/antineutrino induced charged and neutral current single pion production off the nucleon. For this, we have considered $P_{33}(1232)$ resonance, non-resonant background terms, other higher resonances like $P_{11}(1440)$, $S_{11}(1535)$, $D_{13}(1520)$, $S_{11}(1650)$ and $P_{13}(1720)$. For the non-resonant background terms a microscopic approach based on SU(2) non-linear sigma model has been used. The vector form factors for the resonances are obtained by using the relationship between the electromagnetic resonance form factors and helicity amplitudes provided by MAID. Axial coupling $C_5^{A}(0)$ in the case of $P_{33}(1232)$ resonance is obtained by fitting the ANL and BNL $\

  11. Adler-type sum rule, charge symmetry and neutral current in general multi-triplet model

    International Nuclear Information System (INIS)

    We derive Adler-type sum rule extended to general multi-triplet model. Paying attention to roles of the colour degree of freedom, we discuss the charge symmetry property of the weak charged current and the structure functions for ν(ν-)+N→l(l-)+X, and also the structure of the neutral current. A comment is given on implications in our theory of Koike and Konuma's result on the neutral hadronic current. (auth.)

  12. In vivo demonstration of injectable microstimulators based on charge-balanced rectification of epidermically applied currents

    Science.gov (United States)

    Ivorra, Antoni; Becerra-Fajardo, Laura; Castellví, Quim

    2015-12-01

    Objective. It is possible to develop implantable microstimulators whose actuation principle is based on rectification of high-frequency (HF) current bursts supplied through skin electrodes. This has been demonstrated previously by means of devices consisting of a single diode. However, previous single diode devices caused dc currents which made them impractical for clinical applications. Here flexible thread-like stimulation implants which perform charge balance are demonstrated in vivo. Approach. The implants weigh 40.5 mg and they consist of a 3 cm long tubular silicone body with a diameter of 1 mm, two electrodes at opposite ends, and, within the central section of the body, an electronic circuit made up of a diode, two capacitors, and a resistor. In the present study, each implant was percutaneously introduced through a 14 G catheter into either the gastrocnemius muscle or the cranial tibial muscle of a rabbit hindlimb. Then stimulation was performed by delivering HF bursts (amplitude intramuscular stimulation implants ever assayed in vertebrates.

  13. Quantum inductive circuits under ac and dc fields: Current manifestations of charge discreteness

    International Nuclear Information System (INIS)

    It is well known that the electrical current of a quantum inductive circuits with charge discreteness qe displays Bloch-like oscillations (frequency ωB=qeεd-bar ) under a dc external voltage (εd). Here we consider the effect of a superposed ac voltage in the circuit. Resonances are explicitly found. In the limit of small external frequency (ω-bar ωB), the electrical (one-period-averaged) current exist and has always the same sign. This gives us an experimental method to measure discrete charge effects in (quantum) nanometric circuits since the established current is depending on charge discreteness

  14. Optimization of Charging Current and SOH Estimation for Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Amin Rezaei Pish Robat

    2012-02-01

    Full Text Available In this paper a new model-based approach is used to optimize the charging current of lead acid batteries for use in hybrid electric. The used model is a dynamical nonlinear model and so steepest descent, as a nonlinear optimization technique, is used to design the desired current profile. To verify the results, Unscented Kalman Filter is used to estimate battery capacity as a criterion of the state of health of the battery. Simulation results show that in comparison with multi level charging current, the proposed approach improves the state of health of the battery, up to 2.5% in the first 100 charge/discharge cycle

  15. Modifying the surface charge of single track-etched conical nanopores in polyimide

    International Nuclear Information System (INIS)

    Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage (I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification

  16. Modifying the surface charge of single track-etched conical nanopores in polyimide.

    Science.gov (United States)

    Ali, M; Schiedt, B; Healy, K; Neumann, R; Ensinger, W

    2008-02-27

    Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage (I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification. PMID:21730744

  17. Modifying the surface charge of single track-etched conical nanopores in polyimide

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M; Ensinger, W [Department of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany); Schiedt, B; Neumann, R [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany); Healy, K [Department of Electrical and Electronic Engineering, University College Cork, Cork, Republic of Ireland (Ireland)

    2008-02-27

    Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage (I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification.

  18. Modifying the surface charge of single track-etched conical nanopores in polyimide

    Science.gov (United States)

    Ali, M.; Schiedt, B.; Healy, K.; Neumann, R.; Ensinger, W.

    2008-02-01

    Chemical modification of nanopore surfaces is of great interest as it means that the surface composition is no longer fixed by the choice of substrate material, even to the point where large biomolecules can be attached to the pore walls. Controlling nanopore transport characteristics is one important application of surface modification which is very relevant given the significant interest in sensors based on the transport of ions and molecules through nanopores. Reported here is a method to change the surface charge polarity of single track-etched conical nanopores in polyimide, which also has the potential to attach more complex molecules to the carboxyl groups on the nanopore walls. These carboxyl groups were converted into terminal amino groups, first by activation with N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) followed by the covalent coupling of ethylenediamine. This results in a changed surface charge polarity. Regeneration of a carboxyl-terminated surface was also possible, by reaction of the amino groups with succinic anhydride. The success of these reactions was confirmed by measurements of the pore's pH sensitive current-voltage (I-V) characteristics before and after the chemical modification, which depend on surface charge. The permselectivity of the pores also changed accordingly with the modification.

  19. Current Situation in the Neutrino (and Charged-Lepton) Sector

    CERN Document Server

    de Govea A.

    2010-01-01

    Neutrino masses are nonzero. Theoretically, we are still in the process of un- derstanding what these tiny masses and the pattern of lepton mixing mean, and how they Þt into a new and improved standard model. Nonetheless, the very successful parameterization of the new neutrino sector (three neutrino masses plus a 3 × 3 unitary leptonic mixing matrix) allows one to identify what we know we donÕt know about neutrinos and to deÞne a rich experimen- tal program in neutrino physics. This experimental program must not only answer these Òneutrino questions,Ó but also test the underlying three-active- ßavors paradigm and point the way toward a deeper understanding of neutri- nos (and particle physics). Given what we learned about neutrinos, searches for charged-lepton ßavor-violating phenomena are poised to Þnd new heavy physics at the weak scale (or well above) and provide vital clues regarding the neutrino mass mystery.

  20. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Science.gov (United States)

    Gaubas, E.; Ceponis, T.; Pavlov, J.; Baskevicius, A.

    2014-02-01

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  1. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    International Nuclear Information System (INIS)

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current

  2. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.; Baskevicius, A. [Institute of Applied Research, Vilnius University, Sauletekio av. 9-III, LT-10222 Vilnius (Lithuania)

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  3. Single photon, spin, and charge manipulation of diamond quantum register

    International Nuclear Information System (INIS)

    Single-photon sources that provide non-classical light states on demand have a broad range of application in quantum communication, quantum computing, and metrology. Recently, significant progresses have been shown in semiconductor quantum-dots. However, a major obstacle is the requirement of cryogenic temperatures. Here we show the realization of a stable room temperature electrically driven single-photon source based on a single NV centre in a diode structure. (author)

  4. Charged Current Coherent Pion Production in Neutrino Scattering

    CERN Document Server

    Martins, Paul

    2016-01-01

    We summarise here the main differences of three models of neutrino-induced coherent pion production, namely the Rein-Sehgal and Berger-Sehgal models based on the Partially Conserved Axial Current theorem and the Alvarez-Ruso \\textit{et al.} model which is using a microscopic approach. Their predictions in the event generators are compared against recent experimental measurements for a neutrino energy from 0.5 to 20 GeV.

  5. Simulation of space charge effects in electron optical systems based on the calculation of current density

    Czech Academy of Sciences Publication Activity Database

    Zelinka, Jiří; Oral, Martin; Radlička, Tomáš

    Brno: Institute of Scientific Instruments AS CR, v. v. i, 2014. s. 91. ISBN 978-80-87441-11-4. [International Conference on Charged Parrticle Optics /9./. 31.08.2014-05.09.2014, Brno] Institutional support: RVO:68081731 Keywords : space charge * current density evaluation * self-consistent computation * remeshing * FEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Shot noises of spin and charge currents in a ferromagnet-quantum-dot-ferromagnet system

    Institute of Scientific and Technical Information of China (English)

    Hong-kang ZHAO; Jian WANG

    2008-01-01

    We have investigated the shot noises of charge and spin current by considering the spin polarized electron tunneling through a ferromagnet-quantum-dotferromagnet system.We have derived the spin polarized current noise matrix,from which we can derive general expressions of shot noises associated with charge and spin currents.The spin and charge currents are intimately related to the polarization angles,and they behave quite differently from each other.The shot noise of charge current is symmetric about the gate voltage whose structure is modified by the Zeeman field considerably.There exists oscillations in spin current shot noise in the absence of source-drain bias at zero temperature,and it is asym metric in the positive and negative regimes of sourcedrain voltage. The shot noise of spin current behaves quite differently from the shot noise of charge current,since the spin current components Isx,Isy oscillate sinusoidally with the frequency ωγ in the γth lead,while the Isz component of spin current is independent of time.

  7. Design and Simulation of Single-Stage Single-Switch Input-Current Shaping Circuit for AC/DC Converter Based on PWM Technique

    Directory of Open Access Journals (Sweden)

    Mahmoud Milad Alageli

    2011-01-01

    Full Text Available In this paper a simple single-stage single-switch input-current shaping (S4ICS circuit was designed, simulated and tested for AC/DC converter which generates input current harmonics due to its non-linear characteristics. A sinusoidal input current with nearly unity distortion factor was achieved through current harmonics mitigation by using PWM boost regulator. The circuit utilizes the charging and discharging increments of boost inductor current to shape a sinusoidal input current. Inductor current was controlled by means of PWM controller. The controller accepts two feed back signals, the first is the inductor current and the other is the output voltage of the AC/DC converter. The simulation results of fast fourier transform FFT show a grate reduction in current harmonic which in turns tends to a grate improvement in power factor and the sinusoidal shape of input current.

  8. Charged current neutrino and antineutrino interactions in hydrogen and deuterium

    International Nuclear Information System (INIS)

    In this dissertation results are presented of two different (anti-)neutrino experiments with the Big European Bubble Chamber (BEBC) filled with hydrogen and deuterium successively and exposed to the wide band (anti-)neutrino beam at the SPS at CERN. Chapter 1 contains the description of the experimental set-up and in chapter 2 results of the experiment with BEBC filled with deuterium and exposed to the antineutrino beam are presented. The multiplicity distributions of the charged hadron shower produced in (anti-)neutrino interactions with protons and neutrons are studied and compared with the results from hadron-hadron experiments. In chapter 3 a study of the exclusive reaction γp→μ-pπ+ is presented, data being obtained from an exposure of BEBC filled with hydrogen to the wide band neutrino beam. The absolute cross-section of the dominant subchannel γp→μ-Δ++(1232) averaged over an energy range of Esub(γ) = 20-200 GeV is measured to be sigma = (0.59 +- 0.06) . 10-38 cm2. This value is in good agreement with the results of other experiments. The differential cross-section dsigma/dQ2, the Δ++ decay angular distributions and the density matrix elements are determined. The value of the axial mass determined using the Schreiner-Von Hippel parametrization of the Adler model by fitting the total cross-section is Msub(A) = 0.85 +- 0.10 GeV/c2. (Auth.)

  9. Single-electron current sources: Toward a refined definition of the ampere

    Science.gov (United States)

    Pekola, Jukka P.; Saira, Olli-Pentti; Maisi, Ville F.; Kemppinen, Antti; Möttönen, Mikko; Pashkin, Yuri A.; Averin, Dmitri V.

    2013-10-01

    The control of electrons at the level of the elementary charge e was demonstrated experimentally already in the 1980s. Ever since, the production of an electrical current ef, or its integer multiple, at a drive frequency f has been a focus of research for metrological purposes. This review discusses the generic physical phenomena and technical constraints that influence single-electron charge transport and presents a broad variety of proposed realizations. Some of them have already proven experimentally to nearly fulfill the demanding needs, in terms of transfer errors and transfer rate, of quantum metrology of electrical quantities, whereas some others are currently “just” wild ideas, still often potentially competitive if technical constraints can be lifted. The important issues of readout of single-electron events and potential error correction schemes based on them are also discussed. Finally, an account is given of the status of single-electron current sources in the bigger framework of electric quantum standards and of the future international SI system of units, and applications and uses of single-electron devices outside the metrological context are briefly discussed.

  10. Correlations of heat and charge currents in quantum-dot thermoelectric engines

    International Nuclear Information System (INIS)

    We analyze the noise properties of both electric charge and heat currents as well as their correlations in a quantum-dot based thermoelectric engine. The engine is a three-terminal conductor with crossed heat and charge flows where heat fluctuations can be monitored by a charge detector. We investigate the mutual influence of charge and heat dynamics and how it is manifested in the current and noise properties. In the presence of energy-dependent tunneling, operating conditions are discussed where a charge current can be generated by heat conversion. In addition, heat can be pumped into the hot source by driving a charge current in the coupled conductor. An optimal configuration is found for structures in which the energy dependence of tunneling maximizes asymmetric transmission with maximal charge–heat cross-correlations. Remarkably, at a voltage that stalls the heat engine we find that in the optimal case the non-equilibrium state is maintained by fluctuations in the heat and charge currents only. (paper)

  11. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  12. Currents, charges, and canonical structure of pseudodual chiral models

    International Nuclear Information System (INIS)

    We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory

  13. Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA

    CERN Document Server

    Adloff, C; Andrieu, B; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Böhme, J; Büsser, F W; Campbell, A J; Cao, J; Caron, S; Cassol-Brunner, F; Chechelnitskii, S; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; De Wolf, E A; Delcourt, B; Delerue, N; Demirchyan, R A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Eisenhandler, E F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Gogitidze, N; Grab, C; Grabskii, V; Greenshaw, T; Grindhammer, G; Grässler, Herbert; Görlich, L; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoffmann, D; Horisberger, R P; Hoting, P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Jönsson, L B; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kuhr, T; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebailly, E; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loginov, A; Loktionova, N A; Lubimov, V; Lüke, D; Lytkin, L; Lüders, S; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Murn, P; Müller, K; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Petrukhin, A; Phillips, J P; Pitzl, D; Portheault, B; Potachnikova, I; Povh, B; Pérez, E; Pöschl, R; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Schöning, A; Schörner-Sadenius, T; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wiesand, S; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Woerling, E E; Wünsch, E; Wyatt, A C; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M; de Roeck, A

    2003-01-01

    The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \\sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD ...

  14. Search for neutrino charged current coherent pion production at SciBooNE

    OpenAIRE

    Hiraide, K.

    2009-01-01

    SciBooNE is a neutrino experiment measuring the neutrino cross sections on carbon in the one GeV region. We have performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \

  15. Characterization and control of wafer charging effects during high-current ion implantation

    International Nuclear Information System (INIS)

    EEPROM-based sense and memory devices provide direct measures of the charge flow and potentials occurring on the surface of wafers during ion beam processing. Sensor design and applications for high current ion implantation are discussed

  16. PHz current switching in calcium fluoride single crystal

    Science.gov (United States)

    Kwon, Ojoon; Kim, D.

    2016-05-01

    We demonstrate that a current can be induced and switched in a sub-femtosecond time-scale in an insulating calcium fluoride single crystal by an intense optical field. This measurement indicates that a sizable current can be generated and also controlled by an optical field in a dielectric medium, implying the capability of rapid current switching at a rate of optical frequency, PHz (1015 Hz), which is a couple of orders of magnitude higher than that of contemporary electronic signal processing. This demonstration may serve to facilitate the development of ultrafast devices in PHz frequency.

  17. Charge and spin currents in normal metal sandwiched by tow p-wave

    Directory of Open Access Journals (Sweden)

    Y Rahnavard

    2010-09-01

    Full Text Available Charge and spin transport properties of a clean $SNS$ Josephson junction (triplet superconductor-normal metal-triplet superconductor are studied using the quasiclassical Eilenberger equation of Green’s function. Our system consists of two p-wave superconducting crystals separated by a Copper nano layer. Effects of thickness of normal layer between superconductors on the spin and charge currents are investigated. Also misorientation between triplet superconductors which creates the spin current is another subject of this paper.

  18. Analytic Solution of Charge Density of Single Wall Carbon Nanotube under Conditions of Field Electron Emission

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Bing; WANG Wei-Liang

    2006-01-01

    We derive the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external Geld parallel to the tube axis.

  19. Analytic solution of charge density of single wall carbon nanotube in conditions of field electron emission

    OpenAIRE

    Li, Zhibing; Wang, Weiliang

    2006-01-01

    We derived the analytic solution of induced electrostatic potential along single wall carbon nanotubes. Under the hypothesis of constant density of states in the charge-neutral level, we are able to obtain the linear density of excess charge in an external field parallel to the tube axis.

  20. Charge division using carbon filaments for obtaining coordinate information from detection of single electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bird, F.; Shapiro, S.; Ashford, V.; McShurley, D.; Reif, R.; Lirth, D.W.G.S.; Williams, S.

    1985-09-01

    Seven micron diameter Carbon filaments forming the anode of a multiwire proportional chamber have been used to detect single electrons. Charge division techniques applied to the 5 cm long wire resulted in a position resolution of sigma/L < 2% for a collected signal charge of 30 fC.

  1. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube

    NARCIS (Netherlands)

    Tombros, Nikolaos; Buit, Luuk; Arfaoui, Imad; Tsoufis, Theodoros; Gournis, Dimitrios; Trikalitis, Pantelis N.; van der Molen, Sense Jan; Rudolf, Petra; van Wees, Bart J.

    2008-01-01

    The charge transport properties of single superconducting tin nanowires encapsulated by multiwalled carbon nanotubes have been investigated by multiprobe measurements. The multiwalled carbon nanotube protects the tin nanowire from oxidation and shape fragmentation and therefore allows us to investig

  2. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents

    Science.gov (United States)

    Agar, Ertan; Benjamin, A.; Dennison, C. R.; Chen, D.; Hickner, M. A.; Kumbur, E. C.

    2014-01-01

    In this study, the operation of a vanadium redox flow battery (VRFB) under asymmetric current conditions (i.e., different current densities during charge and discharge) was investigated as a technique to reduce its capacity loss. Two different membrane types (a convection-dominated membrane and a diffusion-dominated membrane) were analyzed. In these analyses, the charging current density was varied while the discharging current was held constant. For both membranes, it was found that increasing the charging current decreases the net convective crossover of vanadium ions, which reduces the capacity loss of the battery. When the tested membranes were compared, the improvement in capacity retention was found to be larger for the diffusion-dominated membrane (12.4%) as compared to the convection-dominated membrane (7.1%). The higher capacity retention in the diffusion-dominated membrane was attributed to the reduction in the cycling time (and hence, suppressed contribution of diffusion) due to the increased charging current. While asymmetric current operation helps reduce capacity loss, it comes at the expense of a reduction in the voltage efficiencies. Increasing the charging current was found to increase the ohmic losses, which lead to a decrease of 6% and 4.3% in the voltage efficiencies of the convection-dominated and diffusion-dominated membranes, respectively.

  3. Single-pion production by the weak neutral current

    International Nuclear Information System (INIS)

    We investigate gauge-theory-model predictions for various aspects of single-pion production by the weak neutral current. The models investigated are representatives of SU(2) x U(1) SU(2) x SU(2) x U(1), and SU(3) x U(1) type gauge theories. Adler's model for single-pion production, including all l = 0 and l = 1 multipoles, is used. Corrections for scattering off nuclear targets are evaluated in a model by Adler, Nussinov, and Paschos. Comparison is made with the available data

  4. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  5. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Sua; XIONG Shi-Jie

    2008-01-01

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.

  6. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin—Orbit Coupling

    International Nuclear Information System (INIS)

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin—orbit coupling and connected asymmetrically to two external leads spanned with angle φ0. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov–Casher (AC) phase due to the spin—orbit coupling and the angle spanned by two leads φ0. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φ0, without the electromagnetic flux though the ring. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Impact of Electric Current Fluctuations Arising from Power Supplies on Charged-Particle Beams

    CERN Document Server

    Yoon, P S

    2008-01-01

    Electric current fluctuations are one type of unavoidable machine imperfections,and induce magnetic-field perturbations as a source of instabilities in accelerators. This paper presents measurement-based methodology of modeling the fluctuating electric current arising from the power system of Fermilab's Booster synchrotron to discuss the ramifications of the presence of ripple current and space-charge defocusing effects. We also present the method of generating stochastic noise and the measurement and analysis methods of ripple current and offending electromagnetic interferences residing in the Booster power system. This stochastic noise model, accompanied by a suite of beam diagnostic calculations, manifests that the fluctuating power-supply current, when coupled to space charge and impinging upon a beam, can substantially enhance beam degradation phenomena--such as emittance growth and halo formation--during the Booster injection period. With idealized and uniform charge-density distribution, fractional gro...

  8. Temperature dependence of charge transport in conjugated single molecule junctions

    Science.gov (United States)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  9. Pumping single-file colloids: Absence of current reversal.

    Science.gov (United States)

    Chaudhuri, Debasish; Raju, Archishman; Dhar, Abhishek

    2015-05-01

    We consider the single-file motion of colloidal particles interacting via short-range repulsion and placed in a traveling wave potential that varies periodically in time and space. Under suitable driving conditions, a directed time-averaged flow of colloids is generated. We obtain analytic results for the model using a perturbative approach to solve the Fokker-Planck equations. The predictions show good agreement with numerical simulations. We find peaks in the time-averaged directed current as a function of driving frequency, wavelength, and particle density and discuss possible experimental realizations. Surprisingly, unlike a closely related exclusion dynamics on a lattice, the directed current in the present model does not show current reversal with density. A linear response formula relating current response to equilibrium correlations is also proposed. PMID:26066100

  10. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    Science.gov (United States)

    Vilan, Ayelet

    2016-01-01

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at the metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.

  11. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    International Nuclear Information System (INIS)

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at the metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions

  12. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Vilan, Ayelet [Department of Materials and Interfaces, Weizmann Institute of Science, POB 26, Rehovot 76100 (Israel)

    2016-01-07

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at the metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.

  13. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst......-case results. Finally, we briefly compare some exact solution algorithms for this problem....

  14. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...

  15. Effect of charging energy on critical current of dc-SQUID comprising two sub-micron aluminum Josephson junctions

    International Nuclear Information System (INIS)

    Highlights: ► We measure the capacitance of Al Josephson junctions by using the dc-SQUID methods. ► Both the Josephson coupling energy and charging energy in the SQUID are evaluated. ► The interference pattern is found to be deviated from the classical theory. ► The deviation is enhanced by decreasing the Josephson coupling energy. ► Our model including the quantum phase fluctuation can explain the deviation. -- Abstract: Tiny Al/AlOx/Al tunnel junctions are widely used in single-electron, single-Cooper-pair, and quantum-bit devices. A crucial parameter for such devices is the charging energy of a single electron or a single Cooper-pair in the junctions, and hence, determination of the junction capacitance is quite important. In this paper, we report our experiments to determine the capacitance of sub-micron Al tunnel junctions. We employ a SQUID resonance technique. Differently from the work reported by Deppe et al. [4], the loop inductance is obtained by not only numerical calculation but also experimental results of quantum interference, which eliminates uncertainty about the field penetration depth of Al thin films. The specific capacitance is obtained as 54 fF/μm2. We have also found that the critical current of the dc-SQUID is smaller than the value given by the classical theory for large Josephson junctions. Calculation including the charging energy effect provides better fitting to the experiments, where the critical current is assumed to be proportional to the square root of the ratio of the Josephson coupling energy to the charging energy

  16. QCD analysis of neutral and charged current cross sections and search for contact interactions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Pirumov, Hayk

    2013-11-15

    A QCD analysis of the inclusive deep inelastic ep scattering cross section measured by the H1 experiment at HERA is presented. The data correspond to a total integrated luminosity of about 0.5 fb{sup -1} and covers a kinematic range of 0.5 GeV{sup 2} - 30000 GeV{sup 2} in the negative four-momentum transfer Q{sup 2} and 3 . 10{sup -5} - 0.65 in Bjorken x. The performed QCD analysis of the double differential neutral and charged current cross sections results in a set of parton distribution functions H1PDF 2012. The precise data from HERA II period in the kinematic region of high Q{sup 2} considerably improve the accuracy of the PDFs at the high x. In addition a search for signs of new physics using single differential neutral current cross section measurements at high Q{sup 2} is performed. The observed good agreement of the analysed data with the Standard Model predictions allows to set constraints on various new physics models within the framework of contact interactions. Limits are derived on the compositeness scale for general contact interactions, on the ratio of mass to the Yukawa coupling for heavy leptoquark models, on the effective Plank-mass scale in the large extra dimension models and on the quark radius.

  17. QCD analysis of neutral and charged current cross sections and search for contact interactions at HERA

    International Nuclear Information System (INIS)

    A QCD analysis of the inclusive deep inelastic ep scattering cross section measured by the H1 experiment at HERA is presented. The data correspond to a total integrated luminosity of about 0.5 fb-1 and covers a kinematic range of 0.5 GeV2 - 30000 GeV2 in the negative four-momentum transfer Q2 and 3 . 10-5 - 0.65 in Bjorken x. The performed QCD analysis of the double differential neutral and charged current cross sections results in a set of parton distribution functions H1PDF 2012. The precise data from HERA II period in the kinematic region of high Q2 considerably improve the accuracy of the PDFs at the high x. In addition a search for signs of new physics using single differential neutral current cross section measurements at high Q2 is performed. The observed good agreement of the analysed data with the Standard Model predictions allows to set constraints on various new physics models within the framework of contact interactions. Limits are derived on the compositeness scale for general contact interactions, on the ratio of mass to the Yukawa coupling for heavy leptoquark models, on the effective Plank-mass scale in the large extra dimension models and on the quark radius.

  18. Advanced induction motor drive control with single current sensor

    Directory of Open Access Journals (Sweden)

    Adžić Evgenije M.

    2016-01-01

    Full Text Available This paper proposes induction motor drive control method which uses minimal number of sensors, providing only DC-link current as a feedback signal. Improved DC-link current sampling scheme and modified asymmetrical switching pattern cancels characteristic waveform errors which exist in all three reconstructed motor line-currents. Motor linecurrent harmonic content is reduced to an acceptable level, eliminating torque and speed oscillations which were inherent for conventional single sensor drives. Consequently, use of single current sensor and line-current reconstruction technique is no longer acceptable only for low and medium performance drives, but also for drives where priority is obtaining a highly accurate, stable and fast response. Proposed control algorithm is validated using induction motor drive hardware prototype based on TMS320F2812 digital signal processor. [Projekat Ministarstva nauke Republike Srbije, br. III 042004 and by the Provincial Secretariat for Science and Technological Development of AP Vojvodina under contract No. 114-451-3508/2013-04

  19. Ionic currents in single isolated bullfrog atrial cells

    OpenAIRE

    1983-01-01

    Enzymatic dispersion has been used to yield single cells from segments of bullfrog atrium. Previous data (Hume and Giles, 1981) have shown that these individual cells are quiescent and have normal resting potentials and action potentials. The minimum DC space constant is approximately 920 microns. The major goals of the present study were: (a) to develop and refine techniques for making quantitative measurements of the transmembrane ionic currents, and (b) to identify the individual component...

  20. Measurement of high-Q2 charged current cross sections in e+p deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Cross sections for charged current deep inelastic scattering have been measured in e+p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb-1. Single differential cross sections dσ/dQ2, dσ/dx and dσ/dy have been measured for Q2>200 GeV2, as well as the double differential reduced cross section d2σ/dxdQ2 in the kinematic range 280 GeV222 and 0.008 -p charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to dσ/dQ2. (orig.)

  1. Laserspray ionization on a commercial atmospheric pressure-MALDI mass spectrometer ion source: selecting singly or multiply charged ions.

    Science.gov (United States)

    McEwen, Charles N; Larsen, Barbara S; Trimpin, Sarah

    2010-06-15

    Multiply charged ions, similar to those obtained with electrospray ionization, are produced at atmospheric pressure (AP) using standard MALDI conditions of laser fluence and reflective geometry. Further, the charge state can be switched to singly charged ions nearly instantaneously by changing the voltage applied to the MALDI target plate. Under normal AP-MALDI operating conditions in which a voltage is applied to the target plate, primarily singly charged ions are observed, but at or near zero volts, highly charged ions are observed for peptides and proteins. Thus, switching between singly and multiply charged ions requires only manipulation of a single voltage. As in ESI, multiple charging, produced using the AP-MALDI source, allows compounds with molecular weights beyond the mass-to-charge limit of the mass spectrometer to be observed and improves the fragmentation relative to singly charged ions. PMID:20469839

  2. Effect of charge on the stability of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    LUO; Ji; WU; Jinlei

    2004-01-01

    By using density-functional-theory based DMol3 code, the structure optimizations are performed on a short charged single-walled carbon nanotube. Results show that the total energy of the nanotube exhibits a parabolic variation with respect to the amount of extra charge, and one negatively charged nanotube has the lowest total energy; thus the carbon nanotube has a positive electron affinity. When the charge is small, the variation of the atomic structure of the nanotube is also small, and neglecting the atomic structure variation leads to the qualitatively correct properties of the total energy and the energy of the highest occupied molecular orbital. When the extra charge is large, the end structure of the nanotube will be first affected and form into a trumpet shape. With the increasing of the extra charge, the nanotube end gradually becomes unstable, and this may lead to the ultimate destruction of the nanotube.

  3. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    International Nuclear Information System (INIS)

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured

  4. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Science.gov (United States)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  5. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    CERN Document Server

    Yu, Deyang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-01-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking the advantages of high electric potential and narrow bandwidth in DC energetic charged beam measurements, current resolution better than 5 fA can be achieved. Two 128-channel Faraday cup arrays are built, and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  6. Design and commissioning of the APS beam charge and current monitor

    International Nuclear Information System (INIS)

    The non-intercepting charge and current monitors suitable for a wide range of beam parameters have been developed and installed in the Advanced Photon Source (APS) low energy transport lines, positron accumulator ring (PAR), and injector synchrotron. The positron or electron beam pulse in the APS has charge ranging from 100pC to l0nC with pulse width varying from 30ps to 30ns. The beam charge and current are measured with a current transformer and subsequent current monitoring electronics based on an ultrafast, high precision gated integrator. The signal processing electronics, data acquisition, and communication with the control system are managed by a VME-based system. This paper summarizes the hardware and software features of the systems. The results of recent operations are presented

  7. Finite temperature fermionic charge and current densities induced by a cosmic string with magnetic flux

    CERN Document Server

    Mohammadi, A; Saharian, A A

    2014-01-01

    We investigate the finite temperature expectation values of the charge and current densities for a massive fermionic field with nonzero chemical potential, $\\mu$, in the geometry of a straight cosmic string with a magnetic flux running along its axis. These densities are decomposed into the vacuum expectation values and contributions coming from the particles and antiparticles. The charge density is an even periodic function of the magnetic flux with the period equal to the quantum flux and an odd function of the chemical potential. The only nonzero component of the current density corresponds to the azimuthal current. The latter is an odd periodic function of the magnetic flux and an even function of the chemical potential. At high temperatures, the parts in the charge density and azimuthal current induced by the planar angle deficit and magnetic flux are exponentially small. The asymptotic behavior at low temperatures crucially depends whether the value $|\\mu|$ is larger or smaller than the mass of the fiel...

  8. Electrochemical Charging of Individual Single-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Farhat, H.; Kavan, Ladislav; Kong, J.; Sasaki, K.; Saito, R.; Dresselhaus, M. S.

    2009-01-01

    Roč. 3, č. 8 (2009), s. 2320-2328. ISSN 1936-0851 R&D Projects: GA ČR GC203/07/J067; GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : single-walled carbon nanotubes * Raman spectroscopy * electrochemical gating * spectroelectrochemistry Subject RIV: CG - Electrochemistry Impact factor: 7.493, year: 2009

  9. Charge Transport in Single Molecule Junctions of Spirobifluorene Scaffold

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Kolivoška, Viliam; Sokolová, Romana; Šebera, Jakub; Mészáros, G.; Valášek, M.; Mayor, C.

    Ústí nad Labem: Best servis, 2016 - (Navrátil, T.; Fojta, M.; Schwarzová, K.), s. 78-80 ISBN 978-80-905221-4-5. [Moderní elektrochemické metody /36./. Jetřichovice (CZ), 23.05.2016-27.05.2016] R&D Projects: GA ČR(CZ) GA14-05180S Grant ostatní: AV ČR(CZ) MTA-16-02 Institutional support: RVO:61388955 Keywords : single molecule conductance * spirobifluorene * break junction Subject RIV: CG - Electrochemistry

  10. Emittance measurements of high current heavy ion beams using a single shot pepperpot system

    International Nuclear Information System (INIS)

    The new 1.4 MeV/u high current injector for the Unilac successfully commissioned in 1999 is now accelerating heavy ions close to the calculated intensities. For example an 40Ar1+ beam with 8 emA allows to fill the GSI synchrotron to its inherent intensity limit. For emittance measurements of such intense beams a single shot pepperpot system has been developed. An overview of the hard- and software including mathematical algorithms is given. Results of emittance measurements at different intensities and energies are presented. The influence of stripping and related space charge effects on the emittance could be investigated

  11. Adiabatic Charge Control in a Single Donor Atom Transistor

    CERN Document Server

    Prati, Enrico; Cocco, Simone; Petretto, Guido; Fanciulli, Marco

    2010-01-01

    A Silicon quantum device containing a single Arsenic donor and an electrostatic quantum dot in parallel is realized in a nanometric field effect transistor. The different coupling capacitances of the donor and the quantum dot with the control and the back gates determine a relative rigid shift of their energy spectrum as a function of the back gate voltage, causing the crossing of the energy levels. We observe the sequential tunneling through the $D^{2-}$ and the $D^{3-}$ energy levels of the donor at 4.2 K, ordinarily hidden at high temperature as they lie above the conduction band edge of Silicon. The exchange coupling of the localized electrons is controlled in the anticrossing region by moving one electron from the donor to the quantum dot site and \\textit{viceversa}, in order to realize physical qubits for quantum information processing.

  12. Disorder-assisted transmission due to charge puddles in monolayer graphene: Transmission enhancement and local currents

    Science.gov (United States)

    Lima, Leandro R. F.; Lewenkopf, Caio H.

    2016-01-01

    We investigate the contribution of charge puddles to the nonvanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evanescent modes allowing us to single out the effect of charge fluctuations in the transport properties. We use the recursive Green's function technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relationship between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We find that electronic interactions do not play a significant role in this setting. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.

  13. Constraints on neutrino decay lifetime using long-baseline charged and neutral current data

    International Nuclear Information System (INIS)

    We investigate the status of a scenario involving oscillations and decay for charged and neutral current data from the MINOS and T2K experiments. We first present an analysis of charged current neutrino and anti-neutrino data from MINOS in the framework of oscillation with decay and obtain a best fit for non-zero decay parameter α3. The MINOS charged and neutral current data analysis results in the best fit for |Δm322|=2.34×10−3 eV2, sin2⁡θ23=0.60 and zero decay parameter, which corresponds to the limit for standard oscillations. Our combined MINOS and T2K analysis reports a constraint at the 90% confidence level for the neutrino decay lifetime τ3/m3>2.8×10−12 s/eV. This is the best limit based only on accelerator produced neutrinos

  14. Constraints on neutrino decay lifetime using long-baseline charged and neutral current data

    Directory of Open Access Journals (Sweden)

    R.A. Gomes

    2015-01-01

    Full Text Available We investigate the status of a scenario involving oscillations and decay for charged and neutral current data from the MINOS and T2K experiments. We first present an analysis of charged current neutrino and anti-neutrino data from MINOS in the framework of oscillation with decay and obtain a best fit for non-zero decay parameter α3. The MINOS charged and neutral current data analysis results in the best fit for |Δm322|=2.34×10−3 eV2, sin2⁡θ23=0.60 and zero decay parameter, which corresponds to the limit for standard oscillations. Our combined MINOS and T2K analysis reports a constraint at the 90% confidence level for the neutrino decay lifetime τ3/m3>2.8×10−12 s/eV. This is the best limit based only on accelerator produced neutrinos.

  15. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    CERN Document Server

    Mohammadi, Azadeh

    2015-01-01

    In this paper we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher dimensional compactified cosmic string with magnetic fluxes, along the string core and also enclosed by the compactified direction, in thermal equilibrium at finite temperature $T$. These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potentia...

  16. Single-electron tunneling and Coulomb charging effects in aysmmetric double-barrier resonant-tunneling diodes

    OpenAIRE

    TEWORDT, M; MARTINMORENO, L; Nicholls, J T; Pepper, M.; Kelly, M J; Law, V.J.; Ritchie, D. A.; Frost, J. E. F.; Jones, G.A.C.

    1993-01-01

    Resonant tunneling is studied in an ultrasmall asymmetric GaAs-AlxGa1-xAs double-barrier diode at low temperatures. In reverse bias, spikelike current-voltage characteristics are observed and assigned to electrons tunneling from zero-dimensional (OD) states in the accumulation layer to OD states in the well. The OD-OD tunneling reflects the single-electron spectrum without Coulomb charging effects. In forward bias, steplike current-voltage characteristics are observed and ascribed to tunnelin...

  17. Charged-current quasielastic neutrino cross sections on $^{12}$C with realistic spectral and scaling functions

    CERN Document Server

    Ivanov, M V; Caballero, J A; Megias, G D; Barbaro, M B; de Guerra, E Moya; Udias, J M

    2014-01-01

    Charge-current quasielastic (CCQE) (anti)neutrino scattering cross sections on a $^{12}$C target are analyzed using a spectral function $S(p,{\\cal E})$ that gives a scaling function in accordance with the ($e,e'$) scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence and natural orbitals (NO's) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass $M_A= 1.032$ GeV/c$^2$ is used. The results are compared with those when NN correlations are not included, as in the Relativistic Fermi Gas (RFG) model, or when harmonic-oscillator (HO) single-particle wave functions are used instead of NO's. The role of the final-state interactions (FSI) on the theoretical spectral and scaling functions, as well as on the cross sections is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained f...

  18. Current-Phase Measurements in Single Layer Graphene

    Science.gov (United States)

    Chialvo, Cesar; Moraru, Ion; Bahr, Daniel; Mason, Nadya; van Harlingen, Dale

    2009-03-01

    The current-phase relationship (CPR) of a Josephson junction can provide key information about the microscopic processes that make up a supercurrent. However, CPR has not been previously measured in graphene. We have successfully fabricated a variety of Josephson junctions containing single-layer graphene as a weak link, and with different junction width to length ratios. We present results of measurements based on a phase-sensitive SQUID technique, where we determine the supercurrent amplitude and phase, as well as a possibly anomalous shape of the CPR.

  19. Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector

    OpenAIRE

    Adamson, P.; Andreopoulos, C.; Arms, K. E.; Armstrong, R.; Auty, D. J.; Ayres, D. S.; Backhouse, C.; Barnes, JR; Barr, G.; Barrett, W. L.; Devenish, N. E.; Falk, E.; Harris, P.G.; Hartnell, J.; et al, ...

    2010-01-01

    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precisi...

  20. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

    International Nuclear Information System (INIS)

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d2σ/d Tμd cos θμ) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimalmodel dependence and provides the most complete information on this process to date. The results are important input to characterize CCQE interaction for precision long baseline neutrino oscillation experiments.

  1. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    CERN Document Server

    Hofmann, Felix J; Lupton, John M

    2016-01-01

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process, or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The resul...

  2. Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs

    OpenAIRE

    Kaether, F.; Langbrandtner, C.

    2012-01-01

    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT re...

  3. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport

    OpenAIRE

    Muren, Natalie B.; Olmon, Eric D.; Barton, Jacqueline K.

    2012-01-01

    The structural core of DNA, a continuous stack of aromatic heterocycles, the base pairs, which extends down the helical axis, gives rise to the fascinating electronic properties of this molecule that is so critical for life. Our laboratory and others have developed diverse experimental platforms to investigate the capacity of DNA to conduct charge, termed DNA-mediated charge transport (DNA CT). Here, we present an overview of DNA CT experiments in solution, on surfaces, and with single molecu...

  4. Spin and Charge Currents through a Quantum Dot Connected to Ferromagnetic Leads

    Institute of Scientific and Technical Information of China (English)

    CHI Feng; LI Shu-Shen

    2005-01-01

    @@ We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field Bresults in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

  5. High Performance Charge Pump Phase-Locked Loop with Low Current Mismatch

    Directory of Open Access Journals (Sweden)

    V. Sujatha

    2012-01-01

    Full Text Available In CMOS CPs, which have Up and Down switches made of p-channel and n-channel respectively, generates fluctuations in the VCO due to current mismatch occurs when dumping the charge to the loop filter and subsequently a large phase noise on the PLL output. This paper presents a new CP circuit after detailed analysis of the current mismatch problem. It combines an error amplifier with reference current sources to achieve good current matching characteristics and lower phase noises. Charge sharing can be eliminated by using charge removal transistors. In addition, a low-voltage cascode current mirror and gain-boosting circuit are used to enhance current matching over process corners and increase the output impedance of the CP. Good current matching characteristic is achieved with less than 0.1% difference of the Up/Down current and 1% over all process variations. The CP output compliance voltage range of 0.1-1.8 V is achieved for 1.8-V supply voltage. The circuit was designed using 0.18um TSMC CMOS technology and simulated by Spectre tools.

  6. Consecutive Charging of a Molecule-on-Insulator Ensemble Using Single Electron Tunnelling Methods.

    Science.gov (United States)

    Rahe, Philipp; Steele, Ryan P; Williams, Clayton C

    2016-02-10

    We present the local charge state modification at room temperature of small insulator-supported molecular ensembles formed by 1,1'-ferrocenedicarboxylic acid on calcite. Single electron tunnelling between the conducting tip of a noncontact atomic force microscope (NC-AFM) and the molecular islands is observed. By joining NC-AFM with Kelvin probe force microscopy, successive charge build-up in the sample is observed from consecutive experiments. Charge transfer within the islands and structural relaxation of the adsorbate/surface system is suggested by the experimental data. PMID:26713686

  7. Induced fermionic charge and current densities in two-dimensional rings

    CERN Document Server

    Bellucci, S; Grigoryan, A Kh

    2016-01-01

    For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...

  8. The secondary electron emission yield of muscovite mica: Charging kinetics and current density effects

    Science.gov (United States)

    Blaise, G.; Pesty, F.; Garoche, P.

    2009-02-01

    Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EIexoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.

  9. Charge dynamics of MgO single crystals subjected to KeV electron irradiation

    Science.gov (United States)

    Boughariou, A.; Blaise, G.; Braga, D.; Kallel, A.

    2004-04-01

    A scanning electron microscope has been equipped to study the fundamental aspects of charge trapping in insulating materials, by measuring the secondary electron emission (SEE) yield σ with a high precision (a few percent), as a function of energy, electron current density, and dose. The intrinsic secondary electron emission yield σ0 of uncharged MgO single crystals annealed at 1000 °C, 2 h, has been studied at four energies 1.1, 5, 15, and 30 keV on three different crystal orientations (100), (110), and (111). At low energies (1.1 and 5 keV) σ0 depends on the crystalline orientation wheras at high energies (30 keV) no differentiation occurs. It is shown that the value of the second crossover energy E2, for which the intrinsic SEE yield σ0=1, is extremely delicate to measure with precision. It is about 15 keV±500 eV for the (100) orientation, 13.5 keV±500 eV for the (110), and 18.5 keV±500 eV for the (111) one. At low current density J⩽105 pA/cm2, the variation of σ with the injected dose makes possible the observation of a self-regulated regime characterized by a steady value of the SEE yield σst=1. At low energies 1.1 and 5 keV, there is no current density effects in MgO, but at high energies ≈30 keV, apparent current density effects come from a bad collect of secondary electrons, due to very high negative surface potential. At 30 keV energy, an intense erratic electron exoemission was observed on the MgO (110) orientation annealed at 1500 °C. This phenomenon is the result of a disruptive process similar to flashover, which takes place at the surface of the material.

  10. Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes.

    Science.gov (United States)

    Hwang, Ihn; Wang, Wei; Hwang, Sun Kak; Cho, Sung Hwan; Kim, Kang Lib; Jeong, Beomjin; Huh, June; Park, Cheolmin

    2016-05-21

    The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 10(4), a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period. PMID:27129104

  11. Meson exchange current and three-body force contributions to the 4He charge form factor

    International Nuclear Information System (INIS)

    Effects of meson exchange current (MEC) on the charge form factor (CFF) and charge density of 4He are investigated, including pair, mesonic and retardation current terms. The influence of three-body force (3BF) is considered by adopting the realistic wave function obtained from the nuclear Hamiltonian which explicitly includes the two-pion exchange 3BF. As a result the 3BF is found to greatly enhance the MEC contribution. When the 3BF is taken into account, the MEC contribution is shown to remove most of the discrepancy between the theoretical and experimental CFF's at the second maximum. Resulting effects on the charge density are found to yield a depression in the central region. (author)

  12. Modeling of a single-cycle current generator while forming a quasi-sinusoidal current

    Science.gov (United States)

    Grebennikov, V. V.; Yaroslavtsev, E. V.; Slobodenuk, A. B.; Evtushenko, T. G.

    2016-04-01

    The paper presents the results of investigation of the influence of the output voltage magnitude on the operating frequency of the switch in the single-cycle quasi-sinusoidal current generator circuit. Analytical expressions for calculating the time parameters for transients in the circuit under given assumptions have been obtained. The results presented in the paper can be used in the design of converters of this type.

  13. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    International Nuclear Information System (INIS)

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge), respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes

  14. Single-incision laparoscopic surgery - Current status and controversies

    Directory of Open Access Journals (Sweden)

    Rao Prashanth

    2011-01-01

    Full Text Available Scarless surgery is the Holy Grail of surgery and the very raison d′etre of Minimal Access Surgery was the reduction of scars and thereby pain and suffering of the patients. The work of Muhe and Mouret in the late 80s, paved the way for mainstream laparoscopic procedures and it rapidly became the method of choice for many intra-abdominal procedures. Single-incision laparoscopic surgery is a very exciting new modality in the field of minimal access surgery which works for further reducing the scars of standard laparoscopy and towards scarless surgery. Natural orifice translumenal endoscopic surgery (NOTES was developed for scarless surgery, but did not gain popularity due to a variety of reasons. NOTES stands for natural orifice translumenal endoscopic surgery, a term coined by a consortium in 2005. NOTES remains a research technique with only a few clinical cases having been reported. The lack of success of NOTES seems to have spurred on the interest in single-incision laparoscopy as an eminently doable technique in the present with minimum visible scarring, rendering a ′scarless′ effect. Laparo-endoscopic single-site surgery (LESS is, a term coined by a multidisciplinary consortium in 2008 for single-incision laparoscopic surgery. These are complementary technologies with similar difficulties of access, lack of triangulation and inadequate instrumentation as of date. LESS seems to offer an advantage to surgeons with its familiar field of view and instruments similar to those used in conventional laparoscopy. LESS remains a evolving special technique used successfully in many a centre, but with a significant way to go before it becomes mainstream. It currently stands between standard laparoscopy and NOTES in the armamentarium of minimal access surgery. This article outlines the development of LESS giving an overview of all the techniques and devices available and likely to be available in the future.

  15. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm-1, the electron current density was in the range 210-280 A cm-2, and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm-2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  16. On the Electromagnetic Momentum of Static Charge and Steady Current Distributions

    Science.gov (United States)

    Gsponer, Andre

    2007-01-01

    Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…

  17. The relativistic Green's function model in charged-current quasielastic neutrino and antineutrino scattering at MINER$\

    OpenAIRE

    Meucci, Andrea; Giusti, Carlotta

    2014-01-01

    The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativistic Green's function model with the data recently published by the MINER$\

  18. Polarized parton distributions from charged-current deep-inelastic scattering

    International Nuclear Information System (INIS)

    We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure

  19. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  20. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta; /Pittsburgh U.

    2009-03-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 10{sup 6} neutrino events and 1.60 x 10{sup 5} antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  1. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    Science.gov (United States)

    Mohammadi, A.; Bezerra de Mello, E. R.

    2016-06-01

    In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.

  2. Possible deviations from (V-A) charged currents: precise measurement of muon decay parameters

    International Nuclear Information System (INIS)

    This short review examines the experimental limits on possible deviations from (V-A) charged weak currents, as would occur at some mass scale, for example, in manifestly left-right-symmetric electro-weak theories. Both present and anticipated limits are considered, emphasizing muon-decay experiments but including other experimental input where convenient

  3. Standardization of calibration of clinic dosemeters using electric currents and charges

    International Nuclear Information System (INIS)

    Clinical dosimeters used in radiotherapy are calibrated in Latin American countries, including Brazil, as a complete 'system, i.e., ionization chamber and electrometer together. Some countries, as European ones, and USA calibrate them by component, i.e., ionisation chamber apart from electrometer. This method is more advantageous than the previous one, since it makes possible the automation of the calibration process, allowing the acquisition of data related to the chamber and the electrometer measurements independently, as well as the substitution of one of the components, in case of failure. This work proposes a method for standardisation of low intensity electric charge and currents in order to implement electric calibration of electrometers. This will make possible the implementation of a by components calibration technique, by components, of clinical dosimeters in Brazil. The results obtained with the calibration by components prove that the proposed method of standardisation of low electric charges and currents is viable. The difficulties found for the generation and measurement of low intensity electric charges and currents and the procedures adopted for the calibration by components are presented. Additionally, a current source was built to yield reference electric charges that will make possible the quality control clinical dosimeters. This source will also allow the user to identify the defective components of the dosimeters, through a simple verification test. (author)

  4. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  5. Plug-in Electric Vehicle Collaborative Charging for Current Unbalance Minimization: Ant System Optimization Application

    OpenAIRE

    FERNANDEZ, Julian Alberto; Bacha, Seddik; Riu, Delphine; Hably, Ahmad

    2015-01-01

    Plug-in electric vehicles (PEVs) are one of the solutions to reduce transportation dependency on oil. Nevertheless, uncoordinated charging in distribution low voltage (LV) networks can lead to local grid problems such as current unbalance and consequently voltage unbalance. In this paper, a combinatorial method based on Ant System (AS) optimization is proposed in order to minimize the current unbalance factor (CUF) by controlling the connection and disconnection of PEVs. The CUF is generated ...

  6. Charged current quasi-elastic neutrino analysis at MINERνA

    International Nuclear Information System (INIS)

    MINERνA (Main INjector Experiment for ν-A) is a neutrino scattering experiment in the NuMI high-intensity neutrino beam at the Fermi National Accelerator Laboratory. MINERvA was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). We present the current status of the charged current quasi-elastic scattering in plastic scintillator

  7. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  8. Bias spectroscopy and simultaneous single-electron transistor charge state detection of Si:P double dots

    International Nuclear Information System (INIS)

    We report a detailed study of low-temperature (mK) transport properties of a silicon double-dot system fabricated by phosphorous ion implantation. The device under study consists of two phosphorous nanoscale islands doped to above the metal-insulator transition, separated from each other and the source and drain reservoirs by nominally undoped (intrinsic) silicon tunnel barriers. Metallic control gates, together with an Al-AlOx single-electron transistor (SET), were positioned on the substrate surface, capacitively coupled to the buried dots. The individual double-dot charge states were probed using source-drain bias spectroscopy combined with non-invasive SET charge sensing. The system was measured in linear (source-drain DC bias VSD = 0) and non-linear (VSD ≠ 0) regimes, allowing calculations of the relevant capacitances. Simultaneous detection using both SET sensing and source-drain current measurements was demonstrated, providing a valuable combination for the analysis of the system. Evolution of the triple points with applied bias was observed using both charge and current sensing. Coulomb diamonds, showing the interplay between the Coulomb charging effects of the two dots, were measured using simultaneous detection and compared with numerical simulations

  9. Single-Charge Transistor Based on the Charge-Phase Duality of a Superconducting Nanowire Circuit

    Science.gov (United States)

    Hongisto, T. T.; Zorin, A. B.

    2012-03-01

    We propose a transistorlike circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a network of on-chip Cr microresistors ensuring a sufficiently high external electromagnetic impedance. Assuming a virtual regime of quantum phase slips (QPS) in two narrow segments of the wire, leading to quantum interference of voltages on these segments, this circuit is dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUIDs) and periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUIDs). The model of this QPS transistor is discussed.

  10. Charge transport and photoresponses in a single-stranded DNA/single-walled carbon nanotube composite film

    Science.gov (United States)

    Hong, Wonseon; Lee, Eunmo; Kue Park, Jun; Eui Lee, Cheol

    2013-06-01

    Electrical conductivity and photoresponse measurements have been carried out on a single-stranded DNA (ssDNA)/single-walled carbon nanotube (SWNT) composite film in comparison to those of a SWNT film. While the temperature-dependent electrical conductivity of the pristine SWNT film was described well by the combined mechanism of a three-dimensional variable-range hopping and hopping conduction, that of the ssDNA/SWNT composite film followed a fluctuation-induced tunneling model. Besides, competition of photoexcited charge carrier generation and oxygen adsorption/photodesorption in the photoresponses of the films was observed and discussed in view of the role of the DNA wrapping. Thus, the biopolymer coating of the SWNTs is shown to play a significant role in modifying the charge dynamics of the composite system.

  11. Control of charging energy in chemically assembled nanoparticle single-electron transistors

    International Nuclear Information System (INIS)

    We show the control of a charging energy in chemically assembled nanoparticle single-electron transistors (SETs) by altering the core diameter of Au nanoparticles. The charging energy is a fundamental parameter that decides the operating temperature of SETs. Practical application of SETs requires us to regulate the value of the charging energy by tuning the diameter of quantum dots. In this study, we used 3.0, 5.0 and 6.2 nm diameter synthesized Au nanoparticles as a quantum dot in the SETs. The total capacitances and charging energy of the SETs were evaluated from the rhombic Coulomb diamonds attributed to a single Coulomb island. The capacitance and charging energy matched with a concentric sphere model much better than with a simple sphere model. The operating temperatures of the SETs suggested that a charging energy 2.2 times greater than the thermal energy was required for stable operation, in theory. These results will help us to select an appropriate core diameter for the Au nanoparticles in practical SETs. (paper)

  12. Current research status, databases and application of single nucleotide polymorphism.

    Science.gov (United States)

    Javed, R; Mukesh

    2010-07-01

    Single Nucleotide Polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. SNPs are genetic markers which are bi-allelic in nature and grow at a very fast rate. Current genomic databases contain information on several million SNPs. More than 6 million SNPs have been identified and the information is publicly available through the efforts of the SNP Consortium and others data bases. The NCBI plays a major role in facillating the identification and cataloging of SNPs through creation and maintenance of the public SNP database (dbSNP) by the biomedical community worldwide and stimulate many areas of biological research including the identification of the genetic components of disease. In this review article, we are compiling the existing SNP databases, research status and their application. PMID:21717869

  13. Single-base mismatch detection based on charge transduction through DNA.

    OpenAIRE

    Kelley, S O; Boon, E M; Barton, J K; Jackson, N M; Hill, M. G.

    1999-01-01

    High-throughput DNA sensors capable of detecting single-base mismatches are required for the routine screening of genetic mutations and disease. A new strategy for the electrochemical detection of single-base mismatches in DNA has been developed based upon charge transport through DNA films. Double-helical DNA films on gold surfaces have been prepared and used to detect DNA mismatches electrochemically. The signals obtained from redox-active intercalators bound to DNA-modified gold surfaces d...

  14. Single polarity charge sensing in high pressure xenon using a coplanar anode configuration

    Science.gov (United States)

    Sullivan, Clair Julia

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing by means of the Shockley-Ramo theorem. Two different detectors have been built in order to determine if the operation of a high pressure xenon detector in coplanar anode mode is possible. The first is the helical detector comprised of two anode wires wound about a central ceramic core. Through calculation, it is shown that for a cathode bias of -5 kV a potential of 363 V is necessary to collect all of the electrons on the collecting anode, however this is contradicted by the observed pulse waveforms. The results of several experiments are presented that demonstrate the helical detector should work, however in the interest in determining if a coplanar high pressure xenon detector is viable, emphasis was placed on the second detector design. The second design is a parallel plate detector, more analogous to the coplanar semiconductor devices. This detector has demonstrated that it is possible to operate a high pressure xenon detector in coplanar anode mode. However, it is shown that the performance of this detector is limited by high surface leakage current and detector capacitance. Additionally, since the leakage current increases with potential between the two anodes, it is not possible to obtain very high resolution gamma-ray spectroscopy since the required potential between the two anodes for coplanar operation is so high that the detector is already dominated by surface leakage current as this value.

  15. Single top-quark production through flavour changing neutral currents

    International Nuclear Information System (INIS)

    Flavour Changing Neutral Current (FCNC) processes are highly suppressed in the Standard Model due to Glashow-Iliopoulos-Maiani (GIM) mechanism. However, in some extensions of the Standard Model such as supersymmetry (SUSY) and the 2-Higgs doublet model, the FCNC contributes at tree level, enhancing the branching ratio significantly. The FCNC are searched for in single top-quark production where a u(c)-quark interacts with a gluon, producing a single top-quark with no associated quark production. The data collected by the ATLAS detector during year 2012 is used with a center-of-mass energy of √(s)=8 TeV, corresponding to an integrated luminosity of ∝20 fb-1. The candidate signal events are selected by requiring one lepton, muon or electron, missing transverse momentum and exactly one jet originating from a b-quark in the final state. The separation between the signal and background events is enhanced by using neural network algorithms. The cross section upper limit at 95% C.L. is calculated following most frequently statistical approach using a binned likelihood method calculated from the full neural network output.

  16. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  17. Interaction of current filaments in dielectric barrier discharges with relation to surface charge distributions

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, L [Institut fuer Plasmaforschung, Pfaffenwaldring 31, 70569 Stuttgart (Germany)], E-mail: stollenwerk@ipf.uni-stuttgart.de

    2009-10-15

    In a planar, laterally extended dielectric barrier discharge (DBD) system operated in glow mode, a filamentary discharge is observed. The filaments tend to move laterally and hence tend to cause collisions. Thereby, usually one collision partner becomes destroyed. In this paper, the collision process and especially the preceding time period is investigated. Beside the luminescence density of the filaments, the surface charge density accumulated between the single breakdowns of the DBD is observed via an optical measurement technique based on the linear electro-optical effect (pockels effect). A ring-like substructure of the surface charge distribution of a single filament is found, which correlates to the filament interaction behaviour. Furthermore, a preferred filament distance is found, suggesting the formation of a filamentary quasi-molecule.

  18. Off-shell Noether current and conserved charge in Horndeski theory

    Directory of Open Access Journals (Sweden)

    Jun-Jin Peng

    2016-01-01

    Full Text Available We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  19. Current signal of silicon detectors facing charged particles and heavy ions

    International Nuclear Information System (INIS)

    This work consisted in collecting and studying for the first time the shapes of current signals obtained from charged particles or heavy ions produced by silicon detectors. The document is divided into two main parts. The first consisted in reducing the experimental data obtained with charged particles as well as with heavy ions. These experiments were performed at the Orsay Tandem and at GANIL using LISE. These two experiments enabled us to create a data base formed of current signals with various shapes and various times of collection. The second part consisted in carrying out a simulation of the current signals obtained from the various ions. To obtain this simulation we propose a new model describing the formation of the signal. We used the data base of the signals obtained in experiments in order to constrain the three parameters of our model. In this model, the charge carriers created are regarded as dipoles and their density is related to the dielectric polarization in the silicon detector. This phenomenon induces an increase in permittivity throughout the range of the incident ion and consequently the electric field between the electrodes of the detector is decreased inside the trace. We coupled with this phenomenon a dissociation and extraction mode of the charge carriers so that they can be moved in the electric field. (author)

  20. On the self-induced charge currents in electromagnetic materials and its effects in the torsion balance experiment

    OpenAIRE

    Shen, Jian Qi

    2003-01-01

    We concern ourselves with the self-induced charge currents in electromagnetic materials and some related topics on its effects in the present paper. The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is briefly discussed. We concentrate primarily on the torque, which is caused by the interaction of self-induced charge currents in dilute plasma with interstellar magnetic fields, acting on the torsion balance in the torsion balance experiment. I...

  1. Newton's laws for a biquaternionic model of the electro-gravimagnetic field, charges, currents and their interactions

    OpenAIRE

    Alexeyeva, Lyudmila

    2011-01-01

    With use the Hamiltonian form of the Maxwell's equations one biquaternionic model for electro-gravimagnetic (EGM) field is offered. The equations of the interaction of EGM-fields, which are generated by different charge and current, are built. The field analogs of three Newton's laws are offered for free and interacting charge-currents, as well as total field of interaction. The invariance of these equations at Lorentz transformation is investigated, and, in particular, of the charge-current ...

  2. Characterization of charge collection in CdTe and CZT using the transient current technique

    CERN Document Server

    Fink, J; Lodomez, P; Wermes, N; Fink, Johannes; Krueger, Hans; Lodomez, Philipp; Wermes, Norbert

    2005-01-01

    The charge collection properties in different particle sensor materials with respect to the shape of the generated signals, the electric field within the detector, the charge carrier mobility and the carrier lifetime are studied with the transient current technique (TCT). Using the well-known properties of Si as a reference, the focus is laid on Cadmium-Telluride (CdTe) and Cadmium-Zinc-Telluride (CZT), which are currently considered as promising candidates for the efficient detection of X-rays. All measurements are based on a transient-current technique (TCT) setup, which allows the recording of current pulses generated by an 241Am alpha-source. These signals will be interpreted with respect to the build-up of space-charges inside the detector material and the subsequent deformation of the electric field. Additionally the influence of different electrode materials (i.e. ohmic or Schottky contacts) on the current pulse shapes will be treated in the case of CdTe. Finally, the effects of polarization, i.e. the ...

  3. Determination of the neutral to charged current cross section ratio for neutrino interactions on protons

    International Nuclear Information System (INIS)

    About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the vsub(μ) wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for vsub(μ) interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result Rsub(P)sup(v)=0.47 +- 0.04 is compatible with those measurements and the prediction of the standard SU(2) x U(1) model for sinsub(THETA)2sub(W)=0.18 +- 0.04. (orig.)

  4. Determination of the neutral to charged current cross section ratio for neutrino interactions on protons

    Energy Technology Data Exchange (ETDEWEB)

    Armenise, N.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M.T.; Natali, S.; Nuzzo, S.; Ruggieri, F. (Bari Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Bari (Italy)); Belusevic, R.; Colley, D.C.

    1983-03-17

    About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the vsub(..mu..) wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for vsub(..mu..) interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result Rsub(P)sup(v)=0.47 +- 0.04 is compatible with those measurements and the prediction of the standard SU(2) x U(1) model for sinsub(THETA)/sup 2/sub(W)=0.18 +- 0.04.

  5. Determination of the neutral to charged current cross-section ratio for antineutrino interactions on protons

    Science.gov (United States)

    Moreels, J.; Van Doninck, W.; Alamatsaz, H.; Armenise, N.; Azemoon, T.; Bartley, J. H.; Baton, J. P.; Belusevic, R.; Bertrand, D.; Brisson, V.; Calicchio, M.; Colley, D. C.; Cooper, A. M.; Erriquez, O.; Fogli-muciaccia, M. T.; Gerbier, G.; Guy, J. G.; Jones, G. T.; Kochowski, C.; Michette, A. G.; Natali, S.; Neveu, M.; Nuzzo, S.; O'Neale, S.; Parker, M. A.; Petiau, P.; Ruggieri, F.; Sacton, J.; Sewell, S.; Tyndel, M.; Vander Velde, G.; Venus, W.; Vortuba, M. F.; BEBC TST Neutrino Collaboration

    1984-04-01

    An exposure of BEBC equipped with the hydrogen-filled TST to the overlinevμ wide band beam at the CERN SPS has been used to study overlinevμ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R poverlinev = 0.33 ± 0.04 . When combined with the value of Rpv previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2θW = 0.24 -0.08+0.06 and ρ = 1.07 -0.08+0.06. Fixing the parameter ρ = 1 yields sin 2θW = 0.18 ± 0.04.

  6. Determination of the neutral to charged current cross section ratio for neutrino interactions on protons

    Science.gov (United States)

    Armenise, N.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M. T.; Natali, S.; Nuzzo, S.; Ruggieri, F.; Belusevic, R.; Colley, D. C.; Jones, G. T.; O'Neale, S.; Sewell, S.; Votruba, M. F.; Bertrand, D.; Moreels, J.; Sacton, J.; Vander Velde-Wilquet, C.; Van Doninck, W.; Brisson, V.; Francois, T.; Petiau, P.; Cooper, A. M.; Guy, J. G.; Michette, A. G.; Tyndel, M.; Venus, W.; Baton, J. P.; Gerbier, G.; Kochowski, C.; Neveu, M.; Alamatsaz, H.; Azemoon, T.; Bartley, J. H.; Parker, M. A.; BEBC TST Neutrino Collaboration

    1983-03-01

    About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the vμ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for vμ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result RPv = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2θW = 0.18 ± 0.04.

  7. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    CERN Document Server

    Bellucci, S; Bragança, E; Saharian, A A

    2016-01-01

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even funct...

  8. The circuit design of a single supply charge-sensitive amplifier

    International Nuclear Information System (INIS)

    A single supply charge-sensitive amplifier is described here. This amplifier is based on JFET 3DJ71 and op-amp INA155, and has characteristic of low power supply and low power consumption. It is suitable for being used in portable low power instruments, such as semiconductor detector personal dosimeter. (authors)

  9. A tetrastable naphthalenediimide: anion induced charge transfer, single and double electron transfer for combinational logic gates.

    Science.gov (United States)

    Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2013-09-11

    Herein we demonstrate the formation of the first tetrastable naphthalenediimide (NDI, 1a) molecule having multiple distinctly readable outputs. Differential response of 1a to fluoride anions induces intramolecular charge transfer (ICT), single/double electron transfer (SET/DET) leading to a set of combinational logic gates for the first time with a NDI moiety. PMID:23752683

  10. Current-Driven Conformational Changes, Charging and Negative Differential Resistance in Molecular Wires

    OpenAIRE

    Emberly, Eldon; Kirczenow, George

    2001-01-01

    We introduce a theoretical approach based on scattering theory and total energy methods that treats transport non-linearities, conformational changes and charging effects in molecular wires in a unified way. We apply this approach to molecular wires consisting of chain molecules with different electronic and structural properties bonded to metal contacts. We show that non-linear transport in all of these systems can be understood in terms of a single physical mechanism and predict that negati...

  11. In-source analysis of radiation curing of unsaturated polyester resin by charging current technique

    International Nuclear Information System (INIS)

    The dielectric and conductive properties of unsaturated polyester (UP) resins undergo significant changes in the course of crosslinking reaction. In-source radiation curing of UP resins was studied by combining dielectric, thermal and charging current analyses. Dielectric permittivity (by stepwise changing of frequency) and charging current were measured in the course of cobalt-60 γ-irradiation at constant temperatures. The exothermic reaction could be monitored by differential thermal analysis (DTA), while the observed change of dielectric permittivity can show how the dielectric relaxation time distribution shifted through the experimental window represented by reaction temperature and by frequency range of dielectric spectrometer. The decrease in dielectric permittivity and in charging current may be mainly associated with the partial immobilization of permanent carbonyl and hydroxyl dipoles attached to the oligoester chain. The measurements of charging properties of UP resins during the curing seems very promising due to the ease with which the relaxation parameters and essential information on the molecular interactions and mobility can be derived. The electrical properties of UP resins are mainly determined by inter-and intramolecular hydrogen bonds. The shape of the charging current spectra during the curing of UP resins showed a heterogeneous nature of vitrification process. The results show that two relaxations occur: the first one is attributed to the increase in viscosity of liquid phase as oligoester chains are crosslinked prior to the gelation, and the second one to the further crosslinking in the gel phase, resulting in the vitrification of the system. The characteristic times to gelation and vitrification of UP resins in the course of radiation isothermal curing are decreasing functions of reaction temperature. (author)

  12. A radiation-hardened-by-design technique for improving single-event transient tolerance of charge pumps in PLLs

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenyu; Zhang Minxuan; Chen Shuming; Chen Jihua; Li Junfeng

    2009-01-01

    A radiation-hardened-by-design (RHBD) technique for phase-locked loops (PLLs) has been developed for single-event transient (SET) mitigation. By presenting a novel SET-resistant complementary current limiter (CCL) and implementing it between the charge pump (CP) and the loop filter (LPF), the PLL's single-event suscepti-bility is significantly decreased in the presence of SETs in CPs, whereas it has little impact on the loop parameters in the absence of SETs in CPs. Transistor-level simulation results show that the CCL circuit can significantly reduce the voltage perturbation on the input of the voltage-controlled oscillator (VCO) by up to 93.1% and reduce the recovery time of the PLL by up to 79.0%. Moreover, the CCL circuit can also accelerate the PLL recovery procedure from loss of lock due to phase or frequency shift, as well as a single-event strike.

  13. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    OpenAIRE

    Rossi Passarella; Ahmad Fali Oklilas; Tarida Mathilda

    2014-01-01

    In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  14. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    Directory of Open Access Journals (Sweden)

    Rossi Passarella

    2014-10-01

    Full Text Available In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  15. A double-stage start-up structure to limit the inrush current used in current mode charge pump

    Science.gov (United States)

    Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi

    2016-06-01

    A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).

  16. Charm production in charged current deep inelastic e+p scattering at HERA

    International Nuclear Information System (INIS)

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb-1. Charged D* mesons decaying in the channel D*+→D0π+s with D0→K-π+ and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D*, σD*vis=12.8±4.0(stat)+4.7-1.5(sys) pb, is measured in the kinematic range of Q2>200 GeV2 and yD*T>1.5 GeV and vertical stroke ηD* vertical stroke e+p→antiνecX < 109 pb at 90% confidence level. (orig.)

  17. Characteristics of high efficiency current charging system for HTS magnet with solar energy

    Science.gov (United States)

    Kim, Dae-Wook; Yoon, Yong-Soo; Chung, Yoon-Do; Jo, Hyun-Chul; Kim, Ho-Min; Oh, Sung-Kwun; Kim, Hyun-Ki; Oh, Jae-Gi; Ko, Tae-Kuk

    In terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program.

  18. Planck Charges, Planck Currents and The Hermitic Shangri-La for Magnetic Monopole

    CERN Document Server

    Deng, Yanbin; Huang, Yong-Chang

    2016-01-01

    The concepts of Planck charges are summarized and extended in a consistent and unified manner to include Planck currents. These Planck parameters form a set of indicators serving as the boundary markers signaling the buffer zone separating the quantum gravity physics beyond Planck energy scale from the ordinary physics below the Planck scale. Combining the concepts of Planck charges with the Dirac electric-magnetic charge quantization relation, a lower bound is discovered and attributed to the value of magnetic monopole as half of the Planck magnetic monopole. The value of the running electric fine structure constant is required to be confined to a restricted interval to keep physics involving magnetic monopoles below the Planck scale. It provides a prediction about the hermitic Shangri-La, a remote place the magnetic monopoles are inhabiting near the boundary but still within the scope of ordinary physics. It opens a window of hope to the theoretical and/or experimental probe for magnetic monopoles realizing...

  19. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  20. A single-electron current in a cylindrical nanolayer

    International Nuclear Information System (INIS)

    The orbital current and the spin magnetic moment current of an electron in a cylindrical nanolayer are investigated. It is shown that under certain conditions, the main contribution to the total current is specified by the spin magnetic moment current

  1. Space-charge-controlled field emission model of current conduction through Al2O3 films

    Science.gov (United States)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  2. Observability of Charged Higgs Contribution in t-channel Single Top at LHC

    Science.gov (United States)

    Hashemi, Majid; Zebarjad, Seyyed Mohammad; Bakhshalizadeh, Hossein

    2016-05-01

    In this paper, the charged Higgs contribution in t-channel single top production is studied. The production process is a t-channel single top event with charged Higgs exchange. Therefore the signal is similar with Standard Model single top production in terms of the final state. In the first step, the signal cross section is calculated and compared to the other main production processes which are used for a heavy charged Higgs search at LHC, i.e., pp→ tbar {b}H- and pp→ H+ → tbar {b}. In the next step, an event generation and analysis is applied on signal and background events, in order to estimate the signal significance. The signal cross section is typically smaller than the associated production (tbar {b}H-) and resonance production (tbar {b}) by a factor of 10-3 and ranges from 10 f b to 1 f b for charged Higgs mass from 200 to 500 GeV at tan β = 50. Due to the small cross section of signal events and large SM background, the signal significance is small even after a dedicated kinematic analysis and selection of events, however, tan β values above 120 can be excluded at an integrated luminosity of 3000 f b -1.

  3. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    Science.gov (United States)

    Hofmann, Felix J.; Vogelsang, Jan; Lupton, John M.

    2016-06-01

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distribution of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.

  4. Algorithms for solving the single-sink fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2006-01-01

    The single-sink fixed-charge transportation problem is an important subproblem of the fixed-charge transportation problem. Just a few methods have been proposed in the literature to solve this problem. In this paper, solution approaches based on dynamic programming and implicit enumeration are...... revisited. It is shown how the problem size as well as the search space of a recently published dynamic programming method can be reduced by exploiting reduced cost information. Additionally, a further implicit enumeration approach relying on solution concepts for the binary knapsack problem is introduced...

  5. Transit Time and Charge Correlations of Single Photoelectron Events in R7081 PMTs

    CERN Document Server

    Kaether, Florian

    2012-01-01

    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT response in a Monte Carlo simulation.

  6. Transit time and charge correlations of single photoelectron events in R7081 photomultiplier tubes

    International Nuclear Information System (INIS)

    During the calibration phase of the photomultiplier tubes (PMT) for the Double Chooz experiment the PMT response to light with single photoelectron (SPE) intensity was analysed. With our setup we were able to measure the combined transit time and charge response of the PMT and therefore we could deconstruct and analyse all physical effects having an influence on the PMT signal. Based on this analysis charge and time correlated probability density functions were developed to include the PMT response in a Monte Carlo simulation.

  7. Search for a fourth generation charge -1/3 quark via flavor changing neutral currents

    International Nuclear Information System (INIS)

    There is some likelihood that a light (t) fourth generation charge -1/3 quark (b') would decay predominantly via loop induced flavor changing neutral currents. The charged current decay of b' to charm would be highly Cabibbo suppressed due to the fact that it changes the generation number by two. The D0 experiment has searched for b' pair production where one or both b' quarks decays via b' → b+γ, giving signatures photon + three jets and two photons + two jets. WE don not see a significant excess of such events over background. In both modes, we set an upper limit on the cross section times branching ratio that is sufficient to rule out a standard sequential b' decaying predominantly via FCNC in the mass range mZ/2 b' Z + mb. For b' masses larger than this, the dominant FCNC decay mode is expected to be b' → b + Z. 14 refs., 13 figs., 5 tabs

  8. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient in...... a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE...... equipped with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The...

  9. First charged current data from the CERN-Dortmund-Heidelberg-Saclay neutrino experiment

    International Nuclear Information System (INIS)

    The CDHS Collaboration has analyzed data taken in the CERN narrow-band antineutrino and neutrino beams. From 12000 antineutrino and 36000 neutrino charged current events at neutrino energies between 30 GeV and 200 GeV, we obtain the average inelasticity and the cross-section ratio sigma antisub(ν)/sigmasub(ν) as a function of neutrino energy. On the basis of these data we cannot confirm the high y anomaly observed by previous experiments at Fermilab. Instead, the measured average inelasticity in anti neutrino reactions and the ratio of charged current total cross-sections sigma anti sub(ν)/sigma%sub(ν) are compatible with no energy variation within their errors in the energy range 30+. (orig.)

  10. Multi-jet cross sections in charged current e{sup {+-}}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-02-15

    Jet cross sections were measured in charged current deep inelastic e{sup {+-}}p scattering at high boson virtualities Q{sup 2} with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb{sup -1}. Differential cross sections are presented for inclusive-jet production as functions of Q{sup 2}, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e{sup {+-}}p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  11. Multijet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Jet cross sections were measured in charged-current deep inelastic e±p scattering at high boson virtualities Q2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb-1. Differential cross sections are presented for inclusive-jet production as functions of Q2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e±p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence-quark distributions in the proton if included as input to global fits.

  12. Modulation of current through a nanopore induced by a charged globule: implications for DNA-docking

    CERN Document Server

    Chinappi, Mauro; Cecconi, Fabio; Marconi, Umberto Marini Bettolo; Melchionna, Simone

    2015-01-01

    The passage of DNA through a nanopore can be effectively decomposed into two distinct phases, docking and actual translocation. In experiments each phase is characterized by a distinct current signature which allows the discrimination of the two events. However, at low voltages a clear distinction of the two phases is lost. By using numerical simulations we clarify how the current signature associated to the docking events depends on the applied voltage. The simulations show that at small voltage the DNA globule enhances the pore conductance due to an enrichment of charge carriers. At high voltage, the globule drains substantial charge carriers from the pore region, thereby reducing the overall conductance. The results provide a new interpretation to the experimental data on conductance and show how docking interferes with the translocation signal, of potential interest for sequencing applications.

  13. Charged-Current Neutral Pion production at SciBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Catala-Perez, J.; /Valencia U., IFIC

    2009-10-01

    SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of the {pi}{sup 0} decay photons, with an additional muon in the final state for CC processes. In this poster, I will present how we reconstruct and select charged-current muon neutrino interactions producing {pi}{sup 0}'s in SciBooNE.

  14. Current research with highly charged ions in EBIT-II and superEBIT

    International Nuclear Information System (INIS)

    Using both the LLNL high-voltage electron beam ion trap, SuperEBIT, and its low-energy counterpart, EBIT-II, we are currently performing spectroscopic measurements with electron beam energies ranging from 150 eV to 150 keV on ions ranging from near neutral Ne to ions as highly charged as Tl80+. Our measurements span photon energies from visible light to hard X-rays and focus on electron-ion interaction cross sections, line identifications and QED measurements, the determination of nuclear parameters, the investigation of charge transfer reactions, and radiative transition rates. An overview of some of the new instrumentation and a subset of the current experiments is given. (orig.)

  15. Measurements of the Charged Current Cross Sections with the ZEUS Detector

    International Nuclear Information System (INIS)

    A new measurement of the charged current cross section in e-p scattering is presented in the range of Q2 > 200 GeV2 , using the 1998 and 1999 data with an integrated luminosity of 16.4 pb-1. This cross section is compared to the preliminary charged current cross section in e+p scattering using the 1999 and 2000 data with an integrated luminosity of 61.0 pb-1, and to predictions of the Standard Model using PDFs extracted from fits to NC data. Finally, the mass of the W boson determined from a fit to dσ/dQ2 of the e-p scattering data is presented. (author)

  16. Multi-jet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Jet cross sections were measured in charged current deep inelastic e±p scattering at high boson virtualities Q2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb-1. Differential cross sections are presented for inclusive-jet production as functions of Q2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e±p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  17. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  18. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  19. Study of a single-charged ions ECR source matching of the extracted beam to an isotope separator

    International Nuclear Information System (INIS)

    A new ECR ion-source has been designed and studied for single-charged ion beams. A very stable regime has been obtained with an ion-source made of two identical stages in cascade. The RF power supplies consist of two 2.45 GHZ magnetrons. The discharge chamber is made of two coaxial Pyrex tubes. The external one ensures vacuum and HT insulation. The tubes are aligned inside the two multi-mode cavities axially limited by three magnetic coils. The ion beam is extracted at 20 kV and focused with electric lenses. For argon and xenon, 1 mA single-charged ion currents have been extracted. The influence of various parameters has been progressively achieved with a set-up including a 600 analyzing magnet and with the 1200 on-line isotope separator at SARA. From emittances and images observed it appears difficult to compensate charge space effects. Suggestions and future developments are proposed to improve qualities of the isotopic separation

  20. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  1. Charged-current neutrino-nucleus scattering off 95,97^Mo

    OpenAIRE

    Ydrefors, Emanuel; Suhonen, Jouni

    2013-01-01

    Background: Reliable cross sections for the neutrino-nucleus scattering off relevant nuclei for supernova neutrinos are essential for various applications in neutrino physics and astrophysics (e.g., supernova mechanisms). Studies of the nuclear responses for the stable molybdenum isotopes are of great interest for the planned MOON (Mo Observatory of Neutrinos) experiment. Purpose: The purpose of the present work is, thus, to perform a detailed study of the charged-current nuclear response...

  2. Charged current disappearance measurements in the NuMI off-axis beam

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  3. A few comments after the charged current measurement at the Sudbury Neutrino Observatory

    OpenAIRE

    Fiorentini, G.; Villante, F. L.; Ricci, B.

    2001-01-01

    The comparison of the SNO charged current result with the solar neutrino signal measured by Super-Kamiokande has provided, for the first time, the evidence of a non electron flavour active neutrino component in the solar flux. We remark here that this evidence can be obtained in a model independent way, i.e. without any assumpion about solar models, about the energy dependence of the neutrino oscillation probability and about the presence of sterile neutrinos. Furthermore, from the 8B neutrin...

  4. Biquaternionic Model of Electro-Gravimagnetic Field, Charges and Currents. Law of Inertia

    CERN Document Server

    Alexeyeva, Lyudmila

    2016-01-01

    One the base of Maxwell and Dirac equations the one biquaternionic model of electro-gravimagnetic (EGM) fields is considered. The closed system of biquaternionic wave equations is constructed for determination of free system of electric and gravimagnetic charges and currents and generated by them EGM-field. By using generalized functions theory the fundamental and regular solutions of this system are determined and some of them are considered (spinors, plane waves, shock EGMwaves and others). The properties of these solutions are investigated.

  5. Ionization and single electron capture in collision of highly charged Ar16+ ions with helium

    Institute of Scientific and Technical Information of China (English)

    Wang Fei; Gou Bing-Cong

    2008-01-01

    This paper uses the two-centre atomic orbital close-coupling method to study the ionization and the single electron capture in collision of highly charged Ar16+ ions with He atoms in the velocity range of 1.2-1.9 a.u.. The relative importance of single ionization (SI) to single capture (SC) is explored. The comparison between the calculation and experimental data shows that the SI/SC cross section ratios from this work are in good agreement with experimental data. The total single electron ionization cross sections and the total single electron capture cross sections are also given for this collision. The investigation of the partial electron capture cross section shows a general tendency of capture to larger n and l with increasing velocity from 1.2 to 1.9 a.u..

  6. Ion beam induced charge and numerical modeling study of novel detector devices for single ion implantation

    International Nuclear Information System (INIS)

    In the near future devices which are fabricated from shallow arrays of few and single atoms will exploit quantum mechanical rules to perform useful functions including quantum computation. Fabrication of these devices presents formidable technological challenges. We have developed a single ion implantation system that is capable of verifiable fabrication of single donor devices using 14 keV 31P ions implanted into ultra-pure, high resistivity silicon substrates based on the technique of Ion Beam Induced Charge (IBIC). A detection system with integrated detector electrodes registers the charge transient from a single ion impact which is used to signal the implantation of an ion into the substrate. We describe here the use of IBIC with MeV ions to study the charge collection efficiency of the detector electrodes. By using three dimensional numerical technology computer-aided design (TCAD) models for the decrease in the IBIC signal as a function of distance from the detector electrode, we can obtain an accurate measurement of the resistivity of the silicon substrate, allowing confirmation of the values specified by the supplier, and providing us with confidence in the numerical models used by TCAD for simulation. This technique has advantages over resistivity measurements by four-point probes because it is spatially resolved, probes through the intact oxide, and can be done without making contact to the device in the area of the probe

  7. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress

    OpenAIRE

    Kaestner, Bernd; Kashcheyevs, Vyacheslavs

    2014-01-01

    Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property --- the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of $q_e f$ as function of control parameters, where $q_e$ is the electron...

  8. Energy and charge state dependences of transfer ionization to single capture ratio for fast multiply charged ions on helium

    Science.gov (United States)

    Unal, Ridvan

    The charge state and energy dependences of Transfer Ionization (TI) and Single Capture (SC) processes in collisions of multiply charged ions with He from intermediate to high velocities are investigated using coincident recoil ion momentum spectroscopy. The collision chamber is commissioned on the 15-degree port of a switching magnet, which allows the delivery of a beam with very little impurity. The target was provided from a supersonic He jet with a two-stage collimation. The two-stage, geometrically cooled, supersonic He jet has significantly reduced background contribution to the spectrum compared to a single stage He jet. In the case of a differentially pumped gas cell complex calculations based on assumptions for the correction due to the collisions with the contaminant beam led to corrections, which were up to 50%. The new setup allows one to make a direct separation of contaminant processes in the experimental data using the longitudinal momentum spectra. Furthermore, this correction is much smaller (about 8.8%) yielding better overall precision. The collision systems reported here are 1 MeV/u O(4--8)+ , 0.5--2.5 MeV/u F(4--9)+, 2.0 MeV/u Ti 15,17,18+, 1.6--1.75 MeV/u Cu18,20+ and 0.25--0.5 MeV/u I(15--25)+ ions interacting with helium. We have determined the sTIsSC ratio for high velocity highly charged ions on He at velocities in the range of 6 to 10 au and observed that the ratio is monotonically decreasing with velocity. Furthermore, we see a ratio that follows a q2 dependence up to approximately q = 9. Above q = 9 the experimental values exceed the q2 dependence prediction due to antiscreening. C. D. Lin and H. C. Tseng have performed coupled channel calculations for the energy dependence of TI and SC for F9+ + He and find values slightly higher than our measured values, but with approximately the same energy dependence. The new data, Si, Ti and Cu, go up only to q = 20 and show a smooth monotonically increasing TI/SC ratio. The TI/SC ratio for I (15

  9. Detection of the weak neutral current using fission anti ν/sub e/ on deuterons with concurrent measurement of the charged current branch

    International Nuclear Information System (INIS)

    The target consists of 268 kg of extremely pure (99.85%) heavy water (D2O), contained in a cylindrical stainless steel tank 122 cm in height and 54 cm in diameter. This target is surrounded by a lead and cadmium shield and immersed in a 2200 liter liquid scintillator anticoincidence detector. This system is a well-shielded environment. The center of the detector is located 11 meters from the center of the reactor core in an electron antineutrino flux of 2.5 x 1013 anti ν/sub e//cm2-s. Immersed in the target are ten 5.08-cm-diameter 3He-filled gas proportional counters, which detect the neutron via the reaction 3He + n → p + 3H + 773 keV. The system has been determined to have an overall neutron detection efficiency of 0.32 +- 0.02. The data are taken with a combination of scalers, a pulse height analyzer, and oscilloscope traces. Single, double, and triple neutron capture events are recorded with the reactor on and off. Data have been accumulated for 104 live days reactor on, and 72 live days reactor off for the charged-current reaction and 52 live days reactor on and 34 live days reactor off for the neutral-current reaction. The measured neutral-current cross section is (5.0 +- 0.8) x 10-45cm2/anti ν/sub e/, consistent with the Weinberg-Salam model. The charged-current reaction cross section is (1.5 +- 0.4) x 10-45 cm2/ν/sub e/, in fair agreement with expectation. From the N.C. cross section a value of the square of the isovector axial-vector coupling constant is deduced to be β2 = 1.0 +- 0.15

  10. Fragmentation of phosphorylated and singly charged peptide ions via interaction with metastable atoms.

    Science.gov (United States)

    Berkout, Vadym D; Doroshenko, Vladimir M

    2008-12-01

    Fragmentation of phosphorylated peptide ions via interaction with electronically excited metastable argon atoms was studied in a linear trap - time-of-flight mass spectrometer. Doubly charged ions of phosphorylated peptides from an Enolase digest were produced by electrospray ionization and subjected to a metastable atom beam in the linear trap. The metastable argon atoms were generated using a glow-discharge source. An intensive series of c- and z- ions were observed in all cases, with the phosphorylation group intact. The formation of molecular radical cations with reduced charge indicated that an electron transfer from a highly excited metastable state of argon to the peptide cation occurred. Additionally, singly charged Bradykinin, Substance P and Fibrinopeptide A molecular ions were fragmented via interaction with electronically excited metastable helium atoms. The fragmentation mechanism was different in this case and involved Penning ionization. PMID:19956340

  11. Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes

    Science.gov (United States)

    Hwang, Ihn; Wang, Wei; Hwang, Sun Kak; Cho, Sung Hwan; Kim, Kang Lib; Jeong, Beomjin; Huh, June; Park, Cheolmin

    2016-05-01

    The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the NSWNT channel serves as an efficient gate voltage dependent charge trapping and de-trapping site. A systematic investigation evidences that the water mixed in a polymer passivation solution is critical for reliable non-volatile memory operation. The optimized device is air-stable and temperature-resistive up to 80 °C and exhibits excellent non-volatile memory performance with an on/off current ratio greater than 104, a switching time less than 100 ms, data retention longer than 4000 s, and write/read endurance over 100 cycles. Furthermore, the gate voltage dependent charge injection mediated by water in the passivation layer allowed for multilevel operation of our memory in which 4 distinct current states were programmed repetitively and preserved over a long time period.The characteristic source-drain current hysteresis frequently observed in field-effect transistors with networked single walled carbon-nanotube (NSWNT) channels is problematic for the reliable switching and sensing performance of devices. But the two distinct current states of the hysteresis curve at a zero gate voltage can be useful for memory applications. In this work, we demonstrate a novel non-volatile transistor memory with solution-processed NSWNTs which are suitable for multilevel data programming and reading. A polymer passivation layer with a small amount of water employed on the top of the

  12. The t-channel Charged Higgs Production in Single Top Events at LHC

    CERN Document Server

    Hashemi, Majid; Bakhshalizadeh, Hossein

    2015-01-01

    In this paper, the t-channel charged Higgs production at LHC is studied. Production process is a t-channel single top event with charged Higgs exchange. Therefore the signal is similar with Standard Model single top production in terms of the final state. In the first step, the signal cross section is calculated and compared to the other main production processes which are used for a heavy charged Higgs search at LHC, i.e., pp -> tbH- and pp -> H+ -> tb. In the next step, an event generation and analysis is applied on signal and background events, in order to estimate the signal significance. The signal cross section is typically smaller than the associated production (tbH-) and resonance production (tb) by a factor of 10-3 and ranges from 10 fb to 1 fb for charged Higgs mass from 200 to 500 GeV at tanbeta = 50. Due to the small cross section of signal events and large SM background, the signal significance is small even after a dedicated kinematic analysis and selection of events, however, tanbeta values abo...

  13. Charge Carrier Lifetimes Exceeding 15 μs in Methylammonium Lead Iodide Single Crystals.

    Science.gov (United States)

    Bi, Yu; Hutter, Eline M; Fang, Yanjun; Dong, Qingfeng; Huang, Jinsong; Savenije, Tom J

    2016-03-01

    The charge carrier lifetime in organic-inorganic perovskites is one of the most important parameters for modeling and design of solar cells and other types of devices. In this work, we use CH3NH3PbI3 single crystal as a model system to study optical absorption, charge carrier generation, and recombination lifetimes. We show that commonly applied photoluminescence lifetime measurements may dramatically underestimate the intrinsic carrier lifetime in CH3NH3PbI3, which could be due to severe charge recombination at the crystal surface and/or fast electron-hole recombination close to the surface. By using the time-resolved microwave conductivity technique, we investigated the lifetime of free mobile charges inside the crystals. Most importantly, we find that for homogeneous excitation throughout the crystal, the charge carrier lifetime exceeds 15 μs. This means that the diffusion length in CH3NH3PbI3 can be as large as 50 μm if it is no longer limited by the dimensions of the crystallites. PMID:26901658

  14. Single Charged Top-Pion Production at the Next Generation e+e- Colliders

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-Lei; DU Lin-Lin; XU Wen-Na

    2005-01-01

    The single charged top-pion production processes e+e- → tbПt- and e+e- → W+Пt- are studied in the framework of top-color-assisted technicolor (TC2) model.Our studies show that the cross section σ(e+e-→tbП-t) reaches the level of tens of fb andσ(e+e-→W+П-t) reaches the level of a few fb. With the yearly integrated luminosity of (ξ) ~ 500 fb-1 expected at the planned colliders, one could collect thousands of charged top-pion of events via the process e+e-→tbП-t and hundreds of events via the process e+e-→W+П-t.The flavor changing decay mode П-t→bc is the best channel to detect charged top-pion due to the clean SM background. With a large number of events and the clean background, the charged top-pion should be observable at the planned colliders. Therefore, our studies in this paper can help us to search for charged top-pion, and furthermore, to test the TC2 model.

  15. A sensitive charge scanning probe based on silicon single electron transistor

    Science.gov (United States)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10‑5‑10‑3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  16. Spectroscopy of Charge Carriers and Traps in Field-Doped Single Crystal Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    The proposed research aims to achieve quantitative, molecular level understanding of charge carriers and traps in field-doped crystalline organic semiconductors via in situ linear and nonlinear optical spectroscopy, in conjunction with transport measurements and molecular/crystal engineering. Organic semiconductors are emerging as viable materials for low-cost electronics and optoelectronics, such as organic photovoltaics (OPV), organic field effect transistors (OFETs), and organic light emitting diodes (OLEDs). Despite extensive studies spanning many decades, a clear understanding of the nature of charge carriers in organic semiconductors is still lacking. It is generally appreciated that polaron formation and charge carrier trapping are two hallmarks associated with electrical transport in organic semiconductors; the former results from the low dielectric constants and weak intermolecular electronic overlap while the latter can be attributed to the prevalence of structural disorder. These properties have lead to the common observation of low charge carrier mobilities, e.g., in the range of 10-5 - 10-3 cm2/Vs, particularly at low carrier concentrations. However, there is also growing evidence that charge carrier mobility approaching those of inorganic semiconductors and metals can exist in some crystalline organic semiconductors, such as pentacene, tetracene and rubrene. A particularly striking example is single crystal rubrene (Figure 1), in which hole mobilities well above 10 cm2/Vs have been observed in OFETs operating at room temperature. Temperature dependent transport and spectroscopic measurements both revealed evidence of free carriers in rubrene. Outstanding questions are: what are the structural features and physical properties that make rubrene so unique? How do we establish fundamental design principles for the development of other organic semiconductors of high mobility? These questions are critically important but not comprehensive, as the nature of

  17. Electric field induced charge transfer through single and double-stranded DNA polymer molecules

    OpenAIRE

    Ramos, Marta M. D.; Correia, Helena M. G.

    2011-01-01

    The charge transfer through single-stranded and double-stranded DNA polymer molecules has been the subject of numerous experimental and theoretical studies concerning their applications in molecular electronics. However, the underlying mechanisms responsible for their different electrical conductivity observed in the experiments are poorly understood. Here we use a self-consistent quantum molecular dynamics method to study the effect of an applied electric field along the molecular axis on ch...

  18. Intrinsic femtosecond charge generation dynamics in a single crystal organometal halide perovskite

    OpenAIRE

    Valverde-Chávez, David A.; Ponseca Jr., Carlito; Stoumpos, Constantinos; Yartsev, Arkady; Kanatzidis, Mercouri G.; Sundström, Villy; Cooke, David G.

    2015-01-01

    Hybrid metal-organic perovskite solar cells have astounded the solar cell community with their rapid rise in efficiency over the past three years. Despite this success, the basic processes governing the photogeneration of free charges, particularly their dynamics and efficiency, remain unknown. Here we use ultrabroadband pulses of THz frequency light to see the intrinsic photophysical properties of single crystal lead halide perovskite just femtoseconds after a photon is first absorbed. Our s...

  19. Single-charge transport in ambipolar silicon nanoscale field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Filipp; Konstantaras, Georgios; Wiel, Wilfred G. van der; Zwanenburg, Floris A., E-mail: f.a.zwanenburg@utwente.nl [NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-04-27

    We report single-charge transport in ambipolar nanoscale MOSFETs, electrostatically defined in near-intrinsic silicon. We use the ambipolarity to demonstrate the confinement of either a few electrons or a few holes in exactly the same crystalline environment underneath a gate electrode. We find similar electron and hole quantum dot properties while the mobilities differ quantitatively like in microscale devices. The understanding and control of individual electrons and holes are essential for spin-based quantum information processing.

  20. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    OpenAIRE

    The Hermes, Collaboration; Schäfer, Andreas

    2013-01-01

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle ψ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable xF. The sin(ψ) amplitudes are positive for positive pions and kaons, sl...

  1. Persistent optical nuclear spin narrowing in a singly charged InAs quantum dot

    OpenAIRE

    W. Yao; Sun, B.; Xu, X.; Bracker, AS; Gammon, D.; Sham, LJ; Steel, D.

    2012-01-01

    We review the investigation of the hole-assisted dynamical nuclear spin polarization mechanism in a singly charged InAs quantum dot. Using coherent dark state spectroscopy, we measure the locking of the Overhauser field to a value determined only by the laser frequencies. Importantly, we review data that the locking effect can suppress nuclear spin fluctuations. We determine the onset time of the nuclear spin narrowing effect and its persistence absent laser interactions by directly measuring...

  2. Optical manipulation of the exciton charge state in single-layer tungsten disulfide

    Science.gov (United States)

    Mitioglu, A. A.; Plochocka, P.; Jadczak, J. N.; Escoffier, W.; Rikken, G. L. J. A.; Kulyuk, L.; Maude, D. K.

    2013-12-01

    Raman scattering and photoluminescence (PL) emission are used to investigate a single layer of tungsten disulfide (WS2) obtained by exfoliating n-type bulk crystals. Direct gap emission with both neutral and charged exciton recombination is observed in the low temperature PL spectra. The ratio between the trion and exciton emission can be tuned simply by varying the excitation power. Moreover, the intensity of the trion emission can be independently tuned using additional subband gap laser excitation.

  3. Conformational Transitions and Stop-and-Go Nanopore Transport of Single Stranded DNA on Charged Graphene

    OpenAIRE

    Shankla, Manish; Aksimentiev, Aleksei

    2014-01-01

    Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here, we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt...

  4. Single Incision Laparoscopic Surgery-An Overview and Current Status

    OpenAIRE

    Amit Goel

    2012-01-01

    Single incision laproscopic surgery is an alternative to conventional multiport laproscopy. Natural orifice transluminal endoscopic surgery term coined by a Consortium in 2005 remains a research technique with few clinical cases. Single incision surgery offers advantage of better cosmesis, reduced incisions, lesser hernias, decreased pain and infections. Long learning curves and cost of instrumentation are the difficulties encountered in its propagation. Single incision laproscopic surgery is...

  5. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Huang, Zhongliang

    2016-08-01

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(βE)2J0, where J0 is the classical (1D) Child-Langmuir current density, βE is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  6. Measurement methods of ionization current and electric charges in radiation dosimetry

    Science.gov (United States)

    Bozydar Knyziak, Adrian; Rzodkiewicz, Witold

    2016-06-01

    This paper deals with the problem of measurement of very low direct currents and electrical charges in dosimetric application. It describes the known and used methods of measurement: the current method, the charge method, and the null method. A new method, which is presented here, is a combination of the two latter methods. The new method is compared with the known methods of measurement and the results of this comparison are summarized and discussed. The new method allows achieving relative standard uncertainty of 0.003% for current measurements around 3 pA and a long term stability of about 0.01%. Apart from this, preliminary measurements by using a built in comparator were also performed. Therefore, the uncertainty budget of the measurements for the system without an external comparator was also taken into account in the paper. The combined measurement uncertainties for current measurements obtained for the above-mentioned two methods (the new method and the method with the comparator built in the 6517A Keithley electrometer used in our experiments) were similar.

  7. Optical spin control in charged quantum dots with a single Mn atom

    International Nuclear Information System (INIS)

    In semiconductor quantum dots spins bear good prospects as basic elements for new quantum hardware such as quantum bits. In a single quantum dot containing a single Mn atom charged by an electron (hole) the excitation by laser light causes the formation of a trion complex, i.e. a positively or negatively charged exciton. The trion spin, like the carrier spin in the non-excited state, is coupled to the Mn spin via the exchange interaction. This coupling allows for the manipulation of the optically not directly accessible Mn spin via spin flip processes of either the electron (hole) or the trion and thus ultimately for the manipulation of the Mn spin by laser light. We consider a charged CdTe quantum dot doped with a single Mn atom and focus on electron and light hole processes as heavy holes do not induce spin flips. Starting from a well defined initial state we show that the six Mn spin states can be set by a series of ultrashort laser pulses. Thus besides the electron (hole)/trion spin also the Mn spin may be used as a basis for controlled operations in the field of spintronics.

  8. Features of the low-power charge controller of lead-acid current sources charged by solar batteries

    International Nuclear Information System (INIS)

    Influence of different factors on exploitations characteristics of solar photoelectric plant is investigated by field-performance data. A construction of charge controller of the lead-acid accumulator battery charging by means of solar battery is analyzed taking into account these factors. (authors)

  9. Detection of molecular charge dynamics through current noise in a GaAs-based nanowire FET

    Science.gov (United States)

    Inoue, Shinya; Kuroda, Ryota; Yin, Xiang; Sato, Masaki; Kasai, Seiya

    2015-04-01

    The detection of static and dynamic molecular charge states using a GaAs-based nanowire field-effect transistor (FET) was investigated. Tetraphenylporphyrin (TPP) was put on the device as target molecules. After coating TPP on the FET, the drain current clearly decreased. On the other hand, the current largely increased by 405-nm light irradiation, indicating that TPP worked as a photo-excited donor. The light irradiation on the FET also induced a Lorentzian noise component, which was superimposed onto conventional 1/f noise. These behaviors were not seen in the gateless nanowire even with TPP. The obtained results indicated that electrical interaction between TPP and the nanowire was enhanced when a metal gate existed, although the channel was protected from TPP by the gate metal. We discuss the observed behaviors on the basis of a model where only TPP in the gate periphery modulated the channel potential and the drain current.

  10. Determination of the neutral to charged current cross-section ratio for antineutrino interactions on protons

    International Nuclear Information System (INIS)

    An exposure of BEBC equipped with the hydrogen-filled TST to the anti νsub(μ) wide band beam at the CERN SPS has been used to study anti νsub(μ) interactions on free protons. About 700 neutral induced interactions on free protons. About 700 neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be Rsub(p)anti ν = 0.33 +- 0.04. When combined with the value of Rsub(p)sup(ν) previously determined in the same experiment, the result is compatible with the prediction of the standard SU(2) X U(1) model for sin2thetasub(W) = 0.24sub(-0.08)sup(+0.06) and rho = 1.07sub(-0.08)sup(+0.06). Fixing the parameter rho = 1 yields sin2thetasub(W) = 0.18 +- 0.04. (orig.)

  11. Charged-Current Neutral Pion production at SciBooNE

    OpenAIRE

    Catala-Perez, J.

    2009-01-01

    SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of t...

  12. First measurements of inclusive muon neutrino charged current differential cross sections on argon.

    Science.gov (United States)

    Anderson, C; Antonello, M; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Guenette, R; Haug, S; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Linden, S; McKee, D; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Patch, A; Rameika, G; Rebel, B; Rossi, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G

    2012-04-20

    The ArgoNeuT Collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beam line at Fermilab, the flux-integrated results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, 0°energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy. PMID:22680709

  13. Neutrino Induced Charged Current 1{pi}{sup +} Production From {sup 12}C At Intermediate Energies

    Energy Technology Data Exchange (ETDEWEB)

    Athar, M. Sajjad [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)]. E-mail: sajathar@rediffmail.com; Ahmad, Shakeb [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)]. E-mail: lepp_s2001@rediffmail.com; Singh, S.K. [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)]. E-mail: pht13sks@rediffmail.com

    2007-02-01

    The charged current one pion production induced by {nu}{sub {mu}} in {sup 12}C has been studied. The calculations have been done for the incoherent and the coherent pion production processes assuming {delta} dominance and take into account the effects of the Pauli blocking, Fermi motion, renormalization of the {delta} properties in a nuclear medium and the final state interaction effects of pions with the residual nucleus. The numerical results have been compared with the preliminary experimental results of the MiniBooNE collaboration in {sup 12}C.

  14. Neutrino Induced Charged Current 1π+ Production From 12C At Intermediate Energies

    International Nuclear Information System (INIS)

    The charged current one pion production induced by νμ in 12C has been studied. The calculations have been done for the incoherent and the coherent pion production processes assuming Δ dominance and take into account the effects of the Pauli blocking, Fermi motion, renormalization of the Δ properties in a nuclear medium and the final state interaction effects of pions with the residual nucleus. The numerical results have been compared with the preliminary experimental results of the MiniBooNE collaboration in 12C

  15. Current distribution among layers of single phase HTS cable conductor

    International Nuclear Information System (INIS)

    Highlights: • A 1.5 m long HTS model cable with 4 layers designed by the uniform current principle has been built. • It is testified that the current distribution is influenced by the proximity effect. • The magnetic flux density and current density have been analyzed. • AC losses of tested current are larger than those of uniform current. - Abstract: High temperature superconducting (HTS) power cable shows high application prospect in modern power transmission, as it is superior over conventional transmission lines in high engineering current density and environmental friendliness. Its configuration is generally composed of several HTS layers designed with the principle of uniform current distribution, but there are few experimental results to verify the distribution. In this paper, a HTS cable model was designed based on the principle of uniform current, and the current distributions among layers in an HTS cable model were measured by Rogowski coils. The results provide an important basis for design of multi-layer HTS cable

  16. Plasma regions, charged dust and field-aligned currents near Enceladus

    Science.gov (United States)

    Engelhardt, I. A. D.; Wahlund, J.-E.; Andrews, D. J.; Eriksson, A. I.; Ye, S.; Kurth, W. S.; Gurnett, D. A.; Morooka, M. W.; Farrell, W. M.; Dougherty, M. K.

    2015-11-01

    We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus.

  17. Charm production in charged current deep inelastic e{sup +}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.

    2006-03-15

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb{sup -1}. Charged D{sup *} mesons decaying in the channel D{sup *+}{yields}D{sup 0}{pi}{sup +}{sub s} with D{sup 0}{yields}K{sup -}{pi}{sup +} and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D{sup *}, {sigma}{sup D*}{sub vis}=12.8{+-}4.0(stat){sup +4.7}{sub -1.5}(sys) pb, is measured in the kinematic range of Q{sup 2}>200 GeV{sup 2} and y<0.9, and of p{sup D{sup *}}{sub T}>1.5 GeV and vertical stroke {eta}{sup D{sup *}} vertical stroke <1.5. The upper-limit for the charm production in the same DIS kinematic range is determined to be {sigma}{sup e{sup +}}{sup p{yields}} {sup anti} {sup {nu}{sub e}}{sup cX} < 109 pb at 90% confidence level. (orig.)

  18. Transport and Charge Manipulation in a Single Electron Silicon Double Quantum Dot

    Science.gov (United States)

    Wang, K.; Payette, C.; Dovzhenko, Y.; Petta, J. R.

    2013-03-01

    Silicon is one of the most promising candidates for ultra-coherent qubits due to its relatively early position in periodical table and the absence of nuclear spin in its naturally abundant isotope. Here we demonstrate a reliable recipe that enables us to reproducibly fabricate an accumulation mode few electron double quantum dot (DQD). We demonstrate tunable interdot tunnel coupling at single electron occupancy in the device. The charge state of the qubit is monitored by measuring the amplitude of the radio frequency signal that is reflected from a resonant circuit coupled to a charge sensor. By applying microwave radiation to the depletion gates, we probe the energy level structure of the DQD using photon assisted tunneling (PAT). We apply bursts of microwave radiation and monitor the dependence of the PAT peak height on the burst period to extract the charge relaxation time, T1. By experimentally tuning the charge qubit Hamiltonian, we measure the tunnel coupling and detuning dependence of T1. Supported by the United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government.

  19. Structure and switching of single-stranded DNA tethered to a charged nanoparticle surface

    Science.gov (United States)

    Xin-Jun, Zhao; Zhi-Fu, Gao

    2016-07-01

    Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA (ssDNA) tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ssDNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ssDNA will collapse due to the existence of electrostatic interaction between ssDNA and charged nanoparticle surface; ii) for the short ssDNA chains with the number of bases less than 10, the switching of ssDNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ssDNA and charged nanoparticle surface becomes weak dramatically, and ssDNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ssDNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ssDNA will not happen if the grafting densities are too high. Project supported by the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2015211C298).

  20. Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films.

    Science.gov (United States)

    Richardson, Joseph J; Tardy, Blaise L; Ejima, Hirotaka; Guo, Junling; Cui, Jiwei; Liang, Kang; Choi, Gwan H; Yoo, Pil J; De Geest, Bruno G; Caruso, Frank

    2016-03-23

    Temperature can be harnessed to engineer unique properties for materials useful in various contexts and has been shown to affect the layer-by-layer (LbL) assembly of polymer thin films and cause physical changes in preassembled polymer thin films. Herein we demonstrate that exposure to relatively low temperatures (≤ 100 °C) can induce physicochemical changes in cationic polymer thin films. The surface charge of polymer films containing primary and secondary amines reverses after heating (from positive to negative), and different characterization techniques are used to show that the change in surface charge is related to oxidation of the polymer that specifically occurs in the thin film state. This charge reversal allows for single-polymer LbL assembly to be performed with poly(allylamine) hydrochloride (PAH) through alternating heat/deposition steps. Furthermore, the negative charge induced by heating reduces the fouling and cell-association of PAH-coated planar and particulate substrates, respectively. This study highlights a unique property of thin films which is relevant to LbL assembly and biofouling and is of interest for the future development of thin polymer films for biomedical systems. PMID:26953514

  1. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    OpenAIRE

    Ruijin Liao; Ende Hu; Lijun Yang; Yuan Yuan

    2015-01-01

    The main insulation system in high-voltage direct current (HVDC) transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the...

  2. 100 kV/2A three-phase constant-current repetitive-rate charging equipment

    CERN Document Server

    Tan Yu Gang; Chen Li Dong; Guo Zhi Gang; Zou Xiao Bing; Luo Min; Cao Shao Yun; Chang An Bi

    2002-01-01

    A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1 mu F capacitor

  3. 100 kV/2A three-phase constant-current repetitive-rate charging equipment

    International Nuclear Information System (INIS)

    A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1μF capacitor

  4. Electronic States and Spatial Charge Distribution of Single Mn Impurity in Diluted Magnetic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; ZOU Liang-Jian

    2006-01-01

    The electronic and magnetic properties as well as the spatial charge distribution of single Mn impurity in Ⅲ-V diluted magnetic semiconductors are obtained when the degeneracy of the p orbits contributed from the four nearest-neighbouring As(N) atoms is taken into account. We show that in the ground state, the Mn spin is strongly antiferromagnetically coupled to the surrounding As(N) atoms when the p - d hybridization Vpd is large and both the hole level Ev and the impurity level Ed are close to the Fermi energy. The spatial charge distribution of the Mn acceptor in the (110) plane is non-spherically symmetric, in good agreement with the recent STM images.

  5. Single Production of Doubly Charged Higgs Boson via e7 Collision in Higgs Triplet Model

    Institute of Scientific and Technical Information of China (English)

    苏雪松; 岳崇兴; 张娇; 王珏

    2011-01-01

    The Higgs triplet model (HTM) predicts the existence of a pair of doubly charged Higgs bosons H±±. Single production of H±± via e7 collision at the next generation e+ e- International Linear Collider (ILC) and the Large Hadron electron Collider (LHeC) is considered. The numerical results show that the production cross sections are very sensitive to the neutrino oscillation parameters. Their values for the inverted hierarchy mass spectrum are larger than those for the normal hierarchy mass spectrum at these two kinds of collider experiments. With reasonable values of the relevant free parameters, the possible signals of the doubly charged Higgs bosons predicted by the HTM might be detected in future ILC experiments.

  6. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Esqueda, Ivan S., E-mail: isanchez@isi.edu [Information Sciences Institute, University of Southern California, Arlington, Virginia 22203 (United States); Cress, Cory D. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States); Che, Yuchi; Cao, Yu; Zhou, Chongwu [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  7. Observation of single-electron charging effect in NbN submicron bridges

    International Nuclear Information System (INIS)

    Submicron NbN bridges whose thickness, width and length are 10nm, 100nm and 100-300nm respectively, have been fabricated, and their conduction properties and electrical field effect are measured. The samples having resistances larger than ∼100kΩ exhibit nonlinear I-V characteristics with offset voltage of 2mV∼12mV at 4.2K which are obviously similar to those of the single-electron charging effect in small tunnel junction arrays. The field effect modulation of the junction conductance is observed by applying a voltage to a gate electrode which is made over the NbN bridge. These charging effects are thought to arise from the granular structure of NbN bridges. The simulation result using one-dimensional SET junction arrays coincide well with experimental result. (orig.)

  8. Observation and applications of single-electron charge signals in the XENON100 experiment

    CERN Document Server

    Aprile, E; Arisaka, K; Arneodo, F; Balan, C; Baudis, L; Bauermeister, B; Behrens, A; Beltrame, P; Bokeloh, K; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Cardoso, J M R; Chen, W -T; Choi, B; Colijn, A P; Contreras, H; Cussonneau, J P; Decowski, M P; Duchovni, E; Fattori, S; Ferella, A D; Fulgione, W; Gao, F; Garbini, M; Ghag, C; Giboni, K -L; Goetzke, L W; Grignon, C; Gross, E; Hampel, W; Itay, R; Kaether, F; Kessler, G; Kish, A; Lamblin, J; Landsman, H; Lang, R F; Calloch, M Le; Levy, C; Lim, K E; Lin, Q; Lindemann, S; Lindner, M; Lopes, J A M; Lung, K; Undagoitia, T Marrodan; Massoli, F V; Fernandez, A J Melgarejo; Meng, Y; Messina, M; Molinario, A; Naganoma, J; Ni, K; Oberlack, U; Orrigo, S E A; Pantic, E; Persiani, R; Piastra, F; Plante, G; Priel, N; Rizzo, A; Rosendahl, S; Santos, J M F dos; Sartorelli, G; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Teymourian, A; Thers, D; Vitells, O; Wang, H; Weber, M; Weinheimer, C

    2014-01-01

    The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter Weakly Interacting Massive Particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.

  9. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    International Nuclear Information System (INIS)

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections

  10. Charged-current neutrino-nucleus reactions within the SuSAv2-MEC approach

    CERN Document Server

    Megias, G D; Barbaro, M B; Caballero, J A; Donnelly, T W; Simo, I Ruiz

    2016-01-01

    We present a detailed study of charged-current (CC) neutrino-nucleus reactions in a fully relativis- tic framework and comparisons with recent experiments spanning an energy range from hundreds of MeV up to 100 GeV within the SuperScaling Approach, which is based on the analysis of electron- nucleus scattering data and has been recently improved with the inclusion of Relativistic Mean Field theory effects. We also evaluate and discuss the impact of two-particle two-hole meson-exchange currents (2p-2h MEC) on neutrino-nucleus interactions through the analysis of two-particle two-hole axial and vector contributions to weak response functions in a fully relativistic Fermi gas. The results show a fairly good agreement with experimental data over the whole range of neutrino energies.

  11. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    CERN Document Server

    Ankowski, Artur M

    2013-01-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  12. Bunch compressor for high-current single bunch electron linear accelerator

    International Nuclear Information System (INIS)

    A bunch compressor with four dipole magnet has been installed and tested on the IRIS-Osaka single bunch electron linear accelerator. The single bunch with a full length of 40 ps is compressed into 12 ps, whereas the bunch length of 16 ps in FWHM is compressed into 9.5 ps. The maximum compression rate is estimated to be about 30% for the single bunch with the charge of 10-40 nC

  13. Ohmic contact and space-charge-limited current in molybdenum oxide modified devices

    Science.gov (United States)

    Lü, Zhaoyue; Deng, Zhenbo; Zheng, Jianjie; Zou, Ye; Chen, Zheng; Xu, Denghui; Wang, Yongsheng

    2009-10-01

    The effect of indium-tin oxide (ITO) surface treatment on hole injection of devices with molybdenum oxide (MoO 3) as a buffer layer on ITO was studied. The Ohmic contact is formed at the metal/organic interface due to high work function of MoO 3. Hence, the current is due to space charge limited when ITO is positively biased. The hole mobility of N, N‧-bis-(1-napthyl)-N, N‧-diphenyl-1, 1‧biphenyl-4, 4‧-diamine (NPB) at various thicknesses (100-400 nm) has been estimated by using space-charge-limited current measurements. The hole mobility of NPB, 1.09×10 -5 cm 2/V s at 100 nm is smaller than the value of 1.52×10 -4 cm 2/V s at 400 nm at 0.8 MV/cm, which is caused by the interfacial trap states restricted by the surface interaction. The mobility is hardly changed with NPB thickness for the effect of interfacial trap states on mobility which can be negligible when the thickness is more than 300 nm.

  14. Charged current antineutrino reactions from 12C at MiniBooNE energies

    International Nuclear Information System (INIS)

    A study of charged current induced antineutrino interactions from nuclei has been done for the intermediate energy antineutrinos and applied to 12C, relevant for ongoing experiment by MiniBooNE collaboration. The calculations have been done for the quasielastic and inelastic lepton production as well as for the incoherent and the coherent pion production processes. The calculations are done in local density approximation. In the case of the quasielastic reaction the effects of Pauli blocking, Fermi motion effects, renormalization of weak transition strengths in nuclear medium and the Coulomb distortion of the outgoing lepton have been taken into account. For the inelastic processes the calculations have been done in the Δ dominance model and take into account the effect of Pauli blocking, Fermi motion of the nucleon, and renormalization of Δ properties in a nuclear medium. The effect of final state interactions of pions is also taken into account. The numerical results for the total cross sections for the charged current quasielastic scattering and incoherent pion production processes are compared with earlier experimental results available in freon and freon-propane. It is found that nuclear medium effects give strong reduction in the cross sections leading to satisfactory agreement with the available data

  15. Cationized phenylalanine conformations characterized by IRMPD and computation for singly and doubly charged ions.

    Science.gov (United States)

    Dunbar, Robert C; Steill, Jeffrey D; Oomens, Jos

    2010-11-01

    Electrospray ionization produces phenylalanine (Phe) complexes of the alkali metal ion series, plus Ag(+) and Ba(2+). Infrared multiple photon dissociation (IRMPD) spectroscopy using the FELIX free electron laser light source is used to characterize the conformations of the ions, in conjunction with density functional theory (DFT) calculations giving thermochemical information and computed infrared spectra for likely candidate conformations. For complexes of small, singly charged ions (Li(+), Na(+), K(+) and Ag(+)) a single tridentate, charge-solvated conformational theme (N/O/Ring) binding amino nitrogen, carbonyl oxygen and the aromatic ring to the metal ion accounts for all the observations. The larger alkalis Rb(+) and Cs(+) show clear spectroscopic evidence of mixed populations, containing substantial fractions of both tridentate and also bidentate chelation. For Rb(+) the bidentate fraction is assigned as the (O/Ring) chelation pattern, while for Cs(+) a mixture of (O/Ring) and (O/O) chelation patterns seems likely. All of the smaller ions with high positive charge density have a clear preference for cation-π interaction with the side-chain aromatic ring, but for the larger ions Rb(+) and particularly Cs(+) this interaction becomes sufficiently weak to allow conformations having the metal ion remote from the π system. The Ba(2+) complex is unique in showing clear evidence of a major fraction of salt-bridge (zwitterionic) ions along with charge-solvated conformations. Plots of the frequency shifts of the two highly perturbed ligand vibrational modes (C[double bond, length as m-dash]O stretch and NH(2) frustrated inversion) give good linear correlations with the binding energy of the metal to the ligand. PMID:20820591

  16. Measurement and Calculation of Absolute Single and Multiple Charge Exchange Cross Sections for Fe^(q+) Ions Impacting H_2O

    OpenAIRE

    Simcic, J.; Schultz, D R; Mawhorter, R.J.; greenwood, jason; Winstead, C.; McKoy, B. V.; S. J. Smith; Chutjian, A.

    2010-01-01

    Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Fe^(q+) (q = 5-13) ions with H_2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe^(9+) ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions....

  17. Single Spin Asymmetry in High Pt Charged Hadron Production off Nuclei at 40 GeV

    CERN Document Server

    Abramov, V V; Kalinin, A Y; Khmelnikov, V A; Korablev, A V; Korneev, Yu P; Kostritskii, A V; Krinitsyn, A N; Kryshkin, V I; Markov, A A; Talov, V V; Turchanovich, L K; Volkov, A A; Korneev, Yu .P.

    2004-01-01

    The single transverse spin asymmetry data for the charged hadron production in pC and pCu interactions are presented. The measurements have been performed at FODS-2 experimental setup using 40 GeV/c IHEP polarized proton beam. The hadron transverse momentum range is from 0.5 GeV/c up to 4 GeV/c. The data obtained off the nuclear targets are compared with the proton target data measured earlier with the same experimental setup and with the data of other experiments.

  18. Evaluation of anisotropic charge carrier mobility of perylene single crystals by time-of-flight method

    Science.gov (United States)

    Kougo, Junichi; Ishikawa, Ken

    2016-03-01

    The charge carrier mobilities along the vertical and lateral directions of perylene platelet single crystals were measured by the time-of-flight (TOF) method. In the lateral directional measurement, the entire region between electrodes was irradiated to obtain measurable signals. The transient photocurrent was different from the conventional TOF measurements; hence, we developed an analytic method for lateral directional measurement. The electron mobilities along the thickness and lateral directions were 0.33 and 2.0 cm2·V-1·s-1 and the hole mobilities were 0.12 and 0.6 cm2·V-1·s-1, respectively.

  19. First-Principles Studies of Charge Separation in Single-Molecule Heterojunctions

    Science.gov (United States)

    Darancet, Pierre; Doak, Peter; Neaton, Jeffrey

    2010-03-01

    Single-molecule heterojunctions, consisting of donor and acceptor moieties linked by covalent bonds and coupled to metal electrodes, provide an interesting model system for understanding processes fundamental to organic solar cells, such as light absorption and charge separation. However, how the covalent contact with metallic leads influence these processes -- and metal-molecule interface electronic structure -- remains largely unknown. Using density functional theory and many-body perturbation theory, we discuss the influence of the metal contacts and binding groups on junction electronic level alignment for small asymmetric molecules containing covalently-linked moieties based on thiophene, durene and tetrafluoro-, dinitrile-, and metoxy-benzene. Implications for photocurrent and rectification are discussed.

  20. Inducing Transient Charge State of a Single Water Cluster on Cu(111) Surface.

    Science.gov (United States)

    Guo, Yang; Ding, Zijing; Sun, Lihuan; Li, Jianmei; Meng, Sheng; Lu, Xinghua

    2016-04-26

    The hydrated electron on solid surface is a crucial species to interfacial chemistry. We present a joint low-temperature scanning tunneling microscopy and density functional theory investigation to explore the existence of a transient hydrated electron state induced by injecting tunneling electrons into a single water nonamer cluster on Cu(111) surface. The directional diffusion of water cluster under the Coulomb repulsive potential has been observed as evidence for the emergence of the transient hydrated electron. A critical structure transformation in water cluster for the emergence of hydrated electron has been identified. A charging mechanism has been proposed based on density functional theory calculation and scanning tunneling microscope results. PMID:27007702

  1. O({alpha}{sub s}) heavy flavor corrections to charged current deep-inelastic scattering in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.; Hasselhuhn, A.; Kovacikova, P.; Moch, S.

    2011-04-15

    We provide a fast and precise Mellin-space implementation of the O({alpha}{sub s}) heavy flavor Wilson coefficients for charged current deep inelastic scattering processes. They are of importance for the extraction of the strange quark distribution in neutrino-nucleon scattering and the QCD analyses of the HERA charged current data. Errors in the literature are corrected. We also discuss a series of more general parton parameterizations in Mellin space. (orig.)

  2. Thermal fluctuations and critical current in twinned single crystals

    International Nuclear Information System (INIS)

    We study theoretically the depinning processes in twin boundaries in high-Tc superconducting crystals. It is shown that due to the thermodynamic fluctuations of the vortex system pinned in a twin boundary, the critical current can drop to zero at a temperature less than the critical one. There are two contributions to such a process: one is the individual vortex depinning determined by the deformation of a potential well by the current, and the other is the multivortex depinning because of the short-range intervortex interaction

  3. Conservative Currents of Boundary Charges in AdS2+1 Gravity

    Institute of Scientific and Technical Information of China (English)

    FENG Sze-Shiang; WANG Bin; MENG Xin-He

    2001-01-01

    The boundary charge which constitutes the Virasoro algebra in (2-+ 1)-dirnensional anti-de Sitter gravity is derived by Noether theorem and diffeomorphic invariance. It shows that the boundary charge under discussion recently exhausts all the available independent nontrivial charges. Therefore, for any specific spacetime, the state counting via the central charge of the Virasoro algebra is exact.``

  4. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Science.gov (United States)

    Kundu, Sourav; Karmakar, S. N.

    2016-07-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  5. Analysis of total dose-induced dark current in CMOS image sensors from interface state and trapped charge density measurements

    OpenAIRE

    Goiffon, Vincent; Virmontois, Cédric; Magnan, Pierre; Girard, Sylvain; Paillet, Philippe

    2010-01-01

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0,18 um CMOS image sensor process and exposed to 10 keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhanceme...

  6. Absolute cross sections for helium single and double ionization in collisions with fast, highly charged projectiles

    International Nuclear Information System (INIS)

    Absolute cross sections for single and double ionization of helium have been measured for highly charged (24 ≤ q ≤ 92) and fast (3.6 MeV/u ≤ Ep ≤ 1 GeV/u) heavy-ion impact. The ratio of double to single ionization is found to deviate drastically from the prediction of first order theories: In the strong perturbation regime they fall below the scaling of Knudsen et al. (1984) even for 120 MeV/u U91+ impact, whereas a dramatic increase by a factor of 4 is observed in the regime of low perturbations for 0.5 and 1 GeV/u Kr36+ impact. At low reduced energies of Ep/q 2, as has been observed previously for the regime of strong coupling. (orig.)

  7. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Christensen, Tue; Andersen, Kim Allan; Klose, Andreas

    2013-01-01

    This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....

  8. Electrostatic surface guiding of cold polar molecules with a single charged wire

    Institute of Scientific and Technical Information of China (English)

    Deng Lian-Zhong; Xia Yong; Yin Jian-Ping

    2007-01-01

    This paper proposes a scheme to guide cold polar molecules by using a single charged wire half embanked in an insulating substrate and a homogeneous bias electric field,which is generated by a plate capacitor composed of two infinite parallel metal plates.The spatial distributions of the electrostatic field produced by the combination of the charged wire and the plate capacitor and the corresponding Stark potentials(including dipole forces) for metastable CO molecules are calculated,the relationships between the electric field and the parameters of our charged-wire layout are analysed.It also studies the influences of the insulator on the electric field distribution and the discharge effect.This study shows that the proposed scheme can be used to guide cold polar molecules in the weak-field-seeking states,and to form various molecule-optical elements,such as molecular funnel,molecular beam-splitters and molecule interferometer,even to construct a variety of integrated molecule-optical elements and their molecule chips.

  9. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    KAUST Repository

    Shi, Dong

    2016-04-15

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells.

  10. Tuning Charge and Correlation Effects for a Single Molecule on a Graphene Device

    Science.gov (United States)

    Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Watanabe, Kenji; Taniguchi, Takashi; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.

    Controlling electronic devices down to the single molecule level is a grand challenge of nanotechnology. Single-molecules have been integrated into devices capable of tuning electronic response, but a drawback for these systems is that their microscopic structure remains unknown due to inability to image molecules in the junction region. Here we present a combined STM and nc-AFM study demonstrating gate-tunable control of the charge state of individual F4TCNQ molecules at the surface of a graphene field effect transistor. This is different from previous studies in that the Fermi level of the substrate was continuously tuned across the molecular orbital energy level. Using STS we have determined the resulting energy level evolution of the LUMO, its associated vibronic modes, and the graphene Dirac point (ED). We show that the energy difference between ED and the LUMO increases as EF is moved away from ED due to electron-electron interactions that renormalize the molecular quasiparticle energy. This is attributed to gate-tunable image-charge screening in graphene and corroborated by ab initio calculations.

  11. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    Science.gov (United States)

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  12. The dual role of multiple-transistor charge sharing collection in single-event transients

    Institute of Scientific and Technical Information of China (English)

    Guo Yang; Chen Jian-Jun; He Yi-Bai; Liang Bin; Liu Bi-Wei

    2013-01-01

    As technologies scale down in size,multiple-transistors being affected by a single ion has become a universal phenomenon,and some new effects are present in single event transients (SETs) due to the charge sharing collection of the adjacent multiple-transistors.In this paper,not only the off-state p-channel metal-oxide semiconductor field-effect transistor (PMOS FET),but also the on-state PMOS is struck by a heavy-ion in the two-transistor inverter chain,due to the charge sharing collection and the electrical interaction.The SET induced by striking the off-state PMOS is efficiently mitigated by the pulse quenching effect,but the SET induced by striking the on-state PMOS becomes dominant.It is indicated in this study that in the advanced technologies,the SET will no longer just be induced by an ion striking the off-state transistor,and the SET sensitive region will no longer just surround the off-state transistor either,as it is in the older technologies.We also discuss this issue in a three-transistor inverter in depth,and the study illustrates that the three-transistor inverter is still a better replacement for spacebome integrated circuit design in advanced technologies.

  13. Analysis of Total Dose-Induced Dark Current in CMOS Image Sensors From Interface State and Trapped Charge Density Measurements

    International Nuclear Information System (INIS)

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-μm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100 C whereas about a third of the trapped charge remains after 30 min at 300 C. (authors)

  14. High Resolution Time-of-Flight Mass Analysis of the Entire Range of Intact Singly-Charged Proteins

    OpenAIRE

    Lee, Jeonghoon; Chen, Huijuan; Liu, Tiancheng; BERKMAN, CLIFFORD E.; Reilly, Peter T. A.

    2011-01-01

    The proof of principle for high resolution analysis of intact singly-charged proteins of any size is presented. Singly-charged protein ions were produced by electrospray ionization followed by surface-induced charge reduction at atmospheric pressure. The inlet and trapping system “stops” to forward momentum of the protein ion over a very broad range to be captured by the digitally-produced electric fields of a large radius linear ion trap whereupon they are moved into a smaller radius linear ...

  15. Simulation of the current distribution in lead-acid batteries to investigate the dynamic charge acceptance in flooded SLI batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, Julia; Schulte, Dominik; Sauer, Dirk Uwe [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52066 Aachen (Germany); Karden, Eckhard [Ford Research and Advanced Engineering Europe, Aachen (Germany)

    2009-06-01

    Measurements show that the dynamic charge acceptance (DCA) of flooded SLI lead-acid batteries during micro-cycling in conventional and micro-hybrid vehicles is strongly dependent on the short-term history, such as previous charge or discharge, current rate, lowest state of charge in the last 24 h and more. Factors of 10 have been reported. Inhomogeneous current distribution, especially as a result of acid stratification, has been suggested to explain the DCA variability. This hypothesis was investigated by simulation of a two-dimensional macrohomogeneous model. It provides a spatial resolution of three elements in horizontal direction in each electrode and three elements in vertical direction. For an existing set of parameters, different current profiles were analyzed with regard to the current distribution during charging and discharging. In these simulations, a strong impact of the short-term history on current, charge and acid density distribution was found as well as a strong influence of micro-cycles on both charge distribution and acid stratification. (author)

  16. O(D,D) Covariant Noether Currents and Global Charges in Double Field Theory

    CERN Document Server

    Park, Jeong-Hyuck; Rim, Woohyun; Sakatani, Yuho

    2015-01-01

    Double field theory is an approach for massless modes of string theory, unifying and geometrizing all gauge invariances in manifest $\\mathbf{O}(D,D)$ covariant manner. In this approach, we derive off-shell conserved Noether current and corresponding Noether potential associated with unified gauge invariances. We add Wald-type counter two-form to the Noether potential and define conserved global charges as surface integral. We check our $\\mathbf{O}(D,D)$ covariant formula against various string backgrounds, both geometric and non-geometric. In all cases we examined, we find perfect agreements with previous results. Our formula facilitates to evaluate momenta along not only ordinary spacetime directions but also dual spacetime directions on equal footing. From this, we confirm recent assertion that null wave in doubled spacetime is the same as macroscopic fundamental string in ordinary spacetime.

  17. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  18. Persistent currents and critical magnetic field in planar dynamics of charged bosons

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2007-06-01

    The aim of the present paper is the analysis from both quantum mechanics and thermodynamic points of view of the Hall-type behaviour of a relativistic charged scalar particle. Starting with the Euler-Lagrange equation, we obtain the solution and the Landau-type energy levels which exhibit a general dependence on the exterior electric and magnetic fields and on the particle momentum. For an ultra-relativistic particle, the characteristic function allows us to derive the so-called persistent currents, the state equation and the magnetization. In the last section, we add a self-interacting contribution to the Lagrangian and we get the critical magnetic induction values when the symmetry of the model is restored.

  19. Persistent currents and critical magnetic field in planar dynamics of charged bosons

    International Nuclear Information System (INIS)

    The aim of the present paper is the analysis from both quantum mechanics and thermodynamic points of view of the Hall-type behaviour of a relativistic charged scalar particle. Starting with the Euler-Lagrange equation, we obtain the solution and the Landau-type energy levels which exhibit a general dependence on the exterior electric and magnetic fields and on the particle momentum. For an ultra-relativistic particle, the characteristic function allows us to derive the so-called persistent currents, the state equation and the magnetization. In the last section, we add a self-interacting contribution to the Lagrangian and we get the critical magnetic induction values when the symmetry of the model is restored

  20. Time dependence of the average charge and current in a dissipative mesoscopic circuit

    Institute of Scientific and Technical Information of China (English)

    嵇英华; 雷敏生; 欧阳楚英

    2002-01-01

    Taking into consideration the interactions between electrons and phonons, we have studied the temporal evolutionof the average charge and current in a dissipative mesoscopic RLC circuit. Our results show that a mesoscopic RLCcircuit can be treated as an interactive system between an electromagnetic harmonic oscillator and many lattice harmonicoscillators; this is called the bathing of the harmonic oscillators. The results also show that the quantum equation ofmotion of the linear mesoscopic RLC circuit is identical in form to its classical equation of motion, the only differencebetween them being their respective meanings.In order to thoroughly study the quantum properties of a dissipativemesoscopic circuit, we have to consider not only; the electromagnetic energy of the circuit, but also the crystal latticevibration energy and the interactive energy between electrons and phonons.

  1. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    Science.gov (United States)

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-01

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router. PMID:21832723

  2. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router

    International Nuclear Information System (INIS)

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router.

  3. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  4. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  5. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress

    Science.gov (United States)

    Kaestner, Bernd; Kashcheyevs, Vyacheslavs

    2015-10-01

    Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property—the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of {{q}\\text{e}} f as function of control parameters, where {{q}\\text{e}} is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots.

  6. Space Charge Behavior in Paper Insulation Induced by Copper Sulfide in High-Voltage Direct Current Power Transformers

    Directory of Open Access Journals (Sweden)

    Ruijin Liao

    2015-08-01

    Full Text Available The main insulation system in high-voltage direct current (HVDC transformer consists of oil-paper insulation. The formation of space charge in insulation paper is crucial for the dielectric strength. Unfortunately, space charge behavior changes because of the corrosive sulfur substance in oil. This paper presents the space charge behavior in insulation paper induced by copper sulfide generated by corrosive sulfur in insulation oil. Thermal aging tests of paper-wrapped copper strip called the pigtail model were conducted at 130 °C in laboratory. Scanning electron microscopy (SEM was used to observe the surface of copper and paper. Pulse electroacoustic (PEA and thermally stimulated current (TSC methods were used to obtain the space charge behavior in paper. Results showed that both maximum and total amount of space charge increased for the insulation paper contaminated by semi-conductor chemical substance copper sulfide. The space charge decay rate of contaminated paper was significantly enhanced after the polarization voltage was removed. The TSC results revealed that copper sulfide increased the trap density and lowered the shallow trap energy levels. These results contributed to charge transportation by de-trapping and trapping processes. This improved charge transportation could be the main reason for the decreased breakdown voltage of paper insulation material.

  7. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress.

    Science.gov (United States)

    Kaestner, Bernd; Kashcheyevs, Vyacheslavs

    2015-10-01

    Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property--the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of [Formula: see text] as function of control parameters, where [Formula: see text] is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots. PMID:26394066

  8. Designing single phase Current-Programmed-Controlled rectifiers by harmonic currents

    DEFF Research Database (Denmark)

    Andersen, Gert Karmisholt; Blaabjerg, Frede

    2002-01-01

    The grid current harmonics of a Current-Programmed-Controlled (CPC) pfc rectifier strongly depends on the choice of switching frequency and switching inductance. This paper describes a new simple and vert fast method to calculate the grid current of a CPC controlled pfc converter. The method incl...... design tool. The method is compared with simulated values as well with measured values and the calculations match very well....

  9. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond

    International Nuclear Information System (INIS)

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (NS0) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above ∼500 K, we observed a decrease in the concentration of NS0 centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH-) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the NS0 donor (∼1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the NS0 concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of NS0 concentration is greater than the increase in NVH- concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  10. Charge transfer effects, thermo and photochromism in single crystal CVD synthetic diamond

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R U A; Martineau, P M [Diamond Trading Company, DTC Research Centre, Maidenhead, Berkshire SL6 6JW (United Kingdom); Cann, B L; Newton, M E [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Twitchen, D J, E-mail: riz.khan@dtc.co [Element Six Ltd, King' s Ride Park, Ascot, Berkshire SL5 8BP (United Kingdom)

    2009-09-09

    We report on the effects of thermal treatment and ultraviolet irradiation on the point defect concentrations and optical absorption profiles of single crystal CVD synthetic diamond. All thermal treatments were below 850 K, which is lower than the growth temperature and unlikely to result in any structural change. UV-visible absorption spectroscopy measurements showed that upon thermal treatment (823 K), various broad absorption features diminished: an absorption band at 270 nm (used to deduce neutral single substitutional nitrogen (N{sub S}{sup 0}) concentrations) and also two broad features centred at approximately 360 and 520 nm. Point defect centre concentrations as a function of temperature were also deduced using electron paramagnetic resonance (EPR) spectroscopy. Above approx500 K, we observed a decrease in the concentration of N{sub S}{sup 0} centres and a concomitant increase in the negatively charged nitrogen-vacancy-hydrogen (NVH) complex (NVH{sup -}) concentration. Both transitions exhibited an activation energy between 0.6 and 1.2 eV, which is lower than that for the N{sub S}{sup 0} donor (approx1.7 eV). Finally, it was found that illuminating samples with intense short-wave ultraviolet light recovered the N{sub S}{sup 0} concentration and also the 270, 360 and 520 nm absorption features. From these results, we postulate a valence band mediated charge transfer process between NVH and single nitrogen centres with an acceptor trap depth for NVH of 0.6-1.2 eV. Because the loss of N{sub S}{sup 0} concentration is greater than the increase in NVH{sup -} concentration we also suggest the presence of another unknown acceptor existing at a similar energy to NVH. The extent to which the colour in CVD synthetic diamond is dependent on prior history is discussed.

  11. Long-range charge transport in single G-quadruplex DNA molecules

    Science.gov (United States)

    Livshits, Gideon I.; Stern, Avigail; Rotem, Dvir; Borovok, Natalia; Eidelshtein, Gennady; Migliore, Agostino; Penzo, Erika; Wind, Shalom J.; di Felice, Rosa; Skourtis, Spiros S.; Cuevas, Juan Carlos; Gurevich, Leonid; Kotlyar, Alexander B.; Porath, Danny

    2014-12-01

    DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits.

  12. Long-range charge transport in single G-quadruplex DNA molecules

    DEFF Research Database (Denmark)

    Livshits, Gideon I.; Stern, Avigail; Rotem, Dvir;

    2014-01-01

    transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4......DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and......-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA...

  13. Transition from ultrafast laser photo-electron emission to space charge limited current in a 1D gap

    OpenAIRE

    Liu, Yangjie; Ang, L. K.

    2013-01-01

    A one-dimensional (1D) model has been constructed to study the transition of the time-dependent ultrafast laser photo-electron emission from a flat metallic surface to the space charge limited (SCL) current, including the effect of non-equilibrium laser heating on metals at the ultrafast time scale. At a high laser field, it is found that the space charge effect cannot be ignored and the SCL current emission is reached at a lower value predicted by a short pulse SCL current model that assumed...

  14. Conservative Currents of Boundary Charges in $AdS_{2+1}$ Gravity

    OpenAIRE

    Feng, Sze-Shiang; Bin WANG; Meng, Xin-He

    1999-01-01

    The boundary charges which constitute the Virasoro algebra in 2+1 dimensional anti-de Sitter gravity are derived by way of Noether theorem and diffeomorphic invariance. It shows that the boundary charges under discussion recently exhaust all the independent nontrivial charges available. Therefore, the state counting via the Virasoro algebra is complete.

  15. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  16. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, J. [Tufts U.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  17. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    CERN Document Server

    Wolcott, J

    2016-01-01

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generato...

  18. Electron neutrino charged-current quasielastic scattering in the MINERvA experiment

    CERN Document Server

    Wolcott, Jeremy

    2015-01-01

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  19. Transient charging and discharging current study in pure PVF and PVF/PVDF fluoro polyblends for application in microelectronics

    Indian Academy of Sciences (India)

    A K Gupta; R Bajpai; J M Keller

    2011-02-01

    The transient current were analysed by considering the effect of variation of forming time, temperature, field and composition of blend specimens. Measurements indicated that transient charging and discharging currents exhibited thermally activated character but did not show mirror image behaviour at different temperatures and field values. The log –log plots were found to follow the Curie–Von Schweidler law with the value of decay constant `’ lying in the range of 0.029–2.9456. These observed characteristics also indicated that the transient charging in PVF:PVDF fluoro polyblends occur partly due to orientation of dipoles but predominantly due to trapped space charges and hopping of charge carriers amongst localized states. The modification in transient behaviour on blending PVDF with PVF have been explained on the basis of plasticization effect which increases free volume and molecular mobility and g modification in the trap structure.

  20. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect

    Institute of Scientific and Technical Information of China (English)

    GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu

    2009-01-01

    We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.

  1. Dependence of tunneling current through a single molecule of phenylene oligomers on the molecular length.

    Science.gov (United States)

    Wakamatsu, Satoshi; Fujii, Shintaro; Akiba, Uichi; Fujihira, Masamichi

    2003-01-01

    The electrical properties of single phenylene oligomers were studied in terms of the dependence of the tunneling current on the length of the oligomers using self-assembling techniques and scanning tunneling microscopy (STM). It is important to isolate single molecules in an insulating matrix for the measurement of the conductivity of the single molecule. We demonstrate here a novel self-assembled monolayer (SAM) matrix appropriate for isolation of the single molecules. A bicyclo[2.2.2]octane derivative was used for a SAM matrix, in which the single molecules were inserted at molecular lattice defects. The isolated single molecules of phenylene oligomers inserted in the SAM matrix were observed as protrusions in STM topography using a constant current mode. We measured the topographic heights of the molecular protrusions using STM and estimated the decay constant, beta, of the tunneling current through the single phenylene oligomers using a bilayer tunnel junction model. PMID:12801653

  2. Electromagnetic phenomena in a single metallic resistive conductor when a direct current flows. Pinch effect (Hall effect) and field theory

    International Nuclear Information System (INIS)

    In conventional classical electrodynamics, a single metallic resistive conductor is considered to be electrically neutralized in all parts of its interior when a direct current flows. Based on the field theory of electromagnetism, it is thought that Joule's heat is not supplied through a conductor, itself, but from the outside through its surface with the Poynting's vector, which represents the flow of electromagnetic energy. In contrast to this common knowledge, this paper describes a new understanding that the surface of a conductor is positively charged as a thin layer, and that its inner volume is negatively charged due to a pinch effect (Hall effect) on any direct current. As a result, three components of electric- and magnetic-fields appear inside a cylindrical conductor: a radial electric field, an axial electric field, and an angular magnetic field. A non-zero Poynting vector appears inside the conductor towards a radial direction, which supplies Joule's heat inside the conductor, itself. The surface charge density of a positively charged layer and the radial electric field at the surface satisfies a boundary condition. It is then shown that Drude's free-electron model provides a negligible amount of pinch effect so that the conductor is neutralized everywhere, as expressed by common knowledge. However, Sommerfeld's free-electron model based on Pauli's exclusion principle in quantum mechanics provides a reasonable amount of pinch effect so that the conductor has a non-zero charge distribution, as expressed by the new understanding. A field theory of electromagnetism based on the pinch effect is apparently valid as a whole based on the present argument. (author)

  3. Tunneling current noise in the fractional quantum Hall effect: when the effective charge is not what it appears to be

    International Nuclear Information System (INIS)

    Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.

  4. Tunneling current noise in the fractional quantum Hall effect: When the effective charge is not what it appears to be

    Science.gov (United States)

    Snizhko, Kyrylo

    2016-01-01

    Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle's effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.

  5. Single molecule electron transport junctions: Charging and geometric effects on conductance

    Science.gov (United States)

    Andrews, David Q.; Cohen, Revital; Van Duyne, Richard P.; Ratner, Mark A.

    2006-11-01

    A p-benzenedithiolate (BDT) molecule covalently bonded between two gold electrodes has become one of the model systems utilized for investigating molecular transport junctions. The plethora of papers published on the BDT system has led to varying conclusions with respect to both the mechanism and the magnitude of transport. Conductance variations have been attributed to difficulty in calculating charge transfer to the molecule, inability to locate the Fermi energy accurately, geometric dispersion, and stochastic switching. Here we compare results obtained using two transport codes, TRANSIESTA-C and HÜCKEL-IV, to show that upon Au-S bond lengthening, the calculated low bias conductance initially increases by up to a factor of 30. This increase in highest occupied molecular orbital (HOMO) mediated conductance is attributed to charging of the terminal sulfur atom and a corresponding decrease in the energy gap between the Fermi level and the HOMO. Addition of a single Au atom to each terminal of the extended BDT molecule is shown to add four molecular states near the Fermi energy, which may explain the varying results reported in the literature.

  6. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    International Nuclear Information System (INIS)

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunch model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. The resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out

  7. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids.

    Science.gov (United States)

    Ding, Mengning; Sorescu, Dan C; Star, Alexander

    2013-06-19

    The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range. PMID:23734594

  8. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). 2. Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Argentina); Akopov, Z. [DESY Hamburg (Germany)] [and others; Collaboration: HERMES Collaboration

    2013-10-15

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle {psi} about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P{sub T} relative to the direction of the incident beam, and the Feynman variable x{sub F}. The sin {psi} amplitudes are positive for {pi}{sup +} and K{sup +}, slightly negative for {pi}{sup -} consistent with zero for K{sup -}, with particular P{sub T} but weak x{sub F} dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  9. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [II. Physikalisches Institut, Justus-Liebig-Universität Gießen, 35392 Gießen (Germany); Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Akopov, N. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Akopov, Z. [DESY, 22603 Hamburg (Germany); Aschenauer, E.C. [DESY, 15738 Zeuthen (Germany); Augustyniak, W. [National Centre for Nuclear Research, 00-689 Warsaw (Poland); Avakian, R.; Avetissian, A. [Yerevan Physics Institute, 375036 Yerevan (Armenia); Avetisyan, E. [DESY, 22603 Hamburg (Germany); Belostotski, S. [K.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina, 188300 Leningrad Region (Russian Federation); Bianchi, N. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics (Nikhef), 1009 DB Amsterdam (Netherlands); Department of Physics and Astronomy, VU University, 1081 HV Amsterdam (Netherlands); Borissov, A. [DESY, 22603 Hamburg (Germany); Bowles, J. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bryzgalov, V. [Institute for High Energy Physics, Protvino, 142281 Moscow Region (Russian Federation); Burns, J. [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Capiluppi, M. [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara (Italy); Capitani, G.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati (Italy); Cisbani, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Gruppo Collegato Sanità and Istituto Superiore di Sanità, 00161 Roma (Italy); and others

    2014-01-20

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle ψ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum P{sub T} relative to the direction of the incident beam, and the Feynman variable x{sub F}. The sin ψ amplitudes are positive for π{sup +} and K{sup +}, slightly negative for π{sup −} and consistent with zero for K{sup −}, with particular P{sub T} but weak x{sub F} dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  10. Transverse target single-spin asymmetry in inclusive electroproduction of charged pions and kaons

    CERN Document Server

    Airapetian, A; Akopov, Z; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetisyan, E; Belostotski, S; Bianchi, N; Blok, H P; Borissov, A; Bowles, J; Bryzgalov, V; Burns, J; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Nardo, L; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Gavrilov, G; Gharibyan, V; Giordano, F; Gliske, S; Golembiovskaya, M; Hadjidakis, C; Hartig, M; Hasch, D; Hillenbrand, A; Hoek, M; Holler, Y; Hristova, I; Ivanilov, A; Jackson, H E; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Ruiz, A López; Lorenzon, W; Ma, B -Q; Mahon, D; Makins, N C R; Manaenkov, S I; Mao, Y; Marianski, B; de la Ossa, A Martinez; Marukyan, H; Miller, C A; Miyachi, Y; Movsisyan, A; Muccifora, V; Murray, M; Mussgiller, A; Nappi, E; Naryshkin, Y; Nass, A; Negodaev, M; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Raithel, M; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanftl, F; Schäfer, A; Schnell, G; Seitz, B; Shibata, T -A; Shutov, V; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stewart, J; Stinzing, F; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Veretennikov, D; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Ye, Z; Yen, S; Yu, W; Zagrebelnyy, V; Zeiler, D; Zihlmann, B; Zupranski, P

    2013-01-01

    Single-spin asymmetries were investigated in inclusive electroproduction of charged pions and kaons from transversely polarized protons at the HERMES experiment. The asymmetries were studied as a function of the azimuthal angle $\\psi$ about the beam direction between the target-spin direction and the hadron production plane, the transverse hadron momentum relative to the direction of the incident beam, and the Feynman variable $x_F$. The $\\sin(\\psi)$ amplitudes are positive for positive pions and kaons, slightly negative for negative pions and consistent with zero for negative kaons, with particular transverse-momentum but weak $x_F$ dependences. Especially large asymmetries are observed for two small subsamples of events, where also the scattered electron was recorded by the spectrometer.

  11. Isotope-Resolved and Charge-Sensitive Force Imaging Using Scanned Single Molecules

    Science.gov (United States)

    Sun, Yan; Rastawicki, Dominik; Liu, Yang; Mar, Warren; Manoharan, Hari; Miglio, Anna; Melinte, Sorin; Charlier, Jean-Christophe; Rignanese, Gian-Marco; He, Lianhua; Liu, Fang; Zhou, Aihui

    Originally conceived as surface imaging instruments, the scanning tunnelling microscope (STM) and the atomic force microscope (AFM) were recently used to probe molecular chemical bonds with exquisite sensitivity. Remarkably, molecule-functionalized scanning tips can also provide direct access to the inelastic electron tunneling spectrum (IETS) of the terminal molecule. Here we report atomic manipulation experiments addressing carbon monoxide (CO) isotopes at low temperatures. The unique and quantifiable dependence of the CO vibrational modes offers insight into tip-controlled force and charge sensing of surface adsorbates, subsurface defects, and quantum nanostructures. The specific behavior of the monitored vibrational modes originates from the interplay of interaction forces between the top electrode--a scanned tip functionalized with a single molecule--and the atomic scale force field surrounding the target atomically-assembled nanostructure. We also present density functional theory (DFT) computations that have been performed in order to scrutinize and visualize the vibrational spectroscopic fingerprints and local force fields.

  12. Relativistic heat flux for a single component charged fluid in the presence of an electromagnetic field

    CERN Document Server

    Garcia-Perciante, A L; Brun-Battistini, D

    2015-01-01

    Transport properties in gases are significantly affected by temperature. In previous works it has been shown that when the thermal agitation in a gas is high enough, such that relativistic effects become relevant, heat dissipation is driven not solely by a temperature gradient but also by other vector forces. In the case of relativistic charged fluids, a heat flux is driven by an electrostatic field even in the single species case. The present work generalizes such result by considering also a magnetic field in an arbitrary inertial reference frame. The corresponding constitutive equation is explicitly obtained showing that both electric and magnetic forces contribute to thermal dissipation. This result may lead to relevant effects in plasma dynamics.

  13. Pion nucleus single charge exchange reactions above the Δ(1232) resonance

    International Nuclear Information System (INIS)

    Forward-angle differential cross sections for the (π+, π0) reaction leading to the Isobaric Analog State in the residual nuclei at 300, 425, 500 and 550 MeV have been measured. Targets ranged in mass from 7Li to 208Pb. A description of the experimental setup and the analysis is presented. The 00 cross sections are found to rise markedly between 300 and 425 MeV, contrary to the extrapolation from the lower energy data and to the behavior of the free pion-nucleon single charge exchange process. The angular distributions are sharply forward peaked. Systematics of the data indicate increased volume penetration with increasing pion beam energy. The cross sections are compared with the results of Glauber model calculations indicating the significance of higher order processes even at these energies. 67 refs., 40 figs., 22 tabs

  14. Space Charge Studies with High Intensity Single Bunch Beams in the CERN SPS

    CERN Document Server

    Bartosik, Hannes; Schmidt, Frank; Titze, Malte

    2016-01-01

    In order to reach the target beam parameters of the LHC injectors upgrade (LIU) project the beam degradation due to losses and emittance growth on the long injection plateau of the SPS needs to be minimized. A detailed study of the dependence of losses, transverse emittance blow-up and transverse beam tail creation as function of the working point is presented here for a high brightness single bunch beam with a vertical space charge tune spread of about 0.2 on the 26 GeV injection plateau. The beam behaviour close to important betatron resonances is characterised and a region in the tune diagram with minimal beam degradation is identified. Implications about the performance for LIU beams are discussed.

  15. Single-sheet identification method of heavy charged particles using solid state nuclear track detectors

    Indian Academy of Sciences (India)

    M F Zaki; A Abdel-Naby; A Ahmed Morsy

    2007-08-01

    The theoretical and experimental investigations of the penetration of charged particles in matter played a very important role in the development of modern physics. Solid state nuclear track detectors have become one of the most important tools for many branches of science and technology. An attempt has been made to examine the suitability of the single-sheet particle identification technique in CR-39 and CN-85 polycarbonate by plotting track cone length vs. residual range for different heavy ions in these detectors. So, the maximum etchable ranges of heavy ions such as 93Nb, 86Kr and 4He in CR-39 and 4He and 132Xe in CN-85 polycarbonate have been determined. The ranges of these ions in these detectors have also been computed theoretically using the Henke–Benton program. A reasonably good agreement has been observed between the experimentally and theoretically computed values.

  16. A sub-GeV charged-current quasi-elastic $\

    Energy Technology Data Exchange (ETDEWEB)

    Walding, Joseph James [Imperial College, London (United Kingdom)

    2009-12-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is νμn → μp. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic crosssection for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based at Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99×1020 and 1.53×1020 protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a νμ charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBarcontained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 ± 0.031 (stat)+0.101 -0.150(sys) × 10-38 cm2/neutron, excluding backwards tracks with a χ2 = 203.8/76 d.o.f. and 1.083 ± 0.030(stat)+0.115 -0.177(sys) × 10-38 cm2

  17. A sub-GeV charged-current quasi-elastic $\

    Energy Technology Data Exchange (ETDEWEB)

    Walding, Joseph James; /Imperial Coll., London

    2010-04-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is {nu}{sub {mu}}n {yields} {mu}p. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic cross-section for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based at Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99 x 10{sup 20} and 1.53 x 10{sup 20} protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a {nu}{sub {mu}} charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBar-contained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 {+-} 0.031 (stat){sub -0.150}{sup +0.101}(sys) x 10{sup -38} cm{sup 2}/neutron, excluding backwards tracks with a {chi}{sup 2} = 203.8/76 d.o.f. and 1.083 {+-} 0.030(stat){sub -0.177}{sup +0.115}(sys) x 10{sup -38} cm{sup 2}/neutron, including backwards tracks with

  18. Adiabatic and non-adiabatic charge pumping in a single-level molecular motor

    International Nuclear Information System (INIS)

    We propose a design for realizing quantum charge pump based on a recent proposal for a molecular motor (Seldenthuis J S et al 2010 ACS Nano 4 6681). Our design is based on the presence of a moiety with a permanent dipole moment which can rotate, thereby modulating the couplings to metallic contacts at both ends of the molecule. Using the non-equilibrium Keldysh Green’s function formalism (NEGF), we show that our design indeed generates a pump current. In the non-interacting pump, the variation of frequency from adiabatic to non-adiabatic regime, can be used to control the direction as well as the amplitude of the average current. The effect of Coulomb interaction is considered within the first- and the second- order perturbation. The numerical implementation of the scheme is quite demanding, and we develop an analytical approximation to obtain a speed-up giving results within a reasonable time. We find that the amplitude of the average pumped current can be controlled by both the driving frequency and the Coulomb interaction. The direction of of pumped current is shown to be determined by the phase difference between left and right anchoring groups. (paper)

  19. On the self-induced charge currents in electromagnetic materials and its effects in the torsion balance experiment

    CERN Document Server

    Shen, J Q

    2003-01-01

    We concern ourselves with the self-induced charge currents in electromagnetic materials and some related topics on its effects in the present paper. The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is briefly discussed. We concentrate primarily on the torque, which is caused by the interaction of self-induced charge currents in dilute plasma with interstellar magnetic fields, acting on the torsion balance in the torsion balance experiment. It is shown by our evaluation that the muons and alpha-particles in secondary cosmic rays will contribute an effective rest mass about 10^{-54} Kg to the photon, which is compared to the newly obtained upper limit on photon rest mass in Luo's rotating torsion balance experiment.

  20. A Single-Phase Multilevel Current-Source Converter using H-Bridge and DC Current Modules

    Directory of Open Access Journals (Sweden)

    Suroso Suroso

    2014-03-01

    Full Text Available This paper presents a different topology of H-bridge based multilevel current-source inverter (CSI. In this new topology, an H-bridge CSI is connected with a single or more current modules to generate a multilevel output current waveform with lower di/dt, and less distortion. Using the proposed multilevel CSI, the number of the power switching devices, and isolated gate drive circuits can be reduced. Moreover, chopper based DC current sources are presented to reduce the inductor size effectively to be in micro-Henry order, and ensure the balance of the intermediate current levels. The proposed topology is inherently able to reduce the inductor conduction losses if compared with the conventional multilevel CSIs and the H-bridge CSI. Seven-level PWM inverter configurations with non-isolated DC current sources and with a single DC power source are verified through computer simulations. Furthermore, laboratory prototypes of seven-level CSI is setup and tested. The results show that the inverter circuit works properly to generate the multilevel output current waveform with low harmonics currents, small inductors and with less conduction losses which proves feasibility of the proposed multilevel CSI. Normal 0 false false false EN-US X-NONE X-NONE

  1. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene

    Science.gov (United States)

    Shankla, Manish; Aksimentiev, Aleksei

    2014-10-01

    Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion, whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing.

  2. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    OpenAIRE

    Kundu, Sourav; Karmakar, S. N.

    2016-01-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of envi- ronmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectr...

  3. Fractional Charge and Quantized Current in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng

    2007-01-01

    A profound manifestation of topologically non-trivial states of matter is the occurrence of fractionally charged elementary excitations. The quantum spin Hall insulator state is a fundamentally novel quantum state of matter that exists at zero external magnetic field. In this work, we show that a magnetic domain wall at the edge of the quantum spin Hall insulator carries one half of the unit of electron charge, and we propose an experiment to directly measure this fractional charge on an indi...

  4. Jet production in charged current deep inelastic e+p scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, A A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kram, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, M; Robins, S; Rodrigues, E; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2003-01-01

    The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, , of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from at y_cut=0.01 for jets with 25

  5. Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders

    International Nuclear Information System (INIS)

    The inclusive spectra of charged particles measured at high transverse momenta (pT≳2 GeV/c) in proton–proton and proton–antiproton collisions in the range of center-of-mass energies √(s)=200–7000 GeV are compared with next-to-leading order perturbative QCD calculations using seven recent sets of parton-to-hadron fragmentation functions (FFs). Accounting for the uncertainties in the scale choices and in the parton distribution functions, we find that most of the theoretical predictions tend to overpredict the measured LHC and Tevatron cross sections by up to a factor of two. We identify the currently too-hard gluon-to-hadron FFs as the probable source of the problem, and justify the need to refit the FFs using the available LHC and Tevatron data in a region of transverse momenta, pT≳10 GeV/c, which is supposedly free from additional non-perturbative contributions and where the scale uncertainty is only modest

  6. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H. [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  7. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H.; /Colorado U.

    2010-04-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CC{pi}{sup 0}) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics ({approx} 1,000,000 interactions) low-energy (E{sub {nu}} {element_of} 0.5-2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CC{pi}{sup 0} events is presented. The {pi}{sup 0} and {mu}{sup -} are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CC{pi}{sup 0} cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q{sup 2}. The results are combined to yield a flux-averaged total cross-section of <{sigma}>{sub {Phi}} = (9.2 {+-} 0.3{sub stat.} {+-} 1.5{sub syst}.) x 10{sup -39} cm{sup 2}/CH{sub 2} at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  8. Measurement of the Λ polarization in νμ charged current interactions in the NOMAD experiment

    International Nuclear Information System (INIS)

    The Λ polarization in νμ charged current interactions has been measured in the NOMAD experiment. The event sample (8087 reconstructed Λ 's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. We observe negative polarization along the W -boson direction which is enhanced in the target fragmentation region: Px(xFx(xF>0)=-0.09±0.06(stat)±0.03(sys) . These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Λ production plane) has been observed for the first time in a neutrino experiment: Py=-0.22±0.03(stat)±0.01(sys) . The dependence of the absolute value of Py on the Λ transverse momentum with respect to the hadronic jet direction is in qualitative agreement with the results from unpolarized hadron-hadron experiments

  9. The effect of a direct current field on the microparticle charge in the plasma afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Wörner, L. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Groupe de Recherches sur l' Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Ivlev, A. V.; Huber, P.; Hagl, T.; Thomas, H. M.; Morfill, G. E. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Couëdel, L. [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France); Schwabe, M. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Mikikian, M.; Boufendi, L. [Groupe de Recherches sur l' Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Skvortsov, A. [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation); Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E. [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)

    2013-12-15

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon “free decharging” conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between −10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  10. Efficient Charge Extraction and Slow Recombination in Organic-Inorganic Perovskites Capped with Semiconducting Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ihly, Rachelle; Dowgiallo, Anne-Marie; Yang, Mengjin; Schulz, Philip; Stanton, Noah J.; Reid, Obadiah G.; Ferguson, Andrew J.; Zhu, Kai; Berry, Joseph J.; Blackburn, Jeffrey L.

    2016-04-01

    Metal-halide based perovskite solar cells have rapidly emerged as a promising alternative to traditional inorganic and thin-film photovoltaics. Although charge transport layers are used on either side of perovskite absorber layers to extract photogenerated electrons and holes, the time scales for charge extraction and recombination are poorly understood. Ideal charge transport layers should facilitate large discrepancies between charge extraction and recombination rates. Here, we demonstrate that highly enriched semiconducting single-walled carbon nanotube (SWCNT) films enable rapid (sub-picosecond) hole extraction from a prototypical perovskite absorber layer and extremely slow back-transfer and recombination (hundreds of microseconds). The energetically narrow and distinct spectroscopic signatures for charges within these SWCNT thin films enables the unambiguous temporal tracking of each charge carrier with time-resolved spectroscopies covering many decades of time. The efficient hole extraction by the SWCNT layer also improves electron extraction by the compact titanium dioxide electron transport layer, which should reduce charge accumulation at each critical interface. Finally, we demonstrate that the use of thin interface layers of semiconducting single-walled carbon nanotubes between the perovskite absorber layer and a prototypical hole transport layer improves device efficiency and stability, and reduces hysteresis.

  11. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Chvojka, Jesse John [Univ. of Rochester, NY (United States)

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  12. O (αs3) heavy flavor contributions to the charged current structure function x F3(x ,Q2) at large momentum transfer

    Science.gov (United States)

    Behring, A.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Schneider, C.

    2015-12-01

    We calculate the massive Wilson coefficients for the heavy-flavor contributions to the nonsinglet charged-current deep-inelastic scattering structure function x F3W+(x ,Q2)+x F3W-(x ,Q2) in the asymptotic region Q2≫m2 to three-loop order in QCD at general values of the Mellin variable N and the momentum fraction x . Besides the heavy-quark pair production also the single heavy-flavor excitation s →c contributes. Numerical results are presented for the charm-quark contributions and consequences on the Gross-Llewellyn Smith sum rule are discussed.

  13. The O(\\alpha_s^3) Heavy Flavor Contributions to the Charged Current Structure Function xF_3(x,Q^2) at Large Momentum Transfer

    CERN Document Server

    Behring, A; De Freitas, A; Hasselhuhn, A; von Manteuffel, A; Schneider, C

    2015-01-01

    We calculate the massive Wilson coefficients for the heavy flavor contributions to the non-singlet charged current deep-inelastic scattering structure function $xF_3^{W^+}(x,Q^2)+xF_3^{W^-}(x,Q^2)$ in the asymptotic region $Q^2 \\gg m^2$ to 3-loop order in Quantum Chromodynamics (QCD) at general values of the Mellin variable $N$ and the momentum fraction $x$. Besides the heavy quark pair production also the single heavy flavor excitation $s \\rightarrow c$ contributes. Numerical results are presented for the charm quark contributions and consequences on the Gross-Llewellyn Smith sum rule are discussed.

  14. Evolution of ring current formed by relativistic electron beam injection into a charge but not current neutralizing plasma

    International Nuclear Information System (INIS)

    The time evolutions of the azimuthal momentum distribution of the axisymmetrically injected electrons and the resulting ring current are self-consistently analyzed under the assumption that no return current is induced in the background plasma. It is shown that the ring current grows linearly with time for a characteristic time from the start of beam injection, and afterthere it tends to saturate at some level. The dependence of the time evolution of the ring current on the beam energy at injection and on the injection current is also obtained. (author)

  15. Space-charge-limited currents: An E-infinity Cantorian approach

    Czech Academy of Sciences Publication Activity Database

    Zmeškal, O.; Nešpůrek, Stanislav; Weiter, M.

    2007-01-01

    Roč. 34, č. 2 (2007), s. 143-158. ISSN 0960-0779 R&D Projects: GA MPO FT-TA/036; GA AV ČR IAA100100622 Institutional research plan: CEZ:AV0Z40500505 Keywords : space charge * fractal * charge injection Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.025, year: 2007

  16. The modulation effect of substrate doping on multi-node charge collection and single-event transient propagation in 90-nm bulk complementary metal-oxidesemiconductor technology

    Institute of Scientific and Technical Information of China (English)

    Qin Jun-Rui; Chen Shu-Ming; Liu Bi-Wei; Liu Zheng; Liang Bin; Du Yan-Kang

    2011-01-01

    Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies,which are significant for charge sharing,thus affecting the propagated single event transient pulsewidths in circuits.The trends of charge collected by the drain of a positive channel metal-oxide semiconductor (PMOS) and an N metal-oxide semiconductor (NMOS) are opposite as the substrate doping increases.The PMOS source will inject carriers after strike and the amount of charge injected will increase as the substrate doping increases,whereas the source of the NMOS will mainly collect carriers and the source of the NMOS can also inject electrons when the substrate doping is light enough.Additionally,it indicates that substrate doping mainly affects the bipolar amplification component of a single-event transient current,and has little effect on the drift and diffusion.The change in substrate doping has a much greater effect on PMOS than on NMOS.

  17. Testing multistage gain and offset trimming in a single photon counting IC with a charge sharing elimination algorithm

    International Nuclear Information System (INIS)

    Designing a hybrid pixel detector readout electronics operating in a single photon counting mode is a very challenging process, where many main parameters are optimized in parallel (e.g. gain, noise, and threshold dispersion). Additional requirements for a smaller pixel size with extended functionality push designers to use new deep sub-micron technologies. Minimizing the channel size is possible, however, with a decreased pixel size, the charge sharing effect becomes a more important issue. To overcome this problem, we designed an integrated circuit prototype produced in CMOS 40 nm technology, which has an extended functionality of a single pixel. A C8P1 algorithm for the charge sharing effect compensation was implemented. In the algorithm's first stage the charge is rebuilt in a signal rebuilt hub fed by the CSA (charge sensitive amplifier) outputs from four neighbouring pixels. Then, the pixel with the biggest amount of charge is chosen, after a comparison with all the adjacent ones. In order to process the data in such a complicated way, a certain architecture of a single channel was proposed, which allows for: ⋅ processing the signal with the possibility of total charge reconstruction (by connecting with the adjacent pixels), ⋅ a comparison of certain pixel amplitude to its 8 neighbours, ⋅ the extended testability of each block inside the channel to measure CSA gain dispersion, shaper gain dispersion, threshold dispersion (including the simultaneous generation of different pulse amplitudes from different pixels), ⋅ trimming all the necessary blocks for proper operation. We present a solution for multistage gain and offset trimming implemented in the IC prototype. It allows for minimization of the total charge extraction errors, minimization of threshold dispersion in the pixel matrix and minimization of errors of comparison of certain pixel pulse amplitudes with all its neighbours. The detailed architecture of a single channel is presented

  18. Current, charge, and capacitance during scanning probe oxidation of silicon. II. Electrostatic and meniscus forces acting on cantilever bending

    Science.gov (United States)

    Dagata, J. A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H.

    2004-08-01

    A comprehensive analysis of the electrical current passing through the tip-substrate junction during oxidation of silicon by scanning probe microscopy (SPM) is presented. This analysis identifies the electronic and ionic contributions to the total current, especially at the initial stages of the reaction, determines the effective contact area of the tip-substrate junction, and unifies the roles of space charge and meniscus formation. In this work, we concentrate on noncontact SPM oxidation. We analyze simultaneous force-distance and current-distance curves to demonstrate that total current flow during noncontact oxidation is significantly less for noncontact mode than for contact oxidation, although the resulting oxide volume is nearly identical. Ionization of water layers and mobile charge reorganization prior to and following meniscus formation is also shown to alter the tip-substrate capacitance and, therefore, the bending of the SPM cantilever.

  19. Estimation of Potential Gradient from Discharge Current through Hand-Held Metal Piece from Charged Human Body

    Science.gov (United States)

    Taka, Yoshinori; Fujiwara, Osamu

    Electrostatic discharge (ESD) events due to metal objects electrified with low voltages give a fatal electromagnetic interference to high-tech information equipment. In order to elucidate the mechanism, with a 6-GHz digital oscilloscope, we previously measured the discharge current due to collision of a hand-held metal piece from a charged human body, and gave a current calculation model. In this study, based on the calculation model, a method was presented for deriving a gap potential gradient from the measured discharge current. Measurements of the discharge currents were made for charge voltages from 200V to 1000V. The corresponding potential gradients were estimated, which were validated in comparison with an empirical formula based on the Paschen's law together with other researcher's experimental results.

  20. Study of anomalous top quark flavor-changing neutral current interactions via the tW channel of single-top-quark production

    International Nuclear Information System (INIS)

    The potential of the LHC for investigation of anomalous top quark interactions with gluon (tug,tcg) through the production of tW channel of single top quarks is studied. In the standard model, the single top quarks in the tW-channel mode are charge symmetric, meaning that σ(pp→t+W-)=σ(pp→t+W+). However, the presence of anomalous flavor-changing neutral current (FCNC) couplings leads to charge asymmetry. In this paper, a method is proposed in which this charge asymmetry may be used to constrain anomalous FCNC couplings. The strength of resulting constraints is estimated for the LHC for the center of mass energies of 7 and 14 TeV.

  1. Study of anomalous top quark flavor-changing neutral current interactions via the tW channel of single-top-quark production

    Science.gov (United States)

    Etesami, S. M.; Mohammadi Najafabadi, M.

    2010-06-01

    The potential of the LHC for investigation of anomalous top quark interactions with gluon (tug,tcg) through the production of tW channel of single top quarks is studied. In the standard model, the single top quarks in the tW-channel mode are charge symmetric, meaning that σ(pp→t+W-)=σ(pp→t¯+W+). However, the presence of anomalous flavor-changing neutral current (FCNC) couplings leads to charge asymmetry. In this paper, a method is proposed in which this charge asymmetry may be used to constrain anomalous FCNC couplings. The strength of resulting constraints is estimated for the LHC for the center of mass energies of 7 and 14 TeV.

  2. The Current Status and Future Directions of Heavy Charged Particle Therapy in Medicine

    Science.gov (United States)

    Levy, Richard P.; Blakely, Eleanor A.; Chu, William T.; Coutrakon, George B.; Hug, Eugen B.; Kraft, Gerhard; Tsujii, Hirohiko

    2009-03-01

    As aggressive, 3D-conformal treatment has become the clearly accepted goal of radiation oncology, heavy charged-particle treatment with protons and heavier ions has concurrently and relentlessly ascended to the forefront. Protons and helium nuclei, with relatively low linear-energy-transfer (LET) properties, have consistently been demonstrated to be beneficial for aggressive (high-dose) local treatment of many types of tumors. Protons have been applied to the majority of solid tumors, and have reached a high degree of general acceptance in radiation oncology after three decades and 55,000 patients treated. However, some 15% to 20% of tumor types have proven resistant to even the most aggressive low-LET irradiation. For these radio-resistant tumors, treatment with heavier ions (e.g., carbon) offers great potential benefit. These high-LET particles have increased relative biological effectiveness (RBE) that reaches its maximum in the Bragg peak. Irradiation with these heavier ions offers the unique combination of excellent 3D-dose distribution and increased RBE. We are presently witnessing several, important parallel developments in particle therapy. Protons will likely continue their exponential growth phase, and more compact design systems will make protons available to a larger patient population—thus becoming the "heavy charged particle of choice" for Cancer Centers with limited financial resources. In parallel, major academic efforts will further advance the field of heavier ion therapy, exploring all opportunities for particle treatment and continuing the search for the ideal particle(s) for specific tumors. The future of ion therapy will be best realized by clinical trials that have ready access to top-quality delivery of both protons and heavier ions that can be accurately shaped for treatment of a specific pathology, and which will permit direct randomized-trial comparison of the effectiveness of the various ions for different diseases. Optimal results

  3. 3-loop contributions to heavy flavor Wilson coefficients of neutral and charged current DIS

    Energy Technology Data Exchange (ETDEWEB)

    Hasselhuhn, Alexander

    2013-11-15

    . A new method is presented for the calculation of such diagrams with equal masses, contributing to the OMEs A{sub gq,Q} and A{sub gg,Q}. The method uses a Mellin-Barnes representation instead of a generalized hypergeometric function and keeps, for convergence reasons, one of the Feynman parameter integrals unintegrated. The above symbolic summation methods are used to solve the sum of residues in terms of cyclotomic harmonic polylogarithms. Many properties of these functions are implemented in the package Harmonic Sums. Since the result is first derived as a generating function, the symbolic summation machinery is applied a second time, solving difference equations and simplifying sums needed to derive the Nth Taylor coefficient for symbolic N. First the O({alpha}{sub s}) contributions are revisited, due to partly different results in the foregoing literature, which can be clarified. At 1-loop order, an efficient representation in Mellin space allowing for fast numerical evaluations is designed, including power corrections. Also here errors in the literature are corrected. Here the 1-loop expressions are also expanded for 1>>m{sup 2}/Q{sup 2} up to the constant term. A careful recalculation of the gluonic contribution is performed as well as a calculation in leading logarithmic approximation. The leading logarithmic calculation shows that the same sign error occurs for the pure-singlet contribution at two loops. The heavy quark corrections of charged current deep-inelastic scattering are extended to 2-loop order. The factorization of the heavy flavor Wilson coefficients at large values of Q{sup 2} is derived for the charged current case. Using the light flavor Wilson coefficients and operator matrix elements up to 2-loop order from the literature, x- and N-space expressions for all heavy flavor Wilson coefficients at two loops are given.

  4. Single-line-to-ground fault test on a 3-phase superconducting fault current limiting reactor

    International Nuclear Information System (INIS)

    The current limiting behavior of a 3-phase superconducting fault current limiting reactor (SCFCLR) in a model power system at a single-line-to-ground fault is experimentally confirmed. A small arc gap is attached on one phase of the model transmission line. And, a single-line-to-ground fault is activated. The behavior of the grounding current and the arc are observed. This paper reports that the experimental result show that, the fault current is limited to very small value by the large zero-phase-sequence reactance of the SCFCLR, and the self-extinction of the fault arc is observed, the power flow is not disturbed by a single-line-to-ground fault at all, and any power system disturbances are not observed, the windings do not quench for a single-line-tosingle-line-to-ground fault

  5. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Strait, Matthew Levy [Minnesota U.

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters ∆ m 2 ≈ ∆ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of ∆ m 2 is much stronger. Assuming sin 2 2 θ = 1 , ∆ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 − 3 eV 2 .

  6. The Relativistic Green's function model and charged-current inclusive neutrino-nucleus scattering at T2K kinematics

    CERN Document Server

    Meucci, Andrea

    2015-01-01

    We compare the results of the relativistic Green's function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MINER$\

  7. The O(α2s) heavy quark corrections to charged current deep-inelastic scattering at large virtualities

    International Nuclear Information System (INIS)

    We calculate the O(α2s) heavy flavor corrections to charged current deep-inelastic scattering at large scales Q2 >> m2. The contributing Wilson coefficients are given as convolutions between massive operator matrix elements and massless Wilson coefficients. Foregoing results in the literature are extended and corrected. Numerical results are presented for the kinematic region of the HERA data.

  8. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-01-01

    The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged $\

  9. Analytical solutions of minimum ionization particle induced current shapes of silicon detectors and simulation of charge collection properties

    International Nuclear Information System (INIS)

    A new analytical, one dimensional method to obtain the induced current shapes and simulation of chasrge shapes for p+ -n-n+ silicon detectors in the case of minimum ionization particle has been developed here. jExact solutions have been found for both electron and hole current shapes. Simulations of induced charge shapes of detectors have also been given. The results of this work are consistent with the earlier work where a semi-analytical method had been used

  10. Numerical study on short-circuit current of single layer organic solar cells with Schottkey contacts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The influence of the cathode work function,carriers mobilities and temperature on the short-circuit current of single layer organic solar cells with Schottkey contacts was numerically studied,and the quantitative dependences of the short-circuit current on these quantities were obtained.The results provide the theoretical foundation for experimental study of single layer organic solar cells with Schottkey contacts.

  11. Displacement current correction for the dc and transient simulation of single electron transistors

    CERN Document Server

    Lee, H S; Hwang, S W

    1998-01-01

    A complete methodology of calculating the displacement current in single electron transistors has been devised for both time-dependent and dc biased conditions. It has been implemented for the calculation of low frequency noise spectrum at dc biases and transient currents at time-dependent biases, with a proper choice of Monte-Carlo parameters. Our new methodology opens up a systematic way of analyzing transient behaviors of single electron circuits.

  12. Single-molecule Electronics: Cooling Individual Vibrational Modes by the Tunneling Current

    OpenAIRE

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Gemma C. Solomon

    2015-01-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes, can in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions or to increase...

  13. Detecting small flaws in fuel rods with sophisticated Eddy Current testing and single rod sipping

    International Nuclear Information System (INIS)

    AREVA has profound experience in efficient methods for finding defective irradiated fuel rods: - Eddy Current (EC) testing of single fuel rods - Sipping of fuel assemblies. In order to further improve the efficiency, AREVA developed new techniques: A. New sophisticated EC for detecting Small Defects in Irradiated Fuel Rod Claddings (SDIRC-EC) B. Single rod sipping (orig.)

  14. Charging unit for magnetic system of the JINR collective accelerator power supply on the base of alternating current thyristor converter

    International Nuclear Information System (INIS)

    The described charging unit of the capacity store for magnetic system of the JINR collective accelerator is intended for recharging capacitor battery energy loss value in a discharge circuit for the time not exceeding 10 ms. The developed system of automatic voltage control (AVC) for the charging unit ensures operating frequency up to 20-40 Hz, and permits to realize voltage stabilization of the capacitor battery. The three-phase thyristor converter at the inlet of the step-up trasformer of the charging unit controllable by means of the central data handing processing unit GZ 800 (development and fabrication of the GDR) is used. The experimentally measured summarized constant of time of the systems with AVC is 5-8 ms, maximum voltage at the battery of the 100 μF capacity at the frequency of 20 Hz-17.5 kV. The average magnitude of the charge current in the given regime has attained 7A. The charging unit working ability at the frequency of 20 Hz and the 5 kA discharge current has been verified

  15. Single photon emission at 1.55 μm from charged and neutral exciton confined in a single quantum dash

    International Nuclear Information System (INIS)

    We investigate charged and neutral exciton complexes confined in a single self-assembled InAs/InGaAlAs/InP quantum dash emitting at 1.55 μm. The emission characteristics have been probed by measuring high-spatial-resolution polarization-resolved photoluminescence and cross-correlations of photon emission statistics at T = 5 K. The photon auto-correlation histogram of the emission from both the neutral and charged exciton indicates a clear antibunching dip with as-measured g(2)(0) values of 0.18 and 0.31, respectively. It proves that these exciton complexes confined in single quantum dashes of InP-based material system can act as true single photon emitters being compatible with standard long-distance fiber communication technology.

  16. Electron impact single ionization of light ionic targets with charge q > 2

    International Nuclear Information System (INIS)

    The electron impact single ionization cross-section of light ionic targets with multiple charges greater than 2 is evaluated employing two distinct modifications of the binary-encounter dipole (BED) model, the intermediate BEDTG and the modified BED (MBED) models. BEDTG incorporates the ionic correction due to Thomas and Garcia, whereas MBED embodies modification of the Burgess denominator along with the ionic correction. The differential continuum oscillator strengths are obtained adopting the analytic fits to available photo-ionization cross-sections, calculated quantum mechanically. To assess the reliability of these proposed modifications, a few simple targets, e.g., C3+, N4+, O4+, O5+, Ne6+ and Ne7+ with known reliable theoretical results, are considered. Although the present MBED model seems to underestimate systematically the experimental data above 10 keV, it explains the data in the threshold and peak regions reasonably well with its predictions close to those from the Coulomb-Born approximation, convergent-close-coupling, distorted wave Born approximation with R-matrix, time-dependent and R-matrix pseudo-state methods

  17. Present status of singly charged ion ECR sources at the SARA on-line separator

    International Nuclear Information System (INIS)

    Various 2.45 GHz microwave electron cyclotron resonance (ECR) ion-sources designed with quartz tubes and without hexapole have been developed and tested for production, transport and focalization of singly-charged ions. A first on-line endeavour to separate radioactive isotopes in a He-jet coupled mode has been realized with a capillary skimmer ion-source injection system parallel to the source plasma axis. In order to improve the coupling of a ECR source with the He-jet system, a new compact metallic body ion-source with a skimmer-catcher injection arrangement perpendicular to the plasma has been designed. The layout of this new metallic ion-source is given. The ionization efficiencies have been measured as a function of gas pressure for a complete off-line regime with various support gases and for a dynamical regime induced with an He-jet injection simulating the subsequent on-line coupled mode conditions. (orig.)

  18. Can singly charged oxygen vacancies induce ferromagnetism in biaxial strained ZnO?

    Science.gov (United States)

    Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang

    2016-04-01

    The electronic and magnetic properties of the singly charged oxygen vacancy ({{V}{{O}}}+) in undoped ZnO under biaxial strains are investigated by density functional theory calculations. A net magnetic moment (MM) of 0.561 μB is obtained for {{V}{{O}}}+ in ZnO under no strains, but the magnetic interaction between them is antiferromagnetic. The formation energy of V O and {{V}{{O}}}+, the MM induced by {{V}{{O}}}+, as well as the coupling type and strength between {{V}{{O}}}+{{s}} vary with the application of biaxial strains. Compressive strains can enhance the concentrations of V O and {{V}{{O}}}+, enlarge the MM, and strengthen the antiferromagnetic interactions between them at lower V O concentrations. However, at higher V O concentrations, the coupling varies from sizable antiferromagnetic to negligible weak ferromagnetic, and then becomes paramagnetic with the increase of compression. Antiferromagnetic results are further confirmed by the local density approximation with Hubbard U (LDA + U) calculations.

  19. Charged single alpha-helices in proteomes revealed by a consensus prediction approach.

    Science.gov (United States)

    Gáspári, Zoltán; Süveges, Dániel; Perczel, András; Nyitray, László; Tóth, Gábor

    2012-04-01

    Charged single α-helices (CSAHs) constitute a recently recognized protein structural motif. Its presence and role is characterized in only a few proteins. To explore its general features, a comprehensive study is necessary. We have set up a consensus prediction method available as a web service (at http://csahserver.chem.elte.hu) and downloadable scripts capable of predicting CSAHs from protein sequences. Using our method, we have performed a comprehensive search on the UniProt database. We found that the motif is very rare but seems abundant in proteins involved in symbiosis and RNA binding/processing. Although there are related proteins with CSAH segments, the motif shows no deep conservation in protein families. We conclude that CSAH-containing proteins, although rare, are involved in many key biological processes. Their conservation pattern and prevalence in symbiosis-associated proteins suggest that they might be subjects of relatively rapid molecular evolution and thus can contribute to the emergence of novel functions. PMID:22310480

  20. Single-event phenomena on recent semiconductor devices. Charge-type multiple-bit upsets in high integrated memories

    Energy Technology Data Exchange (ETDEWEB)

    Makihara, Akiko; Shindou, Hiroyuki; Nemoto, Norio; Kuboyama, Satoshi; Matsuda, Sumio [National Space Development Agency, Tokyo (Japan); Ohshima, Takeshi; Hirao, Toshio; Itoh, Hisayoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-02-01

    High integrated memories are used in solid state data recorder (SSDR) of the satellite for accumulating observation data. Single event upset phenomena which turn over an accumulated data in the memory cells are caused by heavy ion incidence. Studies on single-bit upset and multiple-bit upset phenomena in the high integrated memory cells are in progress recently. 16 Mbit DRAM (Dynamic Random Access Memories) and 64 Mbit DRAM are irradiated by heavy ion species, such as iodine, bromine and nickel, in comparison with the irradiation damage in the cosmic environment. Data written on the memory devices are read out after the irradiation. The memory cells in three kinds of states, all of charged state, all of discharged state, and an alternative state of charge and discharge, are irradiated for sorting out error modes caused by heavy ion incidence. The soft error in a single memory cells is known as a turn over from charged state to discharged state. Electrons in electron-hole pair generated by heavy ion incidence are captured in a diffusion region between capacitor electrodes of semiconductor. The charged states in the capacitor electrodes before the irradiation are neutralized and changed to the discharged states. According to high integration of the memories, many of the cells are affected by a single ion incidence. The multiple-bit upsets, however, are generated in the memory cells of discharged state before the irradiation, also. The charge-type multiple-bit upsets is considered as that error data are written on the DRAM during refresh cycle of a sense-up circuit and a pre-charge circuit which control the DRAM. (M. Suetake)

  1. Probing Neutrino Mass Hierarchy by Comparing the Charged-Current and Neutral-Current Interaction Rates of Supernova Neutrinos

    CERN Document Server

    Lai, Kwang-Chang; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  2. O (αs2) contributions to charm production in charged-current deep-inelastic lepton-hadron scattering

    International Nuclear Information System (INIS)

    The most important part of the order αs2 corrections to the charm component of the charged-current structure functions F2(x,Q2) and F3(x,Q2) has been calculated. This calculation is based on the asymptotic form of the heavy-quark coefficient functions corresponding to the higher order corrections to the W-boson-gluon fusion process. These coefficient functions, which are in principle only valid for Q2>>m2, can also be used to estimate the order αs2 contributions at lower Q2 values provided x 2 region and they explain the discrepancy found for the structure functions between the fixed-flavour scheme (FFS) and the variable-flavour-number scheme (VFNS). These corrections also hamper the extraction of the strange-quark density from the data obtained for the charged-current and the electromagnetic-current processes. (orig.)

  3. Single-molecule interfacial electron transfer dynamics manipulated by external electric current

    CERN Document Server

    Zhang, Guofeng; Chen, Ruiyun; Gao, Yan; Wang, Xiaobo; Jia, Suotang

    2011-01-01

    Interfacial electron transfer (IET) dynamics in 1,1'-dioctadecyl-3, 3, 3', 3'-tetramethylindodicarbocyanine (DiD) dye molecules / indium tin oxide (ITO) film system have been probed at the ensemble and single-molecule level by recording the change of fluorescence emission intensity. By comparing the difference of the external electric current (EEC) dependence of lifetime and intensity for enambles and single molecules, it is shown that the single-molecule probe can effcienly demonstrate the IET dynamics. The backward electron transfer and electron transfer of ground state induce the single molecules fluorescence quenching when an EEC is applied to ITO film.

  4. Associated single photons and doubly-charged scalars at linear - - colliders

    Indian Academy of Sciences (India)

    Biswarup Mukhopadhyaya; Santosh Kumar Rai

    2007-11-01

    Doubly-charged scalars, predicted in many models having exotic Higgs representations, can in general have lepton-number violating (LFV) couplings. We show that by using an associated monoenergetic final state photon seen at a future linear - - collider, we can have a clear and distinct signature for a doubly-charged resonance. The strength of the = 2 coupling can also be probed quite effectively as a function of the recoil mass of the doubly-charged scalar.

  5. Ab Initio Calculations of Differential Cross Sections for Single Charge Transfer in 3He2++4 He Collisions

    Institute of Scientific and Technical Information of China (English)

    WU Yong; YAN Bing; LIU Ling; WANG Jian-Guo

    2007-01-01

    The single charge transfer process in 3 He2+ + 4He collisions is investigated using the quantum-mechanical molecularorbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6kev and 10keV for the projectile 3He2+. Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.

  6. Beam space charge effects in high-current cyclotron injector CI-5

    International Nuclear Information System (INIS)

    Separated sector cyclotron-injector CI-5 has been studied in the framework of the external injection into phasotron project. The calculations of beam dynamics characteristics of Cyclotron CI-5 for H- beam of 5 MeV energy are presented. Space charge limits (both transverse and longitudinal) have been investigated. Analytical estimations and numerical simulations of particle motion taking into account space charge effects confirm that it is possible to achieve 10 mA in a 5 MeV separated sector H- Cyclotron

  7. Arbitrary mixture of two charged interacting particles in a magnetic Aharonov-Bohm ring: persistent currents and Berry's phases

    International Nuclear Information System (INIS)

    Aharonov-Bohm physics at the two-particle level is investigated for distinguishable interacting charged particles through the exact solution of a toy model with confined states. The effect of the inaccessible magnetic flux is distributed between the center-of-mass and the internal pair level, and the nontrivial manner in which the two levels mutually affect each other demonstrates the interplay between interactions, the nontrivial topology, the Aharonov-Bohm flux and the characteristics of a charged quantal mixture. Analytical expressions for energy spectra, wavefunctions, (flux-dependent) critical interactions for binding and current densities are derived, and these offer the rare possibility of studying persistent currents from the point of view of an interacting nanoscopic system. Two cyclic adiabatic processes are identified, one coupled to the center-of-mass behavior and the other defined on the two-body interaction potential, with the associated Berry's phases also analytically determined; these are found to be directly linked to the electric and probability (persistent) currents in nontrivial ways that are shown to be universal (independent of the actual form of the interaction). The direct connection of the two-body Berry's phase to the electric current for a neutral system is found to disappear in the case of identical particles-hence revealing the character of a charged mixture as being crucial for exhibiting this universal behavior.

  8. Spatially resolved charge-state and current-density distributions at the extraction of an electron cyclotron resonance ion source

    International Nuclear Information System (INIS)

    In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (O = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.

  9. Back-action-induced excitation of electrons in a silicon quantum dot with a single-electron transistor charge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Horibe, Kosuke; Oda, Shunri [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Kodera, Tetsuo, E-mail: kodera.t.ac@m.titech.ac.jp [Quantum Nanoelectronics Research Center, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo 152-8552 (Japan); Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8505 (Japan)

    2015-02-02

    Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved.

  10. Back-action-induced excitation of electrons in a silicon quantum dot with a single-electron transistor charge sensor

    International Nuclear Information System (INIS)

    Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved

  11. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  12. Parametric study of a high current-density EBIS Charge Breeder regarding Two Stream plasma Instability (TSI)

    Science.gov (United States)

    Shornikov, Andrey; Mertzig, Robert; Breitenfeldt, Martin; Lombardi, Alessandra; Wenander, Fredrik; Pikin, Alexander

    2016-06-01

    In this paper we report on our results from the design study of an advanced Electron Beam Ion Source (EBIS) based Charge Breeder (ECB). The ECB should fulfill the requirements of the HIE-ISOLDE upgrade, and if possible be adapted for ion injection into TSR@ISOLDE, as well as serve as an early prototype of a future EURISOL ECB. Fulfilling the HIE-ISOLDE/TSR@ISOLDE specifications requires simultaneous increase in electron beam energy, current and current density in order to provide the requested beams with proper charge state, high intensity and with a specified pulse repetition rate. We have carried out a study on the technical requirements of the ECB. The obtained parameters were optimized to comply with technical limitations arising from the electron beam technology and plasma physics in an ECB.

  13. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    CERN Document Server

    Davies, J; Moch, S; Vermaseren, J A M

    2016-01-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in nu-nubar charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling alpha_s, thus completing the description of unpolarized inclusive W^(+-) exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for nu+nubar charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  14. Positive direct current corona discharges in single wire-duct electrostatic precipitators

    Science.gov (United States)

    Yehia, Ashraf; Abdel-Fattah, E.; Mizuno, Akira

    2016-05-01

    This paper is aimed to study the characteristics of the positive dc corona discharges in single wire-duct electrostatic precipitators. Therefore, the corona discharges were formed inside dry air fed single wire-duct reactor under positive dc voltage at the normal atmospheric conditions. The corona current-voltage characteristics curves have been measured in parallel with the ozone concentration generated inside the reactor under different discharge conditions. The corona current-voltage characteristics curves have agreed with a semi empirical equation derived from the previous studies. The experimental results of the ozone concentration generated inside the reactor were formulated in the form of an empirical equation included the different parameters that were studied experimentally. The obtained equations are valid to expect both the current-voltage characteristics curves and the corresponding ozone concentration that generates with the positive dc corona discharges inside single wire-duct electrostatic precipitators under any operating conditions in the same range of the present study.

  15. Single CdSe/ZnS nanocrystals in an ion trap: charge and mass determination and photophysics evolution with changing mass, charge, and temperature.

    Science.gov (United States)

    Bell, David M; Howder, Collin R; Johnson, Ryan C; Anderson, Scott L

    2014-03-25

    We report measurements of fluorescence intermittency (blinking) and spectral behavior for single semiconductor nanocrystal quantum dots (QDs) isolated in the gas phase and discuss the effects on fluorescence of the QD charge state and heating to the point of sublimation. Core-shell CdSe/ZnS QDs were trapped in a quadrupole ion trap and detected by laser-induced fluorescence. The mass (M) and charge (Q) were determined nondestructively, and both were followed continuously over the course of hours or days. Emission spectra of the trapped QDs are significantly red-shifted relative to the solution-phase emission from the same particles. The temperature of the trapped QDs is determined by the balance between laser heating and collisional cooling and thermal emission, and it is possible to heat the particles to remove ligands or to the point of sublimation. QDs are observed to be emissive during sublimation, for up to 85% mass loss, with emission intensity roughly proportional to the surface area. Eventually, the fluorescence quantum yield drops suddenly, and the QDs begin to blink. The method used is versatile and will allow studies of quantum dot optical properties as a function of size, ligand removal, heating, surface oxidation, and other manipulations, where these properties are continuously correlated with the mass and charge. PMID:24410129

  16. Measurement of the ratio of total and differential cross sections on neutrons and protons for charged-current neutrino events

    Science.gov (United States)

    Armenise, N.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M. T.; Natali, S.; Nuzzo, S.; Romano, F.; Belusevic, R.; Colley, D. C.; Jones, G. T.; O'Neale, S.; Sewell, S. J.; Votruba, M. F.; Bertrand, D.; Moreels, J.; Sacton, J.; Vander Velde-Wilquet, C.; Van Doninck, W.; Wilquet, G.; Brisson, V.; Francois, T.; Petiau, P.; Cooper, A. M.; Guy, J. G.; Michette, A. G.; Tyndel, M.; Venus, W.; Alitti, J.; Baton, J. P.; Gerbier, G.; Iori, M.; Kochowski, C.; Neveu, M.; Azemoon, T.; Bartley, J. H.; Bullock, F. W.; Davis, D. H.; Jones, T. W.; Parker, M. A.; BEBC TST Neutrino Collaboration

    1981-06-01

    Charged-current neutrino interactions have been analysed in a sample of pictures from BEBC equipped with a TST. Using a method independent of both the neutrino flux and nuclear interaction corrections, the ratio R= σn/ σp has been measured. The result is R=1.98±0.19 for the ratio of total cross sections. Bjorken x distributions for proton and neutron targets and for u and d quarks are compared.

  17. Measurement of the ratio of total and differential cross sections on neutrinos and protons for charged-current neutrino events

    International Nuclear Information System (INIS)

    Charged-current neutrino interactions have been analysed in a sample of pictures from BEBC equipped with a TST. Using a method independent of both the neutrino flux and nuclear interaction corrections, the ration R = sigmasub(n)sub(/)sigmasub(p) has been measured. The result is R = 1.98 +- 0.19 for the ratio of total cross sections. Bjorken x distributions for proton and neutron targets and for u and d quarks are compared. (orig.)

  18. Constraints on anomalous charged current couplings, tau neutrino mass and fourth generation mixing from tau leptonic branching fractions

    International Nuclear Information System (INIS)

    We use recent experimental measurements of tau branching fractions to determine the weak charged current magnetic and electric dipole moments of the tau and the Michel parameter η with unprecedented precision. These results are then used to constrain the tau compositeness scale and the allowed parameter space for Higgs doublet models. We also present new constraints on the mass of the tau neutrino and its mixing with a fourth generation neutrino

  19. Charge, current and spin densities of a two-electron system in Russell-Saunders spin-orbit coupled eigenstates

    Science.gov (United States)

    Ayuel, K.; de Châtel, P. F.; Amani, Salah

    2002-04-01

    Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.

  20. Nuclear Effects in Structure Functions xF3(x, Q2) from Charge Current Neutrino Deep Inelastic Scattering

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; SHEN Peng-Nian; LI Guang-Lie

    2006-01-01

    By taking advantage of the model-independent nuclear parton distributions, the structure functions xF3(x, Q2)are calculated, in comparison with the experimental data from CCFR neutrino-nuclei charge current deep inelastic scattering. It is shown that shadowing and anti-shadowing effects occur in valence quark distributions for small and medium x regions, respectively. It is suggested that the neutrino experimental data should be employed in the future for pinning down the nuclear parton distributions.

  1. Current rectification in a single molecule diode: the role of electrode coupling

    OpenAIRE

    Sherif, Siya; Rubio-Bollinger, G.; Pinilla-Cienfuegos, E.; Coronado, E.; Cuevas, J. C.; Agrait, Nicolas

    2015-01-01

    We demonstrate large rectification ratios (> 100) in single-molecule junctions based on a metal-oxide cluster (polyoxometalate), using a scanning tunneling microscope (STM) both at ambient conditions and at low temperature. These rectification ratios are the largest ever observed in a single-molecule junction, and in addition these junctions sustain current densities larger than 10^5 A/cm^2. By following the variation of the I-V characteristics with tip-molecule separation we demonstrate unam...

  2. Coulomb blockage of conductivity in SiOx films due to single electron charging of silicon quantum dot within a chain of electronic states

    International Nuclear Information System (INIS)

    The studies of electrical characteristics of metal-oxide-semiconductor (MOS) structures with silicon nanoparticles embedded in silicon oxide were carried out. The silicon nanocrystals were formed under thermal annealing at temperature 1000 deg C of SiO2 films implanted by Si+ ions. A staircase current-voltage characteristic of a MOS structure with Si nanocrystals in SiO2 film was observed at temperature 77 K. The staircase current-voltage characteristic was well approximated in the frame of model, in which the charge transport takes place via a chain of local states, including a Si nanocrystal. The staircase-like characteristic is supposed to induced by Coulomb blockade of conducting chain of local states due to single-electron charging of the Si nanocrystal. Local states in silicon dioxide are supposed to be connected with surplus of silicon atoms. The availability of local states (charge traps) was verified by measurements of the differential capacitance and conductance in implanted MOS structures as compared to the non-implanted ones

  3. Measurement of the inclusive electron neutrino charged current cross section on carbon with the T2K near detector.

    Science.gov (United States)

    Abe, K; Adam, J; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca Rodríguez, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon Guerra, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J-M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-12-12

    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ∼1  GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged ν(e) charged current cross section on carbon is measured to be ⟨σ⟩(ϕ)=1.11±0.10(stat)±0.18(syst)×10⁻³⁸ cm²/nucleon. The differential and total cross-section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23×10⁻³⁸ cm²/nucleon and the GENIE prediction is 1.08×10⁻³⁸ cm²/nucleon. The total ν(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment. PMID:25541766

  4. Charge-odd and single-spin effects in two-pion production in e p collisions

    CERN Document Server

    Galynsky, M V; Ratcliffe, P G; Shaikhatdenov, B G

    2000-01-01

    We consider double-photon and bremsstrahlung mechanisms for the production oftwo charged pions in high-energy electron (or proton) scattering off atransversely polarised proton. Interference between the relevant amplitudesgenerates a charge-odd contribution to the cross-section for the process. Inthe kinematical configuration with a jet nearly collinear to the electron, thespin-independent part may be used to the determine phase differences forpion-pion scattering in states with orbital momentum 0 or 2 and 1, while forthe configuration with a jet nearly collinear to the proton, the spin-dependentpart may be used to explain the experimental data for single-spin correlationsin the production of negatively charged pions. We also discuss the backgroundsand estimate the accuracy of the results to be better than 10 In addition,simplified formulae derived for specific kinematics, with small totaltransverse pion momenta, are given. The accuracy is estimated to remain at thesame level despite the lower energy.

  5. Precision measurement of the cross section of charged-current and neutral current processes at large Q2 at HERA with the polarized-electron beam

    International Nuclear Information System (INIS)

    The inclusive cross sections for both charged and neutral current processes have been measured in interactions of longitudinally polarized electrons (positrons) with unpolarized protons using the full data samples collected by H1 at HERA-II. The data taken at a center-of-mass energy of 319 GeV correspond to an integrated luminosity of 149.1 pb-1 and 180.0 pb-1 for e-p and e+p collisions, representing an increase in statistics of a factor of 10 and 2, respectively, over the data from HERA-I. The measured double differential cross sections d2σ/dxdQ2 cover more than two orders of magnitude in both Q2, the negative four-momentum transfer squared, up to 30000 GeV2, and Bjorken x, down to 0.003. The cross section data are compared to predictions of the Standard Model which is able to provide a good description of the data. The polarization asymmetry as a function of Q2 is measured with improved precision, confirming the previous observation of P violation effect in neutral current ep scattering at distances down to 10-18 m. The total cross sections of the charged current process, for Q2 > 400 GeV2 and inelasticity y ± beams and different polarization values. Together with the corresponding cross section obtained from the previously published unpolarized data, the polarization dependence of the charged current cross section is measured and found to be in agreement with the Standard Model prediction with the absence of right-handed charged current. The cross sections are combined with previously published data from H1 to obtain the most precise unpolarized measurements. These are used to extract the structure function xF3γZ which is sensitive to the valence quark distributions down to low x values. The new cross sections have also been used in a combined electroweak and QCD fit to significantly improve the light quark couplings to the Z-boson than those obtained based on the HERA-I data alone. (orig.)

  6. Current-voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution.

    Science.gov (United States)

    Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke

    2012-01-01

    We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group. PMID:23365792

  7. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Science.gov (United States)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  8. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  9. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    International Nuclear Information System (INIS)

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers

  10. POTENTIAL, ELECTRIC FIELD AND SURFACE CHARGES CLOSE TO THE BATTERY FOR A RESISTIVE CYLINDRICAL SHELL CARRYING A STEADY LONGITUDINAL CURRENT

    OpenAIRE

    Hernandes, J. A.; E. Capelas De Oliveira; Assis, A. K. T.

    2004-01-01

    In this work we consider a long, resistive cylindrical shell carrying a steady current. A battery in the middle of the wire generates the current. We study the behavior of the potential, electric field and surface charges close to the batteryEn este trabajo consideramos una capa resistiva cilíndrica que transporta una corriente constante. Una batería genera la corriente en el centro del conductor. Estudiamos el comportamiento del potencial, campo eléctrico y cargas superficiales cerca de la b...

  11. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q2 above 400GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ2 are presented. From the Q2 dependence of the CC cross section, the mass term in the CC propagator is determined to be MW=76±16±13 GeV

  12. Realization of Constant-Current Mode for a Contactless Battery Charging System

    OpenAIRE

    Yue Sun; Zheng-You He; Yan-Ling Li; Xin Dai

    2013-01-01

    For a contactless battery charging system based on inductively coupled power transfer technology, a generalized state-space averaging method is first introduced, which can convert the original system with the oscillating and nonlinear characteristics to a linear time-invariant system by using the low-order Fourier series to approximate the original circuit signals and nonlinear terms and then the performance weighting functions for multi-objective optimization are adjusted and chosen in the f...

  13. Optimum Torque/Current Control of Dual-PMSM Single-VSI Drive

    OpenAIRE

    Andrea Del Pizzo; Diego Iannuzzi; Ivan Spina

    2010-01-01

    The paper deals with isotropic PM-brushless drives in configuration “single-inverter, dual-motor” operating with unbalanced load-torques. An innovative control algorithm is presented. It is suitable to minimize the resultant armature current needed to obtain an assigned resultant motor torque, whatever is the load unbalance. Simplified analytical expressions are given in order to quickly evaluate optimized reference currents with good approximation. From these reference values, a predictive f...

  14. Current Control of the Single-Phase Full-Bridge Power Inverter

    OpenAIRE

    Marian Gaiceanu; Razvan Buhosu; Gelu Gurguiatu; Ciprian Daniel Balanuta

    2014-01-01

    This paper shows the Matlab/Simulink implementation of the current control in a single phase full-bridge power inverter. In order to increase the performances of the power inverter an LC filter is connected at the input. Mathematical modelling of the power inverter is based on the switching functions. Unipolar asymmetric PWM modulation method, and hysteresis current control will be analyzed for a connected RL load to power inverter output. Simulation results based on the ...

  15. Charge transmission through a molecular wire: the role of terminal sites for the current-voltage behavior.

    Science.gov (United States)

    Petrov, E G; Zelinskyy, Ya R; May, V; Hänggi, P

    2007-08-28

    The current-voltage and the conductance-voltage characteristics are analyzed for a particular type of molecular wire embedded between two electrodes. The wire is characterized by internal molecular units where the lowest occupied molecular orbital (LUMO) levels are positioned much above the Fermi energy of the electrodes, as well as above the LUMO levels of the terminal wire units. The latter act as specific intermediate donor and acceptor sites which in turn control the current formation via the superexchange and sequential electron transfer mechanisms. According to the chosen wire structure, intramolecular multiphonon processes may block the superexchange component of the interelectrode current, resulting in a negative differential resistance of the molecular wire. A pronounced current rectification appears if (i) the superexchange component dominates the electron transfer between the terminal sites and if (ii) the multiphonon suppression of distant superexchange charge hopping events between those sites is nonsymmetric. PMID:17764286

  16. Correlation of charge extraction properties and short circuit current in various organic binary and ternary blend photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, T.B.; Chen, Xiwen; Ehlig, Tino; Kemppinen, Peter; Chen, Ming; Watkins, Scott E.; Winzenberg, Kevin N. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton South, Victoria (Australia); Wong, Wallace W.H.; Jones, David J. [University of Melbourne, School of Chemistry, Bio21 Institute, Parkville, Victoria (Australia); Holdcroft, Steven [Simon Fraser University, Dept. of Chemistry, Burnaby, British Columbia (Canada); Holmes, Andrew B. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton South, Victoria (Australia); University of Melbourne, School of Chemistry, Bio21 Institute, Parkville, Victoria (Australia)

    2012-09-15

    Charge extraction properties of various binary and ternary blends of organic photovoltaic devices covering both polymers and small molecules are studied. Due to their bipolar nature, both slow and fast carrier mobilities are identified from the extraction current transient. The equilibrium carrier concentration is also estimated for each of the blend films. The product of the slow carrier mobility and equilibrium concentration spreading two orders of magnitude can be used to estimate the short circuit current density. A good agreement between the estimated and measured short circuit current density is obtained with the accuracy reliant on the estimation of the slowest carrier mobility. This simplistic approach will be very useful to predict the short circuit current density for devices based on new materials. (orig.)

  17. Explicitly correlated wave functions for atoms and singly charged ions from Li through Sr: Variational and Diffusion Monte Carlo results

    Science.gov (United States)

    Buendía, E.; Gálvez, F. J.; Maldonado, P.; Sarsa, A.

    2014-11-01

    Total energies calculated from explicitly correlated wave functions for the ground state of the atoms Li to Sr and their singly charged anions and cations are obtained. Accurate all electron, non-relativistic Variational and Diffusion Monte Carlo energies are reported. The quality of the results, when comparing with exact estimations and experimental electron affinities and ionization potential is similar for all of the atoms studied. The parameterization of the explicitly correlated wave functions for all of the atomic systems studied is provided.

  18. Detection of a Single Genetically Modified Bacterial Cell in Soil by Using Charge Coupled Device-Enhanced Microscopy

    OpenAIRE

    Silcock, Deborah J.; Waterhouse, Rosemary N.; Glover, L. Anne; Prosser, James I.; Killham, Kenneth

    1992-01-01

    Genes encoding bioluminescence from Vibrio harveyi were cloned into Pseudomonas syringae pv. phaseoli-cola, resulting in high levels of bioluminescence. After inoculation of sterile and nonsterile soil slurries with bioluminescent P. syringae, cells could not be identified by conventional light microscopy. However, when we used charge coupled device-enhanced microscopy, bioluminescent single cells were detected easily in dark fields despite masking by soil particulate matter, and in addition,...

  19. Efficient algorithm for current spectral density calculation in single-electron tunneling and hopping

    OpenAIRE

    Sverdlov, Viktor A.; Kinkhabwala, Yusuf A.; Korotkov, Alexander N.

    2005-01-01

    This write-up describes an efficient numerical method for the Monte Carlo calculation of the spectral density of current in the multi-junction single-electron devices and hopping structures. In future we plan to expand this write-up into a full-size paper.

  20. Measurement of the numu Charged Current pi+ to Quasi-Elastic Cross Section Ratio on Mineral Oil in a 0.8 GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Steven K.; /Yale U.

    2011-01-01

    Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub {nu}} < 2.4 GeV. With more than 46,000 CC{pi}{sup +} events collected in MiniBooNE, and with a fractional uncertainty of roughly 11% in the region of highest statistics, this measurement represents a dramatic improvement in statistics and precision over previous CC{pi}{sup +} and CCQE measurements.

  1. Measurement of high-Q{sup 2} charged current cross sections in e{sup +}p deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Rautenberg, J.

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e{sup +}p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb{sup -1}. Single differential cross sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy have been measured for Q{sup 2}>200 GeV{sup 2}, as well as the double differential reduced cross section d{sup 2}{sigma}/dxdQ{sup 2} in the kinematic range 280 GeV{sup 2}charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to d{sigma}/dQ{sup 2}. (orig.)

  2. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Grinner, F. J.; Schroeder, C. B.; Maier, A. R.; Becker, S.; Mikhailova, J. M.

    2009-02-11

    Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron-laser (FEL). Significant reduction in size of the FEL is facilitated by the expected ultra-high peak beam currents (10-100 kA) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultra-compact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution), which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  3. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    OpenAIRE

    Westerhof E.; Pratt J.; Ayten B.

    2015-01-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm’s law of single fluid magnetohydrodynamics (MHD) is modified as E + v × B = η(J – JECCD). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm’s law. The new relation faithfully represents the nonlocal character of the EC driven current and its main origin in the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an approximated Fokke...

  4. Closure of the single fluid magnetohydrodynamic equations in presence of electron cyclotron current drive

    Science.gov (United States)

    Westerhof, E.; Pratt, J.; Ayten, B.

    2015-03-01

    In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics (MHD) is modified as E + v × B = η(J - JECCD). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfully represents the nonlocal character of the EC driven current and its main origin in the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an approximated Fokker-Planck equation as well as on full bounce-averaged, quasi-linear Fokker-Planck code simulations of ECCD inside rotating magnetic islands.

  5. Trapping effects and acoustoelectric current saturation in ZnO single crystals

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    1970-01-01

    Measurements of current-voltage characteristics for ZnO single crystals at temperatures between 77 and 640 °K are reported. Because of the buildup of an intense acoustic flux, a strong current saturation sets in when the trap-controlled electron drift velocity is equal to the velocity of sound....... The temperature dependence of the saturated current is discussed in terms of a trapping model which includes nonlinear trapping effects. Our results indicate the presence of a shallow-donor level with an ionization energy of 50 meV and a deep-donor level approximately 230 meV below the conduction-band edge...

  6. A study on conformational changes by electron charges in viologen single molecules by using STM

    International Nuclear Information System (INIS)

    The topography of self-assembled viologen derivatives (VC8SH, VC10SH, HSC8VC8SH, and HSC10VC10SH) molecules on an octanethiol (C8) self-assembled monolayer (SAM) modified gold surface was measured using ultrahigh-vacuum scanning tunneling microscopy (UHV-STM). We demonstrate here a novel matrix SAM appropriate for isolation of the viologen molecules. The C8 was used for a matrix SAM, in which the VC8SH, VC10SH, HSC8VC8SH, and HSC10VC10SH were inserted at molecular lattice defects. The isolated single molecules of viologen derivatives inserted in the matrix SAM were observed as protrusions in STM topography using a constant current mode. We measured the topographic heights (VC8SH: 1.53 nm, VC10SH: 2.01 nm, HSC8VC8SH: 2.71 nm, and HSC10VC10SH: 3.3 nm) of the molecular protrusions using STM. Also, changes in the central axis of viologen molecules were observed as VC8SH (0.5-0.73 nm), VC10SH (0.4-0.74 nm), HSC8VC8SH (0.67-0.84 nm), and HSC10VC10SH (0.67-0.99 nm), respectively

  7. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  8. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions. PMID:27004879

  9. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    Science.gov (United States)

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures. PMID:27357533

  10. LHC bounds on lepton number violation mediated by doubly and singly-charged scalars

    International Nuclear Information System (INIS)

    The only possible doubly-charged scalar decays into two Standard Model particles are into pairs of same-sign charged leptons, H±±→l±l±,l=e,μ,τ, or gauge bosons, H±±→W±W±; being necessary the observation of both to assert the violation of lepton number. However, present ATLAS and CMS limits on doubly-charged scalar production are obtained under specific assumptions on its branching fractions into dileptons only. Although they can be extended to include decays into dibosons and lepton number violating processes. Moreover, the production rates also depend on the type of electroweak multiplet H±± belongs to. We classify the possible alternatives and provide the Feynman rules and codes for generating the corresponding signals for pair and associated doubly-charged scalar production, including the leading contribution from the s-channel exchange of electroweak gauge bosons as well as the vector-boson fusion corrections. Then, using the same analysis criteria as the LHC collaborations we estimate the limits on the H±± mass as a function of the electroweak multiplet it belongs to, and obtain the bounds on the lepton number violating processes pp→H±±H∓∓→ℓ±ℓ±W∓W∓ and pp→H±±H∓→ℓ±ℓ±W∓Z, ℓ=e,μ, implied by the ATLAS and CMS doubly-charged scalar searches

  11. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures.

    Science.gov (United States)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-12

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}. PMID:27563980

  12. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    Science.gov (United States)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.

  13. Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk

    International Nuclear Information System (INIS)

    In microwaves, a TE-polarized rectangular-waveguide resonator with an inserted thin ferrite disk gives an example of a nonintegrable system. The interplay of reflection and transmission at the disk interfaces together with the material gyrotropy effect gives rise to whirlpool-like electromagnetic vortices in the proximity of the ferromagnetic resonance. Based on numerical simulation, we show that a character of microwave vortices in a cavity can be analyzed by means of consideration of equivalent magnetic currents. Maxwell equations allows introduction of a magnetic current as a source of the electromagnetic field. Specifically, we found that in such nonintegrable structures, magnetic gyrotropy and geometrical factors leads to the effect of symmetry breaking resulting in effective chiral magnetic currents and topological magnetic charges. As an intriguing fact, one can observe precessing behavior of the electric-dipole polarization inside a ferrite disk

  14. Generation of reference dc currents at 1 nA level with the capacitance-charging method

    CERN Document Server

    Callegaro, Luca; D'Elia, Vincenzo; Galliana, Flavio

    2013-01-01

    The capacitance-charging method is a well-established and handy technique for the generation of dc current in the 100 pA range or lower. The method involves a capacitance standard and a sampling voltmeter, highly stable devices easy to calibrate, and it is robust and insensitive to the voltage burden of the instrument being calibrated. We propose here a range extender amplifier, which can be employed as a plug-in component in existing calibration setups, and allows the generation of currents in the 1 nA range. The extender has been employed in the INRIM setup and validated with two comparisons at 100 pA and 1 nA current level. The calibration accuracy achieved on a top-class instrument is 10 ppm at 1 nA.

  15. Charge transfer on porous silicon membranes studied by current-sensing atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Bing Xia; Qiang Miao; Jie Chao; Shou Jun Xiao; Hai Tao Wang; Zhong Dang Xiao

    2008-01-01

    A visible rectification effect on the current-voltage curves of metal/porous silicon/p-silicon has been observed by currentsensing atomic force microscopy.The current-voltage curves of porous silicon membranes with different porosities,prepared through variation of etching current density for a constant time,indicate that a higher porosity results in a higher resistance and thus a lower rectification,until the current reaches a threshold at a porosity>55%.We propose that the conductance mode in the porous silicon membrane with porosities>55% is mainly a hopping mechanism between nano-crystallites and an inverse static electric field between the porous silicon and p-Si interface blocks the electron injection from porous silicon to p-Si,but with porosities <55%,electron flows through a direct continuous channel between nano-crystallites.

  16. The drift-diffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level

    Science.gov (United States)

    Cvikl, B.

    2010-01-01

    The closed solution for the internal electric field and the total charge density derived in the drift-diffusion approximation for the model of a single layer organic semiconductor structure characterized by the bulk shallow single trap-charge energy level is presented. The solutions for two examples of electric field boundary conditions are tested on room temperature current density-voltage data of the electron conducting aluminum/tris(8-hydroxyquinoline aluminum/calcium structure [W. Brütting et al., Synth. Met. 122, 99 (2001)] for which jexp∝Va3.4, within the interval of bias 0.4 V≤Va≤7. In each case investigated the apparent electron mobility determined at given bias is distributed within a given, finite interval of values. The bias dependence of the logarithm of their lower limit, i.e., their minimum values, is found to be in each case, to a good approximation, proportional to the square root of the applied electric field. On account of the bias dependence as incorporated in the minimum value of the apparent electron mobility the spatial distribution of the organic bulk electric field as well as the total charge density turn out to be bias independent. The first case investigated is based on the boundary condition of zero electric field at the electron injection interface. It is shown that for minimum valued apparent mobilities, the strong but finite accumulation of electrons close to the anode is obtained, which characterize the inverted space charge limited current (SCLC) effect. The second example refers to the internal electric field allowing for self-adjustment of its boundary values. The total electron charge density is than found typically to be of U shape, which may, depending on the parameters, peak at both or at either Alq3 boundary. It is this example in which the proper SCLC effect is consequently predicted. In each of the above two cases, the calculations predict the minimum values of the electron apparent mobility, which substantially

  17. Production of a single new charged heavy lepton in DELPHI/LEP

    CERN Document Server

    Do Vale, M A B; De Paula, L S

    1999-01-01

    The search for a new charged heavy lepton predicted by some extended models is presented. The data used were collected by the detector DELPHI/LEP at 1994 operating with a center of mass energy near the Z /sup 0/ mass and correspond to a total luminosity of 40 pb/sup -1/. (1 refs).

  18. Transition from ultrafast laser photo-electron emission to space-charge-limited current in a 1D gap

    International Nuclear Information System (INIS)

    A one-dimensional (1D) model has been constructed to study the transition of the time-dependent ultrafast laser photo-electron emission from a flat metallic surface to the space-charge-limited (SCL) current, including the effect of non-equilibrium laser heating on metals at the ultrafast time scale. At high laser field, it is found that the space charge (SC) effect cannot be ignored and the SCL current emission is reached at a lower value predicted by a short-pulse SCL current model that has assumed a time-independent emission process. The threshold of the laser field to reach the SCL regime is determined over a wide range of operating parameters. The calculated results agree well with particle-in-cell simulation results. It is found that the SC effect is more important for materials with lower work function like tungsten (4.4 eV) as compared with gold (5.4 eV). However, for a flat surface, both materials will reach the SC limited regime at sufficient high laser field such as >5 GV m−1 with a laser pulse length of 10 s to 100 fs. (paper)

  19. Order $\\alpha_{s}^{2}$ Contributions to charm production in charged-current deep-inelastic lepton-hadron scattering

    CERN Document Server

    Buza, M

    1997-01-01

    The most important part of the order $\\alpha_s^2$ corrections to the charm component of the charged-current structure functions $F_2(x,Q^2)$ and $F_3(x,Q^2)$ have been calculated. This calculation is based on the asymptotic form of the heavy-quark coefficient functions corresponding to the higher order corrections to the W-boson-gluon fusion process. These coefficient functions which are in principle only valid for $Q^2 \\gg m^2$ can be also used to estimate the order $\\alpha_s^2$ contributions at lower $Q^2$ values provided $x < 0.1$. It turns out that the above corrections are appreciable in the large $Q^2$-region and they explain the discrepancy found for the structure functions between the fixed-flavour scheme (FFS) and the variable-flavour-number scheme (VFNS). These corrections also hamper the extraction of the strange-quark density from the data obtained for the charged-current and the electromagnetic-current processes.

  20. Microwave testing of high-Tc based direct current to a single flux quantum converter

    DEFF Research Database (Denmark)

    Kaplunenko, V. K.; Fischer, Gerd Michael; Ivanov, Z. G.;

    1994-01-01

    Design, simulation, and experimental investigations of a direct current to a single flux quantum converter loaded with a Josephson transmission line and driven by an external 70 GHz microwave oscillator are reported. The test circuit includes nine YBaCuO Josephson junctions aligned on the grain...... boundary of a 0°–32° asymmetric Y-ZrO2 bicrystal substrate. The performance of such converters is important for the development of the fast Josephson samplers required for testing of high-Tc rapid single flux quantum circuits in high-speed digital superconducting electronics. Journal of Applied Physics is...