WorldWideScience

Sample records for charged current interactions

  1. Charged current weak interaction of polarized muons

    International Nuclear Information System (INIS)

    The polarization of the muon beam can be used to test the presence of right-handed couplings in charged current interaction of muons in process μ+N->#betta#+X. The experimental feasibility and the limits which can be obtained on the mass of right-handed intermediate boson are discussed. (orig.)

  2. Measurement of charm production in neutrino charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A

    2011-01-01

    The nuclear emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy from 1994 to 1997. In total about 100000 charged-current neutrino interactions with at least one identified muon were located in the emulsion target and fully reconstructed, using newly developed automated scanning systems. Charmed particles were searched for by a program recognizing particle decays. The observation of the decay in nuclear emulsion makes it possible to select a sample with very low background and minimal kinematical bias. 2013 charged-current interactions with a charmed hadron candidate in the final state were selected and confirmed through visual inspection. The charm production rate induced by neutrinos relative to the charged-current cross-section is measured to be $\\sigma(\

  3. Direct Neutrino Mass Experiments and Exotic Charged Current Interactions

    CERN Document Server

    Ludl, Patrick Otto

    2016-01-01

    We study the effect of exotic charged current interactions on the electron energy spectrum in tritium decay, focussing on the KATRIN experiment and a possible modified setup that has access to the full spectrum. Both sub-eV and keV neutrino masses are considered. We perform a fully relativistic calculation and take all possible new interactions into account, demonstrating the possible sizable distortions in the energy spectrum.

  4. Measurement of D*+ production in charged-current neutrino interactions

    International Nuclear Information System (INIS)

    During the years 1994-1997, the emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy. In total about 100-bar 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. A high-statistics sample of neutrino interactions with a D0 in the final state was collected. Using the decay mode D*+->D0π+ a production cross-section measurement of the D*+ in neutrino-nucleon charged-current interactions was performed. The low Q-value of the decay was used to isolate a sample of candidate events containing a positive hadron with a small pT with respect to the D0 direction. A signal of 22.1+/-5.5D*+ events was obtained. The D*+ production cross-section relative to the D0 production cross-section, σ(D*+)/σ(D0), was estimated to be 0.38+/-0.09(stat)+/-0.05(syst). From this result, the fraction of D0's produced via the decay of a D* was deduced to be 0.63+/-0.17. The D*+ production cross-section relative to the νμ charged-current interaction, σ(D*+)/σ(CC), was estimated to be [1.02+/-0.25(stat)+/-0.15(syst)]%

  5. Charged Current Neutrino Nucleus Interactions at Intermediate Energies

    CERN Document Server

    Leitner, T; Mosel, U

    2006-01-01

    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei, focusing on the region of the quasielastic and Delta(1232) peaks. We describe neutrino nucleon collisions with a fully relativistic formalism which incorporates state-of-the-art parametrizations of the form factors for both the nucleon and the N-Delta transition. The model has then been extended to finite nuclei, taking into account nuclear effects such as Fermi motion, Pauli blocking (both within the local density approximation), nuclear binding and final state interactions. The in-medium modification of the Delta resonance due to Pauli blocking and collisional broadening have also been included. Final state interactions are implemented by means of the Boltzmann-Uehling-Uhlenbeck (BUU) coupled-channel transport model. Results for charged current inclusive cross sections and exclusive channels as pion production and nucleon knockout are presented and discussed.

  6. Measurement of $D^{*+}$ production in charged-current neutrino interactions

    CERN Document Server

    Önengüt, G; De Jong, M; Oldeman, R G C; Güler, M; Köse, U; Tolun, P; Catanesi, M G; Muciaccia, M T; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Goldberg, J; Hristova, I R; Kawamura, T; Kolev, D; Kayis-Topaksu, A; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R V; Zucchelli, P; Uiterwijk, J W E; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Hara, T; Aoki, S; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Bruski, N; Frekers, D; Tsukerman, I; Shamanov, V V; Khovanskii, V D; Gorbunov, P; Artamonov, A V; Sato, Y; Tezuka, I; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Okusawa, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Scotto-Lavina, L; Strolin, P; Tioukov, V

    2005-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. A high-statistics sample of neutrino interactions with a D^0 in the final state was collected. Using the decay mode D*^+ -> D ^0 \\pi+ a production cross-section measurement of the D*^+ in neutrino-nucleon charged-current interactions was performed. The low Q-value of the decay was used to isolate a sample of candidate events containing a positive hadron with a small p_T with respect to the D^0 direction. A signal of 22.1 +- 5.5 D*^+ events was obtained. The D*^+ production cross-section relative to the D^0 production cross-section, \\sigma(D*^+) / \\sigma(D^0), was estimated to be 0.38 +- 0.09(stat) +- 0.05(syst). From this result, the fraction of D^0’s produced via the decay of a D* was deduced to be 0.63 +- 0.17. The D*...

  7. Measurement of charm production in antineutrino charged-current interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS collecting about 10^6 neutrino interactions. A measurement of nubar_mu-induced charm production is performed by usingthe presence of a 5% nubarmu component in the nu_mu beam. The measurement takes advantage of the capability to observe the decay topology in the emulsion. The analysis is based on a sample of charged-current interactions with at least one identified muon. About 100 000 vere located in the emulsion target and fully reconstructed. By requiring a positive muon charge as determined by the CHORUS spectrometer, 32-nubar_mu induced charm events were observed with an estimated background of 3.2 events. At an average antineutrino energy in the neutrino beam of 18GeV, the charm production rate induced by anitneutrinos is measured to be sigma(nubar_muN -> mu+cbarX)/sigma(nubar_muN -> mu+X) = (5.0^+1.4_-0.9(stat) +- 0.7(syst))%. The ratio between neutral and charged charm productio...

  8. Sensitivities to charged-current nonstandard neutrino interactions at DUNE

    CERN Document Server

    Bakhti, Pouya

    2016-01-01

    We investigate the effects of charged-current nonstandard neutrino interactions (NSIs) at the source and at the detector in the simulated data for the planned Deep Underground Neutrino Experiment (DUNE), while neglecting the neutral-current NSIs at the propagation. We study the effects of NSIs on the simultaneous measurements of $\\theta_{23}$ and $ \\delta _{CP} $ in the DUNE. The analysis reveals that 3$\\sigma $ C.L. measurement of the correct octant of $\\theta _{23}$ in the standard mixing scenario is spoiled if NSIs are taken into account. Likewise, the NSIs can deteriorate the uncertainty of the $\\delta _{CP}$ measurement by a factor of two relative to that in the standard oscillation scenario. We further show that the source and the detector NSIs can induce a significant amount of fake CP-violation and the no fake CP-violation case can be excluded by more than 99\\% C.L. We also find the potential of DUNE to constrain the relevant charged-current NSI parameters from the single parameter fits for both neutr...

  9. Measurement of charm production in neutrino charged-current interactions

    International Nuclear Information System (INIS)

    The nuclear emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy from 1994 to 1997. In total, about 100 000 charged-current (CC) neutrino interactions with at least one identified muon were located in the emulsion target and fully reconstructed, using newly developed automated scanning systems. Charmed particles were searched for by a program recognizing particle decays. The observation of the decay in nuclear emulsion makes it possible to select a sample with very low background and minimal kinematical bias. In all, 2013 CC interactions with a charmed hadron candidate in the final state were selected and confirmed through visual inspection. The charm production rate induced by neutrinos relative to the CC cross-section is measured to be σ(νμN→μ-CX)/σ(CC)=(5.75 ± 0.32(stat)±0.30(syst))%. The charm production cross-section as a function of neutrino energy is also obtained. The results are in good agreement with previous measurements. The charm-quark hadronization produces the following charmed hadrons with relative fractions (in %): fD0=43.7±4.5, fΛc+=19.2±4.2, fD+=25.3±4.2 and fDs+=11.8±4.7.

  10. Charged current neutrino interactions below 30 GeV

    International Nuclear Information System (INIS)

    Charged current data of spark chamber neutrino experiment at 70 GeV Serpukhov accelerator (10200 events in ν beam and 3600 events in anti ν beam with energies up to 30 GeV) have been analyzed. Total neutrino and antineutrino cross sections and v-distributions are obtained

  11. Charged current neutrino and antineutrino interactions in hydrogen and deuterium

    International Nuclear Information System (INIS)

    In this dissertation results are presented of two different (anti-)neutrino experiments with the Big European Bubble Chamber (BEBC) filled with hydrogen and deuterium successively and exposed to the wide band (anti-)neutrino beam at the SPS at CERN. Chapter 1 contains the description of the experimental set-up and in chapter 2 results of the experiment with BEBC filled with deuterium and exposed to the antineutrino beam are presented. The multiplicity distributions of the charged hadron shower produced in (anti-)neutrino interactions with protons and neutrons are studied and compared with the results from hadron-hadron experiments. In chapter 3 a study of the exclusive reaction γp→μ-pπ+ is presented, data being obtained from an exposure of BEBC filled with hydrogen to the wide band neutrino beam. The absolute cross-section of the dominant subchannel γp→μ-Δ++(1232) averaged over an energy range of Esub(γ) = 20-200 GeV is measured to be sigma = (0.59 +- 0.06) . 10-38 cm2. This value is in good agreement with the results of other experiments. The differential cross-section dsigma/dQ2, the Δ++ decay angular distributions and the density matrix elements are determined. The value of the axial mass determined using the Schreiner-Von Hippel parametrization of the Adler model by fitting the total cross-section is Msub(A) = 0.85 +- 0.10 GeV/c2. (Auth.)

  12. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    CERN Document Server

    jima, Y Naka; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8~GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  13. Bose-Einstein Correlations in charged current muon-neutrino interactions in NOMAD

    CERN Document Server

    Zei, R

    2004-01-01

    Bose-Einstein Correlations in one and two dimensions have been studied in charged current muon-neutrino interaction events collected with NOMAD. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov parametrizations. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal sizes is observed.

  14. Characterization of Final State Interaction Strength in Plastic Scintillator by Muon-Neutrino Charged Current Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Eberly, Brandon M. [Univ. of Pittsburgh, PA (United States)

    2014-01-01

    Precise knowledge of neutrino-nucleus interactions is increasingly important as neutrino oscillation measurements transition into the systematics-limited era. In addition to modifying the initial interaction, the nuclear medium can scatter and absorb the interaction by-products through final state interactions, changing the types and kinematic distributions of particles seen by the detector. Recent neutrino pion production data from MiniBooNE is inconsistent with the final state interaction strength predicted by models and theoretical calculations, and some models fit best to the MiniBooNE data only after removing final state interactions entirely. This thesis presents a measurement of dσ/dTπ and dσ/dθπ for muon-neutrino charged current charged pion production in the MINER A scintillator tracker. MINER A is a neutrino-nucleus scattering experiment installed in the few-GeV NuMI beam line at Fermilab. The analysis is limited to neutrino energies between 1.5-10 GeV. Dependence on invariant hadronic mass W is studied through two versions of the analysis that impose the limits W < 1.4 GeV and W < 1.8 GeV. The lower limit on W increases compatibility with the MiniBooNE pion data. The shapes of the differential cross sections, which depend strongly on the nature of final state interactions, are compared to Monte Carlo and theoretical predictions. It is shown that the measurements presented in this thesis favor models that contain final state interactions. Additionally, a variety of neutrino-nucleus interaction models are shown to successfully reproduce the thesis measurements, while simultaneously failing to describe the shape of the MiniBooNE data.

  15. Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS

    CERN Document Server

    Bernardini, P; Bozza, C; Brugnera, R; Cecchetti, A; Cecchini, S; Collazuol, G; Corso, F Dal; De Mitri, I; De Serio, M; Di Ferdinando, D; Dore, U; Dusini, S; Fabbricatore, P; Fanin, C; Fini, R A; Garfagnini, A; Grella, G; Kose, U; Laveder, M; Loverre, P; Longhin, A; Marsella, G; Mancarella, G; Mandrioli, G; Mauri, N; Medinaceli, E; Mezzetto, M; Muciaccia, M T; Orecchini, D; Paoloni, A; Pastore, A; Patrizii, L; Pozzato, M; Rescigno, R; Rosa, G; Simone, S; Sioli, M; Sirri, G; Spurio, M; Stanco, L; Stellacci, S; Surdo, A; Tenti, M; Togo, V

    2011-01-01

    Tensions in several phenomenological models grew with experimental results on neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent, carefully recomputed, antineutrino fluxes from nuclear reactors. At a refurbished SBL CERN-PS facility an experiment aimed to address the open issues has been proposed [1], based on the technology of imaging in ultra-pure cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of the physics case was performed. We tackled specific physics models and we optimized the neutrino beam through a full simulation. Experimental aspects not fully covered by the LAr detection, i.e. the measurements of the lepton charge on event-by-event basis and their energy over a wide range, were also investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino interactions play an important role in disentangling different phenomenological scenarios provided their charge state is determined. Also, the study of muon appearance/disappearance ca...

  16. Inclusive vector meson production in nuµD charged current interactions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. C.; Mann, W. A.; Napier, A.

    1980-01-01

    From hadronic systems induced in 3571 charged-current neutrino-deuterium interactions in the FNAL 15-foot diameter bubble chamber, invariant mass distributions (..pi../sup +/..pi../sup -/) and (K/sub s//sup 0/..pi../sup + -/) have been used to study inclusive production of vector meson resonances. Inclusive rates from a pure isoscalar target are determined to be 0.05 +- 0.01 K*/sup +/(890) per charged-current event and 0.19 +- 0.04 rho/sup 0/ per charged-current event. Inclusive K*(890)/sup + -/ production is found to be predominantly K*/sup +/(890) in the current fragmentation region. The ratios (rho/sup 0//event) from neutron targets and from proton targets separately are, respectively, 0.18 +- 0.06 and 0.21 +- 0.08. For deuteron targets, trends in the dependence of (rho/sup 0//event) on variables Y/sub R/, W, p/sub T/, and Q/sup 2/ are found to be similar to those observed in rho/sup 0/ production from anti ..nu../sub ..mu../p collisions.

  17. A Measurement of the charged-current interaction cross section of the tau neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Maher, Emily O' Connor; /Minnesota U.

    2005-01-01

    The Fermilab experiment E872 (DONUT) was designed to make the first observation of the tau neutrino charged-current interaction. Using a hybrid emulsion-spectrometer detector, the tau lepton was identified by its single-prong or trident decay. Six interactions were observed, of which five were in the deep inelastic scattering region. These five interaction were used to measure the charged-current cross section of the tau neutrino. To minimize uncertainties, the tau neutrino cross section was measured relative to the electron neutrino cross section. The result {sigma}{sub {nu}{sub {tau}}N}{sup const}/{sigma}{sub {nu}{sub e}N}{sup const} = 0.77 {+-} 0.39 is consistent with 1.0, which is predicted by lepton universality. The tau neutrino cross section was also measured for 115 GeV neutrinos, which was the average energy of the interacted tau neutrinos. The result {sigma}{sub {nu}{sub {tau}}N}{sup exp} = 45 {+-} 21 x 10{sup -38} cm{sup 2} is consistent with the standard model prediction calculated in this thesis, {sigma}{sub {tau}N}{sup SM} = 48 {+-} 5 x 10{sup -38} cm{sup 2}.

  18. Neutral strange particle production in neutrino and antineutrino charged-current interactions on neon

    International Nuclear Information System (INIS)

    A study has been made of neutral strange particle production in νμNe and bar νμNe charged-current interactions at a higher energy than any previous study. The experiment was done at the Fermilab Tevatron using the 15-ft. bubble chamber, and the data sample consists of 814(154) observed neutral strange particles from 6263(1115) ν(bar ν) charged-current events. For the ν beam (average event energy left-angle Eν right-angle=150 GeV), the average multiplicities per charged-current event have been measured to be 0.408±0.048 for K0, 0.127±0.014 for Λ, and 0.015±0.005 for bar Λ, which are significantly greater than for lower-energy experiments. The dependence of rates on kinematical variables has been measured, and shows that both K0 and Λ production increase strongly with Eν, W2, Q2, and yB. Compared to lower-energy experiments, single-particle distributions indicate that there is much more K0 production for xF>-0.2, and the enhanced Λ production spans most of the kinematic region. bar Λ production is mostly in the region |xF|F>-0.2 there is a significant excess of Λ production over the model's prediction. The Λ hyperons are found to be polarized in the production plane

  19. Measurement of Lambda polarization in muon neutrino charged current interactions in NOMAD

    CERN Document Server

    Naumov, D V

    2000-01-01

    The Lambda polarization in muon neutrino charged current interactions has been measured in the NOMAD experiment. We observe negative polarization along the W - boson direction which is enhanced in the target fragmentation region: Px (xF 0) = -0.09 +/- 0.06(stat) +/- 0.03(sys). These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Lambda production plane) has been observed for the first time in a neutrino experiment: Py = -0.22 +/- 0.03(stat) +/- 0.01(sys). The dependence of the absolute value of Py on the Lambda transverse momentum with respect to the hadronic jet direction is in qualitative agreement with the results from unpolarized hadron-hadron experiments.

  20. QCD analysis of neutral and charged current cross sections and search for contact interactions at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Pirumov, Hayk

    2013-11-15

    A QCD analysis of the inclusive deep inelastic ep scattering cross section measured by the H1 experiment at HERA is presented. The data correspond to a total integrated luminosity of about 0.5 fb{sup -1} and covers a kinematic range of 0.5 GeV{sup 2} - 30000 GeV{sup 2} in the negative four-momentum transfer Q{sup 2} and 3 . 10{sup -5} - 0.65 in Bjorken x. The performed QCD analysis of the double differential neutral and charged current cross sections results in a set of parton distribution functions H1PDF 2012. The precise data from HERA II period in the kinematic region of high Q{sup 2} considerably improve the accuracy of the PDFs at the high x. In addition a search for signs of new physics using single differential neutral current cross section measurements at high Q{sup 2} is performed. The observed good agreement of the analysed data with the Standard Model predictions allows to set constraints on various new physics models within the framework of contact interactions. Limits are derived on the compositeness scale for general contact interactions, on the ratio of mass to the Yukawa coupling for heavy leptoquark models, on the effective Plank-mass scale in the large extra dimension models and on the quark radius.

  1. Measurement of $\\Lambda_{c}^{+}$ production in neutrino charged- current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Melzer, O; Oldeman, R G C; Pesen, E; Guler, A M; Köse, U; Serin-Zeyrek, M; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Leva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Chizhov, M; Doucet, M; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Lavina, L S; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A measurement of Lambda /sub c//sup +/ production in neutrino nucleon charged-current interactions is presented. in a subsample of about 50 000 interactions located in the emulsion target of the CHORUS detector, exposed to the wide band neutrino beam of the CERN SPS, candidates for decays of short-lived particles were identified using new automatic scanning systems and later confirmed through visual inspection. Criteria based on the flight length allowed a statistical separation among the different charm species thus enabling a sample particularly rich in Lambda /sub c//sup +/ to be defined. At an average neutrino energy of 27 GeV, the product sigma ( Lambda /sup + /)/ sigma (CC) * BR( Lambda /sub c//sup +/ to 3p) was measured to be (0.37 +or- 0.10(stat) 0.02(syst)) * 10/sup -2/, while the values of (1.54 +or- 0.5(stat) +or- 0.18(syst)) * 10/sup -2/ and of 0.24 +or- 0.07(stat) 0.04(syst) were obtained for sigma ( Lambda /sub c//sup + /)/ sigma (CC) and BR( Lambda /sub c//sup +/ to 3p), respectively. (28 refs)...

  2. Measurement of $\\Lambda^{+}_{c}$ production in neutrino charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Melzer, O; Oldeman, R G C; Pesen, E; Spada, F R; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Chizhov, M; Doucet, M; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A measurement of $\\Lambda_c^+$ production in neutrino nucleon charged-current interactions is presented. In a sub-sample of about 50 000 interactions located in the emulsion target of the CHORUS detector exposed to the wide band neutrino beam of the CERN SPS, candidates for decays of short lived particles were identified using new automatic scanning systems and later confirmed through visual inspection. Criteria based on the flight length allowed a statistical separation among the different charm species thus enabling a sample particularly rich in $\\Lambda_c^+$ to be defined. At an average neutrino energy of $27$ \\GeV, the product ${\\sigma(\\Lambda_c^+)}/{\\sigma(CC)} \\times BR(\\Lambda_c^+ \\rightarrow 3p) $ was measured to be $(0.37 \\pm 0.10(stat) \\pm 0.02(syst) ) \\times 10^{-2}$, while the values of $(1.54\\pm0.35(stat)\\pm0.18(syst) ) \\times 10^{-2} $ and of $0.24 \\pm 0.07(stat) \\pm 0.04(syst)$ were obtained for ${\\sigma(\\Lambda_c^+)}/{\\sigma(CC)}$ and $BR(\\Lambda_c^+ \\rightarrow 3p)$ respectively.

  3. Dijet Production in Charged and Neutral Current $e^{+}p$ Interactions at High $Q^{2}$

    CERN Document Server

    Adloff, C; Andrieu, B; Arkadov, V; Astvatsaturov, A R; Ayyaz, I; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Bassler, U; Bate, P; Beglarian, A; Behnke, O; Beier, C; Belousov, A; Benisch, T; Berger, C; Bernardi, G; Berndt, T; Bizot, J C; Borras, K; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P D; Brückner, W; Bruel, P; Bruncko, Dusan; Bürger, J; Büsser, F W; Bunyatyan, A; Burkhardt, H; Burrage, A; Buschhorn, G W; Campbell, A J; Cao, J; Carli, T; Caron, S; Chabert, E; Clarke, D; Clerbaux, B; Collard, Caroline; Contreras, J G; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; David, M; Davidsson, M; Delcourt, B; Delerue, N; Demirchyan, R A; de Roeck, A; De Wolf, E A; Diaconu, C A; Dixon, P; Dodonov, V; Dowell, John D; Droutskoi, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellerbrock, M; Elsen, E E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Foster, J M; Franke, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Kazarian, S; Görlich, L; Gogitidze, N; Goldberg, M; Goodwin, C; Grab, C; Grässler, Herbert; Greenshaw, T; Grindhammer, G; Hadig, T; Haidt, Dieter; Hajduk, L; Haynes, W J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Heremans, R; Herrera-Corral, G; Herynek, I; Hilgers, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Hoprich, W; Horisberger, R P; Hurling, S; Ibbotson, M; Jacquet, M; Jaffré, M; Janauschek, L; Jansen, D M; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jones, M A S; Jung, H; Kastli, H K; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Kaufmann, O; Kausch, M; Keil, F; Keller, N; Kennedy, J; Kenyon, Ian Richard; Kermiche, S; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Kroseberg, J; Krücker, D; Krüger, K; Küpper, A; Kuhr, T; Kurca, T; Kutuev, R K; Lachnit, W A; Lahmann, R; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; Lindstrøm, M; List, B; Lobodzinska, E; Lobodzinski, B; Loktionova, N A; Lubimov, V; Lüders, S; Lüke, D; Lytkin, L K; Magnussen, N; Mahlke-Krüger, H; Malden, N; Malinovskii, E I; Maracek, R; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Mehta, A; Meier, K; Merkel, P; Metlica, F; Meyer, H; Meyer, J; Meyer, P O; Mikocki, S; Milstead, D; Mkrtchyan, T; Mohr, R F; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Nellen, G; Newman, P R; Nicholls, T C; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nunnemann, T; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Pérez, E; Phillips, J P; Pitzl, D; Pöschl, R; Potachnikova, I; Povh, B; Rabbertz, K; Rädel, G; Rauschenberger, J; Reimer, P; Reisert, B; Reyna, D; Riess, S; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Royon, C; Rusakov, S V; Rybicki, K; Sankey, D P C; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schoeffel, L; Schöning, A; Schörner-Sadenius, T; Schröder, V; Schultz-Coulon, H C; Sedlak, K; Sefkow, F; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Sievers, P; Sirois, Y; Sloan, Terence; Smirnov, P; Solochenko, V; Soloviev, Yu V; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Steinhart, J; Stella, B; Stellberger, A; Stiewe, J; Straumann, U; Struczinski, W; Swart, M; Tasevsky, M; Chernyshov, V; Chechelnitskii, S; Thompson, G; Thompson, P D; Tobien, N; Traynor, D; Truöl, P; Tsipolitis, G; Turnau, J; Turney, J E; Tzamariudaki, E; Udluft, S; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vazdik, Ya A; Von Dombrowski, S; Wacker, K; Wallny, R; Walter, T; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; White, G; Wiesand, S; Wilksen, T; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Wollatz, H; Wünsch, E; Wyatt, A C; Zaleisak, J; Zhang, Z; Zhokin, A S; Zomer, F; Zsembery, J

    2001-01-01

    Jet production in charged and neutral current events in the kinematic range of Q^2 from 640 to 35000 GeV^2 is studied in deep-inelastic positron-proton scattering at HERA. The measured rate of multi-jet events and distributions of jet polar angle, transverse energy, dijet mass, and other dijet variables are presented. Using parton densities derived from inclusive DIS cross sections, perturbative QCD calculations in NLO are found to give a consistent description of both the neutral and charged current dijet production. A direct, model independent comparison of the jet distributions in charged and neutral current events confirms that the QCD dynamics of the hadronic final state is independent of the underlying electroweak scattering process.

  4. Probing Neutrino Mass Hierarchy by Comparing the Charged-Current and Neutral-Current Interaction Rates of Supernova Neutrinos

    CERN Document Server

    Lai, Kwang-Chang; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-01-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, $\

  5. Measurement of Lambda and Lambda-bar polarization in muon neutrino charged current interactions in NOMAD

    CERN Document Server

    Naumov, D V

    2002-01-01

    The Lambda and Lambda-bar polarizations in muon neutrino charged current interactions have been measured in the NOMAD experiment. The event sample (8087 reconstructed Lambda's and 649 Lambda-bar's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. For the Lambda hyperons we observe negative polarization along the W-boson direction which is enhanced in the target fragmentation region: Px(xF 0) = -0.09 +- 0.06 (stat) +- 0.03(sys). A significant transverse polarization (in the direction orthogonal to the Lambda production plane) has been observed for the first time in a neutrino experiment: Py = -0.22 +- 0.03 (stat) +- 0.01 (sys). The dependence of the absolute value of Py on the Lambda transverse momentum with respect to the hadronic jet direction is in qualitative agreement with the results from unpolarized hadron-hadron experiments. The polarization vector of Lambda-bar hyperons measured for the first time in n...

  6. Measurement of fragmentation properties of charmed particle production in charged-current neutrino interactions

    CERN Document Server

    Onengüt, G; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun,, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; FLoverre, P; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    During the years 1994-97, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events which was based on the data acquired by new automatic scanning systems, 1048 D0 events were selected by a pattern recognition program. They were confirmed as neutral-particle decays through visual inspection. Fragmentation properties of deep-inelastic charm production were measured using these events. Distributions of the D0 momentum, Feynman x(x_F), z and tan thetaôut, the transverse angle out of the leptonic plane defined by the muon and the neutrino, are presented. The mean value of z was measured to be (z) = 0.63 +- 0.03(stat) +- 0.01(syst). From fits to the z distribution, values for the Peterson parameter epsilon_p = 0.108 +- 0.017(stat) +- 0.013(syst) and the Collins-Spiller parameter epsilon_CS = 0.21^+0.05_-0.04(stat) +...

  7. Measurement of single charged pion production in the charged-current interactions of neutrinos in a 1.3 GeV wide band beam

    CERN Document Server

    Rodríguez, A; Whitehead, L; Alcaraz, J L; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berghaus, F; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Catala, J; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernández, E; Fujii, Y; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayato, Y; Helmer, R L; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S B; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kudenko, Yu; Kuno, Y; Kurimoto, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Matsuno, S; Matveev, V; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Saji, C; Sakuda, M; Sánchez, F; Scholberg, K; Schroeter, R; Sekiguchi, M; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Sorel, M; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Tada, M; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Vagins, M; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamada, Y; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2008-01-01

    Single charged pion production in charged-current muon neutrino interactions with carbon is studied using data collected in the K2K long-baseline neutrino experiment. The mean energy of the incident muon neutrinos is 1.3 GeV. The data used in this analysis are mainly from a fully active scintillator detector, SciBar. The cross section for single $\\pi^{+}$ production in the resonance region ($W<2$ GeV/$c^2$) relative to the charged-current quasi-elastic cross section is found to be 0.734 $^{+0.140}_{-0.153}$. The energy-dependent cross section ratio is also measured. The results are consistent with a previous experiment and the prediction of our model.

  8. Probing neutrino mass hierarchy by comparing the charged-current and neutral-current interaction rates of supernova neutrinos

    Science.gov (United States)

    Lai, Kwang-Chang; Lee, Fei-Fan; Lee, Feng-Shiuh; Lin, Guey-Lin; Liu, Tsung-Che; Yang, Yi

    2016-07-01

    The neutrino mass hierarchy is one of the neutrino fundamental properties yet to be determined. We introduce a method to determine neutrino mass hierarchy by comparing the interaction rate of neutral current (NC) interactions, ν(bar nu) + p → ν(bar nu) + p, and inverse beta decays (IBD), bar nue + p → n + e+, of supernova neutrinos in scintillation detectors. Neutrino flavor conversions inside the supernova are sensitive to neutrino mass hierarchy. Due to Mikheyev-Smirnov-Wolfenstein effects, the full swapping of bar nue flux with the bar nux (x = μ, τ) one occurs in the inverted hierarchy, while such a swapping does not occur in the normal hierarchy. As a result, more high energy IBD events occur in the detector for the inverted hierarchy than the high energy IBD events in the normal hierarchy. By comparing IBD interaction rate with the mass hierarchy independent NC interaction rate, one can determine the neutrino mass hierarchy.

  9. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro; /Kyoto U.

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to {approx}3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved

  10. A Measurement of Neutrino Charged Current Interactions and a Search for Muon Neutrino Disappearance with the Fermilab Booster Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Yasuhiro [Kyoto Univ. (Japan)

    2011-01-01

    In this thesis, we report on a measurement of muon neutrino inclusive charged current interactions on carbon in the few GeV region, using the Fermilab Booster Neutrino Beam. The all neutrino mode data collected in the SciBooNE experiment is used for this analysis. We collected high-statistics CC interaction sample at SciBooNE, and extracted energy dependent inclusive charged current interaction rates and cross sections for a wide energy range from 0.25 GeV to ~3 GeV. We measure the interaction rates with 6-15% precision, and the cross sections with 10-30% precision. We also made an energy integrated measurements, with the precisions of 3% for the rate, and 8% for the cross section measurements. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. This inclusive interaction measurement is nearly free from effects of hadron re-interactions in the nucleus. Hence, it is complementary to other exclusive cross section measurements, and essential to understand the neutrino interaction cross sections in the few GeV region, which is relevant to ongoing and future neutrino oscillation experiments. This analysis also provides the normalization for SciBooNE's previous cross section ratio measurements for charged current coherent pion production and neutral current neutral pion production. Then, a precise comparison between our previous measurements and the model predictions becomes possible. The result of the interaction rate measurement is used to constrain the product of the neutrino flux and the cross section at the other experiment on the Fermilab Booster Neutrino Beam: Mini-BooNE. We conducted a search for short-baseline muon neutrino disappearance using data both from SciBooNE and MiniBooNE, to test a possible neutrino oscillation with sterile neutrinos which is suggested by the LSND experiment. With this constraint by SciBooNE, we significantly reduced the flux and the cross section uncertainties at MiniBooNE, and achieved the

  11. The Inclusive Production of the Meson Resonances in Neutrino Charged Current (cc) Interactions

    Science.gov (United States)

    Polyarush, A. Yu.

    2015-03-01

    The inclusive production of the meson resonances ρ0(770), f0(980), f2(1270), K*+(892) in neutrino-nucleon interactions has been studied with the NOMAD detector. For the first time the f0(980) meson is observed in neutrino interactions. The presence of f2(1270) in the neutrino interactions is reliably established. The average multiplicity of these three resonances is measured as a function of several kinematic variables. The experimental results are compared to the multiplicities obtained from a simulation based on the Lund model. Matrix element of spin density matrix for K*+(892) meson have been measured.

  12. Measurement of $D^0$ production in neutrino charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Melzer, O; Oldeman, R G C; Pesen, E; Visschers, J L; Güler, M; Serin-Zeyrek, M; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, S A; Chizhov, M V; Doucet, M; Kolev, D; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A N; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Castagneto, L; Cocco, A G; D'Ambrosio, N; De Lellis, G; Di Capua, F; De Rosa, G; Ereditato, A; Fiorillo, G; Kawamura, T; Messina, M; Migliozzi, P; Palladino, Vittorio; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2002-01-01

    During the years 1994--1997, the emulsion target of the CHORUS detector was exposed to the Wide Band Neutrino Beam from the CERN-SPS. About 170,000 neutrino interactions were successfully located in the emulsion. Improvements in the automatic emulsion scanning systems and application of different criteria allowed the sample of located events to be used for studies of charm production. We present a measurement of the production rate of $D^0$ mesons based on a sample of 25693 located $\

  13. Experimental Study of Trimuon Events in Neutrino Charged-Current Interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Visschers, J L; Güler, M; Köse, U; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2004-01-01

    This paper reports on a study of trimuon events induced by neutrino interactions in the CHORUS calorimeter exposed to the CERN SPS wide-band nu_mu beam. Among the multimuon events produced in the calorimeter, 42 mu- mu- mu+ events were selected and their kinematical properties investigated. In the past, several groups collected a sample of about one hundred events of this type but their source was largely unknown. Taking advantage of experimental data presently available on the production and muonic branching ratios of light neutral mesons and resonances, we make absolute predictions for the expected rates in our experiment. Detailed Monte Carlo simulations described in this article show that more than half of the trimuon events can be attributed to this source. Muons from pi- and K- decays in charm dimuon events are responsible for an additional ~25% contribution to the total mu- mu- m+ rate. The remaining 25% of events are likely to come from the internal bremsstrahlung of virtual photons into muon pair. As...

  14. Bose-Einstein correlations in charged current muon-neutrino interactions in the NOMAD experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V. E-mail: vincenzo.cavasinni@pi.infn.it; Cervera-Villanueva, A.; Challis, R.C.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; De Santo, A.; Dignan, T.; Di Lella, L.; Couto e Silva, E. do; Dumarchez, J.; Ellis, M.; Feldman, G.J.; Ferrari, R.; Ferrere, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Goessling, C.; Gouanere, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Lacaprara, S.; Lachaud, C.; Lakic, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Linssen, L.; Ljubicic, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Mechain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S.R.; Moorhead, G.F.; Naumov, D.; Nedelec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L.S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Popov, B.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Sevior, M.; Sillou, D.; Soler, F.J.P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipcevic, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G.N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S.N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K.E.; Veltri, M.; Vercesi, V. [and others

    2004-05-10

    Bose-Einstein correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R{sub G}=1.01{+-}0.05(stat){sup +0.09}{sub -0.06}(sys) fm and for the chaoticity parameter the value {lambda}=0.40{+-}0.03(stat){sup +0.01}{sub -0.06}(sys). Using the Kopylov-Podgoretskii parametrization yields R{sub KP}=2.07{+-}0.04(stat){sup +0.01}{sub -0.14}(sys) fm and {lambda}{sub KP}=0.29{+-}0.06(stat){sup +0.01}{sub -0.04}(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal comoving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the Bose-Einstein correlations as a function of rapidity, charged particle multiplicity and hadronic energy. A weak dependence of both radius and chaoticity on multiplicity and hadronic energy is found.

  15. Study of quasielastic scattering using charged-current nu_mu-iron interactions in the MINOS Near Detector

    CERN Document Server

    Adamson, P; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Connor, J O; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Pfutzner, M; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Urheim, J; Vahle, P; Viren, B; Walding, J J; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2014-01-01

    Kinematic distributions from an inclusive sample of 1.41 x 10^6 charged-current nu_mu interactions on iron, obtained using the MINOS Near Detector exposed to a wide-band beam with peak flux at 3 GeV, are compared to a conventional treatment of neutrino scattering within a Fermi gas nucleus. Results are used to guide the selection of a subsample enriched in quasielastic nu_mu Fe interactions, containing an estimated 123,000 quasielastic events of incident energies 1 = 2.79 GeV. Four additional subsamples representing topological and kinematic sideband regions to quasielastic scattering are also selected for the purpose of evaluating backgrounds. Comparisons using subsample distributions in four-momentum transfer Q^2 show the Monte Carlo model to be inadequate at low Q^2. Its shortcomings are remedied via inclusion of a Q^2-dependent suppression function for baryon resonance production, developed from the data. A chi-square fit of the resulting Monte Carlo simulation to the shape of the Q^2 distribution for th...

  16. Measurement of topological muonic branching ratios of charmed hadrons produced in neutrino-induced charged-current interactions

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Oldeman, R G C; Güler, M; Köse, U; Tolun, P; Catanesi, M G; Muciaccia, M T; Winter, Klaus; Van de Vyver, B; Vilain, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Hristova, I R; Kawamura, T; Kolev, D; Meinhard, H; Panman, J; Rozanov, A; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Artamonov, A V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Hoshino, K; Kawada, J; Komatsu, M; Myanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Scotto-Lavina, L; Strolin, P; Tioukov, V; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Rosa, G; Santacesaria, R; Satta, A; Spada, F R; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2005-01-01

    From 1994 to 1997, the emulsion target of the CHORUS detector was exposed to the wideband neutrino beam of the CERN SPS. In total about 100 000 charged-current neutrino interactions were located in the nuclear emulsion target and fully reconstructed. From this sample of events based on the data acquired by new automatic scanning systems, 2013 charm-decay events were selected by a pattern recognition program. They were confirmed as decays through visual inspection. Based on these events, the effective branching ratio of charmed particles into muons was determined to be Bμ = [7.3 ± 0.8 (stat) ± 0.2 (syst)] × 10âˆ'2. In addition, the muonic branching ratios are presented for dominating charm decay topologies. Normalization of the muonic decays to chargedcurrent interactions provides _μâˆ'μ+/_cc = [3.16 ± 0.34 (stat) ± 0.09 (syst)] × 10âˆ'3. Selecting only events with visible energy greater than 30 GeV gives a value of Bμ that is less affected by the charm production threshold ...

  17. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 2. Hall dynamics, mass and momentum transfer

    Directory of Open Access Journals (Sweden)

    S. Savin

    2006-01-01

    Full Text Available Proceeding with the analysis of Amata et al. (2005, we suggest that the general feature for the local transport at a thin magnetopause (MP consists of the penetration of ions from the magnetosheath with gyroradius larger than the MP width, and that, in crossing it, the transverse potential difference at the thin current sheet (TCS is acquired by these ions, providing a field-particle energy exchange without parallel electric fields. It is suggested that a part of the surface charge is self-consistently produced by deflection of ions in the course of inertial drift in the non-uniform electric field at MP. Consideration of the partial moments of ions with different energies demonstrates that the protons having gyroradii of roughly the same size or larger than the MP width carry fluxes normal to MP that are about 20% of the total flow in the plasma jet under MP. This is close to the excess of the ion transverse velocity over the cross-field drift speed in the plasma flow just inside MP (Amata et al., 2005, which conforms to the contribution of the finite-gyroradius inflow across MP. A linkage through the TCS between different plasmas results from the momentum conservation of the higher-energy ions. If the finite-gyroradius penetration occurs along the MP over ~1.5 RE from the observation site, then it can completely account for the formation of the jet under the MP. To provide the downstream acceleration of the flow near the MP via the cross-field drift, the weak magnetic field is suggested to rotate from its nearly parallel direction to the unperturbed flow toward being almost perpendicular to the accelerated flow near the MP. We discuss a deceleration of the higher-energy ions in the MP normal direction due to the interaction with finite-scale electric field bursts in the magnetosheath flow frame, equivalent to collisions, providing a charge separation. These effective collisions, with a nonlinear frequency proxy of the order of the proton

  18. Bose-Einstein Correlations in Charged Current Muon-Neutrino Interactions in the NOMAD Experiment at CERN

    CERN Document Server

    Astier, Pierre; Baldisseri, Alberto; Baldo-Ceolin, Massimilla; Banner, M; Bassompierre, Gabriel; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A G; Bunyatov, S; Camilleri, L L; Cardini, A; Cattaneo, Paolo Walter; Cavasinni, V; Cervera-Villanueva, A; Challis, R C; Chukanov, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; Degaudenzi, H M; Del Prete, T; De Santo, A; Dignan, T; Di Lella, L; do Couto e Silva, E; Dumarchez, J; Ellis, M; Feldman, G J; Ferrari, R; Ferrère, D; Flaminio, Vincenzo; Fraternali, M; Gaillard, J M; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, S N; Godley, A; Gómez-Cadenas, J J; Gosset, J; Gössling, C; Gouanère, M; Grant, A; Graziani, G; Guglielmi, A M; Hagner, C; Hernando, J A; Hubbard, D B; Hurst, P; Hyett, N; Iacopini, E; Joseph, C L; Juget, F R; Kent, N; Kirsanov, M M; Klimov, O; Kokkonen, J; Kovzelev, A; Krasnoperov, A V; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier-Selvon, A A; Lévy, J M; Linssen, Lucie; Ljubicic, A; Long, J; Lupi, A; Lyubushkin, V V; Marchionni, A; Martelli, F; Méchain, X; Mendiburu, J P; Meyer, J P; Mezzetto, Mauro; Mishra, S R; Moorhead, G F; Naumov, D V; Nédélec, P; Nefedov, Yu A; Nguyen-Mau, C; Orestano, D; Pastore, F; Peak, L S; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, A Yu; Popov, B; Poulsen, C; Rebuffi, L; Rico, J; Riemann, P; Roda, C; Rubbia, André; Salvatore, F; Schmidt, B; Schmidt, T; Sconza, A; Sevior, M E; Sillou, D; Soler, F J P; Sozzi, G; Steele, D; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb-Reyes, M; Taylor, G; Tereshchenko, V V; Toropin, A N; Touchard, A M; Tovey, Stuart N; Tran, M T; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata-Nappi, M; Valuev, V Yu; Vannucci, François; Varvell, K E; Veltri, M; Vercesi, V; Vidal-Sitjes, G; Vieira, J M; Vinogradova, T G; Weber, F V; Weisse, T; Wilson, F F; Winton, L J; Yabsley, B D; Zaccone, Henri; Zei, R; Zuber, K; Zuccon, P

    2004-01-01

    Bose-Einstein Correlations in one and two dimensions have been studied, with high statistics, in charged current muon-neutrino interaction events collected with the NOMAD detector at CERN. In one dimension the Bose-Einstein effect has been analyzed with the Goldhaber and the Kopylov-Podgoretskii phenomenological parametrizations. The Goldhaber parametrization gives the radius of the pion emission region R_G = 1.01+/-0.05(stat)+0.09-0.06(sys) fm and for the chaoticity parameter the value lambda = 0.40+/-0.03(stat)+0.01-0.06(sys). Using the Kopylov-Podgoretskii parametrization yields R_KP = 2.07+/-0.04(stat)+0.01-0.14(sys) fm and lambda_KP = 0.29+/-0.06(stat)+0.01-0.04(sys). Different parametrizations of the long-range correlations have been also studied. The two-dimensional shape of the source has been investigated in the longitudinal co-moving frame. A significant difference between the transverse and the longitudinal dimensions is observed. The high statistics of the collected sample allowed the study of the...

  19. Study of tau-neutrino production by measuring Ds -> tau events in 400 GeV proton interactions: Test of lepton universality in neutrino charged-current interactions

    CERN Document Server

    Aoki, S; Ariga, T; Kodama, K; Nakamura, M; Sato, O; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2016-01-01

    The muon-neutrino charged-current (CC) cross section has been measured by many experiments. However, there has been only one measurement of the tau-neutrino CC cross section by the DONuT experiment with a systematic uncertainty larger than 50%, mainly due to uncertainties in the Ds differential production cross section in high energy proton interaction. The evaluation of the tau-neutrino cross section would provide a test of lepton universality in neutrino CC interactions, which has never been well tested for tau-neutrinos. In this new program, we propose to study tau-neutrino production (Ds production fraction x decay branching ratio of Ds -> tau) and the energy distribution by analyzing Ds -> tau events in 400 GeV proton interactions. By employing the state-of-the-art emulsion particle detector technologies, we will analyze 10^8 proton interactions and detect the double kink topology of Ds -> tau -> X decays. Accomplishing this new measurement, we will re-evaluate the tau-neutrino cross section with the dat...

  20. A measurement of the muon neutrino charged current quasielastic-like cross section on a hydrocarbon target and final state interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Walton, Tammy [Hampton Univ., Hampton, VA (United States)

    2014-01-01

    Presented is the analysis of the μ charged-current quasielastic-like interaction with a polystyrene (CH or hydrocarbon) target in the MINER A experiment, which was exposed to a neutrino beam that peaked at 3.5 GeV.

  1. Single neutral pion production by charged-current ν¯μ interactions on hydrocarbon at 〈Eν〉=3.6 GeV

    Directory of Open Access Journals (Sweden)

    T. Le

    2015-10-01

    Full Text Available Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH is studied using the MINERvA detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for ν¯e appearance oscillation experiments. The differential cross sections for π0 momentum and production angle, for events with a single observed π0 and no charged pions, are presented and compared to model predictions. These results comprise the first measurement of the π0 kinematics for this process.

  2. Coherent production of single pions and ρ mesons in charged-current interactions of neutrinos and antineutrinos on neon nuclei at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    The coherent production of π and ρ mesons in νμ(bar νμ)--neon charged-current interactions has been studied using the Fermilab 15-foot bubble chamber filled with a heavy Ne-H2 mix and exposed to the Teva- tron quadrupole triplet (anti)neutrino beam. The νμ (bar νμ) beam had an average energy of 80 GeV (70 GeV). From a sample corresponding to approximately 28 000 charged-current interactions, net signals of (53±9) μ±πminus-plus coherent events and (19±7) μ±πminus-plusπ0 coherent events are extracted. For E>10 GeV, the coherent pion production cross section is determined to be (3.2±0.7)x10-38 cm2 per neon nucleus whereas the coherent ρ production cross section is (2.1±0.8)x10-38 cm2 per neon nucleus. These cross sections and the kinematical characteristics of the coherent events at |t|2 are found to be in general agreement with the predictions of a model based on the hadron dominance and, in the pion case, on the partially conserved axial-vector current hypothesis. Also discussed is the coherent production of systems consisting of three pions

  3. Measurement of the neutral to charged current cross section ratios in neutrino and antineutrino nucleon interactions and determination of the Weinberg angle

    International Nuclear Information System (INIS)

    The cross section ratios of neutral and charged current interactions induced by neutrinos and antineutrinos in iron have been measured in the 200 GeV narrow-band beam at the CERN SPS. We find Rsub(ν)=0.301+-0.007 and Rsub(anti ν)=0.363+-0.015 for a hadron energy cut of 10 GeV. The results are in agreement with the standard model of electroweak interactions. In the MS renormalization scheme at the scale of the W boson mass sin2Osub(w)(msub(w))=0.226+-0.012 is obtained, where the error represents the experimental uncertainty. The theoretical uncertainty is estimated to be Δ sind2Osub(w)=+-0.006. (orig.)

  4. The Axial Current in Electromagnetic Interaction

    CERN Document Server

    Cheoun, M K; Cheon, I T; Cheoun, Myung Ki; Cheon, Il-Tong

    1998-01-01

    We discussed the possibility that the charged axial currents of matter fields could be non-conserved in electromagnetic interaction at $O(e) $ order. It means that chiral symmetry is broken explicitly by electromagnetic interaction. This explicit symmetry breaking of chiral symmetry is shown to lead the mass differences between the charged and neutral particles of matter fields.

  5. Determination of the nucleon structure functions in the study of the inclusive charged current interactions of neutrinos and antineutrinos in iron between 30 and 200 GeV

    International Nuclear Information System (INIS)

    In the deep inelastic neutrino scattering experiment of the CERN-Dortmund-Heidelberg-Saclay collaboration realized on the CERN SPS narrow band beam, we have measured 23000 charged current neutrino and 6200 antineutrino interactions. The structure functions of the nucleon have been extracted from the differential cross sections on iron and compared with parton model predictions. The total cross sections and the fraction of momentum carried by the antiquarks in the nucleon have been measured as function of the neutrino energy. The structure functions obtained for different Q2 bins show significant deviations from scale invariance. The data are in agreement with QCD predictions for a value of the scale parameter Λ between 300 and 700 MeV

  6. Measurement of the Electron Neutrino Charged-current Interaction Rate on Water with the T2K ND280 pi-zero Detector

    CERN Document Server

    Abe, K; Aihara, H; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Das, R; Davis, S; de, P; De, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di, F; Di, S; Dolan, S; Drapier, O; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haegel, L; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Koga, T; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, J P; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Rychter, A; Sacco, R; Sakashita, K; S, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaker, F; Shaw, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2015-01-01

    The first direct observation of the appearance of electron neutrinos in a muon neutrino beam through neutrino oscillation was recently reported by the T2K experiment. The main background in this observation was the presence of the electron neutrino component of the beam, which accounts for 1.2 % of the beam below the 1.2 GeV threshold. This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component using the large fiducial mass of the T2K $\\pi^0$ detector. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 $\\pm$ 0.08 (stat.) $\\pm$ 0.11 (sys.), and with the water targets emptied is 0.90 $\\pm$ 0.09 (stat.) $\\pm$ 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 $\\pm$ 0.33 (stat.) $\\pm$ 0.21 (sys.). These are pioneering measurements of the $\

  7. Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Directory of Open Access Journals (Sweden)

    E. Amata

    2006-01-01

    Full Text Available We study plasma transport at a thin magnetopause (MP, described hereafter as a thin current sheet (TCS, observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF model in the magnetosheath (MSH up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with MA=3 and β>10 (peak value 23. The magnetic field clock angle rotates by 70° across the MP. Ex is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The E×B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV, being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006.

  8. Stabilization of electrostatic accelerator charging belt current

    International Nuclear Information System (INIS)

    For the purpose of improving reliability and quality of electrostatic accelerator basic parameters the stabilizer of charging belt current is developed. The stabilizer consists of two units: high-voltage unit and control unit. The charging rectifier assures voltage up to 60 kV at total current load of 750 μA. For the EG- 2.5 and the EGP-10 M accelerators supply circuits of charging device with an earth screen and posAitive voltage supply the needles. t the EGP-10-1 accelerator negative charging voltage is supplied to the screens of the charging device. ''Plus'' of the rectifier is earthed. Charging and recharging are performed by means of brushes slipping over the internal belt side. At all accelerators the stability of charging current mean value is not worse 0.1%. The highest response of the system are obtained at the EG-2.5 accelerator for account of rectifier load by charging current and instrument resistor from 140 to 400 MOhm

  9. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Teppei [Indiana Univ., Bloomington, IN (United States)

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  10. Single neutral pion production by charged-current $\\bar{\

    CERN Document Server

    Aliaga, L; Bercellie, A; Bodek, A; Bravar, A; Brooks, W K; Butkevich, A; Caicedo, D A Martinez; Carneiro, M F; Christy, M E; Chvojka, J; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Felix, J; Fields, L; Fine, R; Gago, A M; Gallagher, H; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; McFarland, K S; McGivern, C L; McGowan, A M; Miller, J; Morfín, J G; Mousseau, J; Nelson, J K; Norrick, A; Osta, J; Palomino, J L; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Rakotondravohitra, L; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rodrigues, P A; Ruterbories, D; Schellman, H; Schmitz, D W; Sobczyk, J T; Salinas, C J Solano; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Yepes-Ramirez, H; Zavala, G; Zhang, D; Ziemer, B P

    2015-01-01

    Single neutral pion production via muon antineutrino charged-current interactions in plastic scintillator (CH) is studied using the \\minerva detector exposed to the NuMI low-energy, wideband antineutrino beam at Fermilab. Measurement of this process constrains models of neutral pion production in nuclei, which is important because the neutral-current analog is a background for $\\bar{\

  11. Testing charged current quasi-elastic and multinucleon interaction models in the NEUT neutrino interaction generator with published datasets from the MiniBooNE and MINERνA experiments

    Science.gov (United States)

    Wilkinson, C.; Terri, R.; Andreopoulos, C.; Bercellie, A.; Bronner, C.; Cartwright, S.; de Perio, P.; Dobson, J.; Duffy, K.; Furmanski, A. P.; Haegel, L.; Hayato, Y.; Kaboth, A.; Mahn, K.; McFarland, K. S.; Nowak, J.; Redij, A.; Rodrigues, P.; Sánchez, F.; Schwehr, J. D.; Sinclair, P.; Sobczyk, J. T.; Stamoulis, P.; Stowell, P.; Tacik, R.; Thompson, L.; Tobayama, S.; Wascko, M. O.; Żmuda, J.

    2016-04-01

    There has been a great deal of theoretical work on sophisticated charged current quasi-elastic (CCQE) neutrino interaction models in recent years, prompted by a number of experimental results that measured unexpectedly large CCQE cross sections on nuclear targets. As the dominant interaction mode at T2K energies, and the signal process in oscillation analyses, it is important for the T2K experiment to include realistic CCQE cross section uncertainties in T2K analyses. To this end, T2K's Neutrino Interaction Working Group has implemented a number of recent models in NEUT, T2K's primary neutrino interaction event generator. In this paper, we give an overview of the models implemented and present fits to published νμ and ν¯ μ CCQE cross section measurements from the MiniBooNE and MINER ν A experiments. The results of the fits are used to select a default cross section model for future T2K analyses and to constrain the cross section uncertainties of the model. We find strong tension between datasets for all models investigated. Among the evaluated models, the combination of a modified relativistic Fermi gas with multinucleon CCQE-like interactions gives the most consistent description of the available data.

  12. Charged particle beam current monitoring tutorial

    International Nuclear Information System (INIS)

    A tutorial presentation is made on topics related to the measurement of charged particle beam currents. The fundamental physics of electricity and magnetism pertinent to the problem is reviewed. The physics is presented with a stress on its interpretation from an electrical circuit theory point of view. The operation of devices including video pulse current transformers, direct current transformers, and gigahertz bandwidth wall current style transformers is described. Design examples are given for each of these types of devices. Sensitivity, frequency response, and physical environment are typical parameters which influence the design of these instruments in any particular application. Practical engineering considerations, potential pitfalls, and performance limitations are discussed

  13. Charged-Current and Neutral-Current Neutrino-Nucleus Scattering in a Relativistic Approach

    CERN Document Server

    Giusti, Carlotta; Pacati, Franco Davide

    2009-01-01

    Relativistic models developed for the exclusive and inclusive QuasiElastic (QE) electron scattering have been extended to Charged-Current (CC) and Neutral-Current (NC) neutrino-nucleus scattering. The results of different descriptions of Final-State Interactions (FSI) are compared.

  14. Characterization of a constant current charge detector.

    Science.gov (United States)

    Mori, Masanobu; Chen, Yongjing; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2012-12-15

    Ion exchangers are ionic equivalents of doped semiconductors, where cations and anions are equivalents of holes and electrons as charge carriers in solid state semiconductors. We have previously demonstrated an ion exchange membrane (IEM) based electrolyte generator which behaves similar to a light-emitting diode and a charge detector (ChD) which behaves analogous to a p-i-n photodiode. The previous work on the charge detector, operated at a constant voltage, established its unique ability to respond to the charge represented by the analyte ions regardless of their redox properties, rather than to their conductivities. It also suggested that electric field induced dissociation (EFID) of water occurs at one or both ion exchange membranes. A logical extension is to study the behavior of the same device, operated in a constant current mode (ChD(i)). The evidence indicates that in the present operational mode the device also responds to the charge represented by the analytes and not their conductivity. Injection of a base into a charge detector operated in the constant voltage mode was not previously examined; in the constant current mode, base injection appears to inhibit EFID. The effects of applied current, analyte residence time and outer channel fluid composition were individually examined; analyte ions of different mobilities as well as affinities for the respective IEMs were used. While the exact behavior is somewhat dependent on the applied current, strong electrolytes, both acids and salts, respond the highest and in a near-uniform fashion, weak acids and their salts respond in an intermediate fashion and bases produce the lowest responses. A fundamentally asymmetric behavior is observed. Injected bases but not injected acids produce a poor response; the effects of incorporating a strong base as the electrolyte in the anion exchange membrane (AEM) compartment is far greater than incorporating an acid in the cation exchange membrane (CEM) compartment. These

  15. Charge and Current Compensation of Intense Charged Beams in Future Accelerators

    CERN Document Server

    Riege, H

    1998-01-01

    Proposals for future high-energy accelerators are characterized by demands for increasingly intense and energetic beams. The classical operation of high-current accelerators is severely constrained by collective electrodynamic phenomena, such as problems related to space-charge, to high-current flow, to beamstrahlung and pair production. These detrimental electrodynamic effects dominate the dynamic s and the collision interactions of high-intensity beams. With the introduction of soft space-charge and current compensation techniques utilizing low- to medium-energy lepton beams with charge polari ty opposite to that of the beams to be neutralized, all electromagnetic high-intensity limitations may be removed. The application of beam compensation is proposed for various sections of different ty pes of classical accelerator systems, such as for ion sources and the low-energy beam transport sections of ion linacs, for the crossing points of circular and linear colliders and for the final focii of ion beam fusion ...

  16. Charged current neutrino induced coherent pion production

    CERN Document Server

    Alvarez-Ruso, L; Hirenzaki, S; Vacas, M J V

    2007-01-01

    We analyze the neutrino induced charged current coherent pion production at the energies of interest for recent experiments like K2K and MiniBooNE. Medium effects in the production mechanism and the distortion of the pion wave function, obtained solving the Klein Gordon equation with a microscopic optical potential, are included in the calculation. We find a strong reduction of the cross section due to these effects and also substantial modifications of the energy distributions of the final lepton and pion.

  17. Measurement of $K^{+}$ production in charged-current $\

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, C.M.; et al.

    2016-07-14

    Production of K+ mesons in charged-current νμ interactions on plastic scintillator (CH) is measured using MINERvA exposed to the low-energy NuMI beam at Fermilab. Timing information is used to isolate a sample of 885 charged-current events containing a stopping K+ which decays at rest. The differential cross section in K+ kinetic energy, dσ/dTK, is observed to be relatively flat between 0 and 500 MeV. Its shape is in good agreement with the prediction by the genie neutrino event generator when final-state interactions are included, however the data rate is lower than the prediction by 15%.

  18. Phospholipid and Hydrocarbon Interactions with a Charged Electrode Interface.

    Science.gov (United States)

    Levine, Zachary A; DeNardis, Nadica Ivošević; Vernier, P Thomas

    2016-03-22

    Using a combination of molecular dynamics simulations and experiments we examined the interactions of alkanes and phospholipids at charged interfaces in order to understand how interfacial charge densities affect the association of these two representative molecules with electrodes. Consistent with theory and experiment, these model systems reveal interfacial associations mediated through a combination of Coulombic and van der Waals forces. van der Waals forces, in particular, mediate rapid binding of decane to neutral electrodes. No decane binding was observed at high surface charge densities because of interfacial water polarization, which screens hydrophobic attractions. The positively charged choline moiety of the phospholipid palmitoyloleoylphosphatidylcholine (POPC) is primarily responsible for POPC attraction by a moderately negatively charged electrode. The hydrocarbon tails of POPC interact with the hydrophobic electrode interface similarly to decane. Previously reported electrochemical results confirm these findings by demonstrating bipolar displacement currents from PC vesicles adhering to moderately negatively charged interfaces, originating from the choline interactions observed in simulations. At more negatively charged interfaces, choline-to-surface binding was stronger. In both simulations and experiments the maximal interaction of anionic PS occurs with a positively charged interface, provided that the electrostatic forces outweigh local Lennard-Jones interactions. Direct comparisons between the binding affinities measured in experiments and those obtained in simulations reveal previously unobserved atomic interactions that facilitate lipid vesicle adhesion to charged interfaces. Moreover, the implementation of a charged interface in molecular dynamics simulations provides an alternative method for the generation of large electric fields across phospholipid bilayers, especially for systems with periodic boundary conditions, and may be useful for

  19. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  20. Electrostatic interactions of asymmetrically charged membranes

    Science.gov (United States)

    Ben-Yaakov, Dan; Burak, Yoram; Andelman, David; Safran, S. A.

    2007-08-01

    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged, planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict —for any ratio of the charges on the surfaces— that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as a function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte.

  1. Computation of charged current neutrino-Te reactions cross sections

    Science.gov (United States)

    Tsakstara, V.; Kosmas, T. S.; Sinatkas, J.

    2016-08-01

    Neutrino-nucleus reactions, involving both neutral current (NC) and charged current (CC) interactions are important probes in modern neutrino physics searches. In the present work, we study the concrete CC reactions 130 Te(vℓ,ℓ‑)130 I and 130 Te(ṽℓ,ℓ+)130Sb which are of current experimental interest for the CUORE and COBRA experiments operating at Gran Sasso underground laboratory in Italy. The nuclear wave functions for the required initial and final nuclear states are derived by employing the proton-neutron (p-n) quasi-particle random phase approximation (QRPA) which has been previously tested in our neutral-current v-nucleus studies for Te isotopes.

  2. Symmetrical charge-charge interactions in ionic solutions: implications for biological interactions

    CERN Document Server

    Faraggi, Eshel

    2012-01-01

    As is well known in electrolyte theory, electrostatic fields are attenuated by the presence of mobile charges in the solution. This seems to limit the possibility of an electrostatic repulsion model of biological interactions such as cell division. Here, a system of two charges in an ionic solution is considered. It is found that in the context of the symmetries of the system, the electrostatic repulsion between the two is considerably increased as compared to the electrostatic repulsion between two bare charges in a dielectric. This increase in repulsion, directly resulting from interactions between the symmetrical parts of the system, was found to be dependent on the magnitude of the charges and the separation between them. It was also found that this increases reaches a steady state for separation greater than a solvent determined length scale related to the Debye length. These findings strongly suggest that electrostatic interactions can play a crucial part in the physical forces that are involved in biol...

  3. Natural Limits for Currents in Charge Separated Pulsar Magnetospheres

    CERN Document Server

    Jessner, A; Kunzl, T A

    2002-01-01

    Rough estimates and upper limits on current and particle densities form the basis of most of the canonical pulsar models. Whereas the surface of the rotating neutron star is capable of supplying sufficient charges to provide a current that, given the polar cap potential, could easily fuel the observed energy loss processes, observational and theoretical constraints provide strict upper limits to the charge densities. The space charge of a current consisting solely of particles having only one sign creates a compensating potential that will make the maximum current dependent on potential and distance. In the non-relativistic case this fact is expressed in the familiar Child-Langmuir law. Its relativistic generalization and subsequent application to the inner pulsar magnetosphere provides clear limits on the strength and radial extension of charged currents originating on the polar cap. Violent Pierce-type oscillations set in, if one attempts to inject more current than the space charge limit into a given volum...

  4. Study of the Weak Charged Hadronic Current in b Decays

    CERN Document Server

    Acciarri, M; Aguilar-Benítez, M; Ahlen, S P; Alpat, B; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alverson, G; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Antreasyan, D; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Ball, R C; Banerjee, S; Banicz, K; Barillère, R; Barone, L; Bartalini, P; Baschirotto, A; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Bilei, G M; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borgia, B; Boucham, A; Bourilkov, D; Bourquin, Maurice; Boutigny, D; Branson, J G; Brigljevic, V; Brock, I C; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Buytenhuijs, A O; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Caria, M; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chan, A; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chen, M; Chiefari, G; Chien, C Y; Choi, M T; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Cohn, H O; Coignet, G; Colijn, A P; Colino, N; Commichau, V; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Dai, T S; D'Alessandro, R; De Asmundis, R; De Boeck, H; Degré, A; Deiters, K; Denes, P; De Notaristefani, F; DiBitonto, Daryl; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dorne, I; Dova, M T; Drago, E; Duchesneau, D; Duinker, P; Durán, I; Dutta, S; Easo, S; Efremenko, Yu V; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ernenwein, J P; Extermann, Pierre; Fabre, M; Faccini, R; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Fenyi, B; Ferguson, T; Fernández, D; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gau, S S; Gentile, S; Gerald, J; Gheordanescu, N; Giagu, S; Goldfarb, S; Goldstein, J; Gong, Z F; Gougas, Andreas; Gratta, Giorgio; Grünewald, M W; Gupta, V K; Gurtu, A; Gutay, L J; Hartmann, B; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Van Hoek, W C; Hofer, H; Hoorani, H; Hou, S R; Hu, G; Innocente, Vincenzo; Janssen, H; Jenkes, K; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Kasser, A; Khan, R A; Kamrad, D; Kamyshkov, Yu A; Kapustinsky, J S; Karyotakis, Yu; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kim, S C; Kim, Y G; Kinnison, W W; Kirkby, A; Kirkby, D; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kuijten, H; Kunin, A; Ladrón de Guevara, P; Landi, G; Lapoint, C; Lassila-Perini, K M; Laurikainen, P; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee Jae Sik; Lee, K Y; Leggett, C; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lieb, E H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lu, W; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangla, S; Marchesini, P A; Marin, A; Martin, J P; Marzano, F; Massaro, G G G; McNally, D; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mi, Y; Mihul, A; Van Mil, A J W; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moore, R; Morganti, S; Moulik, T; Mount, R; Müller, S; Muheim, F; Nagy, E; Nahn, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nippe, A; Nisati, A; Nowak, H; Opitz, H; Organtini, G; Ostonen, R; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petrak, S; Pevsner, A; Piccolo, D; Pieri, M; Pinto, J C; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Produit, N; Prokofev, D; Prokofiev, D O; Rahal-Callot, G; Rancoita, P G; Rattaggi, M; Raven, G; Razis, P A; Read, K; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riemers, B C; Riles, K; Rind, O; Ro, S; Robohm, A; Rodin, J; Rodríguez-Calonge, F J; Roe, B P; Romero, L; Rosier-Lees, S; Rosselet, P; Van Rossum, W; Roth, S; Rubio, Juan Antonio; Rykaczewski, H; Salicio, J; Sánchez, E; Santocchia, A; Sarakinos, M E; Sarkar, S; Sassowsky, M; Sauvage, G; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schmitz, P; Schneegans, M; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Sens, Johannes C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Sopczak, André; Soulimov, V; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, H; Stoyanov, B; Strässner, A; Strauch, K; Sudhakar, K; Sultanov, G G; Sun, L Z; Susinno, G F; Suter, H; Swain, J D; Tang, X W; Tauscher, Ludwig; Taylor, L; Ting, Samuel C C; Ting, S M; Tonutti, M; Tonwar, S C; Tóth, J; Tully, C; Tuchscherer, H; Tung, K L; Uchida, Y; Ulbricht, J; Uwer, U; Valente, E; Van de Walle, R T; Vesztergombi, G; Vetlitskii, I; Viertel, Gert M; Vivargent, M; Völkert, R; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, J C; Wang, X L; Wang, Z M; Weber, A; Wittgenstein, F; Wu, S X; Wynhoff, S; Xu, J; Xu, Z Z; Yang, B Z; Yang, C G; Yao, X Y; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zeng, Y; Zhang, Z; Zhang, Z P; Zhou, B; Zhou, Y; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F

    1997-01-01

    Charged and neutral particle multiplicities of jets associated with identified semileptonic and hadronic b decays are studied. The observed differences between these jets are used to determine the inclusive properties of the weak charged hadronic current. The average charged particle multiplicity of the weak charged hadronic current in b decays is measured for the first time to be 2.69$\\pm$0.07(stat.)$\\pm$0.14(syst.). This result is in good agreement with the JETSET hadronization model of the weak charged hadronic current if 40$\\pm$17\\% of the produced mesons are light--flavored tensor (L=1) mesons. This level of tensor meson production is consistent with the measurement of the $\\pi^0$ multiplicity in the weak charged hadronic current in b decays. \\end{abstract}

  5. Inclusive Charged--Current Neutrino--Nucleus Reactions

    CERN Document Server

    Nieves, J; Vacas, M J Vicente

    2011-01-01

    We present a model for weak CC induced nuclear reactions at energies of interest for current and future neutrino oscillation experiments. This model is a natural extension of the work of Refs.[1,2], where the QE contribution to the inclusive electron and neutrino scattering on nuclei was analyzed. The model is based on a systematic many body expansion of the gauge boson absorption modes that includes one, two and even three body mechanisms, as well as the excitation of Delta isobars. The whole scheme has no free parameters, besides those previously adjusted to the weak pion production off the nucleon cross sections in the deuteron, since all nuclear effects were set up in previous studies of photon, electron and pion interactions with nuclei. We have discussed at length the recent charged current quasi-elastic MiniBooNE cross section data, and showed that two nucleon knockout mechanisms are essential to describe these measurements.

  6. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement.

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300 Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time. PMID:24182144

  7. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  8. Measurement of double-differential muon neutrino charged-current interactions on C$_8$H$_8$ without pions in the final state using the T2K off-axis beam

    CERN Document Server

    Abe, K; Antonova, M; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Berardi, V; Berkman, S; Bhadra, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Avanzini, M Buizza; Calland, R G; Cao, S; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S G; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Hogan, M; Holeczek, J; Horikawa, S; Hosomi, F; Huang, K; Ichikawa, A K; Ieki, K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Guerra, E S Pinzon; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Stewart, T; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-01-01

    We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734$\\times10^{20}$ protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross-section in muon kinematic variables ($\\cos\\theta_\\mu$, $p_\\mu$), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not solve the degeneracy between different models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross-sect...

  9. Structure of charged-current interactions

    International Nuclear Information System (INIS)

    The status of the quark mixing matrix is reviewed. New lower bounds on absolute value of sin delta and on sin β/sin THETA in the Maiani representation follow from a maximum top quark mass of 50 GeV. Recent data relevant to possible S, P, and T couplings are reviewed, and new results on muon decay parameters eta and delta are presented. A new measurement of xiP/sub μ/delta/rho by a different technique has confirmed the recently published stringent new limit. Constraints on a possible right-handed W and the effect of various assumptions concerning the associated right-handed neutrino are disucssed. 39 references

  10. Low energy charged particles interacting with amorphous solid water layers

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, Yonatan; Asscher, Micha [Institute of Chemistry, Hebrew University of Jerusalem, Edmund J. Safra Campus, Givat-Ram, Jerusalem 91904 (Israel)

    2012-04-07

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 {mu}A) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 {+-} 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  11. Low energy charged particles interacting with amorphous solid water layers

    Science.gov (United States)

    Horowitz, Yonatan; Asscher, Micha

    2012-04-01

    The interaction of charged particles with condensed water films has been studied extensively in recent years due to its importance in biological systems, ecology as well as interstellar processes. We have studied low energy electrons (3-25 eV) and positive argon ions (55 eV) charging effects on amorphous solid water (ASW) and ice films, 120-1080 ML thick, deposited on ruthenium single crystal under ultrahigh vacuum conditions. Charging the ASW films by both electrons and positive argon ions has been measured using a Kelvin probe for contact potential difference (CPD) detection and found to obey plate capacitor physics. The incoming electrons kinetic energy has defined the maximum measurable CPD values by retarding further impinging electrons. L-defects (shallow traps) are suggested to be populated by the penetrating electrons and stabilize them. Low energy electron transmission measurements (currents of 0.4-1.5 μA) have shown that the maximal and stable CPD values were obtained only after a relatively slow change has been completed within the ASW structure. Once the film has been stabilized, the spontaneous discharge was measured over a period of several hours at 103 ± 2 K. Finally, UV laser photo-emission study of the charged films has suggested that the negative charges tend to reside primarily at the ASW-vacuum interface, in good agreement with the known behavior of charged water clusters.

  12. Geometry dependence of 2-dimensional space-charge-limited currents

    CERN Document Server

    De Visschere, Patrick

    2016-01-01

    The space-charge-limited current in a zero thickness planar thin film depends on the geometry of the electrodes. We present a theory which is to a large extent analytical and applicable to many different lay-outs. We show that a space-charge-limited current can only be sustained if the emitting electrode induces a singularity in the field and if the singularity induced by the collecting electrode is not too strong. For those lay-outs where no space-charge-limited current can be sustained for a zero thickness film, the real thickness of the film must be taken into account using a numerical model.

  13. Space-charge limiting current in spherical cathode diodes

    Institute of Scientific and Technical Information of China (English)

    刘国治; 邵浩

    2003-01-01

    The results of the investigation on the space-charge limiting current for a spherical-cathode diode in the nonrelativistic situation are presented in this paper. The results show that the current enhancement factor equals the square of E-field enhancement factor on the cathode surface. The generated space-charge limiting current is deduced.In the case of a pin-shaped-cathode diode, the space-charge limiting current is also obtained, indicating that the current is independent of the geometric parameters of the diode. Analyses of the shielding effects and the conditions for generation of the uniform space-charge limiting beam show that, for pin-arrayed cathodes, the distance between pins should be in the range from 1.2D to 1.5D, where D is the distance between the two electrodes.

  14. Neutral current neutrino-nucleus interactions at intermediate energies

    CERN Document Server

    Leitner, T; Mosel, U

    2006-01-01

    We have extended our model for charged current neutrino-nucleus interactions to neutral current reactions. For the elementary neutrino-nucleon interaction, we take into account quasielastic scattering, Delta excitation and the excitation of the resonances in the second resonance region. Our model for the neutrino-nucleus collisions includes in-medium effects such as Fermi motion, Pauli blocking, nuclear binding, and final-state interactions. They are implemented by means of the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) coupled-channel transport model. This allows us to study exclusive channels, namely pion production and nucleon knockout. We find that final-state interactions modify considerably the distributions through rescattering, charge-exchange and absorption. Side-feeding induced by charge-exchange scattering is important in both cases. In the case of pions, there is a strong absorption associated with the in-medium pionless decay modes of the Delta, while nucleon knockout exhibits a considerable enh...

  15. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  16. INTERACTION OF SIMILARLY CHARGED SURFACES MEDIATED BY NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Klemen Bohinc; Leo Lue

    2011-01-01

    We study the interaction between two like charged surfaces embedded in a solution of oppositely charged multivalent rod-like counterions. The counterions consist of two rigidly bonded point charges, each of valency Z. The strength of the electrostatic coupling increases with increasing surface charge density or valency of the charges. The system is analyzed by employing a self-consistent field theory, which treats the short and long range interactions of the counterions within different approximations. We find that in the weak coupling limit, the interactions are only repulsive. In the intermediate coupling regime, the multivalent rod-like counterions can mediate attractive interactions between the surfaces.For sufficiently long rods, bridging contributes to the attractive interaction. In the strong coupling limit, the charge correlations can contribute to the attractive interactions at short separations between the charged surfaces. Two minima can then appear in the force curve between surfaces.

  17. Modeling Dendrimers Charge Interaction in Solution: Relevance in Biosystems

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2014-01-01

    Full Text Available Dendrimers are highly branched macromolecules obtained by stepwise controlled, reaction sequences. The ability to be designed for specific applications makes dendrimers unprecedented components to control the structural organization of matter during the bottom-up synthesis of functional nanostructures. For their applications in the field of biotechnology the determination of dendrimer structural properties as well as the investigation of the specific interaction with guest components are needed. We show how the analysis of the scattering structure factor S(q, in the framework of current models for charged systems in solution, allows for obtaining important information of the interdendrimers electrostatic interaction potential. The finding of the presented results outlines the important role of the dendrimer charge and the solvent conditions in regulating, through the modulation of the electrostatic interaction potential, great part of the main structural properties. This charge interaction has been indicated by many studies as a crucial factor for a wide range of structural processes involving their biomedical application. Due to their easily controllable properties dendrimers can be considered at the crossroad between traditional colloids, associating polymers, and biological systems and represent then an interesting new technological approach and a suitable model system of molecular organization in biochemistry and related fields.

  18. Interactions of charged spin-2 fields

    Science.gov (United States)

    de Rham, Claudia; Matas, Andrew; Ondo, Nicholas A.; Tolley, Andrew J.

    2015-09-01

    In light of recent progress in ghost-free theories of massive gravity and multi-gravity, we reconsider the problem of constructing a ghost-free theory of an interacting spin-2 field charged under a U(1) gauge symmetry. Our starting point is the theory originally proposed by Federbush, which is essentially Fierz-Pauli generalized to include a minimal coupling to a U(1) gauge field. We show the Federbush theory with a dynamical U(1) field is in fact ghost-free and can be treated as a healthy effective field theory to describe a massive charged spin-2 particle. It can even potentially have healthy dynamics above its strong-coupling scale. We then construct candidate gravitational extensions to the Federbush theory both by using dimensional deconstruction, and by constructing a general nonlinear completion. However, we find that the U(1) symmetry forces us to modify the form of the Einstein-Hilbert kinetic term. By performing a constraint analysis directly in the first-order form, we show that these modified kinetic terms inevitably reintroduce the Boulware-Deser ghost. As a by-product of our analysis, we present a new proof for ghost-freedom of bi-gravity in 2+1 dimensions (also known as Zwei-Dreibein gravity). We also give a complementary algebraic argument that the Einstein-Hilbert kinetic term is incompatible with a U(1) symmetry, for a finite number of gravitons.

  19. Dynamics of charged current sheets at high-latitude magnetopause

    Science.gov (United States)

    Savin, S.; Amata, E.; Zelenyi, L.; Dunlop, M.; Andre, M.; Song, P.; Blecki, J.; Buechner, J.; Rauch, J. L.; Skalsky, A.

    E. Amata (2), L. Zelenyi (1), M. Dunlop (3), M. Andre (4), P. Song (5), J. Blecki (6), J. Buechner (7), J.L Rauch, J.G. Trotignon (8), G. Consolini, F. Marcucci (2), B. Nikutowski (7), A. Skalsky, S. Romanov, E. Panov (1) (2) IFSI, Roma, Italy, (3) RAL, UK, (4) IRFU, Uppsala, Sweden, (5) U. Mass. Lowell, USA, (6) SRC, Warsaw, Poland, (7) MPAe, Germany, (8) LPCE, Orleans, France; We study dynamics of thin current sheets over polar cusps from data of Interball-1 and Cluster. At the high-beta magnetopause current sheet width often reaches ion gyroradius scales, that leads to their Hall dynamics in the presence of local surface charges. Respective perpendicular electric fields provide the means for momentum coupling through the current sheets and are able to accelerate ions with gyroradius of the order or larger than the sheet width. At borders of large diamagnetic cavities this mechanism is able to support mass exchange and accelerate/ heat incoming magnetosheath particles. At larger scales the inhomogeneous electric fields at the current sheet borders can accelerate incident plasma downtail along magnetopause via inertial drift. It serves to move external plasma away for dynamic equilibrium supporting. Farther away from magnetopause similar nonlinear electric field wave trains, selfconsistently produced by interaction of reflected from the obstacle waves with magnetosheath fluctuations, destroy the incident flux into accelerated magnetosonic jets and decelerated Alfvenic flows and generate small-scale current sheets due to different sign of electron and ion inertial drift in the nonlinear electric field bursts. We suggest that this direct kinetic energy transformation creates current sheets with anomalous statistics of field rotation angles in the turbulent boundary layer in front of magnetopause, which have been attributed earlier to an intermittent turbulence. We compare measured spectra with a model of nonlinear system with intermittent chaotic behavior. Work was

  20. Magnetohydrodynamics and charged currents in heavy ion collisions

    International Nuclear Information System (INIS)

    The hot QCD matter produced in any heavy ion collision with a nonzero impact parameter is produced within a strong magnetic field. We study the imprint the magnetic fields produced in non-central heavy ion collisions leave on the azimuthal distributions and correlations of the produced charged hadrons. The magnetic field is time-dependent and the medium is expanding, which leads to the induction of charged currents due to the combination of Faraday and Hall effects. We find that these currents result in a charge-dependent directed flow v1 that is odd in rapidity and odd under charge exchange. It can be detected by measuring correlations between the directed flow of charged hadrons at different rapidities, 〈v1±(y1)v1±(y2)〉

  1. Neutral current neutrino-nucleus interactions at high energies

    CERN Document Server

    Ducati, M B Gay; Machado, M V T

    2008-01-01

    We present a QCD analysis of the neutral current neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section.

  2. The charged current neutrino cross section for solar neutrinos, and background to \\BBz\\ experiments

    CERN Document Server

    Ejiri, H

    2013-01-01

    Solar neutrinos can interact with the source isotope in neutrinoless double beta decay experiments through charged current and neutral current interactions. The charged-current product nucleus will then beta decay with a Q-value larger than the double beta decay Q-value. As a result, this process can populate the region of interest and be a background to the double beta decay signal. In this paper we estimate the solar neutrino capture rates on three commonly used double beta decay isotopes, \

  3. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  4. Charged and Neutral Current Neutrino Induced Nucleon Emission Reactions

    CERN Document Server

    Nieves, J; Vacas, M J V

    2006-01-01

    By means of a Monte Carlo cascade method, to account for the rescattering of the outgoing nucleon, we study the charged and neutral current inclusive one nucleon knockout reactions off nuclei induced by neutrinos. The nucleon emission process studied here is a clear signal for neutral--current neutrino driven reactions, and can be used in the analysis of future neutrino experiments.

  5. Fluctuation-Induced Interaction between Randomly Charged Dielectrics

    OpenAIRE

    Naji, Ali; Dean, David S.; Sarabadani, Jalal; Horgan, Ron R.; Podgornik, Rudolf

    2009-01-01

    Monopolar charge disorder effects are studied in the context of fluctuation-induced interactions between neutral dielectric slabs. It is shown that quenched bulk charge disorder gives rise to an additive contribution to the net interaction force which decays as the inverse distance between the slabs and may thus completely mask the standard Casimir--van der Waals force at large separations. By contrast, annealed (bulk or surface) charge disorder leads to a net interaction force whose large-di...

  6. On the self-induced charge currents in electromagnetic materials and its effects in the torsion balance experiment

    OpenAIRE

    Shen, Jian Qi

    2003-01-01

    We concern ourselves with the self-induced charge currents in electromagnetic materials and some related topics on its effects in the present paper. The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is briefly discussed. We concentrate primarily on the torque, which is caused by the interaction of self-induced charge currents in dilute plasma with interstellar magnetic fields, acting on the torsion balance in the torsion balance experiment. I...

  7. Research and design of a novel current mode charge pump

    Institute of Scientific and Technical Information of China (English)

    Li Xianrui; Lai Xinquan; Li Yushan; Ye Qiang

    2009-01-01

    To meet the demands for a number of LEDs, a novel charge pump circuit with current mode control is proposed. Regulation is achieved by operating the current mirrors and the output current of the operational transcon ductance amplifier. In the steady state, the input current from power voltage retains constant, so reducing the noise induced on the input voltage source and improving the output voltage ripple. The charge pump small-signal model is used to describe the device's dynamic behavior and stability. Analytical predictions were verified by Hspice sim ulation and testing. Load driving is up to 800 mA with a power voltage of 3.6 V, and the output voltage ripple is less than 45 mV. The output response time is less than 8 μs, and the load current jumps from 400 to 800 mA.

  8. Interaction of free charged particles with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2004-01-01

    We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM ch

  9. Thermal energy and charge currents in multi-terminal nanorings

    Science.gov (United States)

    Kramer, Tobias; Kreisbeck, Christoph; Riha, Christian; Chiatti, Olivio; Buchholz, Sven S.; Wieck, Andreas D.; Reuter, Dirk; Fischer, Saskia F.

    2016-06-01

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approach and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.

  10. Charged current top quark couplings at the LHC

    International Nuclear Information System (INIS)

    The top quark plays an important role in current particle physics, from a theoretical point of view because of its uniquely large mass, but also experimentally because of the large number of top events recorded by the LHC experiments ATLAS and CMS, which makes it possible to directly measure the properties of this particle, for example its couplings to the other particles of the standard model (SM), with previously unknown precision. In this thesis, an effective field theory approach is employed to introduce a minimal and consistent parametrization of all anomalous top couplings to the SM gauge bosons and fermions which are compatible with the SM symmetries. In addition, several aspects and consequences of the underlying effective operator relations for these couplings are discussed. The resulting set of couplings has been implemented in the parton level Monte Carlo event generator WHIZARD in order to provide a tool for the quantitative assessment of the phenomenological implications at present and future colliders such as the LHC or a planned international linear collider. The phenomenological part of this thesis is focused on the charged current couplings of the top quark, namely anomalous contributions to the trilinear tbW coupling as well as quartic four-fermion contact interactions of the form tbff', both affecting single top production as well as top decays at the LHC. The study includes various aspects of inclusive cross section measurements as well as differential distributions of single tops produced in the t channel, bq → tq', and in the s channel, u anti d→t anti b. We discuss the parton level modelling of these processes as well as detector effects, and finally present the prospected LHC reach for setting limits on these couplings with 10 resp. 100 fb-1 of data recorded at √(s)=14 TeV.

  11. Charged current top quark couplings at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Fabian

    2013-07-01

    The top quark plays an important role in current particle physics, from a theoretical point of view because of its uniquely large mass, but also experimentally because of the large number of top events recorded by the LHC experiments ATLAS and CMS, which makes it possible to directly measure the properties of this particle, for example its couplings to the other particles of the standard model (SM), with previously unknown precision. In this thesis, an effective field theory approach is employed to introduce a minimal and consistent parametrization of all anomalous top couplings to the SM gauge bosons and fermions which are compatible with the SM symmetries. In addition, several aspects and consequences of the underlying effective operator relations for these couplings are discussed. The resulting set of couplings has been implemented in the parton level Monte Carlo event generator WHIZARD in order to provide a tool for the quantitative assessment of the phenomenological implications at present and future colliders such as the LHC or a planned international linear collider. The phenomenological part of this thesis is focused on the charged current couplings of the top quark, namely anomalous contributions to the trilinear tbW coupling as well as quartic four-fermion contact interactions of the form tbff', both affecting single top production as well as top decays at the LHC. The study includes various aspects of inclusive cross section measurements as well as differential distributions of single tops produced in the t channel, bq {yields} tq', and in the s channel, u anti d{yields}t anti b. We discuss the parton level modelling of these processes as well as detector effects, and finally present the prospected LHC reach for setting limits on these couplings with 10 resp. 100 fb{sup -1} of data recorded at {radical}(s)=14 TeV.

  12. Improving performance of charge sensitive preamplifier in liquid scintillation counter using constant current technology

    International Nuclear Information System (INIS)

    There are various charge constant current technologies for liquid scintillation circuit. The constant current technology, charge technology and their application to liquid scintillation counter are emphasized

  13. Interaction of bacterial wall with electrically charged solid substrate

    Science.gov (United States)

    Ajaev, Vladimir

    2015-11-01

    Recent experimental studies indicate that the electrically charged substrates can exhibit antibacterial properties above a certain threshold value of the charge density. To explain these observations, we develop a mathematical model of interaction between a bacterial wall, described as a charge-regulating surface, and a charged solid substrate. Viscous flow in the aqueous film separating the two surfaces is described by a lubrication-type equation. Electrical charge transport is incorporated into the model and coupled to the flow. The complex interplay between charge transport, electrostatic interaction of the surfaces, and viscous flow leads to criteria for the critical charge density needed to achieve antibacterial properties for a range of different types of harmful bacteria.

  14. Meson Exchange Current (MEC) Models in Neutrino Interaction Generators

    CERN Document Server

    Katori, Teppei

    2013-01-01

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.

  15. Two New Theories for the Current Charge Relativity and the Electric Origin of the Magnetic Force Between Two Filamentary Current Elements

    CERN Document Server

    Shadid, Waseem G T

    2016-01-01

    This paper presents two new theories and a new current representation to explain the magnetic force between two filamentary current elements as a result of electric force interactions between current charges. The first theory states that a current has an electric charge relative to its moving observer. The second theory states that the magnetic force is an electric force in origin. The new current representation characterizes a current as equal amounts of positive and negative point charges moving in opposite directions at the speed of light. Previous work regarded electricity and magnetism as different aspects of the same subject. One effort was made by Johnson to unify the origin of electricity and magnetism, but this effort yielded a formula that is unequal to the well-known magnetic force law. The explanation provided for the magnetic force depends on three factors: 1) representing the electric current as charges moving at the speed of light, 2) considering the relative velocity between moving charges, an...

  16. Energy mechanism of charges analyzed in real current environment

    CERN Document Server

    Ianconescu, R; Ianconescu, Reuven

    2003-01-01

    We analyze in this work the energy transfer process of accelerated charges, the mass fluctuations accompanying this process, and their inertial properties. Based on a previous work, we use here the dipole antenna, which is a very convenient framework for such analysis, for analyzing those characteristics. We show that the radiation process can be viewed by two energy transfer processes: one from the energy source to the charges and the second from the charges into the surrounding space. Those processes, not being in phase, result in mass fluctuations. The same principle is true during absorption. We show that in a transient period between absorption and radiation the dipole antenna gains mass according to the amount of absorbed energy and loses this mass as radiated energy. We rigorously prove that the gain of mass, resulting from electrical interaction has inertial properties in the sense of Newton's third low. We arrive to this result by modeling the reacting spacetime region by an electric dipole.

  17. The relativistic Green's function model in charged-current quasielastic neutrino and antineutrino scattering at MINER$\

    OpenAIRE

    Meucci, Andrea; Giusti, Carlotta

    2014-01-01

    The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativistic Green's function model with the data recently published by the MINER$\

  18. Effective dynamics of an electrically charged string with a current

    Science.gov (United States)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  19. Effective dynamics of an electrically charged string with a current

    CERN Document Server

    Kazinski, P O

    2005-01-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations ...

  20. Optical vortex driven charge current loop and optomagnetism in fullerenes

    CERN Document Server

    Wätzel, Jonas; Schäffer, Alexander; Berakdar, Jamal

    2016-01-01

    Endohedral molecular magnets, e.g. as realized in fullerenes containing $\\rm DySc_{2}N$, are promising candidates for molecular electronics and quantum information processing. For their functionalization an ultrafast local magnetization control is essential. Using full ab-initio quantum chemistry calculations we predict the emergence of charge current loops in fullerenes with an associated orbital magnetic moment upon irradiation with weak light vortex pulses that transfer orbital angular momentum. The generated current is controllable by the frequency, the vortex topological charge, and the intensity of the light. Numerical and analytical results show that an ultraviolet vortex femtosecond pulse with an intensity $\\sim10^{13}$ W/cm$^2$ generates non-invasively nA unidirectional surface current with an associated magnetic field of hundreds $\\mu$T at the center of the fullerene.

  1. Extracting electrode space charge limited current: Charge injection into conjugated polyelectrolytes with a semiconductor electrode

    Science.gov (United States)

    Walker, Ethan M.; Lonergan, Mark C.

    2016-05-01

    Conjugated polyelectrolytes and related mixed ionic-electronic conductors (MIECs) are being explored for energy applications including solid-state lighting and photovoltaics. Fundamental models of charge injection into MIECs have been primarily developed for MIECs contacted with highly conductive or metal electrodes (MEs), despite many potential applications involving semiconductors. We theoretically and experimentally demonstrate that an appropriate semiconductor electrode (SE), n-type for electron or p-type of hole injection, can limit injection into MIECs. When the SE is the injecting electrode and is under accumulation, there is little difference from a ME. When the SE acts as the extracting electrode, however, injection into the MIEC can be limited because a fraction of any applied bias must support charge depletion in the semiconductor rather than charge injection into the MIEC. In a ME/MIEC/SE system, this can lead to significant asymmetry in current-voltage and injected charge-voltage behavior.

  2. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki; /Kyoto U.

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for {nu}{sub {mu}} {yields} {nu}{sub x} oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance ({nu}{sub {mu}}N {yields} {mu}{sup -} N{pi}{sup +}) and coherent pion production interacting with the entire nucleus ({nu}{sub {mu}}A {yields} {mu}{sup -} A{pi}{sup +}), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, {nu}{sub {mu}} {sup 12}C {yields} {mu}{sup -12}C{pi}{sup +}, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 10{sup 20} protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 10{sup 20} protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged

  3. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  4. iSat Surface Charging and Thruster Plume Interactions Analysis

    Science.gov (United States)

    Parker, L. Neergaard; Willis, E. M.; Minow, J. I.

    2016-01-01

    Characterizing the electromagnetic interaction of a satellite in low Earth, high inclination orbit with the space plasma environment and identifying viable charging mitigation strategies is a critical mission design task. High inclination orbits expose the vehicle to auroral charging environments that can potentially charge surfaces to kilovolt potentials and electric thruster propulsion systems will interact with the ambient plasma environment throughout the orbit. NASA is designing the Iodine Satellite (iSAT) cubesat mission to demonstrate operations of an iodine electric thruster system. The spacecraft will be deployed as a secondary payload from a launch vehicle which has not yet been identified so the program must plan for the worst case environments over a range of orbital inclinations. We will first present results from a NASA and Air Force Charging Analyzer Program (Nascap) -2k surface charging calculation used to evaluate the effects of auroral charging on the spacecraft and to provide the charging levels at other locations in orbit for a thruster plume interaction analysis for the iSAT mission. We will then discuss results from the thruster interactions analysis using the Electric Propulsion Interactions Code (EPIC) with inputs from Nascap-2k. The results of these analyses are being used by the iSAT program to better understand how their spacecraft will interact with the space plasma environment in the range of environments that could be encountered when the final mission orbit is selected.

  5. Interactions Between Charged Macroions Mediated by Molecules with Rod-like Charged Structures

    Directory of Open Access Journals (Sweden)

    Bohinc, K.

    2014-03-01

    Full Text Available A short review of recent theoretical advances in studies of the interaction between highly charged systems embedded in a solution of rod-like molecules is presented. The system is theoretically described by the functional density theory, where the correlations within the rod-like molecules are accounted for. We show that for sufficiently long molecules and large surface charge densities, an attractive force between like-charged surfaces arises due to the spatially distributed charges within the molecules. The added salt has an influence on the condition for the attractive force between like-charged surfaces. The theoretical results are compared with Monte Carlo simulations. Many phenomena motivate the study of the interaction between like-charged surfaces (DNA condensation, virus aggregation, yeast flocculation, cohesion of cement paste.

  6. Local Charge and Spin Currents in Magnetothermal Landscapes

    Science.gov (United States)

    Weiler, Mathias; Althammer, Matthias; Czeschka, Franz D.; Huebl, Hans; Wagner, Martin S.; Opel, Matthias; Imort, Inga-Mareen; Reiss, Günter; Thomas, Andy; Gross, Rudolf; Goennenwein, Sebastian T. B.

    2012-03-01

    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser-spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging.

  7. Stochastic Coulomb interactions in space charge limited electron emission

    NARCIS (Netherlands)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    A Monte Carlo simulation tool, which was used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics, was discussed. It was found that interactions in the space charge cloud affect the electron trajectories such that the velocity distrib

  8. Technique of studying the interaction of charges of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Yefremov, E.I.; Kravtsov, V.S.; Myachina, N.I.; Rodak, S.N.

    1982-01-01

    A technique is presented for studying the interaction of explosive charges which includes recording of the velocity of detonation of the studied charges, measurement of mechanical stresses developing in this case in the medium and determination of granulometric composition of the model with simultaneous and diverse initiation.

  9. Charged particle interaction with a chirped electromagnetic pulse

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, K.-J.; Goor, van F.A.

    2003-01-01

    It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.

  10. Topological charge algebra of optical vortices in nonlinear interactions.

    Science.gov (United States)

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.

  11. Topological charge algebra of optical vortices in nonlinear interactions.

    Science.gov (United States)

    Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V

    2015-12-28

    We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams. PMID:26832066

  12. Ga Nanoparticle/Graphene Platforms: Plasmonic and Charge Transfer Interactions

    Science.gov (United States)

    Yi, Congwen; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Brown, April S.

    2013-03-01

    Metal nanoparticle (NP) - graphene multifunctional platforms are of great interest for numerous applications, such as sensing and catalysis, and for fundamental studies on charge transfer and light-matter interactions. To understand platform-photon interactions, it is important to articulate the coupling of photon-based excitations, such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. Herein, we use liquid metal Ga nanoparticles, which can be deposited at 300K on graphene, to explore the surface-enhanced Raman spectroscopy modulation induced by the NPs,. The localized charge transfer between Ga NPs and graphene are investigated, and enhancement of the graphene Raman modes is correlated with metal coverage the transfer of electrons from Ga to graphene creating local regions of enhanced electron concentration which modify the electron-phonon interaction in graphene.

  13. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Bakhru, Hassaram [University at Albany' s College of Nanoscale Science and Engineering (CNSE), Albany, New York 12203 (United States)

    2014-02-28

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k{sub 0}⋅(t+1){sup β−1}, where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films.

  14. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    Science.gov (United States)

    Borja, Juan; Plawsky, Joel L.; Lu, T.-M.; Bakhru, Hassaram; Gill, William N.

    2014-02-01

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k =k0ṡ(t+1)β -1, where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523-5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films.

  15. Search for coherent charged pion production in neutrino-carbon interactions

    CERN Document Server

    Hasegawa, M; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Cavata, C; Cervera-Villanueva, Anselmo; Chen, S M; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernández, E; Fukuda, Y; Gómez-Cadenas, Juan José; Gran, R; Hara, T; Hasegawa, T; Hayashi, K; Hayato, Y; Helmer, R L; Hill, J; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Inagaki, T; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kerr, D; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kubota, J; Kudenko, Yu G; Kuno, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Maruyama, T; Matsuno, S; Matveev, V; Mauger, C; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O V; Mitsuda, C; Miura, M; Moriguchi, Y; Morita, T; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Rodríguez, A; Saji, C; Sakuda, M; Sánchez, F; Sarrat, A; Sasaki, T; Sato, H; Scholberg, K; Schroeter, R; Sekiguchi, M; Sharkey, E; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M B; Sobel, H; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Ueda, S; Vagins, M; Whitehead, L; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamamoto, S; Yanagisawa, C; Yershov, N V; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2005-01-01

    We report the result from a search for charged-current coherent pion production induced by muon neutrinos with a mean energy of 1.3 GeV. The data are collected with a fully active scintillator detector in the K2K long-baseline neutrino oscillation experiment. No evidence for coherent pion production is observed and an upper limit of $0.60 \\times 10^{-2}$ is set on the cross section ratio of coherent pion production to the total charged-current interaction at 90% confidence level. This is the first experimental limit for coherent charged pion production in the energy region of a few GeV.

  16. Trapped-space-charge-limited currents in organics

    Energy Technology Data Exchange (ETDEWEB)

    Paasch, Gernot [IFW Dresden (Germany); Blom, Paul; Mandoc, Magda; Boer, Bert de [University of Groningen (Netherlands)

    2007-07-01

    The Mott-Gurney law for space charge limited current (SCLC) has been modified early to account for the presence of exponentially distributed traps. This expression has been widely used to analyse transport in organic light emitting diodes. However, the theory fails to describe the rather weak temperature dependence observed for electron transport, for instance in PPV derivatives. There we have shown that the trap-limited SCLC law is essentially modified if the density of transport states is of Gaussian type. Here, we discuss the origin of this modification and present a detailed analysis of the modified law. In addition, we derive further modifications for different combinations of densities of states of both the transport states and the trap distribution. As a result, rather different dependencies of the current on voltage, layer thickness and temperature are possible. Consequently, one has to exercise care in order to obtain reliable trap parameters from SCLC.

  17. Space charge limited current emission for a sharp tip

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Y. B., E-mail: zhuyingbin@gmail.com; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg [Engineering Product Development, Singapore University of Technology and Design, Singapore 487372 (Singapore)

    2015-05-15

    In this paper, we formulate a self-consistent model to study the space charge limited current emission from a sharp tip in a dc gap. The tip is assumed to have a radius in the order of 10s nanometer. The electrons are emitted from the tip due to field emission process. It is found that the localized current density J at the apex of the tip can be much higher than the classical Child Langmuir law (flat surface). A scaling of J ∝ V{sub g}{sup 3/2}/D{sup m}, where V{sub g} is the gap bias, D is the gap size, and m = 1.1–1.2 (depending on the emission area or radius) is proposed. The effects of non-uniform emission and the spatial dependence of work function are presented.

  18. Interchain interaction and fractionally charged solitons in a commensurate charge-density-wave system

    DEFF Research Database (Denmark)

    Jensen, Mogens Høgh; Lomdahl, P. S.

    1982-01-01

    with lower and higher charge than ±2e / 3. The effect of discreteness is taken into account and gives rise to chaotic deformed solitons as the interchain coupling increases. The model may be applied to tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) under 19-kbar pressure.......We have studied the effect of interchain interaction on thermally excited solitons in a charge-density wave for a Peierls system of commensurability 3. In such a system solitons with charges ±2e / 3 are expected. It is shown that the interchain coupling in some cases will generate solitons...

  19. Self Assembly Modulated by Interactions of Two Heterogeneously Charged Surfaces

    Science.gov (United States)

    Brewster, R.; Pincus, P. A.; Safran, S. A.

    2008-09-01

    Recent experiments have measured attractive interactions between two surfaces that each bear two molecular species with opposite charge. Such surfaces form charged domains of finite size. We present a theoretical model that predicts the dependence of the domain size, phase behavior and the interlayer forces as a function of spacing and salt concentration for two such interacting surfaces. A strong correlation between two length scales, the screening length and the surface separation, at the spinodal is shown. Remarkably, the first-order phase transition to infinite sized domains depends logarithmically on the ratio of the domain size to the molecular size. Finally, we fit the predicted pressure with experiments.

  20. Modeling of tunneling current in ultrathin MOS structure with interface trap charge and fixed oxide charge

    Institute of Scientific and Technical Information of China (English)

    Hu Bo; Huang Shi-Hua; Wu Feng-Min

    2013-01-01

    A model based on analysis of the self-consistent Poisson-Schrodinger equation is proposed to investigate the tunneling current of electrons in the inversion layer of a p-type metal-oxide-semiconductor (MOS) structure.In this model,the influences of interface trap charge (ITC) at the Si-SiO2 interface and fixed oxide charge (FOC) in the oxide region are taken into account,and one-band effective mass approximation is used.The tunneling probability is obtained by employing the transfer matrix method.Further,the effects of in-plane momentum on the quantization in the electron motion perpendicular to the Si-SiO2 interface of a MOS device are investigated.Theoretical simulation results indicate that both ITC and FOC have great influence on the tunneling current through a MOS structure when their densities are larger than 1012 cm-2,which results from the great change of bound electrons near the Si-SiO2 interface and the oxide region.Therefore,for real ultrathin MOS structures with ITC and FOC,this model can give a more accurate description for the tunneling current in the inversion layer.

  1. Measurement of charm in charged current at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Tobias

    2008-12-15

    A measurement of charm production in charged current (CC) polarized electron-proton deep inelastic scattering processes with data from the H1 detector at the HERA collider is presented. This process in principle allows access to the strange quark density in the proton. In total 5460 CC candidate events in e{sup +}p and 6253 in e{sup -}p data are selected in the kinematic range Q{sup 2}>223 GeV{sup 2} and 0.03charge asymmetry. Muons originating from charmed hadron decays in CC events at HERA always have the same charge as the beam lepton. The extracted charm fractions in the selected CC candidate event samples are F{sub c}=9.5{+-}8.9{+-}3.0 % for e{sup +}p and F{sub c}=4.4{+-}6.9{+-}2.6 % for e{sup -}p. Due to the large statistical errors of the measured charm fractions, the strange quark density in the proton has not been extracted. (orig.)

  2. Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodríguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Metelko, C; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sánchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2014-01-01

    The T2K off-axis near detector, ND280, is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies ~1 GeV as a function of electron momentum, electron scattering angle and four-momentum transfer of the interaction. The total flux-averaged $\

  3. Charged current deep-inelastic scattering at three loops

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.; Rogal, M.

    2007-04-15

    We derive for deep-inelastic neutrino({nu})-proton(P) scattering in the combination {nu}P- anti {nu}P the perturbative QCD corrections to three loops for the charged current structure functions F{sub 2}, F{sub L} and F{sub 3}. In leading twist approximation we calculate the first five odd-integer Mellin moments in the case of F{sub 2} and F{sub L} and the first five even-integer moments in the case of F{sub 3}. As a new result we obtain the coefficient functions to O({alpha}{sup 3}{sub s}) while the corresponding anomalous dimensions agree with known results in the literature. (orig.)

  4. Neutral and charged current cross section measurements and searches for new physics at HERA

    CERN Document Server

    Malden, N; Abramowicz, H; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kaji, H; Kananov, S; Kappes, A; Kataoka, Y; Yamazaki, M; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D; Kramberger, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Luzniak, P; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Montanari, A; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, U; Karshon, M; Robins, S; Rodrigues, E; Rosin, M; Rurua, L; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walsh, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J; Malden, Nicholas

    2004-01-01

    HERA is the only high energy electron-proton collider in the world today and hence has unique opportunities both to probe the structure of the proton and to search for physics beyond the Standard Model. Results are presented for measurements of both neutral and charged current cross sections, and for searches for exotic processes involving direct electron-quark interactions (leptoquarks and R-parity violating SUSY), generic coupling models (contact interactions) and exclusive final states (isolated leptons and missing PT, single top production and pentaquarks). Exclusion limits on proposed models are set where no deviation from Standard Model predictions are found.

  5. Charged-Current Neutral Pion production at SciBooNE

    OpenAIRE

    Catala-Perez, J.

    2009-01-01

    SciBooNE, located in the Booster Neutrino Beam at Fermilab, collected data from June 2007 to August 2008 to accurately measure muon neutrino and anti-neutrino cross sections on carbon below 1 GeV neutrino energy. SciBooNE is studying charged current interactions. Among them, neutral pion production interactions will be the focus of this poster. The experimental signature of neutrino-induced neutral pion production is constituted by two electromagnetic cascades initiated by the conversion of t...

  6. Measuring neutrino-induced exclusive charge-current final states on hydrogen at T2K

    CERN Document Server

    Coplowe, David; Barr, Giles

    2016-01-01

    By taking advantage of symmetries with respect to the plane containing the directions of the neutrino and outgoing lepton, it is possible to isolate neutrino interactions on hydrogen in composite nuclear targets. This technique enables us to study the `primary' neutrino-nucleon interaction and therefore gain access to fundamental model parameters free from nuclear effects. Using T2K Monte Carlo equivalent to $\\sim7\\times10^{21}$ POT, we present an update on the measurement of the exclusive charged-current $\\mu^-$, p, $\\pi^+$ final state on hydrogen.

  7. A Measurement of Coherent Neutral Pion Production in Neutrino Neutral Current Interactions in NOMAD experiment

    CERN Document Server

    Kullenberg, C T

    2009-01-01

    We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to $1.44 \\times 10^6$ muon-neutrino Charged Current interactions in the energy range $2.5 \\leq E_{\

  8. Configurational temperatures and interactions in charge-stabilized colloid

    OpenAIRE

    Han, Yilong; Grier, David G.

    2004-01-01

    We demonstrate that the configurational temperature formalism can be derived from the classical hypervirial theorem, and introduce a hierarchy of hyperconfigurational temperature definitions, which are particularly well suited for experimental studies. We then use these analytical tools to probe the electrostatic interactions in monolayers of charge-stabilized colloidal spheres confined by parallel glass surfaces. The configurational and hyperconfigurational temperatures, together with a nove...

  9. Space-charge-limited current in DNA-surfactant complex

    Science.gov (United States)

    Chen, I.-Ching; Lin, Ting-Yu; Hung, Yu-Chueh

    2013-03-01

    In recent years, deoxyribonucleic acid (DNA) biopolymers have attracted much research attention and been considered as a promising material when being employed in many optoelectronic devices. Since performance of many DNA biopolymer-based devices relies on carrier transport, it is crucial to study the carrier mobility of these DNA-surfactant complexes for practical implement. In this work, we present hole mobility characterization of cetyltrimethylammonium (CTMA)-modified DNA biopolymer by using space-charge-limited current (SCLC) method. Devices were fabricated using a sandwich structure with a buffer layer of MoO3 to enhance hole injection and achieve ohmic contact between the anode and the DNA layer. Current-voltage (I-V) curves of the devices were analyzed. A trap-free SCLC behavior can ultimately be achieved and a quadratic dependence in I-V curve was observed. With increasing electric field, a positive field-dependent mobility was demonstrated. The correlation between mobility and temperature was also investigated and a positive relation was found. The characterization results can be further utilized for DNA-based device design and applications.

  10. Measurement of the $Z/A$ dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topaksu, A; Van Dantzig, R; De Jong, M; Konijn, J; Melzer, O; Oldeman, R G C; Pesen, E; Van der Poel, C A F J; Spada, F R; Visschers, J L; Güler, M; Serin-Zeyrek, M; Kama, S; Sever, R; Tolun, P; Zeyrek, M T; Armenise, N; Catanesi, M G; De Serio, M; Ieva, M; Muciaccia, M T; Radicioni, E; Simone, S; Bülte, A; Winter, Klaus; El-Aidi, R; Van de Vyver, B; Vilian, P; Wilquet, G; Saitta, B; Di Capua, E; Ogawa, S; Shibuya, H; Artamonov, A V; Brunner, J; Chizhov, M; Cussans, D G; Doucet, M; Fabre, Jean-Paul; Hristova, I R; Kawamura, T; Kolev, D; Litmaath, M; Meinhard, H; Panman, J; Papadopoulos, I M; Ricciardi, S; Rozanov, A; Saltzberg, D; Tsenov, R V; Uiterwijk, J W E; Zucchelli, P; Goldberg, J; Chikawa, M; Arik, E; Song, J S; Yoon, C S; Kodama, K; Ushida, N; Aoki, S; Hara, T; Delbar, T; Favart, D; Grégoire, G; Kalinin, S; Makhlyoueva, I V; Gorbunov, P; Khovanskii, V D; Shamanov, V V; Tsukerman, I; Bruski, N; Frekers, D; Rondeshagen, D; Wolff, T; Hoshino, K; Kawada, J; Komatsu, M; Miyanishi, M; Nakamura, M; Nakano, T; Narita, K; Niu, K; Niwa, K; Nonaka, N; Sato, O; Toshito, T; Buontempo, S; Cocco, A G; D'Ambrosio, N; De Lellis, G; De Rosa, G; Di Capua, F; Ereditato, A; Fiorillo, G; Marotta, A; Messina, M; Migliozzi, P; Pistillo, C; Santorelli, R; Scotto-Lavina, L; Strolin, P; Tioukov, V; Nakamura, K; Okusawa, T; Dore, U; Loverre, P F; Ludovici, L; Maslennikov, A L; Righini, P; Rosa, G; Santacesaria, R; Satta, A; Barbuto, E; Bozza, C; Grella, G; Romano, G; Sirignano, C; Sorrentino, S; Sato, Y; Tezuka, I

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu_mu + N -> mu^- + X. The targets, passive blocks of ~100kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematics effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio.

  11. Measurement of the Z/A dependence of neutrino charged-current total cross-sections

    CERN Document Server

    Kayis-Topasku, A; Dantzig, R V

    2003-01-01

    A relative measurement of total cross-sections is reported for polyethylene, marble, iron, and lead targets for the inclusive charged-current reaction nu submu + N -> mu sup - + X. The targets, passive blocks of propor to 100 kg each, were exposed simultaneously to the CERN SPS wide-band muon-neutrino beam over a period of 18 weeks. Systematic effects due to differences in the neutrino flux and detector efficiency for the different target locations were minimised by changing the position of the four targets on their support about every two weeks. The relative neutrino fluxes on the targets were monitored within the same experiment using charged-current interactions in the calorimeter positioned directly downstream of the four targets. From a fit to the Z/A dependence of the total cross-sections a value is deduced for the effective neutron-to-proton cross-section ratio. (orig.)

  12. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Arevalo, A.A.; /Mexico U., CEN; Anderson, C.E.; /Yale U.; Bazarko, A.O.; /Princeton U.; Brice, S.J.; /Fermilab; Brown, B.C.; /Fermilab; Bugel, L.; /Columbia U.; Cao, J.; /Michigan U.; Coney, L.; /Columbia U.; Conrad, J.M.; /MIT; Cox, D.C.; /Indiana U.; Curioni, A.; /Yale U. /Columbia U.

    2010-02-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ({sigma}[E{sub {nu}}]) and the single differential cross section (d{sigma}/dQ{sup 2}) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.

  13. Implications of current constraints on parton charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Londergan; A. W. Thomas

    2005-11-01

    For the first time, charge symmetry breaking terms in parton distribution functions have been included in a global fit to high energy data. We review the results obtained for both valence and sea quark charge symmetry violation and compare these results with the most stringent experimental upper limits on charge symmetry violation for parton distribution functions, as well as with theoretical estimates of charge symmetry violation. The limits allowed in the global fit would tolerate a rather large violation of charge symmetry. We discuss the implications of this for various observables, including extraction of the Weinberg angle in neutrino DIS and the Gottfried and Adler sum rules.

  14. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  15. Current and noise in interacting quantum pumps

    OpenAIRE

    Riwar, Roman-Pascal

    2013-01-01

    This thesis is a theoretical study of the current and zero-frequency noise through interacting quantum systems coupled to reservoirs. We investigate the electron transport between system and reservoirs, when both the system and (possibly) the reservoirs are subject to an external time-dependent driving. We focus on systems so small that the confinement gives rise to quantised energy levels, and quantum coherences become important in order to describe the transport. If only very few levels par...

  16. Polyelectrolyte (PE) induced interactions between Charged and zwitterionic Colloids

    Science.gov (United States)

    Pryamitsyn, Victor; Ganesan, Venkat

    2014-03-01

    A numerical self-consistent field (SCF) theory approach was developed for studying mixture of polyelectrolytes with charged and uncharged nanoparticles. Such an approach was used to analyze within the mean-field limit the polyelectrolyte-mediated effective interactions between the particles. The system considered allows for the local PE and particle charges to be defined by the local concentration of ionizable on groups on the particles and polyelectrolytes, ambient conditions like pH and the local electrostatic potential. Calculation of the free energy of a system of one, two and three particles in the polyelectrolyte solution allowdd us to calculate the particle insertion free energy, two and three body particle-particle interactions as a function of the properties of solution, polymer-particle interactions and the particle size. For the situation involving acidic PE and a base type positively charged particles, the PE mediated particle-particle interaction is purely repulsive for the larger particle-particle distances at low polymer concentrations. At short-particle particle distances and/or higher polyelectrolyte concentrations the particle-particle interaction becomes a depletion-type attraction. For Zwitterionic positively chaged paticles particles we have found a a range

  17. Charge-Transfer Interactions in Organic Functional Materials

    Directory of Open Access Journals (Sweden)

    Bih-Yaw Jin

    2010-08-01

    Full Text Available Our goal in this review is three-fold. First, we provide an overview of a number of quantum-chemical methods that can abstract charge-transfer (CT information on the excited-state species of organic conjugated materials, which can then be exploited for the understanding and design of organic photodiodes and solar cells at the molecular level. We stress that the Composite-Molecule (CM model is useful for evaluating the electronic excited states and excitonic couplings of the organic molecules in the solid state. We start from a simple polyene dimer as an example to illustrate how interchain separation and chain size affect the intercahin interaction and the role of the charge transfer interaction in the excited state of the polyene dimers. With the basic knowledge from analysis of the polyene system, we then study more practical organic materials such as oligophenylenevinylenes (OPVn, oligothiophenes (OTn, and oligophenylenes (OPn. Finally, we apply this method to address the delocalization pathway (through-bond and/or through-space in the lowest excited state for cyclophanes by combining the charge-transfer contributions calculated on the cyclophanes and the corresponding hypothetical molecules with tethers removed. This review represents a step forward in the understanding of the nature of the charge-transfer interactions in the excited state of organic functional materials.

  18. Interaction modes between asymmetrically and oppositely charged rods.

    Science.gov (United States)

    Antila, Hanne S; Van Tassel, Paul R; Sammalkorpi, Maria

    2016-02-01

    The interaction of oppositely and asymmetrically charged rods in salt-a simple model of (bio)macromolecular assembly-is observed via simulation to exhibit two free energy minima, separated by a repulsive barrier. In contrast to similar minima in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the governing mechanism includes electrostatic attraction at large separation, osmotic repulsion at close range, and depletion attraction near contact. A model accounting for ion condensation and excluded volume is shown to be superior to a mean-field treatment in predicting the effect of charge asymmetry on the free-energy profile. PMID:26986372

  19. Discrete solvent effects on the effective interaction between charged colloids

    CERN Document Server

    Allahyarov, E

    2000-01-01

    Using computer simulations of two charged colloidal spheres with their counterions in a hard sphere solvent, we show that the granular nature of the solvent significantly influences the effective colloidal interaction. For divalent counterions, the total effective force can become attractive generated by counterion hydration, while for monovalent counterions the forces are repulsive and well-described by a solvent-induced colloidal charge renormalization. Both effects are not contained in the traditional "primitive" approaches but can be accounted for in a solvent-averaged primitive model.

  20. Interaction modes between asymmetrically and oppositely charged rods.

    Science.gov (United States)

    Antila, Hanne S; Van Tassel, Paul R; Sammalkorpi, Maria

    2016-02-01

    The interaction of oppositely and asymmetrically charged rods in salt-a simple model of (bio)macromolecular assembly-is observed via simulation to exhibit two free energy minima, separated by a repulsive barrier. In contrast to similar minima in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the governing mechanism includes electrostatic attraction at large separation, osmotic repulsion at close range, and depletion attraction near contact. A model accounting for ion condensation and excluded volume is shown to be superior to a mean-field treatment in predicting the effect of charge asymmetry on the free-energy profile.

  1. Interaction modes between asymmetrically and oppositely charged rods

    Science.gov (United States)

    Antila, Hanne S.; Van Tassel, Paul R.; Sammalkorpi, Maria

    2016-02-01

    The interaction of oppositely and asymmetrically charged rods in salt—a simple model of (bio)macromolecular assembly—is observed via simulation to exhibit two free energy minima, separated by a repulsive barrier. In contrast to similar minima in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the governing mechanism includes electrostatic attraction at large separation, osmotic repulsion at close range, and depletion attraction near contact. A model accounting for ion condensation and excluded volume is shown to be superior to a mean-field treatment in predicting the effect of charge asymmetry on the free-energy profile.

  2. Congestion charging mechanisms for roads : an evaluation of current practice

    OpenAIRE

    Hau, Timothy D.

    1992-01-01

    The author explores 20 criteria for a good road pricing system and presents case studies illustrating the costs, revenues, and benefits of alternative congestion charging mechanisms. The author finds that manual tollbooths are not suitable for congestion charging because they are land-, labor-, and time-intensive. Cordon pricing (as in the Bergen toll ring) can be an effective instrument for charging for congestion if half the toll lanes are reserved for seasonal pass holders traveling throug...

  3. Layer Charge of Clay Minerals; Selected papers from the Symposium on Current Knowledge on the Layer Charge of Clay Minerals

    Science.gov (United States)

    This Special issue contains papers based on the contributions presented during the workshop “Current Knowledge on the Layer Charge of Clay Minerals”, held on September 18 and 19, 2004, in the Smolenice Castle, Slovakia. Layer charge is one of the most important characteristics of clay minerals as it...

  4. Aggregation in charged nanoparticles solutions induced by different interactions

    Science.gov (United States)

    Abbas, S.; Kumar, Sugam; Aswal, V. K.; Kohlbrecher, J.

    2016-05-01

    Small-angle neutron scattering (SANS) has been used to study the aggregation of anionic silica nanoparticles as induced through different interactions. The nanoparticle aggregation is induced by addition of salt (NaCl), cationic protein (lysozyme) and non-ionic surfactant (C12E10) employing different kind of interactions. The results show that the interaction in presence of salt can be explained using DLVO theory whereas non-DLVO forces play important role for interaction of nanoparticles with protein and surfactant. The presence of salt screens the repulsion between charged nanoparticles giving rise to a net attraction in the DLVO potential. On the other hand, strong electrostatic attraction between nanoparticle and oppositely charged protein leads to protein-mediated nanoparticle aggregation. In case of non-ionic surfactant, the relatively long-range attractive depletion interaction is found to be responsible for the particle aggregation. Interestingly, the completely different interactions lead to similar kind of aggregate morphology. The nanoparticle aggregates formed are found to have mass fractal nature having a fractal dimension (~2.5) consistent with diffusion limited type of fractal morphology in all three cases.

  5. DLVO theory for like-charged polyelectrolyte and surface interactions

    International Nuclear Information System (INIS)

    The mechanism of adsorption of charged polymers onto like-charged surfaces has been a matter of debates in recent years. We propose a mean-field theory for the interactions of like-charged polyelectrolyte and a plane surface in the presence of 1:1 and 2:1 electrolyte, which takes into account long-range van der Waals and double-layer forces. The theory is able to predict the optimum conditions, such as solvent composition, pH and temperature, for polyelectrolyte adsorption on like-charged surfaces as well as to account for the conformational properties of a polymer at the surfaces. An excellent agreement of the predictions of the theory with the available experimental data suggests that it can be used as a simple tool for predicting the optimum conditions for studying various polyelectrolyte properties, including their biological activity, at the surfaces. Particularly simple expressions for the polymer/surface interaction energy have been obtained in the Debye-Huckel limit. The applicability of this approximation to the biological molecules at the surfaces is discussed

  6. Improved Interaction Potentials for Charged Residues in Proteins

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2008-01-01

    Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self-consistent, exper......Electrostatic interactions dominate the structure and free energy of biomolecules. To obtain accurate free energies involving charged groups from molecular simulations, OPLS-AA parameters have been reoptimized using Monte Carlo free energy perturbation. New parameters fit a self......-consistent, experimental set of hydration free energies for acetate (Asp), propionate (Glu), 4-methylimidazolium (Hip), n-butylammonium (Lys), and n-propylguanidinium (Arg), all resembling charged residue side chains, including -carbons. It is shown that OPLS-AA free energies depend critically on the type of water model...... setup (MAEs of ca. 1 kcal/mol) and noise from simulations (ca. 1 kcal/mol). The latter error of ~1 kcal/mol contrasts MAEs from standard OPLS-AA of up to 13 kcal/mol for the entire series of charged residues or up to 5 kcal/mol for the cationic series Lys, Arg, and Hip. The new parameters can be used...

  7. PTCDA chemisorbed on Ag(110): Dispersion interactions and charge equilibration

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Reinhard [Walter Schottky Institut, TU Muenchen (Germany); Abbasi, Afshin [Institut fuer Physik, TU Chemnitz (Germany)

    2009-07-01

    The chemisorption of PTCDA on Ag(110) is analysed with 2{sup nd} order Moeller-Plesset perturbation theory (MP2), accounting therefore for the main part of the dispersion interactions at an ab initio level. Irrespective of the size of the rigid silver cluster used as a substrate model, the optimized geometry consists of a nearly flat perylene core, surrounded by carboxylic oxygens closer to the substrate, but with anhydride atoms at a larger height. The charge equilibration between adsorbate and substrate involves charge injection from the oxygen atoms into the substrate, and back transfer of two electrons into the former LUMO of the free molecule. Surprisingly, the resulting negative charge of the adsorbate has a very small contribution in the core region where the main part of the LUMO is localized, but instead accumulates on the end groups. It can be shown in detail that a rehybridization of molecular {sigma} and {pi} states results in a decoupling of several {pi} states on the oxygen atoms from the aromatic core, as opposed to the free molecule, where the {pi} states delocalize over the entire molecule. These decoupled {pi} states on the end groups are forming the binding Ag-O orbitals injecting electronic charge from the molecule into the substrate. Compared to the dominating mechanisms discussed above, the hybridization between orbitals in the core region and the underlying substrate plays only a minor role for the charge balance.

  8. Interaction of a Magnet and a Point Charge: Unrecognized Internal Electromagnetic Momentum Eliminates the Myth of Hidden Mechanical Momentum

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    A model calculation using the Darwin Lagrangian is carried out for a magnet consisting of two current-carrying charges constrained by centripetal forces to move in a circular path in the presence of the electric field from a distant external point charge. In the limit that the magnet's two charges are non-interacting, the calculation recovers the only valid calculation for hidden mechanical momentum. However, if the magnet's charges are mutually interacting, then there is internal electromagnetic linear momentum associated with the perturbed magnet's electrostatic charge distribution and the motion of the magnet's charges. This internal electromagnetic momentum does not seem to be recognized as distinct from the familiar external electromagnetic momentum associated with the electric field of the external charge and the magnetic field of the unperturbed magnet. In the multiparticle limit, the hidden mechanical momentum becomes negligible while the internal electromagnetic momentum provides the compensating lin...

  9. Investigations of interactions mediated by neutral currents

    International Nuclear Information System (INIS)

    The report is devoted to four-fermion interactions mediated by the neutral currents. The results from the second phase of LEP are presented, when the production of two massive bosons was possible with the increased energy of the e+e- collisions. It enabled for a direct test of nonabelian structure of the electroweak theory. The results concern the four-fermion production of the pairs of the ZZ bosons, single Z and Zγ* production as well as search for anomalous gauge bosons couplings. The large part of the report is devoted to experimental techniques, physics analyses and discussion of results. (author)

  10. Conformational transformations induced by the charge-curvature interaction

    OpenAIRE

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W. J.

    2005-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacter...

  11. Time dependence of the average charge and current in a dissipative mesoscopic circuit

    Institute of Scientific and Technical Information of China (English)

    嵇英华; 雷敏生; 欧阳楚英

    2002-01-01

    Taking into consideration the interactions between electrons and phonons, we have studied the temporal evolutionof the average charge and current in a dissipative mesoscopic RLC circuit. Our results show that a mesoscopic RLCcircuit can be treated as an interactive system between an electromagnetic harmonic oscillator and many lattice harmonicoscillators; this is called the bathing of the harmonic oscillators. The results also show that the quantum equation ofmotion of the linear mesoscopic RLC circuit is identical in form to its classical equation of motion, the only differencebetween them being their respective meanings.In order to thoroughly study the quantum properties of a dissipativemesoscopic circuit, we have to consider not only; the electromagnetic energy of the circuit, but also the crystal latticevibration energy and the interactive energy between electrons and phonons.

  12. Self-interaction effects on charge-transfer collisions

    CERN Document Server

    Quashie, Edwin E; Andrade, Xavier; Correa, Alfredo A

    2016-01-01

    In this article, we investigate the role of the self-interaction error in the simulation of collisions using time-dependent density functional theory (TDDFT) and Ehrenfest dynamics. We compare many different approximations of the exchange and correlation potential, using as a test system the collision of $\\mathrm{H^+ + CH_4}$ at $30~\\mathrm{eV}$. We find that semi-local approximations, like PBE, and even hybrid functionals, like B3LYP, produce qualitatively incorrect predictions for the scattering of the proton. This discrepancy appears because the self-interaction error allows the electrons to jump too easily to the proton, leading to radically different forces with respect to the non-self-interacting case. From our results, we conclude that using a functional that is self-interaction free is essential to properly describe charge-transfer collisions between ions and molecules in TDDFT.

  13. Measurement of the Muon Neutrino Inclusive Charged Current Cross Section on Iron using the MINOS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Loiacono, Laura Jean [Univ. of Texas, Austin, TX (United States)

    2010-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermi National Accelerator Laboratory (FNAL) produces an intense muon neutrino beam used by the Main Injector Neutrino Oscillation Search (MINOS), a neutrino oscillation experiment, and the Main INjector ExpeRiment v-A, (MINERv A), a neutrino interaction experiment. Absolute neutrino cross sections are determined via σv = N vv , where the numerator is the measured number of neutrino interactions in the MINOS Detector and the denominator is the flux of incident neutrinos. Many past neutrino experiments have measured relative cross sections due to a lack of precise measurements of the incident neutrino flux, normalizing to better established reaction processes, such as quasielastic neutrino-nucleon scattering. But recent measurements of neutrino interactions on nuclear targets have brought to light questions about our understanding of nuclear effects in neutrino interactions. In this thesis the vμ inclusive charged current cross section on iron is measured using the MINOS Detector. The MINOS detector consists of alternating planes of steel and scintillator. The MINOS detector is optimized to measure muons produced in charged current vμ interactions. Along with muons, these interactions produce hadronic showers. The neutrino energy is measured from the total energy the particles deposit in the detector. The incident neutrino flux is measured using the muons produced alongside the neutrinos in meson decay. Three ionization chamber monitors located in the downstream portion of the NuMI beamline are used to measure the muon flux and thereby infer the neutrino flux by relation to the underlying pion and kaon meson flux. This thesis describes the muon flux instrumentation in the NuMI beam, its operation over the two year duration of this measurement, and the techniques used to derive the neutrino flux.

  14. Interaction of low-energy highly charged ions with matter

    International Nuclear Information System (INIS)

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  15. Design of a CMOS Adaptive Charge Pump with Dynamic Current Matching

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0.25 μm 2.5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.

  16. The role of meson exchange currents in charged current (anti)neutrino-nucleus scattering

    CERN Document Server

    Barbaro, M B; Caballero, J A; De Pace, A; Donnelly, T W; Megias, G D; Simo, I Ruiz

    2016-01-01

    We present our recent progress in the description of neutrino-nucleus interaction in the GeV region, of interest for ongoing and future oscillation experiments. In particular, we discuss the weak excitation of two-particle-two-hole states induced by meson exchange currents in a fully relativistic framework. We compare the results of our model with recent measurements of neutrino scattering cross sections, showing the crucial role played by two-nucleon knockout in the interpretation of the data.

  17. Neutrino induced charged-current coherent $\\rho$ production

    CERN Document Server

    ,

    2013-01-01

    We present the latest results of coherent $\\rho$ (Coh$\\rho$) production using the large data set collected by the NOMAD detector in which the momenta, charges, and photons are precisely measured. We discuss the application of using Coh$\\rho$ process to constrain the neutrino flux with the proposed Long-Baseline Neutrino Experiment Near Detector, the high resolution Straw Tube Tracker.

  18. Charged-current neutrino-nucleus reactions within the SuSAv2-MEC approach

    CERN Document Server

    Megias, G D; Barbaro, M B; Caballero, J A; Donnelly, T W; Simo, I Ruiz

    2016-01-01

    We present a detailed study of charged-current (CC) neutrino-nucleus reactions in a fully relativis- tic framework and comparisons with recent experiments spanning an energy range from hundreds of MeV up to 100 GeV within the SuperScaling Approach, which is based on the analysis of electron- nucleus scattering data and has been recently improved with the inclusion of Relativistic Mean Field theory effects. We also evaluate and discuss the impact of two-particle two-hole meson-exchange currents (2p-2h MEC) on neutrino-nucleus interactions through the analysis of two-particle two-hole axial and vector contributions to weak response functions in a fully relativistic Fermi gas. The results show a fairly good agreement with experimental data over the whole range of neutrino energies.

  19. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  20. On the self-induced charge currents in electromagnetic materials and its effects in the torsion balance experiment

    CERN Document Server

    Shen, J Q

    2003-01-01

    We concern ourselves with the self-induced charge currents in electromagnetic materials and some related topics on its effects in the present paper. The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is briefly discussed. We concentrate primarily on the torque, which is caused by the interaction of self-induced charge currents in dilute plasma with interstellar magnetic fields, acting on the torsion balance in the torsion balance experiment. It is shown by our evaluation that the muons and alpha-particles in secondary cosmic rays will contribute an effective rest mass about 10^{-54} Kg to the photon, which is compared to the newly obtained upper limit on photon rest mass in Luo's rotating torsion balance experiment.

  1. Interactions and self assembly of two heterogeneously charged surfaces

    Science.gov (United States)

    Brewster, Robert; Pincus, Philip; Safran, Samuel

    2008-03-01

    Recent experiments^1,2 have measured attractive interactions between two surfaces that each bear two molecular species with opposite charge. Theoretical considerations predict equilibrium finite-sized domains of each species, consistent with experiment. These domains, whose observed sizes are typically tens of nanometers, are the result of a balance between the line tension, which prefers macroscopic separation, and the electrostatics, which prefers mixing. Additionally, two such surfaces show a long range attraction. We present a theoretical model that predicts the domain size, phase behavior and forces for two such interacting surfaces. * * (1) E. E. Meyer, Q. Lin, T. Hassenkam, E. Oroudjev, J. N. Israelachvili PNAS 102, 6839 (2005). * (2) S. Perkin, N. Kampf, J. Klein, Phys. Rev. Lett. 96, 038301 (2006).

  2. Charged Σ hyperon production by K- meson interactions at rest

    International Nuclear Information System (INIS)

    Bubble chamber pictures have been scanned for the interactions of stopping K- mesons in hydrogen. New determinations of the ratios γ=K-p→Σ-π+/K-p→Σ+π-, Rsub(c)=K-p→charged particles/K-p→all final states, for K- meson interactions at rest, are presented, as well as the branching ratio B=Σ+→nπ+/Σ+→π+, pπ0. The values found for Rsub(c), 0.664+-0.011, and for B, 0.488+-0.008, are in agreement with previous results. On the other hand, two values, resulting from different methods of analysis, have been found for γ, namely 2.38+-0.04 and 2.35+-0.07. They agree with one of the two previous precise measurements but are inconsistent with the other. (Auth.)

  3. Development of Capacitor Charging Supply Based on Constant Current Technique

    Institute of Scientific and Technical Information of China (English)

    YANG; Jing-he; ZHANG; Li-feng; YANG; Sheng; TONG; Xun-hua; YU; Guo-long

    2013-01-01

    As the pulse power supply in electron linear accelerator,the line-type pulse modulator is used to produce the high voltage pulse which come into being when the pulse forming net(PFN)is discharged.The frequency and stability is related to the PFN charging system.The breakthrough in high power switch devices makes it possible that applying switch devices are into pulse power field.In line-type high voltage

  4. Information parameters for realization of adaptive charge of secondary chemical sources of a current

    Directory of Open Access Journals (Sweden)

    Zhitnik N. E.

    2008-10-01

    Full Text Available A chrono-potentiometric method of control of the state of chemical sources of current (CSC is offered. The method allows from chrono-potentiogram (CPG, representing CSC reaction on the charge current impulse, to get practically all informative parameters, necessary for practical realization of adaptive charge.

  5. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    Science.gov (United States)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  6. Nonrelativistic derivation of the charge current of the Pauli equation using velocity operators

    International Nuclear Information System (INIS)

    There is a single procedure, using velocity operators, for finding the charge current for both the Schroedinger and Dirac equations. However, this procedure is not directly applicable to the derivation of the charge current of the Pauli theory, which is usually carried out via non-relativistic approximation of the Dirac current. It is shown how the canonical velocity operator method does lead to the current of the Pauli theory when applied to a spin model of Bopp and Haag

  7. Charge Interactions of Unilamellar Vesicles in Aqueous Suspensions

    Science.gov (United States)

    Park, Seongmin; Junio, Joseph; Kim, Mahn-Won; Ou-Yang, H. D.

    2009-03-01

    This project reports the results of an experimental optical trapping study of the charge interactions between phosphor-lipid unilamellar vesicles. A 1064nm laser coupled into a high NA objective lens provided the optical trap. Using fluorescently labeled vesicles, we were able to monitor the particle number density by using a 532nm excitation beam aligned to be parfocal with the trapping beam through the same objective. Fluorescent signals from the focal region common to both beams were band-passed to a pinhole for confocal detection. Using the number density of the vesicles in the focal spot as a function of trapping intensity and a force balance model, we were able to calculate the effective trapping energy per vesicle as well as the osmotic virial coefficients for a system of lipid vesicles prepared with DOPG, cholesterol, and DiI. We measured the compressibility of these vesicle suspensions as a function of surface charge and ionic strength of the suspending medium. Compared to conventional scattering methods, this optical trapping method is advantageous, since it can be used for concentrated suspensions, yielding an in situ measurement of colloidal interactions.

  8. Effects of space charge on the current-voltage characteristics of field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.L.; Zaidman, E.G.; Kodis, M.A. [Naval Research Laboratory, Washington, District of Columbia. 20375 (United States)

    1997-02-01

    Field emitter arrays are microfabricated very high electron current density sources. For rf amplifier applications, typical current densities are typically on the order of 100Amps/cm{sup 2}. Unlike thermionic emitters, the current densities at the emission sites on field emitters can approach 10{sup 8}Amps/cm{sup 2} at high fields. Consequently, the high current from the array can affect the I(V) characterization of the emitters. In this manuscript, we use a simple model of a field emitter to calculate the one dimensional space charge effects on the current versus gate voltage characteristics. Two effects are treated: charge between the gate and anode, and charge within the FEA unit cell, which gives rise to a new space charge component. It is shown that space charge effects can taint the Fowler Nordheim parametrization of field emitters and consequently affect the estimates of their transconductance. {copyright} {ital 1997 American Institute of Physics.}

  9. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  10. Anti-Neutrino Charged Current Quasi-Elastic Scattering in MINER$\

    Energy Technology Data Exchange (ETDEWEB)

    Chvojka, Jesse John [Univ. of Rochester, NY (United States)

    2012-01-01

    The phenomenon of neutrino oscillation is becoming increasingly understood with results from accelerator-based and reactor-based experiments, but unanswered questions remain. The proper ordering of the neutrino mass eigenstates that compose the neutrino avor eigenstates is not completely known. We have yet to detect CP violation in neutrino mixing, which if present could help explain the asymmetry between matter and anti-matter in the universe. We also have not resolved whether sterile neutrinos, which do not interact in any Standard Model interaction, exist. Accelerator-based experiments appear to be the most promising candidates for resolving these questions; however, the ability of present and future experiments to provide answers is likely to be limited by systematic errors. A significant source of this systematic error comes from limitations in our knowledge of neutrino-nucleus interactions. Errors on cross-sections for such interactions are large, existing data is sometimes contradictory, and knowledge of nuclear effects is incomplete. One type of neutrino interaction of particular interest is charged current quasi-elastic (CCQE) scattering, which yields a final state consisting of a charged lepton and nucleon. This process, which is the dominant interaction near energies of 1 GeV, is of great utility to neutrino oscillation experiments since the incoming neutrino energy and the square of the momentum transferred to the final state nucleon, Q2, can be reconstructed using the final state lepton kinematics. To address the uncertainty in our knowledge of neutrino interactions, many experiments have begun making dedicated measurements. In particular, the MINER A experiment is studying neutrino-nucleus interactions in the few GeV region. MINERvA is a fine-grained, high precision, high statistics neutrino scattering experiment that will greatly improve our understanding of neutrino cross-sections and nuclear effects that affect the final state particles

  11. Precision test of charge independence of hadronic interactions

    International Nuclear Information System (INIS)

    Broken symmetries are among the richest sources of information about the fundamental interactions: the renewed interest in the study of isospin non-conservation by strong forces is closely related to the effort of understanding some properties of nuclear systems in terms of their basic degrees of freedom. The hope is to be able to relate the pattern of the dynamical breaking of this symmetry to the mass spectrum of light quarks: to this purpose a more detailed phenomenological knowledge must be provided by a new generation of experiments. These considerations motivated a precision test of charge independence of strong nuclear interactions through a measurement of the parameters ΔA/sub y/0(θ) = A/sub y/0(θ,3H) - A/sub y/0(θ,3He), (the difference in analyzing power), and R identical with dσ(θ3H)/dσ(θ,3He) for the two reactions: vector p + d → 3H + π+, vector p + d → 3He + π0. The observable ΔA/sub y/0 is particularly relevant as it probes the spin dependent term of the symmetry breaking interaction, on which so far almost no empirical evidence is available. The experiment has been performed at the Los Alamos Meson Physics Facility, using the N-type polarized proton beam (T/sub vector p/ = 733 MeV), and detecting the charged heavy particle in the HRS magnetic spectrometer. The final results are: ΔA/sub y/0 = A/sub y/0(3H) - A/sub y/0(3He) = 0.3930 - 0.3996 = -0.0066 +- 0.0040 +- (0.0018) and R = 2.193 +- 0.007 +- (0.027), where the first errors are statistical and the second systematic. 107 refs., 23 tabs., 63 figs

  12. Effect of interjunction coupling on superconducting current and charge correlations in intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Hamdipour, M.; Kolahchi, M. R.

    2009-07-01

    Charge formations on superconducting layers and creation of the longitudinal plasma wave in the stack of intrinsic Josephson junctions change crucially the superconducting current through the stack. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers allows us to predict the additional features in the current-voltage characteristics. The charge autocorrelation functions clearly demonstrate the difference between harmonic and chaotic behavior in the breakpoint region. Use of the correlation functions gives us a powerful method for the analysis of the current-voltage characteristics of coupled Josephson junctions.

  13. Ohmic contact and space-charge-limited current in molybdenum oxide modified devices

    Science.gov (United States)

    Lü, Zhaoyue; Deng, Zhenbo; Zheng, Jianjie; Zou, Ye; Chen, Zheng; Xu, Denghui; Wang, Yongsheng

    2009-10-01

    The effect of indium-tin oxide (ITO) surface treatment on hole injection of devices with molybdenum oxide (MoO 3) as a buffer layer on ITO was studied. The Ohmic contact is formed at the metal/organic interface due to high work function of MoO 3. Hence, the current is due to space charge limited when ITO is positively biased. The hole mobility of N, N‧-bis-(1-napthyl)-N, N‧-diphenyl-1, 1‧biphenyl-4, 4‧-diamine (NPB) at various thicknesses (100-400 nm) has been estimated by using space-charge-limited current measurements. The hole mobility of NPB, 1.09×10 -5 cm 2/V s at 100 nm is smaller than the value of 1.52×10 -4 cm 2/V s at 400 nm at 0.8 MV/cm, which is caused by the interfacial trap states restricted by the surface interaction. The mobility is hardly changed with NPB thickness for the effect of interfacial trap states on mobility which can be negligible when the thickness is more than 300 nm.

  14. Probing Interactions at the Nanoscale by Ion Current through Nanopores and Nanovoids

    Science.gov (United States)

    Gamble, Trevor Patrick

    Polymer nanopores offer themselves as excellent test beds for study of phenomena that occur on the nano-scale, such as Debye layer formation, surface charge modulation, current saturation, and rectification. Studying ions interactions within the Debye layer, for example, is not possible on the micro-scale, where the pore diameter can be 100 times the size of the zone where interactions of interest occur. However, in our nanopores with an opening diameter less than 10 nm, a slight change of the Debye length can lead to drastic changes of the recorded ion current. Here we present our nanopores' use as a tool to study geometrical and electrochemical properties of porous manganese oxide. There is great value in studying nano-scale properties of this material because of its importance in lithium ion batteries and newly developed nano-architectures within supercapacitors. We electrodeposited manganese oxide wires into our cylindrical nanopores, filling them completely. In this use, nanopores became a template to probe properties of the embedded material such as surface charge, ion selectivity, and porosity. This information was then reported to the Energy Frontier Research Center (EFRC) collaboration, so that other groups can incorporate these recently discovered characteristics into future their nano-architecture design. Additionally, we constructed conical nanopores to study interactions between the surface charges found on the walls and alkali metal ions. In particular we looked at lithium, as it is the electrochemically active ion during charge cycling in EFRC energy storage devices. We attempted to reveal lithium ion's affinity to bind to surface charges. We found this binding led to lowering of the effective surface charge of the pore walls, while also decreasing lithium's ability to move through channels or voids that have charged walls. In connection to manganese oxide, a porous, charged material with voids, information on lithium's interaction with these charges

  15. Coarse-grained simulations of charge, current and flow in heterogeneous media

    NARCIS (Netherlands)

    B. Rotenberg; I. Pagonabarraga; D. Frenkel

    2010-01-01

    We present a coarse-grained simulation method for complex charged systems. This mesoscopic model couples a hydrodynamic description to a free energy functional accounting for the interactions between solvent(s) and charged solutes. It is implemented in a hybrid lattice-based algorithm, whereby the e

  16. Maximum time-dependent space-charge limited diode currents

    Energy Technology Data Exchange (ETDEWEB)

    Griswold, M. E. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Fisch, N. J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-01-15

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  17. Maximum time-dependent space-charge limited diode currents

    Science.gov (United States)

    Griswold, M. E.; Fisch, N. J.

    2016-01-01

    Recent papers claim that a one dimensional (1D) diode with a time-varying voltage drop can transmit current densities that exceed the Child-Langmuir (CL) limit on average, apparently contradicting a previous conjecture that there is a hard limit on the average current density across any 1D diode, as t → ∞, that is equal to the CL limit. However, these claims rest on a different definition of the CL limit, namely, a comparison between the time-averaged diode current and the adiabatic average of the expression for the stationary CL limit. If the current were considered as a function of the maximum applied voltage, rather than the average applied voltage, then the original conjecture would not have been refuted.

  18. Adler-type sum rule, charge symmetry and neutral current in general multi-triplet model

    International Nuclear Information System (INIS)

    We derive Adler-type sum rule extended to general multi-triplet model. Paying attention to roles of the colour degree of freedom, we discuss the charge symmetry property of the weak charged current and the structure functions for ν(ν-)+N→l(l-)+X, and also the structure of the neutral current. A comment is given on implications in our theory of Koike and Konuma's result on the neutral hadronic current. (auth.)

  19. Electrostatic interactions in charged nanoslits within an explicit solvent theory

    International Nuclear Information System (INIS)

    Within a dipolar Poisson–Boltzmann theory including electrostatic correlations, we consider the effect of explicit solvent structure on solvent and ion partition confined to charged nanopores. We develop a relaxation scheme for the solution of this highly non-linear integro-differential equation for the electrostatic potential. The scheme is an extension of the approach previously introduced for simple planes (Buyukdagli and Blossey 2014 J. Chem. Phys. 140 234903) to nanoslit geometry. We show that the reduced dielectric response of solvent molecules at the membrane walls gives rise to an electric field significantly stronger than the field of the classical Poisson–Boltzmann equation. This peculiarity associated with non-local electrostatic interactions results in turn in an interfacial counterion adsorption layer absent in continuum theories. The observation of this enhanced counterion affinity in the very close vicinity of the interface may have important impacts on nanofluidic transport through charged nanopores. Our results indicate the quantitative inaccuracy of solvent implicit nanofiltration theories in predicting the ionic selectivity of membrane nanopores. (paper)

  20. First Measurement of Muon Neutrino Charged Current Quasielastic (CCQE) Double Differential Cross Section

    Energy Technology Data Exchange (ETDEWEB)

    Katori, Teppei; /MIT, LNS

    2009-09-01

    Using a high statistics sample of muon neutrino charged current quasielastic (CCQE) events, we report the first measurement of the double differential cross section (d{sup 2}{sigma}/dT{sub {mu}}d cos {theta}{sub {mu}}) for this process. The result features reduced model dependence and supplies the most complete information on neutrino CCQE scattering to date. Measurements of the absolute cross section as a function of neutrino energy ({sigma}[E{sub v}{sup QE,RFG}]) and the single differential cross section (d{sigma}/dQ{sub QE}{sup 2}) are also provided, largely to facilitate comparison with prior measurements. This data is of particular use for understanding the axial-vector form factor of the nucleon as well as improving the simulation of low energy neutrino interactions on nuclear targets, which is of particular relevance for experiments searching for neutrino oscillations.

  1. Optimization of Charging Current and SOH Estimation for Lead Acid Batteries

    Directory of Open Access Journals (Sweden)

    Amin Rezaei Pish Robat

    2012-02-01

    Full Text Available In this paper a new model-based approach is used to optimize the charging current of lead acid batteries for use in hybrid electric. The used model is a dynamical nonlinear model and so steepest descent, as a nonlinear optimization technique, is used to design the desired current profile. To verify the results, Unscented Kalman Filter is used to estimate battery capacity as a criterion of the state of health of the battery. Simulation results show that in comparison with multi level charging current, the proposed approach improves the state of health of the battery, up to 2.5% in the first 100 charge/discharge cycle

  2. Quantum inductive circuits under ac and dc fields: Current manifestations of charge discreteness

    International Nuclear Information System (INIS)

    It is well known that the electrical current of a quantum inductive circuits with charge discreteness qe displays Bloch-like oscillations (frequency ωB=qeεd-bar ) under a dc external voltage (εd). Here we consider the effect of a superposed ac voltage in the circuit. Resonances are explicitly found. In the limit of small external frequency (ω-bar ωB), the electrical (one-period-averaged) current exist and has always the same sign. This gives us an experimental method to measure discrete charge effects in (quantum) nanometric circuits since the established current is depending on charge discreteness

  3. Current Situation in the Neutrino (and Charged-Lepton) Sector

    CERN Document Server

    de Govea A.

    2010-01-01

    Neutrino masses are nonzero. Theoretically, we are still in the process of un- derstanding what these tiny masses and the pattern of lepton mixing mean, and how they Þt into a new and improved standard model. Nonetheless, the very successful parameterization of the new neutrino sector (three neutrino masses plus a 3 × 3 unitary leptonic mixing matrix) allows one to identify what we know we donÕt know about neutrinos and to deÞne a rich experimen- tal program in neutrino physics. This experimental program must not only answer these Òneutrino questions,Ó but also test the underlying three-active- ßavors paradigm and point the way toward a deeper understanding of neutri- nos (and particle physics). Given what we learned about neutrinos, searches for charged-lepton ßavor-violating phenomena are poised to Þnd new heavy physics at the weak scale (or well above) and provide vital clues regarding the neutrino mass mystery.

  4. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.; Baskevicius, A. [Institute of Applied Research, Vilnius University, Sauletekio av. 9-III, LT-10222 Vilnius (Lithuania)

    2014-02-07

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  5. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    Science.gov (United States)

    Gaubas, E.; Ceponis, T.; Pavlov, J.; Baskevicius, A.

    2014-02-01

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.

  6. Profiling of the injected charge drift current transients by cross-sectional scanning technique

    International Nuclear Information System (INIS)

    The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has been shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current

  7. Distribution of counterions and interaction between two similarly charged dielectric slabs: Roles of charge discreteness and dielectric inhomogeneity

    CERN Document Server

    Pezeshkian, Weria; Norouzi, Davood; Mohammad-Rafiee, Farshid; Fazli, Hossein

    2012-01-01

    The distribution of counterions and the electrostatic interaction between two similarly charged dielectric slabs is studied in the strong coupling limit. Dielectric inhomogeneities and discreteness of charge on the slabs have been taken into account. It is found that the amount of dielectric constant difference between the slabs and the environment, and the discreteness of charge on the slabs have opposing effects on the equilibrium distribution of the counterions. At small inter-slab separations, increasing the amount of dielectric constant difference increases the tendency of the counterions toward the middle of the intersurface space between the slabs and the discreteness of charge pushes them to the surfaces of the slabs. In the limit of point charges, independent of the strength of dielectric inhomogeneity, counterions distribute near the surfaces of the slabs. The interaction between the slabs is attractive at low temperatures and its strength increases with the dielectric constant difference. At room t...

  8. Shot noises of spin and charge currents in a ferromagnet-quantum-dot-ferromagnet system

    Institute of Scientific and Technical Information of China (English)

    Hong-kang ZHAO; Jian WANG

    2008-01-01

    We have investigated the shot noises of charge and spin current by considering the spin polarized electron tunneling through a ferromagnet-quantum-dotferromagnet system.We have derived the spin polarized current noise matrix,from which we can derive general expressions of shot noises associated with charge and spin currents.The spin and charge currents are intimately related to the polarization angles,and they behave quite differently from each other.The shot noise of charge current is symmetric about the gate voltage whose structure is modified by the Zeeman field considerably.There exists oscillations in spin current shot noise in the absence of source-drain bias at zero temperature,and it is asym metric in the positive and negative regimes of sourcedrain voltage. The shot noise of spin current behaves quite differently from the shot noise of charge current,since the spin current components Isx,Isy oscillate sinusoidally with the frequency ωγ in the γth lead,while the Isz component of spin current is independent of time.

  9. Study of high-energy neutrino neutral-current interactions

    International Nuclear Information System (INIS)

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288±0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(bar ν) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and bar ν events. A value of 0.274±0.038 is obtained for the dominant ν component assuming bar ν NC/CC=0.39±0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323±0.025 and the K0 production rates are 0.375±0.064 per CC and 0.322±0.073 per NC event. The corresponding Λ rates are 0.161±0.030 per CC and 0.113±0.030 per NC event. The K0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events

  10. Charged Current Coherent Pion Production in Neutrino Scattering

    CERN Document Server

    Martins, Paul

    2016-01-01

    We summarise here the main differences of three models of neutrino-induced coherent pion production, namely the Rein-Sehgal and Berger-Sehgal models based on the Partially Conserved Axial Current theorem and the Alvarez-Ruso \\textit{et al.} model which is using a microscopic approach. Their predictions in the event generators are compared against recent experimental measurements for a neutrino energy from 0.5 to 20 GeV.

  11. Simulation of the interaction of positively charged beams and electron clouds

    International Nuclear Information System (INIS)

    The incoherent (head-tail) effect on the bunch due to the interaction with electron clouds (e-clouds) leads to a blow up of the transverse beam size in storage rings operating with positively charged beams. Even more the e-cloud effects are considered to be the main limiting factor for high current, high-brightness or high-luminosity operation of future machines. Therefore the simulation of e-cloud phenomena is a highly active field of research. The main focus in this work was set to a development of a tool for simulation of the interaction of relativistic bunches with non-relativistic parasitic charged particles. The result is the Particle-In-Cell Program MOEVE PIC Tracking which can track a 3D bunch under the influence of its own and external electromagnetic fields but first and foremost it simulates the interaction of relativistic positively charged bunches and initially static electrons. In MOEVE PIC Tracking the conducting beam pipe can be modeled with an arbitrary elliptical cross-section to achieve more accurate space charge field computations for both the bunch and the e-cloud. The simulation of the interaction between positron bunches and electron clouds in this work gave a detailed insight of the behavior of both particle species during and after the interaction. Further and ultimate goal of this work was a fast estimation of the beam stability under the influence of e-clouds in the storage ring. The standard approach to simulate the stability of a single bunch is to track the bunch particles through the linear optics of the machine by multiplying the 6D vector of each particle with the transformation matrices describing the lattice. Thereby the action of the e-cloud on the bunch is approximated by a pre-computed wake kick which is applied on one or more points in the lattice. Following the idea of K.Ohmi the wake kick was pre-computed as a two variable function of the bunch part exiting the e-cloud and the subsequent parts of a bunch which receive a

  12. Alternating current-generated plasma discharges for the controlled direct current charging of ferroelectrets

    Science.gov (United States)

    Cury Basso, Heitor; Monteiro, José Roberto B. de A.; Baladelli Mazulquim, Daniel; Teixeira de Paula, Geyverson; Gonçalves Neto, Luiz; Gerhard, Reimund

    2013-09-01

    The standard charging process for polymer ferroelectrets, e.g., from polypropylene foams or layered film systems involves the application of high DC fields either to metal electrodes or via a corona discharge. In this often-used process, the DC field triggers the internal breakdown and limits the final charge densities inside the ferroelectret cavities and, thus, the final polarization. Here, an AC + DC charging procedure is proposed and demonstrated in which a high-voltage high-frequency (HV-HF) wave train is applied together with a DC poling voltage. Thus, the internal dielectric-barrier discharges in the ferroelectret cavities are induced by the HV-HF wave train, while the final charge and polarization level is controlled separately through the applied DC voltage. In the new process, the frequency and the amplitude of the HV-HF wave train must be kept within critical boundaries that are closely related to the characteristics of the respective ferroelectrets. The charging method has been tested and investigated on a fluoropolymer-film system with a single well-defined cylindrical cavity. It is found that the internal electrical polarization of the cavity can be easily controlled and increases linearly with the applied DC voltage up to the breakdown voltage of the cavity. In the standard charging method, however, the DC voltage would have to be chosen above the respective breakdown voltage. With the new method, control of the HV-HF wave-train duration prevents a plasma-induced deterioration of the polymer surfaces inside the cavities. It is observed that the frequency of the HV-HF wave train during ferroelectret charging and the temperature applied during poling of ferroelectrics serve an analogous purpose. The analogy and the similarities between the proposed ferroelectret charging method and the poling of ferroelectric materials or dipole electrets at elevated temperatures with subsequent cooling under field are discussed.

  13. First Measurement of Charged Current Cross Sections at HERA with Longitudinally Polarised Positrons

    CERN Document Server

    Aktas, A; Anthonis, T; Antunovic, B; Aplin, S; Asmone, A; Astvatsatourov, A; Babaev, A; Backovic, S; Bähr, J; Baghdasaryan, A; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baudrand, S; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bracinik, J; Brandt, G; Brisson, V; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Contreras, J G; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; De Boer, Y; Delcourt, B; Del Degan, M; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dodonov, V; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Elsen, E; Erdmann, W; Essenov, S; Falkewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Feltesse, J; Ferencei, J; Finke, L; Fleischer, M; Fleischmann, P; Flucke, G; Fomenko, A; Foresti, I; Franke, G; Frisson, T; Gabathuler, E; Garutti, E; Gayler, J; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Glazov, A; Glushkov, I; Görlich, L; Goettlich, M; Gogitidze, N; Gorbounov, S; Goyon, C; Grab, C; Greenshaw, T; Gregori, M; Grell, B R; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Herrera-Corral, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Hreus, T; Hussain, S; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Korbel, V; Kostka, P; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Krüger, K; Kuckens, J; Landon, M P J; Lange, W; Lastoviicka, T; Lastoviicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; Liptaj, A; List, B; List, J; Lobodzinska, E; Loktionova, N; López-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mladenov, D; Mohamed, A; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nankov, K; Naroska, Beate; Naumann, T; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Papadopoulou, T D; Pascaud, C; Patel, G D; Peng, H; Pérez, E; Perez-Astudillo, D; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Portheault, B; Povh, B; Prideaux, P; Rahmat, A J; Raicevic, N; Reisert, B; Reimer, P; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rurikova, Z; Rusakov, S; Salvaire, F; Sankey, D P C; Sauvan, E; Schatzel, S; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schöning, A; Schultz-Coulon, H C; Sedlak, K; Sefkow, F; Shaw-West, R N; Shevyakov, I; Shtarkov, L N; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Steder, M; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Sunar, D; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsakov, I; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, K; Urban, M; Usik, A; Utkin, D; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vazdik, Ya A; Veelken, C; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Wessels, M; Wessling, B; Wigmore, C; Wissing, C; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zhu, Y C; Zimmermann, J; Zimmermann, T; Zohrabyan, H; Zomer, F

    2006-01-01

    Data taken with positrons of different longitudinal polarisation states in collision with unpolarised protons at HERA are used to measure the total cross sections of the charged current process, e^+ p \\to \\bar{\

  14. Charge and spin currents in normal metal sandwiched by tow p-wave

    Directory of Open Access Journals (Sweden)

    Y Rahnavard

    2010-09-01

    Full Text Available Charge and spin transport properties of a clean $SNS$ Josephson junction (triplet superconductor-normal metal-triplet superconductor are studied using the quasiclassical Eilenberger equation of Green’s function. Our system consists of two p-wave superconducting crystals separated by a Copper nano layer. Effects of thickness of normal layer between superconductors on the spin and charge currents are investigated. Also misorientation between triplet superconductors which creates the spin current is another subject of this paper.

  15. Interactions between domain walls and spin currents

    Science.gov (United States)

    Klaui, M.; Laufenberg, M.; Backes, D.; Buhrer, W.; Rudiger, U.; Vila, L.; Vouille, C.; Faini, G.

    2006-03-01

    A promising novel approach for switching magnetic nanostructures is current-induced domain wall propagation (CIDP), where due to a spin torque effect, electrons transfer angular momentum to a head-to-head domain wall and thereby push it in the direction of the electron flow without any externally applied fields. This effect has been observed with a variety of techniques including MFM [1] and spin polarized scanning electron microscopy [2] to directly observe current-induced domain wall propagation in ferromagnetic nanostructures and magnetoresistance measurements to systematically probe the critical current densities as a function of the geometry [3]. The observed wall velocities and critical current densities, where wall motion sets in at room temperature, do not agree well with theoretical 0K calculations [4]. We have therefore measured the critical current densities as a function of the sample temperature. We find that the spin torque effect becomes more efficient at low temperatures, which could account for some of the observed discrepancies between the 300K experiment and the 0K simulation. [1] A. Yamaguchi et al., Phys. Rev. Lett. 92, 77205 (2004); [2] M. Klaui et al., PRL 95, 26601 (2005); [3] M. Klaui et al., PRL 94, 106601 (2005); [4] A. Thiaville et al., EPL 69, 990 (2005); G. Tatara et al., APL 86, 252509 (2005);

  16. Single Charge Current in a Normal Mesoscopic Region Attached to Superconductor Leads via a Coupled Poisson Nonequilibrium Green Function Formalism

    Directory of Open Access Journals (Sweden)

    David Verrilli

    2014-01-01

    Full Text Available We study the I-V characteristic of mesoscopic systems or quantum dot (QD attached to a pair of superconducting leads. Interaction effects in the QD are considered through the charging energy of the QD; that is, the treatment of current transport under a voltage bias is performed within a coupled Poisson nonequilibrium Green function (PNEGF formalism. We derive the expression for the current in full generality but consider only the regime where transport occurs only via a single particle current. We show for this case and for various charging energies values U0 and associated capacitances of the QD the effect on the I-V characteristic. Also the influence of the coupling constants on the I-V characteristic is investigated. Our approach puts forward a novel interpretation of experiments in the strong Coulomb regime.

  17. Interaction-Induced Enhancement and Oscillations of the Persistent Current

    OpenAIRE

    Stafford, C. A.; Wang, D. F.

    1997-01-01

    The persistent current $I$ in integrable models of multichannel rings with both short- and long-ranged interactions is investigated. $I$ is found to oscillate in sign and increase in magnitude with increasing interaction strength due to interaction-induced correlations in the currents contributed by different channels. For sufficiently strong interactions, the contributions of all channels are found to add constructively, leading to a giant enhancement of $I$. Numerical results confirm that t...

  18. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents

    Science.gov (United States)

    Agar, Ertan; Benjamin, A.; Dennison, C. R.; Chen, D.; Hickner, M. A.; Kumbur, E. C.

    2014-01-01

    In this study, the operation of a vanadium redox flow battery (VRFB) under asymmetric current conditions (i.e., different current densities during charge and discharge) was investigated as a technique to reduce its capacity loss. Two different membrane types (a convection-dominated membrane and a diffusion-dominated membrane) were analyzed. In these analyses, the charging current density was varied while the discharging current was held constant. For both membranes, it was found that increasing the charging current decreases the net convective crossover of vanadium ions, which reduces the capacity loss of the battery. When the tested membranes were compared, the improvement in capacity retention was found to be larger for the diffusion-dominated membrane (12.4%) as compared to the convection-dominated membrane (7.1%). The higher capacity retention in the diffusion-dominated membrane was attributed to the reduction in the cycling time (and hence, suppressed contribution of diffusion) due to the increased charging current. While asymmetric current operation helps reduce capacity loss, it comes at the expense of a reduction in the voltage efficiencies. Increasing the charging current was found to increase the ohmic losses, which lead to a decrease of 6% and 4.3% in the voltage efficiencies of the convection-dominated and diffusion-dominated membranes, respectively.

  19. Mass Charge Interactions for Visualizing the Quantum Field

    Science.gov (United States)

    Baer, Wolfgang

    Our goal is to integrate the objective and subjective aspects of our personal experience into a single complete theory of reality. To further this endeavor we replace elementary particles with elementary events as the building blocks of an event oriented description of that reality. The simplest event in such a conception is an adaptation of A. Wheeler's primitive explanatory--measurement cycle between internal observations experienced by an observer and their assumed physical causes. We will show how internal forces between charge and mass are required to complete the cyclic sequence of activity. This new formulation of internal material is easier to visualize and map to cognitive experiences than current formulations of sub-atomic physics. In our formulation, called Cognitive Action Theory, such internal forces balance the external forces of gravity-inertia and electricity-magnetism. They thereby accommodate outside influences by adjusting the internal structure of material from which all things are composed. Such accommodation is interpreted as the physical implementation of a model of the external physical world in the brain of a cognitive being or alternatively the response mechanism to external influences in the material of inanimate objects. We adopt the deBroglie-Bohm causal interpretation of QT to show that the nature of space in our model is mathematically equivalent to a field of clocks. Within this field small oscillations form deBroglie waves. This interpretation allows us to visualize the underlying structure of empty space with a charge-mass separation field in equilibrium, and objects appearing in space with quantum wave disturbances to that equilibrium occurring inside material. Space is thereby associated with the internal structure of material and quantum mechanics is shown to be, paraphrasing Heisenberg, the physics of the material that knows the world.

  20. Theoretical evidence of charge transfer interaction between SO₂ and deep eutectic solvents formed by choline chloride and glycerol.

    Science.gov (United States)

    Li, Hongping; Chang, Yonghui; Zhu, Wenshuai; Wang, Changwei; Wang, Chao; Yin, Sheng; Zhang, Ming; Li, Huaming

    2015-11-21

    The nature of the interaction between deep eutectic solvents (DESs), formed by ChCl and glycerol, and SO2 has been systematically investigated using the M06-2X density functional combined with cluster models. Block-localized wave function energy decomposition (BLW-ED) analysis shows that the interaction between SO2 and DESs is dominated by a charge transfer interaction. After this interaction, the SO2 molecule becomes negatively charged, whereas the ChCl-glycerol molecule is positively charged, which is the result of Lewis acid-base interaction. The current result affords a theoretical proof that it is highly useful and efficient to manipulate the Lewis acidity of absorbents for SO2 capture. Moreover, hydrogen bonding as well as electrostatic interactions may also contribute to the stability of the complex. Structure analysis shows that solvent molecules will adjust their geometries to interact with SO2. In addition, the structure of SO2 is barely changed after interaction. The interaction energy between different cluster models and SO2 ranges from -6.8 to -14.4 kcal mol(-1). It is found that the interaction energy is very sensitive to the solvent structure. The moderate interaction between ChCl-glycerol and SO2 is consistent with the concept that highly efficient solvents for SO2 absorption should not only be solvable but also regenerable. PMID:26446782

  1. Gate currents and space charge in silicon dioxide under exposure to an electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Akulov, A.F.; Gurtov, V.A.; Nazarov, A.I.; Ogurtsov, O.F.

    1987-03-01

    The authors obtain information on the physical processes occurring in subgate dielectrics during radiation and field effects. The electron beam used on the MIS was strictly localized. The results show that the magnitude and kinetics of bulk charge accumulation do not depend on the type of ionizing radiation (electron or x-ray), or its energy and power in the range in question, but rather are determined only by the absorbed dose. The gate current during electron irradiation with small magnitude of accumulated charge is caused by nonequilibrium carriers generated by the irradiation in the SiO/sub 2/. Relaxation of the current as the charge accumulates is caused by decrease in the average field in the silicon dioxide bulk. At large magnitudes of the bulk charge, there appears an injection component of the electron current of thermalized carriers from the silicon through the Si-SiO/sub 2/ boundary by the Fowler-Nordheim mechanism

  2. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)

    1996-08-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  3. Charge regulation in ionic solutions: thermal fluctuations and Kirkwood-Schumaker interaction

    CERN Document Server

    Adzic, Natasa

    2014-01-01

    We study the behavior of two macroions with dissociable charge groups, regulated by local variables such as pH and electrostatic potential, immersed in a mono-valent salt solution, considering cases where the net charge can either change sign or remain of the same sign depending on these local parameters. The charge regulation, in both cases, is described with the proper free energy function for each of the macroions, while the coupling between the charges is evaluated on the approximate Debye-H\\"uckel level. The charge correlation functions and the ensuing charge fluctuation forces are calculated analytically and numerically. Strong attraction between like-charged macroions is found close to the point of zero charge, specifically due to asymmetric, anticorrelated charge fluctuations of the macroion charges. The general theory is then implemented for a system of two protein-like macroions, generalizing the form and magnitude of the Kirkwood-Schumaker interaction.

  4. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Sua; XIONG Shi-Jie

    2008-01-01

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.

  5. Insulator charging limits direct current across tunneling metal-insulator-semiconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Vilan, Ayelet [Department of Materials and Interfaces, Weizmann Institute of Science, POB 26, Rehovot 76100 (Israel)

    2016-01-07

    Molecular electronics studies how the molecular nature affects the probability of charge carriers to tunnel through the molecules. Nevertheless, transport is also critically affected by the contacts to the molecules, an aspect that is often overlooked. Specifically, the limited ability of non-metallic contacts to maintain the required charge balance across the fairly insulating molecule often have dramatic effects. This paper shows that in the case of lead/organic monolayer-silicon junctions, a charge balance is responsible for an unusual current scaling, with the junction diameter (perimeter), rather than its area. This is attributed to the balance between the 2D charging at the metal/insulator interface and the 3D charging of the semiconductor space-charge region. A derivative method is developed to quantify transport across tunneling metal-insulator-semiconductor junctions; this enables separating the tunneling barrier from the space-charge barrier for a given current-voltage curve, without complementary measurements. The paper provides practical tools to analyze specific molecular junctions compatible with existing silicon technology, and demonstrates the importance of contacts' physics in modeling charge transport across molecular junctions.

  6. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H.; /Colorado U.

    2010-04-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CC{pi}{sup 0}) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics ({approx} 1,000,000 interactions) low-energy (E{sub {nu}} {element_of} 0.5-2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CC{pi}{sup 0} events is presented. The {pi}{sup 0} and {mu}{sup -} are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CC{pi}{sup 0} cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q{sup 2}. The results are combined to yield a flux-averaged total cross-section of <{sigma}>{sub {Phi}} = (9.2 {+-} 0.3{sub stat.} {+-} 1.5{sub syst}.) x 10{sup -39} cm{sup 2}/CH{sub 2} at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  7. A Measurement of Neutrino-Induced Charged-Current Neutral Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Robert H. [Univ. of Colorado, Boulder, CO (United States)

    2010-01-01

    This work presents the first comprehensive measurement of neutrino-induced charged-current neutral pion production (CCπ0) off a nuclear target. The Mini Booster Neutrino Experiment (MiniBooNE) and Booster Neutrino Beam (BNB) are discussed in detail. MiniBooNE is a high-statistics (~ 1, 000, 000 interactions) low-energy (Evϵ 2 0.5 - 2.0 GeV) neutrino experiment located at Fermilab. The method for selecting and reconstructing CCπ0 events is presented. The π0 and μ- are fully reconstructed in the final state allowing for the measurement of, among other things, the neutrino energy. The total observable CCπ0 cross-section is presented as a function of neutrino energy, along with five differential cross-sections in terms of the final state kinematics and Q2. The results are combined to yield a flux-averaged total cross-section of <σ>Φ = (9.2 ± 0.3stat. ± 1.5syst.) × 10-39 cm2/CH2 at energy 965 MeV. These measurements will aid future neutrino experiments with the prediction of their neutrino interaction rates.

  8. Disorder-assisted transmission due to charge puddles in monolayer graphene: Transmission enhancement and local currents

    Science.gov (United States)

    Lima, Leandro R. F.; Lewenkopf, Caio H.

    2016-01-01

    We investigate the contribution of charge puddles to the nonvanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evanescent modes allowing us to single out the effect of charge fluctuations in the transport properties. We use the recursive Green's function technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relationship between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We find that electronic interactions do not play a significant role in this setting. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.

  9. Tailoring Membrane Surface Charges: A Novel Study on Electrostatic Interactions during Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Daniel Breite

    2015-10-01

    Full Text Available In this work we aim to show that the overall surface potential is a key factor to understand and predict anti-fouling characteristics of a polymer membrane. Therefore, polyvinylidene fluoride membranes were modified by electron beam-induced grafting reactions forming neutral, acidic, alkaline or zwitterionic structures on the membrane surface. The differently charged membranes were investigated regarding their surface properties using diverse analytical methods: zeta potential, static and dynamic water contact angle, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. Porosimetry measurements proved that there is no pore blocking due to the modifications. Monodisperse suspensions of differently charged polystyrene beads were synthesized by a radical emulsion polymerization reaction and were used as a model fouling reagent, preventing comparability problems known from current literature. To simulate membrane fouling, different bead suspensions were filtered through the membranes. The fouling characteristics were investigated regarding permeation flux decline and concentration of model fouling reagent in filtrate as well as by SEM. By considering electrostatic interactions equal to hydrophobic interactions we developed a novel fouling test system, which enables the prediction of a membrane’s fouling tendency. Electrostatic forces are dominating, especially when charged fouling reagents are present, and can help to explain fouling characteristics that cannot be explained considering the surface wettability.

  10. Measurements of the Inclusive Neutrino and Antineutrino Charged Current Cross Sections in MINERvA Using the Low-$\

    CERN Document Server

    DeVan, J; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Budd, H; Cai, T; Carneiro, M F; da Motta, H; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Endress, E; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kleykamp, J; Kordosky, M; Le, T; Maher, E; Manly, S; Mann, W A; Marshall, C M; Caicedo, D A Martinez; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman,; Paolone, V; Park, J; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Rimal, D; Rodrigues, P A; Ruterbories, D; Schellman, H; Salinas, C J Solano; Sultana, M; Falero, S Sánchez; Tice, B G; Valencia, E; Wolcott, J; Wospakrik, M; Zhang, D

    2016-01-01

    The total cross sections are important ingredients for the current and future neutrino oscillation experiments. We present measurements of the total charged-current neutrino and antineutrino cross sections on scintillator (CH) in the NuMI low-energy beamline using an {\\em in situ} prediction of the shape of the flux as a function of neutrino energy from 2--50 GeV. This flux prediction takes advantage of the fact that neutrino and antineutrino interactions with low nuclear recoil energy ($\

  11. First Measurement of the Muon Anti-Neutrino Charged Current Quasielastic Double-Differential Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Grange, Joseph M. [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    This dissertation presents the first measurement of the muon antineutrino charged current quasi-elastic double-differential cross section. These data significantly extend the knowledge of neutrino and antineutrino interactions in the GeV range, a region that has recently come under scrutiny due to a number of conflicting experimental results. To maximize the precision of this measurement, three novel techniques were employed to measure the neutrino background component of the data set. Representing the first measurements of the neutrino contribution to an accelerator-based antineutrino beam in the absence of a magnetic field, the successful execution of these techniques carry implications for current and future neutrino experiments.

  12. Electron neutrino charged-current quasielastic scattering in the MINERvA experiment

    CERN Document Server

    Wolcott, Jeremy

    2015-01-01

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  13. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    CERN Document Server

    Wolcott, J

    2016-01-01

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generato...

  14. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Rochester U.

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  15. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, J. [Tufts U.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  16. A 128-channel picoammeter system and its application on charged particle beam current distribution measurements

    Science.gov (United States)

    Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin

    2015-11-01

    A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O3+ ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.

  17. Meson exchange currents in pion double charge exchange at high energies

    CERN Document Server

    Alvarez-Ruso, L

    1995-01-01

    In this letter we study the high energy behavior of the forward differential cross section for the O(18)(pi+,pi-)Ne(18) double charge exchange reaction. We have evaluated the sequential and the meson exchange current mechanisms. The meson exchange current contribution shows a very weak energy dependence and becomes dominant at incident pion kinetic energies above 600 MeV.

  18. Effect of frequency variation on electromagnetic pulse interaction with charges and plasma

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Verschuur, J.W.J.; Boller, K.-J.

    2005-01-01

    The effect of frequency variation (chirp) in an electromagnetic (EM) pulse on the pulse interaction with a charged particle and plasma is studied. Various types of chirp and pulse envelopes are considered. In vacuum, a charged particle receives a kick in the polarization direction after interaction

  19. On critical stability of three quantum charges interacting through delta potentials

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We consider three one dimensional quantum, charged and spinless particles interacting through delta potentials. We derive sufficient conditions which guarantee the existence of at least one bound state.......We consider three one dimensional quantum, charged and spinless particles interacting through delta potentials. We derive sufficient conditions which guarantee the existence of at least one bound state....

  20. Weak Interaction Models with New Quarks and Right-handed Currents

    Science.gov (United States)

    Wilczek, F. A.; Zee, A.; Kingsley, R. L.; Treiman, S. B.

    1975-06-01

    We discuss various weak interaction issues for a general class of models within the SU(2) x U(1) gauge theory framework, with special emphasis on the effects of right-handed, charged currents and of quarks bearing new quantum numbers. In particular we consider the restrictions on model building which are imposed by the small KL - KS mass difference and by the .I = = rule; and we classify various possibilities for neutral current interactions and, in the case of heavy mesons with new quantum numbers, various possibilities for mixing effects analogous to KL - KS mixing.

  1. Constraints on neutrino decay lifetime using long-baseline charged and neutral current data

    International Nuclear Information System (INIS)

    We investigate the status of a scenario involving oscillations and decay for charged and neutral current data from the MINOS and T2K experiments. We first present an analysis of charged current neutrino and anti-neutrino data from MINOS in the framework of oscillation with decay and obtain a best fit for non-zero decay parameter α3. The MINOS charged and neutral current data analysis results in the best fit for |Δm322|=2.34×10−3 eV2, sin2⁡θ23=0.60 and zero decay parameter, which corresponds to the limit for standard oscillations. Our combined MINOS and T2K analysis reports a constraint at the 90% confidence level for the neutrino decay lifetime τ3/m3>2.8×10−12 s/eV. This is the best limit based only on accelerator produced neutrinos

  2. Constraints on neutrino decay lifetime using long-baseline charged and neutral current data

    Directory of Open Access Journals (Sweden)

    R.A. Gomes

    2015-01-01

    Full Text Available We investigate the status of a scenario involving oscillations and decay for charged and neutral current data from the MINOS and T2K experiments. We first present an analysis of charged current neutrino and anti-neutrino data from MINOS in the framework of oscillation with decay and obtain a best fit for non-zero decay parameter α3. The MINOS charged and neutral current data analysis results in the best fit for |Δm322|=2.34×10−3 eV2, sin2⁡θ23=0.60 and zero decay parameter, which corresponds to the limit for standard oscillations. Our combined MINOS and T2K analysis reports a constraint at the 90% confidence level for the neutrino decay lifetime τ3/m3>2.8×10−12 s/eV. This is the best limit based only on accelerator produced neutrinos.

  3. Evolution of Spin and Charge in a System with Interacting Impurity and Conducting Electrons

    Institute of Scientific and Technical Information of China (English)

    张永梅; 熊诗杰

    2003-01-01

    We investigate the dynamics of spin and charge in an interacting system consisting of impurity and conducting electrons.The time evolution of spin and charge in the impurity is given by solving the time-dependent Schrodinger equations for the many-body states of the interacting system.By switching on the interaction between impurity and conducting electrons,the spin and charge of the impurity begin oscillations with frequencies that reflect the elementary excitations of the interacting system.The dynamics reflects the basic picture of the Kondo effect.

  4. A sub-GeV charged-current quasi-elastic $\

    Energy Technology Data Exchange (ETDEWEB)

    Walding, Joseph James; /Imperial Coll., London

    2010-04-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is {nu}{sub {mu}}n {yields} {mu}p. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic cross-section for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based at Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99 x 10{sup 20} and 1.53 x 10{sup 20} protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a {nu}{sub {mu}} charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBar-contained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 {+-} 0.031 (stat){sub -0.150}{sup +0.101}(sys) x 10{sup -38} cm{sup 2}/neutron, excluding backwards tracks with a {chi}{sup 2} = 203.8/76 d.o.f. and 1.083 {+-} 0.030(stat){sub -0.177}{sup +0.115}(sys) x 10{sup -38} cm{sup 2}/neutron, including backwards tracks with

  5. A sub-GeV charged-current quasi-elastic $\

    Energy Technology Data Exchange (ETDEWEB)

    Walding, Joseph James [Imperial College, London (United Kingdom)

    2009-12-01

    Neutrino-nucleus charged-current quasi-elastic scattering is the signal interaction used by many neutrino oscillation experiments. For muon disappearance studies the signal mode is νμn → μp. Modern oscillation experiments, such as T2K, produce neutrino beams with peak beam energies of order a few-GeV. It is therefore vitally important to have accurate measurements of the charged-current quasi-elastic crosssection for future neutrino oscillation experiments. Neutrino-nucleus cross-sections in the few-GeV region are not well understood, with the main uncertainties coming from understanding of the neutrino beam flux and the final state interactions within nuclei. SciBooNE is a sub-GeV neutrino-nucleus cross-section experiment based at Fermilab, Batavia, USA, with the goal to measure neutrino cross-sections with precision of order 5%. SciBooNE took data from June 2007 until August 2008, in total 0.99×1020 and 1.53×1020 protons on target were collected in neutrino and anti-neutrino mode, respectively. In this thesis a νμ charged-current quasi-elastic (CCQE) cross-section contained within the SciBar sub-detector is presented. A method to tag muons in SciBar was developed and three samples were isolated. An excess in backwards tracks in the one-track sample is observed. A Poisson maximum likelihood is used to extract the CCQE cross-section. The fit was applied using a basic fit parameter model, successfully used to obtain the cross-section in the SciBar-MRD matched CCQE analysis. This method was found to be insufficient in describing the data for the SciBarcontained CCQE analysis. By adding two migration parameters the cross-section was calculated to be 1.004 ± 0.031 (stat)+0.101 -0.150(sys) × 10-38 cm2/neutron, excluding backwards tracks with a χ2 = 203.8/76 d.o.f. and 1.083 ± 0.030(stat)+0.115 -0.177(sys) × 10-38 cm2

  6. Neutrino and antineutrino inclusive charged-current cross section measurements with the MINOS near detector

    OpenAIRE

    Adamson, P.; Andreopoulos, C.; Arms, K. E.; Armstrong, R.; Auty, D. J.; Ayres, D. S.; Backhouse, C.; Barnes, JR; Barr, G.; Barrett, W. L.; Devenish, N. E.; Falk, E.; Harris, P.G.; Hartnell, J.; et al, ...

    2010-01-01

    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precisi...

  7. First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section

    CERN Document Server

    Aguilar-Arevalo, A A; Bazarko, A O; Brice, S J; Brown, B C; Bugel, L; Cao, J; Coney, L; Conrad, J M; Cox, D C; Curioni, A; Djurcic, Z; Finley, D A; Fleming, B T; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, C; Green, J A; Hart, T L; Hawker, E; Imlay, R; Johnson, R A; Karagiorgi, G; Kasper, P; Katori, T; Kobilarcik, T; Kourbanis, I; Koutsoliotas, S; Laird, E M; Linden, S K; Link, J M; Liu, Y; Liu, Y; Louis, W C; Mahn, K B M; Marsh, W; Mauger, C; McGary, V T; McGregor, G; Metcalf, W; Meyers, P D; Mills, F; Mills, G B; Monroe, J; Moore, C D; Mousseau, J; Nelson, R H; Nienaber, P; Nowak, J A; Osmanov, B; Ouedraogo, S; Patterson, R B; Pavlovic, Z; Perevalov, D; Polly, C C; Prebys, E; Raaf, J L; Ray, H; Roe, B P; Russell, A D; Sandberg, V; Schirato, R; Schmitz, D; Shaevitz, M H; Shoemaker, F C; Smith, D; Soderberg, M; Sorel, M; Spentzouris, P; Spitz, J; Stancu, I; Stefanski, R J; Sung, M; Tanaka, H A; Tayloe, R; Tzanov, M; Van de Water, R G; Wascko, M O; White, D H; Wilking, M J; Yang, H J; Zeller, G P; Zimmerman, E D

    2010-01-01

    A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($\\frac{d^2\\sigma}{dT_\\mu d\\cos\\theta_\\mu}$) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($\\sigma[E_\

  8. Spin-Current to Charge-Current Conversion and Magnetoresistance in a Hybrid Structure of Graphene and Yttrium Iron Garnet

    Science.gov (United States)

    Mendes, J. B. S.; Alves Santos, O.; Meireles, L. M.; Lacerda, R. G.; Vilela-Leão, L. H.; Machado, F. L. A.; Rodríguez-Suárez, R. L.; Azevedo, A.; Rezende, S. M.

    2015-11-01

    The use of graphene in spintronic devices depends, among other things, on its ability to convert a spin excitation into an electric charge signal, a phenomenon that requires a spin-orbit coupling (SOC). Here we report the observation of two effects that show the existence of SOC in large-area CVD grown single-layer graphene deposited on a single crystal film of the ferrimagnetic insulator yttrium iron garnet (YIG). The first is a magnetoresistance of graphene induced by the magnetic proximity effect with YIG. The second is the detection of a dc voltage along the graphene layer resulting from the conversion of the spin current generated by spin pumping from microwave driven ferromagnetic resonance into a charge current, which is attributed to the inverse Rashba-Edelstein effect.

  9. Spin and Charge Currents through a Quantum Dot Connected to Ferromagnetic Leads

    Institute of Scientific and Technical Information of China (English)

    CHI Feng; LI Shu-Shen

    2005-01-01

    @@ We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field Bresults in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

  10. High Performance Charge Pump Phase-Locked Loop with Low Current Mismatch

    Directory of Open Access Journals (Sweden)

    V. Sujatha

    2012-01-01

    Full Text Available In CMOS CPs, which have Up and Down switches made of p-channel and n-channel respectively, generates fluctuations in the VCO due to current mismatch occurs when dumping the charge to the loop filter and subsequently a large phase noise on the PLL output. This paper presents a new CP circuit after detailed analysis of the current mismatch problem. It combines an error amplifier with reference current sources to achieve good current matching characteristics and lower phase noises. Charge sharing can be eliminated by using charge removal transistors. In addition, a low-voltage cascode current mirror and gain-boosting circuit are used to enhance current matching over process corners and increase the output impedance of the CP. Good current matching characteristic is achieved with less than 0.1% difference of the Up/Down current and 1% over all process variations. The CP output compliance voltage range of 0.1-1.8 V is achieved for 1.8-V supply voltage. The circuit was designed using 0.18um TSMC CMOS technology and simulated by Spectre tools.

  11. Modulation of folding energy landscape by charge–charge interactions: Linking experiments with computational modeling

    OpenAIRE

    Tzul, Franco O.; Schweiker, Katrina L.; Makhatadze, George I.

    2015-01-01

    Quantitative understanding of how individual interactions contribute to the kinetics and thermodynamics of protein folding is critical for deciphering the underlying molecular mechanisms that define the energy folding landscape. We applied a structure-based model that explicitly accounts for the interactions between charges, to folding–unfolding of four different protein pairs: rationally stabilized, via optimization of surface charge–charge interactions, variants, and respective wild types. ...

  12. Charged-current quasielastic neutrino cross sections on $^{12}$C with realistic spectral and scaling functions

    CERN Document Server

    Ivanov, M V; Caballero, J A; Megias, G D; Barbaro, M B; de Guerra, E Moya; Udias, J M

    2014-01-01

    Charge-current quasielastic (CCQE) (anti)neutrino scattering cross sections on a $^{12}$C target are analyzed using a spectral function $S(p,{\\cal E})$ that gives a scaling function in accordance with the ($e,e'$) scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence and natural orbitals (NO's) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass $M_A= 1.032$ GeV/c$^2$ is used. The results are compared with those when NN correlations are not included, as in the Relativistic Fermi Gas (RFG) model, or when harmonic-oscillator (HO) single-particle wave functions are used instead of NO's. The role of the final-state interactions (FSI) on the theoretical spectral and scaling functions, as well as on the cross sections is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained f...

  13. Induced fermionic charge and current densities in two-dimensional rings

    CERN Document Server

    Bellucci, S; Grigoryan, A Kh

    2016-01-01

    For a massive quantum fermionic field, we investigate the vacuum expectation values (VEVs) of the charge and current densities induced by an external magnetic flux in a two-dimensional circular ring. Both the irreducible representations of the Clifford algebra are considered. On the ring edges the bag (infinite mass) boundary conditions are imposed for the field operator. This leads to the Casimir type effect on the vacuum characteristics. The radial current vanishes. The charge and the azimuthal current are decomposed into the boundary-free and boundary-induced contributions. Both these contributions are odd periodic functions of the magnetic flux with the period equal to the flux quantum. An important feature that distinguishes the VEVs of the charge and current densities from the VEV of the energy density, is their finiteness on the ring edges. The current density is equal to the charge density for the outer edge and has the opposite sign on the inner edge. The VEVs are peaked near the inner edge and, as f...

  14. Modulation and interactions of charged biomimetic membranes with bivalent ions

    Science.gov (United States)

    Kazadi Badiambile, Adolphe

    biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 --POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings.

  15. Induced fields, charges and currents on a lineman engaged in transmission-line insulator washing

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Salam, M.; El-Mohandes, M.T. [Assiut Univ. (Egypt). Electrical Engineering Dept.; Alghamdi, A.S. [Junior Coll. of Technology, Jeddah (Saudi Arabia). Electrical Engineering Dept.

    1995-12-31

    This paper is aimed to calculate the distribution of the field, induced charges and currents on a lineman engaged in transmission-line insulator washing. The method of analysis is based on the charge simulation technique. The lineman is modeled by small sphere for the head and a large sphere for the body. For simplicity, the tower is chosen of the duct type and the insulator of the suspension type. The transmission-line conductor is simulated by finite and semi-infinite line charges to account for the nonuniform distribution of conductor charge resulting from the suspension insulator and the supporting tower. As the purity of the washing water is high, the water spray is simulated by a thin conducting stick extending between the column insulator and the lineman sitting on the crossarm of the tower. This represents a three-dimensional field problem and care has been devoted in the choice of the number and coordinates of charges simulating the tower, the insulator, the conductor, the water spray and the lineman. The induced currents increase as the lineman approaches the insulator with the suspended line conductor. These currents are higher than those for insulated lineman and may exceed the safe limits.

  16. The two photon decay of a bound state of exotic colored scalars charged under an additional unbroken gauge interaction

    CERN Document Server

    Foot, Robert

    2016-01-01

    We argue that a charged scalar particle $\\chi$ of mass around 375 GeV charged under both $\\mathrm{SU}(3)_{c}$ and a new confining non-abelian gauge interaction can explain the 750 GeV diphoton excess. After pair production, these interactions confine the exotic scalar into non-relativistic bound states whose decays into photons can explain the discrepancy. Taking the new confining group to be $\\mathrm{SU}(2)$, we find $\\chi$ must carry an electric charge of $Q \\approx 1/2$ to fit the data. Interestingly, we find that pair production of the scalars and the subsequent formation of the bound state dominates over direct bound state resonance production. This explanation is quite weakly constrained by current experimental bounds, and we expect future constraints to come from dijet, mono-jet and possibly dilepton searches.

  17. Two-dimensional relativistic space charge limited current flow in the drift space

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. L.; Chen, S. H., E-mail: chensh@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Koh, W. S. [A-STAR Institute of High Performance Computing, Singapore 138632 (Singapore); Ang, L. K. [Engineering Product Development, Singapore University of Technology and Design, Singapore 138682 (Singapore)

    2014-04-15

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  18. Charge and spin current oscillations in a tunnel junction induced by magnetic field pulses

    Science.gov (United States)

    Dartora, C. A.; Nobrega, K. Z.; Cabrera, G. G.

    2016-08-01

    Usually, charge and spin transport properties in tunnel junctions are studied in the DC bias regime and/or in the adiabatic regime of time-varying magnetic fields. In this letter, the temporal dynamics of charge and spin currents in a tunnel junction induced by pulsed magnetic fields is considered. At low bias voltages, energy and momentum of the conduction electrons are nearly conserved in the tunneling process, leading to the description of the junction as a spin-1/2 fermionic system coupled to time-varying magnetic fields. Under the influence of pulsed magnetic fields, charge and spin current can flow across the tunnel junction, displaying oscillatory behavior, even in the absence of DC bias voltage. A type of spin capacitance function, in close analogy to electric capacitance, is predicted.

  19. EFFECTS OF WAVE-CURRENT INTERACTIONS ON BOTTOM STRESS AND CURRENTS

    Institute of Scientific and Technical Information of China (English)

    Yin Bao-shu; Yang De-zhou; Lin Xiang; Hou Yi-jun; Cheng Ming-hua; Will Perrie

    2003-01-01

    This paper presents a high-resolution (2′×2′) numerical model of coastal coupled wave-current interaction with explicit consideration of the effects of wave-current interaction on bottom stress. For two selected storms with measured data in the Yellow River coastal area of the Bohai Sea, it is shown that the bottom stress calculated by using a coupled wave-current model is increased, as one would expect, compared with the bottom stress computed with an uncoupled current model. Moreover, the current velocity field is also changed, but the corresponding current directions show less influence in the two simulations. The extents of changes in bottom stress and current velocity vary with storm intensities. The results further imply that the coupled wave-current model should be used as the basis for simulating the current velocity and sea level in the near shore region.

  20. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm-1, the electron current density was in the range 210-280 A cm-2, and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm-2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  1. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta [Univ. of Pittsburgh, PA (United States)

    2009-01-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 106 neutrino events and 1.60 x 105 antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  2. Analysis and design of a charge pump circuit for high output current applications

    NARCIS (Netherlands)

    Steenwijk, van Gijs; Hoen, Klaas; Wallinga, Hans

    1993-01-01

    A charge pump circuit has been developed that can deliver high currents even for a system supply voltage of 3 V. The circuit consists of capacitances, connected by MOS switches. The influence of the on-resistance of the switches on the circuit's output resistance has been analysed. The switches are

  3. Charged Particle Dynamics in the Magnetic Field of a Long Straight Current-Carrying Wire

    Science.gov (United States)

    Prentice, A.; Fatuzzo, M.; Toepker, T.

    2015-01-01

    By describing the motion of a charged particle in the well-known nonuniform field of a current-carrying long straight wire, a variety of teaching/learning opportunities are described: 1) Brief review of a standard problem; 2) Vector analysis; 3) Dimensionless variables; 4) Coupled differential equations; 5) Numerical solutions.

  4. Neutrino and antineutrino inclusive charged-current cross section measurement with the MINOS near detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Debdatta; /Pittsburgh U.

    2009-03-01

    This thesis presents the measurement of energy dependence of the neutrino-nucleon inclusive charged current cross section on an isoscalar target in the range 3-50 GeV for neutrinos and 5-50 GeV energy range for antineutrinos. The data set was collected with the MINOS Near Detector using the wide band NuMI beam at Fermilab. The size of the charged current sample is 1.94 x 10{sup 6} neutrino events and 1.60 x 10{sup 5} antineutrino events. The flux has been extracted using a low hadronic energy sub-sample of the charged current events. The energy dependence of the cross section is obtained by dividing the charged current sample with the extracted flux. The neutrino and antineutrino cross section exhibits a linear dependence on energy at high energy but shows deviations from linear behavior at low energy. We also present a measurement of the ratio of antineutrino to neutrino inclusive cross section.

  5. Possible deviations from (V-A) charged currents: precise measurement of muon decay parameters

    International Nuclear Information System (INIS)

    This short review examines the experimental limits on possible deviations from (V-A) charged weak currents, as would occur at some mass scale, for example, in manifestly left-right-symmetric electro-weak theories. Both present and anticipated limits are considered, emphasizing muon-decay experiments but including other experimental input where convenient

  6. Polarized parton distributions from charged-current deep-inelastic scattering

    International Nuclear Information System (INIS)

    We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure

  7. Finite temperature bosonic charge and current densities in compactified cosmic string spacetime

    Science.gov (United States)

    Mohammadi, A.; Bezerra de Mello, E. R.

    2016-06-01

    In this paper, we study the expectation values of the induced charge and current densities for a massive bosonic field with nonzero chemical potential in the geometry of a higher-dimensional compactified cosmic string with magnetic fluxes along the string core and also enclosed by the compactified direction in thermal equilibrium at finite temperature T . These densities are calculated by decomposing them into the vacuum expectation values and finite temperature contributions coming from the particles and antiparticles. The only nonzero components correspond to the charge, azimuthal, and axial current densities. By using the Abel-Plana formula, we decompose the components of the densities into the part induced by the cosmic string and the one by the compactification. The charge density is an odd function of the chemical potential and even periodic function of the magnetic flux with a period equal to the quantum flux. Moreover, the azimuthal (axial) current density is an even function of the chemical potential and an odd (even) periodic function of the magnetic flux with the same period. In this paper, our main concern is the thermal effect on the charge and current densities, including some limiting cases, the low- and high-temperature approximations. We show that in all cases, the temperature enhances the induced densities.

  8. Simple DCM or CRM analog peak current controller for HV capacitor charge-discharge applications

    DEFF Research Database (Denmark)

    Trintis, Ionut; Dimopoulos, Emmanouil; Munk-Nielsen, Stig

    2013-01-01

    This paper presents a simple analog current controller suitable for buck and boost converter topologies. The controller operates in DCM or CRM, depending on the setup. The experimental results are presented to validate the proposed controller functionality for a high voltage capacitor charge...

  9. Charged-Current Neutrino-Nucleus Scattering off the Even Molybdenum Isotopes

    Directory of Open Access Journals (Sweden)

    E. Ydrefors

    2012-01-01

    Full Text Available Neutrinos from supernovae constitute important probes of both the currently unknown supernova mechanisms and of neutrino properties. Reliable information about the nuclear responses to supernova neutrinos is therefore crucial. In this work, we compute the cross sections for the charged-current neutrino-nucleus scattering off the even-even molybdenum isotopes. The nuclear responses to supernova neutrinos are subsequently calculated by folding the cross sections with a Fermi-Dirac distribution.

  10. The Mathematics of Charged Particles interacting with Electromagnetic Fields

    DEFF Research Database (Denmark)

    Petersen, Kim

    In this thesis, we study the mathematics used to describe systems of charged quantum mechanical particles coupled with their classical self-generated electromagnetic field. We prove the existence of a unique local in time solution to the many-body Maxwell-Schrödinger initial value problem expressed...

  11. Interaction of slow highly charged ions with surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Haake, Christian; Peters, Thorsten; Wucher, Andreas; Schleberger, Marika [Universitaet Duisburg-Essen, Duisburg (Germany)

    2008-07-01

    A new ion beam installation has been built to investigate the mechanisms of energy dissipation in a substrate after the impact of highly charged ions. First experiments at the TU Wien made successful use of metal-insulator-metal (MIM) junctions to measure electronic excitations in the irradiated metal. These MIM-junctions offer the unique possibility to detect excitations below the work function which limits the external emission of electrons. In order to separate effects induced by either the kinetic or the potential energy of the projectile, both contributions need to be controlled independently. In the Vienna experiment the ions had medium charge states of q=1 up to to q=8 and kinetic energies of 400 eV to 12 keV. The new set-up offers higher charge states and is designed for kinetic energies of less than 100 eV/q. This will enable us to produce extremely slow highly charged ions. In addition, external electron emission as well as secondary and neutral mass spectrometry (SIMS/SNMS) will be used to follow the external pathways of energy dissipation.

  12. Charge Neutral Fermionic States and Current Oscillation in a Graphene-Superconductor Hybrid Structure

    Science.gov (United States)

    Duan, Wenye; Wang, Wei; Zhang, Chao; Jin, Kuijuan; Ma, Zhongshui

    2016-10-01

    The proximity properties of edge currents in the vicinity of the interface between the graphene and superconductor in the presence of magnetic field are investigated. It is shown that the edge states introduced by Andreev reflection at the graphene-superconductor (G/S) interface give rise to the charge neutral states in all Landau levels. We note that in a topological insulator-superconductor (TI/S) hybrid structure, only N = 0 Landau level can support this type of charge neutral states. The different interface states of a G/S hybrid and a TI/S hybrid is due to that graphene consists of two distinct sublattices. The armchair edge consists of two inequivalent atoms. This gives rise to unique electronic properties of edge states when connected to a superconductor. A direct consequence of zero charge states in all Landau levels is that the current density approaches zero at interface. The proximity effect leads to quantum magnetic oscillation of the current density in the superconductor region. The interface current density can also be tuned with a finite interface potential. For sharp δ-type interface potential, the derivative of the wavefunction is discontinuous. As a result, we found that there is current density discontinuity at the interface. The step of the current discontinuity is proportional to the strength of the interface potential.

  13. N(+)-N long-range interaction energies and resonance charge exchange

    Science.gov (United States)

    Stallcop, J. R.; Partridge, H.

    1985-01-01

    The aerothermodynamic studies of proposed space missions require atmospheric charge-transfer data. N2(+) eigenstate energies are calculated with use of the complete-active-space self-consistent-field method with an extended Gaussian basis set. The N(+)-N charge-exchange cross section, determined from these energies, agrees with merged-beam measurements. This contradicts the previous theoretical conclusion. A simple physical description of the long-range interaction is presented and should expedite future charge-transfer studies.

  14. BOND-CHARGE SITE-CHARGE INTERACTION AND METAL-INSULATOR TRANSITIONS

    NARCIS (Netherlands)

    MICHIELSEN, K

    1994-01-01

    Exact-diagonalization and quantum Monte Carlo methods are used to study the occurrence of a metal-insulator transition and the distribution of charges and magnetic moments in the ground state of a one- and two-dimensional half-filled system of correlated electrons, described by a one-band simplified

  15. Charged particles interacting with a mixed supported lipid bilayer as a biomimetic pulmonary surfactant.

    Science.gov (United States)

    Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M

    2014-08-01

    This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies.

  16. Off-shell Noether current and conserved charge in Horndeski theory

    Directory of Open Access Journals (Sweden)

    Jun-Jin Peng

    2016-01-01

    Full Text Available We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  17. Charge transport in bacteriorhodopsin monolayers: The contribution of conformational change to current-voltage characteristics

    Science.gov (United States)

    Alfinito, E.; Reggiani, L.

    2009-03-01

    When moving from native to light-activated bacteriorhodospin, modification of charge transport consisting of an increase of conductance is correlated to the protein conformational change. A theoretical model based on a map of the protein tertiary structure into a resistor network is implemented to account for a sequential tunneling mechanism of charge transfer through neighbouring amino acids. The model is validated by comparison with current-voltage experiments. The predictability of the model is further tested on bovine rhodopsin, a G-protein coupled receptor (GPCR) also sensitive to light. In this case, results show an opposite behaviour with a decrease of conductance in the presence of light.

  18. Meson-exchange currents and quasielastic predictions for charged-current neutrino-12C scattering in the superscaling approach

    CERN Document Server

    Megias, G D; Moreno, O; Williamson, C F; Caballero, J A; Gonzalez-Jimenez, R; De Pace, A; Barbaro, M B; Alberico, W M; Nardi, M; Amaro, J E

    2014-01-01

    We evaluate and discuss the impact of meson-exchange currents (MEC) on charged-current quasielastic (QE) neutrino cross sections. We consider the nuclear transverse response arising from 2p-2h states excited by the action of electromagnetic, purely isovector meson-exchange currents in a fully relativistic framework, based on the work by the Torino collaboration [1]. An accurate parametrization of this MEC response as a function of the momentum and energy transfers involved is presented. Results of neutrino-nucleus cross sections using this MEC parametrization together with a recent scaling approach for the 1p-1h contributions (SuSAv2) are compared with experimental data (MiniBooNE, MINERvA, NOMAD and T2K Collaborations).

  19. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    CERN Document Server

    Bellucci, S; Bragança, E; Saharian, A A

    2016-01-01

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even funct...

  20. Characterization of charge collection in CdTe and CZT using the transient current technique

    CERN Document Server

    Fink, J; Lodomez, P; Wermes, N; Fink, Johannes; Krueger, Hans; Lodomez, Philipp; Wermes, Norbert

    2005-01-01

    The charge collection properties in different particle sensor materials with respect to the shape of the generated signals, the electric field within the detector, the charge carrier mobility and the carrier lifetime are studied with the transient current technique (TCT). Using the well-known properties of Si as a reference, the focus is laid on Cadmium-Telluride (CdTe) and Cadmium-Zinc-Telluride (CZT), which are currently considered as promising candidates for the efficient detection of X-rays. All measurements are based on a transient-current technique (TCT) setup, which allows the recording of current pulses generated by an 241Am alpha-source. These signals will be interpreted with respect to the build-up of space-charges inside the detector material and the subsequent deformation of the electric field. Additionally the influence of different electrode materials (i.e. ohmic or Schottky contacts) on the current pulse shapes will be treated in the case of CdTe. Finally, the effects of polarization, i.e. the ...

  1. Some phenomenological predictions of charged Higgs bosons in electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Canal, C.A.; Santangelo, E.M.

    1984-05-01

    Some phenomenological consequences of an extended Salam-Weinberg model are studied. In particular, the existence, or absence, of e-..mu.. asymmetry in beam-dump experiments is analyzed and an increase in same sign dilepton cross sections is shown to exist due to the contribution of charged Higgs-mediated diagrams. The model is shown to be compatible with experimental results for other processes.

  2. Superconducting properties of the weakly interacting charged Bose gas

    International Nuclear Information System (INIS)

    In 1955 Schafroth considered superconductivity of a charged ideal Bose gas. The Toc - ncc dependence, where Toc denotes the critical temperature for free bosons and noc - the condensate density (superconducting carriers density), has for T = 0 the known form Toc∼(noc)2/3/m*, which can be named the Uemura type relation. In some limits it agrees with the experimental data for high-Tc superconductors. (orig.)

  3. Optimizing interactive program for charged particle transport system design

    International Nuclear Information System (INIS)

    A computer program for charged particle transport system design is described. The program is written in the BASIC language and allows one to make calculations in dialogue with the computer. The BASTRA program permits to get output information both in digital and in graphical forms. The method for optimization is described, that allows one to put 10 limitation on beam parameters in arbitrary places of the transport system. The program can be adapted on every computer having the BASIC language in its software

  4. Finite temperature fermion condensate, charge and current densities in a (2+1)-dimensional conical space

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Bezerra de Mello, E.R. [Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Braganca, E. [INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Universidade Federal da Parai ba, Departamento de Fisica, 58.059-970, Joao Pessoa, PB (Brazil); Saharian, A.A. [Yerevan State University, Department of Physics, Yerevan (Armenia)

    2016-06-15

    We evaluate the fermion condensate and the expectation values of the charge and current densities for a massive fermionic field in (2+1)-dimensional conical spacetime with a magnetic flux located at the cone apex. The consideration is done for both irreducible representations of the Clifford algebra. The expectation values are decomposed into the vacuum expectation values and contributions coming from particles and antiparticles. All these contributions are periodic functions of the magnetic flux with the period equal to the flux quantum. Related to the non-invariance of the model under the parity and time-reversal transformations, the fermion condensate and the charge density have indefinite parity with respect to the change of the signs of the magnetic flux and chemical potential. The expectation value of the radial current density vanishes. The azimuthal current density is the same for both the irreducible representations of the Clifford algebra. It is an odd function of the magnetic flux and an even function of the chemical potential. The behavior of the expectation values in various asymptotic regions of the parameters are discussed in detail. In particular, we show that for points near the cone apex the vacuum parts dominate. For a massless field with zero chemical potential the fermion condensate and charge density vanish. Simple expressions are derived for the part in the total charge induced by the planar angle deficit and magnetic flux. Combining the results for separate irreducible representations, we also consider the fermion condensate, charge and current densities in parity and time-reversal symmetric models. Possible applications to graphitic nanocones are discussed. (orig.)

  5. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    OpenAIRE

    Rossi Passarella; Ahmad Fali Oklilas; Tarida Mathilda

    2014-01-01

    In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  6. Lithium-ion Battery Charging System using Constant-Current Method with Fuzzy Logic Based ATmega16

    Directory of Open Access Journals (Sweden)

    Rossi Passarella

    2014-10-01

    Full Text Available In this charging system, constant-current charging technique keeps the current flow into the battery on its maximum range of 2A. The use of fuzzy logic control of this charging system is to control the value of PWM. PWM is controlling the value of current flowing to the battery during the charging process. The current value into the battery depends on the value of battery voltage and also its temperature. The cutoff system will occur if the temperature of the battery reaches its maximum range

  7. Characteristics of high efficiency current charging system for HTS magnet with solar energy

    Science.gov (United States)

    Kim, Dae-Wook; Yoon, Yong-Soo; Chung, Yoon-Do; Jo, Hyun-Chul; Kim, Ho-Min; Oh, Sung-Kwun; Kim, Hyun-Ki; Oh, Jae-Gi; Ko, Tae-Kuk

    In terms of electrical energy, the technical fusion with solar energy system is promisingly applied in order to improve the efficiency in the power applications, since the solar energy system can convert an eternal electric energy in all-year-around. As one of such power applications, we proposed a current charging system for HTS magnet combined with solar energy (CHS). As this system can operate without external utility power to charge the HTS load magnet due to the solar energy, the operating efficiency is practically improved. The power converter, which is interfaced with solar energy and HTS magnet systems, plays an important role to transfer the stable electric energy and thus, the stabilized performance of the converter with solar energy system is one of essential factors. In this study, we investigated various charging performances under different operating conditions of the converter. In addition, operating characteristics have been analyzed by solving solar cell equivalent equations based on circuit simulation program.

  8. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  9. Planck Charges, Planck Currents and The Hermitic Shangri-La for Magnetic Monopole

    CERN Document Server

    Deng, Yanbin; Huang, Yong-Chang

    2016-01-01

    The concepts of Planck charges are summarized and extended in a consistent and unified manner to include Planck currents. These Planck parameters form a set of indicators serving as the boundary markers signaling the buffer zone separating the quantum gravity physics beyond Planck energy scale from the ordinary physics below the Planck scale. Combining the concepts of Planck charges with the Dirac electric-magnetic charge quantization relation, a lower bound is discovered and attributed to the value of magnetic monopole as half of the Planck magnetic monopole. The value of the running electric fine structure constant is required to be confined to a restricted interval to keep physics involving magnetic monopoles below the Planck scale. It provides a prediction about the hermitic Shangri-La, a remote place the magnetic monopoles are inhabiting near the boundary but still within the scope of ordinary physics. It opens a window of hope to the theoretical and/or experimental probe for magnetic monopoles realizing...

  10. Ultrafast Charge Dynamics Initiated by High-Intensity, Ultrashort Laser-Matter Interaction

    International Nuclear Information System (INIS)

    The interaction of high-intensity laser pulses with matter releases instantaneously ultra-large currents of highly energetic electrons, leading to the generation of highly-transient, large-amplitude electric and magnetic fields. We report results of recent experiment in which such charge dynamics have been studied by using proton probing techniques able to provide maps of the electrostatic fields with high spatial and temporal resolution. The dynamics of ponderomotive channelling in underdense plasmas have been studied in this way, as also the processes of Debye sheath formation and MeV ion front expansion at the rear of laser-irradiated thin metallic foils. An application employing laser-driven impulsive fields for energy-selective ion beam focusing is also presented

  11. Covariant Spectator Theory of np scattering: Isoscalar interaction currents

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [JLAB

    2014-06-01

    Using the Covariant Spectator Theory (CST), one boson exchange (OBE) models have been found that give precision fits to low energy $np$ scattering and the deuteron binding energy. The boson-nucleon vertices used in these models contain a momentum dependence that requires a new class of interaction currents for use with electromagnetic interactions. Current conservation requires that these new interaction currents satisfy a two-body Ward-Takahashi (WT), and using principals of {\\it simplicity\\/} and {\\it picture independence\\/}, these currents can be uniquely determined. The results lead to general formulae for a two-body current that can be expressed in terms of relativistic $np$ wave functions, ${\\it \\Psi}$, and two convenient truncated wave functions, ${\\it \\Psi}^{(2)}$ and $\\widehat {\\it \\Psi}$, which contain all of the information needed for the explicit evaluation of the contributions from the interaction current. These three wave functions can be calculated from the CST bound or scattering state equations (and their off-shell extrapolations). A companion paper uses this formalism to evaluate the deuteron magnetic moment.

  12. A double-stage start-up structure to limit the inrush current used in current mode charge pump

    Science.gov (United States)

    Cong, Liu; Xinquan, Lai; Hanxiao, Du; Yuan, Chi

    2016-06-01

    A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range, fixed output and multimode operation is presented in this paper. As a widely utilized power source implement, a Li-battery is always used as the power supply for chips. Due to the internal resistance, a potential drop will be generated at the input terminal of the chip with an input current. A false shut down with a low supply voltage will happen if the input current is too large, leading to the degradation of the Li-battery's service life. To solve this problem, the inrush current is limited by introducing a new start-up state. All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process. The measurement results show that the inrush current can be limited below 1 A within all input supply ranges, and the power efficiency is higher than the conventional structure. Project supported by the National Natural Science Foundation of China (No. 61106026).

  13. Four Momentum Transfer Discrepancy in the Charged Current pi+ Production in the MiniBooNE: Data versus Theory

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Jaroslaw A.; /Louisiana State U.

    2009-09-01

    The MiniBooNE experiment has collected what is currently the world's largest sample of {nu}{sub {mu}} charged current single charged pion (CCl{pi}{sup +}) interactions, roughly 46,000 events. The purity of the CCl{pi}{sup +} sample is 87% making this the purest event sample observed in the MiniBooNE detector. The average energy of neutrinos producing CC{pi}{sup +} interactions in MiniBooNE is about 1 GeV, therefore the study of these events can provide insight into both resonant and coherent pion production processes. In this talk, we will discuss the long-standing discrepancy in four-momentum transfer observed between CC{pi}{sup +} data and existing predictions. Several attempts to address this problem will be presented. Specifically, the Rein-Sehgal model has been extended to include muon mass terms for both resonant and coherent production. Using calculations from, an updated form for the vector form factor has also been adopted. The results of this improved description of CC{pi}{sup +} production will be compared to the high statistics MiniBooNE CC{pi}{sup +} data and several existing parametrizations of the axial vector form factor.

  14. Measurement of Neutrino Oscillation Parameters Using Anti-fiducial Charged Current Events in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Strait, Matthew Levy [Minnesota U.

    2010-09-01

    Abstract The Main Injector Neutrino Oscillation Search (MINOS) obse rves the disappearance of muon neutrinos as they propagate in the long baseline Neutri nos at the Main Injector (NuMI) beam. MINOS consists of two detectors. The near detector sam ples the initial composition of the beam. The far detector, 735 km away, looks for an energy-d ependent deficit in the neutrino spectrum. This energy-dependent deficit is interpreted as q uantum mechanical oscillations be- tween neutrino flavors. A measurement is made of the effective two-neutrino mixing parameters ∆ m 2 ≈ ∆ m 2 23 and sin 2 2 θ ≈ sin 2 2 θ 23 . The primary MINOS analysis uses charged current events in the fiducial volume of the far detector. This analysis uses the roughly equal-sized sample of events that fails the fiducial cut, consisting of interact ions outside the fiducial region of the detector and in the surrounding rock. These events provide a n independent and complementary measurement, albeit weaker due to incomplete reconstructi on of the events. This analysis reports on an exposure of 7 . 25 × 10 20 protons-on-target. Due to poor energy resolution, the meas urement of sin 2 2 θ is much weaker than established results, but the measuremen t of sin 2 2 θ > 0 . 56 at 90% confidence is consistent with the accepted value. The measur ement of ∆ m 2 is much stronger. Assuming sin 2 2 θ = 1 , ∆ m 2 = (2 . 20 ± 0 . 18[stat] ± 0 . 14[syst]) × 10 − 3 eV 2 .

  15. Coulombic interactions and multicomponent ionic dispersion during transport of charged species in heterogeneous porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    Electrochemical cross-coupling plays a significant role for transport of charged species in porous media [1, 2]. In this study we performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong electrolytes to study the influence of charge interactions on mass...... the ionic interactions by mapping the Coulombic cross-coupling between the dispersive fluxes of the charged species in the heterogeneous domains. The outcomes of this study are important in many subsurface applications including migration of contaminants and propagation of reaction fronts....

  16. Precision measurement of the cross section of charged-current and neutral current processes at large Q2 at HERA with the polarized-electron beam

    International Nuclear Information System (INIS)

    The inclusive cross sections for both charged and neutral current processes have been measured in interactions of longitudinally polarized electrons (positrons) with unpolarized protons using the full data samples collected by H1 at HERA-II. The data taken at a center-of-mass energy of 319 GeV correspond to an integrated luminosity of 149.1 pb-1 and 180.0 pb-1 for e-p and e+p collisions, representing an increase in statistics of a factor of 10 and 2, respectively, over the data from HERA-I. The measured double differential cross sections d2σ/dxdQ2 cover more than two orders of magnitude in both Q2, the negative four-momentum transfer squared, up to 30000 GeV2, and Bjorken x, down to 0.003. The cross section data are compared to predictions of the Standard Model which is able to provide a good description of the data. The polarization asymmetry as a function of Q2 is measured with improved precision, confirming the previous observation of P violation effect in neutral current ep scattering at distances down to 10-18 m. The total cross sections of the charged current process, for Q2 > 400 GeV2 and inelasticity y ± beams and different polarization values. Together with the corresponding cross section obtained from the previously published unpolarized data, the polarization dependence of the charged current cross section is measured and found to be in agreement with the Standard Model prediction with the absence of right-handed charged current. The cross sections are combined with previously published data from H1 to obtain the most precise unpolarized measurements. These are used to extract the structure function xF3γZ which is sensitive to the valence quark distributions down to low x values. The new cross sections have also been used in a combined electroweak and QCD fit to significantly improve the light quark couplings to the Z-boson than those obtained based on the HERA-I data alone. (orig.)

  17. Charge independence, charge symmetry breaking in the S-wave nucleon-nucleon interaction, and renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro Calle Cordon,Manuel Pavon Valderrama,Enrique Ruiz Arriola

    2012-02-01

    We study the interplay between charge symmetry breaking and renormalization in the NN system for S-waves. We find a set of universality relations which disentangle explicitly the known long distance dynamics from low energy parameters and extend them to the Coulomb case. We analyze within such an approach the One-Boson-Exchange potential and the theoretical conditions which allow to relate the proton-neutron, proton-proton and neutron-neutron scattering observables without the introduction of extra new parameters and providing good phenomenological success.

  18. Model for evaluating patterned charge regulation contribution to electrostatic interactions between proteins

    Science.gov (United States)

    Hollenbeck, Dawn; Martini, K. Michael; Langner, Andreas; Ross, David; Harkin, Anthony; Nelson, Edward; Thurston, George

    2010-03-01

    We study the pattern-specific work of charging for two spherical model proteins in close proximity in ionic solution, using a grand-canonical partition function together with a coarse-grained, linear Debye-Huckel model to calculate the needed work of charging for each possible proton occupancy configuration. We seek to delineate a parameter-space phase diagram to characterize the circumstances under which patterned charge regulation, attractions due to heterogeneous protein charging patterns, and screened net protein charge could individually dominate the electrostatic portion of the interaction between model particles. Within the model, we place titratable residues in accordance with the tertiary protein structure, as is done in the case of a single protein within the Tanford-Kirkwood protein electrostatics model. We use Monte-Carlo simulation and analytical work to evaluate how the local statistics of the charging patterns on each protein respond to close proximity and relative orientation of neighboring proteins.

  19. Modulation of current through a nanopore induced by a charged globule: implications for DNA-docking

    CERN Document Server

    Chinappi, Mauro; Cecconi, Fabio; Marconi, Umberto Marini Bettolo; Melchionna, Simone

    2015-01-01

    The passage of DNA through a nanopore can be effectively decomposed into two distinct phases, docking and actual translocation. In experiments each phase is characterized by a distinct current signature which allows the discrimination of the two events. However, at low voltages a clear distinction of the two phases is lost. By using numerical simulations we clarify how the current signature associated to the docking events depends on the applied voltage. The simulations show that at small voltage the DNA globule enhances the pore conductance due to an enrichment of charge carriers. At high voltage, the globule drains substantial charge carriers from the pore region, thereby reducing the overall conductance. The results provide a new interpretation to the experimental data on conductance and show how docking interferes with the translocation signal, of potential interest for sequencing applications.

  20. Multijet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Jet cross sections were measured in charged-current deep inelastic e±p scattering at high boson virtualities Q2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb-1. Differential cross sections are presented for inclusive-jet production as functions of Q2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e±p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence-quark distributions in the proton if included as input to global fits.

  1. First charged current data from the CERN-Dortmund-Heidelberg-Saclay neutrino experiment

    International Nuclear Information System (INIS)

    The CDHS Collaboration has analyzed data taken in the CERN narrow-band antineutrino and neutrino beams. From 12000 antineutrino and 36000 neutrino charged current events at neutrino energies between 30 GeV and 200 GeV, we obtain the average inelasticity and the cross-section ratio sigma antisub(ν)/sigmasub(ν) as a function of neutrino energy. On the basis of these data we cannot confirm the high y anomaly observed by previous experiments at Fermilab. Instead, the measured average inelasticity in anti neutrino reactions and the ratio of charged current total cross-sections sigma anti sub(ν)/sigma%sub(ν) are compatible with no energy variation within their errors in the energy range 30+. (orig.)

  2. Multi-jet cross sections in charged current e±p scattering at HERA

    International Nuclear Information System (INIS)

    Jet cross sections were measured in charged current deep inelastic e±p scattering at high boson virtualities Q2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb-1. Differential cross sections are presented for inclusive-jet production as functions of Q2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e±p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits. (orig.)

  3. Measurements of the Charged Current Cross Sections with the ZEUS Detector

    International Nuclear Information System (INIS)

    A new measurement of the charged current cross section in e-p scattering is presented in the range of Q2 > 200 GeV2 , using the 1998 and 1999 data with an integrated luminosity of 16.4 pb-1. This cross section is compared to the preliminary charged current cross section in e+p scattering using the 1999 and 2000 data with an integrated luminosity of 61.0 pb-1, and to predictions of the Standard Model using PDFs extracted from fits to NC data. Finally, the mass of the W boson determined from a fit to dσ/dQ2 of the e-p scattering data is presented. (author)

  4. Biquaternionic Model of Electro-Gravimagnetic Field, Charges and Currents. Law of Inertia

    CERN Document Server

    Alexeyeva, Lyudmila

    2016-01-01

    One the base of Maxwell and Dirac equations the one biquaternionic model of electro-gravimagnetic (EGM) fields is considered. The closed system of biquaternionic wave equations is constructed for determination of free system of electric and gravimagnetic charges and currents and generated by them EGM-field. By using generalized functions theory the fundamental and regular solutions of this system are determined and some of them are considered (spinors, plane waves, shock EGMwaves and others). The properties of these solutions are investigated.

  5. Charged current disappearance measurements in the NuMI off-axis beam

    Energy Technology Data Exchange (ETDEWEB)

    R. H. Bernstein

    2003-09-25

    This article studies the potential of combining charged-current disappearance measurements of {nu}{sub {mu}} {yields} {nu}{sub {tau}} from MINOS and an off-axis beam. The author finds that the error on {Delta}m{sup 2} from a 100 kt-yr off-axis measurement is a few percent of itself. Further, the author found little improvement to an off-axis measurement by combining it with MINOS.

  6. Feedback Direct Injection Current Readout For Infrared Charge-Coupled Devices

    Science.gov (United States)

    Kubo, Kazuya; Wakayama, Hiroyuki; Kajihara, Nobuyuki; Awamoto, Kenji; Miyamoto, Yoshihiro

    1990-01-01

    We are proposing current readout for infrared charge coupled devices (IRCCDs) which can operate at higher temperatures. Feedback direct injection (FDI) consists of a simple amplifier of gain, AFDI was used in a medium-wavelength IRCCD operating at a high temperature. We made a 64-element HgCdTe linear IRCCD using FDI. The device operates at 195 K with an NETD of 0.5 K.

  7. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared, Q2, between 400 GeV2 and the kinematic limit of 87500 GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, dσ/dQ2, are presented. For Q2∝MW2, where MW is the mass of the W boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high Q2. The Q2 dependence of the CC cross section determines the mass term in the CC propagator to be MW=76±16±13 GeV. (orig.)

  8. Heavy Inertial Confinement Energy: Interactions Involoving Low charge State Heavy Ion Injection Beams

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, Robert D

    2006-04-14

    During the contract period, absolute cross sections for projectile ionization, and in some cases for target ionization, were measured for energetic (MeV/u) low-charge-state heavy ions interacting with gases typically found in high and ultra-high vacuum environments. This information is of interest to high-energy-density research projects as inelastic interactions with background gases can lead to serious detrimental effects when intense ion beams are accelerated to high energies, transported and possibly confined in storage rings. Thus this research impacts research and design parameters associated with projects such as the Heavy Ion Fusion Project, the High Current and Integrated Beam Experiments in the USA and the accelerator upgrade at GSI-Darmstadt, Germany. Via collaborative studies performed at GSI-Darmstadt, at the University of East Carolina, and Texas A&M University, absolute cross sections were measured for a series of collision systems using MeV/u heavy ions possessing most, or nearly all, of their bound electrons, e.g., 1.4 MeV/u Ar{sup +}, Xe{sup 3+}, and U{sup 4,6,10+}. Interactions involving such low-charge-state heavy ions at such high energies had never been previously explored. Using these, and data taken from the literature, an empirical model was developed for extrapolation to much higher energies. In order to extend our measurements to much higher energies, the gas target at the Experimental Storage Ring in GSI-Darmstadt was used. Cross sections were measured between 20 and 50 MeV/u for U{sup 28+}- H{sub 2} and - N{sub 2}, the primary components found in high and ultra-high vacuum systems. Storage lifetime measurements, information inversely proportional to the cross section, were performed up to 180 MeV/u. The lifetime and cross section data test various theoretical approaches used to calculate cross sections for many-electron systems. Various high energy density research projects directly benefit by this information. As a result, the general

  9. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress

    OpenAIRE

    Kaestner, Bernd; Kashcheyevs, Vyacheslavs

    2014-01-01

    Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property --- the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of $q_e f$ as function of control parameters, where $q_e$ is the electron...

  10. A New Kinetic Simulation Model with Self-Consistent Calculation of Regolith Layer Charging for Moon-Plasma Interactions

    Science.gov (United States)

    Han, D.; Wang, J.

    2015-12-01

    The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.

  11. Two Models Relevant to the Interaction of a Point Charge and a Magnetic Moment

    CERN Document Server

    Boyer, Timothy H

    2012-01-01

    An understanding of the interaction of a point charge and a magnetic moment is crucial for understanding the experiments involving electromagnetic momentum carried by permeable materials as well as the experimentally-observed Aharonov-Bohm and Aharonov-Casher phase shifts. Here we present two simple models for a magnetic moment which have vastly different interactions with a distant point charge. It is suggested that a satisfactory theoretical understanding of the interaction is still lacking and that the "hidden momentum" interpretation has been introduced into the textbook literature prematurely.

  12. Measurement of Neutrino and Antineutrino Charged-Current Inclusive Cross Sections with the MINERvA Detector

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Joshua D. [College of William and Mary, Williamsburg, VA (United States)

    2015-01-01

    Neutrinos are a nearly massless, neutral particle in the Standard Model that only interact via the weak interaction. Experimental confirmation of neutrino oscillations, in which a neutrino created as a particular type (electron, muon or tau) can be observed as a different type after propagating some distance, earned the 2015 Nobel Prize in Physics. Neutrino oscillation experiments rely on accurate measurements of neutrino interactions with matter, such as that presented here. Neutrinos also provide a unique probe of the nucleus, complementary to electron scattering experiments. This thesis presents a measurement of the charged-current inclusive cross section for muon neutrinos and antineutrinos in the energy range 2 to 50 GeV with the MINERvA detector. MINERvA is a neutrino scattering experiment in the NuMI neutrino beam at Fermilab, near Chicago. A cross section measures the probability of an interaction occurring, measured here as a function of neutrino energy. To extract a cross section from data, the observed rate of interactions is corrected for detector efficiency and divided by the number of scattering nucleons in the target and the flux of neutrinos in the beam. The neutrino flux is determined with the low-$\

  13. Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel-Nafion-membrane system

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2016-06-01

    The presence of a floating electrode array located within the depletion layer formed due to concentration polarization across a microchannel-membrane interface device may produce not only induced-charge electro-osmosis (ICEO) but also bipolar current resulting from the induced Faradaic reaction. It has been shown that there exists an optimal thickness of a thin dielectric coating that is sufficient to suppress bipolar currents but still enables ICEO vortices that stir the depletion layer, thereby affecting the system's current-voltage response. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the depletion layer length.

  14. Interaction between Current Imbalance and Magnetization in LHC Cables

    CERN Document Server

    Bottura, L; Kuijper, A; den Ouden, A; ten Haken, B; ten Kate, H H J

    2001-01-01

    The quality of the magnetic field in superconducting accelerator magnets is associated with the properties of the superconducting cable. Current imbalances due to coupling currents DI, as large as 100 A, are induced by spatial variations of the field sweep rate and contact resistances. During injection at a constant field all magnetic field components show a decay behavior. The decay is caused by a diffusion of coupling currents into the whole magnet. This results in a redistribution of the transport current among the strands and causes a demagnetization of the superconducting cable. As soon as the field is ramped up again after the end of injection, the magnetization rapidly recovers from the decay and follows the course of the original hysteresis curve. In order to clarify the interactions between the changes in current and magnetization during injection we performed a number of experiments. A magnetic field with a spatially periodic pattern was applied to a superconducting wire in order to simulate the cou...

  15. Phase behavior under a non-centrosymmetric interaction: shifted charge colloids investigated by Monte Carlo simulation

    CERN Document Server

    Sánchez-Díaz, Luis E; Li, Xin; Wu, Bin; Smith, Gregory S; Chen, Wei-Ren

    2014-01-01

    Using Monte Carlo simulations, we investigate the structural characteristics of an interacting hard sphere system with shifted charge to elucidate the effect of the non-centrosymmetric interaction on its phase behavior. Two different phase transitions are identified for this model system. Upon increasing the volume fraction, an abrupt liquid-to-crystal transition first occurs at a significantly lower volume fraction in comparison to that of the centro-charged system. This is due to the stronger effective inter-particle repulsion caused by the additional charge anisotropy. Moreover, within the crystal state at higher volume fraction, the system further undergoes a continuous disorder-to-order transition with respect to the charge orientation. Detailed analyses in this work disclose the nature of these transitions, and orientation fluctuation may cause non-centrosymmetric unit cells. The dependence of crystal formation and orientational ordering on temperature was also examined. These findings indicate that the...

  16. Measurement methods of ionization current and electric charges in radiation dosimetry

    Science.gov (United States)

    Bozydar Knyziak, Adrian; Rzodkiewicz, Witold

    2016-06-01

    This paper deals with the problem of measurement of very low direct currents and electrical charges in dosimetric application. It describes the known and used methods of measurement: the current method, the charge method, and the null method. A new method, which is presented here, is a combination of the two latter methods. The new method is compared with the known methods of measurement and the results of this comparison are summarized and discussed. The new method allows achieving relative standard uncertainty of 0.003% for current measurements around 3 pA and a long term stability of about 0.01%. Apart from this, preliminary measurements by using a built in comparator were also performed. Therefore, the uncertainty budget of the measurements for the system without an external comparator was also taken into account in the paper. The combined measurement uncertainties for current measurements obtained for the above-mentioned two methods (the new method and the method with the comparator built in the 6517A Keithley electrometer used in our experiments) were similar.

  17. Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction

    Science.gov (United States)

    Tabi, C. B.; Dang Koko, A.; Oumarou Doko, R.; Ekobena Fouda, H. P.; Kofané, T. C.

    2016-01-01

    We modify the Peyrard-Bishop-Holstein model and bring out the influence of the torsion and solvent interactions on charge transport in DNA. Through the linear stability analysis, we detect regions of instability and we compare the results with those of the standard Peyrard-Bishop-Holstein model. There are two regimes where modulated charge patterns can occur: the undertwisted and the overtwisted conformations. Numerical simulations are used to confirm our analytical predictions. Charge patterns are obtained and propagate more easily in an overwinded helix than in an underwinded one. The effects of dissipation and thermal fluctuations are also studied, which confirm the robustness of the obtained modulated patterns. On the one hand, we argue that in the absence of twisting, temperature can lead to the breaking of the hydrogen bonds between bases and prevent charges from propagating. On the other hand, when the molecule is overtwisted, the solvent and the temperature will rather enhance charge spreading patterns with random features.

  18. Space-charge-limited currents for cathodes with electric field enhanced geometry

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Huang, Zhongliang

    2016-08-01

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that the space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(βE)2J0, where J0 is the classical (1D) Child-Langmuir current density, βE is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.

  19. Interaction of bootstrap-current-driven magnetic islands

    International Nuclear Information System (INIS)

    The formation and interaction of fluctuating neoclassical pressure gradient driven magnetic islands is examined. The interaction of magnetic islands produces a stochastic region around the separatrices of the islands. This interaction causes the island pressure profile to be broadened, reducing the island bootstrap current and drive for the magnetic island. A model is presented that describes the magnetic topology as a bath of interacting magnetic islands with low to medium poloidal mode number (m congruent 3-30). The islands grow by the bootstrap current effect and damp due to the flattening of the pressure profile near the island separatrix caused by the interaction of the magnetic islands. The effect of this sporadic growth and decay of the islands (''magnetic bubbling'') is not normally addressed in theories of plasma transport due to magnetic fluctuations. The nature of the transport differs from statistical approaches to magnetic turbulence since the radial step size of the plasma transport is now given by the characteristic island width. This model suggests that tokamak experiments have relatively short-lived, coherent, long wavelength magnetic oscillations present in the steep pressure-gradient regions of the plasma. 42 refs

  20. Second Research Coordination Meeting on Heavy Charged-Particle Interaction Data for Radiotherapy. Summary Report

    International Nuclear Information System (INIS)

    A summary is given of the 2nd Research Coordination Meeting (RCM) on Heavy Charged-Particle Interaction Data for Radiotherapy. The programme to compile and evaluate charged-particle nuclear data for therapeutic applications was reviewed. Technical discussions and the resulting work plan of the Coordinated Research Programme are summarized, along with planned actions and deadlines. Participants' reports at the 2nd RCM are also included in this report. (author)

  1. Interaction of a point charge with the surface of a uniaxial dielectric

    CERN Document Server

    Ribič, Primož Rebernik

    2013-01-01

    We analyze the force on a point charge moving at relativistic speeds parallel to the surface of a uniaxial dielectric. Two cases are examined: a lossless dielectric with no dispersion and a dielectric with a plasma type response. The treatment focuses on the peculiarities of the strength and direction of the interaction force as compared to the isotropic case. We show that a plasma type dielectric can, under specific conditions, repel the point charge.

  2. A General Four-Fermion Effective Lagrangian for Dirac and Majorana Neutrino-Charged Matter Interactions

    CERN Document Server

    Mendy, J E B; Mendy, Jean El Bachir; Govaerts, Jan

    2002-01-01

    Given the most general Lorentz invariant four-fermion effective interaction possible for two neutrinos and two charged fermions, whether quarks or leptons, all possible 2-to-2 processes involving two neutrinos, whether Dirac or Majorana ones, and two charged fermions are considered. Explicit and convenient expressions are given for the associated differential cross-sections. Such a parametrization should help assess the sensitivity to physics beyond the Standard Model of neutrino beam experiments which are in the design stage at neutrino factories.

  3. Acidity-Mediated, Electrostatic Tuning of Asymmetrically Charged Peptides Interactions with Protein Nanopores.

    Science.gov (United States)

    Asandei, Alina; Chinappi, Mauro; Kang, Hee-Kyoung; Seo, Chang Ho; Mereuta, Loredana; Park, Yoonkyung; Luchian, Tudor

    2015-08-01

    Despite success in probing chemical reactions and dynamics of macromolecules on submillisecond time and nanometer length scales, a major impasse faced by nanopore technology is the need to cheaply and controllably modulate macromolecule capture and trafficking across the nanopore. We demonstrate herein that tunable charge separation engineered at the both ends of a macromolecule very efficiently modulates the dynamics of macromolecules capture and traffic through a nanometer-size pore. In the proof-of-principle approach, we employed a 36 amino acids long peptide containing at the N- and C-termini uniform patches of glutamic acids and arginines, flanking a central segment of asparagines, and we studied its capture by the α-hemolysin (α-HL) and the mean residence time inside the pore in the presence of a pH gradient across the protein. We propose a solution to effectively control the dynamics of peptide interaction with the nanopore, with both association and dissociation reaction rates of peptide-α-HL interactions spanning orders of magnitude depending upon solution acidity on the peptide addition side and the transmembrane electric potential, while preserving the amplitude of the blockade current signature. PMID:26144534

  4. Electron emission and defect formation in the interaction of slow, highly charged ions with diamond surfaces

    OpenAIRE

    Sideras-Haddad, E.; Shrivastava, S; Rebuli, D.B.; Persaud, A.; Schneider, D. H.; Schenkel, T.

    2008-01-01

    We report on electron emission and defect formation in the interaction between slow (v~;0.3 vBohr) highly charged ions (SHCI) with insulating (type IIa) and semiconducting (type IIb) diamonds. Electron emission induced by 31Pq+ (q=5 to 13), and 136Xeq+ (q=34 to 44) with kinetic energies of 9 kVxq increase linearly with the ion charge states, reaching over 100 electrons per ion for high xenon charge states without surface passivation of the diamond with hydrogen. Yields from both diamond ...

  5. BOTTOM SHEAR STRESS UNDER WAVE-CURRENT INTERACTION

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2008-01-01

    The present work adopts the COHERENS-SWAN model developed by the first author through coupling three-dimensional hydrodynamic model (COHERENS) and third-generation wave model (SWAN). Inside the COHERENS-SWAN, the SWAN is regarded as a subroutine and the time- and space-varying current velocity and surface elevation are obtained from the COHERENS. Wave-enhanced bottom shear stress, wave induced surface mixing length and wave dependent surface drag coefficient have been introduced into the COHERENS. Secondly, as wave-enhanced bottom shear stress ("bottom shear stress" described as BSS sometimes in this article) is concerned, a modified bottom shear stress Grant and Madsen model which introduces random wave field is given and introduced to COHERENS-SWAN. COHERENS-SWAN is also adopted to simulate three-dimensional flow in the Yellow River Delta with wave-current co-existing. Four numerical experiments were given to study the effects of wave-current interaction on enhancing bottom shear stress. The simulated current velocities, wave height and wave period match well with field measurement data. The simulated significant wave height and wave period for the case with considering the effects of current can give better agreement with measurement data than the case without involving the effects of current. The introduction of random wave generates lower the bottom shear stress than the case without introducing it. There are obvious differences between bottom shear stress of two way interaction and one way interaction. Velocity field obtained by the COHERENS-SWAN is reasonable according to previous studies and measurements.

  6. Computer and laboratory simulation of interactions between spacecraft surfaces and charged-particle environments

    Science.gov (United States)

    Stevens, N. J.

    1979-01-01

    There are two categories of interactions considered in this report. The first, spacecraft passive, refers to cases where the charged-particle environment acts on the spacecraft (e.g., spacecraft charging phenomena). The second, spacecraft active, refers to cases where a system on the spacecraft causes the interaction (e.g., high voltage space power systems). Both categories are studied in ground simulation facilities to understand the processes involved and to measure the pertinent parameters. Computer simulations are based on the NASA Charging Analyzer Program (NASCAP) code. Analytical models are developed in this code and verified against the experimental data. Extrapolation from the small test samples to space conditions are made with this code. Typical results from laboratory and computer simulations are presented for both types of interactions. Extrapolations from these simulations to performance in space environments are discussed.

  7. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)

    2016-06-15

    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Current saturation and Coulomb interactions in organic single-crystal transistors

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, S [Institut Neel-CNRS and Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); Xie, H; Hulea, I N; Morpurgo, A F [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Ciuchi, S [INFM-SMC, CNISM and Dipartimento di Fisica, Universita dell' Aquila, via Vetoio, I-67010 Coppito-L' Aquila (Italy)], E-mail: simone.fratini@grenoble.cnrs.fr

    2008-03-15

    Electronic transport through rubrene single-crystal field-effect transistors (FETs) is investigated experimentally in the high carrier density regime (n{approx_equal}0.1 carrier molecule{sup -1}). In this regime, we find that the current does not increase linearly with the density of charge carriers, and tends to saturate. At the same time, the activation energy for transport unexpectedly increases with increasing n. We perform a theoretical analysis in terms of a well-defined microscopic model for interacting Froehlich polarons, which quantitatively accounts for our experimental observations. This work is particularly significant for our understanding of electronic transport through organic FETs.

  9. Interacting Electrons in Parabolic Quantum Dots:. Energy Levels, Addition Energies, and Charge Distributions

    Science.gov (United States)

    Schreiber, Michael; Siewert, Jens; Vojta, Thomas

    2001-08-01

    We investigate the properties of interacting electrons in a parabolic confinement. To this end we numerically diagonalize the Hamiltonian using the Hartree-Fock based diagonalization method which is related to the configuration interaction approach. We study different types of interactions, Coulomb as well as short range. In addition to the ground state energy we calculate the spatial charge distribution and compare the results to those of the classical calculation. We find that a sufficiently strong screened Coulomb interaction produces energy level bunching for classical as well as for quantum-mechanical dots. Bunching in the quantum-mechanical system occurs due to an interplay of kinetic and interaction energy, moreover, it is observed well before reaching the limit of a Wigner crystal. It also turns out that the shell structure of classical and quantum mechanical spatial charge distributions is quite similar.

  10. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kuechler, Erich R. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States); Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States); Giese, Timothy J.; York, Darrin M. [BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8087 (United States)

    2015-12-21

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM

  11. Graphitic silicon nitride: a metal-free ferromagnet with charge and spin current rectification.

    Science.gov (United States)

    Sen, Sabyasachi; Chakrabarti, Swapan

    2014-09-15

    As a first example, herein we show that g-Si(4)N(3) is expected to act as a metal-free ferromagnet featuring both charge and spin current rectification simultaneously. Such rectification is crucial for envisioning devices that contain both logic and memory functionality on a single chip. The spin coherent quantum-transport calculations on g-Si(4)N(3) reveal that the chosen system is a unique molecular spin filter, the current-voltage characteristics of which is asymmetric in nature, which can create a perfect background for synchronous charge and spin current rectification. To shed light on this highly unusual in-silico observation, we have meticulously inspected the bias-dependent modulation of the spin-polarized eigenstates. The results indicate that, whereas only the localized 2p orbitals of the outer-ring (OR) Si atoms participate in the transmission process in the positive bias, both OR Si and N atoms contribute in the reverse bias. Furthermore, we have evaluated the spin-polarized electron-transfer rate in the tunneling regime, and the results demonstrate that the transfer rates are unequal in the positive and negative bias range, leading to the possible realization of a simultaneous logic-memory device.

  12. Nitric oxide and phytohormone interactions: current status and perspectives

    OpenAIRE

    Luciano eFreschi

    2013-01-01

    Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of plant responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degre...

  13. Nitric oxide and phytohormone interactions: current status and perspectives

    OpenAIRE

    Freschi, Luciano

    2013-01-01

    Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the...

  14. Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  15. Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2007-09-01

    The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.

  16. The motion of a charged particle in a magnetic field produced by a column current

    Institute of Scientific and Technical Information of China (English)

    XIANG Yu-min

    2008-01-01

    To determine the motion of a charged particle in a magnetic field produced by a current flowing along a long column conductor, the equation of the motion was established on the basis of Lorentz force. Qualitative analysis and quantitative solutions demonstrated that the motion contains nonlinear oscillation. The oscillation can be treated as the perturbation of the helical motion, which the particle undergoes in a special condition. The general motion is superposition of two helixes, one as an axis spiraled by another. It is proven that the oscillation is stable.

  17. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...

  18. Constraints on four-fermion interactions from the t anti t charge asymmetry at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Rosello, M.P.; Vos, M. [IFIC (UVEG/CSIC), Valencia (Spain)

    2016-04-15

    The charge asymmetry in top quark production at hadron colliders is sensitive to beyond-the-Standard-Model four-fermion interactions. In this study we compare the sensitivity of t anti t cross-section and charge asymmetry measurements to effective operators describing four-fermion interactions and study the limits on the validity of this approach. A fit to a combination of Tevatron and LHC measurements yields stringent limits on the linear combinations C{sub 1} and C{sub 2} of the four-fermion effective operators. (orig.)

  19. Plasma regions, charged dust and field-aligned currents near Enceladus

    Science.gov (United States)

    Engelhardt, I. A. D.; Wahlund, J.-E.; Andrews, D. J.; Eriksson, A. I.; Ye, S.; Kurth, W. S.; Gurnett, D. A.; Morooka, M. W.; Farrell, W. M.; Dougherty, M. K.

    2015-11-01

    We use data from several instruments on board Cassini to determine the characteristics of the plasma and dust regions around Saturn's moon Enceladus. For this we utilize the Langmuir probe and the electric antenna connected to the wideband receiver of the radio and plasma wave science (RPWS) instrument package as well as the magnetometer (MAG). We show that there are several distinct plasma and dust regions around Enceladus. Specifically they are the plume filled with neutral gas, plasma, and charged dust, with a distinct edge boundary region. Here we present observations of a new distinct plasma region, being a dust trail on the downstream side. This is seen both as a difference in ion and electron densities, indicating the presence of charged dust, and directly from the signals created on RPWS antennas by the dust impacts on the spacecraft. Furthermore, we show a very good scaling of these two independent dust density measurement methods over four orders of magnitude in dust density, thereby for the first time cross-validating them. To establish equilibrium with the surrounding plasma the dust becomes negatively charged by attracting free electrons. The dust distribution follows a simple power law and the smallest dust particles in the dust trail region are found to be 10 nm in size as well as in the edge region around the plume. Inside the plume the presence of even smaller particles of about 1 nm is inferred. From the magnetic field measurements we infer strong field-aligned currents at the geometrical edge of Enceladus.

  20. Charm production in charged current deep inelastic e{sup +}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.

    2006-03-15

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb{sup -1}. Charged D{sup *} mesons decaying in the channel D{sup *+}{yields}D{sup 0}{pi}{sup +}{sub s} with D{sup 0}{yields}K{sup -}{pi}{sup +} and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D{sup *}, {sigma}{sup D*}{sub vis}=12.8{+-}4.0(stat){sup +4.7}{sub -1.5}(sys) pb, is measured in the kinematic range of Q{sup 2}>200 GeV{sup 2} and y<0.9, and of p{sup D{sup *}}{sub T}>1.5 GeV and vertical stroke {eta}{sup D{sup *}} vertical stroke <1.5. The upper-limit for the charm production in the same DIS kinematic range is determined to be {sigma}{sup e{sup +}}{sup p{yields}} {sup anti} {sup {nu}{sub e}}{sup cX} < 109 pb at 90% confidence level. (orig.)

  1. 100 kV/2A three-phase constant-current repetitive-rate charging equipment

    International Nuclear Information System (INIS)

    A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1μF capacitor

  2. Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, K.; /Kyoto U.; Alcaraz-Aunion, J.L.; /Barcelona, IFAE; Brice, S.J.; /Fermilab; Bugel, Leonard G.; /MIT; Catala-Perez, J.; /Valencia U.; Cheng, G.; /Columbia U.; Conrad, J.M.; /MIT; Djurcic, Zelimir; /Columbia U.; Dore, U.; /Banca di Roma /Frascati; Finley, David A.; /Fermilab; Franke, A.J.; /Columbia U. /Banca di Roma /Frascati

    2008-11-01

    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, nu{sub {mu}}{sup 12}C- {yields} {mu}{sup 12}Cpi{sup +}, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67 x 10{sup -2} at mean neutrino energy 1.1 GeV and 1.36 x 10{sup -2} at mean neutrino energy 2.2 GeV.

  3. 100 kV/2A three-phase constant-current repetitive-rate charging equipment

    CERN Document Server

    Tan Yu Gang; Chen Li Dong; Guo Zhi Gang; Zou Xiao Bing; Luo Min; Cao Shao Yun; Chang An Bi

    2002-01-01

    A 100 kV/2A three-phase constant-current repetitive-rate charging equipment was designed and constructed. A three-phase L-C converter is adopted as constant-current power source. Six Insulated Gate Bipolar Transistors (IGBTs) are connected in parallel to control the stop of charge. A Programmable Logical Controller (PLC) is the central element of the control unit. The equipment is used in the repetitive-rate discharge features test of the switch. It works stably under the conditions of 2A charging current, 10 Hz operating voltage, 100 kV repetitive rate and 1 mu F capacitor

  4. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory

    CERN Document Server

    Ahmad, Q R; Andersen, T C; Anglin, J D; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S D; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Buhler, G; Cameron, J; Chan, Y D; Chen, H H; Chen, M; Chen, X; Cleveland, B T; Clifford, E T H; Cowan, J H M; Cowen, D F; Cox, G A; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Formaggio, J A; Fowler, M M; Frame, K; Frank, E D; Frati, W; Gagnon, N; Germani, J V; Gil, S; Graham, K; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A S; Hamian, A A; Handler, W B; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J L; Hime, A; Howe, M; Hykawy, J G; Isaac, M C P; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Kazkaz, K; Keener, P T; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C M; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Maneira, J; Manor, J; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; Meijer-Drees, R; Miin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M E; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, Mamoru; Orrell, J L; Oser, S M; Poon, A W P; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G H; Rosendahl, S S E; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schwendener, M H; Schülke, A; Seifert, H; Shatkay, M; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W E; Spreitzer, T; Starinsky, N; Steiger, T D; Stokstad, R G; Stonehill, L C; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P M; Trent, P T; Tserkovnyak, Y; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M

    2002-01-01

    Observations of neutral current neutrino interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current, elastic scattering, and charged current reactions and assuming the standard 8B shape, the electron-neutrino component of the 8B solar flux is 1.76 +/-0.05(stat.)+/-0.09(syst.) x10^6/(cm^2 s), for a kinetic energy threshold of 5 MeV. The non-electron neutrino component is 3.41+/-0.45(stat.)+0.48,-0.45(syst.) x10^6/(cm^2 s), 5.3 standard deviations greater than zero, providing strong evidence for solar electron neutrino flavor transformation. The total flux measured with the NC reaction is 5.09 +0.44,-0.43(stat.)+0.46,-0.43(syst.)x10^6/(cm^2 s), consistent with solar models.

  5. One meson π0 final state study in neutral current neutrino and antineutrino interactions

    International Nuclear Information System (INIS)

    Neutral pion production by weak neutral currents was observed in the CERN-GARGAMELLE neutrino experiment. The aim of the analysis was the measurement of the ratios R(ν) and R(antiν) of neutral-current to charged-current cross sections. The background due to neutron interactions was computed. A lower and an upper limit of the background was obtained. Bounds on the ratios R(ν) and R(antiν) are given using these limits: 0.11< R(ν)<0.22; 0.16< R(antiν)<0.52. Theoretical predictions for R(ν) were obtained in the framework of the Weinberg-Salam model. It is not possible to compare the experimental result with these theoretical evaluation because of nuclear corrections

  6. Interaction of a Magnet and a Point Charge: Unrecognized Internal Electromagnetic Momentum

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    Whereas nonrelativistic mechanics always connects the total momentum of a system to the motion of the center of mass, relativistic systems, such as interacting electromagnetic charges, can have internal linear momentum in the absence of motion of the center of energy of the system. This internal linear momentum of the system is related to the controversial concept of "hidden momentum." We suggest that the term "hidden momentum" be abandoned. Here we use the relativistic conservation law for the center of energy to give an unambiguous definition of the "internal momentum of a system," and then we exhibit this internal momentum for the system of a magnet (modeled as a circular ring of moving charges) and a distant static point charge. The calculations provide clear illustrations of this system for three cases: a) the moving charges of the magnet are assumed to continue in their unperturbed motion, b) the moving charges of the magnet are free to accelerate but have no mutual interactions, and c) the moving charg...

  7. Effect of the bound nucleon form factors on charged-current neutrino-nucleus scattering

    CERN Document Server

    Tsushima, K; Saitô, K; Kim, Hungchong

    2003-01-01

    We study the effect of bound nucleon form factors on charged-current neutrino-nucleus scattering. The bound nucleon form factors associated with the vector and axial-vector currents are calculated in the quark-meson coupling model. We compute the inclusive $^{12}$C($nu_mu,mu^-$)$X$ differential and total cross sections, which have been measured by the LSND collaboration at Los Alamos, using a relativistic Fermi gas model with the calculated bound nucleon form factors. It is shown that the bound nucleon form factors reduce the total cross section by about 8% relative to that calculated with the free nucleon form factors, where most of the conventional calculations overestimate the total cross section data by about 30% to 100%.

  8. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    International Nuclear Information System (INIS)

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections

  9. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    CERN Document Server

    Ankowski, Artur M

    2013-01-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  10. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    Science.gov (United States)

    Ankowski, Artur M.

    2015-05-01

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  11. Consistent analysis of neutral- and charged-current (anti)neutrino scattering off carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ankowski, Artur M. [INFN and Department of Physics,“Sapienza” Università di Roma, I-00185 Roma (Italy)

    2015-05-15

    Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for the correct interpretation of results of ongoing and planned oscillation experiments. To clarify a possible source of disagreement between recent measurements of the cross sections on carbon, we analyze the available data within an approach based on the realistic spectral function of carbon, treating neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes on equal footing. We show that the axial mass from the shape analysis of the MiniBooNE data is in good agreement with the results reported by the BNL E734 and NOMAD Collaborations. However, the combined analysis of the NCE and CCQE data does not seem to support the contribution of multinucleon final states being large enough to explain the normalization of the MiniBooNE-reported cross sections.

  12. Non-uniform space charge limited current injection into a nano contact solid.

    Science.gov (United States)

    Zhu, Y B; Ang, L K

    2015-01-01

    We have developed a two-dimensional (2D) non-uniform model to study the space charge limited (SCL) current injection into a trap-filled solid of nano-contact, such as organic materials and dielectrics. Assuming a solid of length D with a contact of width W, the enhancement over the well-known 1D uniform model is calculated as a function of W/D for different material properties, such as the dielectric constant (ε) and the trap distribution. The non-uniform current density profile due to edge effect is predicted. The findings reported here are different from the prior uniform 2D models, which are significant for small W/D when the size of the contact reaching nanometer scale, i.e. W = 50 nm for D = 1 μm. This model will be useful for the characterization of carrier mobility and properties of traps, which are critical to many novel devices (with small nano-contact) operating in the space charge limited condition reporting in novel device and its applications. Empirical formulas are given for future comparison with experimental results. PMID:25779769

  13. Spin and charge transport in the presence of spin-orbit interaction

    Indian Academy of Sciences (India)

    T P Pareek; P Bruno

    2002-02-01

    We present the study of spin and charge transport in nanostructures in the presence of spin-orbit (SO) interaction. Single band tight binding Hamiltonians for Elliot–Yafet and Rashba SO interaction are derived. Using these tight binding Hamiltonians and spin resolved Landauer–Büttiker formula, spin and charge transport is studied. Specifically numerical results are presented for a new method to perform magnetic scanning tunneling microscopy with non-magnetic tip but in the presence of Elliot–Yafet SO interaction. The spin relaxation phenomena in two-dimensional electron gas in the presence of Rashba SO interaction are studied and contrary to naive expectation, it is shown that disorder helps to reduce spin relaxation.

  14. Biochemistry students' ideas about shape and charge in enzyme-substrate interactions.

    Science.gov (United States)

    Linenberger, Kimberly J; Bretz, Stacey Lowery

    2014-01-01

    Biochemistry is a visual discipline that requires students to develop an understanding of numerous representations. However, there is very little known about what students actually understand about the representations that are used to communicate ideas in biochemistry. This study investigated biochemistry students' understanding of multiple representations of enzyme-substrate interactions through both student interviews (N = 25) and responses by a national sample (N = 707) to the Enzyme-Substrate Interactions Concept Inventory. This manuscript reports the findings regarding one category of misconceptions measured by the concept inventory, namely, students' understandings of shape and charge in the context of enzyme-substrate interactions. Students interpret molecular representations depicting such interactions by determining the complementarity between enzyme and substrate by focusing upon charge and hydrogen bonding, but with a disregard for stereochemistry.

  15. Measurement of the Antineutrino Double-Differential Charged-Current Quasi-Elastic Scattering Cross Section at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Cheryl [Northwestern U.

    2016-01-01

    Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic cross sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.

  16. Exclusive Muon-Neutrino Charged Current Muon Plus Any Number of Protons Topologies In ArgoNeuT

    Energy Technology Data Exchange (ETDEWEB)

    Partyka, Kinga Anna [Yale Univ., New Haven, CT (United States)

    2013-01-01

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era o f neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC ) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. I t is a perfect candidate that w ill aim to answer the remaining questions of the nature o f neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images o f neutrino interactions can be both illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino p + N p , muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance o f nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.

  17. Exclusive Muon-Neutrino Charged Current muon plus any number of protons topologies in ArgoNeuT

    Science.gov (United States)

    Partyka, Kinga Anna

    Neutrinos remain among the least understood fundamental particles even after decades of study. As we enter the precision era of neutrino measurements bigger and more sophisticated detectors have emerged. The leading candidate among them is a Liquid Argon Time Projection Chamber (LArTPC) detector technology due to its bubble-like chamber imaging, superb background rejection and scalability. It is a perfect candidate that will aim to answer the remaining questions of the nature of neutrino and perhaps our existence. Studying neutrinos with a detector that employs detection via beautiful images of neutrino interactions can be bath illuminating and surprising. The analysis presented here takes the full advantage of the LArTPC power by exploiting the first topological analysis of charged current muon neutrino mu + Np, muon and any number of protons, interactions with the ArgoNeuT LArTPC experiment on an argon target. The results presented here are the first that address the proton multiplicity at the vertex and the proton kinematics. This study also addresses the importance of nuclear effects in neutrino interactions. Furthermore, the developed here reconstruction techniques present a significant step forward for this technology and can be employed in the future LArTPC detectors.

  18. Heliospheric current sheet and its interaction with solar cosmic rays

    Science.gov (United States)

    Malova, Helmi; Popov, Victor; Grigorenko, Elena; Dunko, Andrey; Petrukovich, Anatoly

    2016-04-01

    We investigated effects resulting from the interaction of solar cosmic rays (SCR) with the heliospheric current sheet (HCS) in the solar wind. Self-consistent kinetic model of the HCS is developed, where ions demonstrate quasi-adiabatic dynamics. HCS is considered as the equilibrium embedded current structure, where the two main kinds of plasma with different temperatures give the main contribution to the current (low-energy background plasma and SCR). It is shown that HCS is a relatively thin multiscale configuration of the current sheet, embedded in a thicker plasma layer. The taking into account of SCR particles in HCS could lead to a change of its structure and to enhancement of its properties such as the embedding and multi-scaling. Parametric family of solutions is considered where the current balance in HCS is provided at different temperatures of SCR and different concentrations of high-energy plasma. Concentrations of SCR are determined which may contribute to the thickening of the HCS that can be observed in satellite studies. The possibility to apply this modeling for the explanation of experimental observations is considered.

  19. University Students' Explanatory Models of the Interactions between Electric Charges and Magnetic Fields

    Science.gov (United States)

    Saglam, Murat

    2010-01-01

    This study aimed to investigate the models that co-existed in students' cognitive structure to explain the interactions between electric charges and uniform magnetic fields. The sample consisted of 129 first-year civil engineering, geology and geophysics students from a large state university in western Turkey. The students answered five…

  20. Self-interacting charged massive spin two particles in Minkowski spacetime

    CERN Document Server

    Ohara, Yuichi

    2016-01-01

    A model of the self-interacting charged massive spin-two field is constructed. We investigate several properties of the model and find that the the trivial vacuum is only allowed due to the internal symmetry. This suggests that the Higgs mechanism might not be induced by the model of the massive spin-two field with the ghost-free potential.

  1. Interactions of human hemoglobin with charged ligand-functionalized iron oxide nanoparticles and effect of counterions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Goutam, E-mail: ghoshg@yahoo.com [UGC-DAE Consortium for Scientific Research, Mumbai Centre (India); Panicker, Lata [Bhabha Atomic Research Centre, Solid State Physics Division (India)

    2014-12-15

    Human hemoglobin is an important metalloprotein. It has tetrameric structure with each subunit containing a ‘heme’ group which carries oxygen and carbon dioxide in blood. In this work, we have investigated the interactions of human hemoglobin (Hb) with charged ligand-functionalized iron oxide nanoparticles and the effect of counterions, in aqueous medium. Several techniques like DLS and ζ-potential measurements, UV–vis, fluorescence, and CD spectroscopy have been used to characterize the interaction. The nanoparticle size was measured to be in the range of 20–30 nm. Our results indicated the binding of Hb with both positively as well as negatively charged ligand-functionalized iron oxide nanoparticles in neutral aqueous medium which was driven by the electrostatic and the hydrophobic interactions. The electrostatic binding interaction was not seen in phosphate buffer at pH 7.4. We have also observed that the ‘heme’ groups of Hb remained unaffected on binding with charged nanoparticles, suggesting the utility of the charged ligand-functionalized nanoparticles in biomedical applications.

  2. [Combined hopping-superexchange mechanism of charge transfer in DNA; a model with nearest interactions].

    Science.gov (United States)

    Lakhno, V D; Sultanov, V B

    2007-01-01

    In the framework of the earlier developed combined hopping-superexchange mechanism of charge transfer in DNA, a model with all nearest interactions between nucleobases is proposed. It is shown that the transfer rates for various types of nucleotide sequences calculated within this model are in a good agreement with experimental data.

  3. Nuclear charge radii and electric monopole transitions in the interacting boson model

    CERN Document Server

    Van Isacker, P

    2012-01-01

    The interacting boson model (IBM) of Arima and Iachello is applied to calculate nuclear charge radii and electric monopole transitions of even-even nuclei in the rare-earth region. Consistent operators are used for the two observables. A relation between summed M1 strength and $\\rho({\\rm E0})$ values is pointed out.

  4. Deep oceanic currents and sea floor interactions offshore SE Africa

    Science.gov (United States)

    Raisson, François; Cazzola, Carlo; Ferry, Jean-Noel

    2016-04-01

    The Pamela Research program, which involves Total and Ifremer and their associated partners (French Universities, CNRS, IFPEN), is currently working to acquire new multidisciplinary data in the Mozambique Channel, in order to improve our knowledge and use this area as "laboratory" for comprehension of sedimentary/stratigraphical/geodynamical/structural and biological processes. The area comprised between the austral ocean and the southern tip of the African continent is a major place for Atlantic and Indian waters exchange, with high impact on the global climate (de Rujiter et al., 1999, Beal et al., 2011). Its prolongation toward the Mozambique Channel is a great playground to study effects of bottom currents on the sea floor. In this synthesis, we compile information about the major oceanic currents that occur at different water depth in the area, and we started listing the main published or ongoing studies, some of them in the scope of the Pamela project, related to sea floor interactions with bottom currents. These interactions are characterized by erosional features: submarine erosions, truncations, stratigraphic hiatuses, associated to depositional features: various types of contouritic drifts, sediment waves, asymmetric turbiditic levees etc. (Simpson et al., 1974, Uenzelmann-Neben et al., 2007, Uenzelmann-Neben & Huhn, 2009, Palermo et al., 2014). Movements of the main water masses in the Mozambique basin are strongly driven by thermohaline circulation but also sea floor topography and coast configuration: the Mozambique Current is not a persistent current but composed by southward moving anticyclonic eddies (De Rujiter et al., 2002, Ridderinkhof & de Rujiter, 2003, Swart et al., 2010, Halo et al., 2014). Deep currents flow northward along the western edge of the Mozambique basin: the North Atlantic Deep Waters (NADW) and the Antarctic Intermediate Waters (AAIW) flow along the Mozambican continental slope and form the Mozambique Undercurrent. A portion of

  5. Interacting tilt and kink instabilities in repelling current channels

    International Nuclear Information System (INIS)

    We present a numerical study in resistive magnetohydrodynamics (MHD) where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or flux ropes, which on Alfvénic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to two-and-a-half-dimensional (2.5D) and full three-dimensional (3D) scenarios. As long as the third dimension can be ignored, pure tilt evolutions result that are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular current sheets in the far nonlinear saturation regime. In full 3D runs, both current channels can be liable to additional ideal kink deformations. We discuss the effects of having both tilt and kink instabilities acting simultaneously in the violent, reconnection-dominated evolution. In 3D, both the tilt and the kink instabilities can be stabilized by tension forces. As a concrete space plasma application, we argue that interacting tilt-kink instabilities in repelling current channels provide a novel route to initiate solar coronal mass ejections, distinctly different from the currently favored pure kink or torus instability routes.

  6. Photon emission in neutral current interactions with nucleons and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ruso, L.; Nieves, J.; Wang, E. [Instituto de Física Corpuscular and Departamento de Física Teórica, Centro Mixto Universidad de Valencia-CSIC, E-46071 Valencia (Spain)

    2015-05-15

    We report on our study of photon emission induced by E{sub ν} ∼ 1 GeV (anti)neutrino neutral current interactions with nucleons and nuclei. This process is an important background for ν{sub e} appearance oscillation experiments. At the relevant energies, the reaction is dominated by the excitation of the Δ(1232) resonance but there are also non-resonant contributions that, close to threshold, are fully determined by the effective chiral Lagrangian of strong interactions. We have obtained differential and integrated cross section for the (anti)neutrino-nucleon scattering and compare them with previous results. Furthermore, we have extended the model to nuclear targets taking into account Fermi motion, Pauli blocking and the in-medium modifications of the Δ properties. This study is important in order to reduce systematic effects in neutrino oscillation experiments.

  7. Photon emission in neutral current interactions with nucleons and nuclei

    CERN Document Server

    Alvarez-Ruso, L; Wang, E

    2013-01-01

    We report on our study of photon emission induced by Enu ~ 1 GeV (anti)neutrino neutral current interactions with nucleons and nuclei. This process is an important background for nu_e appearance oscillation experiments. At the relevant energies, the reaction is dominated by the excitation of the Delta (1232) resonance but there are also non-resonant contributions that, close to threshold, are fully determined by the effective chiral Lagrangian of strong interactions. We have obtained differential and integrated cross section for the (anti)neutrino-nucleon scattering and compare them with previous results. Furthermore, we have extended the model to nuclear targets taking into account Fermi motion, Pauli blocking and the in-medium modifications of the Delta properties. This study is important in order to reduce systematic effects in neutrino oscillation experiments.

  8. Linear and angular momentum of electromagnetic fields generated by an arbitrary distribution of charge and current densities at rest

    CERN Document Server

    Thidé, B; Then, H; Tamburini, F

    2010-01-01

    Starting from Stratton-Panofsky-Phillips-Jefimenko equations for the electric and magnetic fields generated by completely arbitrary charge and current density distributions at rest, we derive far-zone approximations for the fields, containing all components, dominant as well as sub-dominant. Using these approximate formulas, we derive general formulas for the total electromagnetic linear momentum and angular momentum, valid at large distances from arbitrary, non-moving charge and current sources.

  9. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte.

    Science.gov (United States)

    González-Mozuelos, P

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  10. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte.

    Science.gov (United States)

    González-Mozuelos, P

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  11. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    González-Mozuelos, P. [Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360 (Mexico)

    2016-02-07

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  12. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    Science.gov (United States)

    González-Mozuelos, P.

    2016-02-01

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  13. On the role of collective interactions in asymmetric ring current formation

    Directory of Open Access Journals (Sweden)

    P. A. Bespalov

    Full Text Available The contribution of resonant wave-particle interactions to the formation and decay of the magnetospheric ring current is analysed in the framework of a self-consistent set of equations which take into account azimuthal plasmasphere asymmetry. It is shown that the cyclotron interaction of westward drifting energetic protons with Alfven waves in the evening-side plasmaspheric bulge region leads to the formation of a ring current asymmetry located near 18:00 MLT. The time-scale of this asymmetry is determined by the proton drift time through the plasmaspheric bulge and is about 1 - 3 h. A symmetrical ring current decays mainly due to charge exchange processes. The theory is compared with known experimental data on ions and waves in the ring current and on low-latitude magnetic disturbances. New low-latitude magnetometer data on the magnetic storm of 24 - 26 July 1986 are also discussed. The model presented explains the observed localization of an asymmetrical ring current loop in the evening sector and the difference in relaxation time-scales of the asymmetry and the Dst index. It also explains measured wave turbulence levels in the evening-side plasmasphere and wave observation statistics.

  14. Nitric oxide and phytohormone interactions: current status and perspectives

    Directory of Open Access Journals (Sweden)

    Luciano eFreschi

    2013-10-01

    Full Text Available Nitric oxide (NO is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of plant responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.

  15. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    Science.gov (United States)

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-01

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  16. Conservative Currents of Boundary Charges in AdS2+1 Gravity

    Institute of Scientific and Technical Information of China (English)

    FENG Sze-Shiang; WANG Bin; MENG Xin-He

    2001-01-01

    The boundary charge which constitutes the Virasoro algebra in (2-+ 1)-dirnensional anti-de Sitter gravity is derived by Noether theorem and diffeomorphic invariance. It shows that the boundary charge under discussion recently exhausts all the available independent nontrivial charges. Therefore, for any specific spacetime, the state counting via the central charge of the Virasoro algebra is exact.``

  17. Analysis of total dose-induced dark current in CMOS image sensors from interface state and trapped charge density measurements

    OpenAIRE

    Goiffon, Vincent; Virmontois, Cédric; Magnan, Pierre; Girard, Sylvain; Paillet, Philippe

    2010-01-01

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0,18 um CMOS image sensor process and exposed to 10 keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhanceme...

  18. Interaction Between Charge Characteristics and Cu2+ Adsorption-Desorption of Soils with Variable or Permanent Charge

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Charge characteristics and Cu2+ adsorption-desorption of soils with variable charge (latosol) and per-manent charge (brown soil) and the relationship between them were studied by means of back-titration andadsorption equilibrium respectively. The amount of variable negative charge was much less in variable-chargesoil than in permanent-charge soil and increased with the pH in the system, but the opposite trend occurredin the points of zero charge (PZCs). The amount of Cu2+ ions sorbed by permanent-charge soil was morethan that by variable-charge soil and increased with the increase of Cu2+ concentration within a certainrange in the equilibrium solution. The amount of Cu2+ ions desorbed with KCl from permanent-chargesoil was more than that from variable-charge soil, but the amount of Cu2+ ions desorbed with de-ionizedwater from permanent-charge soil was extremely low whereas there was still a certain amount of desorptionfrom variable-charge soil. The increase of PZC of soils with variable or permanent charge varied with theincrement of Cu2+ ions added. When the same amount of Cu2+ ions was added, the increments of PZC andvariable negative surface charge of permanent-charge soil were different from those of variable-charge soil.

  19. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases.

    Science.gov (United States)

    Negrini, Renata; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele

    2014-04-22

    The release of positive, negative, and neutral hydrophilic drugs from pH responsive bicontinuous cubic phases was investigated under varying conditions of electrostatic interactions. A weak acid, linoleic acid (LA), or a weak base, pyridinylmethyl linoleate (PML), were added to the neutral monolinolein (ML) in order to form lyotropic liquid-crystalline (LLC) phases, which are negatively charged at neutral pH and positively charged at acidic pH. Release studies at low ionic strength (I = 20 mM) and at different pH values (3 and 7) revealed that electrostatic attraction between a positive drug, proflavine (PF), and the negatively charged LLC at pH = 7 or between a negative drug, antraquinone 2-sulfonic acid sodium salt (AQ2S), and the positively charged LLC at pH = 3 did delay the release behavior, while electrostatic repulsion affects the transport properties only to some extent. Release profiles of a neutral drug, caffeine, were not affected by the surface charge type and density in the cubic LLCs. Moreover, the influence of ionic strength was also considered up to 150 mM, corresponding to a Debye length smaller than the LLC water channels radius, which showed that efficient screening of electrostatic attractions occurring within the LLC water domains results in an increased release rate. Four transport models were applied to fit the release data, providing an exhaustive, quantitative insight on the role of electrostatic interactions in transport properties from pH responsive bicontinuous cubic phases. PMID:24673189

  20. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuña, Javier

    2011-11-28

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows the utilization of asymmetric contacts to describe the built-in potential within the device. The model has been applied to extract information of the distribution of traps from experimental current-voltage measurements of a rubrene single crystal from Krellner showing excellent agreement across several orders of magnitude in the current. Although the two contacts are made of the same metal, an energy offset of 580 meV between them, ascribed to differences in the deposition techniques (lamination vs evaporation) was essential to correctly interpret the shape of the current-voltage characteristics at low voltage. A band mobility of 0.13cm 2V-1s-1 for holes is estimated, which is consistent with transport along the long axis of the orthorhombic unit cell. The total density of traps deeper than 0.1 eV was 2.2×1016cm -3. The sensitivity analysis and error estimation in the obtained parameters show that it is not possible to accurately resolve the shape of the trap distribution for energies deeper than 0.3 eV or shallower than 0.1 eV above the valence-band edge. The total number of traps deeper than 0.3 eV, however, can be estimated. Contact asymmetry and the diffusion component of the current play an important role in the description of the device at low bias and are required to obtain reliable information about the distribution of deep traps. © 2011 American Physical Society.

  1. Analysis of Total Dose-Induced Dark Current in CMOS Image Sensors From Interface State and Trapped Charge Density Measurements

    International Nuclear Information System (INIS)

    The origin of total ionizing dose induced dark current in CMOS image sensors is investigated by comparing dark current measurements to interface state density and trapped charge density measurements. Two types of photodiode and several thick-oxide-FETs were manufactured using a 0.18-μm CMOS image sensor process and exposed to 10-keV X-ray from 3 krad to 1 Mrad. It is shown that the radiation induced trapped charge extends the space charge region at the oxide interface, leading to an enhancement of interface state SRH generation current. Isochronal annealing tests show that STI interface states anneal out at temperature lower than 100 C whereas about a third of the trapped charge remains after 30 min at 300 C. (authors)

  2. Charged patchy particle models in explicit salt: Ion distributions, electrostatic potentials, and effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Cemil; Dzubiella, Joachim, E-mail: joachim.dzubiella@helmholtz-berlin.de [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin (Germany); Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine,” 14513 Teltow (Germany); Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Heyda, Jan [Department of Physical Chemistry, University of Chemistry and Technology, Prague, 166 28 Praha 6 (Czech Republic)

    2015-08-14

    We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.

  3. Electrostatic potential profile and nonlinear current in an interacting one-dimensional molecular wire

    Indian Academy of Sciences (India)

    S Lakshmi; Swapan K Pati

    2003-10-01

    We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends on charge densities, we have considered different Hamiltonian parameters to model the nanoscale wire. We find that for very weak electron correlations, the potential gradient is almost zero in the middle of the wire but are large near the chain ends. However, for strong correlations, the potential is essentially a ramp function. The nonlinear current, obtained from the scattering formalism, is found to be less with the ramp potential than for weak correlations. Some of the interesting features in current-voltage characteristics have been explained using one-electron formalism and instabilities in the system.

  4. Pipette-surface interaction: current enhancement and intrinsic force.

    Science.gov (United States)

    Clarke, Richard W; Zhukov, Alexander; Richards, Owen; Johnson, Nicholas; Ostanin, Victor; Klenerman, David

    2013-01-01

    There is an intrinsic repulsion between glass and cell surfaces that allows noninvasive scanning ion conductance microscopy (SICM) of cells and which must be overcome in order to form the gigaseals used for patch clamping investigations of ion channels. However, the interactions of surfaces in physiological solutions of electrolytes, including the presence of this repulsion, for example, do not obviously agree with the standard Derjaguin-Landau-Verwey-Overbeek (DLVO) colloid theory accurate at much lower salt concentrations. In this paper we investigate the interactions of glass nanopipettes in this high-salt regime with a variety of surfaces and propose a way to resolve DLVO theory with the results. We demonstrate the utility of this understanding to SICM by topographically mapping a live cell's cytoskeleton. We also report an interesting effect whereby the ion current though a nanopipette can increase under certain conditions upon approaching an insulating surface, rather than decreasing as would be expected. We propose that this is due to electroosmotic flow separation, a high-salt electrokinetic effect. Overall these experiments yield key insights into the fundamental interactions that take place between surfaces in strong solutions of electrolytes. PMID:23210472

  5. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  6. Charged pion albedo induced by cosmic antiproton interactions with the lunar surface

    International Nuclear Information System (INIS)

    We report the calculations of the energy spectra and fluxes of single and double albedo charged pions generated by cosmic proton and antiproton interactions with the lunar surface. Properties of such spectra and related fluxes are investigated in order to clarify some important facets of the antiproton detection via charged pion albedo flux from the lunar surface. Pion albedo measurement may represent a novel approach for the identification of cosmic antiprotons using the lunar surface as a calorimeter. Future scientific programs on the Moon designed to measure antiproton flux may benefit from the results of these calculations. (author)

  7. Net charge fluctuations in Au + Au interactions at sqrt[s(NN)]=130 GeV.

    Science.gov (United States)

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2002-08-19

    Data from Au + Au interactions at sqrt[s(NN)]=130 GeV, obtained with the PHENIX detector at the Relativistic Heavy-Ion Collider, are used to investigate local net charge fluctuations among particles produced near midrapidity. According to recent suggestions, such fluctuations may carry information from the quark-gluon plasma. This analysis shows that the fluctuations are dominated by a stochastic distribution of particles, but are also sensitive to other effects, like global charge conservation and resonance decays. PMID:12190459

  8. Modeling charge relaxation in graphene quantum dots induced by electron-phonon interaction

    Science.gov (United States)

    Reichardt, Sven; Stampfer, Christoph

    2016-06-01

    We study and compare two analytic models of graphene quantum dots for calculating charge relaxation times due to electron-phonon interaction. Recently, charge relaxation processes in graphene quantum dots have been probed experimentally and here we provide a theoretical estimate of relaxation times. By comparing a model with pure edge confinement to a model with electrostatic confinement, we find that the latter features much larger relaxation times. Interestingly, relaxation times in electrostatically defined quantum dots are predicted to exceed the experimentally observed lower bound of ˜100 ns.

  9. Simulation of the current distribution in lead-acid batteries to investigate the dynamic charge acceptance in flooded SLI batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kowal, Julia; Schulte, Dominik; Sauer, Dirk Uwe [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52066 Aachen (Germany); Karden, Eckhard [Ford Research and Advanced Engineering Europe, Aachen (Germany)

    2009-06-01

    Measurements show that the dynamic charge acceptance (DCA) of flooded SLI lead-acid batteries during micro-cycling in conventional and micro-hybrid vehicles is strongly dependent on the short-term history, such as previous charge or discharge, current rate, lowest state of charge in the last 24 h and more. Factors of 10 have been reported. Inhomogeneous current distribution, especially as a result of acid stratification, has been suggested to explain the DCA variability. This hypothesis was investigated by simulation of a two-dimensional macrohomogeneous model. It provides a spatial resolution of three elements in horizontal direction in each electrode and three elements in vertical direction. For an existing set of parameters, different current profiles were analyzed with regard to the current distribution during charging and discharging. In these simulations, a strong impact of the short-term history on current, charge and acid density distribution was found as well as a strong influence of micro-cycles on both charge distribution and acid stratification. (author)

  10. How to Sum Contributions into the Total Charged-Current Neutrino-Nucleon Cross Section

    CERN Document Server

    Kuzmin, K S; Naumov, V A; Kuzmin, Konstantin S.; Lyubushkin, Vladimir V.; Naumov, Vadim A.

    2005-01-01

    The total charged-current (anti)neutrino-nucleon cross section is usually estimated by the sum of contributions from quasi-elastic scattering (QES), single-pion production through baryon resonances (RES), and deep inelastic scattering (DIS) with an appropriate scratching the phase space of the RES and DIS contributions. However the resulting total cross section is very sensitive to the value of the cut-off in invariant mass of the final hadron system produced in RES and DIS. We examine available experimental data on the QES and total CC cross sections in order to extract the best-fit value for this cut-off. By using the same data set we attempt to adjust the poorly known values of the axial mass for QES and RES.

  11. Current mixing and properties of vector bosons in preon model with preonic charge

    Energy Technology Data Exchange (ETDEWEB)

    Senju, Hirofumi (Nagoya Municipal Women' s Coll. (Japan))

    1994-09-01

    In the preon model with preonic charge, new vector boson which can mix with the photon exists. On the basis of the current mixing model, its properties are studied. Cross sections of e[sup +]e[sup -] [yields] U boson pair and of [iota][sub s]-nucleus scattering are given. It will be also shown that, if the new vector boson is sufficiently heavy (say [approx] 500 GeV), the success of the standard model at the LEP level is naturally reproduced. Small deviations from the standard model are predicted in a definite way, which seems to be rather supported by the data. Our model leads to lighter W boson than the standard model does and to positive [epsilon][sub b] parameter in contrast to the standard model. (author).

  12. Current Mixing and Properties of Vector Bosons in Preon Model with Preonic Charge

    Science.gov (United States)

    Senju, H.

    1994-09-01

    In the preon model with preonic charge, new vector boson which can mix with the photon exists. On the basis of the current mixing model, its properties are studied. Cross sections of e+e- --> U boson pair and of ls-nucleus scattering are given. It will be also shown that, if the new vector boson is sufficiently heavy (say ~500 GeV), the success of the standard model at the LEP level is naturally reproduced. Small deviations from the standard model are predicted in a definite way, which seems to be rather supported by the data. Our model leads to lighter W boson than the standard model does and to positive ɛb parameter in contrast to the standard model.

  13. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

    Science.gov (United States)

    Momotenko, Dmitry; Girault, Hubert H

    2011-09-21

    Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be observed at high scan rates because the mass transport of ionic species appears sluggish on the time scale of the voltage scan. In particular, it explains the influence of the potential scan rate on the nanopore rectifying properties in the cases of classical rectification, rectification inversion, and the "transition" rectification domain where the rectification direction in the nanopore could be modulated according to the applied scan rate.

  14. Space-charge limiting currents for magnetically focused intense relativistic electron beams

    Institute of Scientific and Technical Information of China (English)

    Li Jian-Qing; Mo Yuan-Long

    2007-01-01

    The self-consistent differential equations, which describe a laminar-flow equilibrium state in a magnetically focused intense relativistic electron beam propagating inside a conducting waveguide, are presented. The canonical angular momentum, Pθ, defined under the conditions at the source, uniquely determines the possible solutions of these equations.By numerically solving these equations, the space-charge limited current and the externally applied magnetic field are obtained in a solid beam and a hollow beam in two cases of Pθ = 0 (magnetically shielded source) and Pθ = const.(immersed source) separately. It is shown that the hollow beam is more beneficial to the propagation of the intense relativistic beam through a drift tube than the solid beam.

  15. Cross Sections of Charged Current Neutrino Scattering off 132Xe for the Supernova Detection

    Directory of Open Access Journals (Sweden)

    P. C. Divari

    2013-01-01

    Full Text Available The total cross sections as well as the neutrino event rates are calculated in the charged current neutrino and antineutrino scattering off 132Xe isotope at neutrino energies Ev<100 MeV. Transitions to excited nuclear states are calculated in the framework of quasiparticle random-phase approximation. The contributions from different multipoles are shown for various neutrino energies. Flux-averaged cross sections are obtained by convolving the cross sections with a two-parameter Fermi-Dirac distribution. The flux-averaged cross sections are also calculated using terrestrial neutrino sources based on conventional sources (muon decay at rest or on low-energy beta-beams.

  16. O(D,D) Covariant Noether Currents and Global Charges in Double Field Theory

    CERN Document Server

    Park, Jeong-Hyuck; Rim, Woohyun; Sakatani, Yuho

    2015-01-01

    Double field theory is an approach for massless modes of string theory, unifying and geometrizing all gauge invariances in manifest $\\mathbf{O}(D,D)$ covariant manner. In this approach, we derive off-shell conserved Noether current and corresponding Noether potential associated with unified gauge invariances. We add Wald-type counter two-form to the Noether potential and define conserved global charges as surface integral. We check our $\\mathbf{O}(D,D)$ covariant formula against various string backgrounds, both geometric and non-geometric. In all cases we examined, we find perfect agreements with previous results. Our formula facilitates to evaluate momenta along not only ordinary spacetime directions but also dual spacetime directions on equal footing. From this, we confirm recent assertion that null wave in doubled spacetime is the same as macroscopic fundamental string in ordinary spacetime.

  17. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  18. Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA

    CERN Document Server

    Adloff, C; Andrieu, B; Anthonis, T; Astvatsatourov, A; Babaev, A; Bähr, J; Baranov, P S; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Beglarian, A; Behnke, O; Belousov, A; Berger, C; Berndt, T; Bizot, J C; Boudry, V; Braunschweig, W; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Bunyatyan, A; Burrage, A; Buschhorn, G; Bystritskaya, L; Böhme, J; Büsser, F W; Campbell, A J; Cao, J; Caron, S; Cassol-Brunner, F; Chechelnitskii, S; Chekelian, V; Clarke, D; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Davidsson, M; De Wolf, E A; Delcourt, B; Delerue, N; Demirchyan, R A; Diaconu, C A; Dingfelder, J; Dixon, P; Dodonov, V; Dowell, John D; Dubak, A; Duprel, C; Eckerlin, G; Eckstein, D; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Eisenhandler, E F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Ferron, S; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garvey, J; Gassner, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Gogitidze, N; Grab, C; Grabskii, V; Greenshaw, T; Grindhammer, G; Grässler, Herbert; Görlich, L; Haidt, Dieter; Hajduk, L; Haller, J; Heinemann, B; Heinzelmann, G; Henderson, R C W; Hengstmann, S; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Hildebrandt, M; Hilgers, M; Hiller, K H; Hladky, J; Hoffmann, D; Horisberger, R P; Hoting, P; Hovhannisyan, A V; Ibbotson, M; Issever, C; Jacquet, M; Jaffré, M; Janauschek, L; Janssen, X; Jemanov, V; Johnson, C; Johnson, D P; Jones, M A S; Jung, H; Jönsson, L B; Kant, D; Kapichine, M; Karlsson, M; Karschnick, O; Katzy, J; Keil, F; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Kjellberg, P; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Koblitz, B; Kolya, S D; Korbel, V; Kostka, P; Koutouev, R; Koutov, A; Kroseberg, J; Krüger, K; Kuhr, T; Lamb, D; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebailly, E; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; List, B; Lobodzinska, E; Lobodzinski, B; Loginov, A; Loktionova, N A; Lubimov, V; Lüke, D; Lytkin, L; Lüders, S; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martyn, H U; Martyniak, J; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milstead, D; Mohrdieck, S; Mondragón, M N; Moreau, F; Morozov, A; Morris, J V; Murn, P; Müller, K; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebergall, F; Niebuhr, C B; Nix, O; Nowak, G; Nozicka, M; Olivier, B; Olsson, J E; Ozerov, D; Panassik, V; Pascaud, C; Patel, G D; Peez, M; Petrukhin, A; Phillips, J P; Pitzl, D; Portheault, B; Potachnikova, I; Povh, B; Pérez, E; Pöschl, R; Rauschenberger, J; Reimer, P; Reisert, B; Risler, C; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A A; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, D; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Schöning, A; Schörner-Sadenius, T; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Turney, J E; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Volchinski; Wacker, K; Wagner, J; Wallny, R; Waugh, B; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wiesand, S; Winde, M; Winter, G G; Wissing, C; Wobisch, M; Woerling, E E; Wünsch, E; Wyatt, A C; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zomer, F; Zur Nedden, M; de Roeck, A

    2003-01-01

    The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \\sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD ...

  19. Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress.

    Science.gov (United States)

    Kaestner, Bernd; Kashcheyevs, Vyacheslavs

    2015-10-01

    Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property--the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of [Formula: see text] as function of control parameters, where [Formula: see text] is the electron charge and f is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These devices allow modulation of charge exchange rates between the dot and the leads over many orders of magnitude and enable trapping of a precise number of electrons far away from equilibrium with the leads. The corresponding non-adiabatic pumping protocols focus on understanding of separate parts of the pumping cycle associated with charge loading, capture and release. In this report we review realizations, models and metrology applications of quantized charge pumps based on tunable-barrier quantum dots. PMID:26394066

  20. Electron emission and defect formation in the interaction of slow, highly charged ions with diamond surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sideras-Haddad, E. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)]. E-mail: haddade@physics.wits.ac.za; Schenkel, T. [E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rebuli, D.B. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Persaud, A. [E. O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shrivastava, S. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa); Schneider, D.H. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Mwakikunga, B. [School of Physics, University of the Witwatersrand, Wits 2050, Johannesburg (South Africa)

    2007-03-15

    We report on electron emission and defect formation in the interaction between slow ({nu} {approx} 0.3 {nu}{sub Bohr}) highly charged ions (SHCI) with insulating (type IIa) and semiconducting (type IIb) diamonds. Electron emission induced by {sup 31}P {sup q+} (q = 5-13) and {sup 136}Xe {sup q+} (q = 34-44) with kinetic energies of 9 kV x q increase linearly with the ion charge states, reaching over 100 electrons per ion for high xenon charge states without surface passivation of the diamond with hydrogen. Yields from both diamond types are up to a factor of two higher than from reference metal surfaces. Crater like defects with diameters of 25-40 nm are formed by the impact of single Xe{sup 44+} ions. High secondary electron yields and single ion induced defects enable the formation of single dopant arrays on diamond surfaces.

  1. Interactions of a Charged Particle with Parallel Two-Dimensional Quantum Electron Gases

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Zhi; SONG Yuan-Hong; WANG You-Nian

    2008-01-01

    @@ By using the linearized quantum hydrodynamic (QHD) theory, electronic excitations induced by a charged particle moving between or over two parallel two-dimensional quantum electron gases (2DQEG) are investigated. The calculation shows that the influence of the quantum effects on the interaction process should be taken into account. Including the quantum statistical and quantum diffraction effects, the general expressions of the induced potential and the stopping power are obtained. Our simulation results indicate that a V-shaped oscillatory wake potential exists in the electron gases during the test charge intrusion. Meanwhile, double peaks will occur in the stopping power when the distance of two surfaces is smaller and the test charge gets closer to any one of the two sheets.

  2. Charged quantum dot micropillar system for deterministic light-matter interactions

    Science.gov (United States)

    Androvitsaneas, P.; Young, A. B.; Schneider, C.; Maier, S.; Kamp, M.; Höfling, S.; Knauer, S.; Harbord, E.; Hu, C. Y.; Rarity, J. G.; Oulton, R.

    2016-06-01

    Quantum dots (QDs) are semiconductor nanostructures in which a three-dimensional potential trap produces an electronic quantum confinement, thus mimicking the behavior of single atomic dipole-like transitions. However, unlike atoms, QDs can be incorporated into solid-state photonic devices such as cavities or waveguides that enhance the light-matter interaction. A near unit efficiency light-matter interaction is essential for deterministic, scalable quantum-information (QI) devices. In this limit, a single photon input into the device will undergo a large rotation of the polarization of the light field due to the strong interaction with the QD. In this paper we measure a macroscopic (˜6∘ ) phase shift of light as a result of the interaction with a negatively charged QD coupled to a low-quality-factor (Q ˜290 ) pillar microcavity. This unexpectedly large rotation angle demonstrates that this simple low-Q -factor design would enable near-deterministic light-matter interactions.

  3. Neutrino-nucleus neutral current elastic interactions measurement in MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Perevalov, Denis [Univ. of Alabama, Tuscaloosa, AL (United States)

    2009-12-01

    The MiniBooNE experiment at the Fermi National Accelerator Laboratory (Fermilab) was designed to search for vμ → ve neutrino oscillations at Δm2 ~ 1 eV2 using an intense neutrino flux with an average energy Ev ~ 700 MeV. From 2002 to 2009 MiniBooNE has accumulated more than 1.0 x 1021 protons on target (POT) in both neutrino and antineutrino modes. MiniBooNE provides a perfect platform for detailed measurements of exclusive and semiinclusive neutrino cross-sections, for which MiniBooNE has the largest samples of events up to date, such as neutral current elastic (NCE), neutral current π0, charged current quasi-elastic (CCQE), charged current π+, and other channels. These measured cross-sections, in turn, allow to improve the knowledge of nucleon structure. This thesis is devoted to the study of NCE interactions. Neutrino-nucleus neutral current elastic scattering (vN → vN) accounts for about 18% of all neutrino interactions in MiniBooNE. Using a high-statistics, high purity sample of NCE interactions in MiniBooNE, the flux-averaged NCE differential cross-section has been measured and is being reported here. Further study of the NCE cross-section allowed for probing the structure of nuclei. The main interest in the NCE cross-section is that it may be sensitive to the strange quark contribution to the nucleon spin, Δs, this however requires a separation of NCE proton (vp → vp) from NCE neutron (vn → vn) events, which in general is a challenging task. MiniBooNE uses a Cherenkov detector, which imposes restrictions on the measured nucleon kinematic variables, mainly due to the impossibility to reconstruct the nucleon direction below the Cherenkov threshold. However, at kinetic energies above this threshold MiniBooNE is able to identify NCE proton events that do not experience final state interactions (FSI). These events were used for the Δs measurement. In this thesis

  4. Transition from ultrafast laser photo-electron emission to space charge limited current in a 1D gap

    OpenAIRE

    Liu, Yangjie; Ang, L. K.

    2013-01-01

    A one-dimensional (1D) model has been constructed to study the transition of the time-dependent ultrafast laser photo-electron emission from a flat metallic surface to the space charge limited (SCL) current, including the effect of non-equilibrium laser heating on metals at the ultrafast time scale. At a high laser field, it is found that the space charge effect cannot be ignored and the SCL current emission is reached at a lower value predicted by a short pulse SCL current model that assumed...

  5. Neutron knockout in neutral-current neutrino-oxygen interactions

    CERN Document Server

    Ankowski, Artur M

    2013-01-01

    The ongoing and future searches for diffuse supernova neutrinos and sterile neutrinos carried out with large water-Cherenkov detectors require a precise determination of the backgrounds, especially those involving gamma rays. Of great importance, in this context, is the process of neutron knockout through neutral-current (NC) scattering of atmospheric neutrinos on oxygen. Nuclear reinteractions of the produced neutron may in fact lead to the production of gamma rays of energies high enough to mimic the processes of interest. In this Letter, we focus on the kinematical range suitable for simulations of atmospheric-neutrino interactions and provide the neutron-knockout cross sections computed using the formalism based on realistic nuclear spectral function. The role of the strange-quark contribution to the NC axial form factor is also analyzed. Based on the available experimental information, we give an estimate of the associated uncertainty.

  6. Consistent analysis of neutral- and charged-current neutrino scattering off carbon

    CERN Document Server

    Ankowski, Artur M

    2012-01-01

    Background: Good understanding of the cross sections for (anti)neutrino scattering off nuclear targets in the few-GeV energy region is a prerequisite for correct interpretation of results of ongoing and planned oscillation experiments. Purpose: Clarify possible source of disagreement between recent measurements of the cross sections on carbon. Method: Nuclear effects in (anti)neutrino scattering off carbon nucleus are described using the spectral function approach. The effect of two- and multi-nucleon final states is accounted for by applying an effective value of the axial mass, fixed to 1.23 GeV. Neutral-current elastic (NCE) and charged-current quasielastic (CCQE) processes are treated on equal footing. Results: The differential and total cross sections for the energy ranging from a few hundreds of MeV to 100 GeV are obtained and compared to the available data from the BNL E734, MiniBooNE, and NOMAD experiments. Conclusions: Nuclear effects in NCE and CCQE scattering seem to be very similar. Within the spe...

  7. A Physics-Based Charge-Control Model for InP DHBT Including Current-Blocking Effect

    Institute of Scientific and Technical Information of China (English)

    GE Ji; JIN Zhi; SU Yong-Bo; CHENG Wei; WANG Xian-Wai; CHEN Gao-Peng; LIU Xin-Yu

    2009-01-01

    We develop a physics-based charge-control InP double heterojunction bipolar transistor model including three important effects: current blocking, mobile-charge modulation of the base-collector capacitance and velocity-field modulation in the transit time. The bias-dependent base-collector depletion charge is obtained analytically, which takes into account the mobile-charge modulation. Then, a measurement based voltage-dependent transit time formulation is implemented. As a result, over a wide range of biases, the developed model shows good agreement between the modeled and measured S-parameters and cutoff frequency. Also, the model considering current blocking effect demonstrates more accurate prediction of the output characteristics than conventional vertical bipolar inter company results.

  8. Transient charging and discharging current study in pure PVF and PVF/PVDF fluoro polyblends for application in microelectronics

    Indian Academy of Sciences (India)

    A K Gupta; R Bajpai; J M Keller

    2011-02-01

    The transient current were analysed by considering the effect of variation of forming time, temperature, field and composition of blend specimens. Measurements indicated that transient charging and discharging currents exhibited thermally activated character but did not show mirror image behaviour at different temperatures and field values. The log –log plots were found to follow the Curie–Von Schweidler law with the value of decay constant `’ lying in the range of 0.029–2.9456. These observed characteristics also indicated that the transient charging in PVF:PVDF fluoro polyblends occur partly due to orientation of dipoles but predominantly due to trapped space charges and hopping of charge carriers amongst localized states. The modification in transient behaviour on blending PVDF with PVF have been explained on the basis of plasticization effect which increases free volume and molecular mobility and g modification in the trap structure.

  9. Measurement of the Charged-Current Quasi-Elastic Cross-Section for Electron Neutrinos on a Hydrocarbon Target

    Energy Technology Data Exchange (ETDEWEB)

    Wolcott, Jeremy [Univ. of Rochester, NY (United States)

    2016-01-01

    Appearance-type neutrino oscillation experiments, which observe the transition from muon neutrinos to electron neutrinos, promise to help answer some of the fundamental questions surrounding physics in the post-Standard-Model era. Because they wish to observe the interactions of electron neutrinos in their detectors, and because the power of current results is typically limited by their systematic uncertainties, these experiments require precise estimates of the cross-section for electron neutrino interactions. Of particular interest is the charged-current quasi-elastic (CCQE) process, which gures signi cantly in the composition of the reactions observed at the far detector. However, no experimental measurements of this crosssection currently exist for electron neutrinos; instead, current experiments typically work from the abundance of muon neutrino CCQE cross-section data and apply corrections from theoretical arguments to obtain a prediction for electron neutrinos. Veri cation of these predictions is challenging due to the di culty of constructing an electron neutrino beam, but the advent of modern high-intensity muon neutrino beams|together with the percent-level electron neutrino impurity inherent in these beams| nally presents the opportunity to make such a measurement. We report herein the rst-ever measurement of a cross-section for an exclusive state in electron neutrino scattering, which was made using the MINER A detector in the NuMI neutrino beam at Fermilab. We present the electron neutrino CCQE di erential cross-sections, which are averaged over neutrinos of energies 1-10 GeV (with mean energy of about 3 GeV), in terms of various kinematic variables: nal-state electron angle, nal-state electron energy, and the square of the fourmomentum transferred to the nucleus by the neutrino , Q2. We also provide a total cross-section vs. neutrino energy. While our measurement of this process is found to be in agreement with the predictions of the GENIE

  10. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I

    Science.gov (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  11. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I.

    Science.gov (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  12. Tunneling current noise in the fractional quantum Hall effect: When the effective charge is not what it appears to be

    Science.gov (United States)

    Snizhko, Kyrylo

    2016-01-01

    Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle's effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.

  13. Tunneling current noise in the fractional quantum Hall effect: when the effective charge is not what it appears to be

    International Nuclear Information System (INIS)

    Fractional quantum Hall quasiparticles are famous for having fractional electric charge. Recent experiments report that the quasiparticle effective electric charge determined through tunneling current noise measurements can depend on the system parameters such as temperature or bias voltage. Several works proposed to understand this as a signature for edge theory properties changing with energy scale. I consider two of such experiments and show that in one of them the apparent dependence of the electric charge on a system parameter is likely to be an artefact of experimental data analysis. Conversely, in the second experiment the dependence cannot be explained in such a way.

  14. Conformational transformations induced by the charge-curvature interaction: Mean-field approach

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W.J.

    2006-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving ...... impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacteriochlorophyl a molecules is considered....

  15. Charge-exchange excitations with finite range interactions including tensor terms

    CERN Document Server

    De Donno, V; Anguiano, M; Lallena, A M

    2014-01-01

    We study charge-exchange excitations in doubly magic-nuclei by using a self-consistent Hartree-Fock plus Random Phase Approximation model. We use four Gogny-like finite-range interactions, two of them containing tensor forces. We investigate the effects of the various parts of the tensor forces in the two computational steps of our model, and we find that their presence is not negligible and improves the agreement with the experimental data.

  16. Tuning of the Charged Hadrons Multiplicities for Deep Inelastic Interactions in NEUT

    CERN Document Server

    Bronner, Christophe

    2016-01-01

    We describe a procedure to tune the charged hadron multiplicities for deep inelastic events produced by the NEUT neutrino interaction generator. This tuning uses a model based on Koba-Nielsen-Olesen scaling, whose parameters are obtained by fitting multiplicity data from deuterium bubble chamber experiments. After tuning, the multiplicities of the events generated by NEUT are found to be in good agreement with the measurements from the bubble chamber experiments.

  17. Computer simulation of a klystron using a field-charge interaction code (FCI)

    International Nuclear Information System (INIS)

    The field-charge interaction code (FCI), based on a particle-in-cell simulation, has been used to analyze and develop high power klystrons at KEK as well as at industry labs since 1989. Several new high-power klystrons have been developed by using the FCI code. This lecture describes the code, provides examples of its application, and evaluates performance of the newly developed tubes. Operational details are given in the users manual. (author)

  18. Hamiltonian description of a self-consistent interaction between charged particles and electromagnetic waves.

    Science.gov (United States)

    Bachelard, R; Chandre, C; Vittot, M

    2008-09-01

    The Hamiltonian description of the self-consistent interaction between an electromagnetic plane wave and a copropagating beam of charged particles is considered. We show how the motion can be reduced to a one-dimensional Hamiltonian model (in a canonical setting) from the Vlasov-Maxwell Poisson brackets. The reduction to this paradigmatic Hamiltonian model is performed using a Lie algebraic formalism which allows us to preserve the Hamiltonian character at each step of the derivation.

  19. Hamiltonian description of a self-consistent interaction between charged particles and electromagnetic waves

    CERN Document Server

    Bachelard, Romain; Vittot, Michel

    2008-01-01

    The Hamiltonian description of the self-consistent interaction between an electromagnetic plane-wave and a co-propagating beam of charged particles is considered. We show how the motion can be reduced to a one-dimensional Hamiltonian model (in a canonical setting) from the Vlasov-Maxwell Poisson brackets. The reduction to this paradigmatic Hamiltonian model is performed using a Lie algebraic formalism which allows us to remain Hamiltonian at each step of the derivation.

  20. Charged sigma hyperon production in K-p interactions below 300 MeV/c

    International Nuclear Information System (INIS)

    In an experiment on K-p interactions in a bubble chamber equipped with a TST, the cross sections and angular distributions have been studied for charged μ hyperon production in the momentum range 90-300 MeV/c. Good agreement was found with previous cross sections. The production angular distributions and the μ+ hyperon polarisation clearly indicate that P waves are present down to about 150 MeV/c, much lower than previously reported. (orig.)

  1. A microcalorimetric study of molecular interactions between immunoglobulin G and hydrophobic charge-induction ligand.

    Science.gov (United States)

    Yuan, Xiao-Ming; Lin, Dong-Qiang; Zhang, Qi-Lei; Gao, Dong; Yao, Shan-Jing

    2016-04-22

    Hydrophobic charge-induction chromatography (HCIC) with 4-mercaptoethyl-pyridine (MEP) as the ligand is a novel technology for antibody purification. In this study, isothermal titration calorimetry (ITC) was used to evaluate the molecular interactions between MEP ligand and immunoglobulin G (IgG). Three types of IgG molecules including human IgG (hIgG), bovine IgG (bIgG) and a monoclonal antibody (mAb) were investigated with human serum albumins (HSA) and bovine serum albumin (BSA) as the comparison. The thermodynamic parameters obtained from ITC were compared with the adsorption data. The results indicated that MEP binding to protein at neutral pH was entropy driven and induced by multimodal molecular interactions that was dominated by hydrophobic forces. The interactions between MEP and IgGs were stronger than that of albumins, which resulted in high binding affinity of IgGs. Moreover, the effects of pH and salt addition on MEP-hIgG binding were studied. The change of enthalpy increased obviously with the decrease of pH, which revealed that the electrostatic forces dominated the MEP-hIgG interactions at acidic condition and caused typical charge-induced elution of HCIC. Salt addition influenced both hydrophobic and electrostatic interactions. With the increase of salt concentration, the hydrophobic interactions decreased first and then increased, while the electrostatic interactions showed the opposite trend. This resulted in trade-off between the multimodal interactions, which caused the salt-tolerant property of MEP resin. In general, ITC studies revealed the molecular mechanism of three critical characteristics of HCIC, multimodal interactions, pH-dependent and salt-tolerant properties.

  2. Charge-transfer interactions between TCNQ and silver clusters Ag20 and Ag13.

    Science.gov (United States)

    Chen, Jing; Zhang, Hanyu; Liu, Xianhu; Yuan, Chengqian; Jia, Meiye; Luo, Zhixun; Yao, Jiannian

    2016-03-14

    Interactions between tetracyanoquinodimethane (TCNQ) and two typical silver clusters Ag13 and Ag20 are studied by first-principles DFT calculations. Charge transfer (CT) from silver clusters to TCNQ molecules initiates the Ag-N bond formation at selective sites resulting in the formation of different isomers of Ag13-TCNQ and Ag20-TCNQ complexes. We show here a comprehensive spectroscopic analysis for the two CT complexes on the basis of Raman and infrared activities. Furthermore, frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis of the complexes provides a vivid illustration of electron cloud overlap and interactions. The behavior of TCNQ adsorbed on the tetrahedral Ag20 cluster was even found in good agreement with the experimental measurement of TCNQ molecules on a single-crystal Ag(111) surface. This study not only endeavors to clarify the charge-transfer interactions of TCNQ with silver, but also presents a finding of enhanced charge transfer between Ag13 and TCNQ indicating potential for candidate building blocks of granular materials. PMID:26888771

  3. Exploring effective interactions through transition charge density study of 70,72,74,76Ge nuclei

    Indian Academy of Sciences (India)

    A Shukla; P K Raina; P K Rath

    2005-02-01

    Transition charge densities (TCD) for $0^{+} → 2_{1}^{+}$ excitation have been calculated for 70, 72, 74, 76Ge nuclei within microscopic variational framework employing 23/2, 15/2, 21/2 and 19/2 valence space. The calculated TCDs for different monopole variants of Kuo interaction are compared with available experimental results. Other systematics like reduced transition probabilities (2) and static quadrupole moments (2) are also presented. It is observed that the transition density study acts as a sensitive probe for discriminating the response of different parts of effective interactions.

  4. Sensitivity of the CSR self-interaction to the local longitudinal charge concentration of an electron bunch

    International Nuclear Information System (INIS)

    Recent measurements of the coherent synchrotron radiation (CSR) effects indicated that the observed emittance growth and energy modulation due to the orbit-curvature-induced bunch self-interaction are sometimes bigger than predictions based on Gaussian longitudinal charge distributions. In this paper, by performing a model study, we show both analytically and numerically that when the longitudinal bunch charge distribution involves concentration of charges in a small fraction of the bunch length, enhancement of the CSR self-interaction beyond the Gaussian prediction may occur. The level of this enhancement is sensitive to the level of the local charge concentration

  5. Antineutrino Neutral Current Interactions in MiniBooNE

    Energy Technology Data Exchange (ETDEWEB)

    Dharmapalan, Ranjan [Univ. of Alabama, Tuscaloosa, AL (United States)

    2012-01-01

    This dissertation reports the antineutrino-nucleus neutral current elastic scattering cross section on CH2 measured by the MiniBooNE experiment located in Batavia, IL. The data set consists of 60,605 events passing the selection cuts corresponding to 10.1×1020 POT, which represents the world’s largest sample of antineutrino neutral current elastic scattering events. The final sample is more than one order of magnitude lager that the previous antineutrino NCE scattering cross section measurement reported by the BNL E734 experiment. The measurement presented in this dissertation also spans a wider range in Q2, including the low-Q2 regime where the cross section rollover is clearly visible. A X2-based minimization was performed to determine the best value of the axial mass, MA and the Pauli blocking scaling function, that matches the antineutrino NCE scattering data. However, the best fit values of MA=1.29 GeV and K=1.026 still give a relatively poor X2, which suggests that the underlying nuclear model (based largely on the relativistic Fermi gas model) may not be an accurate representation for this particular interaction. Additionally, we present a measurement of the antineutrino/neutrino-nucleus NCE scattering cross section ratio. The neutrino mode NCE sample used in this study, corresponding to 6.4 × 1020 POT, is also the world’s largest sample (also by an order of magnitude). We have demonstrated that the ratio measurement is robust, as most of the correlated errors cancel, as expected. Furthermore, this ratio also proves to be rather insensitive to variations in the axial mass and the Pauli blocking parameter. This is the first time that this ratio has been experimentally reported. We believe this measurement will aid the theoretical physics community to test various model predictions of neutrino-nucleon/nucleus interactions.

  6. Fractional Charge and Quantized Current in the Quantum Spin Hall State

    OpenAIRE

    Qi, Xiao-Liang; Hughes, Taylor L.; Zhang, Shou-Cheng

    2007-01-01

    A profound manifestation of topologically non-trivial states of matter is the occurrence of fractionally charged elementary excitations. The quantum spin Hall insulator state is a fundamentally novel quantum state of matter that exists at zero external magnetic field. In this work, we show that a magnetic domain wall at the edge of the quantum spin Hall insulator carries one half of the unit of electron charge, and we propose an experiment to directly measure this fractional charge on an indi...

  7. The effect of a direct current field on the microparticle charge in the plasma afterglow

    Energy Technology Data Exchange (ETDEWEB)

    Wörner, L. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Groupe de Recherches sur l' Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Ivlev, A. V.; Huber, P.; Hagl, T.; Thomas, H. M.; Morfill, G. E. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Couëdel, L. [Centre National de la Recherche Scientifique, Aix-Marseille-Université, Laboiratoire de Physique des Intéractions Ioniques et Moléculaires, UMR 7345, 13397 Marseille cedex 20 (France); Schwabe, M. [Max Planck Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr., 85741 Garching (Germany); Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 (United States); Mikikian, M.; Boufendi, L. [Groupe de Recherches sur l' Energétique des Milieux Ionisés, UMR7344, CNRS, Univ. Orléans, F-45067 Orléans (France); Skvortsov, A. [Yuri Gagarin Cosmonauts Training Center, RU-141160 Star City (Russian Federation); Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E. [Joint Institute for High Temperatures, RU-125412 Moscow (Russian Federation)

    2013-12-15

    Residual charges of individual microparticles forming dense clouds were measured in a RF discharge afterglow. Experiments were performed under microgravity conditions on board the International Space Station, which ensured particle levitation inside the gas volume after the plasma switch-off. The distribution of residual charges as well as the spatial distribution of charged particles across the cloud were analyzed by applying a low-frequency voltage to the electrodes and measuring amplitudes of the resulting particle oscillations. Upon “free decharging” conditions, the charge distribution had a sharp peak at zero and was rather symmetric (with charges concentrated between −10e and +10e), yet positively and negatively charged particles were homogeneously distributed over the cloud. However, when decharging evolved in the presence of an external DC field (applied shortly before the plasma switch-off) practically all residual charges were positive. In this case, the overall charge distribution had a sharp peak at about +15e and was highly asymmetric, while the spatial distribution exhibited a significant charge gradient along the direction of the applied DC field.

  8. Jet production in charged current deep inelastic e+p scattering at HERA

    CERN Document Server

    Abe, T; Adamczyk, L; Adamus, M; Adler, V; Aghuzumtsyan, G; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Basile, M; Bauerdick, L A T; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bloch, I; Bodmann, B; Bold, T; Boos, E G; Borras, K; Boscherini, D; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Catterall, C D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cloth, P; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Cottrell, A; D'Agostini, Giulio; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, A A; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fricke, U; Fusayasu, T; Gabareen, A; Gallo, E; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Gliga, S; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Grijpink, S; Grzelak, G; Gutsche, O; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hamilton, J; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G; Hartner, G F; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jones, T W; Kagawa, S; Kahle, B; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Khein, L A; Kim, J Y; Kim, Y K; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korzhav, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kram, G; Kreisel, A; Krumnack, N; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lainesse, J; Lammers, S; Lee, J H; Lee, S W; Lelas, D; Levchenko, B B; Levman, G M; Levy, A; Li, L; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Loizides, J H; Long, K R; Longhin, A; Lukina, O Yu; Lupi, A; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Martin, J F; Mastroberardino, A; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Melzer-Pellmann, I A; Menary, S R; Metlica, F; Meyer, U; Milite, M; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nguyen, C N; Nigro, A; Ning, Y; Nishimura, T; Notz, D; Nowak, R J; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Patel, S; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Pesci, A; Petrucci, M C; Piotrzkowski, K; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Rautenberg, J; Raval, A; Reeder, D D; Ren, Z; Renner, R; Repond, J; Riveline, M; Robins, S; Rodrigues, E; Ruspa, M; Sacchi, R; Salehi, H; Sartorelli, G; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Sciulli, F; Scott, J; Selonke, F; Shcheglova, L M; Skillicorn, I O; Slominski, W; Smith, W H; Soares, M; Solano, A; Son, D; Sosnovtsev, V V; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stoesslein, U; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Tawara, T; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Wang, M; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wick, K; Wiggers, L; Wills, H H; Wing, M; Wolf, G; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Zawiejski, L; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J

    2003-01-01

    The production rates and substructure of jets have been studied in charged current deep inelastic e+p scattering for Q**2>200 GeV**2 with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb**-1. Inclusive jet cross sections are presented for jets with transverse energies E_T(jet) > 14 GeV and pseudorapidities in the range -1 14 GeV and a second jet having E_T(jet) > 5 GeV. Measurements of the mean subjet multiplicity, , of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations a re compared to the measurements. The value of alphas(M_Z), determined from at y_cut=0.01 for jets with 25

  9. A first measurement of the charged current DIS cross sections with longitudinally polarised electrons in the H1 experiment at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Antunovic, B.

    2007-07-01

    The analysis presented in this thesis is based on data from electron-proton collisions with longitudinally polarised electron beams at a centre-of-mass energy of {radical}(s)=319 GeV. The data were taken with the H1 detector at the HERA collider in the year 2005 corresponding to two polarisation states: a left-handed electron polarisation of -27% and a right-handed electron polarisation of +37%, corresponding to integrated luminosities of 68.6 pb{sup -1} and 29.6 pb{sup -1}, respectively. The inclusive total deep inelastic charged current cross section and the differential cross sections are measured for both helicities in the kinematic domain Q{sup 2}>400 GeV{sup 2} and y<0.9. The entire analysis chain necessary for the determination of the cross sections is described with emphasis on the understanding of the performance of the Liquid Argon trigger system. The experimental results obtained are consistent with the predictions of the Standard Model. In particular, the measurement of the total polarised charged current cross section confirms the Standard Model expectation that there are no weak charged current interactions mediated by a hypothetical right-handed W boson. In addition, a measurement of the charged current structure function F{sup cc}{sub 2} has been performed at the H1 experiment for the first time. The measurements are well described by the theoretical expectations based on parton distributions derived from inclusive neutral current measurements in H1, and are in agreement with published data from the ZEUS (e{sup {+-}}p) and CCFR (anti {nu}{sub {mu}}Fe) experiments. (orig.)

  10. Interaction of low-energy highly charged ions with matter; Wechselwirkung niederenergetischer hochgeladener Ionen mit Materie

    Energy Technology Data Exchange (ETDEWEB)

    Ginzel, Rainer

    2010-06-09

    The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)

  11. Nonlinear Wave-Currents interactions in shallow water

    CERN Document Server

    Lannes, David

    2015-01-01

    We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...

  12. Photon emission in neutral current interactions at intermediate energies

    CERN Document Server

    Wang, E; Nieves, J

    2014-01-01

    Neutral current photon emission reactions with nucleons and nuclei are studied. These processes are important backgrounds for nu_mu to nu_e (bar(nu)_mu to bar(nu)_e) appearance oscillation experiments where electromagnetic showers instigated by electrons (positrons) and photons are not distinguishable. At intermediate energies, these reactions are dominated by the weak excitation of the Delta(1232) resonance and its subsequent decay into Ngamma There are also non-resonant contributions that, close to threshold, are fully determined by the effective chiral Lagrangian of strong interactions. In addition, we have also included mechanisms mediated by nucleon excitations (N*) from the second resonance region above the Delta(1232). From these states, the contribution of the D13 N*(1520) turns out to be sizable for (anti)neutrino energies above 1.5 GeV. We have extended the model to nuclear targets taking, into account Pauli blocking, Fermi motion and the in-medium Delta resonance broadening. We present our predicti...

  13. Charging of superconducting layers and resonance-related hysteresis in the current-voltage characteristics of coupled Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu. M.; Gaafar, M. A.

    2011-09-01

    A manifestation of a resonance-type hysteresis related to the parametric resonance in the system of coupled Josephson junctions is demonstrated. In contrast with the McCumber and Steward hysteresis, we find that the width of this hysteresis is inversely proportional to the McCumber parameter and it also depends on the coupling between junctions and the boundary conditions. Investigation of the time dependence of the electric charge in superconducting layers allows us to explain the origin of this hysteresis by different charge dynamics for increasing and decreasing bias current processes. The effect of the wavelength of the longitudinal plasma wave created at the resonance on the charging of superconducting layers is demonstrated. We find a strong effect of the dissipation in the system on the amplitude of the charge oscillations at the resonance.

  14. Analysis of the effects of constant-current Fowler-Nordheim-tunneling injection with charge trapping inside the potential barrier

    Science.gov (United States)

    Lopez-Villanueva, J. A.; Jimenez-Tejada, J. A.; Cartujo, P.; Bausells, J.; Carceller, J. E.

    1991-10-01

    Charge trapping and the generation of interface traps in thermally grown SiO2 and its interface with silicon, produced by Fowler-Nordheim tunneling injection at low temperatures from highly doped Si substrates, have been investigated. The results that can be obtained with the constant-current-injection method, when a moderate amount of charge is trapped inside the potential barrier, have been analyzed. This has afforded information about the position of the charge trapped in the oxide. No increase in the interface-trap density has been produced immediately after injection at 77 K, but, as the temperature is raised after injection, the growing of a peak of interface states has been observed. This phenomenon had been reported to be produced as a consequence of a previous hole trapping but, in this case, this intermediate stage of positive-charge building has not been observed. This effect is discussed, taking into account published models.

  15. Quantum phase diagram of the half filled Hubbard model with bond-charge interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dobry, A.O., E-mail: dobry@ifir-conicet.gov.a [Facultad de Ciencias Exactas Ingenieria y Agrimensura, Universidad Nacional de Rosario and Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Aligia, A.A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)

    2011-02-21

    Using quantum field theory and bosonization, we determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling, for small values of the interactions. We show that it is essential to take into account formally irrelevant terms of order X. They generate relevant terms proportional to X{sup 2} in the flow of the renormalization group (RG). These terms are calculated using operator product expansions. The model shows three phases separated by a charge transition at U=U{sub c} and a spin transition at U=U{sub s}>U{sub c}. For UU{sub s}, the system is in the spin-density wave phase as in the usual Hubbard model. For intermediate values U{sub c}charge transition remains at U{sub c}=0 for X{ne}0. Solving the RG equations for the spin sector, we provide an analytical expression for U{sub s}(X). The results, with only one adjustable parameter, are in excellent agreement with numerical ones for X

  16. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  17. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  18. Charged-current quasielastic neutrino scattering cross sections on 12C with realistic spectral and scaling functions

    Science.gov (United States)

    Ivanov, M. V.; Antonov, A. N.; Caballero, J. A.; Megias, G. D.; Barbaro, M. B.; de Guerra, E. Moya; Udías, J. M.

    2014-01-01

    Charge-current quasielastic (anti)neutrino scattering cross sections on a 12C target are analyzed using a spectral function S (p,E) that gives a scaling function in accordance with the (e ,e') scattering data. The spectral function accounts for the nucleon-nucleon (NN) correlations, it has a realistic energy dependence, and natural orbitals (NOs) from the Jastrow correlation method are used in its construction. In all calculations the standard value of the axial mass MA=1.032 GeV/c2 is used. The results are compared with those when NN correlations are not included, as in the relativistic Fermi gas model, or when harmonic-oscillator single-particle wave functions are used instead of NOs. The role of the final-state interactions (FSIs) on the theoretical spectral and scaling functions, as well as on the cross sections, is accounted for. A comparison of the results for the cases with and without FSI, as well as to results from the phenomenological scaling function obtained from the superscaling analysis, is carried out. Our calculations based on the impulse approximation underpredict the MiniBooNE data but agree with the data from the NOMAD experiment. The possible missing ingredients in the considered theoretical models are discussed.

  19. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.

    Science.gov (United States)

    Qian, Shizhi; Joo, Sang W; Ai, Ye; Cheney, Marcos A; Hou, Wensheng

    2009-01-15

    The electrokinetic ionic-current rectification in a conical nanopore with linearly varying surface-charge distributions is studied theoretically by using a continuum model composed of a coupled system of the Nernst-Planck equations for the ionic-concentration field and the Poisson equation for the electric potential in the electrolyte solution. The numerical analysis includes the electrochemistry inside reservoirs connected to the nanopore, neglected in previous studies, and more precise accounts of the ionic current are provided. The surface-charge distribution, especially near the tip of the nanopore, significantly affects the ionic enrichment and depletion, which, in turn, influence the resulting ionic current and the rectification. It is shown that non-uniform surface-charge distribution can reverse the direction, or sense, of the rectification. Further insights into the ionic-current rectification are provided by discussing the intriguing details of the electric potential and ionic-concentration fields, leading to the rectification. Rationale for future studies on ionic-current rectification, associated with other non-uniform surface-charge distributions and electroosmotic convection for example, is discussed.

  20. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics.

    Science.gov (United States)

    Yang, Po-Wei; Lin, Tsang-Lang; Hu, Yuan; Jeng, U-Ser

    2015-03-21

    Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode.

  1. Charge separation in organic solar cells: Effects of Coulomb interaction, recombination and hole propagation

    Science.gov (United States)

    Nemati Aram, Tahereh; Asgari, Asghar; Mayou, Didier

    2016-07-01

    Bulk heterojunction (BHJ) organic photovoltaic cells are analysed within a simple efficient model that includes the important physical properties of such photovoltaic systems. In this model, in contrast with most of the previous studies, we take into account the motion of both the electron and the hole in the separation process at the donor-acceptor interface. We theoretically examine the exciton dissociation yield under the influences of charge Coulomb interaction and non-radiative recombination. We find that the electron-hole local Coulomb attraction and charge carriers' coupling parameters play an important role in the system performance and in the optimal energy conversion efficiency of the BHJ photocell. We show that the fixed-hole models tend to underestimate the yield.

  2. Charge transfer in the interactions of partially stripped ions with atoms at intermediate and high energies

    International Nuclear Information System (INIS)

    The Coulomb-Born (CB) approximation has been employed to study charge transfer cross sections in collisions of Cq+, Nq+ and Oq+ (q = 1-5) with atomic hydrogen in ground state in the energy range of 30-200 keV/amu. The interaction of the active electron with the incoming projectile ion has been approximated by a model potential containing both a long-range part and a short-range part. Variations of total capture cross sections with impact energy compare favourable well with the available experimental observations and with other theoretical findings. In addition, sub-shell distributions of total capture cross sections are given in graphical form. However, we are unable to find any oscillation in the charge-state dependence of total capture cross sections. (author)

  3. Sources, potentials and fields in Lorenz and Coulomb gauge: Cancellation of instantaneous interactions for moving point charges

    International Nuclear Information System (INIS)

    We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms. - Highlights: ► We investigate action-at-a-distance effects in electrodynamics in detail. ► We calculate the instantaneous interactions for scalar and vector potentials. ► The cancellation mechanism involves the retarded Green function. ► The mechanism is confirmed on the example of moving point charges. ► The Green function has to be treated with care for nontrivial boundary terms.

  4. Space Charge Effects

    CERN Document Server

    Ferrario, M; Palumbo, L

    2014-01-01

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  5. GMAG Dissertation Award Talk: All Spin Logic -- Multimagnet Networks interacting via Spin currents

    Science.gov (United States)

    Srinivasan, Srikant

    2012-02-01

    Digital logic circuits have traditionally been based on storing information as charge on capacitors, and the stored information is transferred by controlling the flow of charge. However, electrons carry both charge and spin, the latter being responsible for magnetic phenomena. In the last few decades, there has been a significant improvement in our ability to control spins and their interaction with magnets. All Spin Logic (ASL) represents a new approach to information processing where spins and magnets now mirror the roles of charges and capacitors in conventional logic circuits. In this talk I first present a model [1] that couples non-collinear spin transport with magnet-dynamics to predict the switching behavior of the basic ASL device. This model is based on established physics and is benchmarked against available experimental data that demonstrate spin-torque switching in lateral structures. Next, the model is extended to simulate multi-magnet networks coupled with spin transport channels. The simulations suggest ASL devices have the essential characteristics for building logic circuits. In particular, (1) the example of an ASL ring oscillator [2, 3] is used to provide a clear signature of directed information transfer in cascaded ASL devices without the need for external control circuitry and (2) a simulated NAND [4] gate with fan-out of 2 suggests that ASL can implement universal logic and drive subsequent stages. Finally I will discuss how ASL based circuits could also have potential use in the design of neuromorphic circuits suitable for hybrid analog/digital information processing because of the natural mapping of ASL devices to neurons [4]. [4pt] [1] B. Behin-Aein, A. Sarkar, S. Srinivasan, and S. Datta, ``Switching Energy-Delay of All-Spin Logic devices,'' Appl. Phys. Lett., 98, 123510 (2011).[0pt] [2] S. Srinivasan, A. Sarkar, B. Behin-Aein, and S. Datta, ``All Spin Logic Device with Inbuilt Non-reciprocity,'' IEEE Trans. Magn., 47, 10 (2011).[0pt] [3

  6. Current, charge, and capacitance during scanning probe oxidation of silicon. II. Electrostatic and meniscus forces acting on cantilever bending

    Science.gov (United States)

    Dagata, J. A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H.

    2004-08-01

    A comprehensive analysis of the electrical current passing through the tip-substrate junction during oxidation of silicon by scanning probe microscopy (SPM) is presented. This analysis identifies the electronic and ionic contributions to the total current, especially at the initial stages of the reaction, determines the effective contact area of the tip-substrate junction, and unifies the roles of space charge and meniscus formation. In this work, we concentrate on noncontact SPM oxidation. We analyze simultaneous force-distance and current-distance curves to demonstrate that total current flow during noncontact oxidation is significantly less for noncontact mode than for contact oxidation, although the resulting oxide volume is nearly identical. Ionization of water layers and mobile charge reorganization prior to and following meniscus formation is also shown to alter the tip-substrate capacitance and, therefore, the bending of the SPM cantilever.

  7. Estimation of Potential Gradient from Discharge Current through Hand-Held Metal Piece from Charged Human Body

    Science.gov (United States)

    Taka, Yoshinori; Fujiwara, Osamu

    Electrostatic discharge (ESD) events due to metal objects electrified with low voltages give a fatal electromagnetic interference to high-tech information equipment. In order to elucidate the mechanism, with a 6-GHz digital oscilloscope, we previously measured the discharge current due to collision of a hand-held metal piece from a charged human body, and gave a current calculation model. In this study, based on the calculation model, a method was presented for deriving a gap potential gradient from the measured discharge current. Measurements of the discharge currents were made for charge voltages from 200V to 1000V. The corresponding potential gradients were estimated, which were validated in comparison with an empirical formula based on the Paschen's law together with other researcher's experimental results.

  8. The Current Status and Future Directions of Heavy Charged Particle Therapy in Medicine

    Science.gov (United States)

    Levy, Richard P.; Blakely, Eleanor A.; Chu, William T.; Coutrakon, George B.; Hug, Eugen B.; Kraft, Gerhard; Tsujii, Hirohiko

    2009-03-01

    As aggressive, 3D-conformal treatment has become the clearly accepted goal of radiation oncology, heavy charged-particle treatment with protons and heavier ions has concurrently and relentlessly ascended to the forefront. Protons and helium nuclei, with relatively low linear-energy-transfer (LET) properties, have consistently been demonstrated to be beneficial for aggressive (high-dose) local treatment of many types of tumors. Protons have been applied to the majority of solid tumors, and have reached a high degree of general acceptance in radiation oncology after three decades and 55,000 patients treated. However, some 15% to 20% of tumor types have proven resistant to even the most aggressive low-LET irradiation. For these radio-resistant tumors, treatment with heavier ions (e.g., carbon) offers great potential benefit. These high-LET particles have increased relative biological effectiveness (RBE) that reaches its maximum in the Bragg peak. Irradiation with these heavier ions offers the unique combination of excellent 3D-dose distribution and increased RBE. We are presently witnessing several, important parallel developments in particle therapy. Protons will likely continue their exponential growth phase, and more compact design systems will make protons available to a larger patient population—thus becoming the "heavy charged particle of choice" for Cancer Centers with limited financial resources. In parallel, major academic efforts will further advance the field of heavier ion therapy, exploring all opportunities for particle treatment and continuing the search for the ideal particle(s) for specific tumors. The future of ion therapy will be best realized by clinical trials that have ready access to top-quality delivery of both protons and heavier ions that can be accurately shaped for treatment of a specific pathology, and which will permit direct randomized-trial comparison of the effectiveness of the various ions for different diseases. Optimal results

  9. 3-loop contributions to heavy flavor Wilson coefficients of neutral and charged current DIS

    Energy Technology Data Exchange (ETDEWEB)

    Hasselhuhn, Alexander

    2013-11-15

    . A new method is presented for the calculation of such diagrams with equal masses, contributing to the OMEs A{sub gq,Q} and A{sub gg,Q}. The method uses a Mellin-Barnes representation instead of a generalized hypergeometric function and keeps, for convergence reasons, one of the Feynman parameter integrals unintegrated. The above symbolic summation methods are used to solve the sum of residues in terms of cyclotomic harmonic polylogarithms. Many properties of these functions are implemented in the package Harmonic Sums. Since the result is first derived as a generating function, the symbolic summation machinery is applied a second time, solving difference equations and simplifying sums needed to derive the Nth Taylor coefficient for symbolic N. First the O({alpha}{sub s}) contributions are revisited, due to partly different results in the foregoing literature, which can be clarified. At 1-loop order, an efficient representation in Mellin space allowing for fast numerical evaluations is designed, including power corrections. Also here errors in the literature are corrected. Here the 1-loop expressions are also expanded for 1>>m{sup 2}/Q{sup 2} up to the constant term. A careful recalculation of the gluonic contribution is performed as well as a calculation in leading logarithmic approximation. The leading logarithmic calculation shows that the same sign error occurs for the pure-singlet contribution at two loops. The heavy quark corrections of charged current deep-inelastic scattering are extended to 2-loop order. The factorization of the heavy flavor Wilson coefficients at large values of Q{sup 2} is derived for the charged current case. Using the light flavor Wilson coefficients and operator matrix elements up to 2-loop order from the literature, x- and N-space expressions for all heavy flavor Wilson coefficients at two loops are given.

  10. The O(α2s) heavy quark corrections to charged current deep-inelastic scattering at large virtualities

    International Nuclear Information System (INIS)

    We calculate the O(α2s) heavy flavor corrections to charged current deep-inelastic scattering at large scales Q2 >> m2. The contributing Wilson coefficients are given as convolutions between massive operator matrix elements and massless Wilson coefficients. Foregoing results in the literature are extended and corrected. Numerical results are presented for the kinematic region of the HERA data.

  11. The Relativistic Green's function model and charged-current inclusive neutrino-nucleus scattering at T2K kinematics

    CERN Document Server

    Meucci, Andrea

    2015-01-01

    We compare the results of the relativistic Green's function model with the experimental data of the charged-current inclusive differential neutrino-nucleus cross sections published by the T2K Collaboration. The model, which is able to describe both MINER$\

  12. Noise in space-charge-limited current in a CdS-single crystal at low injection level

    NARCIS (Netherlands)

    Driedonks, F.

    1967-01-01

    Current noise spectra (25Hz–20MHz) of a CdS-diode, working under space-charge-limited conditions. show trapping noise at low frequencies and slightly suppressed noise in the upper frequency range. Suppression is relatively small due to the effect of traps.

  13. Charge and current density profiles of a degenerate magnetized free-electron gas near a hard wall

    NARCIS (Netherlands)

    M.M. Kettenis; L.G. Suttorp

    1998-01-01

    The charge and current densities of a completely degenerate free-electron gas in a uniform magnetic field are found to have a damped oscillatory spatial dependence near a wall that is parallel to the magnetic field. For large distances from the wall the behaviour of the associated profile functions

  14. Reservoir induced topological order and quantized charge pumps in open lattice models with interactions

    Science.gov (United States)

    Linzner, Dominik; Koster, Malte; Grusdt, Fabian; Fleischhauer, Michael

    2016-05-01

    Since the discovery of the quantum Hall effect, topological states of matter have attracted the attention of scientists in many fields of physics. By now there is a rather good understanding of topological order in closed, non-interacting systems. In contrast the extension to open systems in particular with interactions is entirely in its infancy. Recently there have been advances in characterizing topology in reservoir driven systems without interactions, but the topological invariants introduced lack a clear physical interpretation and are restricted to non-interacting systems. We consider a one-dimensional interacting topological system whose dynamics is entirely driven by reservoir couplings. By slowly tuning these couplings periodically in time we realize an open-system analogue of the Thouless charge pump that proves to be robust against unitary and non-unitary perturbations. Making use of this Thouless pump we introduce a topological invariant, which is applicable to interacting systems. Finally we propose a conceptual detection scheme that translates the open-system topological invariant into the context of a well understood closed system.

  15. Antibody-ligand interactions for hydrophobic charge-induction chromatography: a surface plasmon resonance study.

    Science.gov (United States)

    Cheng, Fang; Li, Ming-Yang; Wang, Han-Qi; Lin, Dong-Qiang; Qu, Jing-Ping

    2015-03-24

    This article describes the use of surface plasmon resonance (SPR) spectroscopy to study antibody-ligand interactions for hydrophobic charge-induction chromatography (HCIC) and its versatility in investigating the surface and solution factors affecting the interactions. Two density model surfaces presenting the HCIC ligand (mercapto-ethyl-pyridine, MEP) were prepared on Au using a self-assembly technique. The surface chemistry and structure, ionization, and protein binding of such model surfaces were characterized by X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), contact-angle titration, and SPR, respectively. The influences of the surface and solution factors, e.g., ligand density, salt concentration, and solution pH, on protein adsorption were determined by SPR. Our results showed that ligand density affects both equilibrium and dynamic aspects of the interactions. Specifically, a dense ligand leads to an increase in binding strength, rapid adsorption, slow desorption, and low specificity. In addition, both hydrophobic interactions and hydrogen bonding contribute significantly to the protein adsorption at neutral pH, while the electrostatic repulsion is overwhelmed under acidic conditions. The hydrophobic interaction at a high concentration of lyotropic salt would cause drastic conformational changes in the adsorbed protein. Combined with the self-assembly technique, SPR proves to be a powerful tool for studying the interactions between an antibody and a chromatographic ligand.

  16. Analytical Evaluation of the Ratio Between Injection and Space-Charge Limited Currents in Single Carrier Organic Diodes

    OpenAIRE

    Alvarez, Angel Luis; Arredondo, Belen; Romero, Beatriz; Quintana Arregui, Patxi Xabier; Gutierrez Llorente, Araceli; Mallavia, Ricardo; Otón Sánchez, José Manuel

    2008-01-01

    An analytical, complete framework to describe the current-voltage (I-V) characteristics of organic diodes without the use of previous approaches, such as injection or bulk-limited conduction is proposed. Analytical expressions to quantify the ratio between injection and space-charge-limited current from experimental I-V characteristics in organic diodes have been derived. These are used to propose a numerical model in which both bulk transport and injection mechanisms are considered simultane...

  17. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory.

    Science.gov (United States)

    Ahmad, Q R; Allen, R C; Andersen, T C; D Anglin, J; Barton, J C; Beier, E W; Bercovitch, M; Bigu, J; Biller, S D; Black, R A; Blevis, I; Boardman, R J; Boger, J; Bonvin, E; Boulay, M G; Bowler, M G; Bowles, T J; Brice, S J; Browne, M C; Bullard, T V; Bühler, G; Cameron, J; Chan, Y D; Chen, H H; Chen, M; Chen, X; Cleveland, B T; Clifford, E T H; Cowan, J H M; Cowen, D F; Cox, G A; Dai, X; Dalnoki-Veress, F; Davidson, W F; Doe, P J; Doucas, G; Dragowsky, M R; Duba, C A; Duncan, F A; Dunford, M; Dunmore, J A; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Ferraris, A P; Ford, R J; Formaggio, J A; Fowler, M M; Frame, K; Frank, E D; Frati, W; Gagnon, N; Germani, J V; Gil, S; Graham, K; Grant, D R; Hahn, R L; Hallin, A L; Hallman, E D; Hamer, A S; Hamian, A A; Handler, W B; Haq, R U; Hargrove, C K; Harvey, P J; Hazama, R; Heeger, K M; Heintzelman, W J; Heise, J; Helmer, R L; Hepburn, J D; Heron, H; Hewett, J; Hime, A; Howe, M; Hykawy, J G; Isaac, M C P; Jagam, P; Jelley, N A; Jillings, C; Jonkmans, G; Kazkaz, K; Keener, P T; Klein, J R; Knox, A B; Komar, R J; Kouzes, R; Kutter, T; Kyba, C C M; Law, J; Lawson, I T; Lay, M; Lee, H W; Lesko, K T; Leslie, J R; Levine, I; Locke, W; Luoma, S; Lyon, J; Majerus, S; Mak, H B; Maneira, J; Manor, J; Marino, A D; McCauley, N; McDonald, A B; McDonald, D S; McFarlane, K; McGregor, G; Meijer Drees, R; Mifflin, C; Miller, G G; Milton, G; Moffat, B A; Moorhead, M; Nally, C W; Neubauer, M S; Newcomer, F M; Ng, H S; Noble, A J; Norman, E B; Novikov, V M; O'Neill, M; Okada, C E; Ollerhead, R W; Omori, M; Orrell, J L; Oser, S M; Poon, A W P; Radcliffe, T J; Roberge, A; Robertson, B C; Robertson, R G H; Rosendahl, S S E; Rowley, J K; Rusu, V L; Saettler, E; Schaffer, K K; Schwendener, M H; Schülke, A; Seifert, H; Shatkay, M; Simpson, J J; Sims, C J; Sinclair, D; Skensved, P; Smith, A R; Smith, M W E; Spreitzer, T; Starinsky, N; Steiger, T D; Stokstad, R G; Stonehill, L C; Storey, R S; Sur, B; Tafirout, R; Tagg, N; Tanner, N W; Taplin, R K; Thorman, M; Thornewell, P M; Trent, P T; Tserkovnyak, Y I; Van Berg, R; Van de Water, R G; Virtue, C J; Waltham, C E; Wang, J-X; Wark, D L; West, N; Wilhelmy, J B; Wilkerson, J F; Wilson, J R; Wittich, P; Wouters, J M; Yeh, M

    2002-07-01

    Observations of neutral-current nu interactions on deuterium in the Sudbury Neutrino Observatory are reported. Using the neutral current (NC), elastic scattering, and charged current reactions and assuming the standard 8B shape, the nu(e) component of the 8B solar flux is phis(e) = 1.76(+0.05)(-0.05)(stat)(+0.09)(-0.09)(syst) x 10(6) cm(-2) s(-1) for a kinetic energy threshold of 5 MeV. The non-nu(e) component is phi(mu)(tau) = 3.41(+0.45)(-0.45)(stat)(+0.48)(-0.45)(syst) x 10(6) cm(-2) s(-1), 5.3sigma greater than zero, providing strong evidence for solar nu(e) flavor transformation. The total flux measured with the NC reaction is phi(NC) = 5.09(+0.44)(-0.43)(stat)(+0.46)(-0.43)(syst) x 10(6) cm(-2) s(-1), consistent with solar models.

  18. Final Report - Interaction of radiation and charged particles in miniature plasma structures

    Energy Technology Data Exchange (ETDEWEB)

    Antonsen, Thomas M.

    2014-07-16

    The extension of our program to the development of theories and models capable of describing the interactions of intense laser pulses and charged particles in miniature plasma channels is reported. These channels, which have recently been created in the laboratory, have unique dispersion properties that make them interesting for a variety of applications including particle acceleration, high harmonic generation, and THz generation. Our program systematically explored the properties of these channels, including dispersion, losses, and coupling. A particular application that was pursued is the generation of intense pulses of THz radiation by short laser pulses propagating these channels. We also explored the nonlinear dynamics of laser pulses propagating in these channels.

  19. Interaction of slow and highly charged ions with surfaces: formation of hollow atoms

    Energy Technology Data Exchange (ETDEWEB)

    Stolterfoht, N.; Grether, M.; Spieler, A.; Niemann, D. [Hahn-Meitner Institut, Berlin (Germany). Bereich Festkoerperphysik; Arnau, A.

    1997-03-01

    The method of Auger spectroscopy was used to study the interaction of highly charged ions with Al and C surfaces. The formation of hollow Ne atoms in the first surface layers was evaluated by means of a Density Functional theory including non-linear screening effects. The time-dependent filling of the hollow atom was determined from a cascade model yielding information about the structure of the K-Auger spectra. Variation of total intensities of the L- and K-Auger peaks were interpreted by the cascade model in terms of attenuation effects on the electrons in the solid. (author)

  20. The interaction energy of charged filaments in an electrolyte: Results for all filament spacings.

    Science.gov (United States)

    Smith, D A

    2011-05-01

    Electrically charged long-chain macromolecules in an electrolyte can form an ordered lattice whose spacing is greater than their diameter. If entropic effects are neglected, these nematic structures can be predicted from a balance of Coulomb repulsion and van-der-Waals attraction forces. To enhance the utility of such theories, this paper extends existing results for the interaction between charged filaments, and gives approximate formulae for the screened Coulomb and van-der-Waals potentials over the whole range of their centre-to-centre spacing d. The repulsive Coulomb potential is proportional to exp(-λd)/λd for all spacings when the Debye screening length 1/λ is smaller than the sum of the filament radii. The attractive van-der-Waals potential is asymptotic to d⁻⁵ at large d. For smaller spacings, the potential is calculated by numerical integration and compared with published formulae: the series expansion of Brenner and McQuarrie converges too slowly, whereas the interpolation formula of Moisescu provides reasonable accuracy over the whole range of d. Combining these potentials shows that there is a finite range of charge densities for which a nematic crystal lattice is stable, but this conclusion ignores entropic effects associated with motile filaments. The role of electrostatic forces in aligning filaments and stabilizing a nematic liquid-crystal phase is discussed, in conjunction with other mechanisms such as motor proteins, crosslinkers or scaffolding structures. PMID:21295590

  1. Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal

    Science.gov (United States)

    Ryzhkova, A. V.; Škarabot, M.; Muševič, I.

    2015-04-01

    We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ˜4.5 ×10-3C/m2 for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ˜2.3 ×10-5C/m2 , for 1 -μ m colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell.

  2. Specific interactions within micelle microenvironment in different charged dye/surfa

    Directory of Open Access Journals (Sweden)

    Adina Roxana Petcu

    2016-01-01

    Full Text Available The interactions of two ionic dyes, Crystal Violet and Methyl Orange, with different charged surfactants and also with a nonionic surfactant were investigated using surface tension measurements and visible spectroscopy in pre-micellar and post-micellar regions. It was found that for the water dominant phase systems the dye was localized between the polar heads, at the exterior of the direct micelle shells for all the systems. For the oil dominant phase systems, in case of the same charged dye/surfactant couples, the dye was localized in the micelle shell between the hydrocarbon chain of the surfactant nearby the hydrophilic head groups while for nonionic surfactant and oppositely charged dye/surfactant, localization of dye was between the oxyethylenic head groups towards the interior of the micelle core. Mixed aggregates of the dye and surfactant (below the critical micellar concentration of cationic surfactant, dye-surfactant ion pair and surfactant-micelles were present. The values of equilibrium constants (for TX-114/MO and TX-114/CV systems were 0.97 and 0.98, respectively, partition coefficients between the micellar and bulk water phases and standard free energy (for the nonionic systems were −12.59 kJ/mol for MO and −10.97 kJ/mol for CV were calculated for all the studied systems. The partition processes were exothermic and occurred spontaneously.

  3. Sensitivity of the CSR Self-Interaction to the Local Longitudinal Charge Concentration of an Electron Bunch

    International Nuclear Information System (INIS)

    Recent measurements of the coherent synchrotron radiation (CSR) effect carried out at CERN and at Jefferson Lab indicate that the observed emittance growth and energy modulation due to the orbit-curvature-induced bunch self-interaction are sometimes bigger than the results predicted from previous analyses and simulations based on a Gaussian longitudinal charge distribution. In this paper, by performing a model study, we show both analytically and numerically that when the longitudinal bunch charge distribution involves concentration of charges in a small fraction of the bunch length, enhancement of the CSR self-interaction beyond the Gaussian prediction may occur

  4. Multi-step constant-current charging method for electric vehicle, valve-regulated, lead/acid batteries during night time for load-levelling

    Energy Technology Data Exchange (ETDEWEB)

    Ikeya, Tomohiko; Mita, Yuichi; Ishihara, Kaoru [Central Research Inst. of Electric Power Industry, Tokyo (Japan); Sawada, Nobuyuki [Hokkaido Electric Power, Sapporo (Japan); Takagi, Sakae; Murakami, Jun-ichi [Tohoku Electric Power, Sendai (Japan); Kobayashi, Kazuyuki [Tokyo Electric Power, Yokohama (Japan); Sakabe, Tetsuya [Chubu Electric Power, Nagoya (Japan); Kousaka, Eiichi [Hokuriku Electric Power, Toyama (Japan); Yoshioka, Haruki [The Kansai Electric Power, Osaka (Japan); Kato, Satoru [The Chugoku Electric Power, Hiroshima (Japan); Yamashita, Masanori [Shikoku Research Inst., Takamatsu (Japan); Narisoko, Hayato [The Okinawa Electric Power, Naha (Japan); Nishiyama, Kazuo [The Central Electric Power Council, Tokyo (Japan); Adachi, Kazuyuki [Kyushu Electric Power, Fukuoka (Japan)

    1998-09-01

    For the popularization of electric vehicles (EVs), the conditions for charging EV batteries with available current patterns should allow complete charging in a short time, i.e., less than 5 to 8 h. Therefore, in this study, a new charging condition is investigated for the EV valve-regulated lead/acid battery system, which should allow complete charging of EV battery systems with multi-step constant currents in a much shorter time with longer cycle life and higher energy efficiency compared with two-step constant-current charging. Although a high magnitude of the first current in the two-step constant-current method prolongs cycle life by suppressing the softening of positive active material, too large a charging current magnitude degrades cells due to excess internal evolution of heat. A charging current magnitude of approximately 0.5 C is expected to prolong cycle life further. Three-step charging could also increase the magnitude of charging current in the first step without shortening cycle life. Four-or six-step constant-current methods could shorten the charging time to less than 5 h, as well as yield higher energy efficiency and enhanced cycle life of over 400 cycles compared with two-step charging with the first step current of 0.5 C. Investigation of the degradation mechanism of the batteries revealed that the conditions of multi-step constant-current charging suppressed softening of positive active material and sulfation of negative active material, but, unfortunately, advanced the corrosion of the grids in the positive plates. By adopting improved grids and cooling of the battery system, the multistep constant-current method may enhance the cycle life. (orig.)

  5. Charge-transfer interaction mediated organogels from 18β-glycyrrhetinic acid appended pyrene

    Directory of Open Access Journals (Sweden)

    Jun Hu

    2013-12-01

    Full Text Available We describe herein the two-component charge-transfer (CT interaction induced organogel formation with 18β-glycyrrhetinic acid appended pyrene (GA-pyrene, 3 as the donor, and 2,4,7-trinitrofluorenone (TNF, 4 as the acceptor. The use of TNF (4 as a versatile electron acceptor in the formation of CT gels is demonstrated through the formation of gels in a variety of solvents. Thermal stability, stoichiometry, scanning electron microscopy (SEM, optical micrographs, and circular dichroism (CD are performed on these CT gels to investigate their thermal and assembly properties. UV–vis, fluorescence, mass spectrometric as well as variable-temperature 1H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels.

  6. Intramolecular Charge-Transfer Interaction of Donor-Acceptor-Donor Arrays Based on Anthracene Bisimide.

    Science.gov (United States)

    Iwanaga, Tetsuo; Ogawa, Marina; Yamauchi, Tomokazu; Toyota, Shinji

    2016-05-20

    We designed anthracene bisimide (ABI) derivatives having two triphenylamine (TPA) groups as donor units at the 9,10-positions to form a novel π-conjugated donor-acceptor system. These compounds and their analogues with ethynylene linkers were synthesized by Suzuki-Miyaura and Sonogashira coupling reactions, respectively. In UV-vis spectra, the linker-free derivatives showed broad absorption bands arising from intramolecular charge-transfer interactions. Introducing ethynylene linkers resulted in a considerable red shift of the absorption bands. In fluorescence spectra, the ethynylene derivatives showed intense emission bands at 600-650 nm. Their photophysical and electrochemical properties were compared with those of the corresponding mono TPA derivatives on the basis of theoretical calculations and cyclic voltammetry to evaluate the intramolecular electronic interactions between the donor and acceptor units.

  7. Electrostatic interactions and aqueous two-phase separation modes of aqueous mixed oppositely charged surfactants system.

    Science.gov (United States)

    Hao, Li-Sheng; Gui, Yuan-Xiang; Chen, Yan-Mei; He, Shao-Qing; Nan, Yan-Qing; You, Yi-Lan

    2012-08-30

    Electrostatic interactions play an important role in setting the aqueous two-phase separation behaviors of mixtures of oppositely charged surfactants. The aqueous mixture of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfonate (AS) is actually a five-component system, comprised of CTAB, AS, complex salt (cetyltrimethylammonium dodecylsulfonate, abbreviated as CTA(+)AS(-)), NaBr, and water. In the three-dimensional pyramid phase diagram, the aqueous two-phase region with excess AS or with excess CTAB extends successively from the region very near to the NaBr-H2O line through the CTAB-AS-H2O conventional mixing plane to the CTA(+)AS(-)-AS-H2O side plane or to the CTA(+)AS(-)-CTAB-H2O side plane, respectively. Large or small molar ratios between the counterions and their corresponding surfactant ions for oppositely charged surfactants located in the NaBr side or the CTA(+)AS(-) side of the pyramid imply strong or weak electrostatic screening. Electrostatic screening of counterions alters the electrostatic attractions between the oppositely charged head groups or the electrostatic repulsions between the like-charged head groups in excess, and the electrostatic free energy of aggregation thus affects the aqueous two-phase separation modes. Composition analysis, rheological property investigation, and TEM images suggest that there are two kinds of aqueous two-phase systems (ATPSs). On the basis of these experimental results and Kaler's cell model, two kinds of phase separation modes were proposed. Experimental results also indicate that all of the top phases are surfactant-rich, and all of the bottom phases are surfactant-poor; the density difference between the top phase and the bottom phase in one ATPS is very small; the interfacial tension (σ) of the ATPS is ultralow. PMID:22856887

  8. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    CERN Document Server

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  9. NN Interaction JISP16: Current Status and Prospect

    Directory of Open Access Journals (Sweden)

    Mazur E.A.

    2010-04-01

    Full Text Available We discuss realistic nonlocal NN interactions of a new type — J -matrix Inverse Scattering Potential (JISP. In an ab exitu approach, these interactions are fitted to not only two-nucleon data (NN scattering data and deuteron properties but also to the properties of light nuclei without referring to three-nucleon forces. We discuss recent progress with the ab initio No-core Shell Model (NCSM approach and respective progress in developing ab exitu JISP-type NN -interactions together with plans of their forthcoming improvements.

  10. Optical conductivity of charge carriers interacting with a two-level systems reservoir

    Science.gov (United States)

    Villares Ferrer, A.; Caldeira, A. O.; Smith, C. Morais

    2006-11-01

    Using the functional-integral method we investigate the effective dynamics of a charged particle coupled to a set of two-level systems as a function of temperature and external electric field. The optical conductivity and the direct current (dc) resistivity induced by the reservoir are computed. Three different regimes are found depending on the two-level system spectral function, which may lead to a non-Drude optical conductivity in a certain range of parameters. Our results contrast to the behavior found when considering the usual bath of harmonic oscillators which we are able to recover in the limit of very low temperatures.

  11. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  12. Acyl chain length and charge effect on Tamoxifen-lipid model membrane interactions

    Science.gov (United States)

    Bilge, Duygu; Kazanci, Nadide; Severcan, Feride

    2013-05-01

    Tamoxifen (TAM), which is an antiestrogenic agent, is widely used during chemotherapy of breast, pancreas, brain and liver cancers. In this study, TAM and model membrane interactions in the form of multilamellar vesicles (MLVs) were studied for lipids containing different acyl chain length and different charge status as a function of different TAM (1, 6, 9 and 15 mol%) concentrations. Zwitterionic lipids namely dipalmitoyl phosphatidylcholine (DPPC), and dimyristoylphosphatidylcholine (DMPC) lipids were used to see the acyl chain length effect and anionic dipalmitoyl phosphtidylglycerol (DPPG) lipid was used to see the charge effect. For this purpose Fourier transform-infrared (FTIR) spectroscopic and differential scanning calorimetric (DSC) techniques have been conducted. For zwitterionic lipid, concentration dependent different action of TAM was observed both in the gel and liquid crystalline phases by significantly increasing the lipid order and decreasing the dynamics for 1 mol% TAM, while decreasing the lipid order and increasing the dynamics of the lipids for higher concentrations (6, 9 and 15 mol%). However, different than neutral lipids, the dynamics and disorder of DPPG liposome increased for all TAM concentrations. The interactions between TAM and head group of multilamellar liposomes was monitored by analyzing the Cdbnd O stretching and PO2- antisymmetric double bond stretching bands. Increasing Tamoxifen concentrations led to a dehydration around these functional groups in the polar part of the lipids. DSC studies showed that for all types of lipids, TAM eliminates the pre-transition, shifts the main phase transition to lower temperatures and broadened the phase transition curve. The results indicate that not the acyl chain length but the charge status of the polar head group induces different effects on lipid membranes order and dynamics.

  13. Interplay Between Charge, Spin, and Phonons in Low Dimensional Strongly Interacting Systems

    Science.gov (United States)

    Soltanieh-ha, Mohammad

    Interacting one-dimensional electron systems are generally referred to as "Luttinger liquids", after the effective low-energy theory in which spin and charge behave as separate degrees of freedom with independent energy scales. The "spin-incoherent Luttinger liquid" describes a finite-temperature regime that is realized when the temperature is very small relative to the Fermi energy, but larger than the characteristic spin energy scale, and it is realized for instance in the strongly interacting Hubbard chain (with large U). Similar physics can take place in the ground-state, when a Luttinger Liquid is coupled to a spin bath, which effectively introduces a "spin temperature" through its entanglement with the spin degree of freedom. We show that the spin-incoherent state can be exactly written as a factorized wave-function, with a spin wave-function that can be described within a valence bond formalism. This enables us to calculate exact expressions for the momentum distribution function and the entanglement entropy. This picture holds not only for two antiferromagnetically coupled t--J chains, but also for the t--J-Kondo chain with strongly interacting conduction electrons. In chapter 3 we argue that this theory is quite universal and may describe a family of problems that could be dubbed "spin-incoherent". This crossover to the spin-incoherent regime at finite temperatures can be understood by means of Ogata and Shiba's factorized wave-function, where charge and spin are totally decoupled, and assuming that the charge remains in the ground state, while the spin is thermally excited and at an effective "spin temperature". In chapter 4 we use the time-dependent density matrix renormalization group method (tDMRG) to calculate the dynamical contributions of the spin, to reconstruct the single-particle spectral function of the electrons. The crossover is characterized by a redistribution of spectral weight both in frequency and momentum, with an apparent shift by kF of

  14. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges.

    OpenAIRE

    Armstrong, K M; Baldwin, R L

    1993-01-01

    To determine whether a charged histidine side chain affects alpha-helix stability only when histidine is close to one end of the helix or also when it is in the central region, we substitute a single histidine residue at many positions in two reference peptides and measure helix stability and histidine pKa. The position of a charged histidine residue has a major effect on helix stability in 0.01 M NaCl: the helix content of a 17-residue peptide is 24% when histidine is at position 3 compared ...

  15. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment

    International Nuclear Information System (INIS)

    We have measured the rates and spectra of neutral-current neutrino interactions in the MINOS detectors, which are separated by 734 km. A depletion in the rate at the far site would indicate mixing between νμ and a sterile particle. The depletion of the total neutral-current event rate at the far site is limited to be below 17% at 90% confidence level without νe appearance. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra shows the fraction of νμ oscillating to a sterile neutrino is 0.28-0.28+0.25(stat.+syst.). Including νe appearance at the current experimental upper bound limits the depletion to be below 21% at 90% confidence level and the fit fraction of νμ oscillating to a sterile neutrino is 0.43-0.27+0.23(stat.+syst.)

  16. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment.

    Science.gov (United States)

    Adamson, P; Andreopoulos, C; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Baller, B; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Boehm, J; Boehnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; de Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Harris, E Falk; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hsu, L; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Messier, M D; Metelko, C J; Michael, D G; Miller, W H; Mishra, S R; Moore, C D; Morfín, J; Mualem, L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlović, Z; Pawloski, G; Pearce, G F; Peck, C W; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, A; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zhang, K; Zwaska, R

    2008-11-28

    We report the first detailed comparisons of the rates and spectra of neutral-current neutrino interactions at two widely separated locations. A depletion in the rate at the far site would indicate mixing between nu(mu) and a sterile particle. No anomalous depletion in the reconstructed energy spectrum is observed. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra limits the fraction of nu(mu) oscillating to a sterile neutrino to be below 0.68 at 90% confidence level. A less stringent limit due to a possible contribution to the measured neutral-current event rate at the far site from nu(e) appearance at the current experimental limit is also presented.

  17. Search for active neutrino disappearance using neutral-current interactions in the MINOS long-baseline experiment

    CERN Document Server

    Adamson, P; Arms, K E; Armstrong, R; Auty, D J; Ayres, D S; Backhouse, C; Baller, B; Barr, G; Barrett, W L; Becker, B R; Belias, A; Bernstein, R H; Bhattacharya, D; Bishai, M; Blake, A; Bock, G J; Böhm, J; Böhnlein, D J; Bogert, D; Bower, C; Buckley-Geer, E; Cavanaugh, S; Chapman, J D; Cherdack, D; Childress, S; Choudhary, B C; Cobb, J H; Coleman, S J; Culling, A J; De Jong, J K; Dierckxsens, M; Diwan, M V; Dorman, M; Dytman, S A; Escobar, C O; Evans, J J; Falk-Harris, E; Feldman, G J; Frohne, M V; Gallagher, H R; Godley, A; Goodman, M C; Gouffon, P; Gran, R; Grashorn, E W; Grossman, N; Grzelak, K; Habig, A; Harris, D; Harris, P G; Hartnell, J; Hatcher, R; Heller, K; Himmel, A; Holin, A; Hsu, L; Hylen, J; Irwin, G M; Ishitsuka, M; Jaffe, D E; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Kim, J J; Kim, M S; Koizumi, G; Kopp, S; Kordosky, M; Koskinen, D J; Kotelnikov, S K; Kreymer, A; Kumaratunga, S; Lang, K; Ling, J; Litchfield, P J; Litchfield, R P; Loiacono, L; Lucas, P; Ma, J; Mann, W A; Marchionni, A; Marshak, M L; Marshall, J S; Mayer, N; McGowan, A M; Meier, J R; Messier, M D; Metelko, C J; Michael, D G; Miller, W H; Mishra, S R; Moore, C D; Morfn, J; Mualem, i L; Mufson, S; Murgia, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nicholls, T C; Ochoa-Ricoux, J P; Oliver, W P; Ospanov, R; Paley, J; Paolone, V; Para, A; Patzak, T; Pavlovi, Z; Pawloski, G; Pearce, G F; Peck, C W; Petyt, D A; Pittam, R; Plunkett, R K; Rahaman, cA; Rameika, R A; Raufer, T M; Rebel, B; Reichenbacher, J; Rodrigues, P A; Rosenfeld, C; Rubin, H A; Ryabov, V A; Sanchez, M C; Saoulidou, N; Schneps, J; Schreiner, P; Shanahan, P; Smart, W; Smith, C; Sousa, A; Speakman, B; Stamoulis, P; Strait, M; Tagg, N; Talaga, R L; Tavera, M A; Thomas, J; Thomson, M A; Thron, J L; Tinti, G; Trostin, I; Tsarev, V A; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Ward, D R; Watabe, M; Weber, A; Webb, R C; Wehmann, A; West, N; White, C; Wojcicki, S G; Wright, D M; Yang, T; Zhang, K; Zwaska, R

    2008-01-01

    We have measured the rates and spectra of neutral-current neutrino interactions in the MINOS detectors, which are separated by 734 km. A depletion in the rate at the far site would indicate mixing between muon neutrinos and a sterile particle. The depletion of the total neutral-current event rate at the far site is limited to be below 17% at 90% confidence level without electron neutrino appearance. Assuming oscillations occur at a single mass-squared splitting, a fit to the neutral- and charged-current energy spectra shows the fraction of muon neutrinos oscillating to a sterile neutino is 0.28^{+0.25}_{-0.28} (stat.+syst.). Including electron neutrino appearance at the current experimental upper bound limits the depletion to be below 21% at 90% confidence level and the fit fraction of muon neutrinos oscillating to a sterile neutrino is 0.43^{+0.23}_{-0.27} (stat.+syst.).

  18. Return current and proton emission from short pulse laser interactions with wire targets

    International Nuclear Information System (INIS)

    Results are presented from laser-plasma interaction experiments using the VULCAN laser at the Rutherford Appleton Laboratory. Wire targets were used to elucidate the role of the return currents generated by the relativistic electron beam leaving the target at laser intensities up to 5x1019 W cm-2. For some shots an additional wire or a foil was placed near the target wire. In other shots, a foil was used as the target with a wire behind. Three main observations were made: (i) Z-pinch behavior in the wires due to the return currents, (ii) optical transition radiation (OTR) at the second harmonic of the laser, and (iii) proton emission. The OTR and the proton emission were observed from both the primary wire target and the adjacent wire. The OTR emission is associated with electron bunches at twice the laser frequency due to ponderomotive JxB acceleration by the laser. The proton emission from the adjacent target was likely due to field emission of electrons by the large potential produced from charging of the primary wire target. The observations agree with simulations using the three-dimensional tree code PEPC and the two-and-one-half-dimensional particle-in-cell code OSIRIS

  19. Chromium interactions in plants: current status and future strategies.

    Science.gov (United States)

    Shanker, Arun Kumar; Djanaguiraman, Maduraimuthu; Venkateswarlu, Bandi

    2009-09-01

    Chromium has received relatively little attention from plant scientists compared to other heavy metals in recent times in spite of it being a very a hazardous environmental pollutant. One of the reasons for this is the complexity of the metal's interactions with biological systems and the difficulty in studying them. Although the possible mode of entry into the plants, resultant toxicity mechanisms and tolerance potential has been worked out in plants there is still a need to get a complete picture of the Cr-plant interactome. With the advent of hyphenated technologies and global gene/protein and metabolite expression/quantification techniques, studies to elucidate the complete metallome are possible albeit resource intensive. This minireview focuses on the recent developments in the field of Cr-plant interactions and proposes a model using a systems biology and integrated -omics approach to decipher the intricacies of Cr-plant interaction. PMID:21305140

  20. Elastic, excitation, ionization and charge transfer cross sections of current interest in fusion energy research

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R.; Krstic, P.S. [Oak Ridge National Lab. TN (United States). Physics Div.

    1997-01-01

    Due to the present interest in modeling and diagnosing the edge and divertor plasma regions in magnetically confined fusion devices, we have sought to provide new calculations regarding the elastic, excitation, ionization, and charge transfer cross sections in collisions among relevant ions, neutrals, and isotopes in the low-to intermediate-energy regime. We summarize here some of our recent work. (author)

  1. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    CERN Document Server

    Davies, J; Moch, S; Vermaseren, J A M

    2016-01-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in nu-nubar charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling alpha_s, thus completing the description of unpolarized inclusive W^(+-) exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for nu+nubar charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  2. Neutrino interactions: Challenges in the current theoretical picture

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ruso, Luis [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra (Portugal)

    2012-08-15

    The present theoretical status of neutrino interactions in the few-GeV region is reviewed. Quasielastic scattering, pion production, photon emission and their importance for neutrino oscillation studies are discussed, making emphasis on the open questions that arise in the comparison with new experimental data.

  3. Neutrino interactions: challenges in the current theoretical picture

    CERN Document Server

    Alvarez-Ruso, Luis

    2010-01-01

    The present theoretical status of neutrino interactions in the few-GeV region is reviewed. Quasielastic scattering, pion production, photon emission and their importance for neutrino oscillation studies are discussed, making emphasis on the open questions that arise in the comparison with new experimental data.

  4. Negative charging effect of traps on the gate leakage current of an AlGaN/GaN HEMT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. J.; Lim, J. H.; Yang, J. W. [Chonbuk National University, Jeonju (Korea, Republic of); Stanchina, W. [University of Pittsburgh, Pittsburgh, PA (United States)

    2014-08-15

    The negative charging effect of surface traps on the gate leakage current of AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. The gate leakage current could be decreased by two orders of magnitude by using a photo-electrochemical process to treat of the source and the drain region, but current flowed into the gate even at a negative voltage in a limited region when the measurement was executed with a gate voltage sweep from negative to positive voltage. Also the electrical characteristics of the HEMT were degraded by pulsed operation of the gate. Traps newly generated on the surface were regarded as sources for the current that flowed against the applied voltage, and the number of traps was estimated. Also, a slow transient in the drain current was confirmed based on the results of delayed sweep measurements.

  5. Estimation of the spatial distribution of traps using space-charge-limited current measurements in an organic single crystal

    KAUST Repository

    Dacuña, Javier

    2012-09-06

    We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.

  6. Constraints on anomalous charged current couplings, tau neutrino mass and fourth generation mixing from tau leptonic branching fractions

    International Nuclear Information System (INIS)

    We use recent experimental measurements of tau branching fractions to determine the weak charged current magnetic and electric dipole moments of the tau and the Michel parameter η with unprecedented precision. These results are then used to constrain the tau compositeness scale and the allowed parameter space for Higgs doublet models. We also present new constraints on the mass of the tau neutrino and its mixing with a fourth generation neutrino

  7. Nuclear Effects in Structure Functions xF3(x, Q2) from Charge Current Neutrino Deep Inelastic Scattering

    Institute of Scientific and Technical Information of China (English)

    DUAN Chun-Gui; SHEN Peng-Nian; LI Guang-Lie

    2006-01-01

    By taking advantage of the model-independent nuclear parton distributions, the structure functions xF3(x, Q2)are calculated, in comparison with the experimental data from CCFR neutrino-nuclei charge current deep inelastic scattering. It is shown that shadowing and anti-shadowing effects occur in valence quark distributions for small and medium x regions, respectively. It is suggested that the neutrino experimental data should be employed in the future for pinning down the nuclear parton distributions.

  8. Interacting tilt and kink instabilities in repelling current channels

    CERN Document Server

    Keppens, Rony; Xia, Chun

    2014-01-01

    We present a numerical study in resistive magnetohydrodynamics where the initial equilibrium configuration contains adjacent, oppositely directed, parallel current channels. Since oppositely directed current channels repel, the equilibrium is liable to an ideal magnetohydrodynamic tilt instability. This tilt evolution, previously studied in planar settings, involves two magnetic islands or fluxropes, which on Alfvenic timescales undergo a combined rotation and separation. This in turn leads to the creation of (near) singular current layers, posing severe challenges to numerical approaches. Using our open-source grid-adaptive MPI-AMRVAC software, we revisit the planar evolution case in compressible MHD, as well as its extension to 2.5D and full 3D scenarios. As long as the third dimension remains ignorable, pure tilt evolutions result which are hardly affected by out of plane magnetic field components. In all 2.5D runs, our simulations do show secondary tearing type disruptions throughout the near singular cur...

  9. How a charge conserving alternative to Maxwells displacement current entails a Darwin like approximation to the solutions of Maxwells equations

    CERN Document Server

    Wolsky, Alan M

    2014-01-01

    Though sufficient for local conservation of charge, Maxwells displacement current is not necessary. An alternative to the Ampere-Maxwell equation is exhibited and the alternatives electric and magnetic fields and scalar and vector potentials are expressed in terms of the charge and current densities. The magnetic field is shown to satisfy the Biot_Savart Law. The electric field is shown to be the sum of the gradient of a scalar potential and the time derivative of a vector potential which is different from but just as tractable as the simplest vector potential that yields the Biot_Savart Law The alternative describes a theory in which action is instantaneous and so may provide a good approximation to Maxwells equations where and when the finite speed of light can be neglected. The result recalls the Darwin approximation which arose from the study classical charged point particles to order (v/c)2 in the Lagrangian. Unlike Darwin, this approach does not depend on the constitution of the electric current. Instea...

  10. Interactions of non-charged tadalafil stereoisomers with cyclodextrins: capillary electrophoresis and nuclear magnetic resonance studies.

    Science.gov (United States)

    Fejős, Ida; Kazsoki, Adrienn; Sohajda, Tamás; Márványos, Ede; Volk, Balázs; Szente, Lajos; Béni, Szabolcs

    2014-10-10

    The single isomer drug R,R-tadalafil (Cialis) contains two chiral centers thus four stereoisomers (R,R-, S,S-, S,R- and R,S-tadalafil) exist, however, only the most potent inhibitor, the R,R-tadalafil is in clinical use. In our study, over 20 charged cyclodextrin (CD) derivatives were studied for enantiospecific host-guest type interactions in CD-modified capillary electrophoresis. Tadalafil stereoisomers are non-charged; therefore, their electrophoretic separation poses a challenge. Several candidates of both positively and negatively charged hosts were found to be effective for the enantioseparation. Eight out of the beta derivatives and three of alpha derivatives (including sulfated, sulfoalkylated, carboxyalkylated and amino derivatives) resolved all four stereoisomers partially or completely. Cavity size-dependent absolute enantiomer migration order (EMO) reversals were observed in the case of sulfopropyl-alpha (EMO: R,S; S,R; R,R; S,S) and sulfopropyl-beta (S,S; R,R; S,R; R,S) derivatives, while substituent-dependent partial EMO reversals were detected for sulfobutyl-ether-alpha (R,S; S,R; S,S; R,R) and sulfated-alpha-CD (R,R; S,S; R,S; S,R) selectors. Complexation-induced (1)H NMR chemical shift changes reflected that the benzodioxole moiety plays a major role in cavity size-dependent EMO reversal. Sulfobutyl-ether-alpha-CD was the only selector that provided the desired EMO in which the clinically applied eutomer R,R-tadalafil migrates last. Finally, an electrophoretic method applying a background electrolyte (BGE) containing 75 mM Tris-acetic acid buffer (pH 4.75) and 7 mM sulfobutyl-ether-alpha-CD was developed for the baseline resolution of all isomers at 25 °C and +25 kV applied voltage.

  11. Current-Driven Conformational Changes, Charging and Negative Differential Resistance in Molecular Wires

    OpenAIRE

    Emberly, Eldon; Kirczenow, George

    2001-01-01

    We introduce a theoretical approach based on scattering theory and total energy methods that treats transport non-linearities, conformational changes and charging effects in molecular wires in a unified way. We apply this approach to molecular wires consisting of chain molecules with different electronic and structural properties bonded to metal contacts. We show that non-linear transport in all of these systems can be understood in terms of a single physical mechanism and predict that negati...

  12. A simple method to increase the current range of the TERA chip in charged particle therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cirio, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Fausti, F. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Elettronica e Telecomunicazioni del Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino (Italy); Fanola Guarachi, L. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Giordanengo, S., E-mail: Simona.Giordanengo@to.infn.it [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Marchetto, F.; Mazza, G. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Monaco, V.; Sacchi, R. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Talpacci, E. [Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Varasteh Anvar, M. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy); Dipartimento di Fisica dell' Università di Torino, via P. Giuria,1, 10125 Torino (Italy); Vignati, A. [Istituto Nazionale di Fisica Nucleare, sez. di Torino, via P. Giuria,1, 10125 Torino (Italy)

    2015-10-21

    The development of the next generation of accelerators for charged particle radiotherapy aims to reduce dimensions and operational complexity of the machines by engineering pulsed beams accelerators. The drawback is the increased difficulty to monitor the beam delivery. Within each pulse, instantaneous currents larger by two to three orders of magnitude than present applications are expected, which would saturate the readout of the monitor chambers. In this paper, we report of a simple method to increase by almost two orders of magnitude the current range of an Application Specific Integrated Circuit chip previously developed by our group to read out monitor ionization chambers.

  13. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Deep inelastic e-p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q2 above 400GeV2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ2 are presented. From the Q2 dependence of the CC cross section, the mass term in the CC propagator is determined to be MW=76±16±13 GeV

  14. Photoinduced melting and charge order in quarter-filled organic conductors: Itinerant electron systems with competing interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yonemitsu, Kenji; Tanaka, Yasuhiro; Miyashita, Satoshi [Institute for Molecular Science, Okazaki 444-8585 (Japan); Maeshima, Nobuya, E-mail: kxy@ims.ac.j [Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573 (Japan)

    2009-02-01

    Photoinduced charge dynamics in one- and two-dimensional organic conductors are studied theoretically in extended Peierls-Hubbard models. For quasi-one-dimensional (EDO-TTF){sub 2}PF{sub 6}, photoinduced change in the charge order pattern from (0110) to (1010) is accompanied by probe-energy-dependent oscillations of conductivity. This is caused by coexistence of charge order and delocalized electrons. For quasi-two-dimensional alpha-(BEDT-TTF){sub 2}I{sub 3} and theta-(BEDT-TTF){sub 2}RbZn(SCN){sub 4}, photoinduced melting of the horizontal-stripe charge order proceeds easier in the alpha-type salt than in the theta-type salt. This is because the charge order in the theta-type salt is more strongly stabilized by electron-phonon interactions.

  15. Interaction of a circularly polarised gravitational wave with a charged particle in a static magnetic background

    CERN Document Server

    Gangopadhyay, Sunandan; Saha, Swarup

    2014-01-01

    Interaction of a charged particle in a static magnetic background, i.e., a Landau system with circularly polarised gravitational wave (GW) is studied quantum mechanically in the long wavelength and low velocity limit. We quantize the classical Hamiltonian following \\cite{speli}. The rotating polarization vectors of the circularly polarized GW are employed to form a unique directional triad which served as the coordinate axes. The Schrodinger equations for the system are cast in the form of a set of coupled linear differential equations. This system is solved by iterative technique. We compute the time-evolution of the position and momentum expectation values of the particle. The results show that the resonance behaviour obtained earlier\\cite{emgw_classical} by classical treatements of the system has a quantum analogue not only for the linearly polarized GW \\cite{emgw_1_lin}, but for circularly polarized GW as well.

  16. The Δ resonance response function in charge-changing weak interactions

    International Nuclear Information System (INIS)

    We investigate the response of charge-changing excitations in nuclei in the Δ-resonance region. The N-N, Δ-N and Δ-Δ correlations are treated within the RPA framework. In our approach nuclear density functional theory is used for the self-consistent description of the ground state of nuclear matter and excitations. We include the self-energies in the baryon-propagators and calculate the residual p-h interaction self-consistently by applying Landaus Fermi-Liquid theory. With this approach our fully quantum mechanical calculations of the response functions are free of additional adjustable model parameters. We present our results for inclusive neutrino scattering on nuclei at the valley of stability and with high neutron excess.

  17. Multi-reference configuration-interaction calculations on multiply charged ions of carbon monosulfide

    Institute of Scientific and Technical Information of China (English)

    Yan Bing; Zhang Yu-Juan

    2013-01-01

    The potential energy curves for neutrals and multiply charged ions of carbon monosulfide are computed with highly correlated multi-reference configuration interaction wavefunctions.The correlations of inner-shell electrons with the scalar relativistic effects are included in the present computations.The spectroscopic constants,dissociation energies,ionization energies for ground and low-lying excited states together with corresponding electronic configurations of ions are obtained,and a good agreement between the present work and existing experiments is found.No theoretical evidence is found for the adiabatically stable CSq+ (q > 2) ions according to the present ab initio calculations.The calculated values for lst-6th ionization energies are 11.25,32.66,64.82,106.25,159.75,and 224.64 eV,respectively.The kinetic energy release data of fragments are provided by the present work for further experimental comparisons.

  18. Contact-interaction Faddeev equation and, inter alia, proton tensor charges

    CERN Document Server

    Xu, Shu-Sheng; Cloet, Ian C; Roberts, Craig D; Segovia, Jorge; Zong, Hong-Shi

    2015-01-01

    A confining, symmetry-preserving, Dyson-Schwinger equation treatment of a vector-vector contact interaction is used to formulate Faddeev equations for the nucleon and Delta-baryon in which the kernel involves dynamical dressed-quark exchange and whose solutions therefore provide momentum-dependent Faddeev amplitudes. These solutions are compared with those obtained in the static approximation and with a QCD-kindred formulation of the Faddeev kernel. They are also used to compute a range of nucleon properties, amongst them: the proton's sigma-term; the large Bjorken-x values of separate ratios of unpolarised and longitudinally-polarised valence u- and d-quark parton distribution functions; and the proton's tensor charges, which enable one to directly determine the effect of dressed-quark electric dipole moments (EDMs) on neutron and proton EDMs.

  19. Development of a thermite charge container with actuated release for use in molten fuel coolant interaction studies

    International Nuclear Information System (INIS)

    Studies of Molten Fuel Coolant Interaction in progress at Winfrith require a controlled and consistent means of introducing the molten fuel into the coolant. The development of a reliable charge container capable of achieving those aims is reported here. Improvements in the integrity of the charge container and the means of controlling its release are fully described with comments on the success of its introduction into the MFCI programme. (author)

  20. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.

    Science.gov (United States)

    Sprenger, K G; Pfaendtner, Jim

    2016-06-01

    Thermodynamic analyses can provide key insights into the origins of protein self-assembly on surfaces, protein function, and protein stability. However, obtaining quantitative measurements of thermodynamic observables from unbiased classical simulations of peptide or protein adsorption is challenging because of sampling limitations brought on by strong biomolecule/surface binding forces as well as time scale limitations. We used the parallel tempering metadynamics in the well-tempered ensemble (PTMetaD-WTE) enhanced sampling method to study the adsorption behavior and thermodynamics of several explicitly solvated model peptide adsorption systems, providing new molecular-level insight into the biomolecule adsorption process. Specifically studied were peptides LKα14 and LKβ15 and trpcage miniprotein adsorbing onto a charged, hydrophilic self-assembled monolayer surface functionalized with a carboxylic acid/carboxylate headgroup and a neutral, hydrophobic methyl-terminated self-assembled monolayer surface. Binding free energies were calculated as a function of temperature for each system and decomposed into their respective energetic and entropic contributions. We investigated how specific interfacial features such as peptide/surface electrostatic interactions and surface-bound ion content affect the thermodynamic landscape of adsorption and lead to differences in surface-bound conformations of the peptides. Results show that upon adsorption to the charged surface, configurational entropy gains of the released solvent molecules dominate the configurational entropy losses of the bound peptide. This behavior leads to an apparent increase in overall system entropy upon binding and therefore to the surprising and seemingly nonphysical result of an apparent increased binding free energy at elevated temperatures. Opposite effects and conclusions are found for the neutral surface. Additional simulations demonstrate that by adjusting the ionic strength of the solution

  1. Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes.

    Science.gov (United States)

    Cheng, Chuyang; Cheng, Tao; Xiao, Hai; Krzyaniak, Matthew D; Wang, Yuping; McGonigal, Paul R; Frasconi, Marco; Barnes, Jonathan C; Fahrenbach, Albert C; Wasielewski, Michael R; Goddard, William A; Stoddart, J Fraser

    2016-07-01

    The results of a systematic investigation of trisradical tricationic complexes formed between cyclobis(paraquat-p-phenylene) bisradical dicationic (CBPQT(2(•+))) rings and a series of 18 dumbbells, containing centrally located 4,4'-bipyridinium radical cationic (BIPY(•+)) units within oligomethylene chains terminated for the most part by charged 3,5-dimethylpyridinium (PY(+)) and/or neutral 3,5-dimethylphenyl (PH) groups, are reported. The complexes were obtained by treating equimolar amounts of the CBPQT(4+) ring and the dumbbells containing BIPY(2+) units with zinc dust in acetonitrile solutions. Whereas UV-Vis-NIR spectra revealed absorption bands centered on ca. 1100 nm with quite different intensities for the 1:1 complexes depending on the constitutions and charges on the dumbbells, titration experiments showed that the association constants (Ka) for complex formation vary over a wide range, from 800 M(-1) for the weakest to 180 000 M(-1) for the strongest. While Coulombic repulsions emanating from PY(+) groups located at the ends of some of the dumbbells undoubtedly contribute to the destabilization of the trisradical tricationic complexes, solid-state superstructures support the contention that those dumbbells with neutral PH groups at the ends of flexible and appropriately constituted links to the BIPY(•+) units stand to gain some additional stabilization from C-H···π interactions between the CBPQT(2(•+)) rings and the PH termini on the dumbbells. The findings reported in this Article demonstrate how structural changes implemented remotely from the BIPY(•+) units influence their non-covalent bonding interactions with CBPQT(2(•+)) rings. Different secondary effects (Coulombic repulsions versus C-H···π interactions) are uncovered, and their contributions to both binding strengths associated with trisradical interactions and the kinetics of associations and dissociations are discussed at some length, supported by extensive DFT

  2. Correlation of charge extraction properties and short circuit current in various organic binary and ternary blend photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Singh, T.B.; Chen, Xiwen; Ehlig, Tino; Kemppinen, Peter; Chen, Ming; Watkins, Scott E.; Winzenberg, Kevin N. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton South, Victoria (Australia); Wong, Wallace W.H.; Jones, David J. [University of Melbourne, School of Chemistry, Bio21 Institute, Parkville, Victoria (Australia); Holdcroft, Steven [Simon Fraser University, Dept. of Chemistry, Burnaby, British Columbia (Canada); Holmes, Andrew B. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton South, Victoria (Australia); University of Melbourne, School of Chemistry, Bio21 Institute, Parkville, Victoria (Australia)

    2012-09-15

    Charge extraction properties of various binary and ternary blends of organic photovoltaic devices covering both polymers and small molecules are studied. Due to their bipolar nature, both slow and fast carrier mobilities are identified from the extraction current transient. The equilibrium carrier concentration is also estimated for each of the blend films. The product of the slow carrier mobility and equilibrium concentration spreading two orders of magnitude can be used to estimate the short circuit current density. A good agreement between the estimated and measured short circuit current density is obtained with the accuracy reliant on the estimation of the slowest carrier mobility. This simplistic approach will be very useful to predict the short circuit current density for devices based on new materials. (orig.)

  3. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g..-->..infinity; x..-->..infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x/sup 2/ much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g/sup 2//x/sup 2/ much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  4. Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions.

    Science.gov (United States)

    Lao, Ka Un; Herbert, John M

    2016-06-14

    Many schemes for decomposing quantum-chemical calculations of intermolecular interaction energies into physically meaningful components can be found in the literature, but the definition of the charge-transfer (CT) contribution has proven particularly vexing to define in a satisfactory way and typically depends strongly on the choice of basis set. This is problematic, especially in cases of dative bonding and for open-shell complexes involving cation radicals, for which one might expect significant CT. Here, we analyze CT interactions predicted by several popular energy decomposition analyses and ultimately recommend the definition afforded by constrained density functional theory (cDFT), as it is scarcely dependent on basis set and provides results that are in accord with chemical intuition in simple cases, and in quantitative agreement with experimental estimates of the CT energy, where available. For open-shell complexes, the cDFT approach affords CT energies that are in line with trends expected based on ionization potentials and electron affinities whereas some other definitions afford unreasonably large CT energies in large-gap systems, which are sometimes artificially offset by underestimation of van der Waals interactions by density functional theory. Our recommended energy decomposition analysis is a composite approach, in which cDFT is used to define the CT component of the interaction energy and symmetry-adapted perturbation theory (SAPT) defines the electrostatic, polarization, Pauli repulsion, and van der Waals contributions. SAPT/cDFT provides a stable and physically motivated energy decomposition that, when combined with a new implementation of open-shell SAPT, can be applied to supramolecular complexes involving molecules, ions, and/or radicals. PMID:27049750

  5. Non-linear spin Seebeck effect due to spin-charge interaction in graphene

    OpenAIRE

    Vera-Marun, I. J.; Ranjan, V.; van Wees, B. J.

    2011-01-01

    The abilities to inject and detect spin carriers are fundamental for research on transport and manipulation of spin information. Pure electronic spin currents have been recently studied in nanoscale electronic devices using a non-local lateral geometry, both in metallic systems and in semiconductors. To unlock the full potential of spintronics we must understand the interactions of spin with other degrees of freedom, going beyond the prototypical electrical spin injection and detection using ...

  6. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Grinner, F. J.; Schroeder, C. B.; Maier, A. R.; Becker, S.; Mikhailova, J. M.

    2009-02-11

    Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron-laser (FEL). Significant reduction in size of the FEL is facilitated by the expected ultra-high peak beam currents (10-100 kA) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultra-compact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution), which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  7. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures

    Science.gov (United States)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-01

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films—Bi2Se3 and (Bi,Sb ) 2Te3 —deposited by molecular beam epitaxy on Y3 Fe5 O12 thin films. By systematically varying the Bi2 Se3 film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λIREE ), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y3 Fe5 O12 /(Bi,Sb ) 2Te3 heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λIREE.

  8. Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator-Ferromagnetic-Insulator Heterostructures.

    Science.gov (United States)

    Wang, Hailong; Kally, James; Lee, Joon Sue; Liu, Tao; Chang, Houchen; Hickey, Danielle Reifsnyder; Mkhoyan, K Andre; Wu, Mingzhong; Richardella, Anthony; Samarth, Nitin

    2016-08-12

    We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films-Bi_{2}Se_{3} and (Bi,Sb)_{2}Te_{3}-deposited by molecular beam epitaxy on Y_{3}Fe_{5}O_{12} thin films. By systematically varying the Bi_{2}Se_{3} film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (λ_{IREE}), increases dramatically as the film thickness is increased from two quintuple layers, saturating above six quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological-insulator-ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of Y_{3}Fe_{5}O_{12}/(Bi,Sb)_{2}Te_{3} heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and λ_{IREE}. PMID:27563980

  9. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes.

    Science.gov (United States)

    Kono, K; Henmi, A; Takagishi, T

    1999-09-21

    To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. PMID:10561483

  10. The reaction current distribution in battery electrode materials revealed by XPS-based state-of-charge mapping.

    Science.gov (United States)

    Pearse, Alexander J; Gillette, Eleanor; Lee, Sang Bok; Rubloff, Gary W

    2016-07-28

    Morphologically complex electrochemical systems such as composite or nanostructured lithium ion battery electrodes exhibit spatially inhomogeneous internal current distributions, particularly when driven at high total currents, due to resistances in the electrodes and electrolyte, distributions of diffusion path lengths, and nonlinear current-voltage characteristics. Measuring and controlling these distributions is interesting from both an engineering standpoint, as nonhomogenous currents lead to lower utilization of electrode material, as well as from a fundamental standpoint, as comparisons between theory and experiment are relatively scarce. Here we describe a new approach using a deliberately simple model battery electrode to examine the current distribution in a electrode material limited by poor electronic conductivity. We utilize quantitative spatially resolved X-ray photoelectron spectroscopy to measure the spatial distribution of the state-of-charge of a V2O5 model electrode as a proxy measure for the current distribution on electrodes discharged at varying current densities. We show that the current at the electrode-electrolyte interface falls off with distance from the current collector, and that the current distribution is a strong function of total current. We compare the observed distributions with a simple analytical model which reproduces the dependence of the distribution on total current, but fails to predict the correct length scale. A more complete numerical simulation suggests that dynamic changes in the electronic conductivity of the V2O5 concurrent with lithium insertion may contribute to the differences between theory and experiment. Our observations should help inform design criteria for future electrode architectures. PMID:27357533

  11. Observation of Muon Neutrino Charged Current Events in an Off-Axis Horn-Focused Neutrino Beam Using the NOvA Prototype Detector

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Enrique Arrieta [Michigan State Univ., East Lansing, MI (United States)

    2014-01-01

    The NOνA is a long base-line neutrino oscillation experiment. It will study the oscillations between muon and electron neutrinos through the Earth. NOνA consists of two detectors separated by 810 km. Each detector will measure the electron neutrino content of the neutrino (NuMI) beam. Differences between the measurements will reveal details about the oscillation channel. The NOνA collaboration built a prototype detector on the surface at Fermilab in order to develop calibration, simulation, and reconstruction tools, using real data. This 220 ton detector is 110 mrad off the NuMI beam axis. This off-axis location allows the observation of neutrino interactions with energies around 2 GeV, where neutrinos come predominantly from charged kaon decays. During the period between October 2011 and April 2012, the prototype detector collected neutrino data from 1.67 × 1020 protons on target delivered by the NuMI beam. This analysis selected a number of candidate charged current muon neutrino events from the prototype data, which is 30% lower than predicted by the NOνA Monte Carlo simulation. The analysis suggests that the discrepancy comes from an over estimation of the neutrino flux in the Monte Carlo simulation, and in particular, from neutrinos generated in charged kaon decays. The ratio of measured divided by the simulated flux of muon neutrinos coming from charged kaon decays is: 0.70+0.108 -0.094. The NOνA collaboration may use the findings of this analysis to introduce a more accurate prediction of the neutrino flux produced by the NuMI beam in future Monte Carlo simulations.

  12. Application of charge density methods to a protein model compound: calculation of Coulombic intermolecular interaction energies from the experimental charge density.

    Science.gov (United States)

    Li, Xue; Wu, Guang; Abramov, Yuriy A; Volkov, Anatoliy V; Coppens, Philip

    2002-09-17

    A combined experimental and theoretical charge density study of the pentapeptide Boc-Gln-d-Iva-Hyp-Ala-Phol (Boc, butoxycarbonyl; Gln, glutamine; Iva, isovaline; Hyp, hydroxyproline; Ala, ethylalanine; Phol, phenylalaninol) is described. The experimental analysis, based on synchrotron x-ray data collected at 20 K, is combined with ab initio theoretical calculations. The topologies of the experimental and theoretical densities are analyzed in terms of the atoms in molecules quantum theory. Topological parameters, including atomic charges and higher moments integrated over the atomic basins, have been evaluated with the program topxd and are used to calculate the electrostatic interactions between the molecules in the crystal. The interaction energies obtained after adding dispersive and repulsive van der Waals contributions agree quite well with those based on M-B3LYP/6-31G** dimer calculations for two of the three dimers in the crystal, whereas for the third a larger stabilization is obtained than predicted by the calculation. The agreement with theory is significantly better than that obtained with multipole moments derived directly from the aspherical atom refinement. The convergence of the interaction as a function of addition of successively higher moments up to and including hexadecapoles (l = 4) is found to be within 2-3 kJ/mol. Although shortcomings of both the theoretical and experimental procedures are pointed out, the agreement obtained supports the potential of the experimental method for the evaluation of interactions in larger biologically relevant molecules. PMID:12221293

  13. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    Science.gov (United States)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.

  14. Effective chiral magnetic currents, topological magnetic charges, and microwave vortices in a cavity with an enclosed ferrite disk

    International Nuclear Information System (INIS)

    In microwaves, a TE-polarized rectangular-waveguide resonator with an inserted thin ferrite disk gives an example of a nonintegrable system. The interplay of reflection and transmission at the disk interfaces together with the material gyrotropy effect gives rise to whirlpool-like electromagnetic vortices in the proximity of the ferromagnetic resonance. Based on numerical simulation, we show that a character of microwave vortices in a cavity can be analyzed by means of consideration of equivalent magnetic currents. Maxwell equations allows introduction of a magnetic current as a source of the electromagnetic field. Specifically, we found that in such nonintegrable structures, magnetic gyrotropy and geometrical factors leads to the effect of symmetry breaking resulting in effective chiral magnetic currents and topological magnetic charges. As an intriguing fact, one can observe precessing behavior of the electric-dipole polarization inside a ferrite disk

  15. Detection of the weak neutral current using fission anti ν/sub e/ on deuterons with concurrent measurement of the charged current branch

    International Nuclear Information System (INIS)

    The target consists of 268 kg of extremely pure (99.85%) heavy water (D2O), contained in a cylindrical stainless steel tank 122 cm in height and 54 cm in diameter. This target is surrounded by a lead and cadmium shield and immersed in a 2200 liter liquid scintillator anticoincidence detector. This system is a well-shielded environment. The center of the detector is located 11 meters from the center of the reactor core in an electron antineutrino flux of 2.5 x 1013 anti ν/sub e//cm2-s. Immersed in the target are ten 5.08-cm-diameter 3He-filled gas proportional counters, which detect the neutron via the reaction 3He + n → p + 3H + 773 keV. The system has been determined to have an overall neutron detection efficiency of 0.32 +- 0.02. The data are taken with a combination of scalers, a pulse height analyzer, and oscilloscope traces. Single, double, and triple neutron capture events are recorded with the reactor on and off. Data have been accumulated for 104 live days reactor on, and 72 live days reactor off for the charged-current reaction and 52 live days reactor on and 34 live days reactor off for the neutral-current reaction. The measured neutral-current cross section is (5.0 +- 0.8) x 10-45cm2/anti ν/sub e/, consistent with the Weinberg-Salam model. The charged-current reaction cross section is (1.5 +- 0.4) x 10-45 cm2/ν/sub e/, in fair agreement with expectation. From the N.C. cross section a value of the square of the isovector axial-vector coupling constant is deduced to be β2 = 1.0 +- 0.15

  16. Thermodynamics calculation of protein-ligand interactions by QM/MM polarizable charge parameters.

    Science.gov (United States)

    Wang, Jinan; Shao, Qiang; Cossins, Benjamin P; Shi, Jiye; Chen, Kaixian; Zhu, Weiliang

    2016-01-01

    The calculation of protein-ligand binding free energy (ΔG) is of great importance for virtual screening and drug design. Molecular dynamics (MD) simulation has been an attractive tool to investigate this scientific problem. However, the reliability of such approach is affected by many factors including electrostatic interaction calculation. Here, we present a practical protocol using quantum mechanics/molecular mechanics (QM/MM) calculations to generate polarizable QM protein charge (QMPC). The calculated QMPC of some atoms in binding pockets was obviously different from that calculated by AMBER ff03, which might significantly affect the calculated ΔG. To evaluate the effect, the MD simulations and MM/GBSA calculation with QMPC for 10 protein-ligand complexes, and the simulation results were then compared to those with the AMBER ff03 force field and experimental results. The correlation coefficient between the calculated ΔΔG using MM/GBSA under QMPC and the experimental data is .92, while that with AMBER ff03 force field is .47 for the complexes formed by streptavidin or its mutants and biotin. Moreover, the calculated ΔΔG with QMPC for the complexes formed by ERβ and five ligands is positively related to experimental result with correlation coefficient of .61, while that with AMBER ff03 charge is negatively related to experimental data with correlation coefficient of .42. The detailed analysis shows that the electrostatic polarization introduced by QMPC affects the electrostatic contribution to the binding affinity and thus, leads to better correlation with experimental data. Therefore, this approach should be useful to virtual screening and drug design.

  17. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  18. Charge transfer on porous silicon membranes studied by current-sensing atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Bing Xia; Qiang Miao; Jie Chao; Shou Jun Xiao; Hai Tao Wang; Zhong Dang Xiao

    2008-01-01

    A visible rectification effect on the current-voltage curves of metal/porous silicon/p-silicon has been observed by currentsensing atomic force microscopy.The current-voltage curves of porous silicon membranes with different porosities,prepared through variation of etching current density for a constant time,indicate that a higher porosity results in a higher resistance and thus a lower rectification,until the current reaches a threshold at a porosity>55%.We propose that the conductance mode in the porous silicon membrane with porosities>55% is mainly a hopping mechanism between nano-crystallites and an inverse static electric field between the porous silicon and p-Si interface blocks the electron injection from porous silicon to p-Si,but with porosities <55%,electron flows through a direct continuous channel between nano-crystallites.

  19. Transition from ultrafast laser photo-electron emission to space-charge-limited current in a 1D gap

    International Nuclear Information System (INIS)

    A one-dimensional (1D) model has been constructed to study the transition of the time-dependent ultrafast laser photo-electron emission from a flat metallic surface to the space-charge-limited (SCL) current, including the effect of non-equilibrium laser heating on metals at the ultrafast time scale. At high laser field, it is found that the space charge (SC) effect cannot be ignored and the SCL current emission is reached at a lower value predicted by a short-pulse SCL current model that has assumed a time-independent emission process. The threshold of the laser field to reach the SCL regime is determined over a wide range of operating parameters. The calculated results agree well with particle-in-cell simulation results. It is found that the SC effect is more important for materials with lower work function like tungsten (4.4 eV) as compared with gold (5.4 eV). However, for a flat surface, both materials will reach the SC limited regime at sufficient high laser field such as >5 GV m−1 with a laser pulse length of 10 s to 100 fs. (paper)

  20. Measurement of High-$Q^{2}$ Charged-Current $e^{+}p$ Deep Inelastic Scattering Cross Sections at HERA

    CERN Document Server

    Breitweg, J

    2000-01-01

    The e^+p charged-current deep inelastic scattering cross sections, $d\\sigma/dQ^2$ for Q^2 between 200 and 60000 GeV^2, and $d\\sigma/dx$ and $d\\sigma/dy$ for Q^2 > 200 GeV^2, have been measured with the ZEUS detector at HERA. A data sample of 47.7 pb^-1, collected at a center-of-mass energy of 300 GeV, has been used. The cross section $d\\sigma/dQ^2$ falls by a factor of about 50000 as Q^2 increases from 280 to 30000 GeV^2. The double differential cross section $d^2\\sigma/dxdQ^2$ has also been measured. A comparison between the data and Standard Model (SM) predictions shows that contributions from antiquarks ($\\bar{u}$ and $\\bar{c}$) and quarks (d and s) are both required by the data. The predictions of the SM give a good description of the full body of the data presented here. A comparison of the charged-current cross section $d\\sigma/dQ^2$ with the recent ZEUS results for neutral-current scattering shows that the weak and electromagnetic forces have similar strengths for Q^2 above $M^2_W, M^2_Z$. A fit to the...