WorldWideScience

Sample records for charged cations ti

  1. Phosphorus Cation Doping: A New Strategy for Boosting Photoelectrochemical Performance on TiO2 Nanotube Photonic Crystals.

    Science.gov (United States)

    Li, Zhenzhen; Xin, Yanmei; Wu, Wenlong; Fu, Baihe; Zhang, Zhonghai

    2016-11-16

    Photoelectrochemical (PEC) water splitting is a promising technique for sustainable hydrogen generation. However, PEC performance on current semiconductors needs further improvement. Herein, a phosphorus cation doping strategy is proposed to fundamentally boost PEC performance on TiO2 nanotube photonic crystal (TiO2 NTPC) photoelectrodes in both the visible-light region and full solar-light illumination. The self-supported P-TiO2 NTPC photoelectrodes are fabricated by a facile two-step electrochemical anodization method and subsequent phosphidation treatment. The Ti(4+) is partially replaced by P cations (P(5+)) from the crystal lattice, which narrows the band gap of TiO2 and induces charge imbalance by the formation of Ti-O-P bonds. We believe the combination of unique photonic nanostructures of TiO2 NTPCs and P cation doping strategy will open up a new opportunity for enhancing PEC performance of TiO2-based photoelectrodes.

  2. New TiO2/DSAT Immobilization System for Photodegradation of Anionic and Cationic Dyes

    OpenAIRE

    Wan Izhan Nawawi Wan Ismail; S. K. Ain; R. Zaharudin; Ali H. Jawad; M. A. M. Ishak; Khudzir Ismail; Sudirman Sahid

    2015-01-01

    A new immobilized TiO2 technique was prepared by coating TiO2 solution onto double-sided adhesive tape (DSAT) as a thin layer binder without adding any organic additives. Glass plate was used as support material to immobilized TiO2/DSAT. Two different charges of dyes were applied, namely, anionic reactive red 4 (RR4) and cationic methylene blue (MB) dyes. Photocatalytic degradation of RR4 and MB dyes was observed under immobilized TiO2/DSAT with the degradation rate slightly lower and higher,...

  3. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions

    Science.gov (United States)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2016-04-01

    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  4. Preparation and characterization of TiO 2-cationic hybrid nanoparticles as electrophoretic particles

    Science.gov (United States)

    Li, Jingjing; Deng, Liandong; Xing, Jinfeng; Dong, Anjie; Li, Xianggao

    2012-01-01

    The hybrid nanoparticles (TiO2-HNPs) with TiO2 nanoparticles as core and with poly(N,N-dimethylaminoethyl methacrylate-co-methyl methacrylate) by using triallylamine as cross-linking agent as shell were firstly prepared via atom transfer radical polymerization (ATRP) in methanol. Then the hybrid nanoparticles with positive charge were produced by the quaternization with methyl iodide as quaternization reagent so as to endow them with greater electrophoretic mobility. The cationic hybrid nanoparticles (TiO2-CHNPs) were studied by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS) measurements. The results indicate that the cationic polymer is successfully grafted on the surface of the TiO2 nanoparticles. The particle size of TiO2-CHNPs is about 150 nm and the polydispersity index (PDI) is 0.307. The zeta potential, the contrast ratio of white state to dark state and response time of TiO2-CHNPs are +16.8 mV, 30 and 3 s, respectively, which show the potential application prospect in the development of electrophoretic ink.

  5. New TiO2/DSAT Immobilization System for Photodegradation of Anionic and Cationic Dyes

    Directory of Open Access Journals (Sweden)

    Wan Izhan Nawawi Wan Ismail

    2015-01-01

    Full Text Available A new immobilized TiO2 technique was prepared by coating TiO2 solution onto double-sided adhesive tape (DSAT as a thin layer binder without adding any organic additives. Glass plate was used as support material to immobilized TiO2/DSAT. Two different charges of dyes were applied, namely, anionic reactive red 4 (RR4 and cationic methylene blue (MB dyes. Photocatalytic degradation of RR4 and MB dyes was observed under immobilized TiO2/DSAT with the degradation rate slightly lower and higher, respectively, compared with TiO2 in suspension mode. It was observed that DSAT is able to provide a very strong intact between glass and TiO2 layers thus making the reusability of immobilized TiO2/DSAT be up to 30 cycles. In fact, a better photodegradation activity was observed by number of cycles due to increasing formation of pores on TiO2 surface observed by SEM analysis.

  6. Cation charge dependence of the forces driving DNA assembly.

    Science.gov (United States)

    DeRouchey, Jason; Parsegian, V Adrian; Rau, Donald C

    2010-10-20

    Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge.

  7. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems

    Science.gov (United States)

    Wedig, Anja; Luebben, Michael; Cho, Deok-Yong; Moors, Marco; Skaja, Katharina; Rana, Vikas; Hasegawa, Tsuyoshi; Adepalli, Kiran K.; Yildiz, Bilge; Waser, Rainer; Valov, Ilia

    2016-01-01

    A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal cations, and valence change memories, in which the mobile species is thought to be oxygen anions (or positively charged oxygen vacancies). Here we show, using scanning tunnelling microscopy and supported by potentiodynamic current-voltage measurements, that in three typical valence change memory materials (TaOx, HfOx and TiOx) the host metal cations are mobile in films of 2 nm thickness. The cations can form metallic filaments and participate in the resistive switching process, illustrating that there is a bridge between the electrochemical metallization mechanism and the valence change mechanism. Reset/Set operations are, we suggest, driven by oxidation (passivation) and reduction reactions. For the Ta/Ta2O5 system, a rutile-type TaO2 film is believed to mediate switching, and we show that devices can be switched from a valence change mode to an electrochemical metallization mode by introducing an intermediate layer of amorphous carbon.

  8. Improvement of charge separation in TiO{sub 2} by its modification with different tungsten compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tryba, B., E-mail: beata.tryba@zut.edu.pl; Tygielska, M.; Grzeskowiak, M.; Przepiorski, J.

    2016-04-15

    Highlights: • Ammonium m-tungstate doped to TiO{sub 2} highly improved charge separation in TiO{sub 2}. • Negative electrokinetic potential of TiO{sub 2} facilitates holes migration to its surface. • Fast migration of holes to TiO{sub 2} surfaces increased yield of OH radicals formation. • Adsorption of dyes on photocatalyst increased its decomposition under visible light. - Abstract: Three different tungsten precursors were used for TiO{sub 2} modification: H{sub 2}WO{sub 4}, WO{sub 2}, and ammonium m-tungstate. It was proved that modification of TiO{sub 2} with tungsten compounds enhanced its photocatalytic activity through the improvement of charge separation. This effect was obtained by coating of TiO{sub 2} particles with tungsten compound, which changed their surficial electrokinetical potential from positive onto negative. The most efficient tungsten compound, which caused enhanced separation of free carriers was ammonium m-tungstate (AMT). Two dyes with different ionic potential were used for the photocatalytic decomposition. It appeared that cationic dye—Methylene Blue was highly adsorbed on the negatively charged surface of TiO{sub 2} modified by AMT and decomposed, however this photocatalyst was quickly deactivated whereas anionic dye—acid red was better adsorbed on the less acidic surface of TiO{sub 2} and was rapidly decomposed with almost the same rate in the five following cycles.

  9. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.

    Directory of Open Access Journals (Sweden)

    Jong Bae Seo

    Full Text Available Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2 of the plasma membrane by phospholipase C (PLC generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1. Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.

  10. Evaluation of charge and agglomeration behavior of TiO₂ nanoparticles in ecotoxicological media.

    Science.gov (United States)

    Nur, Y; Lead, J R; Baalousha, M

    2015-12-01

    The dynamic nature of nanoparticle (NP) agglomeration behavior is of paramount interest to many current studies in environmental nanoscience and nano(eco)toxicology because agglomeration affects the NP bioavailability and toxicity. The present study investigates the surface charge and agglomeration behavior of TiO2 NPs in four different ecotoxicological media (OECD algae, OECD L_variegatus, hardwater and plant media) and two different electrolytes KCl (200 mM) and CaCl2 (50 mM). TiO2 NPs were positively charged, and the zeta potential varied from +1.9 mV in hardwater (at pH7.1) to +24.5 mV in CaCl2 electrolyte (at pH7.4) in all media except algae media, where the zeta potential was -6.7 mV (at pH7.7). Despite the differences in the pH and the surface charge of TiO2 NPs in the different media, an immediate agglomeration of the NPs in all standard ecotoxicological media was observed with aggregate sizes in the micrometer scale, as the measured zeta potentials were insufficient to prevent TiO2 NP agglomeration. The isoelectric point (pHiep) of TiO2 NPs in the studied media varied in the range (6.8-7.6), which was attributed to preferential association of anions and cations to TiO2; that is the pHiep decreases with the increased concentration of Cl and increases with the increased concentrations of Na and Mg. Despite the complexity of the ecotoxicological media and the presence of a mixture of different monovalent and divalent electrolytes, the agglomeration kinetics in the media follows the DVLO theory where two distinct agglomeration rates (slow, reaction limited regime and fast, diffusion limited regime) were observable. The critical coagulation concentration (CCC) of TiO2 NPs in the ecotoxicological media varied from 17.6 to 54.0% v/v standard media in UHPW, due to differences in media pH and TiO2 NP surface charge. In the ecotoxicological media (hardwater, L-variegatus and plant), where TiO2 NPs are positively charged, the CCC decrease with the increased divalent

  11. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.

    Science.gov (United States)

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L

    2011-02-24

    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  12. Sorption of poly(vinyl alcohol) and its cationic derivative on silica oxide: effect of charge

    NARCIS (Netherlands)

    Liesiene, J.; Matulioniene, J.; Aniulyte, J.; Keizer, de A.

    2005-01-01

    Adsorption of poly(vinyl alcohol)-based cationic polyelectrolyte (DEAE-PVA) as well as unmodified poly(vinyl alcohol) (PVA) onto silica oxide surface was studied by means of reflectometry. The study was focused on the effect of charge of polymer segments on their adsorption on silica oxide. The resu

  13. Stoichiometry gradient, cation interdiffusion, and band alignment between a nanosized TiO2 blocking layer and a transparent conductive oxide in dye-sensitized solar cell front contacts.

    Science.gov (United States)

    Salvinelli, Gabriele; Drera, Giovanni; Baratto, Camilla; Braga, Antonio; Sangaletti, Luigi

    2015-01-14

    An angle-resolved photoemission spectroscopy study allowed us to identify cation interdiffusion and stoichiometry gradients at the interface between a nanosized TiO2 blocking layer and a transparent conductive Cd-Sn oxide substrate. A stoichiometry gradient for the Sn cations is already found in the bare Cd-Sn oxide layer. When TiO2 ultrathin layers are deposited by RF sputtering on the Cd-Sn oxide layer, Ti is found to partially replace Sn, resulting in a Cd-Sn-Ti mixed oxide layer with a thickness ranging from 0.85 to 3.3 nm. The band gap profile across the junction has been reconstructed for three TiO2 layers, resulting in a valence band offset decrease (and a conduction band offset increase) with the blocking layer thickness. The results are related to the cell efficiencies in terms of charge injection and recombination processes.

  14. Poly(ethylene glycol)-block-cationic polylactide nanocomplexes of differing charge density for gene delivery.

    Science.gov (United States)

    Chen, Chih-Kuang; Jones, Charles H; Mistriotis, Panagiotis; Yu, Yun; Ma, Xiaoni; Ravikrishnan, Anitha; Jiang, Ming; Andreadis, Stelios T; Pfeifer, Blaine A; Cheng, Chong

    2013-12-01

    Representing a new type of biodegradable cationic block copolymer, well-defined poly(ethylene glycol)-block-cationic polylactides (PEG-b-CPLAs) with tertiary amine-based cationic groups were synthesized by thiol-ene functionalization of an allyl-functionalized diblock precursor. Subsequently the application of PEG-b-CPLAs as biodegradable vectors for the delivery of plasmid DNAs (pDNAs) was investigated. Via the formation of PEG-b-CPLA:pDNA nanocomplexes by spontaneous electrostatic interaction, pDNAs encoding luciferase or enhanced green fluorescent protein were successfully delivered to four physiologically distinct cell lines (including macrophage, fibroblast, epithelial, and stem cell). Formulated nanocomplexes demonstrated high levels of transfection with low levels of cytotoxicity and hemolysis when compared to a positive control. Biophysical characterization of charge densities of nanocomplexes at various polymer:pDNA weight ratios revealed a positive correlation between surface charge and gene delivery. Nanocomplexes with high surface charge densities were utilized in an in vitro serum gene delivery inhibition assay, and effective gene delivery was observed despite high levels of serum. Overall, these results help to elucidate the influence of charge, size, and PEGylation of nanocomplexes upon the delivery of nucleic acids in physiologically relevant conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong; Gu, Junxing; Liang, Yan; Li, Wentao; Wang, Weihua [Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Jin, Kuijuan; Gu, Lin; Guo, Jiandong, E-mail: jdguo@iphy.ac.cn [Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2015-08-24

    The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth. Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.

  16. Removal of Endotoxin from Human Serum Albumin Solutions by Hydrophobic and Cationic Charged Membrane

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel matrix of macropore cellulose membrane was prepared by chemical graft, and immobilized the cationic charged groups as affinity ligands. The prepared membrane can be used for the removal of endotoxin from human serum albumin (HSA) solutions. With a cartridge of 20 sheets affinity membrane of 47 mm diameter, the endotoxin level in HSA solution can be reduced to 0.027 eu/mL. Recovery of HSA was over 95%.

  17. Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion.

    Science.gov (United States)

    Buyukcakir, Onur; Je, Sang Hyun; Choi, Dong Shin; Talapaneni, Siddulu Naiudu; Seo, Yongbeom; Jung, Yousung; Polychronopoulou, Kyriaki; Coskun, Ali

    2016-01-18

    Porous cationic polymers (PCPs) with surface areas up to 755 m(2) g(-1) bearing positively charged viologen units in their backbones and different counteranions have been prepared. We have demonstrated that by simply varying counteranions both gas sorption and catalytic properties of PCPs can be tuned for metal-free capture and conversion of CO2 into value-added products such as cyclic carbonates with excellent yields.

  18. Naked (C5Me5)(2)M cations (M = Sc, Ti, and V) and their fluoroarene complexes

    NARCIS (Netherlands)

    Bouwkamp, MW; Budzelaar, PHM; Gercama, J; Morales, ID; de Wolf, J; Meetsma, A; Troyanov, SI; Teuben, JH; Hessen, B; Budzelaar, Peter H.M.; Hierro Morales, Isabel Del; Troyanov, Sergei I.

    2005-01-01

    The ionic metallocene complexes [Cp*M-2][BPh4] (CP* = C5Me5) of the trivalent 3d metals Sc, Ti, and V were synthesized and structurally characterized. For M Sc, the anion interacts weakly with the metal center through one of the phenyl groups, but for M = Ti and V, the cations are naked. They each c

  19. Probing cation antisite disorder in Gd2 Ti2 O7 pyrochlore by site-specific near-edge x-ray-absorption fine structure and x-ray photoelectron spectroscopy

    Science.gov (United States)

    Nachimuthu, P.; Thevuthasan, S.; Engelhard, M. H.; Weber, W. J.; Shuh, D. K.; Hamdan, N. M.; Mun, B. S.; Adams, E. M.; McCready, D. E.; Shutthanandan, V.; Lindle, D. W.; Balakrishnan, G.; Paul, D. M.; Gullikson, E. M.; Perera, R. C. C.; Lian, J.; Wang, L. M.; Ewing, R. C.

    2004-09-01

    Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified.

  20. (CH3)3SiCl/TiCl4 INITIATING SYSTEM FOR CATIONIC POLYMERIZATION OF 1,3-PENTADIENE

    Institute of Scientific and Technical Information of China (English)

    Jian-guo Deng; Wen-chuan Zhang; Yu-xing Peng

    1999-01-01

    Cationic polymerizations of 1,3-pentadiene (PD) initiated by trimethylsilyl chloride (TMSCl) in combination with TiCl4 were carried out in n-hexane at 30℃. The yield of polymer was greatly increased by the addition of TMSCl, indicating that the TMSCl/TiCl4 combination is an efficient initiating system for PD cationic polymerization. However, the introduction of TMSCl gave rise to a drop in the molecular weight of the polymer. Kinetic results demonstrated that the polymerization initiated by TMSCl/TiCl4 is 4.5 times faster than that induced by TiCl4 alone. Various ethers were used to mediate the TMSCl/TiCl4 initiating system.Adding diphenyl ether could increase both the yield and molecular weight of the polymer. Structural evidence illustrates that the polymerization is indeed initiated by TiCl4 in combination with HCl resulting from hydrolysis by adventitious water.

  1. Oxygen partial pressure dependence of surface space charge formation in donor-doped SrTiO3

    Science.gov (United States)

    Andrä, Michael; Dvořák, Filip; Vorokhta, Mykhailo; Nemšák, Slavomír; Matolín, Vladimír; Schneider, Claus M.; Dittmann, Regina; Gunkel, Felix; Mueller, David N.; Waser, Rainer

    2017-05-01

    In this study, we investigated the electronic surface structure of donor-doped strontium titanate. Homoepitaxial 0.5 wt. % donor-doped SrTiO3 thin films were analyzed by in situ near ambient pressure X-ray photoelectron spectroscopy at a temperature of 770 K and oxygen pressures up to 5 mbar. Upon exposure to an oxygen atmosphere at elevated temperatures, we observed a rigid binding energy shift of up to 0.6 eV towards lower binding energies with respect to vacuum conditions for all SrTiO3 core level peaks and the valence band maximum with increasing oxygen pressure. The rigid shift is attributed to a relative shift of the Fermi energy towards the valence band concomitant with a negative charge accumulation at the surface, resulting in a compensating electron depletion layer in the near surface region. Charge trapping effects solely based on carbon contaminants are unlikely due to their irreversible desorption under the given experimental conditions. In addition, simple reoxygenation of oxygen vacancies can be ruled out as the high niobium dopant concentration dominates the electronic properties of the material. Instead, the negative surface charge may be provided by the formation of cation vacancies or the formation of charged oxygen adsorbates at the surface. Our results clearly indicate a pO2-dependent surface space charge formation in donor-doped SrTiO3 in oxidizing conditions.

  2. Effect of hafnium addition on solidifi cation structure of cast Ti-46Al alloys

    Directory of Open Access Journals (Sweden)

    Su Yanqing

    2008-11-01

    Full Text Available To investigate the effect of hafnium addition on the solidifi cation structure, Ti-46Al alloys with nominal compositions of Ti-46Al-xHf (x = 0, 3, 5, 7 (at.% were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE, XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refi nement. Increasing Hf from 0 to 7 (at.%, the columnar spacing can be reduced from ~ 1000 to ~ 400 μm. Constitute phases of the ingots are α2, a small amount of B2 and c. Most of the B2 phases, richer in Hf and leaner in Al and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The c phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the α- and β-phase form from the melt as prior phases. The possible phase sequencing during solidifi cation and solid-state transformations with Hf is given in this paper.

  3. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    National Research Council Canada - National Science Library

    Kurakula, Mallesh; El-Helw, A M; Sobahi, Tariq R; Abdelaal, Magdy Y

    2015-01-01

    .... The influence of cationic charge densities of chitosan (low CS(L), medium CS(M), high CS(H) molecular weights) and Labrasol(®) in solubility enhancement and modifying the release was investigated, using atorvastatin...

  4. Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses

    Science.gov (United States)

    Li, Pengfei; Jackson, Glen P.

    2017-01-01

    1+, 2+, and 3+ precursors of substance P and bradykinin were subjected to helium cation irradiation in a 3D ion trap mass spectrometer. Charge exchange with the helium cations produces a variety of fragment ions, the number and type of which are dependent on the charge state of the precursor ions. For 1+ peptide precursors, fragmentation is generally restricted to C-CO backbone bonds (a and x ions), whereas for 2+ and 3+ peptide precursors, all three backbone bonds (C-CO, C-N, and N-Cα) are cleaved. The type of backbone bond cleavage is indicative of possible dissociation channels involved in CTD process, including high-energy, kinetic-based, and ETD-like pathways. In addition to backbone cleavages, amino acid side-chain cleavages are observed in CTD, which are consistent with other high-energy and radical-mediated techniques. The unique dissociation pattern and supplementary information available from side-chain cleavages make CTD a potentially useful activation method for the structural study of gas-phase biomolecules.

  5. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase

    Science.gov (United States)

    Hong, Areum; Lee, Hong Hee; Heo, Chae Eun; Cho, Yunju; Kim, Sunghwan; Kang, Dukjin; Kim, Hugh I.

    2017-04-01

    With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations.

  6. Distinct Fragmentation Pathways of Anticancer Drugs Induced by Charge-Carrying Cations in the Gas Phase

    Science.gov (United States)

    Hong, Areum; Lee, Hong Hee; Heo, Chae Eun; Cho, Yunju; Kim, Sunghwan; Kang, Dukjin; Kim, Hugh I.

    2016-12-01

    With the growth of the pharmaceutical industry, structural elucidation of drugs and derivatives using tandem mass spectrometry (MS2) has become essential for drug development and pharmacokinetics studies because of its high sensitivity and low sample requirement. Thus, research seeking to understand fundamental relationships between fragmentation patterns and precursor ion structures in the gas phase has gained attention. In this study, we investigate the fragmentation of the widely used anticancer drugs, doxorubicin (DOX), vinblastine (VBL), and vinorelbine (VRL), complexed by a singly charged proton or alkali metal ion (Li+, Na+, K+) in the gas phase. The drug-cation complexes exhibit distinct fragmentation patterns in tandem mass spectra as a function of cation size. The trends in fragmentation patterns are explicable in terms of structures derived from ion mobility mass spectrometry (IM-MS) and theoretical calculations.

  7. Influence of cation disorder on the magnetic properties of ball-milled ilmenite (FeTiO{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Morup, Steen; Rasmussen, Helge K. [Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Brok, Erik [Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Keller, Lukas [Laboratory for Neutron Scattering, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Frandsen, Cathrine, E-mail: fraca@fysik.dtu.dk [Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2012-09-14

    We have investigated the evolution of crystal structure, cation disorder and magnetic properties of ilmenite (FeTiO{sub 3}) after increasing time of high-energy ball-milling in an inert atmosphere. Refinement of X-ray diffraction data show that the hexagonal crystal structure of ilmenite is maintained after high-energy ball-milling of up to 128 h, but neutron diffraction studies reveal significant cation redistribution of Fe{sup 2+} and Ti{sup 4+} ions in the ball-milled samples. Moessbauer spectroscopy studies show that the magnetic hyperfine field of Fe{sup 2+}, which is around 5 T before ball-milling, increases, and after milling times longer than 4 h a broad distribution of hyperfine fields with values up to around 40 T for Fe{sup 2+} is seen. This can be explained by the cation disorder induced by the ball-milling which affects the orbital contribution to the magnetic hyperfine field. In contrast to some ball-milled spinel ferrites, the Neel temperature of ilmenite is not significantly affected by the cation disorder. -- Highlights: Black-Right-Pointing-Pointer High-energy ball-milling of FeTiO{sub 3} results in cation disorder. Black-Right-Pointing-Pointer The magnetic hyperfine field of {sup 57}Fe is strongly affected by the ball-milling. Black-Right-Pointing-Pointer The Neel temperature of FeTiO{sub 3} is not significantly affected by cation disorder.

  8. Spectral properties and reactivity of diarylmethanol radical cations in aqueous solution. Evidence for intramolecular charge resonance.

    Science.gov (United States)

    Bietti, Massimo; Lanzalunga, Osvaldo

    2002-04-19

    Spectral properties and reactivities of ring-methoxylated diarylmethane and diarylmethanol radical cations, generated in aqueous solution by pulse and gamma-radiolysis and by the one-electron chemical oxidant potassium 12-tungstocobalt(III)ate, have been studied. The radical cations display three bands in the UV, visible, and vis-NIR regions of the spectrum. The vis-NIR band is assigned to an intramolecular charge resonance interaction (CR) between the neutral donor and charged acceptor rings, as indicated by the observation that the relative intensity of the vis-NIR band compared to that of the UV and visible bands does not increase with increasing substrate concentration and that the position and intensity of this band is influenced by the ring-substitution pattern. In acidic solution (pH = 4), monomethoxylated diarylmethanol radical cations 1a.(+ -)1e.(+) decay by C(alpha)-H deprotonation [k = (1.7-1.9) x 10(4)s(-1)] through the intermediacy of a ketyl radical, which is further oxidized in the reaction medium to give the corresponding benzophenones, as evidenced by both time-resolved spectroscopic and product studies. With the dimethoxylated radical cation 2.(+), C(alpha)-H deprotonation is instead significantly slower (k = 6.7 x 10(2)s(-1)). In basic solution, 1a.(+)-1e.(+) undergo (-)OH-induced deprotonation from the alpha-OH group with k(OH.)approximately equal to 1.4 x 10(10)M(-1)s(-1), leading to a ketyl radical anion, which is oxidized in the reaction medium to the corresponding benzophenone.

  9. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  10. Novel doubly charged cation based electrolytes for non-aqueous supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Jaenes, Alar; Kurig, Heisi; Romann, Tavo; Lust, Enn [Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu (Estonia)

    2010-04-15

    The electrochemical characteristics for the electrical double layer capacitors based on the titanium carbide derived carbon (CDC-TiC) electrodes in 0.4 M N,N-dimethyl-1,4-diazabicyclo[2,2,2]octanediium tetrafluoroborate (DMDABCO(BF{sub 4}){sub 2}), 0.2 M DMDABCO(BF{sub 4}){sub 2} + 0.2 M triethylmethylammonium tetrafluoroborate (TEMABF{sub 4}), and 0.4 M TEMABF{sub 4} in {gamma}-butyrolactone ({gamma}-BL) have been studied using cyclic voltammetry, constant current charging/discharging and electrochemical impedance spectroscopy. The ideal electrical double layer capacitor behaviour was observed in a wide region of cell voltages (U {<=} 3.0 V) for the CDC-TiC electrodes in 0.4 M DMDABCO(BF{sub 4}){sub 2} in {gamma}-BL. The geometry of solvation shells around DMDABCO{sup 2+}, TEMA{sup +}, and BF{sub 4}{sup -} have been optimized with molecular dynamics calculations and the coordination numbers equal to 15, 7 or 8, respectively, have been proposed and compared with electrochemical and gas sorption data for CDC-TiC. The gravimetric capacitance (129 F g{sup -1}), high gravimetric energy (40.6 Wh kg{sup -1}) and power (93 kW kg{sup -1}) were established for the CDC-TiC electrodes in 0.4 M DMDABCO(BF{sub 4}){sub 2} {gamma}-BL solution. (author)

  11. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.

    Science.gov (United States)

    Zhou, Ying; Yu, Hai; Wanless, Erica J; Jameson, Graeme J; Franks, George V

    2009-08-15

    Flocs were produced by adding three cationic polymers (10% charge density, 3.0x10(5) g/mol molecular weight; 40% charge density, 1.1x10(5) g/mol molecular weight; and 100% charge density, 1.2x10(5) g/mol molecular weight) to 90 nm diameter silica particles. The shear yield stresses of the consolidated sediment beds from settled and centrifuged flocs were determined via the vane technique. The polymer charge density plays an important role in influencing the shear yield stresses of sediment beds. The shear yield stresses of sediment beds from flocs induced by the 10% charged polymer were observed to increase with an increase in polymer dose, initial solid concentration and background electrolyte concentration at all volume fractions. In comparison, polymer dose has a marginal effect on the shear yield stresses of sediment beds from flocs induced by the 40% and 100% charged polymers. The shear yield stresses of sediments from flocs induced by the 40% charged polymer are independent of salt concentration whereas the addition of salt decreases the shear yield stresses of sediments from flocs induced by the 100% charged polymer. When flocculated at the optimum dose for each polymer (12 mg/g silica for the 10% charged polymer at 0.03 M NaCl, 12 mg/g for 40% and 2 mg/g for 100%), shear yield stress increases as polymer charge increases. The effects observed are related to the flocculation mechanism (bridging, patch attraction or charge neutralisation) and the magnitude of the adhesive force. Comparison of shear and compressive yield stresses show that the network is only slightly weaker in shear than in compression. This is different than many other systems (mainly salt and pH coagulation) which have shear yield stress much less than compressive yield stress. The existing models relating the power law exponent of the volume fraction dependence of the shear yield stress to the network fractal structure are not satisfactory to predict all the experimental behaviour.

  12. Cooperative coupling of the Li cation and groups to amplify the charge transfer between C60 and corannulene

    Science.gov (United States)

    Sun, Gang; Xu, Jing; Chen, Zhi-Yuan; Lei, E.; Liu, Xiang-Shuai; Liu, Chun-Guang

    2017-02-01

    In present work, four complexes have been designed to investigate the effect of Li+ cation and substituent on the geometric structures and a series of electronic properties using density functional theory. The calculated results indicate that the charge decomposition (CDA) analysis and extend charge decomposition analysis (ECDA) of four complexes have the same sequence. The average d values defined the distances between C60 and corannulene display the inverse sequence. Consequently, the cooperative coupling of the Li+ cation and appropriate substituent is predicted to be an effective way to enhance the charge transfer between the C60 and corannulene derivatives.

  13. Interplay between carrier and cationic defect concentration in ferromagnetism of anatase Ti1-xTaxO2 thin films

    Directory of Open Access Journals (Sweden)

    A. Roy Barman

    2012-03-01

    Full Text Available Thin films of Ta incorporated TiO2 grown by pulsed laser deposition under specific growth conditions show room temperature ferromagnetism. Ta introduces carriers and concomitantly cationic defects, the combination of which leads to ferromagnetism. In this paper, we report on the dependence of the carrier and cationic defect density (compensation on various parameters such as oxygen growth pressure, temperature and Ta concentration. Most likely, the Ti vacancies act as magnetic centers and the free electrons help with the exchange leading to ferromagnetism via Ruderman-Kittel-Kasuya-Yosida mechanism.

  14. Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy.

    Science.gov (United States)

    Nemec, H; Rochford, J; Taratula, O; Galoppini, E; Kuzel, P; Polívka, T; Yartsev, A; Sundström, V

    2010-05-14

    Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.

  15. Charge-dependent dissociation of insulin cations via ion/ion electron transfer

    Science.gov (United States)

    Liu, Jian; Gunawardena, Harsha P.; Huang, Teng-Yi; McLuckey, Scott A.

    2008-10-01

    The dissociation reactions of various charge states of insulin cations obtained directly from nano-electrospray were investigated as a result of ion/ion electron transfer from azobenzene anions. Data were collected with and without simultaneous ion trap collisional excitation of the first generation charge-reduced product during the ion/ion reaction period. Neither separation of the two constituent chains nor cleavages within the loop defined by the disulfide bridges were observed under normal electron transfer dissociation (ETD) conditions for any of the charge states studied. However, substantial sequence coverage (exocyclic region: 82.6%; entire protein: 38.8%) outside the ring structure was obtained for insulin +6, while only limited coverage (exocyclic: 43.5%; entire protein: 20.4%) was observed for insulin +5 and no dissociation, aside from low abundance side-chain losses, was noted for insulin +4 and +3 in the normal ETD spectra. When the first generation charge-reduced precursor ions were subjected to collisional activation during the ion/ion reaction period, higher sequence coverages were obtained for both insulin +5 (entire protein: 34.7%) and +4 (entire protein: 20.4%) with backbone cleavages occurring within the loop defined by the disulfide bonds. Dissociation of insulin +3 was not significantly improved by the additional activation. Separation of the two constituent chains resulting from cleavages of both of the two disulfide bridges that link the chains was observed for insulin +6, +5, and +4 when the charge-reduced species were activated. The dissociation of disulfide linkages in this study suggests that as the charge state decreases, disulfide bond cleavages dominate over N-C[alpha] bond cleavages in the electron transfer dissociation process.

  16. Cationic Net Charge and Counter Ion Type as Antimicrobial Activity Determinant Factors of Short Lipopeptides

    Science.gov (United States)

    Greber, Katarzyna E.; Dawgul, Malgorzata; Kamysz, Wojciech; Sawicki, Wieslaw

    2017-01-01

    To get a better insight into the antimicrobial potency of short cationic lipopeptides, 35 new entities were synthesized using solid phase peptide strategy. All newly obtained lipopeptides were designed to be positively charged from +1 to +4. This was achieved by introducing basic amino acid - lysine - into the lipopeptide structure and had a hydrophobic fatty acid chain attached. Lipopeptides were subjected to microbiological tests using reference strains of Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Gram-positive bacteria: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Enterococcus faecalis, and fungi: Candida albicans, Candida tropicalis, Aspergillus brasiliensis. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimal fungicidal concentration (MFC) were established for each strain. The toxicity toward human cells was determined by hemolysis tests via minimum hemolytic concentration (MHC) determination. The effect of the trifluoroacetic acid (TFA) counter ion on the antimicrobial activity of lipopeptides was also examined by its removing and performing the antimicrobial tests using counter ion-free compounds. The study shows that lipopeptides are more potent against Gram-positive than Gram-negative strains. It was revealed that positive charge equals at least +2 is a necessary condition to observe significant antimicrobial activity, but only when it is balanced with a proper length of hydrophobic fatty acid chain. The hemolytic activity of lipopeptides strongly depends on amino acid composition of the hydrophilic portion of the molecule as well as fatty acid chain length. Compounds endowed with a greater positive charge were more toxic to human erythrocytes. This should be considered during new lipopeptide molecules design. Our studies also revealed the TFA counter ion has no significant effect on the antimicrobial behavior of cationic

  17. Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO(2) and TiO(2) doped with Mo(6+) ions under solar light: Correlation of dye structure and its adsorptive tendency on the degradation rate.

    Science.gov (United States)

    Gomathi Devi, L; Narasimha Murthy, B; Girish Kumar, S

    2009-08-01

    Degradation of synthetic dyes like Methyl Orange (MO), p-amino azo benzene (PAAB), Congo Red (CR), Brilliant Yellow (BY), Rhodamine-B (RB) and Methylene Blue (MB) under solar light were carried out using TiO(2) doped with Mo(6+) ions. The rate constant for the degradation of anionic dyes MO, PAAB, CR and BY was high at pH 5.6, while for cationic dyes the highest rate constant was obtained in the alkaline pH 8.0. These differences can be accounted to their adsorption capacity on the catalyst surface at different pH conditions. Among the photocatalyst used, Mo(6+) (0.06%)-TiO(2) showed enhanced activity due to the effective separation of charge carriers.

  18. Enhanced photocatalytic activity of TiO2 by surface fluorination in degradation of organic cationic compound

    Institute of Scientific and Technical Information of China (English)

    YANG Shi-ying; CHEN You-yuan; ZHENG Jian-guo; CUI Ying-jie

    2007-01-01

    Experiments were carried out to investigate the influence of TiO2 surface fluorination on the photodegradation of a representative organic cationic compound, Methylene Blue (MB). The electropositive MB shows poor adsorption on TiO2 surface; its degradation performs a HO· radical-mediated mechanism. In the F-modified system, the kinetic reaction rate enlarged more than 2.5 fold that was attributed mainly to the accumulating adsorption of MB and the increased photogenerated hole available on the F-modified TiO2 surface.

  19. Influence of cation disorder on the magnetic properties of ball-milled ilmenite (FeTiO3)

    DEFF Research Database (Denmark)

    Mørup, Steen; Rasmussen, Helge Kildahl; Brok, Erik;

    2012-01-01

    We have investigated the evolution of crystal structure, cation disorder and magnetic properties of ilmenite (FeTiO3) after increasing time of high-energy ball-milling in an inert atmosphere. Refinement of X-ray diffraction data show that the hexagonal crystal structure of ilmenite is maintained ...

  20. A charge optimized many-body potential for titanium nitride (TiN).

    Science.gov (United States)

    Cheng, Y-T; Liang, T; Martinez, J A; Phillpot, S R; Sinnott, S B

    2014-07-01

    This work presents a new empirical, variable charge potential for TiN systems in the charge-optimized many-body potential framework. The potential parameters were determined by fitting them to experimental data for the enthalpy of formation, lattice parameters, and elastic constants of rocksalt structured TiN. The potential does a good job of describing the fundamental physical properties (defect formation and surface energies) of TiN relative to the predictions of first-principles calculations. This potential is used in classical molecular dynamics simulations to examine the interface of fcc-Ti(0 0 1)/TiN(0 0 1) and to characterize the adsorption of oxygen atoms and molecules on the TiN(0 0 1) surface. The results indicate that the potential is well suited to model TiN thin films and to explore the chemistry associated with their oxidation.

  1. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    Directory of Open Access Journals (Sweden)

    Kurakula M

    2015-01-01

    Full Text Available Mallesh Kurakula,1 AM El-Helw,2 Tariq R Sobahi,1 Magdy Y Abdelaal11Polymer Research Lab, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi ArabiaAbstract: Cationic charged chitosan as stabilizer was evaluated in preparation of nanocrystals using probe sonication method. The influence of cationic charge densities of chitosan (low CSL, medium CSM, high CSH molecular weights and Labrasol® in solubility enhancement and modifying the release was investigated, using atorvastatin (ATR as poorly soluble model drug. Compared to CSM and CSH; low cationic charge of CSL acted as both electrostatic and steric stabilizer by significant size reduction to 394 nm with charge of 21.5 meV. Solubility of ATR-CSL increased to 60-fold relative to pure ATR and ATR-L. Nanocrystals were characterized for physiochemical properties. Scanning electron microscopy revealed scaffold-like structures with high surface area. X-ray powder diffractometry and differential scanning calorimetry revealed crystalline to slight amorphous state changes after cationic charge size reduction. Fourier transform-infrared spectra indicated no potent drug-excipient interactions. The enhanced dissolution profile of ATR-CSL indicates that sustained release was achieved compared with ATR-L and Lipitor®. Anti-hyperlipidemic performance was pH dependent where ATR-CSL exhibited 2.5-fold higher efficacy at pH 5 compared to pH 6 and Lipitor®. Stability studies indicated marked changes in size and charge for ATR-L compared to ATR-CSL exemplifying importance of the stabilizer. Therefore, nanocrystals developed with CSL as a stabilizer is a promising choice to enhance dissolution, stability, and in-vivo efficacy of major Biopharmaceutical Classification System II/IV drugs.Keywords: atorvastatin, anti-hyperlipidemia, chitosan, cationic charge, stability, nanocrystals

  2. Charge transfer from 2-aminopurine radical cation and radical anion to nucleobases: A pulse radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Manoj, P. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Mohan, H. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mittal, J.P. [Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Manoj, V.M. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India); Aravindakumar, C.T. [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686 560, Kerala (India)], E-mail: CT-Aravindakumar@rocketmail.com

    2007-01-08

    Pulse radiolysis study has been carried out to investigate the properties of the radical cation of 2-aminopurine (2AP) and the probable charge transfer from the radical cation and radical anion of 2AP to natural nucleobases in aqueous medium. The radical cation of 2AP was produced by the reaction of sulfate radical anion (SO{sub 4}{sup dot-}). The time resolved absorption spectra obtained by the reaction of SO{sub 4}{sup dot-} with 2AP at neutral pH have two distinct maxima at 380 and 470nm and is assigned to the formation of a neutral radical of the form 2AP-N{sup 2}(-H){sup dot} (k{sub 2}=4.7x10{sup 9}dm{sup 3}mol{sup -1}s{sup -1} at pH 7). This neutral radical is formed from the deprotonation reaction of a very short-lived radical cation of 2AP. The transient absorption spectra recorded at pH 10.2 have two distinct maxima at 400 and 480nm and is assigned to the formation of a nitrogen centered radical (2AP-N(9){sup dot}). As the hole transport from 2AP to guanine is a highly probable process, the reaction of SO{sub 4}{sup dot-} is carried out in the presence of guanosine, adenosine and inosine. The spectrum obtained in the presence of guanosine was significantly different from that in the absence and it showed prominent absorption maxima at 380 and 470nm, and a weak broad maximum centered around 625nm which match well with the reported spectrum of a neutral guanine radical (G(-H){sup dot}). The electron transfer reaction from the radical anion of 2AP to thymine (T), cytidine (Cyd) and uridine (Urd) was also investigated at neutral pH. Among the three pyrimidines, only the transient spectrum in the presence of T gave a significant difference from the spectral features of the electron adduct of 2AP, which showed a prominent absorption maximum at 340nm and this spectrum is similar to the electron adduct spectrum of T. The preferential reduction of thymine by 2AP{sup dot-} and the oxidation of guanosine by 2AP{sup dot+} clearly follow the oxidation

  3. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayss, M. K.; Armentrout, P. B.; Oomens, J.; Schaefer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+,K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectra

  4. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayß, M.K.; Armentrout, P.B.; Oomens, J.; Schäfer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+, K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectr

  5. Facile fabrication of efficient AgBr-TiO{sub 2} nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxin [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Jing, Liqiang, E-mail: Jinglq@hlju.edu.cn [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China); Qu, Yichun; Luan, Yunbo; Fu, Honggang; Xiao, Yuchen [Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A microemulsion-like chemical precipitation is developed for AgBr-TiO{sub 2} composite. Black-Right-Pointing-Pointer The composite displays effective charge transfers between AgBr and TiO{sub 2.} Black-Right-Pointing-Pointer A charge transfer mechanism in the AgBr-TiO{sub 2} composite is suggested. Black-Right-Pointing-Pointer The suggested mechanism is responsible for the enhanced photocatalytic activity. - Abstract: A simple microemulsion-like chemical precipitation method has been successfully developed to construct effectively-contacted AgBr-TiO{sub 2} composite. The key of this method is the dual roles of Br{sup -} in the synthetic process, as linkers between cetyltrimethyl ammonium cation surfactants and nanocrystalline anatase TiO{sub 2} in the acidic condition, and as bromine sources to directly produce nanocrystalline AgBr on the surfaces of TiO{sub 2} by chemical precipitation. It is well demonstrated that the as-constructed AgBr-TiO{sub 2} nanoheterostructured composites display effective photogenerated charge transfer between AgBr and TiO{sub 2}, favorable to improve charge separation, by means of the surface photovoltage technique in different atmospheres at the aid of outer electric fields, especially for the transient surface photovoltage technique in air. And also, the Br{sup -} in crystal lattice of AgBr could effectively capture photogenerated holes under illumination. These factors are well responsible for the enhanced activity for photocatalytic degradation of liquid phase aqueous phenol solution and gas phase acetaldehyde under either UV-visible or visible irradiation, and the stability of AgBr in the photocatalytic processes.

  6. Structure and physical properties of ternary organic conductors of TCNQ, iodine, and double-charged unsymmetrical cations: PET and PESe

    Energy Technology Data Exchange (ETDEWEB)

    Abashev, G.G. [Perm State Univ. (Russian Federation). Inst. of Natural Sci.; Russkikh, V.S. [Perm State Univ. (Russian Federation). Inst. of Natural Sci.; Koshta, A. [Polska Akademia Nauk, Poznan (Poland). Inst. Fizyki Molekularnej; Lapinski, A. [Polska Akademia Nauk, Poznan (Poland). Inst. Fizyki Molekularnej; Krol, S. [Polska Akademia Nauk, Poznan (Poland). Inst. Fizyki Molekularnej; Pukacki, W. [Polska Akademia Nauk, Poznan (Poland). Inst. Fizyki Molekularnej; Graja, A. [Polska Akademia Nauk, Poznan (Poland). Inst. Fizyki Molekularnej

    1996-01-01

    Ternary organic salts of TCNQ, iodine, and double-charged unsymmetrical cations containing sulfur or selenium are investigated. The crystal structure of the salts is determined; their dc electrical conductivity, ESR, and IR spectral properties are studied. The physical properties of the investigated salts are found as typical for Q-1D organic semiconductors. (orig.)

  7. Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene

    Science.gov (United States)

    Gonçalves, Norberto S.; Noda, Lúcia. K.

    2017-10-01

    In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.

  8. Fragmentation of Singly, Doubly, and Triply Charged Hydrogen Deficient Peptide Radical Cations in Infrared Multiphoton Dissociation and Electron Induced Dissociation

    Science.gov (United States)

    Kalli, Anastasia; Hess, Sonja

    2012-02-01

    Gas phase fragmentation of hydrogen deficient peptide radical cations continues to be an active area of research. While collision induced dissociation (CID) of singly charged species is widely examined, dissociation channels of singly and multiply charged radical cations in infrared multiphoton dissociation (IRMPD) and electron induced dissociation (EID) have not been, so far, investigated. Here, we report on the gas phase dissociation of singly, doubly and triply charged hydrogen deficient peptide radicals, [M + nH](n+1)+· ( n = 0, 1, 2), in MS3 IRMPD and EID and compare the observed fragmentation pathways to those obtained in MS3 CID. Backbone fragmentation in MS3 IRMPD and EID was highly dependent on the charge state of the radical precursor ions, whereas amino acid side chain cleavages were largely independent of the charge state selected for fragmentation. Cleavages at aromatic amino acids, either through side chain loss or backbone fragmentation, were significantly enhanced over other dissociation channels. For singly charged species, the MS3 IRMPD and EID spectra were mainly governed by radical-driven dissociation. Fragmentation of doubly and triply charged radical cations proceeded through both radical- and charge-driven processes, resulting in the formation of a wide range of backbone product ions including, a-, b-, c-, y-, x-, and z-type. While similarities existed between MS3 CID, IRMPD, and EID of the same species, several backbone product ions and side chain losses were unique for each activation method. Furthermore, dominant dissociation pathways in each spectrum were dependent on ion activation method, amino acid composition, and charge state selected for fragmentation.

  9. THE EFFECT OF CHARGE AND CHEMICAL STRUCTURE OF CATIONIC SURFACTANTS ON LASER TONER AGGLOMERATION UNDER ALKALINE PULPING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jie Jiang,

    2012-02-01

    Full Text Available Laboratory-scale agglomeration experiments followed by image analysis were used to evaluate the effectiveness of different cationic surfactants on the 1-octadecanol agglomeration of a negatively charged laser toner. Various types of surfactants with different geometric structures were investigated. It was found that this toner became agglomerated under neutral pulping conditions, but it did not agglomerate under alkaline conditions at all. A small amount of the cationic surfactant compensated for the agglomeration disruption caused by the negative surface charge of the toner and made this toner agglomerate very well. These cationic surfactants consist of a chemical structure of C12 to C18 saturated alkyl hydrophobic chains. The positive charge of these surfactants played the major role in alleviating agglomeration disruption. Additionally, an extra phenol group on these surfactants contributed only minor advantages for toner agglomeration in the presence of 1-octadecanol. The best co-agglomeration performance occurred within a very narrow range of similar total positive charge densities based on the total toner weight. It was also found that this positive charge effect could not be applied to the chemical compounds of high molecular weight polymeric materials.

  10. Suppression of the two-dimensional electron gas in LaGaO3/SrTiO3 by cation intermixing

    KAUST Repository

    Nazir, S.

    2013-12-03

    Cation intermixing at the n-type polar LaGaO 3 /SrTiO 3 (001) interface is investigated by first principles calculations. Ti"Ga, Sr"La, and SrTi"LaGa intermixing are studied in comparison to each other, with a focus on the interface stability. We demonstrate in which cases intermixing is energetically favorable as compared to a clean interface. A depopulation of the Ti 3d xy orbitals under cation intermixing is found, reflecting a complete suppression of the two-dimensional electron gas present at the clean interface.

  11. Hydrogen Bond Acceptors and Additional Cationic Charges in Methylene Blue Derivatives: Photophysics and Antimicrobial Efficiency

    Science.gov (United States)

    Felgenträger, Ariane; Maisch, Tim; Dobler, Daniel; Späth, Andreas

    2013-01-01

    Photodynamic inactivation of bacteria (PIB) by efficient singlet oxygen photosensitizers might be a beneficial alternative to antibiotics in the struggle against multiresistant bacteria. Phenothiazinium dyes belong to the most prominent classes of such sensitizers due to their intense absorption in the red-light region (λ abs, max ca. 600–680 nm, ε > 50000 L mol−1 cm−1), their low toxicity, and their attachment/penetration abilities. Except simple substituents like alkyl or hydroxyalkyl residues, nearly no modifications of the phenothiaziniums have been pursued at the auxochromic sites. By this, the properties of methylene blue derivatives and their fields of application are limited; it remains unclear if their potential antimicrobial efficacy may be enhanced, also to compete with porphyrins. We prepared a set of six mainly novel methylene blue derivatives with the ability of additional hydrogen bonding and/or additional cationic charges to study the substituents' effect on their activity/toxicity profiles and photophysical properties. Direct detection of singlet oxygen was performed at 1270 nm and the singlet oxygen quantum yields were determined. In suspensions with both, Gram-positive and Gram-negative bacteria, some derivatives were highly active upon illumination to inactivate S. aureus and E. coli up to 7 log10 steps (99.99999%) without inherent toxicities in the nonirradiated state. PMID:23509728

  12. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  13. Interfacial charge-transfer transitions in a TiO2-benzenedithiol complex with Ti-S-C linkages.

    Science.gov (United States)

    Fujisawa, Jun-ichi; Muroga, Ryuki; Hanaya, Minoru

    2015-11-28

    Interfacial charge-transfer (ICT) transitions between organic materials and inorganic semiconductors are a new mechanism for light absorption at organic-semiconductor interfaces. ICT transitions cause one-step interfacial charge separation without loss of energy. This feature is potentially useful to realize efficient organic-inorganic hybrid solar cells. ICT transitions have been examined by employing titanium dioxide (TiO2) nanoparticles chemisorbed with π-conjugated molecules via Ti-O-C linkages. Here, we report ICT transitions in a TiO2 and 1,2-benzenedithiol (BDT) complex with Ti-S-C linkages. BDT adsorbs on TiO2 by the bridging bidentate coordination of the sulfur atoms to surface titanium atoms. The TiO2-BDT complex shows ICT transitions from the BDT moiety to the conduction band of TiO2 in the visible region. The ICT transitions occur by orbital overlaps between the d orbitals of the surface titanium atoms and the π orbitals of the benzene ring. Our density-functional-theory (DFT) analysis reveals that the 3p valence orbitals of the sulfur bridging atoms contribute to more than 50% of the highest occupied molecular orbital (HOMO) and the 3d-3p(sulfur)-π interaction via the Ti-S-C linkage enhances the electronic mixing between the titanium atoms and the benzene moiety as compared to the 3d-2p(oxygen)-πvia the Ti-O-C linkage. This result indicates the important role of the heavier-atom linkers for strong organic-inorganic electronic couplings.

  14. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC⁺).

    Science.gov (United States)

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Yin, Qing-Zhu; Ng, C Y

    2014-10-14

    Titanium carbide and its cation (TiC/TiC(+)) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16,446 and 16,930 cm(-1). Based on rotational analyses, these bands are assigned as the respective TiC((3)Π1) ← TiC(X(3)Σ(+)) and TiC((3)Σ(+)) ← TiC(X(3)Σ(+)) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ(2)8σ(1)9σ(1)3π(4) (X(3)Σ(+)). The rotational constant and the corresponding bond distance of TiC(X(3)Σ(+); v″ = 0) are determined to be B0″ = 0.6112(10) cm(-1) and r0″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC(+)(X; v(+) = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC(+) ground state are …7σ(2)8σ(1)3π(4) (X(2)Σ(+)) with the v(+) = 0 → 1 vibrational spacing of 870.0(8) cm(-1) and the rotational constants of B(e)(+) = 0.6322(28) cm(-1), and α(e)(+) = 0.0085(28) cm(-1). The latter rotational constants yield the equilibrium bond distance of r(e)(+) = 1.667(4) Å for TiC(+)(X(2)Σ(+)). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm(-1) [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D0) of TiC(+)(X(2)Σ(+)) and that of TiC(X(3)Σ(+)) to be D0(Ti(+)-C) - D0(Ti-C) = 0.2322(2) eV. Similar to previous experimental observations, the present state-to-state PFI-PE study of the photoionization transitions, TiC(+)(X(2)Σ(+); v(+) = 0 and 1, N(+)) ← TiC((3)Π1; v', J'), reveals a strong decreasing trend for the photoionization cross section as |ΔN(+)| = |N

  15. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC+)

    Science.gov (United States)

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Yin, Qing-Zhu; Ng, C. Y.

    2014-10-01

    Titanium carbide and its cation (TiC/TiC+) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16 446 and 16 930 cm-1. Based on rotational analyses, these bands are assigned as the respective TiC(3Π1) ← TiC(X3Σ+) and TiC(3Σ+) ← TiC(X3Σ+) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ28σ19σ13π4 (X3Σ+). The rotational constant and the corresponding bond distance of TiC(X3Σ+; v″ = 0) are determined to be B0″ = 0.6112(10) cm-1 and r0″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC+(X; v+ = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC+ ground state are …7σ28σ13π4 (X2Σ+) with the v+ = 0 → 1 vibrational spacing of 870.0(8) cm-1 and the rotational constants of Be+ = 0.6322(28) cm-1, and αe+ = 0.0085(28) cm-1. The latter rotational constants yield the equilibrium bond distance of re+ = 1.667(4) Å for TiC+(X2Σ+). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm-1 [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D0) of TiC+(X2Σ+) and that of TiC(X3Σ+) to be D0(Ti+-C) - D0(Ti-C) = 0.2322(2) eV. Similar to previous experimental observations, the present state-to-state PFI-PE study of the photoionization transitions, TiC+(X2Σ+; v+ = 0 and 1, N+) ← TiC(3Π1; v', J'), reveals a strong decreasing trend for the photoionization cross section as |ΔN+| = |N+ - J'| is increased. The maximum |ΔN+| change of 7 observed here is also consistent with the previous

  16. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    Science.gov (United States)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  17. Multivalence Charge Transfer in Doped and Codoped Photocatalytic TiO2.

    Science.gov (United States)

    Ren, Hangjuan; Koshy, Pramod; Cao, Fuyang; Sorrell, Charles Christopher

    2016-08-15

    The present work reports data for the mineralogical and chemical properties of anatase thin films individually doped or codoped with chromium and vanadium, fabricated by sol-gel spin coating on glass substrates and annealing at 450 °C for 2 h. X-ray photoelectron spectroscopy data indicated the presence of Ti(4+), Ti(3+), Cr(3+), and possibly Cr(4+) in the Cr-doped thin films; Ti(4+), Ti(3+), V(3+), V(4+), and possibly V(5+) in the V-doped thin films; and Ti(4+), Ti(3+), Cr(3+), Cr(4+), V(3+), V(4+), and possibly V(5+) in the codoped thin films. While the thermodynamically stable valences Ti(4+), Cr(3+), and V(5+) would be expected to have formed, the presence of the nonequilibrium valences Ti(3+), Cr(4+), V(3+), and V(4+) is considered to have resulted from intervalence charge transfer for the Cr-doped and V-doped systems but from multivalence charge transfer (MVCT) for the codoped system. The latter phenomenon, which is introduced as a new conceptual term, describes the nature of the mutual exchange of electrons during valence changes of both dopant (Cr, V) and matrix (Ti) ions during annealing. In the present case, MVCT appears to be a transient metastable condition that acts during annealing, but subsequent UV irradiation can alter its effects.

  18. Phase transformation behavior of a TiNiCu shape memory alloy electrolytically charged with hydrogen

    Institute of Scientific and Technical Information of China (English)

    WU Jihong; ZU Xiaotao; WANG Zhiguo; LIU Yanzhang

    2005-01-01

    The transformation behavior of a TiNiCu shape memory alloy electrolytically charged with hydrogen was investigated by means of different scanning calorimetry (DSC), optical microscope and X-ray diffraction (XRD). The results showed that inter- and inner-granular hydrides formed after charging with hydrogen, and the hydrides suppressed martensitic transformation. The electrolytically charged hydrogen can be easily released by heat treatment and the transformation occurred again, which was verified by the DSC and XRD experiments.

  19. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    Science.gov (United States)

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for

  20. Cation-mediated conversion of the state of charge in uranium arene inverted-sandwich complexes

    Energy Technology Data Exchange (ETDEWEB)

    Camp, Clement; Mougel, Victor; Pecaut, Jacques; Mazzanti, Marinella [Laboratoire de Reconnaissance Ionique et Chimie de Coordination, SCIB, UMR-E3 CEA-UJF, INAC, CEA-Grenoble (France); Maron, Laurent [LCPNO, CNRS and INSA, UPS, Universite de Toulouse (France)

    2013-12-16

    Two new arene inverted-sandwich complexes of uranium supported by siloxide ancillary ligands [K{U(OSi(OtBu)_3)_3}{sub 2}(μ-η{sup 6}:η{sup 6}-C{sub 7}H{sub 8})] (3) and [K{sub 2}{U(OSi(OtBu)_3)_3}{sub 2}(μ-η{sup 6}:η{sup 6}-C{sub 7}H{sub 8})] (4) were synthesized by the reduction of the parent arene-bridged complex [{U(OSi(OtBu)_3)_3}{sub 2}(μ-η{sup 6}:η{sup 6}-C{sub 7}H{sub 8})] (2) with stoichiometric amounts of KC{sub 8} yielding a rare family of inverted-sandwich complexes in three states of charge. The structural data and computational studies of the electronic structure are in agreement with the presence of high-valent uranium centers bridged by a reduced tetra-anionic toluene with the best formulation being U{sup V}-(arene{sup 4-})-U{sup V}, KU{sup IV}-(arene{sup 4-})-U{sup V}, and K{sub 2}U{sup IV}-(arene{sup 4-})-U{sup IV} for complexes 2, 3, and 4 respectively. The potassium cations in complexes 3 and 4 are coordinated to the siloxide ligands both in the solid state and in solution. The addition of KOTf (OTf=triflate) to the neutral compound 2 promotes its disproportionation to yield complexes 3 and 4 (depending on the stoichiometry) and the U{sup IV} mononuclear complex [U(OSi(OtBu){sub 3}){sub 3}(OTf)(thf){sub 2}] (5). This unprecedented reactivity demonstrates the key role of potassium for the stability of these complexes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Chiral phase transition in charge ordered 1T-TiSe2.

    Science.gov (United States)

    Castellan, John-Paul; Rosenkranz, Stephan; Osborn, Ray; Li, Qing'an; Gray, K E; Luo, X; Welp, U; Karapetrov, Goran; Ruff, J P C; van Wezel, Jasper

    2013-05-10

    It was recently discovered that the low-temperature, charge-ordered phase of 1T-TiSe(2) has a chiral character. This unexpected chirality in a system described by a scalar order parameter could be explained in a model where the emergence of relative phase shifts between three charge density wave components breaks the inversion symmetry of the lattice. Here, we present experimental evidence for the sequence of phase transitions predicted by that theory, going from disorder to nonchiral and finally to chiral charge order. Employing x-ray diffraction, specific heat, and electrical transport measurements, we find that a novel phase transition occurs ~7 K below the main charge ordering transition in TiSe(2), in agreement with the predicted hierarchy of charge-ordered phases.

  2. Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2

    Science.gov (United States)

    Dolui, Kapildeb; Sanvito, Stefano

    2016-08-01

    Density functional theory and density functional perturbation theory are used to investigate the electronic and vibrational properties of TiS2. Within the local density approximation the material is a semimetal both in the bulk and in the monolayer form. Most interestingly we observe a Kohn anomaly in the bulk phonon dispersion, which turns into a charge density wave instability when TiS2 is thinned to less than four monolayers. Such instability, however, disappears when one calculates the electronic structure with a functional, such as the LDA+U, which returns an insulating ground state. In this situation charge-doping or strain does not bring back the charge density wave instability, whereas the formation of the TiSSe alloy does.

  3. Interface charge behaviors of BaTiO3 film heterostructures with various crystal orientations

    Science.gov (United States)

    Zhang, Wei; Ouyang, Jun; Cheng, Hongbo; Yang, Qian; Kang, Limin; Zhang, Hua; Hu, Fangren

    2017-02-01

    Heteroepitaxial BaTiO3 ferroelectric films with (001), (110), and (111) orientations were grown on SrRuO3-buffered SrTiO3 substrates by magnetron sputtering. The leakage current and interface charge behaviors were systematically investigated. Without a discernible orientation-dependence behavior, the leakage current behaviors were all well described by a modified Schottky-contact model. On the basis of this theory, the interface charge state parameters, including dynamic dielectric constant, potential barriers, depletion layer width, effective space-charge density and hole concentration, and their evolution behaviors were analyzed in detail. They all exhibited anisotropic characteristics and were proved to be essentially attributed to the macrophysical properties of BaTiO3 film heterostructures.

  4. Monodisperse TiO2 Spheres with High Charge Density and Their Self-Assembly.

    Science.gov (United States)

    Xia, Hongbo; Wu, Suli; Su, Xin; Zhang, Shufen

    2017-01-03

    Titanium dioxide (TiO2 ) spheres are potential candidates to fabricate three-dimensional (3D) photonic crystals owing to their high refractive index and low absorption in the visible and near-infrared regions. Here, TiO2 spheres with both high surface charge density and uniform size, which are necessary for the self-assembly of TiO2 spheres, have been prepared by means of sol-gel methods in ethanol in the presence of thioglycolic acid as ligand. Thioglycolic acid, which contains two functional groups, not only acts as coordinating ligand for stabilizing and controlling the growth of TiO2 spheres but also endows the resulting TiO2 spheres with high charge density as based on ζ-potential analysis when the pH of the TiO2 aqueous dispersion was 6.5 or higher. The SEM images illustrate that the diameter of the prepared TiO2 spheres can be tuned from 100 to 300 nm by simply controlling the concentration of H2 O. FTIR spectra confirm that thioglycolic acid bonded to the surface of TiO2 spheres through carboxylic groups. As anticipated, the obtained TiO2 spheres could self-assemble to form a 3D opal photonic crystal structure by means of a simple gravity sedimentation method. Then the TiO2 spheres in the 3D opal photonic crystal structure were able to transform into a pure anatase phase by annealing at different temperatures.

  5. Theoretical study of oxygen adsorption on pure Au-n+1(+) and doped MAun+ cationic gold clusters for M = Ti, Fe and n=3-7

    DEFF Research Database (Denmark)

    Torres, M. Begona; Fernandez Sanchez, Eva; Balbas, Luis C.

    2008-01-01

    A comparative study of the adsorption of an O-2 molecule on pure Au-n+1(+) and doped MAun+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based...... with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au-n(+) is almost unperturbed after O-2 adsorption. The electronic charge flows towards O-2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O-2 is adsorbed on top of An atoms, and both...... the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O-2 increases. On the other hand, we studied the adsorption of an O-2 molecule on doped MAun+ clusters, leading to the formation of (MAunO2+)(ad) complexes with different equilibrium configurations...

  6. Release of charges under external fields of PbLa(Zr,Sn,Ti)O3 ceramic

    Institute of Scientific and Technical Information of China (English)

    Zhang Chong-Hui; Xu Zhuo; Gao Jun-Jie; Yao Xi

    2011-01-01

    This paper investigates the pyroelectric of poled antiferroelectric (AFE) ceramic Pb0.97La0.02 (Zr0.69Sn0.196 Ti0.114)O3 and its remnant polarization dependence of hydrostatic pressure. The results show that the bound charges of poled sample can be released in short time by temperature field or pressure field. The released charge abruptly forms a large pulse current. The phenomena of released charge under external fields result in the ferroelectric-AFE phase transition induced by temperature or hydrostatic pressure.

  7. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    Science.gov (United States)

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  8. Nongeminate Radiative Recombination of Free Charges in Cation-Exchanged PbS Quantum Dot Films

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Ashley R.; Beard, Matthew C.; Johnson, Justin C.

    2016-06-01

    Using photoluminescence (PL) spectroscopy we explore the radiative recombination pathways in PbS quantum dots (QDs) synthesized by two methods. We compare conventionally synthesized PbS from a PbO precursor to PbS synthesized using cation-exchange from CdS QDs. We show that strongly coupled films of PbS QDs from the cation-exchange luminesce with significant efficiency at room temperature. This is in stark contrast to conventional PbS QDs, which have exceedingly weak room temperature emission. Moreover, the power dependence of the emission is quadratic, indicating bimolecular radiative recombination that is reasonably competitive with trap-assisted recombination, a feature previously unreported in coupled PbS QD films. We interpret these results in terms of a greatly reduced defect concentration for cation-exchanged QDs that mitigates the influence of trap-assisted recombination. Cation-exchanged QDs have recently been employed in highly efficient and air-stable lead chalcogenide QD devices, and the reduced number of trap states inferred here may lead to improved current collection and higher open circuit voltage.

  9. Instantaneous generation of charge-separated state on TiO₂ surface sensitized with plasmonic nanoparticles.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2014-03-19

    Photoexcitation of the plasmon band in metallic nanoparticles adsorbed on a TiO2 surface initiates many important photovoltaic and photocatalytic processes. The traditional view on the photoinduced charge separation involves excitation of a surface plasmon, its subsequent dephasing into electron-hole pairs, followed by electron transfer (ET) from the metal nanoparticle into TiO2. We use nonadiabatic molecular dynamics combined with time-domain density functional theory to demonstrate that an electron appears inside TiO2 immediately upon photoexcitation with a high probability (~50%), bypassing the intermediate step of electron-hole thermalization inside the nanoparticle. By providing a detailed, atomistic description of the charge separation, energy relaxation, and electron-hole recombination processes, the simulation rationalizes why the experimentally observed ultrafast photoinduced ET in an Au-TiO2 system is possible in spite of the fast energy relaxation. The simulation shows that the photogenerated plasmon is highly delocalized onto TiO2, and thus, it is shared by the electron donor and acceptor materials. In the 50% of the cases remaining after the instantaneous photogeneration of the charge-separated state, the electron injects into TiO2 on a sub-100 fs time scale by the nonadiabatic mechanism due to high density of acceptor states. The electron-phonon relaxation parallels the injection and is slower, resulting in a transient heating of the TiO2 surface by 40 K. Driven by entropy, the electron moves further into TiO2 bulk. If the electron remains trapped at the TiO2 surface, it recombines with the hole on a picosecond time scale. The obtained ET and recombination times are in excellent agreement with the experiment. The delocalized plasmon state observed in our study establishes a novel concept for plasmonic photosensitization of wide band gap semiconductors, leading to efficient conversion of photons to charge carriers and to hybrid materials with a wide

  10. Rotationally resolved state-to-state photoionization and photoelectron study of titanium carbide and its cation (TiC/TiC{sup +})

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhihong; Huang, Huang; Chang, Yih-Chung; Zhang, Zheng; Ng, C. Y., E-mail: cyng@ucdavis.edu [Department of Chemistry, University of California, Davis, California 95616 (United States); Yin, Qing-Zhu [Department of Earth and Planetary Sciences, University of California, Davis, California 95616 (United States)

    2014-10-14

    Titanium carbide and its cation (TiC/TiC{sup +}) have been investigated by the two-color visible (VIS)-ultraviolet (UV) resonance-enhanced photoionization and pulsed field ionization-photoelectron (PFI-PE) methods. Two visible excitation bands for neutral TiC are observed at 16 446 and 16 930 cm{sup −1}. Based on rotational analyses, these bands are assigned as the respective TiC({sup 3}Π{sub 1}) ← TiC(X{sup 3}Σ{sup +}) and TiC({sup 3}Σ{sup +}) ← TiC(X{sup 3}Σ{sup +}) transition bands. This assignment supports that the electronic configuration and term symmetry for the neutral TiC ground state are …7σ{sup 2}8σ{sup 1}9σ{sup 1}3π{sup 4} (X{sup 3}Σ{sup +}). The rotational constant and the corresponding bond distance of TiC(X{sup 3}Σ{sup +}; v″ = 0) are determined to be B{sub 0}″ = 0.6112(10) cm{sup −1} and r{sub 0}″ = 1.695(2) Å, respectively. The rotational analyses of the VIS-UV-PFI-PE spectra for the TiC{sup +}(X; v{sup +} = 0 and 1) vibrational bands show that the electronic configuration and term symmetry for the ionic TiC{sup +} ground state are …7σ{sup 2}8σ{sup 1}3π{sup 4} (X{sup 2}Σ{sup +}) with the v{sup +} = 0 → 1 vibrational spacing of 870.0(8) cm{sup −1} and the rotational constants of B{sub e}{sup +} = 0.6322(28) cm{sup −1}, and α{sub e}{sup +} = 0.0085(28) cm{sup −1}. The latter rotational constants yield the equilibrium bond distance of r{sub e}{sup +} = 1.667(4) Å for TiC{sup +}(X{sup 2}Σ{sup +}). The cleanly rotationally resolved VIS-UV-PFI-PE spectra have also provided a highly precise value of 53 200.2(8) cm{sup −1} [6.5960(1) eV] for the adiabatic ionization energy (IE) of TiC. This IE(TiC) value along with the known IE(Ti) has made possible the determination of the difference between the 0 K bond dissociation energy (D{sub 0}) of TiC{sup +}(X{sup 2}Σ{sup +}) and that of TiC(X{sup 3}Σ{sup +}) to be D{sub 0}(Ti{sup +}−C) − D{sub 0}(Ti−C) = 0.2322(2) eV. Similar to previous experimental

  11. Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment.

    Science.gov (United States)

    Ide, Yusuke; Inami, Nozomu; Hattori, Hideya; Saito, Kanji; Sohmiya, Minoru; Tsunoji, Nao; Komaguchi, Kenji; Sano, Tsuneji; Bando, Yoshio; Golberg, Dmitri; Sugahara, Yoshiyuki

    2016-03-01

    Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective.

  12. Effect of Mg, Co and Ti Cations on Magnetic and Microwave Properties of SrFe12O19 Nanoparticles

    Directory of Open Access Journals (Sweden)

    G. Gordani

    2016-03-01

    Full Text Available Nanoparticles of Mg–Co–Ti substituted strontium hexaferrite with nominal composition of SrFe12-2x(Mg,Co0.5x TixO19 (x=0-2.5 were synthesized by a co-precipitation method. The structural, magnetic and electromagnetic properties of samples were studied as a function of x by thermal gravimetric (TG, X-ray diffraction (XRD, transmission electron microscopy (TEM, vibrating sample magnetometer (VSM and vector network analysis. It was found that the synthesis temperature increases with an increase in Mg–Co–Ti substitution and hence the particle size decreases. The XRD results showed that whole samples had good crystallinity and with an increase incations, the impurity phase of Fe2O3 appears. The results of hysteresis loops indicated that the saturation of magnetization of ferrite decreases from 40 emu/g to 19 emu/g with an increase in x. The Mössbauer spectroscopy showed that the cations are substituted in the 12k site of magnetoplumbite structure. Vector network measurements showed that the doped samples had much more effective reflection loss values than those of undoped ferrites. As a result, Mg–Co–Ti doped Sr-hexaferrites with x=2 can be proposed as suitable absorbers for applications in microwave technology with a good deal of consistency.

  13. Origin of the charge density wave in 1T-TiSe2

    KAUST Repository

    Zhu, Zhiyong

    2012-06-27

    All-electron ab initio calculations are used to study the microscopic origin of the charge density wave (CDW) in 1T-TiSe2. A purely electronic picture is ruled out as a possible scenario, indicating that the CDW transition in the present system is merely a structural phase transition. The CDW instability is the result of a symmetry lowering by electron correlations occurring with electron localization. Suppression of the CDW in pressurized and in Cu-intercalated 1T-TiSe2 is explained by a delocalization of the electrons, which weakens the correlations and counteracts the symmetry lowering.

  14. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery.

    Science.gov (United States)

    Trubetskoy, V S; Wong, S C; Subbotin, V; Budker, V G; Loomis, A; Hagstrom, J E; Wolff, J A

    2003-02-01

    The intravenous delivery of plasmid DNA complexed with either cationic lipids (CL) or polyethyleneimine (PEI) enables high levels of foreign gene expression in lung. However, these cationic DNA complexes cause substantial toxicity. The present study found that the inclusion of polyacrylic acid (pAA) with DNA/polycation and DNA/CL complexes prevented the serum inhibition of the transfection complexes in cultured cells. The mechanism mediating this increase seems to involve both particle size enlargement due to flocculation and electrostatic shielding from opsonizing serum proteins. The use of pAA also increased the levels of lung expression in mice in vivo substantially above the levels achieved with just binary complexes of DNA and linear PEI (lPEI) or CL and reduced their toxicity. Also, the use of a "chaser" injection of pAA 30 min after injection of the ternary DNA/lPEI/pAA complexes further aided this effort to reduce toxicity while not affecting foreign gene expression. By optimizing the amount of pAA, lPEI, and DNA within the ternary complexes and using the "chaser" injection, substantial levels of lung expression were obtained while avoiding adverse effects in lung or liver. These developments will aid the use of cationic DNA complexes in animals and for eventual human gene therapy.

  15. The lightest organic radical cation for charge storage in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; Wei, Xiaoliang; Assary, Rajeev S.; Su, Liang; Brushett, Fikile; Cheng, Lei; Liao, Chen; Ferrandon, Magali S.; Wang, Wei; Zhang, Zhengcheng; Burrell, Anthony K.; Curtiss, Larry A.; Shkrob, Ilya A.; Moore, Jeffrey S.; Zhang, Lu

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.

  16. Study of Deformation Effects in the Charged Particle Emission from 46Ti

    CERN Document Server

    Brekiesz, M; Maj, A; Kmiecik, M; Beck, C; Bednarczyk, P; Grebosz, J; Haas, F; Meczynski, W; Rauch, V; Rousseau, M; Zafra, A S; Styczen, J; Thummerer, S; Zieblinski, M; Zuber, K

    2004-01-01

    The 46Ti compound nucleus, as populated by the fusion-evaporation reaction 27Al + 19F at the bombarding energy of 144 MeV, has been investigated by charged particle spectroscopy using the multidetector array ICARE at the VIVITRON tandem facility of the IReS (Strasbourg). The light charged particles have been measured in coincidence with evaporation residues. The CACARIZO code, a Monte Carlo implementation of the statistical-model code CASCADE, has been used to calculate the spectral shapes of evaporated alpha-particles which are compared with the experimental spectra. This comparison indicates the possible signature of large deformations of the compound nucleus.

  17. Charge state dependent fragmentation of gaseous [alpha]-synuclein cations via ion trap and beam-type collisional activation

    Science.gov (United States)

    Chanthamontri, Chamnongsak; Liu, Jian; McLuckey, Scott A.

    2009-06-01

    Ions derived from nano-electrospray ionization (nano-ESI) of [alpha]-synuclein, a 14.5 kDa, 140 amino acid residue protein that is a major component of the Lewy bodies associated with Parkinson's disease, have been subjected to ion trap and beam-type collisional activation. The former samples products from fragmentation at rates generally lower than 100 s-1 whereas the latter samples products from fragmentation at rates generally greater than 103 s-1. A wide range of protein charge states spanning from as high as [M+17H]17+ to as low as [M+4H]4+ have been formed either directly from nano-ESI or via ion/ion proton transfer reactions involving the initially formed protein cations and have been subjected to both forms of collision-induced dissociation (CID). The extent of sequence information (i.e., number of distinct amide bond cleavages) available from either CID method was found to be highly sensitive to protein precursor ion charge state. Furthermore, the relative contributions of the various competing dissociation channels were also dependent upon precursor ion charge state. The qualitative trends in the changes in extent of amide bond cleavages and identities of bonds cleaved with precursor ion charge state were similar for two forms of CID. However, for every charge state examined, roughly twice the primary sequence information resulted from beam-type CID relative to ion trap CID. For example, evidence for cleavage of 86% of the protein amide bonds was observed for the [M+9H]9+ precursor ion using beam-type CID whereas 41% of the bonds were cleaved for the same precursor ion using ion trap CID. The higher energies required to drive fragmentation reactions at rates necessary to observe products in the beam experiment access more of the structurally informative fragmentation channels, which has important implications for whole protein tandem mass spectrometry.

  18. Optimization of charge transfer and transport processes at the CdSe quantum dots/TiO2 nanorod interface by TiO2 interlayer passivation

    Science.gov (United States)

    Jaramillo-Quintero, O. A.; Triana, M. A.; Rincon, M. E.

    2017-06-01

    Surface trap states hinder charge transfer and transport properties in TiO2 nanorods (NRs), limiting its application on optoelectronic devices. Here, we study the interfacial processes between rutile TiO2 NR and CdSe quantum dots (QDs) using TiO2 interlayer passivation treatments. Anatase or rutile TiO2 thin layers were deposited on an NR surface by two wet-chemical deposition treatments. Reduced interfacial charge recombination between NRs and CdSe QDs was observed by electrochemical impedance spectroscopy with the introduction of TiO2 thin film interlayers compared to bare TiO2 NRs. These results can be ascribed to in-gap trap state passivation of the TiO2 NR surface, which led to an increase in open circuit voltage. Moreover, the rutile thin layer was more efficient than anatase to promote a higher photo-excited electron transfer from CdSe QDs to TiO2 NRs due to a large driving force for charge injection, as confirmed by surface photovoltage spectroscopy.

  19. Anionic or Cationic S-Doping in Bulk Anatase TiO 2 : Insights on Optical Absorption from First Principles Calculations

    KAUST Repository

    Harb, Moussab

    2013-05-02

    Using first principles calculations, we investigate the structural, electronic, optical, and energetic properties of S-doped anatase TiO2 bulk systems. To ensure accurate band gap predictions, we use the HSE06 exchange correlation functional, and the absorption spectra are obtained with density functional perturbation (DFPT) theory by employing HSE06. Various oxidation states (anionic and cationic) of sulfur are considered depending on the location in bulk TiO2: in interstitial position or in substitution for either oxygen or titanium atoms. Among the explored structures, two anionic and one cationic configurations induce an improved optical absorption response in the visible region as observed experimentally. Moreover, we undertake a thermodynamic analysis as a function of the chemical potential of oxygen and considering three relevant sulfur chemical doping agents (S 2, H2S, and thiourea). It highlights that cationic configurations (S4+ and S6+) are strongly stabilized in a wide range of oxygen chemical potential (including standard conditions), whereas anionic species are stabilized only at very low chemical potential of oxygen. The metastable cationic Ti(1-2x)O2S2x system involving the presence of S4+ species in substitution for Ti 4+, with the formation of SO2 units, should offer the best compromise between the thermodynamic conditions and the expected optical properties. © 2013 American Chemical Society.

  20. Charge-transfer states and optical transitions at the pentacene-TiO2 interface

    Science.gov (United States)

    Ljungberg, M. P.; Vänskä, O.; Koval, P.; Koch, S. W.; Kira, M.; Sánchez-Portal, D.

    2017-03-01

    Pentacene molecules have recently been observed to form a well-ordered monolayer on the (110) surface of rutile TiO2, with the molecules adsorbed lying flat, head to tail. With the geometry favorable for direct optical excitation and given its ordered character, this interface seems to provide an intriguing model to study charge-transfer excitations where the optically excited electrons and holes reside on different sides of the organic–inorganic interface. In this work, we theoretically investigate the structural and electronic properties of this system by means of ab initio calculations and compute its excitonic absorption spectrum. Molecular states appear in the band gap of the clean TiO2 surface, which enables charge-transfer excitations directly from the molecular HOMO to the TiO2 conduction band. The calculated optical spectrum shows a strong polarization dependence and displays excitonic resonances corresponding to the charge-transfer states, which could stimulate new experimental work on the optical response of this interface.

  1. Role of Adsorbed Water on Charge Carrier Dynamics in Photoexcited TiO2

    Science.gov (United States)

    2017-01-01

    Overall photocatalytic water splitting is one of the most sought after processes for sustainable solar-to-chemical energy conversion. The efficiency of this process strongly depends on charge carrier recombination and interaction with surface adsorbates at different time scales. Here, we investigated how hydration of TiO2 P25 affects dynamics of photogenerated electrons at the millisecond to minute time scale characteristic for chemical reactions. We used rapid scan diffuse-reflectance infrared Fourier transform spectroscopy (DRIFTS). The decay of photogenerated electron absorption was substantially slower in the presence of associated water. For hydrated samples, the charge carrier recombination rates followed an Arrhenius-type behavior in the temperature range of 273–423 K; these became temperature-independent when the material was dehydrated at temperatures above 423 K or cooled below 273 K. A DFT+U analysis revealed that hydrogen bonding with adsorbed water stabilizes surface-trapped holes at anatase TiO2(101) facet and lowers the barriers for hole migration. Hence, hole mobility should be higher in the hydrated material than in the dehydrated system. This demonstrates that adsorbed associated water can efficiently stabilize photogenerated charge carriers in nanocrystalline TiO2 and suppress their recombination at the time scale up to minutes.

  2. Energetics and bonding in aluminosilicate rings with alkali metal and alkaline-earth metal charge-compensating cations.

    Science.gov (United States)

    Gatti, Carlo; Ottonello, Giulio; Richet, Pascal

    2012-08-23

    The stabilizing effect of alkali and alkaline-earth metal ions on the oxygen donors of four- and six-membered faujausite-like rings has been calculated in terms of Kohn-Sham core-level (O1s) energy shifts with respect to these same complexes without cations. The results confirm and complement earlier investigations by Vayssilov and co-workers where Na(+) and K(+) were the only complexing cations. The oxygen donor centers in six-membered rings are stabilized by -3.6 ± 0.4, -3.9 ± 0.5, -7.3 ± 0.1, and -7.6 ± 0.2 eV by K(+), Na(+), Ca(2+), and Mg(2+) adions, respectively. The energy shifts are even greater for four-membered rings where the stabilization effects attain -3.7 ± 0.1, -4.1 ± 0.1, -8.1 ± 0.1, and -9.0 ± 0.1 eV, respectively. These effects are also observed on the low-lying σ-bonding and antibonding molecular orbitals (MOs) of the oxygen framework, but in a less systematic fashion. Clear relationships with the core-level shifts are found when the effects of alkali metal complexation are evaluated through electron localization/delocalization indices, which are defined in terms of the whole wave function and not just of the individual orbitals. Complexation with cations not only involves a small but significant electron sharing of the cation with the oxygen atoms in the ring but also enhances electron exchange among oxygen atoms while reducing that between the O atoms and the Si or Al atoms bonded to them. Such changes slightly increase from Na to K and from Mg to Ca, whereas they are significantly enhanced for alkaline-earth metals relative to alkali metals. With respect to Al-free complexes, Si/Al substitution and cation charge compensation generally enhance electron delocalization among the O atoms, except between those that are linked through an Al atom, and cause either an increased or a decreased Si-O ionicity (smaller/higher electron exchange) depending on the position of O in the chain relative to the Al atom(s). The generally increased

  3. Charge Control in Two Isostructural Anionic/Cationic Co(II) Coordination Frameworks for Enhanced Acetylene Capture.

    Science.gov (United States)

    Chen, Di-Ming; Tian, Jia-Yue; Liu, Chun-Sen; Chen, Min; Du, Miao

    2016-10-10

    Two isostructural Co(II) -based metal-organic frameworks (MOFs) with the opposite framework charges have been constructed, which can be simply controlled by changing the tetrazolyl or triazolyl terminal in two bifunctional ligands. Notably, the cationic MOF 2 can adsorb much more C2 H2 than the anionic MOF 1 with an increase of 88 % for C2 H2 uptake at 298 K in spite of more active nitrogen sites in 1. Theoretical calculations indicate that both nitrate and triazolyl play vital roles in C2 H2 binding and the C2 H2 adsorption isotherm confirms that the enhanced C2 H2 uptake for 2 (225 and 163 cm(3) g(-1) at 273 and 298 K) is exceptionally high for MOF materials without open metal sites or uncoordinated polar atom groups on the frameworks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Towards efficient photoinduced charge separation in carbon nanodots and TiO2 composites in the visible region

    NARCIS (Netherlands)

    Sun, M.; Qu, S.; Ji, W.; Jing, P.; Li, D.; Qin, L.; Cao, J.; Zhang, H.; Zhao, J.; Shen, D.

    2015-01-01

    In this work, photoinduced charge separation behaviors in non-long-chain-molecule-functionalized carbon nanodots (CDs) with visible intrinsic absorption (CDs-V) and TiO2 composites were investigated. Efficient photoinduced electron injection from CDs-V to TiO2 with a rate of 8.8 x 10(8) s(-1) and

  5. Towards efficient photoinduced charge separation in carbon nanodots and TiO2 composites in the visible region

    NARCIS (Netherlands)

    Sun, M.; Qu, S.; Ji, W.; Jing, P.; Li, D.; Qin, L.; Cao, J.; Zhang, H.; Zhao, J.; Shen, D.

    2015-01-01

    In this work, photoinduced charge separation behaviors in non-long-chain-molecule-functionalized carbon nanodots (CDs) with visible intrinsic absorption (CDs-V) and TiO2 composites were investigated. Efficient photoinduced electron injection from CDs-V to TiO2 with a rate of 8.8 x 10(8) s(-1) and ef

  6. Actinide cation-cation complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Nancy Jane [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+•UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+•UO22+, NpO2+•Th4+, PuO2+•UO22+, and PuO2+•Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ~0.8 M-1.

  7. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-01

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications.

  8. Tuning cationic composition of La:EuTiO3-δ films

    Science.gov (United States)

    Shkabko, Andrey; Xu, Chencheng; Meuffels, Paul; Gunkel, Felix; Dittmann, Regina; Weidenkaff, Anke; Waser, Rainer

    2013-11-01

    Eu1-xLaxTiO3-δ (x = 0, 0.3, 0.5) films were deposited in a p(Ar(96%)/H2(4%)) = 4 × 10-4 mbar atmosphere on (LaAlO3)0.3-(Sr2AlTaO6)0.7 vicinal substrates (0.1°). Reflection high-energy electron diffraction oscillation characteristics of a layer-by-layer growth mode were observed for stoichiometric and Ti-rich films and the laser fluence suited to deposit stoichiometric films was identified to be 1.25 J/cm2 independent of the La content. The variety of resulting film compositions follows the general trend of Eu-enrichment for low laser and Ti-enrichment for high laser fluence. X-ray diffraction confirms that all the films are compressively strained with a general trend of an increase of c-axis elongation for non-stoichiometric films. The surfaces of non-stoichiometric films have an increased roughness, the highest sheet resistances, exhibit the presence of islands, and are Eu3+ rich for films deposited at low laser fluence.

  9. Chiral charge and orbital order in 1T-TiSe2

    Science.gov (United States)

    van Wezel, Jasper

    2012-02-01

    Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density on the other hand, was discovered only very recently [1,2]. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we resolve this paradox by identifying the microscopic mechanism underlying the formation of the chiral charge density wave in 1T-TiSe2. It is shown that the emergence of chirality is accompanied by the simultaneous formation of orbital order [3] We show that this type of combined orbital and charge order may in fact be expected to be a generic property of a broad class of charge ordered materials and discuss the prerequisites for finding chiral charge order in other materials. [4pt] [1] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda and S. Tanda, Phys. Rev. Lett. 105, 176401 (2010). [2] J. van Wezel and P. B. Littlewood, Physics 3, 87 (2010). [3] J. van Wezel, arXiv:1106.1930v1 (2011).

  10. Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting.

    Science.gov (United States)

    Kim, Dohyun; Karns, Kelly; Tia, Samuel Q; He, Mei; Herr, Amy E

    2012-03-06

    We report a novel protein immobilization matrix for fully integrated microfluidic Western blotting (WB). The electrostatic immobilization gel (EIG) enables immobilization of all proteins sized using cetyl trimethylammonium bromide polyacrylamide gel electrophoresis (CTAB-PAGE), for subsequent electrophoretic probing with detection affinity reagents (e.g., labeled antibodies). The "pan-analyte" capture strategy introduced here uses polyacrylamide gel grafted with concentrated point charges (zwitterionic macromolecules), in contrast to existing microfluidic WB strategies that rely on a sandwich immunoassay format for analyte immobilization and detection. Sandwich approaches limit analyte immobilization to capture of only a priori known targets. A charge interaction mechanism study supports the hypothesis that electrostatic interaction plays a major role in analyte immobilization on the EIG. We note that protein capture efficiency depends on both the concentration of copolymerized charges and ionic strength of the gel buffer. We demonstrate pan-analyte immobilization of sized CTAB-laden model proteins (protein G, ovalbumin, bovine serum albumin, β-galactosidase, lactoferrin) on the EIG with initial capture efficiencies ranging from 21 to 100%. Target proteins fixed on the EIG (protein G, lactoferrin) are detected using antibody probes with signal-to-noise ratios of 34 to 275. The approach advances protein immunoblotting performance through 200× reduction on sample consumption, 12× reduction in assay duration, and automated assay operation, compared to slab-gel WB. Using the microfluidic WB assay, assessment of lactoferrin in human tear fluid is demonstrated with a goal of advancing toward nonbiopsy-based diagnosis of Sjögren's Syndrome, an autoimmune disease.

  11. Dual phase TiO(x)N(y)/TiN charge trapping layer for low-voltage and high-speed flash memory application.

    Science.gov (United States)

    Zhang, Gang; Yoo, Won Jong

    2009-12-01

    Flash memory using a dual phase TiO(x)N(y)/TiN charge trapping layer has been fabricated and its electrical properties were investigated. The TiO(x)N(y)/TiN layer was formed by partial oxidation of a pre-deposited TiN layer, and the formation of TiO(x)N(y)/SiO(x)N(y) was confirmed by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses. The enlarged conduction (deltaphi(c) = 3.6 eV) and valence (deltaphi(v) = 2.5 eV) band offsets of the TiO(x)N(y)/TiN to SiO2 enabled low-voltage (+/- 6 V) and fast programming/erasing (P: 2.7 x 10(4) V/s and E: -5.1 x 10(4) V/s) operations, while the transition layer suppressed the trapped charge leakage, giving rise to good 10-year data retention with less than 35% V(th) decay.

  12. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.

    Science.gov (United States)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Yang, Shuang-Yuan

    2014-11-26

    Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

  13. Charge transfer and mixed-valence behavior in phtalocyanine-dimer cations.

    Science.gov (United States)

    Monari, Antonio; Evangelisti, Stefano; Leininger, Thierry

    2010-09-28

    Phtalocyanine compounds deserved a considerable interest in recent times, particularly because of their possible use in the field of nanoelectronics. In particular, the charge mobility (of both electrons and holes) in phtalocyanine stacked arrangements has been recently extensively investigated. The present work focuses on the study of the hole-transfer mechanism between two phtalocyanine monomers. For an interdisk distance larger than 4.5 bohrs, the eclipsed dimer exhibits a mixed-valence behavior, with a saddle point transition state separating two equivalent minima. This behavior, however, is strongly dependent on the relative angle between the disks. In particular, the mixed-valence character of the compound is strongly enhanced for arrangements that are far from the eclipsed geometry. Moreover, for values of the angle close to π/8 and 3π/8, the ground and excited transition states have exactly the same energy, thus implying the presence of a conical intersection. These results can have deep implication in the charge transfer along phtalocyanine chains.

  14. Ductile-brittle transition behavior of V-4Cr-4Ti irradiated in the dynamic helium charging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Nowicki, L.J.; Busch, D.E. [Argonne National Lab., Chicago, IL (United States)] [and others

    1995-04-01

    The objective of this work is to determine the effect of simultaneous displacement damage and dynamically charged helium on the ductile-brittle transition behavior of V-4Cr-4Ti specimens irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE).

  15. Effect of Nanoparticle Surface Modification and Filling Concentration on Space Charge Characteristics in TiO2/XLPE Nanocomposites

    OpenAIRE

    Youyuan Wang; Kun Xiao; Can Wang; Lijun Yang; Feipeng Wang

    2016-01-01

    This paper focuses on the space charge characteristics in TiO2/cross-linked polyethylene (XLPE) nanocomposites; the unmodified and modified by dimethyloctylsilane (MDOS) TiO2 nanoparticles were added to XLPE matrix with different mass concentrations (1 wt%, 3 wt%, and 5 wt%). The scanning electron microscope (SEM) showed that the MDOS coupling agent could improve the compatibility between TiO2 nanoparticles and XLPE matrix to some extent and reduce the agglomeration of TiO2 nanoparticles comp...

  16. Interaction of cationic hydrophobic surfactants at negatively charged surfaces investigated by atomic force microscopy.

    Science.gov (United States)

    McNamee, Cathy E; Butt, Hans-Jürgen; Higashitani, Ko; Vakarelski, Ivan U; Kappl, Michael

    2009-10-06

    Atomic force microscopy was used to study the adsorption of the surfactant octadecyl trimethyl ammonium chloride (C18TAC) at a low concentration (0.03 mM) to negatively charged surfaces in water. Atomic force microscopy tips were functionalized with dimethyloctadecyl(3-tripropyl)ammonium chloride (C18TAC-si) or N-trimethoxysilylpropyl-N,N,N-trimethylammomium chloride (hydrophilpos-si) to facilitate imaging of the adsorbed surfactant without artifacts. Tapping mode images and force measurements revealed C18TAC patches, identified as partial surfactant bilayers or hemimicelles. The forces controlling the adsorption process of the C18TAC to a negatively charged surface were investigated by measuring the forces between a C18TAC-si or a hydrophilpos-si tip and a silica surface in the presence of varying concentrations of either NaCl or NaNO3. Screening of forces with an increasing NaCl concentration was observed for the C18TAC-si and hydrophilpos-si tips, proving an electrostatic contribution. Screening was also observed for the hydrophilpos-si tip in NaNO3, whereas a long-range attraction was observed for the C18TAC-si tip for all NaNO3 concentrations. These results indicate that screening of the forces for the C18TAC-si tip depended on the type and/or size of the anion, possibly due to a different probability of the anions to enter the silane layers. The interaction of C18TAC patches with C18TAC-si tips in the presence of NaCl and the interaction of the patches with hydrophilpos-si tips in either NaCl or NaNO3 were repulsive and independent of the number of force curves measured, indicating a stable, positively charged C18TAC patch. However, the forces measured between the patches and a C18TAC-si tip in NaNO3 depended on the number of force curves measured, indicating a change in patch structure induced by the first interaction.

  17. Interactions of amino acids with adatoms(Ti, C, O) decorated graphene via effect of charging

    Science.gov (United States)

    Salmankurt, Bahadır; Gürel, Hikmet Hakan

    2017-02-01

    As amino acids take an important role in biology, it is envisaged that understanding of their interactions with nanomate-rials can resolve critical problems in the field of biomedicine. Graphene, single atom thick hexagonal lattice of sp2-bonded carbon, can be used for this purpose. The remarkable properties of graphene sheets could facilitate their application in areas like hydrogen technology, electronics, and sensing. In this work, we report density functional theory calculations of the adsorption of Histidine and Leucine molecules on pristine and decorated (Ti,C and O) graphene. The obtained binding energies of molecules on graphene surface are in good agreement previous studies. The chemisorption is achieved when Graphene is decorated with Ti and C. It is also shown that how modify structural properties of the molecules on pristine Graphene by applied charging for the first time.

  18. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting.

    Science.gov (United States)

    Cowan, Alexander J; Leng, Wenhua; Barnes, Piers R F; Klug, David R; Durrant, James R

    2013-06-14

    There is intense interest in developing new novel nanostructured photoanodes for water splitting. It is therefore important that methods to analyze the effect of nanostructuring on water splitting yields are developed in order to rationalize the relative merits of this approach for different materials. In this study the dependence of charge separation efficiency (η(sep)) on potential during photoelectrochemical water splitting at pH 2 has been quantified in a model electrode system (nanocrystalline, mesoporous TiO2) using two independent methods. These are (i) analysis of incident photon conversion efficiency (IPCE) measurements and (ii) transient absorption (TA) spectroscopy measurements. The techniques provide good agreement with each other and show that a low maximum value of η(sep) (~0.18) is the primary cause of the low IPCE for water oxidation on these nc-TiO2 electrodes.

  19. Visible Light Absorption of Binuclear TiOCoII Charge-Transfer UnitAssembled in Mesoporous Silica

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hongxian; Frei, Heinz

    2007-01-30

    Grafting of CoII(NCCH3)2Cl2 onto mesoporous Ti-MCM-41 silicain acetonitrile solution affords binuclear Ti-O-CoII sites on the poresurface under complete replacement of the precursor ligands byinteractions with anchored Ti centers and the silica surface. The CoIIligand field spectrum signals that the Co centers are anchored on thepore surface in tetrahedral coordination. FT-infrared action spectroscopyusing ammonia gas adsorption reveals Co-O-Si bond modes at 831 and 762cm-1. No Co oxide clusters are observed in the as-synthesized material.The bimetallic moieties feature an absorption extending from the UV intothe visible to about 600 nm which is attributed to the TiIV-O-CoII?3TiIII-O-CoIII metal-to-metal charge-transfer (MMCT) transition. Thechromophore is absent in MCM-41 containing Ti and Co centers isolatedfrom each other; this material was synthesized by grafting CoII onto aTi-MCM-41 sample with the Ti centers protected by a cyclopentadienylligand. The result indicates that the appearance of the charge-transferabsorption requires that the metal centers are linked by an oxo bridge,which is additionally supported by XANES spectroscopy. The MMCTchromophore of Ti-O-CoII units has sufficient oxidation power to serve asvisible light electron pump for driving multi-electron transfer catalystsof demanding uphill reactions such as water oxidation.

  20. Effect of Nanoparticle Surface Modification and Filling Concentration on Space Charge Characteristics in TiO2/XLPE Nanocomposites

    Directory of Open Access Journals (Sweden)

    Youyuan Wang

    2016-01-01

    Full Text Available This paper focuses on the space charge characteristics in TiO2/cross-linked polyethylene (XLPE nanocomposites; the unmodified and modified by dimethyloctylsilane (MDOS TiO2 nanoparticles were added to XLPE matrix with different mass concentrations (1 wt%, 3 wt%, and 5 wt%. The scanning electron microscope (SEM showed that the MDOS coupling agent could improve the compatibility between TiO2 nanoparticles and XLPE matrix to some extent and reduce the agglomeration of TiO2 nanoparticles compared with unmodified TiO2 nanoparticles; the volume resistivity testing indicated that the volume resistivity of TiO2/XLPE nanocomposites was higher than Pure-XLPE and increased with the increase of filling concentrations. According to the pulsed electroacoustic (PEA measurements, it was concluded that the space charge accumulation was suppressed by filling TiO2 nanoparticles and the distribution of electric field in samples was improved greatly. In addition, it was found that the injection of homocharge was more obvious in MDOS-TiO2/XLPE than that in UN-TiO2/XLPE and the homocharge injection decreased with the increase of filling concentration.

  1. Effect of dynamically charged helium on tensile properties of V-5Ti, V-4Cr-4Ti, and V-3Ti-1Si

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)

    1996-04-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm He/dpa by the decay of tritium during irradiation to 18-31 dpa at 424-600{degrees}C in the lithium-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-5Ti, V-4Cr-4Ti, V-3Ti-1Si. The effect of helium on tensile strength and ductility was insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room temperature ductility of DHCE specimens was higher than that on non-DHCE specimens, whereas strength was lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to results of tritium-trick experiments, in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE.

  2. TiO2 coated CuO nanowire array: Ultrathin p-n heterojunction to modulate cationic/anionic dye photo-degradation in water

    Science.gov (United States)

    Scuderi, Viviana; Amiard, Guillaume; Sanz, Ruy; Boninelli, Simona; Impellizzeri, Giuliana; Privitera, Vittorio

    2017-09-01

    We report the photocatalytic efficiency of CuO nanowires covered with a thin TiO2 film, studied by dyes degradation in water. The CuO nanowires were synthesized on Cu foils by thermal oxidation. A subsequent TiO2 deposition (7, 15, 30, 50 nm thick) was performed by atomic layer deposition, developing an ultrathin p-n heterojunction. A structural characterization was obtained by X-ray diffraction analysis, scanning and transmission electron microscopies equipped with energy dispersive x-ray analysis. The photocatalytic activity of the investigated materials was tested by the degradation of a cationic (methylene blue) or anionic (methyl orange). The relevance of the reported results was discussed in relation with the effects of the ultrathin p-n TiO2/CuO heterojunction. The two semiconductors are in intimate connection increasing the exposed surface and only TiO2 is directly in contact with water. This allowed to study systematically the effect of the electric filed generated by the p-n junction on the interface TiO2/liquid and therefore to modulate cationic/anionic dyes photo-degradation in water.

  3. Exploring the Role of La Codoping beyond Charge Compensation for Enhanced Hydrogen Evolution by Rh-SrTiO3.

    Science.gov (United States)

    Modak, Brindaban; Ghosh, Swapan K

    2015-08-27

    In this theoretical study, we investigate recent observation of enhancement of hydrogen evolution efficiency of Rh-doped SrTiO3 due to codoping with La at the Sr lattice site. Using hybrid density functional theory, we have systematically studied the electronic structure of (Rh, La)-codoped SrTiO3 and compared with that of Rh-doped SrTiO3, La-doped SrTiO3, and undoped SrTiO3. The aim of the present study has been to explore the role of different factors toward the observed enhanced photoactivity of (Rh, La)-codoped SrTiO3. Doping with only Rh significantly reduces the photoabsorption energy by introducing localized acceptor states between the valence band and conduction band. Unfortunately, these states act as efficient sources for charge carrier trapping. Besides, the oxygen vacancy found to be present in the Rh-doped SrTiO3 as a charge compensating defect also accelerates the electron-hole recombination rate. We have shown that codoping with La and Rh leads to the formation of clean band structure without encountering any midgap states. Introduction of La into the Rh-doped SrTiO3 not only reduces the quantity of Rh(4+) species but also suppresses the oxygen vacancy due to formation of a charge-compensated system. The presence of La favors Rh doping into the crystal structure of SrTiO3 by reducing the formation energy. Moreover, the conduction band minima are found to be shifted in the upward direction significantly due to codoping with Rh and La, thereby increasing the reducing behavior at the conduction band. This leads to enhancement of hydrogen evolution activity of SrTiO3 during photocatalytic water splitting under visible light.

  4. Charge transfer between biogenic jarosite derived Fe(3+)and TiO2 enhances visible light photocatalytic activity of TiO2.

    Science.gov (United States)

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe(3+) can be used to enhance the photocatalytic activity of TiO2. This will allow us to harness a waste product from the mines, and utilize it to enhance TiO2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO2/jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO2, biogenic jarosite and mechanically mixed sample of jarosite and TiO2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO2 and jarosite derived Fe(3+) as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments.

  5. Enhanced charge storage by the electrocatalytic effect of anodic TiO2 nanotubes

    Science.gov (United States)

    Zhang, Guoge; Huang, Chuanjun; Zhou, Limin; Ye, Lin; Li, Wenfang; Huang, Haitao

    2011-10-01

    Ordered titania nanotube (TNT) arrays were fabricated by anodization of titanium with a very fast voltage ramp speed. Co(OH)2/TNT nanocomposite was synthesized by cathodic deposition using the as-anodized TNT as the substrate. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, crystalline structure and chemical state. The capacitive characteristics were investigated by cyclic voltammetry (CV), charge-discharge tests, and electrochemical impedance spectroscopy (EIS). Thanks to the electrocatalytic effect of the as-anodized TNTs on the reduction of Co(OH)2, the Co(OH)2/TNT composite electrode exhibits a significantly enhanced charge storage capacity (an increase of 73%) when compared with Co(OH)2/Ti (titanium as the deposition substrate). The occurrence of such an electrocatalytic effect is suggested to be related to the nano-sized TiO2 crystals (rutile) embedded in organized amorphous TNTs. Co(OH)2/TNT demonstrates enhanced specific energy, high rate capability and good cyclability, and can be a potential electrode of choice for supercapacitors.

  6. Enhanced charge storage by the electrocatalytic effect of anodic TiO₂ nanotubes.

    Science.gov (United States)

    Zhang, Guoge; Huang, Chuanjun; Zhou, Limin; Ye, Lin; Li, Wenfang; Huang, Haitao

    2011-10-05

    Ordered titania nanotube (TNT) arrays were fabricated by anodization of titanium with a very fast voltage ramp speed. Co(OH)(2)/TNT nanocomposite was synthesized by cathodic deposition using the as-anodized TNT as the substrate. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, crystalline structure and chemical state. The capacitive characteristics were investigated by cyclic voltammetry (CV), charge-discharge tests, and electrochemical impedance spectroscopy (EIS). Thanks to the electrocatalytic effect of the as-anodized TNTs on the reduction of Co(OH)(2), the Co(OH)(2)/TNT composite electrode exhibits a significantly enhanced charge storage capacity (an increase of 73%) when compared with Co(OH)(2)/Ti (titanium as the deposition substrate). The occurrence of such an electrocatalytic effect is suggested to be related to the nano-sized TiO(2) crystals (rutile) embedded in organized amorphous TNTs. Co(OH)(2)/TNT demonstrates enhanced specific energy, high rate capability and good cyclability, and can be a potential electrode of choice for supercapacitors.

  7. Photogeneration of charged ferroelectric domains in quantum dielectric SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Y. [Solid State Theory Division, Institute of Materials Structure Science, KEK, Graduate University for Advanced Study and CREST JST, 1-1, Oho, Tuskuba, Ibaraki, 305-0801 (Japan); Nasu, K. [Solid State Theory Division, Institute of Materials Structure Science, KEK, Graduate University for Advanced Study and CREST JST, 1-1, Oho, Tuskuba, Ibaraki, 305-0801 (Japan)]. E-mail: knasu@post.kek.jp

    2005-04-15

    In connection with the recent experimental discoveries on photo-enhancements of the electronic conductivity and the quasi-static electric susceptibility in SrTiO{sub 3}, we theoretically study a photogeneration mechanism of charged ferroelectric domains in this perovskite-type quantum dielectric. The photogenerated electron, being quite itinerant in the 3d band of Ti{sup 4+}, is assumed to couple weakly but quadratically with soft-anharmonic T{sub 1u} phonons in this quantum dielectric. This photogenerated electron is also assumed to couple strongly but linearly with the breathing(A{sub 1g}) type high-energy phonons. Using a discrete model, we will show that these two types of electron-phonon couplings result in two types of polarons, a 'super-para-electric large polaron' with a quasi-global parity violation, and an 'off-center type self-trapped polaron' with only a local parity violation. We will also show that this super-para-electric large polaron is nothing else but a singly charged (e{sup -}) and conductive ferroelectric domain with a quasi-macroscopic size. This large polaron is also shown to aggregate with other same polarons, resulting in large bipolarons and their clusters.

  8. Improved charge transportation at PbS QDs/TiO2 interface for efficient PEC hydrogen generation.

    Science.gov (United States)

    Ikram, Ashi; Sahai, Sonal; Rai, Snigdha; Dass, Sahab; Shrivastav, Rohit; Satsangi, Vibha R

    2016-06-21

    The effect of lead sulfide (PbS) quantum dots (QDs) on the photoelectrochemical properties of TiO2 with a varied number of SILAR cycles has been investigated. The study has also highlighted physical processes including band alignment, charge recombination and transportation for a PbS QDs/TiO2 interface. The inclusion of PbS QDs underneath TiO2 thin film has significantly enhanced the PEC response due to a higher number of photogenerated charge carriers along with the efficient separation and facilitation of these carriers towards their respective electrodes. The uniqueness of the work lies in the high stability of the system as PbS QDs lie beneath the TiO2 thin film, compared to the commonly used QDs sensitization over metal oxide, along with a good photoresponse.

  9. Imaging the photoinduced charge injection in CdS/TiO2 nanoparticles by the sequential fluorescence mapping method

    Science.gov (United States)

    Frederice, Rafael; Lencione, Diego; Gehlen, Marcelo H.

    2017-03-01

    The combination of a sensitizer and TiO2 nanoparticles forming a photocatalytic material is a central issue in many fields of applied photochemistry. The charge injection of emissive sensitizers into the conduction band of the semiconductor TiO2 may form a photoactive region that becomes dark, or it has a very low emission signal due to the generation of sensitizer radicals. However, by sequential coupling of a selected photoredox dye, such as resazurin, the dark region may become fluorescent at the interfaces where the charge injection has taken place due to the concomitant formation of fluorescent resorufin by cascade electron transfer. Using this strategy and a total internal reflection fluorescence microscopy (TIRFM) image, the charge injection in TiO2/CdS and SiO2/TiO2/CdS nanoparticles is investigated The method allows the charge injection efficiency of the excited CdS into TiO2 to be evaluated qualitatively, explaining the differences observed for these photocatalytic materials in H2 generation.

  10. Splitting of the Ti-3d bands of TiSe2 in the charge-density wave phase

    Science.gov (United States)

    Ghafari, A.; Petaccia, L.; Janowitz, C.

    2017-02-01

    Very high resolution angular resolved photoemission (ARPES) spectra on TiSe2 in two distinct polarization geometries (vertical and horizontal) at temperatures between 300 K and 22 K enabled the observation of details of bands near the Fermi level not reported so far. Calculations of the electronic band structure based on density functional theory (DFT) using B3LYP hybrid functional and MBJ potential (with and without spin-orbit coupling) were performed to obtain the orbital symmetry and dispersion. Two degenerate conduction bands (CB's) were observed at the Γ-point, a weak CB- emission at the A-point, and two non degenerate CB's (i.e. splitting of CB) at the M/L-point of the Brillouin Zone (BZ). The splitting was detected at L for both polarizations, while at M remarkably only for horizontal polarization. These results cannot be fully accounted for by current theories for the charge density wave (CDW) and point to a reduced symmetry of the electronic states, possibly due to the chiral CDW.

  11. Inhibition of localized corrosion of Ni–Ti superelastic alloy in NaCl solution by hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Ken’ichi, E-mail: yokken@post.matsc.kyutech.ac.jp [Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Kitakyushu 804-8550 (Japan); Hirata, Yuki [Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Kitakyushu 804-8550 (Japan); Inaba, Toshiaki; Mutoh, Kenichiro [Furukawa Techno Material Co., Ltd., 5-1-8, Higashi-yawata, Hiratsuka 254-0016 (Japan); Sakai, Jun’ichi [Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan); Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26, Nishiwaseda, Shinjuku-ku, Tokyo 169-0051 (Japan)

    2015-08-05

    Highlights: • Hydrogen charging inhibits localized corrosion of Ni–Ti superelastic alloy. • Increasing hydrogen content increases anodic current density. • Inhibition of localized corrosion remains after polishing or superelastic deformation. • Small amount of hydrogen charging may become new surface modification. - Abstract: Inhibition of the localized corrosion of Ni–Ti superelastic alloy in 0.9% NaCl solution has been attempted by charging with a small amount of hydrogen, which causes negligible hydrogen embrittlement. Upon a small amount of hydrogen charging, no pitting potential is observed in anodic polarization curves. From scanning electron microscope observations, localized corrosion is inhibited on the entire side surface of charged specimens. With increasing amount of charged hydrogen, the corrosion potential shifts in the less noble direction and the current density increases under anodic applied potential. When the hydrogen charged specimens are aged in the atmosphere at room temperature, the corrosion potential becomes almost the same as that of the non-charged specimen, but the inhibition of localized corrosion remains. The present study indicates that a small amount of hydrogen charging is effective for inhibiting the localized corrosion of the alloy in NaCl solution.

  12. Hydrogen Charging Effects in Pd/Ti/TiO2/Ti Thin Films Deposited on Si(111 Studied by Ion Beam Analysis Methods

    Directory of Open Access Journals (Sweden)

    K. Drogowska

    2012-01-01

    Full Text Available Titanium and titanium dioxide thin films were deposited onto Si(111 substrates by magnetron sputtering from a metallic Ti target in a reactive Ar+O2 atmosphere, the composition of which was controlled by precision gas controllers. For some samples, 1/3 of the surface was covered with palladium using molecular beam epitaxy. Chemical composition, density, and layer thickness of the layers were determined by Auger electron spectroscopy (AES and Rutherford backscattering spectrometry (RBS. The surface morphology was studied using high-resolution scanning electron microscopy (HRSEM. After deposition, smooth, homogenous sample surfaces were observed. Hydrogen charging for 5 hours under pressure of 1 bar and at temperature of 300°C results in granulation of the surface. Hydrogen depth profile was determined using secondary ion mass spectrometry (SIMS and nuclear Reaction Analysis (N-15 method, using a 15N beam at and above the resonance energy of 6.417 MeV. NRA measurements proved a higher hydrogen concentration in samples with partially covered top layers, than in samples without palladium. The highest value of H concentration after charging was about 50% (in the palladium-covered part and about 40% in titanium that was not covered by Pd. These values are in good agreement with the results of SIMS measurements.

  13. Direct observation of photoinduced charge redistribution of WO3-TiO2 double layer nanocomposite films by photoassisted Kelvin force microscopy

    Science.gov (United States)

    Wang, S. J.; Cheng, G.; Jiang, X. H.; Li, Y. C.; Huang, Y. B.; Du, Z. L.

    2006-05-01

    The microscopic photoinduced charge redistribution between heterogeneous semiconductor nanofilms of WO3 and TiO2 double layers (written as WO3-TiO2 nanocomposite films) was directly observed using Kelvin probe force microscopy (KFM) coupled with an UV light source. Under illumination the surface potential morphologies of WO3-TiO2 nanocomposite films changed from 162to592mV, which was associated with the photoinduced charge transfer between WO3 and TiO2 nanoparticles due to the energy level alignment between them. This improved technique of photoassisted KFM was presented to visualize the photoinduced charge transfer between different semiconductor nanoparticles on microscopic scale.

  14. Charge recombination reduction in dye-sensitized solar cells by depositing ultrapure TiO{sub 2} nanoparticles on 'inert' BaTiO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Min [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Shi Jingying; Zhang Wenhua; Han Hongxian [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Li Can, E-mail: canli@dicp.ac.cn [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China)

    2011-08-25

    Highlights: > TiO{sub 2} nanoparticles supported on 'inert' BaTiO{sub 3} films as the photoanode of the DSSC. > Low recombination losses in DSSC with BaTiO{sub 3}/TiO{sub 2}(4) electrode. > Shallow trap states distributions in DSSC with BaTiO3/TiO{sub 2}(4) electrode. - Abstract: Ultrapure TiO{sub 2} nanoparticles ({approx}5 nm in size) were supported on 'inert' BaTiO{sub 3} films by TiCl{sub 4} treatment, which was used to fabricate dye-sensitized solar cells (DSSCs). The optimized electrode, designated as BaTiO{sub 3}/TiO{sub 2}(4), was obtained upon four cycles of TiCl{sub 4} treatment. DSSC with BaTiO{sub 3}/TiO{sub 2}(4) electrode exhibits superior power conversion efficiency (PCE) compared to that with conventional anatase TiO{sub 2} ({approx}25 nm in size) electrode. The interfacial charge recombination kinetics was investigated by electrochemical impedance spectroscopy (EIS) and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). In contrast to DSSC with anatase TiO{sub 2} electrode, the dramatically enhanced electron lifetime for DSSC with BaTiO{sub 3}/TiO{sub 2}(4) electrode could be attributed to the decrease of recombination reaction at the TiO{sub 2} photoelectrode/electrolyte interface. It is proposed that the lower interfacial charge recombination can be related to the relatively shallower trap distributions in DSSC with BaTiO{sub 3}/TiO{sub 2}(4) electrode.

  15. BiOI/TiO{sub 2}-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingyun; Daoud, Walid A., E-mail: wdaoud@cityu.edu.hk

    2015-01-01

    Highlights: • BiOI/TiO{sub 2} photoanodes were fabricated by a simple solvothermal/hydrothermal method. • BiOI/TiO{sub 2} (PVP) showed a 13-fold increase in photocurrent density compared to TiO{sub 2}. • Charge transport kinetics within the BiOI/TiO{sub 2} heterojunctions are discussed. - Abstract: A series of BiOI/TiO{sub 2}-nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO{sub 2} nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV–vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO{sub 2} (PVP) as photoanode can reach a short current density (J{sub sc}) of 0.13 mA/cm{sup 2} and open circuit voltage (V{sub oc}) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO{sub 2}, the IPCE of BiOI/TiO{sub 2} (PVP) increased 4–5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed.

  16. Ion transport with charge-protected and non-charge-protected cations in alcohol-based electrolytes using the compensated Arrhenius formalism. Part I: ionic conductivity and the static dielectric constant.

    Science.gov (United States)

    Petrowsky, Matt; Fleshman, Allison; Frech, Roger

    2012-05-17

    The temperature dependence of ionic conductivity and the static dielectric constant is examined for 0.30 m TbaTf- or LiTf-1-alcohol solutions. Above ambient temperature, the conductivity increases with temperature to a greater extent in electrolytes whose salt has a charge-protected cation. Below ambient temperature, the dielectric constant changes only slightly with temperature in electrolytes whose salt has a cation that is not charge-protected. The compensated Arrhenius formalism is used to describe the temperature-dependent conductivity in terms of the contributions from both the exponential prefactor σo and Boltzmann factor exp(-Ea/RT). This analysis explains why the conductivity decreases with increasing temperature above 65 °C for the LiTf-dodecanol electrolyte. At higher temperatures, the decrease in the exponential prefactor is greater than the increase in the Boltzmann factor.

  17. Space charge polarization modulated instability of low frequency permittivity in CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Wu, Kangning; Huang, Yuwei; Li, Jianying; Li, Shengtao

    2017-07-01

    A low frequency dielectric relaxation process of CaCu3Ti4O12 ceramics, which is generally overlapped by dc conduction in traditional dielectric spectra, is detected and clarified based on an improved analytical methodology in this letter. This relaxation process remarkably contributes to instability of low frequency permittivity and it clearly demonstrates the correlation between charge migration and space charge polarization. It is revealed that conduction will be achieved if carriers migrate and combine in the electrodes, while space charge polarization will be achieved if carriers migrate to the electrodes without combination.

  18. Ionic charge, radius, and potential control root/soil concentration ratios of fifty cationic elements in the organic horizon of a beech (Fagus sylvatica) forest podzol.

    Science.gov (United States)

    Tyler, Germund

    2004-08-15

    The root/organic soil concentration ratio; R/S) of 50 cationic mineral elements was related to their ionic properties, including ionic radius (r), ionic charge (z), and ionic potential (z/r or z2/r). The materials studied were ectomycorrhizal beech (Fagus sylvatica L.) roots and their almost purely organic soil substrate, the O-horizon (mor; raw humus) of a Podzol in South Sweden, developed in a site which has been untouched by forestry or other mechanical disturbance since at least 50 years and located in an area with no local sources of pollution. Elements determined by ICP-AES were aluminium, barium, calcium, iron, potassium, magnesium, manganese, sodium and strontium. Determined by ICP-MS were silver, beryllium, bismuth, cadmium, cerium, cobalt, chromium, caesium, copper, dysprosium, erbium, europium, gallium, gadolinium, hafnium, mercury, holmium, indium, lanthanum, lithium, lutetium, niobium, neodymium, nickel, lead, praseodymium, rubidium, scandium, samarium, tin, terbium, thorium, titanium, thallium, thulium, uranium, vanadium, yttrium, ytterbium, zinc and zirconium. The R/S ratios were most clearly related to the ionic potential of the cationic elements studied, which accounted for approximately 60% of the variability in R/S among elements. The ionic charge of an element was more important than the ionic radius. Elements with high ionic charge had low R/S ratios and vice versa. No clear differences in R/S between essential and non-essential plant nutrients were observed, especially when ions of similar charge were compared.

  19. Properties of V-(8-9)Cr-(5-6)Ti alloys irradiated in the dynamic helium charging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1996-10-01

    In the Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in vanadium alloy specimens by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in lithium-filled capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties and density change in V-8Cr-6Ti and V-9Cr-5Ti. Compared to tensile properties of the alloys irradiated in the non-DHCE (helium generation negligible), the effect of helium on tensile strength and ductility of V-8Cr-6Ti and V-9Cr-5Ti was insignificant after irradiation and testing at 420, 500, and 600{degrees}C. Both alloys retained a total elongation of >11 % at these temperatures. Density change was <0.48% for both alloys.

  20. Impact of the cation-stoichiometry on the resistive switching and data retention of SrTiO3 thin films

    Directory of Open Access Journals (Sweden)

    N. Raab

    2015-04-01

    Full Text Available Resistive switching oxides are investigated at great length as promising candidates for the next generation of non-volatile memories. It is generally assumed that defects have a strong impact on the resistive switching properties of transition metal oxides. However, the correlation between different types of defect structures and the switching properties is still elusive. We deposited single-crystalline SrTiO3thin films with various cation stoichiometry by pulsed laser deposition to investigate the stoichiometry related and therefore defect dependent influence on the resistive switching properties. This letter will reveal the differences in initial states, forming steps, switching characteristics as well as retention times taking into account both point defects and extended defects. We then propose an explanation on the basis of oxygen vacancy generation and redistribution to elucidate the dependence of the resistive switching properties on the cation stoichiometry dependent defect structure.

  1. Neutron total scattering and reverse Monte Carlo study of cation ordering in Ca(x)Sr(1-x)TiO(3).

    Science.gov (United States)

    Hui, Qun; Dove, Martin T; Tucker, Matthew G; Redfern, Simon A T; Keen, David A

    2007-08-22

    We use neutron total scattering measurements with reverse Monte Carlo analysis methods incorporating an atom-swapping algorithm to identify the short-range Ca/Sr cation ordering within the Ca(x)Sr(1-x)TiO(3) solid solution (compositions x = 0.2,0.5,0.8). Our results show that nearest-neighbour pairs have a strong tendency for unlike Ca/Sr first-neighbour coordination in the x = 0.2 and 0.5 cases. In the x = 0.5 case the Ca/Sr ordering results in a structure with space group P 2(1)nm. In contrast, there is much less short-range cation ordering in the x = 0.8 case.

  2. Improving optical and charge separation properties of nanocrystalline TiO{sub 2} by surface modification with vitamin C

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Nedeljkovic, J.M.; Chen, L.X.; Poluektov, O.; Thurnauer, M.C. [Argonne National Lab., IL (United States). Chemistry Div.

    1999-05-06

    The structural and electrochemical properties of nanoparticles were found to be different from those of the corresponding bulk semiconductors. Due to the specific binding of modifiers to corner defects, the optical properties of small titania particles were red shifted 1.6 eV compared to unmodified nanocrystallites. It was found using electron paramagnetic resonance (EPR) that, as with organic charge transfer superconductors, these novel nanocrystallites operate with a charge-transfer mechanism, and exhibit semiconducting properties through both constituents (large band gap semiconductor and organic modifier). The EPR spectra were consistent with hole trapping on the surface modifier and electron trapping on shallow interstitial and partially delocalized Ti sites. These systems have an important feature in that charge pairs are instantaneously separated into two phases--the holes on the donating organic modifier and the electrons in the conduction band of TiO{sub 2}.

  3. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.

    2017-02-04

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  4. Modulated two-dimensional charge-carrier density in LaTiO3-layer-doped LaAlO3/SrTiO3 heterostructure.

    Science.gov (United States)

    Nazir, Safdar; Bernal, Camille; Yang, Kesong

    2015-03-11

    The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.

  5. Direct Observation of Charge Separation on Anatase TiO2 Crystals with Selectively Etched {001} Facets.

    Science.gov (United States)

    Liu, Xiaogang; Dong, Guojun; Li, Shaopeng; Lu, Gongxuan; Bi, Yingpu

    2016-03-09

    Synchronous illumination X-ray photoelectron spectroscopy (SIXPS) was employed for the first time to directly identify the photogenerated charge separation and transfer on anatase TiO2 single-crystals with selectively etched {001} facets. More specifically, for the TiO2 crystals with intact {001} and {101} facets, most of photogenerated charge carriers rapidly recombined, and no evident electron-hole separation was detected. With selectively etching on {001} facets, high efficient charge separation via hole transfer to titanium and electron to oxygen was clearly observed. However, when the {001} facets were completely etched into a hollow structure, the recombination for photogenerated electron-hole pairs would dominate again. These demonstrations clearly reveal that the appropriate corrosion on {001} facets could facilitate more efficient electron-hole separation and transfer. As expected, the optimized TiO2 microcrystals with etched {001} facets could achieve a hydrogen generation rate of 74.3 μmol/h/g, which is nearly 7 times higher than the intact-TiO2 crystals.

  6. Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?

    Science.gov (United States)

    Serpone, Nick

    2006-12-07

    Second-generation TiO(2)-(x)D(x) photocatalysts doped with either anions (N, C, and S mostly) or cations have recently been shown to have their absorption edge red-shifted to lower energies (longer wavelengths), thus enhancing photonic efficiencies of photoassisted surface redox reactions. Some of the studies have proposed that this red-shift is caused by a narrowing of the band gap of pristine TiO(2) (e.g., anatase, E(bg) = 3.2 eV; absorption edge ca. 387 nm), while others have suggested the appearance of intragap localized states of the dopants. By contrast, a recent study by Kuznetsov and Serpone (J. Phys. Chem. B, in press) has proposed that the commonality in all these doped titanias rests with formation of oxygen vacancies and the advent of color centers (e.g., F, F(+), F(++), and Ti(3+)) that absorb the visible light radiation. This article reexamines the various claims and argues that the red-shift of the absorption edge is in fact due to formation of the color centers, and that while band gap narrowing is not an unknown occurrence in semiconductor physics it does necessitate heavy doping of the metal oxide semiconductor, thereby producing materials that may have completely different chemical compositions from that of TiO(2) with totally different band gap electronic structures.

  7. Energy decomposition analysis of cation-π, metal ion-lone pair, hydrogen bonded, charge-assisted hydrogen bonded, and π-π interactions.

    Science.gov (United States)

    Sharma, Bhaskar; Srivastava, Hemant Kumar; Gayatri, Gaddamanugu; Sastry, Garikapati Narahari

    2015-03-30

    This study probes the nature of noncovalent interactions, such as cation-π, metal ion-lone pair (M-LP), hydrogen bonding (HB), charge-assisted hydrogen bonding (CAHB), and π-π interactions, using energy decomposition schemes-density functional theory (DFT)-symmetry-adapted perturbation theory and reduced variational space. Among cation-π complexes, the polarization and electrostatic components are the major contributors to the interaction energy (IE) for metal ion-π complexes, while for onium ion-π complexes (NH4+, PH4+, OH3+, and SH3+) the dispersion component is prominent. For M-LP complexes, the electrostatic component contributes more to the IE except the dicationic metal ion complexes with H2 S and PH3 where the polarization component dominates. Although electrostatic component dominates for the HB and CAHB complexes, dispersion is predominant in π-π complexes.

  8. Charge carrier density at the (Na/K)TaO{sub 3}/SrTiO{sub 3} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenschloegl, Udo; Nazir, Safdar [KAUST, PSE Division, Thuwal 23955-6900, Kingdom of Saudi Arabia (Saudi Arabia)

    2012-07-01

    The formation of a quasi two-dimensional electron gas between the band insulators NaTaO{sub 3} and SrTiO{sub 3} as well as KTaO{sub 3} and SrTiO{sub 3} is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO{sub 3}/SrTiO{sub 3}. Both the p-type (NaO){sup -}/(TiO{sub 2}){sup 0} and n-type (TaO{sub 2}){sup +}/(SrO){sup 0} interfaces in NaTaO{sub 3}/SrTiO{sub 3} are found to be metallic with strongly enhanced charge carrier densities as compared to the respective interfaces in KTaO{sub 3}/SrTiO{sub 3}. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2p magnetic moments, located in the metallic region of the p-type interface. The systems under investigation are suitable for disentangling the complex behavior of metallic interface states, since the structural relaxation is small.

  9. Charge carrier transport mechanisms in perovskite CdTiO3 fibers

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2014-06-01

    Full Text Available Electrical transport properties of electrospun cadmium titanate (CdTiO3 fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC with traps at higher voltages at all temperatures (200 K – 420 K. Trap density in our fibers system is Nt = 6.27 × 1017 /cm3. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH from 200 K – 300 K. The localized density of states were found to be N(EF = 5.51 × 1021 eV−1 cm−3 at 2 V. Other VRH parameters such as hopping distance (Rhop and hopping energy (Whop were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO3 fibers efficient material for capacitive energy storage devices.

  10. Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers

    Energy Technology Data Exchange (ETDEWEB)

    Imran, Z.; Rafiq, M. A., E-mail: aftab@cantab.net; Hasan, M. M. [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, 45650 (Pakistan)

    2014-06-15

    Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.

  11. The Extent of Disorder among Charge-balancing Cations in Silicate Glasses and Melts: Spectroscopic Analysis and ab initio Molecular Orbital Calculations

    Science.gov (United States)

    Lee, S.; Doyle, C. S.; Stebbins, J. F.

    2001-12-01

    Aluminosilicate melts are one of the dominant components in upper mantle and crust. Essential to the thermodynamic and transport properties of these systems is the full understanding on the atomic arrangements and the extent of disorder. Recent quantification of the extent of disorder among 'framework cations' in silicate melts using NMR provided improved prospects on the atomic structure of the glasses and melt and their corresponding properties and allowed the degree of randomness to be evaluated in terms of the degree of Al-avoidance (Q) and degree of phase separations (P) (Lee and Stebbins, J. Phys. Chem. B 104, 4091; Lee and Stebbins, GCA in press). Quantitative estimation of the extent of disorder among 'charge-balancing cations' including Na in aluminosilicate glasses, however, has remained an unsolved problem and these cations have often been assumed to be randomly distributed. Here, we explore the intermediate range order around Na in charge-balanced aluminosilicate glasses using Na-23 NMR and Near-edge X-ray absorption fine structure (NEXAFS) with full multiple scattering (FMS) simulations combined with ab initio molecular orbital calculations. We also quantify the extent of disorder in charge balancing cations as a function of Na-O bond length (d(Na-O)) distribution with composition and present a structural model favoring ordered Na distributions. Peak position in Na-23 magic angle spinning (MAS) spectra of aluminosilicate glasses with varying R (Si/Al) at 14.1 T varies from -10.28 ppm (R = 0.7) to -19.98 ppm (R = 6). These results suggest that average d(Na-O) increases with increasing R, which is confirmed by Na-23 multiple quantum MAS spectra where the chemical shift moves toward lower frequency with increasing Si and shows the individual Gaussian components of Na-O distributions such as Na-(Al-O-Al), Na-(Si-O-Al) and Na-(Si-O-Si). Calculated d(Na-(Al-O-Al)) of 2.57 Å is shorter than d(Na-(Si-O-Si)) of 2.88 Å. Strong compositional dependence is

  12. Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cux TiSe2

    Science.gov (United States)

    Kogar, A.; de la Pena, G. A.; Lee, Sangjun; Fang, Y.; Sun, S. X.-L.; Lioi, D. B.; Karapetrov, G.; Finkelstein, K. D.; Ruff, J. P. C.; Abbamonte, P.; Rosenkranz, S.

    2017-01-01

    X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cux TiSe2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. The results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x =0.055 (5 ) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up to x =0.091 (6 ), the highest copper concentration examined in this study. The phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.

  13. Plasmon-Sensitized Graphene/TiO2 Inverse Opal Nanostructures with Enhanced Charge Collection Efficiency for Water Splitting.

    Science.gov (United States)

    Boppella, Ramireddy; Kochuveedu, Saji Thomas; Kim, Heejun; Jeong, Myung Jin; Marques Mota, Filipe; Park, Jong Hyeok; Kim, Dong Ha

    2017-03-01

    In this contribution we have developed TiO2 inverse opal based photoelectrodes for photoelectrochemical (PEC) water splitting devices, in which Au nanoparticles (NPs) and reduced graphene oxide (rGO) have been strategically incorporated (TiO2@rGO@Au). The periodic hybrid nanostructure showed a photocurrent density of 1.29 mA cm(-2) at 1.23 V vs RHE, uncovering a 2-fold enhancement compared to a pristine TiO2 reference. The Au NPs were confirmed to extensively broaden the absorption spectrum of TiO2 into the visible range and to reduce the onset potential of these photoelectrodes. Most importantly, TiO2@rGO@Au hybrid exhibited a 14-fold enhanced PEC efficiency under visible light and a 2.5-fold enrichment in the applied bias photon-to-current efficiency at much lower bias potential compared with pristine TiO2. Incident photon-to-electron conversion efficiency measurements highlighted a synergetic effect between Au plasmon sensitization and rGO-mediated facile charge separation/transportation, which is believed to significantly enhance the PEC activity of these nanostructures under simulated and visible light irradiation. Under the selected operating conditions the incorporation of Au NPs and rGO into TiO2 resulted in a remarkable boost in the H2 evolution rate (17.8 μmol/cm(2)) compared to a pristine TiO2 photoelectrode reference (7.6 μmol/cm(2)). In line with these results and by showing excellent stability as a photoelectrode, these materials are herin underlined to be of promising interest in the PEC water splitting reaction.

  14. Accidental degeneracy in the spiropyran radical cation : charge transfer between two orthogonal rings inducing ultra-efficient reactivity

    NARCIS (Netherlands)

    Mendive-Tapia, David; Kortekaas, Luuk; Steen, Jorn D.; Perrier, Aurelie; Lasorne, Benjamin; Browne, Wesley R.; Jacquemin, Denis

    2016-01-01

    Photochromism of the spiropyran radical cation to the corresponding merocyanine form is investigated by a combination of electrochemical oxidation, UV/vis absorption spectroscopy, spectroelectrochemistry and first-principles calculations (TD-DFT, CAS-SCF and CAS-PT2). First, we demonstrate that the

  15. Influence of the cation alkyl chain length of imidazolium-based room temperature ionic liquids on the dispersibility of TiO{sub 2} nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Wittmar, Alexandra; Gajda, Martyna [Universitaet Duisburg-Essen, Lehrstuhl fuer Technische Chemie II (Germany); Gautam, Devendraprakash; Doerfler, Udo; Winterer, Markus [Universitaet Duisburg-Essen, Nanoparticle Process Technology (Germany); Ulbricht, Mathias, E-mail: mathias.ulbricht@uni-due.de [Universitaet Duisburg-Essen, Lehrstuhl fuer Technische Chemie II (Germany)

    2013-03-15

    The influence of the length of the cation alkyl chain on the dispersibility by ultrasonic treatment of TiO{sub 2} nanopowders in hydrophilic imidazolium-based room temperature ionic liquids was studied for the first time by dynamic light scattering and advanced rheology. TiO{sub 2} nanopowders had been synthesized by chemical vapor synthesis (CVS) under varied conditions leading to two different materials. A commercial nanopowder had been used for comparison. Characterizations had been done using transmission electron microscopy, X-ray diffraction, nitrogen adsorption with BET analysis, and FT-IR spectroscopy. Primary particle sizes were about 6 and 8 nm for the CVS-based and 26 nm for the commercial materials. The particle size distribution in the dispersion was strongly influenced by the length of the cation alkyl chain for all the investigated powders with different structural characteristics and concentrations in the dispersion. It was found that an increase of the alkyl chain length was beneficial, leading to a narrowing of the particle size distribution and a decrease of the agglomerate size in dispersion. The smallest average nanoparticle sizes in dispersion were around 30 nm. Additionally, the surface functionality of the nanoparticles, the concentration of the solid material in the liquid, and the period of ultrasonic treatment control the dispersion quality, especially in the case of the ionic liquids with the shorter alkyl chain. The influence of the nanopowders characteristics on their dispersibility decreases considerably with increasing cation alkyl chain length. The results indicate that ionic liquids with adapted structure are candidates as absorber media for nanoparticles synthesized in gas phase processes to obtain liquid dispersions directly without redispergation.

  16. Surface phase, morphology, and charge distribution transitions on vacuum and ambient annealed SrTi O3 (100)

    Science.gov (United States)

    Dagdeviren, Omur E.; Simon, Georg H.; Zou, Ke; Walker, Fred J.; Ahn, Charles; Altman, Eric I.; Schwarz, Udo D.

    2016-05-01

    The surface structures of SrTi O3 (100) single crystals were examined as a function of annealing time and temperature in either oxygen atmosphere or ultrahigh vacuum (UHV) using noncontact atomic force microscopy (NC-AFM), Auger electron spectroscopy (AES), and low-energy electron diffraction (LEED). Samples were subsequently analyzed for the effect the modulation of their charge distribution had on their surface potential. It was found that the evolution of the SrTi O3 surface roughness, stoichiometry, and reconstruction depends on the preparation scheme. LEED revealed phase transitions from a (1 ×1 ) termination to an intermediate c (4 ×2 ) reconstruction to ultimately a (√ 13 ×√ 13 ) -R 33 .7∘ surface phase when the surface was annealed in an oxygen flux, while the reverse transition from (√ 13 ×√ 13 ) -R 33 .7∘ to c (4 ×2 ) was observed when samples were annealed in UHV. When the surface reverted to c (4 ×2 ) , AES data indicated decreases in both the surface Ti and O concentrations. These findings were corroborated by NC-AFM imaging, where initially Ti O2 -terminated crystals developed half-unit cell high steps following UHV annealing, which is typically attributed to a mix of SrO and Ti O2 terminations. Surface roughness evolved nonmonotonically with UHV annealing temperature, which is explained by electrostatic modulations of the surface potential caused by increasing oxygen depletion. This was further corroborated by experiments in which the apparent roughness tracked in NC-AFM could be correlated with changes in the surface charge distribution that were controlled by applying a bias voltage to the sample. Based on these findings, it is suggested that careful selection of preparation procedures combined with application of an electric field may be used to tune the properties of thin films grown on SrTi O3 .

  17. Concentration Dependence of Luminescent Properties for Sr2TiO4:Eu3+ Red Phosphor and Its Charge Compensation

    Directory of Open Access Journals (Sweden)

    Zhou Lu

    2012-01-01

    Full Text Available Sr2TiO4:Eu3+ phosphors using M+ (M = Li+, Na+, and K+ as charge compensators were prepared by the solid-state reaction. The powders were investigated by powder X-ray diffraction (XRD and photoluminescence spectra (PL to study the phase composition, structure, and luminescent properties. The results showed that Li+ ion was the best charge compensator. The phase was Sr2TiO4 when the doping concentration was small (x≤10.0%. When x reached 15.0%, the phase turned into Sr3Ti3O7 because of the structure damage. The phosphor could be effectively excited by ultraviolet (365, 395 nm and blue light (465 nm, and thenitemitted intense red light that peaked at around 620 nm (5D0→7F2. In addition, the emission of 700 nm (5D0→7F4 enhanced the red light color purity. The CIE chromaticity coordinates of samples with the higher red emission were between (0.650, 0.344 and (0.635, 0.352. Doped layered titanate Sr2TiO4:Eu3+ is a promising candidate red phosphor for white LEDs which can be suited for both near-UV LED chip and blue LED chip.

  18. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films.

    Science.gov (United States)

    Palomares, Emilio; Clifford, John N; Haque, Saif A; Lutz, Thierry; Durrant, James R

    2002-07-21

    The conformal growth of an overlayer of Al2O3 on a nanocrystalline TiO2 film is shown to result in a 4-fold retardation of interfacial charge recombination, and a 30% improvement in photovoltaic device efficiency.

  19. Determination of Charge Density of Cationic Starch by Colloidal Titration%胶体滴定法测定阳离子淀粉的电荷密度

    Institute of Scientific and Technical Information of China (English)

    吴宗华; 陈少平

    2001-01-01

    A particle charge detector (PCD) was applied to determine the end point of collo idal titration for cationic starch having small charge density.The results showe d that the curve of streaming potential indicated sharply the end point of titrati on for cationic starch.Degree of substitution obtained from colloidal titration was in good agreement with that determined by Kjeldahl method.%应用粒子电荷测定仪(PCD)的流动电位变化判定阳离子淀粉胶体滴定的终点。结果表明流 动电位曲线敏锐地指示了低电荷密度的阳离子淀粉胶体滴定的终点。测得的阳离子淀粉的取 代度与国标凯氏定氮法测得的数值相近,最大偏差为0.003。

  20. Photoinduced charge separation in an aqueous phase using nanoporous TiO{sub 2} film and a quasi-solid made of natural products

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Masao; Nomura, Tomoyo; Sasaki, Chie [Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito (Japan)

    2003-05-07

    Solar cells comprised of nanoparticulate TiO{sub 2} porous film photosensitized with an adsorbing dye have been utilized as photoinduced charge separation systems in aqueous media with the view to forming future artificial photosynthetic systems able to create fuels from solar energy and water. The photoinduced charge separation of the sensitized TiO{sub 2} cell in a quasi-solid, made from agarose or {kappa}-carrageenan, was investigated. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Suppression and inducement of the charge-density-wave state in Cr x TiSe2.

    Science.gov (United States)

    Selezneva, N V; Sherokalova, E M; Pleshchev, V G; Kazantsev, V A; Baranov, N V

    2016-08-10

    The x-ray diffraction, electrical resistivity and thermal expansion measurements have been employed to study how the intercalation of Cr atoms into TiSe2 matrix affects the crystal structure, formation of the charge density wave (CDW) and electrical properties. The intercalation of a small amount of Cr atoms (up to x ~ 0.03) is observed to suppress the CDW formation. The electrical resistivity of Cr x TiSe2 compounds with the Cr concentrations 0.03  ⩽  x  ⩽  0.20 shows a metallic-type behavior; while in the concentration range 0.25  ⩽  x  ⩽  0.5, the resistivity shows an anomalous behavior indicating the reappearance of the transition to a CDW-like state; further growth of the Cr content up to x  =  0.6 again leads to the metallic-type resistivity. For the compound Cr0.25TiSe2, the phase transition below 160 K together with abnormal change in the electrical resistivity is found to be accompanied by anomalies in the lattice parameters and thermal expansion behavior; this transition is classified as first-order type. It has been found that despite the intercalation of Cr atoms some Ti-Se bonds in the Se-Ti-Se tri-layers of Cr x TiSe2 with x  ⩽  0.5 have nearly the same lengths as in the host lattice TiSe2, which apparently allows the transition to be returned to the CDW-like state.

  2. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NO{sub x} by propylene

    Energy Technology Data Exchange (ETDEWEB)

    Valverde, J.L.; De Lucas, A.; Sanchez, P.; Dorado, F.; Romero, A. [Facultad de Quimicas, Departamento de Ingenieria Quimica, Universidad Castilla-La Mancha, 13004 Ciudad Real (Spain)

    2003-06-20

    Ti-pillared interlayer clay (PILC)-based catalysts ion exchanged with Cu, Ni and Fe were prepared and used for the selective catalytic reduction of NO{sub x} using propylene as the reducing agent. The influence of the metal loading in the SCR activity was studied. Likewise, catalytic activity of Cu-ion exchanged samples was compared to that of Cu-ones. In both cases, the catalytic activity increased with increasing metal loading, reaching a maximum of NO{sub x} conversion, and then decreased at higher loading. The maximum of NO{sub x} conversion was achieved in each set of catalysts for the samples NiTi-3.4, FeTi-8.0 and CuTi-7.4. Ti-PILCs-ion exchanged with Cu was the most active catalyst for the SCR of NO{sub x} by propylene. H{sub 2}-TPR results showed that Ni{sup 2+} in Ti-PILC-based catalysts was harder to reduce than Cu{sup 2+} in the same material. It was observed that, as the Cu content is increased, CuO and isolated Cu{sup 2+} species became easier to reduce in ion exchanged samples. Likewise, it was also noted that the relative H{sub 2} consumption decreased with the Cu content, due to a lower accessibility of H{sub 2} to the metal. It can be verified a correlation between NO{sub x} conversion and the H{sub 2} consumption for the Cu{sup 2+} -> Cu{sup +} reduction process, reaching the maximum for the sample CuTi-7.4. Finally, it was observed that the presence of 10% water in the feed inhibited the SCR of NO activity of this catalyst. However, this effect was completely reversible following the removal of water from the gas stream.

  3. Direct observation of charged domain walls in hybrid improper ferroelectric (Ca,Sr)3Ti2O7

    Science.gov (United States)

    Kurushima, Kousuke; Yoshimoto, Wataru; Ishii, Yui; Cheong, Sang-Wook; Mori, Shigeo

    2017-10-01

    We investigated ferroelectric (FE) domain wall structures including “charged domain walls” of hybrid improper FE (Ca,Sr)3Ti2O7 at the subatomic resolution by dark-field transmission electron microscopy (TEM) and high-resolution state-of-the-art aberration-corrected high-angle annular-dark-field (HAADF) scanning transmission electron microscopy (STEM). Dark-field TEM and high-resolution HAADF-STEM images obtained in the FE phase of single crystals of Ca2.46Sr0.54Ti2O7 revealed the formation of abundant charged domain walls with the head-to-head and tail-to-tail configurations in the FE domain structure, in addition to the FE 180° domain structure. The charged domain walls with the head-to-head and tail-to-tail FE polarizations exist stably and can be characterized as the unique double arc-type displacement of Ca/Sr ions in a unit cell without charge accumulation.

  4. Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO2.

    Science.gov (United States)

    Jiménez, Juan M; Bourret, Gilles R; Berger, Thomas; McKenna, Keith P

    2016-12-14

    Particle/particle interfaces play a crucial role in the functionality and performance of nanocrystalline materials such as mesoporous metal oxide electrodes. Defects at these interfaces are known to impede charge separation via slow-down of transport and increase of charge recombination, but can be passivated via electrochemical doping (i.e., incorporation of electron/proton pairs), leading to transient but large enhancement of photoelectrode performance. Although this process is technologically very relevant, it is still poorly understood. Here we report on the electrochemical characterization and the theoretical modeling of electron traps in nanocrystalline rutile TiO2 films. Significant changes in the electrochemical response of porous films consisting of a random network of TiO2 particles are observed upon the electrochemical accumulation of electron/proton pairs. The reversible shift of a capacitive peak in the voltammetric profile of the electrode is assigned to an energetic modification of trap states at particle/particle interfaces. This hypothesis is supported by first-principles theoretical calculations on a TiO2 grain boundary, providing a simple model for particle/particle interfaces. In particular, it is shown how protons readily segregate to the grain boundary (being up to 0.6 eV more stable than in the TiO2 bulk), modifying its structure and electron-trapping properties. The presence of hydrogen at the grain boundary increases the average depth of traps while at the same time reducing their number compared to the undoped situation. This provides an explanation for the transient enhancement of the photoelectrocatalytic activity toward methanol photooxidation which is observed following electrochemical hydrogen doping of rutile TiO2 nanoparticle electrodes.

  5. Effect of TiO2 Nanoparticles on Charge Transportation in Mineral Oil and Natural Ester Based Nanofluid

    Institute of Scientific and Technical Information of China (English)

    DU Yuefan; LI Chengrong; L(U) Yuzhen; ZHONG Yuxiang; CHEN Mutian; ZHOU You

    2013-01-01

    TiO2 semiconductive nanoparticles are added into mineral and ester based transformer oil to form semiconductive nanofluids (SNFs) with the aim of enhancing the oil's insulating performance.Charge accumulation and decay characteristics of both pure oils and SNFs are measured by pulse electroacoustic (PEA) technique.The result reveals that compared with pure oil,SNFs have more uniform internal electric fields with voltage applied and higher charge decay rate after removing the applied voltage.This is caused by the increase of shallow trap density in SNFs,due to the test results of thermally stimulated current (TSC).It is proposed that the electron trapping and de-trapping processes in shallow traps could be the main charge transport processes in the nanofluid transformer oil.

  6. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    Science.gov (United States)

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  7. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  8. Ba3La2Ti2Ta2O15: A New Microwave Dielectric of A5B4O15-type Cation-deficient Perovskites

    Institute of Scientific and Technical Information of China (English)

    HU Changzheng; ZHU Wenfeng; WU Bolin

    2008-01-01

    The synthesis, structure and properties of a new A5B4O15-type cation-deficient perovskite Ba3La2Ti2Ta2O15 were discribed. The compound was prepared by the conventional solid-state reaction route. The phase and structure of the ceramics were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The results reveal that the compound is successfully synthesized. The compound crystallizes in the trigonal system with unit cell parameter a=5.6730(2) A, c=11.6511(2) A, V=324.93(1) A3 and Z=1. The microwave dielectric properties of the ceramic are studied using a network analyzer, and it shows a high dielectric constant of 45.1, a high quality factors with Q×f of 21029GHz, and a positive τf of 5.3ppm℃-1.

  9. Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity.

    Science.gov (United States)

    Choudhury, Biswajit; Bayan, Sayan; Choudhury, Amarjyoti; Chakraborty, Purushottam

    2016-03-01

    Oxygen vacancies are introduced into hydrothermally processed TiO2 nanotube by vacuum calcination. Formation of oxygen vacancies modifies the local coordination in TiO2 as evident from Raman spectroscopy and secondary ion mass spectrometry (SIMS) results. The surface area is increased from 172.5m(2)/g in pure to 405.1m(2)/g in defective TiO2 nanotube. The mid-band gap electronic states created by oxygen vacancies are mostly responsible for the effective narrowing of band gap. Charge carrier separation is sufficiently prolonged as the charged oxygen defect states inhibit facile carrier recombination. With high surface area, narrowed band gap and separated charge carriers defective TiO2 nanotube is a suitable candidate in the photodegradation of methylene blue (MB) and phenol under visible light illumination. Photosensitized electron transfer from MB to the conduction band of TiO2 and the photodegradation of MB is facilitated in presence of high density of oxygen vacancies. Unlike MB, phenol absorbs in the UV region and does not easily excited under visible light. Phenol shows activity under visible light by forming charge transfer complex with TiO2. Defect trapped carriers become available at the phenol-TiO2 interface and finally interact with phenol molecule and degrade it.

  10. Charge Separation in TiO2/BDD Heterojunction Thin Film for Enhanced Photoelectrochemical Performance.

    Science.gov (United States)

    Terashima, Chiaki; Hishinuma, Ryota; Roy, Nitish; Sugiyama, Yuki; Latthe, Sanjay S; Nakata, Kazuya; Kondo, Takeshi; Yuasa, Makoto; Fujishima, Akira

    2016-01-27

    Semiconductor photocatalysis driven by electron/hole has begun a new era in the field of solar energy conversion and storage. Here we report the fabrication and optimization of TiO2/BDD p-n heterojunction photoelectrode using p-type boron doped diamond (BDD) and n-type TiO2 which shows enhanced photoelectrochemical activity. A p-type BDD was first deposited on Si substrate by microwave plasma chemical vapor deposition (MPCVD) method and then n-type TiO2 was sputter coated on top of BDD grains for different durations. The microstructural studies reveal a uniform disposition of anatase TiO2 and its thickness can be tuned by varying the sputtering time. The formation of p-n heterojunction was confirmed through I-V measurement. A remarkable rectification property of 63773 at 5 V with very small leakage current indicates achieving a superior, uniform and precise p-n junction at TiO2 sputtering time of 90 min. This suitably formed p-n heterojunction electrode is found to show 1.6 fold higher photoelectrochemical activity than bare n-type TiO2 electrode at an applied potential of +1.5 V vs SHE. The enhanced photoelectrochemical performance of this TiO2/BDD electrode is ascribed to the injection of hole from p-type BDD to n-type TiO2, which increases carrier separation and thereby enhances the photoelectrochemical performance.

  11. High charge carrier density at the NaTaO3/SrTiO3 hetero-interface

    KAUST Repository

    Nazir, Safdar

    2011-08-05

    The formation of a (quasi) two-dimensional electron gas between the band insulators NaTaO3 and SrTiO3 is studied by means of the full-potential linearized augmented plane-wave method of density functional theory. Optimization of the atomic positions points to only small changes in the chemical bonding at the interface. Both the p-type (NaO)−/(TiO2)0 and n-type (TaO2)+/(SrO)0 interfaces are found to be metallic with high charge carrier densities. The effects of O vacancies are discussed. Spin-polarized calculations point to the formation of isolated O 2pmagnetic moments, located in the metallic region of the p-type interface.

  12. Hydration structure of the Ti(III) cation as revealed by pulse EPR and DFT studies: new insights into a textbook case.

    Science.gov (United States)

    Maurelli, Sara; Livraghi, Stefano; Chiesa, Mario; Giamello, Elio; Van Doorslaer, Sabine; Di Valentin, Cristiana; Pacchioni, Gianfranco

    2011-03-21

    The (17)O and (1)H hyperfine interactions of water ligands in the Ti(III) aquo complex in a frozen solution were determined using Hyperfine Sublevel Correlation (HYSCORE) and Pulse Electron Nuclear Double Resonance (ENDOR) spectroscopies at 9.5 GHz. The isotropic hyperfine interaction (hfi) constant of the water ligand (17)O was found to be about 7.5 MHz. (1)H Single Matched Resonance Transfer (SMART) HYSCORE spectra allowed resolution of the hfi interactions of the two inequivalent water ligand protons and the relative orientations of their hfi tensors. The magnetic and geometrical parameters extracted from the experiments were compared with the results of DFT computations for different geometrical arrangements of the water ligands around the cation. The theoretical observable properties (g tensor (1)H and (17)O hfi tensors and their orientations) of the [Ti(H(2)O)(6)](3+) complex are in quantitative agreement with the experiments for two slightly different geometrical arrangements associated with D(3d) and C(i) symmetries.

  13. Preparation of Panel and Charged Particles for Electrophoretic Display

    Science.gov (United States)

    Choi, Hyung Suk; Park, Jin Woo; Park, Lee Soon; Lee, Jung Kyung; Han, Yoon Soo; Kwon, Younghwan

    Studies on the formulation of photosensitive paste for transparent soft mold press (TSMP) method have been performed. With the optimum formulation of the photosensitive paste the box-type barrier rib with good flexibility and high solvent resistance was fabricated, suitable for the panel material of the electrophoretic display. Cationically-charged white particles were prepared by using TiO2 nanoparticles, silane coupling agent with amino groups, dispersant and acetic acid. The cationically charged TiO2 particles exhibited 74.09 mV of zeta potential and 3.11 × 10-5 cm2/Vs of mobility. Electrophoretic display fabricated with the charged TiO2 particles exhibited 10 V of low driving voltage and maximum contrast ratio (5.3/1) at 30 V.

  14. Origin of charge density at LaAlO3-on-SrTiO3 heterointerfacespossibility of intrinsic doping

    Energy Technology Data Exchange (ETDEWEB)

    Siemons, W.

    2010-04-29

    As discovered by Ohtomo et al., a large sheet charge density with high mobility exists at the interface between SrTiO{sub 3} and LaAlO{sub 3}. Based on transport, spectroscopic and oxygen-annealing experiments, we conclude that extrinsic defects in the form of oxygen vacancies introduced by the pulsed laser deposition process used by all researchers to date to make these samples is the source of the large carrier densities. Annealing experiments show a limiting carrier density. We also present a model that explains the high mobility based on carrier redistribution due to an increased dielectric constant.

  15. Synthesis and characterization of sodium cation-conducting Nax(MyL1-yO2 (M = Ni2+, Fe3+; L = Ti4+, Sb5+

    Directory of Open Access Journals (Sweden)

    Marques, F. M. B.

    2004-06-01

    Full Text Available The Na+-conducting ceramics of layered Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (structural type O3 and Na0.68Ni0.34Ti0.66O2 (P2 type with density higher than 91% were prepared via the standard solid-state synthesis route and characterized by the impedance spectroscopy, thermal analysis, scanning electron microscopy, structure refinement using X-ray powder diffraction data, measurements of Na+ concentration cell e.m.f., and dilatometry. The conductivity of antimonate Na0.8Ni0.6Sb0.4O2, synthesized first time, was found lower than that of isostructural Na0.8Ni0.4Ti0.6O2 due to larger ion jump distance between Na+ sites. At temperatures above 420 K, transport properties of sodium cationconducting materials are essentially independent of partial water vapor pressure. In the low-temperature range, the conductivity reversibly increases with water vapor pressure varied in the range from approximately 0 (dry air up to 0.46 atm. The sensitivity to air humidity is influenced by the ceramic microstructure, being favored by increasing boundary area. The average thermal expansion coefficients of layered materials at 300-1173 K are in the range (13.7-16.0×10-6 K-1.Se han preparado cerámicas conductoras conteniendo Na+ de composición Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (tipo estructural O3 y Na0.68Ni0.34Ti0.66O2 (tipo P2 con densidad mayor del 91%. Las vía de preparación fu la ruta de estandard de síntesis en estado sólido. Las composiciones se caracterizaron mediante espectroscopía de impedancia, análisis térmico, microscopía electrónica de barrido, refinamiento de la estructura usando datos de difracción de rayos X en polvo, medidas de concentración de Na+, f.e.m. de la célula y dilatometría. La conductividad del antimoniate, sintetizado por primera vez, Na0.8Ni0.6Sb0.4O2, era menor que la del compuesto isoestructural Na0.8Ni0.4Ti0.6O2 debido a la mayor distancia de salto iónico entre las posiciones de Na

  16. Photoinduced charge injection from excited triplet hypocrellin B into TiO2 colloid in ethanol

    Institute of Scientific and Technical Information of China (English)

    SHEN, Jian-Quan; SHEN, Tao; ZHANG, Man-Hua; LI, Wen; SONG, Ai-Min

    2000-01-01

    Photosensitization of TiO2 colloid by hypocrellin B (HB), a natural photodynamic pigment with extremely high plhotosta bility, has been studied by surface enhanced Raman spec troscorpy (SERS), laser flash photolysis and electron param agnetic resonance (EPR) techniques. The photosensitization of TiO2 occurred practically from the excited triplet dye and the electron injection rate constant is 1.3 × 106 s-1. The influ ences of donor and acceptor on the eleciron injection were in vestigated.

  17. Stripe and Short Range Order in the Charge Density Wave of 1 T -CuxTiSe2

    Science.gov (United States)

    Novello, A. M.; Spera, M.; Scarfato, A.; Ubaldini, A.; Giannini, E.; Bowler, D. R.; Renner, Ch.

    2017-01-01

    We study the impact of Cu intercalation on the charge density wave (CDW) in 1 T -CuxTiSe2 by scanning tunneling microscopy and spectroscopy. Cu atoms, identified through density functional theory modeling, are found to intercalate randomly on the octahedral site in the van der Waals gap and to dope delocalized electrons near the Fermi level. While the CDW modulation period does not depend on Cu content, we observe the formation of charge stripe domains at low Cu content (x domains at higher Cu content. The latter shrink with increasing Cu concentration and tend to be phase shifted. These findings invalidate a proposed excitonic pairing as the primary CDW formation mechanism in this material.

  18. Deformation Effects in Hot Rotating $^{46}Ti$ Probed by the Charged Particle Emission and GDR $\\gamma-Decay$

    CERN Document Server

    Brekiesz, M; Kmiecik, M; Mazurek, K; Meczynski, W; Styczen, J; Zuber, K; Papka, P; Beck, C; Haas, F; Rauch, V; Rousseau, M; Zafra, A S; Dudek, J; Schunck, N

    2007-01-01

    The 46Ti* compound nucleus, as populated by the fusion-evaporation reaction 27Al+19F at the bombarding energy of E_lab=144 MeV, has been investigated by charged particle spectroscopy using the multidetector array ICARE at the VIVITRON tandem facility of the IReS (Strasbourg). The light charged particles and high-energy gamma-rays from the GDR decay have been measured in coincidence with selected evaporation residues. The CACARIZO code, a Monte Carlo implementation of the statistical-model code CASCADE, has been used to calculate the spectral shapes of evaporated alpha-particles which are compared with the experimental coincident spectra. This comparison indicates the signature of large deformations (possibly superdeformed and hyperdeformed shapes) present in the compound nucleus decay. The occurrence of the Jacobi shape transition is also discussed in the framework of a newly developed rotating liquid drop model.

  19. Deformation Effects in Hot Rotating {sup 46}Ti Probed by the Charged Particle Emission and GDR {gamma}-Decay

    Energy Technology Data Exchange (ETDEWEB)

    Brekiesz, M. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Maj, A. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Kmiecik, M. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Mazurek, K. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Meczynski, W. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Styczen, J. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Zuber, K. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Papka, P. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); iThemba LABS, 7129 Somerset West (South Africa); Beck, C. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); Haas, F. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); Rauch, V. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); Rousseau, M. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); Sanchez i Zafra, A. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); Dudek, J. [IPHC and ULP (Strasbourg I), B.P. 28 F-67037 Strasbourg Cedex 2 (France); Schunck, N. [H. Niewodniczanski Institute of Nuclear Physics, PAN, 31-342 Cracow (Poland); Departamento de Fisica Teorica, Universidad Autonoma de Madrid (Spain)

    2007-05-15

    The {sup 46}Ti * compound nucleus, as populated by the fusion-evaporation reaction {sup 27}Al + {sup 19}F at the bombarding energy of E {sub lab} = 144 MeV, has been investigated by charged particle spectroscopy using the multidetector array ICARE at the VIVITRON tandem facility of the IReS (Strasbourg). The light charged particles and high-energy {gamma}-rays from the GDR decay have been measured in coincidence with selected evaporation residues. The CACARIZO code, a Monte Carlo implementation of the statistical-model code CASCADE, has been used to calculate the spectral shapes of evaporated {alpha}-particles which are compared with the experimental coincident spectra. This comparison indicates the signature of large deformations (possibly superdeformed and hyperdeformed shapes) present in the compound nucleus decay. The occurrence of the Jacobi shape transition is also discussed in the framework of a newly developed rotating liquid drop model.

  20. Humic acid adsorption onto cationic cellulose nanofibers for bioinspired removal of copper( ii ) and a positively charged dye

    KAUST Repository

    Sehaqui, H.

    2015-01-01

    © The Royal Society of Chemistry. Waste pulp residues are herein exploited for the synthesis of a sorbent for humic acid (HA), which is a major water pollutant. Cellulose pulp was etherified with a quaternary ammonium salt in water thereby introducing positive charges onto the surface of the pulp fibers, and subsequently mechanically disintegrated into high surface area cellulose nanofibers (CNF). CNF with three different charge contents were produced and their adsorption capacity towards HA was investigated with UV-spectrophotometry, quartz crystal microbalance with dissipation, and ζ-potential measurements. Substantial coverage of the CNF surface with HA in a wide pH range led to a reversal of the positive ζ-potentials of CNF suspensions. The HA adsorption capacity and the kinetics of HA uptake were found to be promoted by both acidic pH conditions and the surface charge content of CNF. It is suggested that HA adsorption onto CNF depends on electrostatic interactions between the two components, as well as on the conformation of HA. At pH ∼ 6, up to 310 mg g-1 of HA were adsorbed by the functionalized CNF, a substantially higher capacity than that of previously reported HA sorbents in the literature. It is further shown that CNF-HA complexes could be freeze-dried into "soil-mimicking" porous foams having good capacity to capture Cu(ii) ions and positive dyes from contaminated water. Thus, the most abundant natural polymer, i.e., cellulose could effectively bind the most abundant natural organic matter for environmental remediation purpose.

  1. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.

    Science.gov (United States)

    Li, Dongcui; Kelkar, Manish S; Wagner, Norman J

    2012-07-17

    Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.

  2. Determination of the cation site distribution of the spinel in multiferroic CoFe{sub 2}O{sub 4}/BaTiO{sub 3} layers by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aghavnian, T. [CEA/Saclay, DSM/IRAMIS/SPEC, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France); Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, F-91192 Gif-sur-Yvette (France); Moussy, J.-B.; Stanescu, D. [CEA/Saclay, DSM/IRAMIS/SPEC, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France); Belkhou, R. [Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, F-91192 Gif-sur-Yvette (France); Jedrecy, N. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7588, INSP, F-75005 Paris (France); Magnan, H. [CEA/Saclay, DSM/IRAMIS/SPEC, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France); Ohresser, P. [Synchrotron SOLEIL, L’Orme des Merisiers Saint-Aubin, F-91192 Gif-sur-Yvette (France); Arrio, M.-A.; Sainctavit, Ph. [IMPMC, F-75015 Paris (France); Barbier, A., E-mail: abarbier@cea.fr [CEA/Saclay, DSM/IRAMIS/SPEC, CNRS UMR 3680, F-91191 Gif-sur-Yvette (France)

    2015-07-15

    Highlights: • We grow epitaxial and well characterized CoFe{sub 2}O{sub 4}/BaTiO{sub 3} thin films. • We studied the spinel cation site distribution in CoFe{sub 2}O{sub 4}/BaTiO{sub 3} thin films. • We quantitatively determine the spinel inversion parameter by XMCD and XPS. • We propose a reproducible XPS fit method based on physical principles. - Abstract: The properties of CoFe{sub 2}O{sub 4}/BaTiO{sub 3} artificial multiferroic multilayers strongly depend on the crystalline structure, the stoichiometry and the cation distribution between octahedral (Oh) and tetrahedral (Td) sites (inversion factor). In the present study, we have investigated epitaxial CoFe{sub 2}O{sub 4} layers grown on BaTiO{sub 3}, with different Co/Fe ratios. We determined the cation distribution in our samples by X-ray magnetic circular dichroism (XMCD), a well accepted method to do so, and by X-ray photoelectron spectroscopy (XPS), using a fitting method based on physical considerations. We observed that our XPS approach converged on results consistent with XMCD measurements made on the same samples. Thus, within a careful decomposition based on individual chemical environments it is shown that XPS is fully able to determine the actual inversion factor.

  3. Charge recombination in dye-sensitized nanoporous TiO2 solar cell

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; ZHOU Baoxue; GE Weijie; XIONG Bitao; ZHENG Qing; CAI Weimin

    2005-01-01

    DSSC has been a subject of intense study throughout the world. The efforts to investigate DSSC are mainly focused on how to increase light absorption, speed electron transport in circuit and reduce charge recombination. In this article, the development of charge recombination in DSSC is discussed, and the investigating techniques, main paths, mechanism and main inhibiting methods of charge recombination in DSSC are also described.

  4. The origin of the strong interfacial charge-transfer absorption in the surface complex between TiO2 and dicyanomethylene compounds.

    Science.gov (United States)

    Jono, Ryota; Fujisawa, Jun-ichi; Segawa, Hiroshi; Yamashita, Koichi

    2013-11-14

    Interfacial charge transfer transitions between organic and inorganic materials are expected to be a potential photoinduced charge separation mechanism for photoenergy conversions. Recently, we reported that the hybrid material formed from TiO2 nanoparticles and an organic electron acceptor, 7,7,8,8-tetracyanoquinodimethane (TCNQ), shows strong interfacial charge transfer absorption in the visible region. In this work, we have theoretically studied the structure, and electronic and absorption properties in order to clarify the formation mechanism and the origin of the strong interfacial charge transfer absorption. Density functional theory (DFT) calculations employing an anatase Ti14O28H2(OH)2(H2O)2 nano-cluster unraveled that the surface complex is formed by a nucleophilic addition reaction between a surface hydroxyl group of TiO2 and the carbon atom of the methylene moiety in TCNQ with the drastic changes in the structure and electronic properties of TCNQ. In the formation process, owing to the high electron affinity of TCNQ, a negative charge of the surface oxygen atom is transferred to the TCNQ moiety. This leads to a significant electronic hybridization between TiO2 and TCNQ, which is the origin of interfacial charge transfer transitions.

  5. Effects of doping La and Cu on photoinduced charge properties of TiO2 and its relationships with photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    JING; Liqiang; SUN; Zhihua; YUAN; Fulong; WANG; Baiqi; XIN; Baifu; FU; Honggang

    2006-01-01

    The pure, 1 mol% only La or only Cu doped TiO2 and La and Cu codoped TiO2 were prepared by a sol-gel process. The effects of doping on photoinduced charge properties of nanosized TiO2 were mainly investigated by means of Surface Photovoltage Spectrum (SPS) and Photoluminescence Spectrum (PL), together with their relationships with photocatalytic activity. The results show that La dopant can inhibit the phase transformation of TiO2, meanwhile improve the separation rate of photoinduced charge carriers, and enrich the binding surface states. However, Cu dopant has a reverse effect compared to La dopant. This is responsible for the results that doping La is favorable for the increase in the photocatalytic activity for degrading the RhB solution, while doping Cu is bad to photocatalyitc reaction. In addition, codoping La and Cu cannot exhibit an obvious combination effect.

  6. Trace Element Partitioning under Crustal and Uppermost Mantle Conditions: The Influences of Ionic Radius, Cation Charge, Pressure, and Temperature

    Science.gov (United States)

    Wood, B. J.; Blundy, J. D.

    2003-12-01

    The controls on partitioning of trace elements between crystals and silicate melts were initially the subject of crystal-chemical, rather than petrogenetic interest. Goldschmidt (1937) systematized his observations of elemental concentrations in minerals as a means of understanding and predicting element behavior during crystallization from liquids or gases. Thus, he proposed his three "rules" of element partitioning, which may be summarized as follows: (i) Any two ions of the same charge and very similar ionic radius have essentially the same crystal-liquid partition coefficient (D=[i]xtl/[i]liq, where [i] refers to the concentration of element i). (ii) If there is a small difference of ionic radius, the smaller ion enters the crystal preferentially, e.g., DMg2+>DFe2+, DK+>DRb+>DCs+. (iii) For ions of similar radius but different charges, the ion with the higher charge enters the crystal preferentially, i.e., DSc3+>DMg2+>DLi+, DCa2+>DNa+, and DBa2+>DK+. These principles were taught to generations of students and, as we will show below, under certain circumstances, retain a degree of validity. They are neither, however, universally correct nor do they have any quantitative applicability. The aim of this chapter is to summarize the ways in which Goldschmidt's work has been amplified through a combination of theory and experimental measurement in order to quantify crystal-liquid partitioning behavior.Since the development of accurate methods of determining element concentration at the ppm level, the trace-element contents of igneous rocks have frequently been used to model their chemical evolution. These studies use estimated crystal-liquid partition coefficients together with solutions for the differential equations describing, e.g., fractional crystallization or fractional melting (Schilling and Winchester, 1967; Gast, 1968; Shaw, 1970) to model evolution of the melt during precipitation or dissolution of the crystalline phases. Generally, because of lack of data

  7. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I

    Science.gov (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  8. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I.

    Science.gov (United States)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  9. Effects of surface ligands on the charge memory characteristics of CdSe/ZnS nanocrystals in TiO2 thin film

    Science.gov (United States)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Radmilovic, Velimir; Kim, Eui-Tae

    2009-11-01

    Charge memory characteristics have been systematically studied based on colloidal CdSe/ZnS nanocrystal quantum dots (QDs) embedded in ˜50 nm-thick TiO2 film. Ligand-capped QDs showed negligible electron charging effect, implying that the electron affinity of QDs was significantly decreased by surface dipole layer surrounding QDs. In contrast, the hole charging was affected by the carrier injection blocking effect of the surface ligands. Efficient electron and hole charging characteristics were realized by removing the surface ligands via H2 plasma treatment.

  10. Probing the Charge Separation Process on In2S3/Pt-TiO2 Nanocomposites for Boosted Visible-light Photocatalytic Hydrogen Production

    CERN Document Server

    Wang, Fenglong; Jiang, Yijiao; Backus, Ellen H G; Bonn, Mischa; Lou, Shi Nee; Turchinovich, Dmitry; Amala, Rose

    2016-01-01

    A simple refluxing wet-chemical approach is employed for fabricating In2S3/Pt-TiO2 heterogeneous catalysts for hydrogen generation under visible light irradiation. When the mass ratio between Pt-TiO2 and cubic-phased In2S3 (denoted as In2S3/Pt-TiO2) is two, the composite catalyst shows the highest hydrogen production, which exhibits an 82-fold enhancement over in-situ deposited Pt-In2S3. UV-vis diffuse reflectance and valence band X-ray photoelectron spectra elucidate that the conduction band of In2S3 is 0.3 eV more negative compared to that of TiO2, favoring charge separation in the nanocomposites. Photoelectrochemical transient photo-current measurements and optical pump - terahertz probe spectroscopic studies further corroborate the charge separation in In2S3/Pt-TiO2. The migration of photo-induced electrons from the In2S3 conduction band to the TiO2 conduction band and subsequently into the Pt nanoparticles is found to occur within 5 picoseconds. Based on the experimental evidence, a charge separation pro...

  11. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  12. Charge modulated interfacial conductivity in SrTiO3-based oxide heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Stamate, Eugen; Pryds, Nini;

    2011-01-01

    When depositing amorphous SrTiO3 (STO) films on crystalline STO substrates by pulsed laser deposition, metallic interfaces are observed, though both materials are band-gap insulators. The interfacial conductivity exhibits strong dependence on oxygen pressure during film growth, which is closely...

  13. Hydride structures in Ti-aluminides subjected to high temperature and hydrogen pressure charging conditions

    Science.gov (United States)

    Legzdina, D.; Robertson, I. M.; Birnbaum, H. K.

    1991-01-01

    The distribution and chemistry of hydrides produced in single and dual phase alloys with a composition near TiAl have been investigated by using a combination of TEM and X-ray diffraction techniques. The alloys were exposed at 650 C to 13.8 MPa of gaseous H2 for 100 h. In the single-phase gamma alloy, large hydrides preferentially nucleated on the grain boundaries and matrix dislocations and a population of small hydrides was distributed throughout the matrix. X-ray and electron diffraction patterns from these hydrides indicated that they have an fcc structure with a lattice parameter of 0.45 nm. EDAX analysis of the hydrides showed that they were enriched in Ti. The hydrides were mostly removed by vacuum annealing at 800 C for 24 h. On dissolution of the hydrides, the chemistry of hydride-free regions of the grain boundary returned to the matrix composition, suggesting that Ti segregation accompanied the hydride formation rather than Ti enrichment causing the formation of the hydride.

  14. Charge structure and cation distribution on Fe-Ga chalcogenide spinel by neutron diffraction and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sam Jin; Son, Bae Soon; Shim, In Bo; Kim, Chul Sung [Kookmin University, Seoul (Korea, Republic of); Hong, Kun Pyo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    FeGa{sub x}Cr{sub 2-x}S{sub 4} (x=0.1 and 0.3) have been studied with x-ray, neutron difraction, and Moessbauer spectroscopy. Rietveld refinement of x-ray, neutron diffraction, and Moessbauer spectroscopy lead to the conclusion that the samples are in inverse spinel type, where the majority of Ga ions are present at tetrahedral site (A). The neutron diffractions on FeGa{sub x}Cr{sub 2-x}S{sub 4} (x=0.1) above 10 K show long range interaction behaviors and reveal an antiferromagnetic ordering, with the magnetic moment of Fe{sup 2+}(- 3.45 {mu}{sub B}) aligned antiparallel to Cr{sup 3+} (+2.89 {mu}{sub B}) at 10 K. Fe ions migrate from the tetrahedral (A) site to the octahedral (B) site with increase of Ga substitutions. The electric quadrupole splittings of the A and B sites in Moessbauer spectra give a direct evidence that Ga ion stimulate asymmetric charge distribution of Fe ions in the A site.

  15. Free-standing hybrid film of less defective graphene coated with mesoporous TiO2 for flexible lithium ion batteries with fast charging/discharging capabilities

    Science.gov (United States)

    Feng, Bingmei; Wang, Huixin; Zhang, Yingqi; Shan, Xuyi; Liu, Min; Li, Feng; Guo, Jinghua; Feng, Jun; Fang, Hai-Tao

    2017-03-01

    Benefiting from extremely high conductivity, graphene sheets (GS) with very low defect density are preferable to reduced graphene oxide sheets for constructing the free-standing hybrid electrodes of flexible electrochemical energy storage devices. However, due to the hydrophobic nature and deficiency of nucleation sites, how to uniformly and intimately anchor electrochemically active materials onto less defective GS is a challenge. Herein, a free-standing and mechanically flexible hybrid film with two-layer structure, mesoporous TiO2 anchored less defective GS hybrid (mTiO2-GS) upper-layer and graphene under-layer, denoted as mTiO2-GS/G, is fabricated. The hydrolysis of a Ti glycolate aqueous sol solution were applied to form mTiO2. The decoration of less defective GS with sodium lignosulfonate (SLS) surfactant is crucial for anchoring TiO2 nanoparticles (NPs). The aromatic rings of SLS favor a non-destructive functionalization of GS through the π-π stacking interaction. The sulfonic acid groups and hydroxyl groups of SLS, respectively, greatly improve the dispersity of GS in water and trigger the nucleation of TiO2 through the oxolation in the hydrolysis of Ti glycolate sol solution. The following characteristics of free-standing mTiO2-GS/G electrode benefit the fast charging/discharging capabilities: highly conductive graphene framework, ultra-small NPs (˜5.0 nm) in mTiO2 anchored, high specific surface area (202.5 m2 g-1), abundant mesopores (0.32 cm3 g-1), intimate interfacial interaction between mTiO2 and GS, robust contact between the mTiO2-GS upper-layer and an under-layer of bare graphene as the current collector. In coin half-cells, the mTiO2-GS/G electrode delivers a capacity of 130 mA h g-1 at 50 C, and 71 mA h g-1 at 100 C, and it also exhibits excellent cycle stability up to 10 000 cycles under 10 C, with a degradation rate of 0.0033% per cycle. When packed in flexible cells, the mTiO2-GS/G electrode maintains fast charging/discharging capabilities

  16. Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays.

    Science.gov (United States)

    Yang, Feng; Xi, Jinfang; Gan, Li-Yong; Wang, Yushu; Lu, Shuangwei; Ma, Wenli; Cai, Fanggong; Zhang, Yong; Cheng, Cuihua; Zhao, Yong

    2016-02-15

    Charge transfer is important for the performance of a photoelectrochemical cell. Understanding photogenerated charge accumulation and separation is mandatory for the design and optimisation of photoelectrochemical cells. Unique stacked and embedded heterostructure of Sb2S3/TiO2 nanotube arrays (NTAs) was fabricated through anodic oxidation with the hydrothermal method. Surface photovoltage spectroscopy, phase spectra and photoluminescence measurements were performed to explore the mechanism by which the inorganic hole transport material CuI affects the charge transfer and photoelectrochemical properties of Sb2S3/TiO2 heterostructure NTAs. The interfacial separation and transport of photoinduced charge carriers were also examined by applying current-voltage characteristics (J-V), incident-photon-to-current conversion efficiency (IPCE) and Mott-Schottky techniques. Results show that CuI acts not only as a hole-conducting and electron-blocking material but also as a light-absorbing material in the ultraviolet range. Efficient charge transfer processes exist in CuI/Sb2S3/TiO2 heterostructure NTAs. The photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure NTAs is dramatically improved. Under AM 1.5G illumination at 100mW/cm(2), the short-circuit current density and open-circuit voltage are 3.51mA/cm(2) and 0.87V, respectively. The photoelectric conversion efficiency of CuI/Sb2S3/TiO2 heterostructure NTAs (0.95%) is 36% higher than that of Sb2S3/TiO2 heterostructure NTAs (0.66%).

  17. Infection of Oxygen Vacancy at the TiO2 Surface for Film Electrode Rup2P/TiO2/ITO Photo-Induced Charge Transfer%TiO2表面氧空位对Rup2P/TiO2/ITO薄膜电极光致电荷转移的影响

    Institute of Scientific and Technical Information of China (English)

    程辉; 董江舟; 巢晖; 姚江宏; 曹亚安

    2012-01-01

    采用改性的TiCl4水解法制备出三种不同表面性质的TiO2-X(X=5,10,20,X表示加入NaOH的浓度,单位为mol·L-1)样品.利用(1,10-邻菲咯啉)2-2-(2-吡啶基)苯咪唑钌混配配合物(Rup2P)作为敏化剂,制备出Rup2P/TiO2-5/ITO(铟锡金属氧化物)、Rup2P/TiO2-10/lTO和Rup2P/TiO2-20/ITO表面敏化薄膜电极.测试结果表明三种薄膜电极的光电转换效率Rup2P/TiO2-10/ITO最高,Rup2P/TiO2-20/ITO次之,Rup2P/TiO2-5/ITO最低.利用吸收光谱、表面光电压(SP)谱、荧光光谱和表面光电流作用谱等分析了Rup2P和三种TiO2的能带结构和表面性质;利用光致循环伏安和表面光电流作用谱研究了三种Rup2P/TiO2-X/ITO薄膜电极的光致界面电荷转移过程.结果表明,在光致界面电荷转移过程中,TiO2层表面氧空位对Rup2P/TiO2-X/ITO薄膜电极光致电荷转移产生重要影响.并进一步讨论了Rup2P/TiO2-X/ITO薄膜电极的光电流产生机理.%The surface properties of TiO2-X (X=5, 10, 20, X=[NaOH] (in mol L"1)) samples prepared by modification of hydrolyzed TiCU were studied. The surface-sensitized Ru(phen)2(PIBH) (Rup2P) (phen= phenanthroline, PIBH=pyridyl benzimidazole hybrid) film electrodes Rup2P/TiO2-5/ITO (indium tin oxide), Rup2P/TiO2-10/ITO, and Rup2P/TiO2-20/ITO were prepared. Among the three films, the photovoltaic properties of Rup2P/TiO2-10/ITO were the best and those of Rup2P/TiO2-5/ITO were the worst. The band structures, and properties on the surfaces of Rup2P and the three TiO2 samples were analyzed using absorption spectra, surface photovoltage spectra, photoluminescence spectra, and photocurrent action spectra. The photo-induced charge transfer process was studied by cyclic voltammetry under irradiation and photocurrent action spectra. The results revealed the oxygen vacancy at the TiO2 surface was very important for the photo-induced charge transfer process of Rup2PffiO2-X/ITO. The photocurrent mechanism of Rup2P/TiO2-X/ITO is discussed.

  18. Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation.

    Science.gov (United States)

    Tiewcharoen, Supakit; Warakulwit, Chompunuch; Lapeyre, Veronique; Garrigue, Patrick; Fourier, Lucas; Elissalde, Catherine; Buffière, Sonia; Legros, Philippe; Gayot, Marion; Limtrakul, Jumras; Kuhn, Alexander

    2017-09-11

    Deposition of metals on TiO2 semiconductor particles (M-TiO2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants.

    Science.gov (United States)

    Luo, Haibin; Cao, Mingyan; Newell, Kelcy; Afdahl, Christopher; Wang, Jihong; Wang, William K; Li, Yuling

    2015-12-11

    We have systemically investigated unusual elution behaviors of an IgG4 (mAb A) in cation exchange chromatography (CEX). This mAb A exhibited two elution peaks under certain conditions when being purified by several strong CEX columns. When either of the two peaks was isolated and re-injected on the same column, the similar pattern was observed again during elution. The protein distribution between the two peaks could be altered by NaCl concentration in the feed, or NaCl concentration in wash buffer, or elution pH, suggesting two pH-associated strong-and-weak binding configurations. The protein distributions under different pH values showed good correlation with protonated/un-protonated fractions of a histidine residue. These results suggest that the double-peak elution profile associates with histidine-protonation-based charge variants. By conducting pepsin digestion, amino-acid specific chemical modifications, peptide mapping, and measuring the effects of elution residence time, a histidine in the variable fragment (Fab) was identified to be the root cause. Besides double-peak pattern, mAb A can also exhibit peak-shouldering or single elution peak on different CEX resins, reflecting different resins' resolving capability on protonated/un-protonated forms. This work characterizes a novel cause for unusual elution behaviors in CEX and also provides alternative avenues of purification development for mAbs with similar behaviors.

  20. High Tc superconductors: The scaling of Tc with the number of bound holes associated with charge transfer neutralizing the multivalence cations

    Science.gov (United States)

    Vezzoli, G. C.; Chen, M. F.; Craver, F.

    1991-01-01

    It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.

  1. Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis.

    Science.gov (United States)

    Long, Run; English, Niall J; Prezhdo, Oleg V

    2012-08-29

    Graphene-TiO(2) composites exhibit excellent potential for photovoltaic applications, provided that efficient photoinduced charge separation can be achieved at the interface. Once charges are separated, TiO(2) acts as an electron carrier, while graphene is an excellent hole conductor. However, charge separation competes with energy losses that can result in rapid electron-hole annihilation inside metallic graphene. Bearing this in mind, we investigate the mechanisms and, crucially, time scales of electron transfer and energy relaxation processes. Using nonadiabatic molecular dynamics formulated within the framework of time-domain density functional theory, we establish that the photoinduced electron transfer occurs several times faster than the electron-phonon energy relaxation (i.e., charge separation is efficient in the presence of electron-phonon relaxation), thereby showing that graphene-TiO(2) interfaces can form the basis for photovoltaic and photocatalytic devices using visible light. We identify the mechanisms for charge separation and energy losses, both of which proceed by rapid, phonon-induced nonadiabatic transitions within the manifold of the electronic states. Electron injection is ultrafast, owing to strong electronic coupling between graphene and TiO(2). Injection is promoted by both out-of-plane graphene motions, which modulate the graphene-TiO(2) distance and interaction, and high-frequency bond stretching and bending vibrations, which generate large nonadiabatic coupling. Both electron injection and energy transfer, injection in particular, accelerate for photoexcited states that are delocalized between the two subsystems. The theoretical results show excellent agreement with the available experimental data [Adv. Funct. Mater. 2009, 19, 3638]. The state-of-the-art simulation generates a detailed time-domain atomistic description of the interfacial charge separation and relaxation processes that are fundamental to a wide variety of applications

  2. Temperature-boosted photocatalytic H2 production and charge transfer kinetics on TiO2 under UV and visible light.

    Science.gov (United States)

    Kim, Gonu; Choi, Hee Joon; Kim, Hyoung-Il; Kim, Jaehong; Monllor-Satoca, Damián; Kim, Minju; Park, Hyunwoong

    2016-10-05

    This study investigates the effect of reaction temperature (298-353 K) on photocatalytic H2 production in bare and platinized TiO2 (Pt/TiO2) suspensions containing various organic hole scavengers (EDTA, methanol, and formic acid) under UV (λ > 320 nm) and visible light (λ > 420 nm for ligand-to-metal charge transfer). H2 production rates are enhanced ∼7.8- and ∼2.5-fold in TiO2 and Pt/TiO2 suspensions, respectively, with EDTA under UV by simply elevating the reaction temperature from 298 K to 323 K (ΔT = 25 °C). Such a temperature-boosted increase in H2 production is always observed, regardless of the TiO2 crystalline structure (anatase, rutile, and an anatase/rutile mixture), type of hole scavenger, and irradiation wavelength range. It is estimated that approximately 90% of incident photons are utilized in H2 production, for which the activation energy is 25.5 kJ mol(-1). Detailed photoelectrochemical analyses show the positive relationship between reaction temperature and photocurrent generation, with charge carrier mobility and interfacial charge transfer improving at higher temperatures. Other possible factors, such as H2 solubility and mass transport, play a limited role.

  3. Subtask 12G3: Fracture properties of V-4Cr-4Ti irradiated in the dynamic helium charging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Nowicki, L.J.; Busch, D.E.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to determine the effect of simultaneous displacement damage and dynamically charged helium on the ductile-brittle transition behavior of V-4Cr-4Ti specimens irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present DHCE, helium was produced uniformly in the specimen at linear rates ranging from {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in Li-filled DHCE capsules in the Fast Flux Test Facility. Ductile-brittle transition behavior of V-4Cr-4Ti, recently identified as the most promising vanadium-base alloy for fusion reactor use, was determined from multiple-bending tests (at -196{degrees}C to 50{degrees}C) and quantitative SEM fractography on TEM disks (0.3-mm thick) and broken tensile specimens (1.0-mm thick). No brittle behavior was observed at temperatures >-150{degrees}C, and predominantly brittle-cleavage fracture morphologies were observed only at -196{degrees}C in some specimens irradiated to 31 dpa at 425{degrees}C during DHCE. Ductile-brittle transition temperatures (DBTTs) were -200{degrees}C to -175{degrees}C for both types of specimens. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in the bend-tested specimens irradiated in the DHCE. 24 refs., 3 figs., 2 tabs.

  4. Photogenerated charges transfer across the interface between NiO and TiO2 nanotube arrays for photocatalytic degradation: A surface photovoltage study.

    Science.gov (United States)

    Hou, Libo; Li, Shuo; Lin, Yanhong; Wang, Dejun; Xie, Tengfeng

    2016-02-15

    To better understand the behavior of photogenerated charges in the composite photocatalyst interface is beneficial to the designing of effective photocatalyst for photocatalytic reaction. In our work, the separation and transfer process of photogenerated charges in NiO/TiO2 nanotube arrays (NiO/TiO2 NTAs) has been studied by surface photovoltage (SPV) spectroscopy and transient photovoltage (TPV) measurement. Through the experimental results analysis, we find that an interfacial electric field is formed at NiO/TiO2 NTAs interface, which is attributed to the work function difference between NiO and TiO2 NTAs. The photogenerated holes in TiO2 can transfer to the NiO layer along the interface electric field under the ultraviolet irradiation. A large amount of photogenerated holes can be separated effectively and then prolonged the holes lifetime to participate in the photocatalytic oxidation reaction. The above results show that the favorable hole-collecting process of NiO in the surface of TiO2 NTAs is the main factor being responsible for the increase the photocatalytic efficiency.

  5. Electronic hole transfer in rutile and anatase TiO2: Effect of a delocalization error in the density functional theory on the charge transfer barrier height

    DEFF Research Database (Denmark)

    Zawadzki, Pawel; Rossmeisl, Jan; Jacobsen, Karsten Wedel

    2011-01-01

    where charge localization is strongly coupled to lattice distortion. As an example we calculate the adiabatic PES for the hole transfer process in rutile and anatase TiO2. (Semi) local DFT leads to qualitatively wrong, barrierless curves. Removal of the nonlinearity improves the PES shape and allows us...

  6. Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO(2) nanowires.

    Science.gov (United States)

    Feng, Xinjian; Zhu, Kai; Frank, Arthur J; Grimes, Craig A; Mallouk, Thomas E

    2012-03-12

    A rapid solvothermal approach was used to synthesize aligned 1D single-crystal rutile TiO(2) nanowire (NW) arrays on transparent conducting substrates as electrodes for dye-sensitized solar cells. The NW arrays showed a more than 200 times faster charge transport and a factor four lower defect state density than conventional rutile nanoparticle films.

  7. Charge transfer mechanism for the formation of metallic states at the KTaO3/SrTiO3 interface

    KAUST Repository

    Nazir, Safdar

    2011-03-29

    The electronic and optical properties of the KTaO3/SrTiO3 heterointerface are analyzed by the full-potential linearized augmented plane-wave approach of density functional theory. Optimization of the atomic positions points at subordinate changes in the crystal structure and chemical bonding near the interface, which is due to a minimal lattice mismatch. The creation of metallic interface states thus is not affected by structural relaxation but can be explained by charge transfer between transition metal and oxygen atoms. It is to be expected that a charge transfer is likewise important for related interfaces such as LaAlO3/SrTiO3. The KTaO3/SrTiO3 system is ideal for disentangling the complex behavior of metallic interface states, since almost no structural relaxation takes place.

  8. Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis.

    Science.gov (United States)

    Nolan, Michael

    2011-10-28

    In recent experiments Tada et al. have shown that TiO(2) surfaces modified with iron oxide display visible light photocatalytic activity. This paper presents first principles simulations of iron oxide clusters adsorbed at the rutile TiO(2) (110) surface to elucidate the origin of the visible light photocatalytic activity of iron oxide modified TiO(2). Small iron oxide clusters adsorb at rutile (110) surface and their presence shifts the valence band so that the band gap of the composite is narrowed towards the visible, thus confirming the origin of the visible light activity of this composite material. The presence of iron oxide at the TiO(2) surface leads to charge separation, which is the origin of enhanced photocatalytic efficiency, consistent with experimental photoluminesence and photocurrent data. Surface modification of a metal oxide is thus an interesting route in the development of visible light photocatalytic materials.

  9. Electronic Charges and Electric Potential at LaAlO3/SrTiO3 Interfaces Studied by Core-Level Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Harold

    2011-08-19

    We studied LaAlO{sub 3}/SrTiO{sub 3} interfaces for varying LaAlO{sub 3} thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting 'n-type' interfaces, Ti{sup 3+} signals appeared, which were absent for insulating 'p-type' interfaces. The Ti{sup 3+} signals increased with LaAlO{sub 3} thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO{sub 3} thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness.

  10. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism.

    Science.gov (United States)

    Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah

    2014-01-01

    The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail.

  11. Magnetically controlled space charge capacitance at La{sub 1-x}Sr{sub x}MnO{sub 3}/Sr{sub x}La{sub 1-x}TiO{sub 3} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Rainer; Garcia-Barriocanal, Javier; Leon, Carlos; Santamaria, Jacobo [Facultad de Ciencias Fisicas, Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, GFMC (Spain); Unidad Asociada ' ' Laboratorio de Heteroestructuras con Aplicacion en Espintronica' ' , UCM/CSIC, Madrid (Spain); Varela, Maria [Facultad de Ciencias Fisicas, Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, GFMC (Spain); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Instituto Pluridisciplinar, Universidad Complutense de Madrid (Spain); Garcia-Hernandez, Mar [Instituto de Ciencia de Materiales de Madrid - Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Madrid (Spain)

    2016-08-15

    This work reports on magnetocapacitance (MC) effects in epitaxial heterostructures of nominally 15 unit cells (u.c.) LaMnO{sub 3} (LMO) and 2 u.c. SrTiO{sub 3} (STO) with an alternating layer-repetition rate of 8: (LMO{sub 15}/STO{sub 2}){sub 8}. Epitaxial multilayer growth at high temperatures (900 C) activates a selective inter-diffusion of La{sup 3+} and Sr{sup 2+} cations across the interfaces, which gives rise to Sr p-doping of the LMO and La n-doping of the STO layers. MC effects at the buried La{sub 1-x}Sr{sub x}MnO{sub 3}/Sr{sub x}La{sub 1-x}TiO{sub 3} (LSMO/SLTO) interfaces are probed by frequency, temperature and magnetic field dependent AC impedance spectroscopy. The technique is shown to be appropriate to account for the separate analysis of different resistance and capacitance contributions at the buried interfaces. As a result of the La/Sr inter-diffusion process, Schottky barriers are formed at the LSMO/SLTO interfaces, which give rise to massive MC of up to ∼ -200% in the out-of-plane film direction. The capacitance of the manganite-titanate LSMO/SLTO interfaces may be coupled indirectly to the resistance of the LSMO layers, because the Schottky space-charge layers and their capacitance can be modulated by varying the concentration of highly mobile charge carriers in the LSMO with a magnetic field. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A unified description of the electrochemical, charge distribution, and spectroscopic properties of the special-pair radical cation in bacterial photosynthesis.

    Science.gov (United States)

    Reimers, Jeffrey R; Hush, Noel S

    2004-04-01

    We apply our four-state 70-vibration vibronic-coupling model for the properties of the photosynthetic special-pair radical cation to: (1) interpret the observed correlations between the midpoint potential and the distribution of spin density between the two bacteriochlorophylls for 30 mutants of Rhodobacter sphaeroides, (2) interpret the observed average intervalence hole-transfer absorption energies as a function of spin density for six mutants, and (3) simulate the recently obtained intervalence electroabsorption Stark spectrum of the wild-type reaction center. While three new parameters describing the location of the sites of mutation with respect to the special pair are required to describe the midpoint-potential data, a priori predictions are made for the transition energies and the Stark spectrum. In general, excellent predictions are made of the observed quantities, with deviations being typically of the order of twice the experimental uncertainties. A unified description of many chemical and spectroscopic properties of the bacterial reaction center is thus provided. Central to the analysis is the assumption that the perturbations made to the reaction center, either via mutations of protein residues or by application of an external electric field, act only to independently modify the oxidation potentials of the two halves of the special pair and hence the redox asymmetry E0. While this appears to be a good approximation, clear evidence is presented that effects of mutation can be more extensive than what is allowed for. A thorough set of analytical equations describing the observed properties is obtained using the Born-Oppenheimer adiabatic approximation. These equations are generally appropriate for intervalence charge-transfer problems and include, for the first time, full treatment of both symmetric and antisymmetric vibrational motions. The limits of validity of the adiabatic approach to the full nonadiabatic problem are obtained.

  13. Determination of cation distribution in the Fe[Li1/2Fe3/2]O4-LiFeTiO4-Li[Li1/3Ti5/3]O4 system: Mixed nature of solid solution and superlattice

    Science.gov (United States)

    Mukai, Kazuhiko; Kato, Yuichi; Nakano, Hideyuki

    2017-03-01

    The solid solution technique is one of the oldest but most powerful methods in the search for advanced materials. Hume-Rothery rules regarding solid solutions are well established for alloys, but little is known about oxides. In this study, we focused on the spinel oxides of Fe[Li1/2Fe3/2]O4-LiFeTiO4-Li[Li1/3Ti5/3]O4 to clarify their cation distribution, which necessitates other rules for substitutionally ordered/disordered solid solutions. Here, the chemical formula of the spinels is represented as Li1/2+x/2Fe5/2-3x/2TixO4 with 0≤x≤5/3. Synchrotron radiation X-ray diffraction measurements indicated two types of 1:3 cation order at the octahedral site over the wide x range; i.e., the cation order between one Li+ ion and three Fe3+ ions at 0≤x≤1 and the cation order between one Li+ ion and three Ti4+ ions at 1cation order at 1cations and bond length, are discussed.

  14. Dynamics of charge at water-to-semiconductor interface: Case study of wet [0 0 1] anatase TiO2 nanowire

    Science.gov (United States)

    Huang, Shuping; Balasanthiran, Choumini; Tretiak, Sergei; Hoefelmeyer, James D.; Kilina, Svetlana V.; Kilin, Dmitri S.

    2016-12-01

    The behavior of water molecules on the surfaces of the TiO2 nanowire grown in [0 0 1] direction has been investigated by combining theoretical calculations and experiments. Calculated UV-visible absorption spectra reproduce the main features of the experimental spectra. Computations predict that a photoexcitation followed by a sequence of relaxation events results in photoluminescence across the gap. TiO2 nanowires in vacuum and aqueous environment exhibit different dynamics of photo-excited charge carriers. In water, computed relaxation of electrons (holes) is approximately 2 (4) times faster compared with vacuum environment. Faster relaxation of holes vs. electrons and specific spatial localization of holes result to formation of long lived charge transfer excitation with positive charge at the surface of the nanowire. Comparison of relaxation process in TiO2/water interfaces focusing on different surfaces and nanostructures has potential in identifying structural characteristics of TiO2 materials important for efficient photo-electrochemical water splitting.

  15. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    Science.gov (United States)

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  16. La modified TiO{sub 2} photoanode and its effect on DSSC performance: A comparative study of doping and surface treatment on deep and surface charge trapping

    Energy Technology Data Exchange (ETDEWEB)

    Ako, Rajour Tanyi [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Ekanayake, Piyasiri, E-mail: piyasiri.ekanayake@ubd.edu.bn [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Tan, Ai Ling [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Young, David James [Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Negara Brunei Darussalam (Brunei Darussalam); Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558 (Australia); Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research - A*STAR, #08-03, 2 Fusionopolis Way, Innovis, 138634 (Singapore)

    2016-04-01

    The effect of Lanthanum ions (La{sup 3+}) on charge trapping in dye-sensitized solar cell (DSSC) photoanodes has been investigated with doped and surface-treated TiO{sub 2} nanoparticles. Doped nanoparticles consisting of 0.5 mol.% Mg and La co-doped TiO{sub 2}, 0.5 mol.% Mg doped TiO{sub 2} and pure TiO{sub 2} were synthesized by the sol gel method. Surface-treated nanoparticles of Mg doped TiO{sub 2} and pure TiO{sub 2} were prepared by ball milling in 0.05 M aqueous La{sup 3+} solution. All materials were analyzed by XRD, XPS and UV–Vis DRS. Cell performance, surface free energy state changes and electron injection efficiency of DSSCs based on these nanoparticles were evaluated using current –voltage measurements, EIS and Incident photon to current conversion efficiency. Doped materials had La and Mg ions incorporated into the TiO{sub 2} lattice, while no lattice changes were observed for the surface-treated materials. Less visible light was absorbed by treated oxides compared with doped oxide samples. The overall power conversion efficiencies (PCE) of DSSC photoanodes based on doped materials were twice those of photoanodes fabricated from treated nanoparticles. Doping establishes deep traps that reduce the recombination of electron–hole (e–h) pairs. Conversely, the presence of absorbed oxygen in treated materials enhances e–h recombination with electrolyte at surface trap sites. - Highlights: • DSSC performance is investigated using photoanodes of doped and La{sup 3+} surface treated TiO{sub 2}. • TiO{sub 2} and Mg–TiO{sub 2} treated with La{sup 3+} absorbed less visible light. • A high concentration of absorbed oxygen on surface treated oxides reduced band bending. • Increased surface free energy in the modified DSSC anodes is caused more by Mg{sup 2+} at Ti{sup 4+} than by La{sup 3+} at the surfaces. • Near surface charge traps due to La{sup 3+} treatment promotes e–h recombination.

  17. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors

    Science.gov (United States)

    Lewis, Crystal S.; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A.; Wong, Stanislaus S.

    2016-01-01

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Moreover, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite

  18. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors.

    Science.gov (United States)

    Lewis, Crystal S; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A; Wong, Stanislaus S

    2016-01-28

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Moreover, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.

  19. The Impacts of Cation Stoichiometry and Substrate Surface Quality on Nucleation, Structure, Defect Formation, and Intermixing in Complex Oxide Heteroepitaxy–LaCrO3 on SrTiO3(001)

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Liang; Zhang, Hongliang; Bowden, Mark E.; Varga, Tamas; Shutthanandan, V.; Colby, Robert J.; Du, Yingge; Kabius, Bernd C.; Sushko, P. V.; Biegalski, Michael D.; Chambers, Scott A.

    2013-06-20

    Our ability to design and fabricate electronic devices with reproducible properties using complex oxides is critically dependent on our ability to controllably synthesize these materials in thin-film form. Structure-property relationships are intimately tied to film and interface composition. Here we report on the effects of cation stoichiometry in LaCrO3 heteroepitaxial films prepared using molecular beam epitaxy. We show that LaCrO3 films grow pseudomorphically on SrTiO3(001) over an wide range of La-to-Cr atom ratios. However, the growth mode and structural quality are sensitive to the La-to-Cr ratio, with La-rich films being of considerably lower structural quality than Cr-rich films. Cation mixing occurs at the interface for all La-to-Cr ratios investigated, and is not quenched by deposition at ambient temperature. Indiffused La atoms occupy Sr sites in the substrate. The presence of defects in the SrTiO3 substrate is implicated in promoting La indiffusion by comparing the properties of LaCrO3/SrTiO3 with those of LaCrO3/Si, both prepared at ambient temperature. Additionally, pulsed laser deposition is shown to result in more extensive interfacial mixing than molecular beam epitaxy for deposition at ambient temperature on Si.

  20. Fe2+-Ti4+ vs. Fe2+-Fe3+ charge-transfer and short-range order in single chains of face-sharing octahedra: ellenbergerite and dumortierite

    Science.gov (United States)

    Chopin, C.; Langer, K.; Khomenko, V.

    2009-04-01

    In zoned pyrope megacrysts from the Dora-Maira UHP terrane, new, dark-violet colour varieties of the hexagonal, high-pressure silicate ellenbergerite extend the range of known Fe contents for this mineral from 0-0.1 to 0-0.4 atom pfu, for Ti contents commonly in the range 0.2-0.4 pfu. The new varieties show an extremely intense pleochroism, colourless for E perpendicular to c to deep Prussian blue for E//c, as compared to colourless to lilac or reddish purple for classical Fe-poor ellenbergerite. These features were the incentive for an electronic absorption spectroscopic study and a reappraisal of the interpretation of the charge transfers (CT), colour and ordering schemes in this group and the structurally related borosilicate dumortierite. Both structures are characterized by the presence of infinite single chains of face-sharing, partly vacant octahedra along the 6-fold screw axis and pseudo-hexad axis, respectively, in which the Fe and Ti atoms are partitioned. In the spectra of Fe-poor ellenbergerite, the presence of a single Fe2+-Ti4+ CT band near 19000 cm˘1 was taken as evidence for complete short-range ordering of Mg(Fe), Ti and vacancies in the octahedral single chain [1]. The E//c spectra of Fe-rich ellenbergerite show the same absorption band near 19000 cm˘1 but consistently flanked by another CT band near 14000 cm˘1 , the intensity of which increases with total Fe content. The latter is similar to the 12400 cm˘1 CT band observed as the single feature in E//c spectra of the isotructural (Ti-free and Fe-bearing) phosphoellenbergerite, and clearly assigned to Fe2+-Fe3+ CT in the octahedral single chain [1]. The same colour pattern occurs in the dumortierite group, with red Fe-poor, Ti-rich crystals showing a single CT band near 20000 cm˘1, blue Ti-poor crystals showing a single CT band near 16500 cm˘1, and violet Fe- and Ti-rich crystals showing a combination of the two bands [2]. In the light of the new data, we reinterpret the dumortierite colour

  1. Electrospray mass and tandem mass spectrometry of homologous and isomeric singly, doubly, triply and quadruply charged cationic ruthenated meso-(phenyl)m-(meta- and para-pyridyl)n (m + n = 4) macrocyclic porphyrin complexes.

    Science.gov (United States)

    Tomazela, Daniela M; Gozzo, Fabio C; Mayer, Ildemar; Engelmann, Fábio M; Araki, Koiti; Toma, Henrique E; Eberlin, Marcos N

    2004-10-01

    Ten homologous or isomeric singly, doubly, triply and quadruply charged cationic macrocyclic complexes I-Va, bn+ (n = 1-4) formed by the coordination of [Ru(bipy)2Cl]+ to the pyridyl N-atoms of a series of meso-(phenyl)m-(meta or para-pyridyl)n-porphyrins (m + n = 4) were transferred to the gas phase and structurally characterized by electrospray ionization (ESI) mass (MS) and tandem mass (MS/MS) spectrometry. Previously known to be stable in solution and in the solid state, I-Va, bn+ are found to constitute also a new class of stable, long-lived multiply charged gas-phase ions with spatially separated charge sites. Increasing intramolecular electrostatic repulsion from Ia, b+ to IVa, b3+ facilitates in-source and tandem collision-induced dissociation (CID). However, for the quadruply charged ions Va, b4+, electrostatic repulsion is alleviated mainly by ion pairing with the CF3SO3- counterion forming the salt clusters [Va,b/CF3SO3]3+ and [Va,b/(CF3SO3)2]2+ with reduced charge states. Ion-pairing that yields [IVa,b/CF3SO3]2+ is also observed as a minor ESI process for the triply charged ions IVa, b3+. The gaseous ions I-Va, bn+ (n = 2, 3 or 4) dissociate by sequential 'charge partitioning' with the formation of two cationic fragments by the release of [Ru(bipy)2Cl]+. The meta (a) and para (b) isomers and the positional isomers II2+ and III2+ display nearly identical ESI-MS and ESI-MS/MS spectra. ESI-MS/MS of I-Va, bn+ shows that the Ru-py(P) is, intrinsically, the weakest bond since this bond breaks preferentially upon CID.

  2. Screened coulomb hybrid DFT study on electronic structure and optical properties of anionic and cationic Te-doped anatase TiO2

    KAUST Repository

    Harb, Moussab

    2013-06-27

    The origin of the enhanced visible-light optical absorption in Te-doped bulk anatase TiO2 is investigated in the framework of DFT and DFPT within HSE06 in order to ensure accurate electronic structure and optical transition predictions. Various oxidation states of Te species are considered based on their structural location in bulk TiO2. In fact, TiO (2-x)Tex (with isolated Te2- species at Te-Te distance of 8.28 Å), TiO2Tex (with isolated TeO 2- species at Te-Te distance of 8.28 Å), TiO2Te 2x (with two concomitant TeO2- species at Te-Te distance of 4.11 Å), and Ti(1-2x)O2Te2x (with two neighboring Te4+ species at nearest-neighbor Te-Te distance of 3.05 Å) show improved optical absorption responses in the visible range similarly as it is experimentally observed in Te-doped TiO2 powders. The optical absorption edges of TiO(2-x)Tex, TiO 2Tex, and TiO2Te2x are found to be red-shifted by 400 nm compared with undoped TiO2 whereas that of Ti(1-2x)O2Te2x is red-shifted by 150 nm. On the basis of calculated valence and conduction band edge positions of Te-doped TiO2, only TiO(2-x)Tex and Ti (1-2x)O2Te2x show suitable potentials for overall water splitting under visible-light irradiation. The electronic structure analysis revealed narrower band gaps of 1.12 and 1.17 eV with respect to undoped TiO2, respectively, resulting from the appearance of new occupied electronic states in the gap of TiO2. A delocalized nature of the gap states is found to be much more pronounced in TiO (2-x)Tex than that with Ti(1-2x)O 2Te2x due to the important contribution of numerous O 2p orbitals together with Te 5p orbitals. © 2013 American Chemical Society.

  3. The impacts of cation stoichiometry and substrate surface quality on nucleation, structure, defect formation, and intermixing in complex oxide heteroepitaxy LaCrO3 on SrTiO3(001)

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Liang [ORNL; Zhang, K. H. L [Pacific Northwest National Laboratory (PNNL); Bowden, Mark E [Pacific Northwest National Laboratory (PNNL); Varga, Tamas [Pacific Northwest National Laboratory (PNNL); Shutthanandan, Vaithiyalingam [Pacific Northwest National Laboratory (PNNL); Colby, Robert [Pacific Northwest National Laboratory (PNNL); Du, Yingge [Pacific Northwest National Laboratory (PNNL); Kabius, Bernd [Pacific Northwest National Laboratory (PNNL); Sushko, Peter V [University College, London; Biegalski, Michael D [ORNL; Chambers, S. A. [Pacific Northwest National Laboratory (PNNL)

    2013-01-01

    Our ability to design and fabricate electronic devices with reproducible properties using complex oxides is critically dependent on our ability to controllably synthesize these materials in thin-film form. Structure-property relationships are intimately tied to film and interface composition Here we report on the effect of cation stoichiometry on structural quality and defect formation in LaCrO3 heteroepitaxial films prepared using molecular beam epitaxy. We calculate from first principles the regions of stability of various candidate defects as a function of Cr and O chemical potential, along with the predicted effects of these defects on structural parameters. We show that epitaxial LaCrO3 films readily nucleate and remain coherently strained on SrTiO3(001) over a wide range of La-to-Cr atom ratios, but that La-rich films are of considerably lower structural quality than stoichiometric and Cr-rich films. Cation imbalances are accompanied by anti-site defect formation, as deduced by comparing experimental trends in the c lattice parameter with those from first-principles calculations. Cation mixing occurs at the interface for all La-to-Cr ratios investigated, and is not quenched by deposition on SrTiO3(001) at ambient temperature. Indiffused La atoms occupy Sr sites, most likely facilitated by Sr vacancy formation in STO resulting from high-temperature oxygen annealing required to prepare the substrate. Intermixing is effectively quenched by using molecular beam epitaxy to deposit LaCrO3 at ambient temperature on defect free Si(001). However, analogous pulsed laser deposition on Si is accompanied by cation mixing.

  4. Effect of Electronegativity and Charge Balance on the Visible-Light-Responsive Photocatalytic Activity of Nonmetal Doped Anatase TiO2

    Directory of Open Access Journals (Sweden)

    Jibao Lu

    2012-01-01

    Full Text Available The origin of visible light absorption and photocatalytic activity of nonmetal doped anatase TiO2 were investigated in details in this work based on density functional theory calculations. Our results indicate that the electronegativity is of great significance in the band structures, which determines the relative positions of impurity states induced by the doping species, and further influences the optical absorption and photocatalytic activities of doped TiO2. The effect of charge balance on the electronic structure was also discussed, and it was found that the charge-balance structures may be more efficient for visible light photocatalytic activities. In addition, the edge positions of conduction band and valence band, which determine the ability of a semiconductor to transfer photoexcited electrons to species adsorbed on its surface, were predicted as well. The results may provide a reference to further experimental studies.

  5. An insight into the mechanism of charge transfer properties of hybrid organic (MEH-PPV): Inorganic (TiO2) nanocomposites

    Science.gov (United States)

    Mittal, Tanu; Tiwari, Sangeeta; Mehta, Aarti; Sharma, Shailesh N.

    2016-04-01

    Now a days, inorganic nanoparticles are gaining importance and are potential candidate in different organic electronic device application like (LEDs, PVs) due to their novel properties and confinement in Nano-dimensions. cm 2] In the present work, we have compared the properties of titanium di oxide (TiO2) nanoparticles (NPs) synthesized by using two different chemical routes aqueous and ethanol respectively. These synthesized TiO2 nanoparticles have been characterized by X-ray diffraction spectroscopy (XRD) for phase confirmation. It was observed that synthesized nanoparticles are in anatase phase for both preparation routes. Morphological information was collected by scanning electron microscopy (SEM) which confirms that particles are almost spherical in shape and distributed uniformly which is further ensured by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was also used for further confirmation of size distribution of as-synthesized nanoparticles. Optical properties were also investigated by photoluminescence and UV-Vis spectroscopy and calculated bandgap was found to be in the range of 3.3-3.5eV for TiO2 (aq/eth) nanoparticles. The increase in bandgap values with respect to bulk (3.2 eV) confirms that as- synthesized nanoparticles are confined in nanodimensions. As synthesized nanoparticles were interacted with MEHPPV polymer (donor) matrix to make their respective MEHPPV: TiO2 nanocomposites and to confirm the charge transfer mechanism from polymer to nanoparticles. It can be observed from photoluminescence (PL) quenching experiments that continuous quenching obtained for respective nanocomposites confirms better charge transfer from polymer to inorganic TiO2 nanoparticles respectively. Because of, better quenching and simultaneously enhanced charge transfer of respective nanocomposites, ensures that these nanocomposites are greatly applicable for photovoltaics (PVs) especially in Hybrid Solar cells (HSCs).

  6. Predictive Control over Charge Density in the Two-Dimensional Electron Gas at the Polar-Nonpolar NdTiO3/SrTiO3 Interface

    Science.gov (United States)

    Xu, Peng; Ayino, Yilikal; Cheng, Christopher; Pribiag, Vlad S.; Comes, Ryan B.; Sushko, Peter V.; Chambers, Scott A.; Jalan, Bharat

    2016-09-01

    Through systematic control of the Nd concentration, we show that the carrier density of the two-dimensional electron gas (2DEG) in SrTiO3/NdTiO3/SrTiO3(001 ) can be modulated over a wide range. We also demonstrate that the NdTiO3 in heterojunctions without a SrTiO3 cap is degraded by oxygen absorption from air, resulting in the immobilization of donor electrons that could otherwise contribute to the 2DEG. This system is, thus, an ideal model to understand and control the insulator-to-metal transition in a 2DEG based on both environmental conditions and film-growth processing parameters.

  7. Heterogeneous distribution of B-site cations in BaZr{sub x}Ti{sub 1−x}O{sub 3} epitaxial thin films grown on (0 0 1) SrTiO{sub 3} by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, J. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Polo, M.C., E-mail: mcpolo@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Ferrater, C. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Hernández, S. [Departament d’Electrònica, Universitat de Barcelona, Barcelona (Spain); Sancho-Parramón, J. [Ruđer Bošković Institute, Bijenička 54, Zagreb 1000 (Croatia); Coy, L.E. [NanoBioMedical Centre AMU, Umultowska 85, 61-614 Poznan (Poland); Rodríguez, L.; Canillas, A. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain); Fábrega, L. [Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, Barcelona (Spain); Varela, M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona (Spain)

    2016-09-15

    Highlights: • Wide compositional range of BaZr{sub x}Ti{sub 1−x}O{sub 3} (BZT) thin films on SrTiO{sub 3} grown by PLD. • Heterogeneous distribution of B-site cations with local clustering. • Asymmetric nonparabolic dependence of band gap energy with composition. • Nonideal solid solution behaviour with inherent tendency to phase segregation. - Abstract: The isovalent susbstitution of Ti{sup 4+} by Zr{sup 4+} in BaZr{sub x}Ti{sub 1−x}O{sub 3} modifies the dielectric character of ferroelectric BaTiO{sub 3} yielding different behaviours such as relaxor, polar cluster, etc. The dynamic coupling between BaTiO{sub 3} polar nanoregions and BaZrO{sub 3} nonpolar ones as well as microstrain between them are thought to be behind such a rich phase diagram. However, these short-range compositonal variations are elusive to detect and this topic is thus rarely addressed. We have grown epitaxial thin films of BaZr{sub x}Ti{sub 1−x}O{sub 3} on (0 0 1)-oriented SrTiO{sub 3} substrates by pulsed laser deposition sweeping the entire composition range between BaTiO{sub 3} and BaZrO{sub 3} in increments of 0.1 in x. Several characterization techniques (AFM, TEM, XRD, Raman spectroscopy) were used for this research in order to understand the morphological and structural properties of the deposited films. Ellipsometric measurements allowed the calculation of the band gap energy of the films. This work demonstrates the existence of a heterogeneous distribution in the substitution of titanium by zirconium yielding relaxor and polar cluster nanoregions.

  8. Low temperature hydrogen reduction of high surface area anatase and anatase/β-TiO₂ for high-charging-rate batteries.

    Science.gov (United States)

    Ventosa, Edgar; Tymoczko, Anna; Xie, Kunpeng; Xia, Wei; Muhler, Martin; Schuhmann, Wolfgang

    2014-09-01

    There are several strategies to improve the electrochemical performance of TiO2 as negative electrode material for Li-ion batteries. Introducing oxygen vacancies through hydrogen reduction leads to an enhancement in electrical conductivity. However, this strategy does not improve the low lithium-ion mobility. Herein, we show that by decreasing the temperature of hydrogen annealing the improved lithium-ion mobility of high-surface-area TiO2 and β-TiO2 can be combined with the enhanced electrical conductivity of oxygen deficiencies. Annealing at only 275-300 °C in pure hydrogen atmosphere successfully creates oxygen vacancies in TiO2, as confirmed by UV/Vis spectroscopy, whereas the temperature is low enough to maintain a high specific surface area and prevent β-to-anatase phase transformation. The hydrogen reduction of high-surface-area anatase or anatase/β-TiO2 at these temperatures leads to improvements in the performance, achieving charge capacities of 142 or 152 mAh g(-1) at 10C, respectively.

  9. Charge separation in branched TiO2 nanorod array homojunction aroused by quantum effect for enhanced photocatalytic decomposition of gaseous benzene

    Science.gov (United States)

    Wang, Xiaoxia; Ni, Qian; Zeng, Dawen; Liao, Guanglan; Xie, Changsheng

    2016-12-01

    As known, the electron transfer behavior in photocatalysis is short-distance transportation, which leads the photo-induced electrons and holes to be localized. The temporarily separated electrons and holes will recombine with each other in the localized region. In this paper, we successfully achieved electron transfer in a homojunction of branched rutile TiO2 nanorod @nanoparticle core-shell architecture by quantum confinement effect aroused by the nanoparticle, which is proved by the blue-shifting in UV-vis absorption spectrum of the homojunction. Meanwhile, an absolute charge separation is also achieved by the long-distance electron transfer along the single-crystalline rutile TiO2 nanorod as uninterrupted high-speed electron transfer channel to FTO substrates. Based on the effective charge separation, the photocatalytic decomposition of gaseous benzene by the homojunction is significantly enhanced, yielding 10 times CO2 than that of the nanorod array. This homojunction interfacial charge separation, aroused by quantum effect, through long-distance transfer along the single-crystalline nanorod gives us inspiration to achieve efficient charge separation with defect-less interfaces, which might can be utilized for real-time environmental abatement and energy generation simultaneously.

  10. AB-INITIO STUDY OF BULK MODULUS AND CHARGE DENSITY OF CUBIC SrMO3 PEROVSKITES (M = Ti, Zr, Mo, Rh, Ru

    Directory of Open Access Journals (Sweden)

    AVINASH DAGA

    2012-03-01

    Full Text Available Bulk modulus & charge density of cubic SrMO3 perovskites (M = Ti, Zr, Mo, Rh & Ru have been investigated systematically using the first principle density functional calculations. Local density approximation (LDAmethod has been used to compute the two quantities for five perovskites. It is found that the calculated bulk modulus for all the transition metal oxides are in good agreement with the available experimental data and with other theoretical results previously reported in the literature. ABINIT computer code is used to carry out all the calculations. Charge density plots for all the five cubic SrMO3 perovskites have been drawn using MATLAB. The maximum and minimum values of charge density along with the corresponding reduced coordinates are reported for all the perovskites.

  11. Ti-doped indium tin oxide thin films for transparent field-effect transistors: control of charge-carrier density and crystalline structure.

    Science.gov (United States)

    Kim, Ji-In; Ji, Kwang Hwan; Jang, Mi; Yang, Hoichang; Choi, Rino; Jeong, Jae Kyeong

    2011-07-01

    Indium tin oxide (ITO) films are representative transparent conducting oxide media for organic light-emitting diodes, liquid crystal displays, and solar cell applications. Extending the utility of ITO films from passive electrodes to active channel layers in transparent field-effect transistors (FETs), however, has been largely limited because of the materials' high carrier density (>1 × 10(20) cm(-3)), wide band gap, and polycrystalline structure. Here, we demonstrate that control over the cation composition in ITO-based oxide films via solid doping of titanium (Ti) can optimize the carrier concentration and suppress film crystallization. On 120 nm thick SiO(2)/Mo (200 nm)/glass substrates, transparent n-type FETs prepared with 4 at % Ti-doped ITO films and fabricated via the cosputtering of ITO and TiO(2) exhibited high electron mobilities of 13.4 cm(2) V(-1) s(-1), a low subthreshold gate swing of 0.25 V decade(-1), and a high I(on/)I(off) ratio of >1 × 10(8).

  12. Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO₂: Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis.

    Science.gov (United States)

    O'Regan, Brian C; Barnes, Piers R F; Li, Xiaoe; Law, Chunhung; Palomares, Emilio; Marin-Beloqui, Jose M

    2015-04-22

    Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (∼0.2 μC/cm(2)) and another, larger charge (40 μC/cm(2)), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of ∼5, independent of bias light intensity. The fast decay (∼1 μs at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J-V hysteresis. Capacitance vs open circuit voltage (V(oc)) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the V(oc) hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at V(oc) suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J-V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.

  13. Removal of Formaldehyde Using Highly Active Pt/TiO2 Catalysts without Irradiation

    Directory of Open Access Journals (Sweden)

    Haibao Huang

    2013-01-01

    Full Text Available Formaldehyde (HCHO is one of the major indoor air pollutants. TiO2 supported Pt catalysts were prepared by sol-gel method and used to eliminate HCHO at room temperature without irradiation. The reduced Pt/TiO2 catalyst (denoted as Pt/TiO2-H2 showed much higher activity than that calcined in air (denoted as Pt/TiO2-air. More than 96% of the conversion of HCHO was obtained over 0.5 wt% Pt/TiO2-H2, on which highly dispersed metallic Pt nanoparticles with very small size (~2 nm were identified. Metallic Pt rather than cationic Pt nanoparticles provide the active sites for HCHO oxidation. Negatively charged metallic Pt nanoparticles facilitate the transfer of charge and oxygen species and the activation of oxygen.

  14. Electro-spray deposition of a mesoporous TiO2 charge collection layer: toward large scale and continuous production of high efficiency perovskite solar cells.

    Science.gov (United States)

    Kim, Min-cheol; Kim, Byeong Jo; Yoon, Jungjin; Lee, Jin-wook; Suh, Dongchul; Park, Nam-gyu; Choi, Mansoo; Jung, Hyun Suk

    2015-12-28

    The spin-coating method, which is widely used for thin film device fabrication, is incapable of large-area deposition or being performed continuously. In perovskite hybrid solar cells using CH(3)NH(3)PbI(3) (MAPbI(3)), large-area deposition is essential for their potential use in mass production. Prior to replacing all the spin-coating process for fabrication of perovskite solar cells, herein, a mesoporous TiO(2) electron-collection layer is fabricated by using the electro-spray deposition (ESD) system. Moreover, impedance spectroscopy and transient photocurrent and photovoltage measurements reveal that the electro-sprayed mesoscopic TiO(2) film facilitates charge collection from the perovskite. The series resistance of the perovskite solar cell is also reduced owing to the highly porous nature of, and the low density of point defects in, the film. An optimized power conversion efficiency of 15.11% is achieved under an illumination of 1 sun; this efficiency is higher than that (13.67%) of the perovskite solar cell with the conventional spin-coated TiO(2) films. Furthermore, the large-area coating capability of the ESD process is verified through the coating of uniform 10 × 10 cm(2) TiO(2) films. This study clearly shows that ESD constitutes therefore a viable alternative for the fabrication of high-throughput, large-area perovskite solar cells.

  15. Infrared ellipsometry study of photogenerated charge carriers at the (001) and (110) surfaces of SrTi O3 crystals and at the interface of the corresponding LaAl O3 /SrTi O3 heterostructures

    Science.gov (United States)

    Yazdi-Rizi, M.; Marsik, P.; Mallett, B. P. P.; Sen, K.; Cerreta, A.; Dubroka, A.; Scigaj, M.; Sánchez, F.; Herranz, G.; Bernhard, C.

    2017-05-01

    With infrared (IR) ellipsometry and dc resistance measurements, we investigated the photodoping at the (001) and (110) surfaces of SrTi O3 (STO) single crystals and at the corresponding interfaces of LaAl O3 /SrTi O3 (LAO/STO) heterostructures. In the bare STO crystals, we find that the photogenerated charge carriers, which accumulate near the (001) surface, have a similar depth profile and sheet carrier concentration as the confined electrons that were previously observed in LAO/STO (001) heterostructures. A large fraction of these photogenerated charge carriers persist at low temperature at the STO (001) surface even after the ultraviolet light has been switched off again. These persistent charge carriers seem to originate from oxygen vacancies that are trapped at the structural domain boundaries, which develop below the so-called antiferrodistortive transition at T*=105 K . This is most evident from a corresponding photodoping study of the dc transport in STO (110) crystals for which the concentration of these domain boundaries can be modified by applying a weak uniaxial stress. The oxygen vacancies and their trapping by defects are also the source of the electrons that are confined to the interface of LAO/STO (110) heterostructures, which likely do not have a polar discontinuity as in LAO/STO (001). In the former, the trapping and clustering of the oxygen vacancies also has a strong influence on the anisotropy of the charge carrier mobility. We show that this anisotropy can be readily varied and even inverted by various means, such as a gentle thermal treatment, UV irradiation, or even a weak uniaxial stress. Our experiments suggest that extended defects, which develop over long time periods (of weeks to months), can strongly influence the response of the confined charge carriers at the LAO/STO (110) interface.

  16. The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO{sub 2} nanostructures of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Grover, Inderpreet Singh; Singh, Satnam; Pal, Bonamali, E-mail: bpal@thapar.edu

    2013-09-01

    Titania based nanocatalysts such as sodium titanates of different morphology having superior surface properties are getting wide importance in photocatalysis research. Despite having sodium (Na) contents and its high temperature synthesis (that generally deteriorate the photoreactivity), these Na-titanates often exhibit better photoactivity than P25-TiO{sub 2} catalyst. Hence, this work demonstrated the influence of crystal structure, BET surface area, surface charge, zeta potential (ζ) and metal loading on the photocatalytic activity of as-prepared sodium titanate nanotube (TNT) and titania nanorod (TNR). Straw like hollow orthorhombic-TNT (Na{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O) particles (W = 9–12 nm and L = 82–115 nm) and rice like pure anatase-TNR particles (W = 8–13 nm and L = 81–134 nm) are obtained by the hydrothermal treatment of P25-TiO{sub 2} with NaOH, which in fact, altered the net surface charge of TNT and TNR particles. The observed ζ = −2.82 (P25-TiO{sub 2}), −13.5 (TNT) and −22.5 mV (TNR) are significantly altered by the Ag and Cu deposition. It has been found here that TNT displayed best photocatalytic activity for the imidacloprid insecticide (C{sub 9}H{sub 10}ClN{sub 5}O{sub 2}) degradation to CO{sub 2} formation under UV irradiation because of its largest surface area 176 m{sup 2} g{sup −1} among the catalysts studied.

  17. Ultrafast-Charging and Long-Life Li-Ion Battery Anodes of TiO2-B and Anatase Dual-Phase Nanowires.

    Science.gov (United States)

    Li, Kaikai; Li, Baohua; Wu, Junxiong; Kang, Feiyu; Kim, Jang-Kyo; Zhang, Tong-Yi

    2017-10-06

    Ideal lithium-ion batteries (LIBs) should possess a high power density, be charged extremely fast (e.g., 100C), and have a long service life. To achieve them all, all battery components, including anodes, cathodes, and electrolytes should have excellent structural and functional characteristics. The present work reports ultrafast-charging and long-life LIB anodes made from TiO2-B/anatase dual-phase nanowires. The dual-phase nanowires are fabricated with anatase TiO2 nanoparticles through a facile and cost-effective hydrothermal process, which can be easily scaled up for mass production. The anodes exhibit remarkable electrochemical performance with reversible capacities of ∼225, 172, and 140 mAh g(-1) at current rates of 1C, 10C, and 60C, respectively. They deliver exceptional capacity retention of not less than 126 and 93 mAh g(-1) after 1000 cycles at 60C and 100C, respectively, potentially worthwhile for high-power applications. These values are among the best when the high-rate capabilities are compared with the literature data for similar TiO2-based anodes. The Ragone plot confirms both the exceptionally high energy and power densities of the devices prepared using the dual-phase nanowires. The electrochemical tests and operando Raman spectra present fast electrochemical kinetics for both Li(+) and electron transports in the TiO2 dual-phase nanowires than in anatase nanoparticles due to the excellent Li(+) diffusion coefficient and electronic conductivity of nanowires.

  18. Investigation of cation (Sn2+) and anion (N3-) substitution in favor of visible light photocatalytic activity in the layered perovskite K2La2Ti3O10.

    Science.gov (United States)

    Kumar, Vinod; Govind; Uma, S

    2011-05-15

    Noticeable lowering of the energy gaps have been achieved for the layered perovskite K(2)La(2)Ti(3)O(10) as a result of the attempts made to incorporate Sn(2+) and N(3-) ions. Incorporation of Sn(2+) ions was carried out by the ion-exchange reaction of K(2)La(2)Ti(3)O(10) with aqueous tin(II) chloride solution. Nitrogen incorporation was attempted by the solid state reaction of the parent oxide with urea around 400 °C in air. The resultant oxides have been characterized by power X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and Fourier transform infrared spectroscopy. Room temperature ion-exchange was sufficient to introduce Sn(2+) ions with the resulting product of composition (Sn(0.45)K(0.2)H(0.9))La(2)Ti(3)O(10) · H(2)O. Visible light absorption was observed with the absorption edge red shift of ∼ 100 nm from that of the parent K(2)La(2)Ti(3)O(10). The lowering of the band gap was as expected by the contribution of Sn 5s orbitals to the O 2p orbitals in the formation of the valence band. Nitridation using urea resulted not only in nitrogen doping but with the additional sensitization by the presence of carbon nitride (CN) polymers, which again resulted in visible light absorption. The product oxides obtained as a result of cation and anion intended substitutional studies have been found to be useful for the visible light photocatalytic decomposition of organic dyes such as rhodamine B.

  19. Origin of Charge Density at LaAlO3 on SrTiO3 Heterointerfaces: Possibility of Intrinsic Doping

    Science.gov (United States)

    Siemons, Wolter; Koster, Gertjan; Yamamoto, Hideki; Harrison, Walter A.; Lucovsky, Gerald; Geballe, Theodore H.; Blank, Dave H. A.; Beasley, Malcolm R.

    2007-05-01

    As discovered by Ohtomo and Hwang, a large sheet charge density with high mobility exists at the interface between SrTiO3 and LaAlO3. Based on transport, spectroscopic, and oxygen-annealing experiments, we conclude that extrinsic defects in the form of oxygen vacancies introduced by the pulsed laser deposition process used by all researchers to date to make these samples is the source of the large carrier densities. Annealing experiments show a limiting carrier density. We also present a model that explains the high mobility based on carrier redistribution due to an increased dielectric constant.

  20. Surface Treatment for Effective Dye Adsorption on Nanocrystalline TiO2

    Science.gov (United States)

    Yanagida, Masatoshi; Han, Chen; Han, Liyuan

    2012-10-01

    To improve the efficiency of dye-sensitized solar cells (DSCs) by controlling dye adsorption on TiO2 surface, the effect of surface treatments on the properties of [NBu4]2[Ru(Htcterpy)(NCS)3] (black dye; [NBu4]: tetrabutylammonium cation; H3tcterpy: 4,4',4''-tricarboxy-2,2':6',2''-terpyridine) on nanocrystalline TiO2 films was investigated by analysis of the photovoltaic performance and the electron transport properties. Although the surface treatments do not affect on the condition band edge of TiO2, the amount of dye on TiO2 increases. The enhancement of dye adsorption by treatment of TiO2 in HCl solution is more effective than that by dipping the dye solution containing deoxycholic acid (DCA) as additive. But the charge recombination between an electron in TiO2 and I3- in the electrolyte can be reduced by the DCA treatment.

  1. Effect of cation doping on the physical properties and electrochemical performance of Nd{sub 0.6}Sr{sub 0.4}Co{sub 0.8}M{sub 0.2}O{sub 3-{delta}} (M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.T.; Manthiram, A. [Materials Science and Engineering Program, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-05-31

    The effect of M{sup n+} cation doping on the crystal chemistry, thermal expansion coefficient (TEC), electrical conductivity, and electrochemical performance in solid oxide fuel cells (SOFC) of the Nd{sub 0.6}Sr{sub 0.4}Co{sub 0.8}M{sub 0.2}O{sub 3-{delta}} (M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes has been investigated. The samples form single-phase solid solutions with an orthorhombic perovskite structure. The degree of oxygen loss at high temperatures, TEC, and electrical conductivity decrease with the substitution of M{sup n+} ions for Co{sup 3+/4+} due to an increase in the thermal stability and bond strength and a decrease in the metal-oxygen covalency. The electrocatalytic activity measured with single cell SOFC decreases with M{sup n+} doping due to a decrease in the oxygen exchange, oxygen mobility, and charge transfer reaction, resulting from a decrease in the electronic conductivity and the oxide ion vacancy concentration. (author)

  2. A hybridization approach to efficient TiO2 photodegradation of aqueous benzalkonium chloride.

    Science.gov (United States)

    Suchithra, Padmajan Sasikala; Carleer, Robert; Ananthakumar, Solaippan; Yperman, Jan

    2015-08-15

    TiO2 get positively charged upon UV-irradiation and repel the cationic pollutants away from the surface. Hybridization of AC onto TiO2 (ACT) tends catalyst surface negatively charged besides providing highly favorable adsorptions sites for cationic pollutants. The photodegradation of benzalkonium chloride (BKC), a quaternary ammonium surfactant and a pharmaceutical, is investigated with ACT. The surface charge of the catalyst in surfactant and non-surfactant aqueous dispersion under UV-irradiation is investigated and explained. The anomalous increase in COD values at the beginning of BKC-photodegradation is explained. The intermediate products formed are identified in both solution and solid phase. Trace amount of dodecane remained adsorbed on the catalyst surface after 1h UV-irradiation, but complete mineralization of BKC is achieved with 2h UV-irradiation. We propose that BKC photodegradation starts by central fission of benzyl CN bond followed by dealkylation, and demethylation steps.

  3. Cyclic voltammetry modeling of proton transport effects on redox charge storage in conductive materials: application to a TiO2 mesoporous film.

    Science.gov (United States)

    Kim, Y S; Balland, V; Limoges, B; Costentin, C

    2017-07-21

    Cyclic voltammetry is a particularly useful tool for characterizing charge accumulation in conductive materials. A simple model is presented to evaluate proton transport effects on charge storage in conductive materials associated with a redox process coupled with proton insertion in the bulk material from an aqueous buffered solution, a situation frequently encountered in metal oxide materials. The interplay between proton transport inside and outside the materials is described using a formulation of the problem through introduction of dimensionless variables that allows defining the minimum number of parameters governing the cyclic voltammetry response with consideration of a simple description of the system geometry. This approach is illustrated by analysis of proton insertion in a mesoporous TiO2 film.

  4. Polarizable Site Charge Model at Liquid/Solid Interfaces for Describing Surface Polarity: Application to Structure and Molecular Dynamics of Water/Rutile TiO2(110) Interface.

    Science.gov (United States)

    Nakamura, Hisao; Ohto, Tatsuhiko; Nagata, Yuki

    2013-02-12

    We present a novel scheme to construct a polarizable force field for liquid/solid interfaces, which takes into account the effect of the surface polarity induced by liquid-solid interactions explicitly. We extend the charge response kernel (CRK) method for molecules to solid surfaces by introducing the surface CRK. The CRK parameters are systematically determined by the first-principles calculations in the slab model with the dipole-correction method. Our methodology is applied to the water/clean rutile TiO2(110) interface. Structures and induced charges of a single water molecule attached to the TiO2 surface optimized by our polarizable force field show good agreement with those predicted by the first-principles calculations. Further, we carried out MD simulations for the liquid water/TiO2 interface and found three stable structures of water attached to the TiO2 surface. Two of them are predicted by both the polarizable and the nonpolarizable force fields, while the polarizable force field model predicts a structure of water with the hydrogen and oxygen atoms interacting with the oxygen atom of the surface TiO2 and the hydrogen atom of the other water molecule, respectively, which was reported by the previous first-principles MD simulation. This indicates that the dipole moments of water and TiO2 induced by the water-TiO2 interactions have significant impact on molecular conformations of the water/TiO2 interface.

  5. The charge trapping effect of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (HfO2)-silicon capacitors

    Science.gov (United States)

    Juan, Pi-chun; Hu, Yu-ping; Chiu, Fu-chien; Lee, Joseph Ya-min

    2005-08-01

    Metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with a Pb(Zr0.53,Ti0.47)O3 ferroelectric layer and a hafnium oxide insulator layer have been fabricated and characterized. The size of the capacitance-voltage memory windows was investigated. The memory window first increases to a saturated value of 0.7V with the sweep voltage and then decreases due to charge injection. The oxide trapped charges in the ferroelectric/insulator layers are studied by a voltage stress method. The flatband voltage (VFB) is measured before and after the voltage stress. The ΔVFB is 0.59V at a negative stress voltage pulse of -5V for 30s. The ΔVFB under positive voltage stress was much less and was 0.06V at a stress voltage of +5V for 5min. The energy-band diagram of the MFIS structure at inversion and accumulation modes are plotted and the VFB shift can be explained by the trapping or detrapping of charges. The current-density versus stress time (J-t ) characteristics were also measured. The result is consistent with the charge trapping model.

  6. Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime.

    Science.gov (United States)

    Kafizas, Andreas; Wang, Xiuli; Pendlebury, Stephanie R; Barnes, Piers; Ling, Min; Sotelo-Vazquez, Carlos; Quesada-Cabrera, Raul; Li, Can; Parkin, Ivan P; Durrant, James R

    2016-02-11

    Anatase:rutile TiO2 junctions are often shown to be more photocatalytically active than anatase or rutile alone, but the underlying cause of this improvement is not fully understood. Herein, we employ transient absorption spectroscopy to study hole transfer across the anatase:rutile heterojunction in films as a function of phase composition. By exploiting the different signatures in the photoinduced absorption of trapped charges in anatase and rutile, we were able to separately track the yield and lifetime of holes in anatase and rutile sites within phase composites. Photogenerated holes transfer from rutile to anatase on submicrosecond time scales. This hole transfer can significantly increase the anatase hole yield, with a 20:80 anatase:rutile composite showing a 5-fold increase in anatase holes observed from the microsecond. Hole transfer does not result in an increase in charge-carrier lifetime, where an intermediate recombination dynamic between that of pure anatase (t1/2 ≈ 0.5 ms) and rutile (t1/2 ≈ 20 ms) is found in the anatase:rutile junction (t1/2 ≈ 4 ms). Irrespective of what the formal band energy alignment may be, we demonstrate the importance of trap-state energetics for determining the direction of photogenerated charge separation across heterojunctions and how transient absorption spectroscopy, a method that can specifically track the migration of trapped charges, is a useful tool for understanding this behavior.

  7. Orbital-selective charge transfer at oxygen-deficient LaAlO3/SrTiO3(001) interfaces

    Science.gov (United States)

    Ong, P. V.; Lee, Jaichan

    2013-05-01

    Density-functional theory within the local density approximation + Hubbard U approach was used to study interface electronic structures in stoichiometric and oxygen-deficient LaAlO3/SrTiO3 (LAO/STO) superlattices with regularly spaced n-type and p-type interfaces. Asymmetric behaviors between complementary n-type and p-type interfaces were revealed in terms of orbital-selective charge transfer. Extra electrons induced by oxygen vacancies at the p-type interface easily spread to the n-type interface and occupy the Ti 3dxyorbitals, while those induced by the vacancies at the n-type interface are strictly confined and reside in Ti 3dx2-y2 and/or 3d3z2-r2 orbtials. The electronic behavior of oxygen vacancies at the LAO/STO interfaces and the possibility of distinguishing between intrinsic electronic states, which are induced by the polar catastrophe, and extrinsic states due to oxygen vacancies are discussed in detail.

  8. Probing the charge recombination in rGO decorated mixed phase (anatase-rutile) TiO2 multi-leg nanotubes

    Science.gov (United States)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2016-11-01

    Recombination of photo-generated charges is one of the most significant challenges in designing efficient photo-anode for photo electrochemical water oxidation. In the case of TiO2, mixed phase (anatase-rutile) junctions often shown to be more effective in suppressing electron-hole recombination compared to a single (anatase or rutile) phase. Here, we report the study of bulk and surface recombination process in TiO2 multi-leg nanotube (MLNTs) anatase-rutile (A-R) junctions decorated with reduced graphene oxide (rGO) layers, through an analysis of the photo-current and impedance characteristics. To quantify the charge transport/transfer process involved in these junctions, holes arriving at the interface of semiconductor/electrolyte were collected by adding H2O2 to the electrolyte. This enabled us to interpret the bulk and surface recombination process involved in anatase/rutile/rGO junctions for photo-electrochemical water oxidation. We correlated this quantification to the electrochemical impedance spectroscopy (EIS) measurements, and showed that in anatase/rutile junction the increase in PEC performance was due to suppression in electron-hole recombination rate at the surface states that effectively enhances the hole transfer rate to the electrolyte. On the other hand, in rGO wrapped A-R MLNTs junction it was due to both phenomenon i.e decrease in bulk recombination rate as well as increase in hole transfer rate to the electrolyte at the semiconductor/electrolyte interface.

  9. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO)

    Science.gov (United States)

    Kumar, S. Girish; Rao, K. S. R. Koteswara

    2017-01-01

    Metal oxide semiconductors (TiO2, WO3 and ZnO) finds unparalleled opportunity in wastewater purification under UV/visible light, largely encouraged by their divergent admirable features like stability, non-toxicity, ease of preparation, suitable band edge positions and facile generation of active oxygen species in the aqueous medium. However, the perennial failings of these photocatalysts emanates from the stumbling blocks like rapid charge carrier recombination and meager visible light response. In this review, tailoring the surface-bulk electronic structure through the calibrated and veritable approaches such as impurity doping, deposition with noble metals, sensitizing with other compounds (dyes, polymers, inorganic complexes and simple chelating ligands), hydrogenation process (annealing under hydrogen atmosphere), electronic integration with other semiconductors, modifying with carbon nanostructures, designing with exposed facets and tailoring with hierarchical morphologies to overcome their critical drawbacks are summarized. Taking into account the materials intrinsic properties, the pros and cons together with similarities and striking differences for each strategy in specific to TiO2, WO3 & ZnO are highlighted. These subtlety enunciates the primacy for improving the structure-electronic properties of metal oxides and credence to its fore in the practical applications. Future research must focus on comparing the performances of ZnO, TiO2 and WO3 in parallel to get insight into their photocatalytic behaviors. Such comparisons not only reveal the changed surface-electronic structure upon various modifications, but also shed light on charge carrier dynamics, free radical generation, structural stability and compatibility for photocatalytic reactions. It is envisioned that these cardinal tactics have profound implications and can be replicated to other semiconductor photocatalysts like CeO2, In2O3, Bi2O3, Fe2O3, BiVO4, AgX, BiOX (X = Cl, Br & I), Bi2WO6, Bi2MoO6

  10. A comparative study on the effect of Curcumin and Chlorin-p6 on the diffusion of two organic cations across a negatively charged lipid bilayer probed by second harmonic spectroscopy

    Science.gov (United States)

    Saini, R. K.; Varshney, G. K.; Dube, A.; Gupta, P. K.; Das, K.

    2014-09-01

    The influence of Curcumin and Chlorin-p6 (Cp6) on the real time diffusion kinetics of two organic cations, LDS (LDS-698) and Malachite Green (MG) across a negatively charged phospholipid bilayer is investigated by Second Harmonic (SH) spectroscopy. The diffusion time constant of LDS at neutral pH in liposomes containing either Curcumin or Cp6 is significantly reduced, the effect being more pronounced with Curcumin. At acidic pH, the quantum of reduction in the diffusion time constant of MG by both the drugs was observed to be similar. The relative changes in the average diffusion time constants of the cations with increasing drug concentration at pH 5.0 and 7.4 shows a substantial pH effect for Curcumin induced membrane permeability, while a modest pH effect was observed for Cp6 induced membrane permeability. Based on available evidence this can be attributed to the increased interaction between the drug and the polar head groups of the lipid at pH 7.4 where the drug resides closer to the lipid-water interface.

  11. Experimental performance of LPG refrigerant charges with varied concentration of TiO2 nano-lubricants in a domestic refrigerator

    Directory of Open Access Journals (Sweden)

    Damola S. Adelekan

    2017-03-01

    Full Text Available This article present an experimental investigation of varied mass charges of Liquefied Petroleum Gas (40 g, 50 g, 60 g and 70 g enhanced with varied TiO2 nanoparticle/mineral oil concentrations (0.2 g/L, 0.4 g/L and 0.6 g/L nano-lubricants in a R134a compressor of a domestic refrigerator. Performance tests investigated at steady state included: pull down time, power consumption, compressor power input, cooling capacity and coefficient of performance (COP. Analysis was based on temperature and pressure readings obtained from appropriate gauges attached to the test rig. Refrigerant property characteristics were obtained using Ref-Prop NIST 9.0 software. Results obtained showed almost equal evaporator air temperatures and reduction in power consumption for all tested nano-lubricant concentrations except at 70 g charge of LPG using 0.6 g/L nano-lubricant. Furthermore, the lowest compressor power input was found to be 21 W and obtained using 70 g of LPG with either of 0.2 g/L or 0.4 g/L nano-lubricants. At 70 g of LPG using 0.6 g/L concentration of nano-lubricant, highest cooling capacity index of 65 W was obtained while the highest COP of 2.8 was obtained with 40 g charge of LPG using 0.4 g/L concentration of nanolubricant. In conclusion, LPG-TiO2 nano-lubricant mixture works safely and efficiently in domestic refrigerators without modification of capillary tube length, but requires adequate optimization.

  12. Mesoporous TiO₂ thin films exhibiting enhanced thermal stability and controllable pore size: preparation and photocatalyzed destruction of cationic dyes.

    Science.gov (United States)

    Wang, Jinshu; Li, Hui; Li, Hongyi; Zou, Chen; Wang, Hong; Li, Dasheng

    2014-02-12

    Ordered mesostructured TiO2 thin films were constructed through a method that combined sol-gel with evaporation-induced self-assembly (EISA). It was found that the calcination temperature, as well as the type of block copolymer, could vary the TiO2 mesoporous structure. Based on tension stress calculated by the surface energy of crystallites and the compression calculated by interface energy between the crystallites, the thermodynamic study for the sample had been carried out and the critical crystallite size expression of the mesoporous film was presented for the prediction of the thermal stability of the mesoporous structure at high temperature. It was also found that varying the mass ratio of templating agent to inorganic precursor could adjust the pore size of mesoporous TiO2. The pore size regulating mechanism had been discussed. The sample calcined at 450-500 °C, which had a higher specific surface area and larger pore size, exhibited higher photocatalyzed destruction capability of Methylene Blue.

  13. Cation disorder and structural studies on Bi4−NdTi3O12 (0.0 ≤ ≤ 2.0)

    Indian Academy of Sciences (India)

    S N Achary; S J Patwe; P S R Krishna; A B Shinde; A K Tyagi

    2008-11-01

    Here we report the results of combined powder X-ray and neutron diffraction studies of Bi4−NdTi3O12 (0.0 ≤ ≤ 2.0) compositions. The parent Bi4Ti3O12 has an orthorhombic lattice (space group: B2cb) with unit cell parameters = 5.4432(5) Å, = 5.4099(5) Å and = 32.821(2) Å, and = 966.5(1) Å3. This orthorhombic lattice is retained in all the studied compositions. The unit cell parameters gradually decrease with Nd 3+ ion concentration with a discontinuity at = 0.75. Orthorhombicity of the lattice decreases with increase in Nd3+ content in the lattice. The orthorhombic unit cell parameters for a representative Bi2Nd2Ti3O12 composition are: = 5.3834(9), = 5.3846(9) and = 32.784(1) Å. The observed orthorhombic distortion at = 2.0 is very small and thus the crystal structure apparently has a pseudo-tetragonal lattice. In addition, Nd3+ preferentially substitutes in the perovskite slab of the Aurivillius structure. The fraction of Nd3+ in the fluorite slab increases with increase in Nd3+ contents.

  14. Visible-light-driven TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bingqing; Ma, Ni; Wang, Yaping; Qiu, Yiwei [Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Hu, Haihua [Zhejiang University City College, Hangzhou 310015 (China); Zhao, Jiahuan; Liang, Dayu; Xu, Sheng; Li, Xiaoyun; Zhu, Zhiyan [Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Cui, Can, E-mail: cancui@zstu.edu.cn [Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-05-05

    Highlights: • TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO was synthesized with a facile two-step method. • TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO exhibit superior photocatalytic activity and stability. • TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO has dual-channel for photo-generated charges separation. • TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO composite reduces the consumption of Ag. - Abstract: A novel triple-component TiO{sub 2}/Ag{sub 3}PO{sub 4}/graphene oxide (TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO) photocatalyst with dual channels for photo-generated charges separation has been synthesized to improve the photocatalytic activity and stability of Ag{sub 3}PO{sub 4} under visible light. The synthesis involved in-situ growth of Ag{sub 3}PO{sub 4} nanoparticles on GO sheets to form Ag{sub 3}PO{sub 4}/GO, and then deposited TiO{sub 2} nanocrystals on the surface of Ag{sub 3}PO{sub 4} by hydrolysis of Ti(SO{sub 4}){sub 2} at low-temperature hydrothermal condition. The TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO exhibited superior photocatalytic activity and stability to bare Ag{sub 3}PO{sub 4}, TiO{sub 2}/Ag{sub 3}PO{sub 4} and Ag{sub 3}PO{sub 4}/GO in degradation of Rhodamine B and phenol solutions under visible light. It is suggested that the photo-generated electrons in the conduction band of Ag{sub 3}PO{sub 4} can be quickly transferred to GO, while the holes in the valence band of Ag{sub 3}PO{sub 4} can be transferred to the valence band of TiO{sub 2}. The dual transfer channels at the interfaces of TiO{sub 2}/Ag{sub 3}PO{sub 4}/GO result in effective charges separation, leading to enhanced photocatalytic activity and stability. Furthermore, the content of noble metal Ag significantly reduces from 77 wt% in bare Ag{sub 3}PO{sub 4} to 55 wt% in the nanocomposite. The concept of establishing dual channels for charges separation in a triple-component heterostructure provides a promising way to develop photocatalysts with high efficiency.

  15. Atomic scale simulations of pyrochlore oxides with a tight-binding variable-charge model: implications for radiation tolerance.

    Science.gov (United States)

    Sattonnay, G; Tétot, R

    2014-02-05

    Atomistic simulations with new interatomic potentials derived from a tight-binding variable-charge model were performed in order to investigate the lattice properties and the defect formation energies in Gd2Ti2O7 and Gd2Zr2O7 pyrochlores. The main objective was to determine the role played by the defect stability on the radiation tolerance of these compounds. Calculations show that the titanate has a more covalent character than the zirconate. Moreover, the properties of oxygen Frenkel pairs, cation antisite defects and cation Frenkel pairs were studied. In Gd2Ti2O7 the cation antisite defect and the Ti-Frenkel pair are not stable: they evolve towards more stable defect configurations during the atomic relaxation process. This phenomenon is driven by a decrease of the Ti coordination number down to five which leads to a local atomic reorganization and strong structural distortions around the defects. These kinds of atomic rearrangements are not observed around defects in Gd2Zr2O7. Therefore, the defect stability in A2B2O7 depends on the ability of B atoms to accommodate high coordination number (higher than six seems impossible for Ti). The accumulation of structural distortions around Ti-defects due to this phenomenon could drive the Gd2Ti2O7 amorphization induced by irradiation.

  16. Degradation of TiO{sub 2} and/or SiO{sub 2} hybrid films doped with different cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Purcar, Violeta, E-mail: violetapurcar@yahoo.com [University of Bucharest, Faculty of Physics, 3Nano-SAE Research Centre, P.O. Box MG-38, 077125 Magurele (Romania); National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Caprarescu, Simona, E-mail: scaprarescu@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu St., 011061, Bucharest (Romania); Donescu, Dan, E-mail: ddonescu@chimfiz.icf.ro [National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Petcu, Cristian, E-mail: cpetcu@chimfiz.icf.ro [National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Stamatin, Ioan, E-mail: istarom@3nanosae.org [University of Bucharest, Faculty of Physics, 3Nano-SAE Research Centre, P.O. Box MG-38, 077125 Magurele (Romania); Ianchis, Raluca, E-mail: ralumoc@yahoo.com [National R and D Institute for Chemistry and Petrochemistry ICECHIM – Polymers Department, Splaiul Independentei 202-6, PO Box 174/35 Bucharest (Romania); Stroescu, Hermine, E-mail: hermine25@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest (Romania)

    2013-05-01

    Hybrid thin films, silica–titanium oxides and silica–aluminum oxides, designed based on the sol–gel process are evaluated as catalysts in the photo-degradation of the cationic dyes. Silica matrices from different precursors with various organic functional groups and cross-linked with titanium or aluminum agents (tetraisopropyl orthotitanate and aluminum sec-butoxide) allow the surface property tailoring related to the high capacity of the dye adsorption respective, high photo-degradation activity. The cationic dyes (methylene blue, rhodamine B, crystal violet, malachite green) embedded on the hybrid silica matrix, under ultraviolet light, have a first order kinetics of photodegradation. The cross-linking agents play a key role in the photocatalytic degradation and silica matrix as dye absorbent. The photo-degradation rate for the binary system derived from methyltriethoxysilane/vinyltriethoxysilane precursors with both cross linkers showed a significant improvement by comparison with other hybrid materials. The significant increasing in the photodecomposition rate is related to the capacity to generate additional oxidizing species by each silica hybrid compounds. - Highlights: ► Dyes display different electrostatic interactions to the silica matrix. ► Cross-linking agent influences the photocatalytic degradation of dyes. ► Photodegradation reaction obeyed the rules of a pseudo-first-order kinetic reaction. ► UV radiation can be the origin of the photodegradation.

  17. Probing the charge recombination in rGO decorated mixed phase (anatase-rutile TiO2 multi-leg nanotubes

    Directory of Open Access Journals (Sweden)

    Y. Rambabu

    2016-11-01

    Full Text Available Recombination of photo-generated charges is one of the most significant challenges in designing efficient photo-anode for photo electrochemical water oxidation. In the case of TiO2, mixed phase (anatase-rutile junctions often shown to be more effective in suppressing electron-hole recombination compared to a single (anatase or rutile phase. Here, we report the study of bulk and surface recombination process in TiO2 multi-leg nanotube (MLNTs anatase-rutile (A-R junctions decorated with reduced graphene oxide (rGO layers, through an analysis of the photo-current and impedance characteristics. To quantify the charge transport/transfer process involved in these junctions, holes arriving at the interface of semiconductor/electrolyte were collected by adding H2O2 to the electrolyte. This enabled us to interpret the bulk and surface recombination process involved in anatase/rutile/rGO junctions for photo-electrochemical water oxidation. We correlated this quantification to the electrochemical impedance spectroscopy (EIS measurements, and showed that in anatase/rutile junction the increase in PEC performance was due to suppression in electron-hole recombination rate at the surface states that effectively enhances the hole transfer rate to the electrolyte. On the other hand, in rGO wrapped A-R MLNTs junction it was due to both phenomenon i.e decrease in bulk recombination rate as well as increase in hole transfer rate to the electrolyte at the semiconductor/electrolyte interface.

  18. TiO2 nanorods: a facile size- and shape-tunable synthesis and effective improvement of charge collection kinetics for dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wenjun; Xie, Yan; Xiong, Dehua; Zeng, Xianwei; Li, Zhihong; Wang, Mingkui; Cheng, Yi-Bing; Chen, Wei; Yan, Keyou; Yang, Shihe

    2014-06-25

    In this paper, we present a novel, high-yield, and cost-effective hydrothermal method for the preparation of single crystal-like anatase TiO2 nanorods (NRs) with specific {101} exposed crystal planes and preferred [001] growth direction, which is governed by the "oriented attachment" mechanism. The successful synthesis of TiO2 NRs and fine tuning on their size and shape could be easily accomplished by adjusting the solvent compositions. The salient feature of these NRs, in lieu of traditional nanoparticles as building blocks of photoanodes in dye-sensitized solar cell (DSSC) system, rests with their significantly reduced grain boundaries. The electron diffusion and recombination kinetics have been critically compared for the first time with respect to the size and shape of the novel building blocks. A high efficiency of 8.87% has finally been achieved for DSSC based on long-thin NRs rather than short-thin or long-thick NRs, which possesses balanced optimizations on charge collection and light-harvesting properties.

  19. Comparison of Nonlinear Filtering Methods for Estimating the State of Charge of Li4Ti5O12 Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Jianping Gao

    2015-01-01

    Full Text Available Accurate state of charge (SoC estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12 lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF, have been implemented with a Li4Ti5O12 lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.

  20. A highly specific and sensitive electroanalytical strategy for microRNAs based on amplified silver deposition by the synergic TiO2 photocatalysis and guanine photoreduction using charge-neutral probes.

    Science.gov (United States)

    Li, Rui; Li, Shuying; Dong, Minmin; Zhang, Liyan; Qiao, Yuchun; Jiang, Yao; Qi, Wei; Wang, Hua

    2015-11-18

    TiO2 photocatalysis and guanine photoreduction were synergically combined for amplifying silver deposition for the electroanalysis of short-chain microRNAs with guanine bases using charge-neutral probes. It could allow for the highly specific and sensitive detection of microRNAs in the blood as well as the identification of their mutant levels.

  1. AC impedance behaviour and state-of-charge dependence of Zr0.5Ti0.5V0.6Cr0.2Ni1.2 metal-hydride electrodes

    Indian Academy of Sciences (India)

    S Rodrigues; N Munichandraiah; A K Shukla

    2001-10-01

    Metal-hydride electrodes made of an AB2 alloy of the composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 are studied for AC impedance behaviour at several of their state-of-charge values. Impedance data at any state-of-charge comprise two RC-time constants and accordingly are analysed by using a nonlinear-least-square-fitting procedure. Resistance of the electrode and frequency maximum (*) of the lowfrequency semicircle are found useful for predicting state-of-charge of the metalhydride electrodes.

  2. X-ray study of the charge-density-wave transition in single-layer TiSe2

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xin-Yue; Hong, Hawoong; Chen, Peng; Chiang, T. -C.

    2017-05-01

    Synchrotron x-ray studies of single-layer TiSe2 reveal displacements of the Ti and Se atoms as a function of temperature. The measurements, with a high sensitivity of 0.001 Å, show a (2x2) charge density wave (CDW) structure at temperatures below a critical temperature of TC1 = 233 K. The temperature dependence follows a BCS-like second-order mean-field behavior. A fivelayer TiSe2 film also exhibits a CDW transition of the same character but at a lower transition temperature of TC5 = 204 K, which is the same as that for bulk TiSe2. The results demonstrate that lattice distortion is an integral part of the CDW transition that must also involve renormalization of the electronic structure.

  3. A hybridization approach to efficient TiO{sub 2} photodegradation of aqueous benzalkonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Suchithra, Padmajan Sasikala, E-mail: schithraps@gmail.com [Research group of Applied and Analytical Chemistry, University Hasselt, Agoralaan, Gebouw D, BE-3590 Diepenbeek (Belgium); Carleer, Robert [Research group of Applied and Analytical Chemistry, University Hasselt, Agoralaan, Gebouw D, BE-3590 Diepenbeek (Belgium); Ananthakumar, Solaippan [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019 (India); Yperman, Jan, E-mail: jan.yperman@uhasselt.be [Research group of Applied and Analytical Chemistry, University Hasselt, Agoralaan, Gebouw D, BE-3590 Diepenbeek (Belgium)

    2015-08-15

    Graphical abstract: Hybridization of AC onto TiO{sub 2} tends the catalyst surface negatively charged besides providing highly favorable adsorptions sites for cationic surfactants. The photodegradation of benzalkonium chloride (BKC) is investigated. - Highlights: • Activated carbon-TiO{sub 2} composite (ACT) surface tends negative upon UV irradiation. • ACT effectively photodegrade cationic surfactant benzalkonium chloride (BKC). • Optimum pH for UV-photodegradation of BKC is 8 to 9 and reaction time is 2 h. • Aromatic moiety of BKC is degraded faster than long alkyl chain. • UV–vis spectroscopy is sensitive to detect aqueous BKC from 1 μg/mL. - Abstract: TiO{sub 2} get positively charged upon UV-irradiation and repel the cationic pollutants away from the surface. Hybridization of AC onto TiO{sub 2} (ACT) tends catalyst surface negatively charged besides providing highly favorable adsorptions sites for cationic pollutants. The photodegradation of benzalkonium chloride (BKC), a quaternary ammonium surfactant and a pharmaceutical, is investigated with ACT. The surface charge of the catalyst in surfactant and non-surfactant aqueous dispersion under UV-irradiation is investigated and explained. The anomalous increase in COD values at the beginning of BKC-photodegradation is explained. The intermediate products formed are identified in both solution and solid phase. Trace amount of dodecane remained adsorbed on the catalyst surface after 1 h UV-irradiation, but complete mineralization of BKC is achieved with 2 h UV-irradiation. We propose that BKC photodegradation starts by central fission of benzyl C−N bond followed by dealkylation, and demethylation steps.

  4. Collapse of charge ordering in Bi0.5Sr0.5MnO3 by cation disorder: a magnetic and structural investigation

    Institute of Scientific and Technical Information of China (English)

    S. Savitha Pillai; Rajasekhar Madugundo; Santhosh. P. Nagappan Nair

    2008-01-01

    The structure, transport, and magnetic properties of LaxBi0.5-xSr0.5MnO3 (LBSMO) (x=0.1 and 0.4) were studied through X-ray diffraction, magnetization, and electron spin resonance (ESR) measurements. The structural analysis showed that the LBSMO crystallized in an orthorhombic perovskite structure with Pbnm space group for x=0.1 and Imma space group for x=0.4 and the highly polarizable 6s2 lone pair of Bi3+ was the tuning factor for the structural variations. Magnetic studies revealed that the replacement of Bi ions by La ions resulted in the collapse high temperature charge ordering state of BSMO and it order Ferro Magnetically (FM) with TC around 355 and 330 K for x=0.1 and 0.4, respectively. Both ESR, temperature and field dependant magnetization suggested that there was a coexistence of FM and the paramagnetic phases well below TC and the FM and CO-AFM phases below 250 K of LBSMO.

  5. Origin of Coverage Dependence in Photoreactivity of Carboxylate on TiO2(110): Hindering by Charged Coadsorbed Hydroxyls

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhitao; Henderson, Michael A.; Lyubinetsky, Igor

    2015-09-30

    The influence of reactant coverage on photochemical activity was explored using scanning tunneling microscopy (STM) and ultraviolet photoelectron spectroscopy (UPS). We observed diminished reactivity of carboxylate species (trimethyl acetate, TMA) on TiO2(110) as a function of increasing coverage. This effect was not linked to intermolecular interactions of TMA but to the accumulation of the coadsorbed bridging hydroxyls (HOb) deposited during (thermal) dissociative adsorption of the parent, trimethylacetic acid (TMAA). Confirmation of the hindering influence of HOb groups was obtained by the observation that HOb species originated from H2O dissociation at O-vacancy sites have a similar hindering effect on TMA photochemistry. Though HOb’s are photoinactive on TiO2(110) under ultrahigh vacuum conditions, UPS results show that these sites trap photoexcited electrons, which in turn likely (electrostatically) attract and neutralize photoexcited holes, thus suppressing the hole-mediated photoreactivity of TMA. This negative influence of surface hydroxyls on hole-mediated photochemistry is likely a major factor in other anaerobic photochemical processes on reducible oxide surfaces.

  6. Tunable Optical Properties and Charge Separation in CH3NH3Sn(x)Pb(1-x)I3/TiO2-Based Planar Perovskites Cells.

    Science.gov (United States)

    Feng, Hong-Jian; Paudel, Tula R; Tsymbal, Evgeny Y; Zeng, Xiao Cheng

    2015-07-01

    A sharp potential drop across the interface of the Pb-rich halide perovskites/TiO2 heterostructure is predicted from first-principles calculations, suggesting enhanced separation of photoinduced charge carriers in the perovskite-based photovoltaic solar cells. The potential drop appears to be associated with the charge accumulation at the polar interface. More importantly, on account of both the β phase structure of CH3NH3Sn(x)Pb(1-x)I3 for x Pb(1-x)I3 for x ≥ 0.5, the computed optical absorption spectra from time-dependent density functional theory (TD-DFT) are in very good agreement with the measured spectra from previous experiments. Our TD-DFT computation also confirms the experimental structures of the mixed Pb-Sn organometal halide perovskites. These computation results provide a highly sought answer to the question why the lead-based halide perovskites possess much higher power conversion efficiencies than the tin-based counterparts for solar-cell applications.

  7. Application of the radioisotope excited X-ray fluorescence technique in charge optimization during thermite smelting of Fe-Ni, Fe-cr, and Fe-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, I.G.; Joseph, D.; Lal, M.; Bose, D.K. [Bhabha Atomic Research Centre, Bombay (India)

    1995-10-01

    A wide range of ferroalloys are used to facilitate the addition of different alloying elements to molten steel. High-carbon ferroalloys are produced on a tonnage basis by carbothermic smelting in an electric furnace, and an aluminothermic route is generally adopted for small scale production of low-carbon varieties. The physicochemical principles of carbothermy and aluminothermy have been well documented in the literature. However, limited technical data are reported on the production of individual ferroalloys of low-carbon varieties from their selected resources. The authors demonstrate her the application of an energy dispersive X-ray fluorescence (EDXRF) technique in meeting the analytical requirements of a thermite smelting campaign, carried out with the aim of preparing low-carbon-low-nitrogen Fe-Ni, Fe-Cr, and Fe-Ti alloys from indigenously available nickel bearing spent catalyst, mineral chromite, and ilmenite/rutile, respectively. They have chosen the EDXRF technique to meet the analytical requirements because of its capability to analyze samples of ore, minerals, a metal, and alloys in different forms, such as powder, sponge, as-smelted, or as-cast, to obtain rapid multielement analyses with ease. Rapid analyses of thermite feed and product by this technique have aided in the appropriate alterations of the charge constitutents to obtain optimum charge consumption.

  8. Electronic structures of TiO2-TCNE, -TCNQ, and -2,6-TCNAQ surface complexes studied by ionization potential measurements and DFT calculations: Mechanism of the shift of interfacial charge-transfer bands

    Science.gov (United States)

    Fujisawa, Jun-ichi; Hanaya, Minoru

    2016-06-01

    Interfacial charge-transfer (ICT) transitions between inorganic semiconductors and π-conjugated molecules allow direct charge separation without loss of energy. This feature is potentially useful for efficient photovoltaic conversions. Charge-transferred complexes of TiO2 nanoparticles with 7,7,8,8-tetracyanoquinodimethane (TCNQ) and its analogues (TCNX) show strong ICT absorption in the visible region. The ICT band was reported to be significantly red-shifted with extension of the π-conjugated system of TCNX. In order to clarify the mechanism of the red-shift, in this work, we systematically study electronic structures of the TiO2-TCNX surface complexes (TCNX; TCNE, TCNQ, 2,6-TCNAQ) by ionization potential measurements and density functional theory (DFT) calculations.

  9. Influences of space charge and electrode on the electrical transport through (Ba,Sr)TiO 3 thin film capacitors

    Science.gov (United States)

    Sun, J.; Zheng, X. J.; Yin, W.; Tang, M. H.; Li, W.

    2011-03-01

    The combined model of thermionic emission and carrier drift-diffusion is derived to simulate the electrical transport through BST thin film capacitors. In the model the field-dependent permittivity is obtained from the derivative of the polarization distinguished with the traditional characterization. The simulated currents show the hysteresis. The influences of space charges and electrode materials on the current density-applied voltage characteristics have been studied. The simulation results suggest that the current densities can be greatly influenced by the space charges at the cathode interface and the barrier height at the electrode/BST interface. It is expected that this work can provide some useful guidelines to the design and performance improvement of BST thin film capacitors and other BST thin film devices.

  10. Synthesis of nano-sized TiO(2)/poly(AA-co-MMA) composites by heterocoagulation and blending with PET.

    Science.gov (United States)

    Chen, Jui-Hung; Dai, Chi-An; Chen, Hung-Jen; Chien, Pei-Chi; Chiu, Wen-Yen

    2007-04-01

    Nano-sized TiO(2) or SiO(2)/TiO(2) particles were prepared by hydrolysis and condensation reactions in aqueous media, followed by mixing with poly(AA-co-MMA) latex to form different composites, then blending with poly(ethylene terephthalate), PET. The TGA results of composites indicated that negative charged latexes had greater interaction with TiO(2)/ or SiO(2)/TiO(2) particles through strong electrostatic forces, while cationic latexes incorporated with TiO(2) or SiO(2)/TiO(2) particles by pH induced coagulation, carbonyl group chelation and hydrogen bonding. The soapless latex polymer particles showed lower ability of adsorption to TiO(2) particles due to the decrease of total surface area of these larger particles. If SiO(2)/TiO(2) particles were used instead of TiO(2) particles, unexpected high adsorption result was observed. Morphology results observed by SEM showed that PET blended with positive charged composites was more homogeneous than PET blended with negative charged composites. DSC results also indicated that the T(g) of PET was increased, melting temperatures (T(m) or T(m)(')) were increased, and the temperature range of crystallization was narrowed after blending with the composites. The presence of composites affected the mobility and packing of PET molecular chains therefore changing the thermal properties of PET.

  11. The influence of ionic strength and organic compounds on nanoparticle TiO2 (n-TiO2) aggregation.

    Science.gov (United States)

    Lee, Jaewoong; Bartelt-Hunt, Shannon L; Li, Yusong; Gilrein, Erica Jeanne

    2016-07-01

    This study investigated the aggregation of n-TiO2 in the presence of humic acid (HA) and/or 17β-estradiol (E2) under high ionic strength conditions simulating levels detected in landfill leachate. Aggregation of n-TiO2 was strongly influenced by ionic strength as well as ionic valence in that divalent cations (Ca(2+)) were more effective than monovalent (Na(+)) at the surface modification. HA or E2 enhanced aggregation of n-TiO2 in 20 mM CaCl2, however little aggregation was observed in 100 mM NaCl. Similarly, we observed only the increased aggregation of n-TiO2 in the presence of HA/E2. These results showed the critical role of particles' surface charges on the aggregation behaviors of n-TiO2 that HA plays more significantly than E2. However, the slightly increased zeta potential and aggregation of n-TiO2 in the combination of HA and E2 at both 20 mM CaCl2 and 100 mM NaCl means that E2 has influenced on the surface modification of n-TiO2 by adsorption. Based on the aggregation of n-TiO2 under high ionic strength with HA and/or E2, we simulated the mobility of aggregated n-TiO2 in porous media. As a result, we observed that the mobility distance of aggregated n-TiO2 was dramatically influenced by the surface modification with both HA and/or E2 between particles and media. Furthermore, larger mobility distance was observed with larger aggregation of n-TiO2 particles that can be explained by clean bed filtration (CFT) theory.

  12. Direct observation of UV-induced charge accumulation in inverted-type polymer solar cells with a TiOx layer: Microscopic elucidation of the light-soaking phenomenon

    Science.gov (United States)

    Son, D.; Kuwabara, T.; Takahashi, K.; Marumoto, K.

    2016-09-01

    The mechanism of light-soaking phenomenon in inverted-type organic solar cells (IOSCs) with a structure of indium-tin-oxide/TiOx/P3HT:PCBM/Au was studied by electron spin resonance (ESR) spectroscopy. Charge accumulation in the cell during UV-light irradiation was observed using ESR, which was clearly correlated with the light-soaking phenomenon. The origin of the charge accumulation is clarified as holes that are deeply trapped at p-type P3HT polymer-chain ends with bromine after hole transfer from the band excitation in the TiOx layer. The holes are considered to be electrostatically attracted to trapped electrons in the TiOx layer after the band excitation. These accumulated charges are the origin of the light-soaking phenomenon. Our results strongly suggest that passivation of the residual OH groups in the TiOx layer is needed to avoid the light-soaking phenomenon by preventing electron trappings, a step that is indispensable in the operation of highly stable IOSCs without UV-light irradiation based on a low-cost and low-temperature device fabrication process using flexible plastic substrates.

  13. Aggregation of TiO2-graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation.

    Science.gov (United States)

    Hua, Zulin; Zhang, Jianan; Bai, Xue; Ye, Zhengfang; Tang, Zhiqiang; Liang, Lu; Liu, Yuqi

    2016-01-01

    The aggregation kinetics of TiO2-graphene nanocomposites in aqueous solution affected by solution pH, salt types (NaCl, CaCl2) and concentrations of electrolytes, and stability induced by UV irradiation was investigated in this study. The zeta potentials and hydrodynamic diameter of the nanoparticles were used as bases to assess the aggregation behavior, and stability of nanocomposites exposed to UV irradiation was expressed in terms of supernatant concentration. The aggregation of TiO2-graphene nanoparticles in aqueous media followed the colloidal theory. TiO2-graphene nanoparticles were significantly aggregated in the presence of a diavalent cation compared with monovalent cation because the former was more capable of effective charge screening and neutralization. The calculated Hamaker constant of the TiO2-graphene nanocomposites in aqueous solution prepared in the lab was 2.31×10(-20)J. The stability of this composite nanoparticles was between those of pure TiO2 and graphene. A known intensity of UV irradiation was beneficial in the formation of TiO2-graphene nanoparticle aggregates. However, prolonged UV irradiation may stabilize the nanoparticles. These results provided critical information about the colloidal properties of the new TiO2-graphene nanocomposites and were useful in predicting the fate and transport of TiO2-graphene nanocomposites in natural water environments.

  14. Silicification and biosilicification Part 5. An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, Siddharth V.; Clarson, Stephen J

    2003-06-10

    Biosilicification in diatoms has been reported to occur at (or close to) neutral pH and it has been shown that protein molecules can act as catalysts/templates/scaffolds for this elegant materials chemistry. Here we report the formation of silica spheres from an aqueous silica precursor as facilitated by both poly-L-lysine (PLL) and poly(allylamine hydrochloride) (PAH) at pH 6.0 and under ambient conditions. It was observed by scanning electron microscopy (SEM) that there were morphological differences in the silica formed at pH 6 when compared to the silica morphologies formed using the same macromolecules at neutral pH. Notably, a bimodal distribution of silica particles was seen for both the PLL and PAH systems at pH 6. These results are compared and contrasted with those previously reported for the pH dependence of silicification and biosilicification and in particular, those obtained for the pH dependence of silica formation in the presence silaffin proteins isolated form the diatom C. fusiformis. The findings for these cationically charged macromolecules suggest that lysine may be an important amino acid in the primary sequence of proteins that catalyze the formation of silica structures in vivo.

  15. Application of TiO2 nanotubes in dye-sensitised solar cells for improved charge transport

    CSIR Research Space (South Africa)

    Cummings, F

    2010-09-01

    Full Text Available their operation • 20 years onwards and big strides have been made, however head2right Efficiency of best manufactured DSCs ~ 11% mark and 7% for DSC panels Dye-sensitised Solar Cells • Relatively inexpensive – Made in non-vacuum setting – Simple... in dye- sensitised solar cells for improved charge transport Franscious Cummings Energy and Processes Materials Science and Manufacturing © CSIR 2010 Slide 1 Rhodes Workshop 7 – 8 September 2010 circle6 Background circle6 Problem Statement...

  16. Structural and spectroscopic properties of pure and doped Ba6Ti2Nb8O30 tungsten bronze.

    Science.gov (United States)

    Massarotti, V; Capsoni, D; Bini, M; Azzoni, C B; Mozzati, M C; Galinetto, P; Chiodelli, G

    2006-09-14

    Pure and doped Ba(6)Ti(2)Nb(8)O(30) (BTN), obtained by substituting M = Cr, Mn, or Fe on the Ti site (Ba(6)Ti(2-x) M(x)Nb(8)O(30), x = 0.06 and 0.18) and Y and Fe on the Ba and Ti sites, respectively (Ba(6-x)Y(x)Ti(2-x)Fe(x)Nb(8)O(30), x= 0.18), are synthesized. The influence of cation doping on the local structure, the cation oxidation state, and the possible defect formation able to maintain the charge neutrality are investigated by spectroscopic (electron paramagnetic resonance (EPR) and micro-Raman), structural (X-ray powder diffraction) and transport (impedance spectroscopy, thermoelectric power) measurements, in the temperature range of 300-1200 K in air and N(2) flow. Starting from the valence state of the doping ions (Fe(3+), Cr(3+), and Mn(2+)), determined by EPR, and from thermoelectric power measurements, evidencing a negative charge transport, different charge-compensating defect equilibria, based on the creation of positive electron holes or oxygen vacancies and electrons, are discussed to interpret the conductivity results.

  17. A novel research approach on the dynamic properties of photogenerated charge carriers at Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films by a frequency-modulated surface photovoltage technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Zhang, Wei [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China); Xie, Tengfeng; Wang, Dejun [College of Chemistry, Jilin University, Changchun 130012 (China); Song, Xi-Ming, E-mail: songlab@lnu.edu.cn [Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036 (China)

    2013-09-01

    Graphical abstract: The changed SPV with chopping frequencies indicate the separation speeds of photogenerated charge carriers in different films. - Highlights: • Ag{sub 2}S-sensitized TiO{sub 2} films show good photoelectric responses in visible-light region. • Frequency-modulated SPV give dynamic information and evidence of Ag{sub 2}S QDSSCs’ performance. • Frequency-modulated SPV can supply complementary information in the study of Ag{sub 2}S ODSSCs. - Abstract: Ag{sub 2}S quantum-dots-sensitized TiO{sub 2} films with different amount of Ag{sub 2}S were fabricated by a successive ionic layer adsorption and reaction (SILAR) method. The separation and transport of photogenerated charge carriers at different spectral regions were studied by the frequency-modulated surface photovoltage technology. Some novel dynamic information of photogenerated charge carriers in a wide spectral range is found. The results indicate that the rate and direction of separation (diffusion) for photogenerated charge carriers are closely related to the performance of quantum-dots-sensitized solar cells (QDSSCs) based on the Ag{sub 2}S/TiO{sub 2} nano-structure.

  18. 高钛渣中TiC表面电荷的形成与破坏%The Formation and the Destruction of Surface Charge of TiC in the Titania Slag

    Institute of Scientific and Technical Information of China (English)

    王淑兰; 钟和香; 张丽君

    2004-01-01

    研究了高钛渣电导率与TiC含量、粒度的关系.TiC含量增加,炉渣电导率先减小后增加;TiC粒度增加,炉渣电导率增加.TiC对炉渣电导率的影响规律表明,TiC在渣中带有电荷,形成胶体颗粒,提高炉渣粘度;碱性电解质能够改变TiC带电状态,降低炉渣粘度.

  19. Interfacial charge-induced polarization switching in Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} bi-layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Jin; Park, Min Hyuk; Jeon, Woojin; Kim, Han Joon; Moon, Taehwan; Lee, Young Hwan; Kim, Keum Do; Hyun, Seung Dam; Hwang, Cheol Seong, E-mail: cheolsh@snu.ac.kr [Department of Materials Science & Engineering and Inter-University Semiconductor Research Center, College of Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2015-12-14

    Detailed polarization switching behavior of an Al{sub 2}O{sub 3}/Pb(Zr,Ti)O{sub 3} (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm{sup −2} and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

  20. Understanding the role of buried interface charges in a metal-oxide-semiconductor stack of Ti/Al{sub 2}O{sub 3}/Si using hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Church, J. R.; Opila, R. L. [University of Delaware, Newark, Delaware 19711 (United States); Weiland, C. [Synchrotron Research, Inc., Upton, New York 11973 (United States)

    2015-04-27

    Hard X-ray photoelectron spectroscopy (HAXPES) analyses were carried out on metal-oxide-semiconductor (MOS) samples consisting of Si, thick and thin Al{sub 2}O{sub 3}, and a Ti metal cap. Using Si 1s and C 1s core levels for an energy reference, the Al 1s and Si 1s spectra were analyzed to reveal information about the location and roles of charges throughout the MOS layers. With different oxide thicknesses (2 nm and 23 nm), the depth sensitivity of HAXPES is exploited to probe different regions in the MOS structure. Post Ti deposition results indicated unexpected band alignment values between the thin and thick films, which are explained by the behavior of mobile charge within the Al{sub 2}O{sub 3} layer.

  1. Study on Charge Carriers Behavior at CdS/TiO2 Interface of One Dimensional TiO2@CdS Core-shell Structure by Raman Scattering and Surface Photovoltage Spectroscopy%利用拉曼和表面光电压谱对一维TiO2@CdS核壳结构界面电荷行为研究

    Institute of Scientific and Technical Information of China (English)

    张清林; 曹尚操; 夏明霞; 王小件; 万强; 潘安练

    2013-01-01

    scattering results. That is, TiO2@CdS core/shell structures with 30 nm CdS have highest SPV response intensity and broadest spectrum range, due to the effective charge transfer between CdS and TiO2. The systematic study about the dependence of the Raman scattering and SPV on the CdS shell thickness demonstrated that the diffusion length of electron in CdS shell is between 30 and 60 nm, and it is optimal for one-dimension TiO2@CdS nanostructures in optoelectric devices application with the CdS shell thickness thinner than light penetration depth and electron diffusion length in CdS.

  2. Energy transfer versus charge separation in hybrid systems of semiconductor quantum dots and Ru-dyes as potential co-sensitizers of TiO2-based solar cells

    Science.gov (United States)

    Giménez, Sixto; Rogach, Andrey L.; Lutich, Andrey A.; Gross, Dieter; Poeschl, Andreas; Susha, Andrei S.; Mora-Seró, Ivan; Lana-Villarreal, Teresa; Bisquert, Juan

    2011-07-01

    Hybrid structures of colloidal quantum dots (QDs) with Ru-dyes have been studied as candidates for panchromatic sensitizers for TiO2-based solar cells. Steady-state and time resolved photoluminescence spectroscopy and photocurrent measurements have been employed to identify the prevailing transfer mechanisms for photogenerated excitons between CdSe QDs capped with a traditional bulky organic ligand trioctylphosphine and Ru-dyes (N3 or Ru505) deposited onto inert glass or mesoporous TiO2 substrates. The type II energy level alignment between the QDs and both N3 and Ru505 offers a possibility for the directional charge separation, with electrons transferred to the QDs and holes to the dye. This scenario is indeed valid for the QD/Ru505 and TiO2/QD/Ru505 hybrid systems, with the negligible spectral overlap between the emission of the QDs and the absorption of the Ru505 dye. For the QD/N3 and TiO2/QD/N3 hybrid systems, the spectral overlap favors the longer range energy transfer from the QDs to N3, independently of the presence of the electron acceptor TiO2.

  3. Effect of surface termination on ion intercalation selectivity of bilayer Ti3C2T2 (T = F, O and OH) MXene

    Science.gov (United States)

    Berdiyorov, Golibjon R.; Mahmoud, Khaled A.

    2017-09-01

    Using density functional theory (DFT) calculations we study the effect of surface functionalization on the response of bilayer Ti3C2T2 (T = F, O and OH) MXene to intercalating ions. In the case of pristine MXene, interlayer spacing (d) increases with introducing both anions and cations. The response of the system to the intercalating ions changes significantly after the surface functionalization: interlayer spacing increases in response to anions, whereas cation intercalation results in the contraction of d. The interplanar distance decreases further with increasing the charge state of the cations, the effect which becomes more pronounced in the case of Ti3C2O2. Such dynamic response of the system to the intercalating ions is also confirmed in both DFT and ReaxFF force field-based molecular dynamics simulations. These results show the importance of surface functionalization to water applications of MXene.

  4. A Long-Lived Mononuclear Cyclopentadienyl Ruthenium Complex Grafted onto Anatase TiO2 for Efficient CO2 Photoreduction.

    Science.gov (United States)

    Huang, Haowei; Lin, Jinjin; Zhu, Gangbei; Weng, Yuxiang; Wang, Xuxu; Fu, Xianzhi; Long, Jinlin

    2016-07-11

    This work shows a novel artificial donor-catalyst-acceptor triad photosystem based on a mononuclear C5 H5 -RuH complex oxo-bridged TiO2 hybrid for efficient CO2 photoreduction. An impressive quantum efficiency of 0.56 % for CH4 under visible-light irradiation was achieved over the triad photocatalyst, in which TiO2 and C5 H5 -RuH serve as the electron collector and CO2 -reduction site and the photon-harvester and water-oxidation site, respectively. The fast electron injection from the excited Ru(2+) cation to TiO2 in ca. 0.5 ps and the slow backward charge recombination in half-life of ca. 9.8 μs result in a long-lived D(+) -C-A(-) charge-separated state responsible for the solar-fuel production.

  5. Computational study of ethanol adsorption and reaction over rutile TiO2 (110) surfaces

    KAUST Repository

    Muir, J. N.

    2012-01-01

    Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO 2 rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti 4+ 5c) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E ads was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti 4+ 5c closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti 3+ cations. In this case the dissociative adsorption becomes strongly favoured (E ads = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode. This journal is © 2012 the Owner Societies.

  6. Remarkable charge-trapping performance based in Zr0.5Hf0.5O2 with nanocrystal Ba0.6Sr0.4TiO3 blocking layer for nonvolatile memory device

    Science.gov (United States)

    Yan, X. B.; Jia, X. L.; Yang, T.; Zhao, J. H.; Li, Y. C.; Zhou, Z. Y.; Zhang, Y. Y.

    2016-10-01

    Two kinds of charge trapping memory device with Au/Zr0.5Hf0.5O2(ZHO)/SiO2/p-Si and Au/Ba0.6Sr0.4TiO3(BST)/Zr0.5Hf0.5O2/SiO2/p-Si structure were fabricated and investigated. The double BST/ZHO films exhibit a larger memory window of 7.36 V under ±14 V sweeping voltages in its C-V curve and the device has good charge retention properties with only small charge loss of ∼ 5% after more than 104 s. The good characteristics are attributed to the inter-diffusion between BST and ZHO where more deep defect sites were created after RTA treatment, which provides high potential barriers for the trapped charges to tunnel back to the silicon substrate. Furthermore, the nanocrystal in the BST layer increases the tunneling barrier of tunneling current into the gate and effectively restrains the leakage of storage charge from blocking layer, which improves the charge retention characteristic.

  7. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  8. Photoionization study of Ne-like K9+, Ca10+, Sc11+, Ti12+, V13+, Cr14+, Mn15+, and Fe16+ ions using the screening constant by unit nuclear charge method

    Science.gov (United States)

    Goyal, Arun; Khatri, Indu; Sow, Malick; Sakho, Ibrahima; Aggarwal, Sunny; Singh, A. K.; Mohan, Man

    2016-08-01

    Photoionization of the 2s22p6 (1S0) ground state of the Ne-like (Z=19-29) ions is presented in this paper. Resonance energies and total natural width of the 2s2p6np 1P series of the Ne-like K9+, Ca10+, Sc11+, Ti12+, V13+, Cr14+, Mn15+, and Fe16+are reported. All the calculations are made using the Screening constant by unit nuclear charge (SCUNC) formalism. New data for Ne-like K9+, Sc11+, Ti12+, V13+, Cr14+, and Mn15+ions are tabulated. Good agreements are found with available literature data.

  9. Observation of an extremely-long-lived metastable level in a Ti-like system via an L -shell dielectronic recombination measurement in highly charged 3 dn ions of tungsten

    Science.gov (United States)

    Tu, B.; Yao, K.; Shen, Y.; Yang, Y.; Li, M. C.; Xu, T. H.; Lu, Q. F.; Lu, D.; Wang, X.; Chen, C. Y.; Fu, Y.; Wei, B.; Zheng, C.; Huang, L. Y.; Xiong, G.; Yang, J. M.; Zhang, B. H.; Tang, Y. J.; Hutton, R.; Zou, Y.; Xiao, J.

    2017-09-01

    In this paper we report the L-shell dielectronic recombination measurement in highly charged 3 dn ions of tungsten by employing a fast electron beam-energy scanning technique at Shanghai EBIT. The studies of the LMM DR resonance strengths of Ar-like up to Mn-like tungsten were implemented through the experiment as well as a fully relativistic configuration interaction method in the flexible atomic code. In the analysis of DR spectrum, an isolated resonant peak was discovered coming from the DR processes via an extremely-long-lived metastable level in a Ti-like system. This work indicated the population of this Ti-like metastable level in the present EBIT plasma condition was as large as 45%.

  10. Coupling of electric charge and magnetic field via electronic phase separation in (La,Pr,Ca)MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures

    Science.gov (United States)

    Zheng, Ming; Wang, Wei

    2016-04-01

    The electric-field-tunable non-volatile resistivity and ferromagnetism switching in the (La0.5Pr0.5)0.67Ca0.33MnO3 films grown on (111)-oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ferroelectric single-crystal substrates have been investigated. By combining the 180° ferroelectric domain switching and in situ X-ray diffraction and resistivity measurements, we identify that this voltage control of order parameters stems from the domain switching-induced accumulation/depletion of charge carriers at the interface rather than induced lattice strain effect. In particular, the polarization-induced charge effect (i.e., ferroelectric field effect) is strongly dependent on the magnetic field. This, together with the charge-modulated magnetoresistance and magnetization, reveals the strong correlation between the electric charge and the magnetic field. Further, we found that this coupling is essentially driven by the electronic phase separation, the relative strength of which could be determined by recording charge-tunability of resistivity [ (Δρ/ρ)c h arg e ] under various magnetic fields. These findings present a potential strategy for elucidating essential physics of perovskite manganites and delivering prototype electronic devices for non-volatile information storage.

  11. Aggregation of TiO{sub 2}–graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Zulin; Zhang, Jianan [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China); Bai, Xue, E-mail: baixue@hhu.edu.cn [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China); Ye, Zhengfang [Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871 (China); Tang, Zhiqiang; Liang, Lu; Liu, Yuqi [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098 (China)

    2016-01-01

    The aggregation kinetics of TiO{sub 2}–graphene nanocomposites in aqueous solution affected by solution pH, salt types (NaCl, CaCl{sub 2}) and concentrations of electrolytes, and stability induced by UV irradiation was investigated in this study. The zeta potentials and hydrodynamic diameter of the nanoparticles were used as bases to assess the aggregation behavior, and stability of nanocomposites exposed to UV irradiation was expressed in terms of supernatant concentration. The aggregation of TiO{sub 2}–graphene nanoparticles in aqueous media followed the colloidal theory. TiO{sub 2}–graphene nanoparticles were significantly aggregated in the presence of a diavalent cation compared with monovalent cation because the former was more capable of effective charge screening and neutralization. The calculated Hamaker constant of the TiO{sub 2}–graphene nanocomposites in aqueous solution prepared in the lab was 2.31 × 10{sup −20} J. The stability of this composite nanoparticles was between those of pure TiO{sub 2} and graphene. A known intensity of UV irradiation was beneficial in the formation of TiO{sub 2}–graphene nanoparticle aggregates. However, prolonged UV irradiation may stabilize the nanoparticles. These results provided critical information about the colloidal properties of the new TiO{sub 2}–graphene nanocomposites and were useful in predicting the fate and transport of TiO{sub 2}–graphene nanocomposites in natural water environments. - Highlights: • This is the first study on the fate and transport of TiO{sub 2}–graphene in aqueous environment. • The Hamaker constant of TiO{sub 2}–graphene dispersed in aqueous solution was calculated. • The influence of UV irradiation on the stability of TiO{sub 2}–graphene was considered.

  12. PREPARATION AND CHARACTERISATION OF HYDROPHOBIC AND CATIONIC MONTMORILLONITE

    Institute of Scientific and Technical Information of China (English)

    W. Liu; Y. Ni; H. Xiao

    2004-01-01

    Hydrophilic and cationic montmorillonite is desirable for pitch control in the pulp and paper industry. In this paper, polyaminoamide - epichlorohydrin (PAE)modified montmorillonite was prepared. The modified montmorillonite was characterized using X-ray diffraction, FTIR and thermal gravimetric analysis. The amount of PAE intercalated and cationic charge densities of the modified montmorillonite were determined. Finally, it was found that both the solution and melt-intercalated samples with different charge densities exhibited strong interactions with dispersed colloidal rosin acid.

  13. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    Science.gov (United States)

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  14. Copper diffusion in In2S3 and charge separation at In2S3/CuSCN and TiO2/In2S3 interfaces

    OpenAIRE

    Juma, Albert Owino

    2014-01-01

    Das Konzept der anorganischen nanostrukturierten Solarzellen basiert auf sehr dünnen Absorberschichten zwischen hochstrukturierten Elektronen- und Lochleitern. Wird ein TiO2/In2S3/CuSCN nanostrukturierter Verbundwerkstoff belichtet, können in In2S3 photogenerierte Elektronen in das TiO2-Leitungsband und die entsprechenden Löcher in das CuSCN Valenzband injiziert werden. Begrenzt wird die Landungstrennung an den Grenzschichten durch die Abscheideparameter, die Bandstruktur und die Diffusion de...

  15. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation

    Science.gov (United States)

    González-Moya, Johan R.; Garcia-Basabe, Yunier; Rocco, Maria Luiza M.; Pereira, Marcelo B.; Princival, Jefferson L.; Almeida, Luciano C.; Araújo, Carlos M.; David, Denis G. F.; Ferreira da Silva, Antonio; Machado, Giovanna

    2016-07-01

    Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ˜100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a

  16. Soudage par explosion thermique sous charge de cermets poreux à base de TiC-Ni sur substrat en acier-comportement tribologique Welding of porous TiC–Ni based cermets on substrate steel by thermal explosion under load-tribological behaviour

    Directory of Open Access Journals (Sweden)

    Lemboub Samia

    2013-11-01

    Full Text Available Dans ce travail, nous nous intéressons à l'élaboration de cermets à base de TiC-Ni par dispersion de particules de carbures, oxydes ou borures dans une matrice de nickel, grâce à la technique de l'explosion thermique sous une charge de 20 MPa. La combustion de mélanges actifs (Ti-C-Ni-An où An = Al2O3, MgO, SiC, TiB2, WC, basée sur la réaction de synthèse de TiC (ΔHf298K = −184 kJ/mole, génère des cermets complexes. Un court maintien sous charge du cermet à 1373 K, après l'explosion thermique, permet son soudage sur un substrat en acier XC55. Les cermets obtenus dans ces conditions demeurent poreux et conservent une porosité de l'ordre de 25–35 %. La densité relative du cermet, sa dureté et son comportement tribologique, dépendront de la nature de l'addition dans les mélanges de départ. Porous TiC-Ni based cermets were obtained by dispersion of carbides, oxides or borides particles in a nickel matrix thanks to the thermal explosion technique realized under a load of 20 MPa. The combustion of active mixtures (Ti-C-Ni-An where An = Al2O3, MgO, SiC, TiB2 or WC based on the titanium carbide reaction synthesis (ΔHf = −184 kJ/mol, generates porous complex cermets. After the thermal explosion, a short maintenance under load at 1373 K of the combustion product, allows at the same time the cermets welding on a carbon steel substrate. The obtained cermets under these conditions preserve a porosity of about 25–35%. The relative density, hardness and tribological behaviour of the complex cermets depend on the additions nature (An in the starting mixtures.

  17. Free charge localization and effective dielectric permittivity in oxides

    Science.gov (United States)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  18. Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO{sub 2} porous film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Yanyan; Gong, Zezhou; Tao, Jiajia [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo [School of Electronic & Information Engineering, Hefei Normal University, Hefei, 230601 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Jiang, Xishun [School of Physics & Material Science, Anhui University, Hefei 230601 (China); School of Mechanical & Electronic Engineering, Chuzhou University, Chuzhou, 239000 (China); He, Gang; Wang, Peihong; Meng, Fanming [School of Physics & Material Science, Anhui University, Hefei 230601 (China)

    2015-11-15

    A novel translucent TiO{sub 2} porous film was prepared through etched method. The CdS, PbS and CdS/PbS nanoclusters were imbedded on TiO{sub 2} porous film by successive ionic layer adsorption and reaction method. Microstructure, morphology, optical and photoelectron-chemical properties of the as-synthesized thin films were investigated systematically. XRD and morphology analysis showed that PbS or CdS nanoclusters have been attached to the TiO{sub 2} porous films. It was found that the energy band gap of TiO{sub 2} porous film decreased from 3.46 to 3.2 eV after sensitized with nanoclusters. The photocurrent density of ITO/TiO{sub 2} photoelectrode increased from 0.017 to 0.28 mA/cm{sup 2} after co-sensitized with CdS and PbS nanoclusters. Besides, the photoelectrode sensitized with two sorts of nanoclusters showed evident higher photocurrent density than which sensitized just one sort of nanoclusters. The photocurrent density of ITO/TiO{sub 2}/PbS and TO/TiO{sub 2}/CdS photoelectrode was 0.11 mA/cm{sup 2} and 0.22 mA/cm{sup 2} respectively. 0.28 mA/cm{sup 2} can be obtained by ITO/TiO{sub 2}/CdS/PbS photoelectrode. The results showed that the optical and photoelectrochemistry properties and phtotcatalysis performance of TiO{sub 2} porous film were greatly improved by co-sensitized with CdS and PbS nanoclusters. - Graphical abstract: When CdS and PbS were brought in the cascade structure, such a Fermi level alignment causes upward and downward shifts of the band edges for PbS and CdS, respectively. Therefore the resulting band edges for the ITO/TiO{sub 2}/CdS/PbS devices are inferred to have a stepwise structure. The elevated conduction band edge of PbS provides a higher driving force for the injection of photogenerated electrons from PbS to CdS as well as the injection of excited holes from CdS to PbS. Such a structure offers efficient separation and transport of the excited electrons and holes. - Highlights: • Ti films were obtained from direct current

  19. One-pot hydrothermal route to fabricate nitrogen doped graphene/Ag-TiO2: Efficient charge separation, and high-performance "on-off-on" switch system based photoelectrochemical biosensing.

    Science.gov (United States)

    Jiang, Ding; Du, Xiaojiao; Chen, Danyang; Zhou, Lei; Chen, Wei; Li, Yaqi; Hao, Nan; Qian, Jing; Liu, Qian; Wang, Kun

    2016-09-15

    Charge separation is crucial for increasing the performances of semiconductor-based materials in many photoactive applications. In this paper, we designed novel nanocomposites consisting of TiO2 nanocrystals, Ag nanoparticles (NPs) and nitrogen doped graphene (NGR) via a facile one-pot hydrothermal route. The as-prepared ternary nanocomposites exhibited enhanced photoelectrochemical (PEC) performances owing to the introduction of Ag NPs and NGR, which increase the excitons' lifetime and improve the charge transfer. In particular, it is shown by means of the transient-state surface photocurrent responses that the photocurrent intensity of the as-fabricated composites exhibited 18.2 times higher than that of pristine TiO2. Based on the robust photocurrent signal, a new kind of "on-off-on" PEC aptasensor was established with the assistance of Pb(2+) aptamer, which integrates the advantages of low background signal and high sensitivity. Under optimal conditions, a wide linear response for Pb(2+) detection was obtained from 1pM to 5nM as well as a detection limit down to 0.3pM. With its simplicity, selectivity, and sensitivity, this proposed strategy shows great promise for Pb(2+) detection in food and environment analysis.

  20. Interfacial Charge Recombination in Dye-sensitized Nanocrystalline TiO2 Solar Cells%染料敏化纳米晶TiO2太阳能电池的界面电荷复合

    Institute of Scientific and Technical Information of China (English)

    张琼; 贺蕴秋

    2008-01-01

    染料敏化的纳米晶TiO2太阳能电池(DSSC)作为传统硅太阳能电池的一种可行的替代品近年来引起了广泛关注,但是受制于TiO2/染料/电解液界面的电荷复合,开路电压V∞未能得到有效改善,进而影响了DSSC的性能.介绍了DSSC的工作原理.详细阐述了DSSC中TiO2/染料/电解液界面电荷的复合机理,并介绍了目前国内外在抑制DSSC界面电荷复合,提高V∞及光电转换效率η方面的研究动向.

  1. Effect of A-site cation size on magnetic and charge-ordering properties of Ln{sub 0.5}Sr{sub 0.5}Mn{sub 0.9}Cu{sub 0.1}O{sub 3} (Ln = La, Pr, Nd, or Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Kamlesh [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India); Singh, M.P.; Razavi, F.S. [Department of Physics, Brock University, 500 Glenridge Ave, St Catharines L2S 3A1 (Canada); Varma, G.D., E-mail: gdvarfph@iitr.ernet.in [Department of Physics, Indian Institute of Technology, Roorkee 247667 (India)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer The structural, magnetic, and electrical properties of Ln{sub 0.5}Sr{sub 0.5}Mn{sub 0.9}Cu{sub 0.1}O{sub 3} (Ln = La, Pr, Nd, or Ho) have been studied. Black-Right-Pointing-Pointer The influence of A-site cation radius ( Left-Pointing-Angle-Bracket r{sub A} Right-Pointing-Angle-Bracket ) and the A-site cation size-disorder ({sigma}{sup 2}) on magnetic properties are studied. Black-Right-Pointing-Pointer The various interdependent phenomena such as ferromagnetism, phase separation, and charge ordering are investigated. - Abstract: The structural, magnetic, and electrical properties of Ln{sub 0.5}Sr{sub 0.5}Mn{sub 0.9}Cu{sub 0.1}O{sub 3} (Ln = La, Pr, Nd, or Ho) perovskite manganites have been investigated to explore the influence of A-site cation radius ( Left-Pointing-Angle-Bracket r{sub A} Right-Pointing-Angle-Bracket ) and the A-site cation size-disorder ({sigma}{sup 2}) on the various interdependent phenomena such as ferromagnetism (FM), phase separation (PS), and charge ordering (CO). The temperature dependence magnetization (M-T) curve of La-based sample shows four distinct points at {approx}269 K, 255 K, 200 K, and 148 K corresponding to strong FM, cluster glass (CG), weak FM, and charged ordered antiferromagnetic (COAFM) transitions, respectively. Our investigation shows that Neel temperatures (T{sub N}) increases, whereas Curie (T{sub C}) and irreversibility temperatures (T{sub irr}) decrease with decreasing Left-Pointing-Angle-Bracket r{sub A} Right-Pointing-Angle-Bracket , i.e., with increasing {sigma}{sup 2}. Furthermore, the value of the magnetization decreases and resistivity increases with decreasing Left-Pointing-Angle-Bracket r{sub A} Right-Pointing-Angle-Bracket . All samples exhibit insulating behavior in the temperature range 77-300 K and above 110 K the electronic conduction mechanism has been described within the framework of the variable range hopping (VRH) model.

  2. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    Perovskite oxides show various interesting properties providing several technical applications. In many cases the defect chemistry is the key to understand and influence the material's properties. In this work the defect chemistry of barium titanate and strontium titanate is analysed by anion and cation diffusion experiments and subsequent time-of-flight secondary ion mass spectrometry (ToF-SIMS). The reoxidation equation for barium titanate used in multi-layer ceramic capacitors (MLCCs) is found out by a combination of different isotope exchange experiments and the analysis of the resulting tracer diffusion profiles. It is shown that the incorporation of oxygen from water vapour is faster by orders of magnitude than from molecular oxygen. Chemical analysis shows the samples contain various dopants leading to a complex defect chemistry. Dysprosium is the most important dopant, acting partially as a donor and partially as an acceptor in this effectively acceptor-doped material. TEM and EELS analysis show the inhomogeneous distribution of Dy in a core-shell microstructure. The oxygen partial pressure and temperature dependence of the oxygen tracer diffusion coefficients is analysed and explained by the complex defect chemistry of Dy-doped barium titanate. Additional fast diffusion profiles are attributed to fast diffusion along grain boundaries. In addition to the barium titanate ceramics from an important technical application, oxygen diffusion in cubic, nominally undoped BaTiO{sub 3} single crystals has been studied by means of {sup 18}O{sub 2}/{sup 16}O{sub 2} isotope exchange annealing and subsequent determination of the isotope profiles in the solid by ToF-SIMS. It is shown that a correct description of the diffusion profiles requires the analysis of the diffusion through the surface space-charge into the material's bulk. Surface exchange coefficients, space-charge potentials and bulk diffusion coefficients are analysed as a function of oxygen partial

  3. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  4. Kinetics of Photocatalytic Degradation of Methylene Blue by TiO₂-Graphene Nanocomposites.

    Science.gov (United States)

    Loryuenyong, Vorrada; Charoensuk, Jaruwan; Charupongtawitch, Rachaya; Usakulwattana, Amika; Buasri, Achanai

    2016-01-01

    Reduced graphene oxide (RGO)/TiO₂ nanocomposite was successfully prepared by UV-assisted photocatalytic reduction of graphene oxide (XGO) by TiO₂ nanoparticles in ethanol. The effects of XGO and RGO addition in TiO₂were characterized by transmission electron microscopy (TEM), X-ray diffractometer (XRD), diffuse reflectance UV-vis spectrophotometer (UV-vis), fourier-transform infrared spectroscopy (FTIR), photoluminescence (PL), and Brunauer-Emmett-Teller (BET) and Barrett-Joiner-Halenda (BJH) porosity analysis. The photocatalytic activity of prepared nanocomposites was evaluated from the kinetics of the photocatalytic degradation of cationic methylene blue dye under UV irradiation. Bandgap, the electron-hole recombination, specific surface area, surface functional groups, and adsorption capacity of nanocomposites were found to play a significant role in the degradation. The results revealed that RGO/TiO₂ and XGO/TiO₂ nanocomposites exhibited efficient charge separation and enhanced photocatalytic activity, compared to pristine TiO₂. Nearly 500% improvement was observed in this work.

  5. Influence of Co-existing Species on Charge Transfer in Dye-sensitized TiO2 Nanocrystalline System%共存牺牲剂对染料敏化TiO2纳米晶体系电子传输的影响

    Institute of Scientific and Technical Information of China (English)

    成荣敏; 李娜; 詹从红

    2014-01-01

    Dye-sensitized nanocrystalline TiO2 colloidal suspensions in aqueous system were applied for H2 evolution under visible light(>390 nm) . In these suspension systems, the efficiency of H2 evolution is strongly influenced by the dye-sensitizers, a ruthenium complex, (n-Bu4N)2-cis-[Ru(dcbpy)(SCN)2](N719, dcb-py=4,4’-dicarboxy-2,2’-bipyridine) and porphyrin derivatives 5,10,15,20-tetra(4-carboxyphenyl) porphyrin ( TCPP) and tetra-( p-sulfonato phenyl) porphyrin( TPPS) , and the combination with co-existing electron do-nor species, methanol ( MeOH ) and triethanolamine ( TEOA ) . The analysis of fluorescence quenching and photoelectrochemical studies reveal that the charge transfer between the excited dye-sensitizers and TiO2 is strongly influenced by the surroundings, especially the concentration of co-existing donor species rather than the pH values of the surrounding solution. It is benefit for achieving higher conversion efficiency for not only the photocatalysts but also the photovoltaics using dye-sensitized of TiO2 nanoparticles.%采用卟啉染料敏化TiO2纳米晶在可见光条件下(λ>390 nm)进行水分解制氢。考察了不同牺牲剂---甲醇( MeOH)、三乙醇胺( TEOA)及其混合物对体系析氢效率的影响。通过荧光猝灭及光电化学性能分析发现,激发态染料与TiO2之间的电子转移极大地受到添加的牺牲剂的影响,而体系的pH值对其影响不大。

  6. Investigation of the electronic structure and the role of cationic disorder in LaAlO{sub 3} - SrTiO{sub 3} heterointerfaces by soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koitzsch, Andreas; Ocker, Johannes; Knupfer, Martin; Dekker, Martina; Doerr, Kathrin; Buechner, Bernd [IFW Dresden (Germany); Hoffmann, Patrick [Helmholtz-Zentrum Berlin (Germany)

    2011-07-01

    The structure of LaAlO{sub 3}/SrTiO{sub 3} interfaces is under intense discussion due to the appearance of metallic conductivity, magnetism and superconductivity. The most important phenomena supposed to be crucial for the observed effects are the polar catastrophe, the formation of oxygen vacancies and the intermixing of La and Sr at the interface. However, at present there is no consensus about the driving force of the unusual properties. Here we apply on and off resonant photoemission to differently prepared LaAlO{sub 3}/SrTiO{sub 3} interfaces. In particular we study the behavior of the valence band, the Ti 2p, Sr 3d and La 4d lines. Significant differences are found as a function of sample treatment and photon energy. A model of the interface structure is developed.

  7. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    Science.gov (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  8. Mechanisms of electron injection from retinoic acid and carotenoic acids to TiO2 nanoparticles and charge recombination via the T1 state as determined by subpicosecond to microsecond time-resolved absorption spectroscopy: dependence on the conjugation length.

    Science.gov (United States)

    Xiang, Junfeng; Rondonuwu, Ferdy S; Kakitani, Yoshinori; Fujii, Ritsuko; Watanabe, Yasutaka; Koyama, Yasushi; Nagae, Hiroyoshi; Yamano, Yumiko; Ito, Masayoshi

    2005-09-15

    To examine the mechanisms of electron injection to TiO2 in retinoic acid (RA) and carotenoic acids (CAs), including RA5, CA6, CA7, CA8, CA9, and CA11 having the number of conjugated double bonds n = 5, 6, 7, 8, 9, and 11, respectively, their subpicosecond time-resolved absorption spectra were recorded free in solution and bound to TiO2 nanoparticles in suspension. The time-resolved spectra were analyzed by singular-value decomposition (SVD) followed by global fitting based on an energy diagram consisting of the 3A(g)(-), 1B(u)(-), 1B(u)(+), and 2A(g)(-) singlet excited states, whose energies had been determined as functions of 1/(2n + 1) by the use of carotenoids with n = 9-13. It was found that electron injection took place from both the 1B(u)(+) and 2A(g)(-) states in RA5, CA6, CA7, and CA8, whereas only from the 1B(u)(+) state in CA9 and CA11. The electron-injection efficiencies were determined, by the use of the relevant time constants determined by the SVD and global-fitting analyses, to be in the following order: RA5 approximately CA6 CA8 > CA9 > CA11. To determine the mechanism of charge recombination via the T(1) state, submicrosecond time-resolved absorption spectra of RA5, CA6, CA7, and CA8 bound to TiO2 nanoparticles in suspension were recorded. The SVD and global-fitting analyses lead us to a new scheme, which includes the formation of the D(0)(*+) - T(1) complex followed by transformation to both the D(0)(*+) and T(1) states. On the other hand, their one-electron oxidation potentials were determined, and their singlet and triplet levels were scaled to the conduction band edge (CBE) of TiO2. The T(1) level was lower than, but closest to, the CBE in RA5, and it became lower in the order RA5, CA6, CA7, and CA8. Consistent with the energy gap between the CBE and the T(1) levels, the generation of the T(1) state (or in other words, charge recombination) decreased in the order RA5 > CA6 > CA7 > CA8.

  9. Influence of various functional groups on the relative stability of alkylperoxy triplet cations: A theoretical study

    Science.gov (United States)

    Smith, Kenneth J.; Meloni, Giovanni

    2015-07-01

    CBS-QB3 energy calculations show that the formation of a stable triplet cation for alkylperoxy radicals is dependent on factors other than the stability of the daughter cations exclusively. We have found that in cases where the daughter ions are not capable of stabilizing the cation through hyperconjugation, it is possible for the triplet cation to be bound. In many circumstances, CBS-QB3 calculations have found bound triplet cation states with 'negative dissociation energies.' These results are attributed to the effects that electron donating/withdrawing substituents have on the spin and charge densities of the resulting cations.

  10. Induced Charge Capacitive Deionization

    CERN Document Server

    Rubin, S; Biesheuvel, P M; Bercovici, M

    2016-01-01

    We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electrostatic field. The external electric field induces an electric dipole in the porous particle, leading to capacitive charging of its volume by both cations and anions at opposite poles. This regime is characterized both by a large RC charging time and a small electrochemical charge relaxation time, which leads to rapid and significant deionization of ionic species from a volume which is on the scale of the particle. We show by theory and experiment that the transient response around a cylindrical particle results in spatially non-uniform charging and non-steady growth of depletion regions which emerge around the particle's poles. Potentially, ICCDI can be useful in applications where fast concentration changes of ionic species are required over large volumes.

  11. A comparative study on the effect of Curcumin and Chlorin-p6 on the transport of the LDS cation across a negatively charged POPG bilayer: Effect of pH

    Science.gov (United States)

    Varshney, G. K.; Kintali, S. R.; Gupta, P. K.; Das, K.

    2017-02-01

    We report the use of interface selective Second Harmonic generation technique to investigate the transport of the LDS cation across POPG liposomes in the pH range of 4.0 to 8.0 in the presence and absence of two amphiphilic drugs, Curcumin and Chlorin-p6 (Cp6). Our results show that bilayer permeability of liposomes is significantly affected by the presence of the drugs and pH of the medium as evidenced by significant changes in the transport kinetics of the LDS. Studies carried out in the pH range 4.0-8.0 show that while Cp6 significantly enhanced the transport of LDS at pH 4.0, the transport of the cation was seen to increase with increasing pH, with maximum effect at pH 7.4 for Curcumin. The pH dependent bilayer localization of both the drugs was investigated by conducting steady state FRET studies using DPH labeled lipids as donors. The FRET results and the relative population of the various ionic/nonionic species of the drugs at different pH suggest that distance dependent interaction between the various ionic species of the drugs and polar head groups of the lipid is responsible for the observed pH dependence enhancement of the drug induced membrane permeability. Another interesting observation was that the stability of Curcumin in presence of POPG liposomes was observed to degrade significantly near physiological pH (7.4 and 8.0). Although this degradation did not affect the liposome integrity, interestingly this was observed to enhance the transport of the LDS cation across the bilayer. That the degradation products of Curcumin are equally effective as the drug itself in enhancing the membrane permeability lends additional support to the current opinion that the bioactive degradation products of the drug may have a significant contribution to its observed pharmacological effects.

  12. High rate charge-discharge performance of spinel Li4Ti5O12 nanosheet%Li4Ti5O12纳米片的高倍率充放电性能

    Institute of Scientific and Technical Information of China (English)

    仇征; 唐宇峰; 王怡菲; 杨立

    2010-01-01

    通过水热法合成了尖晶石Li4Ti5O12纳米片,大小为200~400 nm,厚度为数纳米.制备的Li4Ti5O12纳米片具有良好的高倍率充放电性能,在10 C、20 C、30 C、40 C和50 C下分别连续充放电50次,在第250次循环(50 C)时的充放电比容量仍保持在95 mAh/g左右.

  13. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    Science.gov (United States)

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  14. Microwave assisted synthesis of a series of charge-transfer photosensitizers having quinoxaline-2(1H)-one as anchoring group onto TiO2 surface

    Science.gov (United States)

    Caicedo, Mauricio; Echeverry, Carlos A.; Guimarães, Robson R.; Ortiz, Alejandro; Araki, Koiti; Insuasty, Braulio

    2017-04-01

    In this work, we present the synthesis of novel donor-acceptor compounds based on 3-methylquinoxaline-2(1H)one which follow an easy synthetic route, involving Knoevenagel reaction with electron-donor groups such as N,N-dimethylaminobenzene, ferrocene, triphenylamine (TPA) and ((E)-4,4'-(ethene-1,2-diyl) bis (N,N-diphenylaniline). Additionally, the optical properties were measured by means of the absorption and emission spectroscopy suggesting a push-pull behavior which was further confirmed by electrochemical experiments. Finally, the quinoxaline-2(1H)one fragment not only bestow wide absorption, but also can chelate to titanium ions on the TiO2 surface, allowing a strong electron coupling between the excited-state energy level of the dyes and the conduction band of TiO2.

  15. Influence of charge compensation mechanisms on the sheet electron density at conducting LaAlO3/SrTiO3-interfaces

    NARCIS (Netherlands)

    Gunkel, F.; Brinks, Peter; Hoffmann-Eifert, S.; Dittmann, R.; Huijben, Mark; Kleibeuker, J.E.; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2012-01-01

    The equilibrium conductance of LaAlO3/SrTiO3 (LAO/STO)-heterointerfaces was investigated at high temperatures (950¿K-1100¿K) as a function of ambient oxygen partial pressure (pO2). Metallic LAO/STO-interfaces were obtained for LAO grown on STO single crystals as well as on STO-buffered (La,Sr)(Al,Ta

  16. Electrocatalytic Activity of Ti/TiO2 Electrodes in H2SO4 Solution

    Institute of Scientific and Technical Information of China (English)

    王雅琼; 童宏扬; 许文林

    2003-01-01

    Ti/TiO2 electrodes were prepared with the polymeric precursor method (PPM). The structure and morphology of Ti/TiO2 electrodes were examined with XRD and ESEM. The voltammetric charge (q*) of Ti/TiO2 electrodes as cathode in 0.5 mol/L H2SO4 solution was investigated with cyclic voltammetry. It was found that the electrocatalytic activity of the Ti/TiO2 electrodes was affected by the structure and morphology of the Ti/TiO2 electrodes, in other words, was affected by the calcination conditions of preparing the electrodes. The value of q*ln was considerably larger than that of q*out,which means that the 'inner' active surface area was much larger than the 'outer' active surface area, and 'inner' active surface played a main role in the electrocatalytic activity of the Ti/TiO2 electrodes.

  17. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells

    Science.gov (United States)

    Xiao, Guannan; Shi, Chengwu; Zhang, Zhengguo; Li, Nannan; Li, Long

    2017-05-01

    The TiO2 nanorod arrays with the length of 70 nm, the diameter of 20 nm, and the areal density of 1000 μm-2 were firstly prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 60 min. Over-500 nm-thickness CH3NH3PbI3-xBrx absorber layers were successfully obtained by sequential deposition routes using 1.7 M PbI2·DMSO complex precursor solution and 0.465 M isopropanol solution of the methylammonium halide mixture with the molar ratio of CH3NH3I/CH3NH3Br=85/15. The perovskite solar cells based on the TiO2 nanorod array and 560 nm-thickness CH3NH3PbI3-xBrx absorber layer exhibited the best photoelectric conversion efficiency (PCE) of 15.93%, while the corresponding planar perovskite solar cells without the TiO2 nanorod array and with 530 nm-thickness CH3NH3PbI3-xBrx absorber layer gave the best PCE of 12.82% at the relative humidity of 50-54%.

  18. Effects of Ti charge state, ion size and beam-induced compaction on the formation of Ag metal nanoparticles in fused silica

    Science.gov (United States)

    Magruder, R. H.; Meldrum, A.; Haglund, R. F.

    2015-04-01

    Metal nanoparticles formed by ion implantation in fused silica exhibit linear and nonlinear optical properties that can be altered by co-doping the silica substrate with transition-metal ions. For example, implantation of scandium in fused silica creates a directional optical dichroism due to the different spatial distribution of silver nanoparticles subsequently formed by Ag ion implantation. In this paper, we show that implantation of titanium ions alters the short- and intermediate-range order in the silica and thereby alters the diffusion and nucleation processes that lead to formation of silver nanoparticles. In particular, the dichroic response observed for Ag nanoparticles in Sc-implanted silica is, with one exception, in Ti-implanted silica. Compaction of the silica due to the ion implantation process appears to be similar for both Sc and Ti implantations, based on the observed shift of the 1,124 cm-1 transverse-optical phonon mode in the infrared reflectance spectrum. However, differences in chemical reactivity, bond lengths and electronic structure of Sc and Ti produce changes in electronic structure and strain that are sensitively reflected in the reflectance spectra of the Ag nanoparticles. These differences lead to modifications in the size, shape and spatial distributions of the silver nanoparticles and offer a powerful means of controlling their optical properties.

  19. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  20. Characterization of SrTiO3 target doped with Co ions, SrCoxTi1-xO3-δ, and their thin films prepared by pulsed laser ablation (PLA) in water for visible light response

    Science.gov (United States)

    Ichihara, Fumihiko; Murata, Yuma; Ono, Hiroshi; Choo, Cheow-keong; Tanaka, Katsumi

    2017-10-01

    SrTiO3 (STO) and Co-doped SrTiO3 (Co-STO) sintered targets were synthesized and were Ar+ sputtered to elucidate the charge compensation effect between Sr, Ti and Co cations following the reduction by oxygen desorption. Following exposure of the Ar+-sputtered target to the air, charge transfer reactions occurred among Co2+, Ti3+, O2- and Sr2+ species which were studied by their XPS spectra. Pulsed laser ablation (PLA) of these targets was carried out in water to prepare the nanoparticles which could be supplied to the thin films with much higher surface reactivity expected for photocatalytic reactions. The roles of Co ions were studied for the stoichiometry and crystallinity of the nanoparticles which constituted the thin films. Photo-degradation of methylene blue was carried out on the PLA thin films under very weak visible light at 460 nm. The PLA thin films showed the photocatalytic activities, which were enhanced by the presence of Co ions. Such the effect of Co ions was considered from viewpoint of the d-d transition and the charge-transfer between Co ions and the ligand oxygen.

  1. Cation-cation interaction in neptunyl(V) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N. [Russian Academy of Sciences, Institute of Physical Chemistry (Russian Federation); Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  2. The A-cation deficient perovskite series La2-xCoTiO6-δ (0 ≤ x ≤ 0.20): new components for potential SOFC composite cathodes

    DEFF Research Database (Denmark)

    Gomez-Perez, Alejandro; Teresa Azcondo, M.; Yuste, Mercedes

    2016-01-01

    La2-xCoTiO6-delta/Ce0.9Gd0.1O2-delta composites are presented as promising new cathodes for solid oxide fuel cells. The B-site ordering characteristic of double perovskites is present in the whole series. Additionally, increasing amounts of La-vacancies give rise to ordering of alternating La...... on pellets of this electrolyte show a polarization resistance of 0.39 Omega cm(2) at 1073 K....

  3. A study of charge transfer kinetics in dye-sensitized surface conductivity solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Dennis

    2011-05-15

    concentration of the redox species in the electrolyte film, having the fastest decay at the lowest concentration of the redox couple. This was due to the regeneration of the oxidized dye by iodide, screening the positive charge from recombination with injected electrons. The adsorption of cations such as Li{sup +} led to a relatively weak increase of the electron lifetime, although in combination with a redox couple these effects were less clear. The replacement of the iodide/iodine redox couple by the kinetically fast ferrocene/ ferrocenium system caused a dramatic increase of the decay rates of photogenerated charge carriers in subset devices. Thus, showing the importance of the kinetically slow reduction rates of the oxidized redox couple iodide/iodine, leading to an increase of the electron lifetime by the reduction of the dye cation. The analysis of charge carrier kinetics in TiO{sub 2} powders and films displayed a decrease of the decay rate upon dye-sensitization after band-to-band excitation with laser pulses at 355 nm. In the case of ZnO films, the presence of the dye induced a significantly accelerated decay after excitation at 355 nm. In contrast to the ZnO films, ZnO nanorods displayed no such destructive influence of the dye adsorption. Furthermore, after exciting the sample at 355 nm, the decay was found to be independent of the dye and mainly depending on the recombination of electron-hole pairs and electrons with the dye cation at 355 nm and 532 nm, respectively. (orig.)

  4. The influence of large cations on the electrochemical properties of tunnel-structured metal oxides

    Science.gov (United States)

    Yuan, Yifei; Zhan, Chun; He, Kun; Chen, Hungru; Yao, Wentao; Sharifi-Asl, Soroosh; Song, Boao; Yang, Zhenzhen; Nie, Anmin; Luo, Xiangyi; Wang, Hao; Wood, Stephen M.; Amine, Khalil; Islam, M. Saiful; Lu, Jun; Shahbazian-Yassar, Reza

    2016-11-01

    Metal oxides with a tunnelled structure are attractive as charge storage materials for rechargeable batteries and supercapacitors, since the tunnels enable fast reversible insertion/extraction of charge carriers (for example, lithium ions). Common synthesis methods can introduce large cations such as potassium, barium and ammonium ions into the tunnels, but how these cations affect charge storage performance is not fully understood. Here, we report the role of tunnel cations in governing the electrochemical properties of electrode materials by focusing on potassium ions in α-MnO2. We show that the presence of cations inside 2 × 2 tunnels of manganese dioxide increases the electronic conductivity, and improves lithium ion diffusivity. In addition, transmission electron microscopy analysis indicates that the tunnels remain intact whether cations are present in the tunnels or not. Our systematic study shows that cation addition to α-MnO2 has a strong beneficial effect on the electrochemical performance of this material.

  5. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    Science.gov (United States)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  6. Capturing dynamic cation hopping in cubic pyrochlores

    Science.gov (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2011-08-01

    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  7. The nature of interfaces and charge trapping sites in photocatalytic mixed-phase TiO{sub 2} from first principles modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Juan C.; Deskins, N. Aaron, E-mail: nadeskins@wpi.edu [Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609 (United States); Nolan, Michael [Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork (Ireland)

    2015-01-14

    Mixed phase rutile/anatase catalysts show increased reactivity compared with the pure phases alone. However, the mechanism causing this effect is not fully understood. The electronic properties of the interface and the relative energy of the electron in each phase play a key role in lowering the rate of recombination of electron hole pairs. Using density functional theory and the +U correction, we calculated the bands offsets between the phases taking into account the effect of the interface. Our model included several thousands atoms, and thus is a good representation of an interface between actual nanoparticles. We found rutile to have both higher conduction and valence band offsets than rutile, leading to an accumulation of electrons in the anatase phase accompanied by hole accumulation in the rutile phase. We also probed the electronic structure of our heterostructure and found a gap state caused by electrons localized in undercoordinated Ti atoms which were present within the interfacial region. Interfaces between bulk materials and between exposed surfaces both showed electron trapping at undercoordinated sites. These undercoordinated (typically four) atoms present localized electrons that could enable reduction reactions in the interfacial region, and could explain the increased reactivity of mixed-phase TiO{sub 2} photocatalyst materials.

  8. Migration of Cations and Anions in Amorphous Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    N.A.Stolwijk; S.H.Obeidi; M.Wiencierz

    2007-01-01

    1 Results Polymer electrolytes are used as ion conductors in batteries and fuel cells.Simple systems consist of a polymer matrix complexing an inorganic salt and are fully amorphous at the temperatures of interest.Both cations and anions are mobile and contribute to charge transport.Most studies on polymer electrolytes use the electrical conductivity to characterize the ion mobility.However,conductivity measurements cannot discriminate between cations and anions.This paper reports some recent results fr...

  9. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)

    ANA MARIA CARMONA-RIBEIRO

    2000-03-01

    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  10. Interactions between cationic liposomes and drugs or biomolecules.

    Science.gov (United States)

    Carmona-Ribeiro, A M

    2000-01-01

    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  11. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  12. All-nano-TiO2 compact film for high-performance dye-sensitized solar cells.

    Science.gov (United States)

    Zanoni, Kassio P S; Amaral, Ronaldo C; Murakami Iha, Neyde Y

    2014-07-09

    An innovative all-nano-TiO2 thin film capable of enhancing dye-sensitized solar cell (DSC) photoefficiencies was prepared by a layer-by-layer method beneath the meso-TiO2 film, employing acid and basic nano-TiO2 sols as cations and anions, respectively. TiO2 syntheses were performed under absolute control to lead to appropriate morphological and optical properties to yield high-quality compact films using profilometry, tuning, and scanning electron microscopy. A detailed study by photoelectrochemical parameters, incident photon-to-current efficiency, electron lifetime, and electrochemical impedance spectroscopy demonstrates that the physical contact between FTO and the electrolyte is prevented and the role of the compact film has been elucidated. DSCs with TiO2 bilayers on top of FTO improved the conversion efficiency up to 62%, mainly because of the prevention of FTO/I3(-) charge recombination and an improved contact between FTO and TiO2.

  13. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.

    Science.gov (United States)

    Dvininov, E; Popovici, E; Pode, R; Cocheci, L; Barvinschi, P; Nica, V

    2009-08-15

    The synthesis and properties of metal oxide pillared cationic clays (PILCs) has been subject to numerous studies in the last decades. In order to obtain TiO(2)-pillared type materials, sodium montmorillonite from Romania-areal of Valea Chioarului, having the following composition (% wt): SiO(2)-72.87; Al(2)O(3)-14.5; MgO-2.15; Fe(2)O(3)-1.13; Na(2)O-0.60; K(2)O-0.60; CaO-0.90; PC-5.70 and cation exchange capacity, determined by ammonium acetate method, of 82 meq/100g, as matrix, was used. Sodium form of the clay was modified, primarily, by intercalation of cetyl-trimethylammonium cations between negatively charged layers which will lead to the expansion of the interlayer space. For the preparation of the TiO(2)-pillared clay, the alkoxide molecules, as titania precursor, were adsorbed onto/into clay samples (1 mmol Ti/g clay), in hydrochloric acid environment, the resulted species being converted into TiO(2) pillars by calcination. The as-prepared materials have been used as catalysts for Congo Red dye photodegradation, under UV. The photocatalytic activity of the pillared clays is a function of TiO(2) pillars size, their increase leading to the enhancement of the contact areas between dye solution and photoactive species present in the interlayer space. The structural characteristics and properties of the obtained materials were investigated by X-ray Diffraction, Thermogravimetry Analysis, UV-vis Diffuse Reflectance, Transmission Electron Microscopy and Energy Dispersive X-ray Analysis.

  14. Efficient luminescent solar cells based on tailored mixed-cation perovskites

    Science.gov (United States)

    Bi, Dongqin; Tress, Wolfgang; Dar, M. Ibrahim; Gao, Peng; Luo, Jingshan; Renevier, Clémentine; Schenk, Kurt; Abate, Antonio; Giordano, Fabrizio; Correa Baena, Juan-Pablo; Decoppet, Jean-David; Zakeeruddin, Shaik Mohammed; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Hagfeldt, Anders

    2016-01-01

    We report on a new metal halide perovskite photovoltaic cell that exhibits both very high solar-to-electric power-conversion efficiency and intense electroluminescence. We produce the perovskite films in a single step from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (where FA stands for formamidinium cations and MA stands for methylammonium cations). Using mesoporous TiO2 and Spiro-OMeTAD as electron- and hole-specific contacts, respectively, we fabricate perovskite solar cells that achieve a maximum power-conversion efficiency of 20.8% for a PbI2/FAI molar ratio of 1.05 in the precursor solution. Rietveld analysis of x-ray diffraction data reveals that the excess PbI2 content incorporated into such a film is about 3 weight percent. Time-resolved photoluminescence decay measurements show that the small excess of PbI2 suppresses nonradiative charge carrier recombination. This in turn augments the external electroluminescence quantum efficiency to values of about 0.5%, a record for perovskite photovoltaics approaching that of the best silicon solar cells. Correspondingly, the open-circuit photovoltage reaches 1.18 V under AM 1.5 sunlight. PMID:26767196

  15. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.

    Science.gov (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B

    2013-09-28

    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  16. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics.

    Science.gov (United States)

    Kumar, S Girish; Devi, L Gomathi

    2011-11-24

    Titania is one of the most widely used benchmark standard photocatalysts in the field of environmental applications. However, the large band gap of titania and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. The former can be overcome by modifying the electronic band structure of titania including various strategies like coupling with a narrow band gap semiconductor, metal ion/nonmetal ion doping, codoping with two or more foreign ions, surface sensitization by organic dyes or metal complexes, and noble metal deposition. The latter can be corrected by changing the surface properties of titania by fluorination or sulfation or by the addition of suitable electron acceptors besides molecular oxygen in the reaction medium. This review encompasses several advancements made in these aspects, and also some of the new physical insights related to the charge transfer events like charge carrier generation, trapping, detrapping, and their transfer to surface are discussed for each strategy of the modified titania to support the conclusions derived. The synergistic effects in the mixed polymorphs of titania and also the theories proposed for their enhanced activity are reported. A recent venture on the synthesis and applications of anatase titania with a large percentage of reactive {001} facets and their band gap extension to the visible region via nonmetal ion doping which is a current hot topic is briefly outlined.

  17. Spectroscopic investigation of photoinduced charge-transfer processes in FTO/TiO2/N719 photoanodes with and without covalent attachment through silane-based linkers.

    Science.gov (United States)

    Pandit, Bill; Luitel, Tulashi; Cummins, Dustin R; Thapa, Arjun K; Druffel, Thad; Zamborini, Frank; Liu, Jinjun

    2013-12-19

    Understanding electron-transfer (ET) processes in dye-sensitized solar cells (DSSCs) is crucial to improving their device performance. Recently, covalent attachment of dye molecules to mesoporous semiconductor nanoparticle films via molecular linkers has been employed to increase the stability of DSSC photoanodes. The power conversion efficiency (PCE) of these DSSCs, however, is lower than DSSCs with conventional unmodified photoanodes in this study. Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been used to study the electron injection process from N719 dye molecules to TiO2 nanoparticles (NPs) in DSSC photoanodes with and without the presence of two silane-based linker molecules: 3-aminopropyltriethoxysilane (APTES) and p-aminophenyltrimethoxysilane (APhS). Ultrafast biphasic electron injection kinetics were observed in all three photoanodes using a 530 nm pump wavelength and 860 nm probe wavelength. Both the slow and fast decay components, attributed to electron injection from singlet and triplet excited states, respectively, of the N719 dye to the TiO2 conduction band, are hindered by the molecular linkers. The hindering effect is less significant with the APhS linker than the APTES linker and is more significant for the singlet-state channel than the triplet-state one. Electron injection from the vibrationally excited states is less affected by the linkers. The spectroscopic results are interpreted on the basis of the standard ET theory and can be used to guide selection of molecular linkers for DSSCs with better device performance. Other factors that affect the efficiency and stability of the DSSCs are also discussed. The relatively lower PCE of the covalently attached photoanodes is attributed to the multilayer and aggregation of the dye molecules as well as the linkers.

  18. Role of carboxyl residues and membrane lipids in cation binding to bacteriorhodopsin.

    Science.gov (United States)

    Hrabeta-Robinson, E; Semadeni, M; Packer, L

    1989-03-01

    To investigate the site specificity of cation binding to bacteriorhodopsin, carboxyl groups were chemically modified in purple membrane preparations from Halobacterium halobium. Cation binding followed by EPR and visible spectroscopy has led us to the conclusion that two cations bind to the surface regions and that at least one cation binds to carboxyl groups in the protein interior. Conformational freedom is necessary for the cooperative conversion of deionized blue species to cation-reconstituted purple species. Studies of white membranes from the JW-5 strain showed that a higher content of charged lipids results in the binding of approximately 100 more color-regulating cations and in negative cooperativity in the blue-to-purple species conversion. A greater dependence of protein structure on these bound cations suggests a role for cations in the modulation of opsin-lipid interaction.

  19. Long range B-site cation ordering and Briet–Wigner–Fano line shape of A{sub 1g}-like Raman mode in Nd{sub 1−x}Sm{sub x}(Mg{sub 0.5}Ti{sub 0.5})O{sub 3} microwave dielectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, S. Roopas [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Babu, G. Santosh; Narayana, Chandrabhas [Light Scattering Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Murthy, V.R.K., E-mail: vrkm@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India); Subramanian, V. [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Q × f of Nd{sub 1–x}Sm{sub x}(Mg{sub 0.5}Ti{sub 0.5})O{sub 3} are correlated with B-site cation ordering (LRO). ► Correlation between LRO and Γ of A{sub 1g}-like mode in Raman spectrum is observed. ► Reason for asymmetry in A{sub 1g}-like Raman mode in these materials is revealed. ► Briet–Wigner–Fano resonance is confirmed with temperature variation in Raman spectra. -- Abstract: Nd{sub 1−x}Sm{sub x}(Mg{sub 0.5}Ti{sub 0.5})O{sub 3} (x = 0.0–1.0) samples were prepared by solid-state reaction method. Rietveld refinement of X-ray diffraction data was done using P2{sub 1}/n space group with monoclinic symmetry, which supports 1:1 B-site cation ordering. Long range ordering (LRO) parameter decreased up to x = 0.5 and then found to increase with further increase in Sm concentration. The A{sub 1g}-like mode in Raman spectra was observed to possess Briet–Wigner–Fano line shape. The variation in obtained line width of the A{sub 1g}-like mode supported LRO. Microwave dielectric characteristics such as dielectric constant (ε{sub r}), quality factor (Q) and temperature coefficient of resonant frequency (τ{sub f}) were measured in the range of 7–9 GHz. ε{sub r} decreased from 26.5 to 24.9 and τ{sub f} become less negative from −58 ppm/°C to −36 ppm/°C with increase in Sm concentration. Q × f decreased from 47,500 GHz (for x = 0) to 39,800 GHz (for x = 0.5) and then increased to 44,600 GHz (for x = 1).

  20. A kinetic model for evaluating the dependence of the quantum yield of nano-TiO{sub 2} based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: Indirect interfacial charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baoshun, E-mail: liubaoshun@126.co [Key Laboratory of Silicate Materials Science and Engineering, Ministry of Education, Wuhan, Hubei 430070 (China) and School of Material Science and Technology, Wuhan University of Technology, Wuhan, Hubei 430070 (China); Zhao Xiujian [Key Laboratory of Silicate Materials Science and Engineering, Ministry of Education, Wuhan, Hubei 430070 (China)

    2010-04-30

    A model based on spherical TiO{sub 2} nanoparticles was developed to study heterogeneous photocatalysis based on TiO{sub 2} in the case of indirect interfacial charge transfer. In this model, the effect of light intensity (I{sub 0}), grain size (r{sub 0}), carrier lifetime (tau{sub p}), and minority carrier diffusion coefficient (D{sub p}) on the quantum yield (QY) of photocatalytic reactions was investigated in detail. Under conditions of sufficiently low incident-light intensity, the QY was found to be propor toI{sub 0}, while it decreased rapidly with an increase in I{sub 0}. In addition, the QY went to zero at a critically high light intensity. Furthermore, the QY was found to decrease with increasing r{sub 0} due to the bulk-recombination loss, and the effect of r{sub 0} on the QY became increasingly stronger with the increase in I{sub 0}. The QY decreased with the decrease in tau{sub p} and D{sub p}, which was more apparent at the critically high I{sub 0}. Under conditions of low [(RH{sub 2}){sub aq}], the QY increased with an increase in [(RH{sub 2}){sub aq}], while it remained nearly constant at high [(RH{sub 2}){sub aq}] due to the fact that the photoinduced electron interfacial transfer became the limiting step for photocatalytic reactions in the case of high [(RH{sub 2}){sub aq}].

  1. Repulsion between oppositely charged planar macroions.

    Directory of Open Access Journals (Sweden)

    YongSeok Jho

    Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.

  2. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (Kd). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (Kd) decreasing as follows: Kd(Na(+)) > Kd(NH4(+)) ≥ Kd(K(+)) > Kd(Ca(2+)) ≥ Kd(Mg(2+)) > Kd(Al(3+)). This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium Kd values, allowed for

  3. Structural inheritance and difference between Ti2AlC, Ti3AlC2 and Ti5Al2C3 under pressure from first principles

    Science.gov (United States)

    Gao, Qing-He; Du, An; Yang, Ze-Jin

    2017-01-01

    The structural inheritance and difference between Ti2AlC, Ti3AlC2 and Ti5Al2C3 under pressure from first principles are studied. The results indicate that the lattice parameter a are almost the same within Ti2AlC, Ti3AlC2 and Ti5Al2C3, and the value of c in Ti5Al2C3 is the sum of Ti2AlC and Ti3AlC2 which is revealed by the covalently bonded chain in the electron density difference: Al-Ti-C-Ti-Al for Ti2AlC, Al-Ti2-C-Ti1-C-Ti2-Al for Ti3AlC2 and Al-Ti3-C2-Ti3-Al-Ti2-C1-Ti1-C1-Ti2-Al for Ti5Al2C3. The calculated axial compressibilities, volumetric shrinkage, elastic constant c11, c33/c11 ratio, bulk modulus, shear modulus, and Young’s modulus of Ti5Al2C3 are within the range of the end members (Ti2AlC and Ti3AlC2) in a wide pressure range of 0-100 GPa. Only Ti2AlC is isotropic crystal at about 50 GPa within the Ti-Al-C compounds. All of the Ti 3d density of states curves of the three compounds move from lower energy to higher energy level with pressure increasing. The similarities of respective bond length, bond overlap population (Ti-C, Ti-Al and Ti-Ti), atom Mulliken charges under pressure as well as the electron density difference for the three compounds are discovered. Among the Ti-Al-C ternary compounds, Ti-Ti bond behaves least compressibility, whereas the Ti-Al bond is softer than that of Ti-C bonds, which can also been confirmed by the density of states and electron density difference. Bond overlap populations of Ti-Ti, Ti-C and Ti-Al indicate that the ionicity interaction becomes more and more stronger in the three structures as the pressure increasing. Mulliken charges of Ti1, Ti2, Ti3, C and Al are 0.65, 0.42, 0.39, ‑0.73, ‑0.04 at 0 GPa, respectively, which are consistent with the Pauling scale.

  4. Comparison of Cation Adsorption by Isostructural Rutile and Cassiterite

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Wesolowski, David J [ORNL; Rosenqvist, Jorgen K [ORNL; Predota, M. [University of South Bohemia, Czech Republic; Vlcek, Lukas [ORNL; Ridley, Moira K [ORNL; Kohli, V [Oak Ridge National Laboratory (ORNL); Zhang, Zhan [Argonne National Laboratory (ANL); Fenter, Paul [Argonne National Laboratory (ANL); Cummings, Peter T [ORNL; Lvov, Serguei N. [Pennsylvania State University; Fedkin, Mark V [ORNL; Rodriguez-Santiago, V [Oak Ridge National Laboratory (ORNL); Kubicki, James D. [Pennsylvania State University; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia

    2011-01-01

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) Crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl2 in NaCl, and trace ZnCl2 in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ( bulk 11). Inner-sphere adsorption is also significant for Rb and Na on neutral surfaces, whereas Cl- binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb , Na , and especially Sr2 are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn2 are very steep but similar for both oxides, reflective of Zn2 hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more

  5. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  6. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.

  7. Charge-transfer processes in semiconductor colloids

    Science.gov (United States)

    Kamat, Prashant V.; Gopidas, K. R.

    1990-04-01

    A picosecond transient absorption spectroscopy technique has been employed to probe the charge transfer processes in Ti02 semiconductor colloids. The trapping of electrons at the TiO surface (Ti4+ sitesY was characterized from the appearance of a broad absorption in the region of 550-750 nm following the 355-nm laser pulse excitation of Ti02 colloids. The lifetime of these trapped charge carriers increased upon incorporation of a hole scavenger in the colloidal semiconductor system. The mechanistic and kinetic details of the charge injection from excited CdS into a large bandgap semiconductor such as AgI and Ti02 have also been inves-' t i ga ted.

  8. Synthesis and characterisation of cationically modified phospholipid polymers.

    Science.gov (United States)

    Lewis, Andrew L; Berwick, James; Davies, Martyn C; Roberts, Clive J; Wang, Jin-Hai; Small, Sharon; Dunn, Anthony; O'Byrne, Vincent; Redman, Richard P; Jones, Stephen A

    2004-07-01

    Phospholipid-like copolymers based on 2-(methacryloyloxyethyl) phosphorylcholine were synthesised using monomer-starved free radical polymerisation methods and incorporating cationic charge in the form of the choline methacrylate monomer in amounts varying from 0 to 30 wt%, together with a 5 wt% silyl cross-linking agent in order to render them water-insoluble once thermally cured. Characterisation using a variety of techniques including nuclear magnetic resonance spectroscopy, high-pressure liquid chromatography and gel permeation chromatography showed the cationic monomer did not interfere with the polymerisation and that the desired amount of charge had been incorporated. Gravimetric and differential scanning calorimetry methods were used to evaluate the water contents of polymer membranes cured at 70 degrees C, which was seen to increase with increasing cation content, producing materials with water contents ranging from 50% to 98%. Surface plasmon resonance indicated that the coatings swelled rapidly in water, the rate and extent of swelling increasing with increasing cation level. Dynamic contact angle showed that coatings of all the polymers possessed a hydrophobic surface when dry in air, characteristic of the alkyl chains expressed at the surface (>100 degrees advancing angle). Rearrangement of the hydrophilic groups to the surface occurred once wet, to produce highly wettable surfaces with a decrease in advancing angle with increasing cation content. Atomic force microscopy showed all polymer films to be smooth with no features in topographical or phase imaging. Mechanical properties of the dry films were also unaffected by the increase in cation content.

  9. Photochemical generation, isomerization, and oxygenation of stilbene cation radicals

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, F.D.; Bedell, A.M.; Dykstra, R.E.; Elbert, J.E. (Northwestern Univ., Evanston, IL (USA)); Gould, I.R.; Farid, S. (Eastman Kodak Co., Rochester, NY (USA))

    1990-10-24

    The cation radicals of cis- and trans-stilbene and several of their ring-substituted derivatives have been generated in solution directly by means of pulsed-laser-induced electron transfer to singlet cyanoanthracenes or indirectly via electron transfer from biphenyl to the singlet cyanoanthracene followed by secondary electron transfer from the stilbenes to the biphenyl cation radical. Transient absorption spectra of the cis- and trans-stilbene cation radicals generated by secondary electron transfer are similar to those previously obtained in 77 K matrices. Quantum yields for radical ion-pair cage escape have been measured for direct electron transfer from the stilbenes to three neutral and one charged singlet acceptor. These values increase as the ion-pair energy increases due to decreased rate constants for radical ion-pair return electron transfer, in accord with the predictions of Marcus theory for highly exergonic electron transfer. Cage-escape efficiencies are larger for trans- vs cis-stilbene cation radicals, possibly due to the greater extent of charge delocalization in the planar trans vs nonpolar cis cation radicals. Cage-escape stilbene cation radicals can initiate a concentration-dependent one way cis- {yields} trans-stilbene isomerization reaction.

  10. Computer simulation of alkali metal cation-montmorillonite hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fang-Ru Chou [Columbia Univ., Palisades, NY (United States); Skipper, N.T. [Univ. College, London (United Kingdom); Sposito, G. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Molecular structure in the interlayers of Li-, Na-, or K-Wyoming montmorillonite with one, two, or three adsorbed water layers was investigated for the first time by concurrent Monte Carlo and molecular dynamics (MD) simulation, based on the Matsouka-Clementi-Yoshimine, (MCY) model of water-water interactions. Calculated layer spacings, as well as interlayer-species self-diffusion coefficients, were in good agreement with available experimental data. Inner-sphere surface complexes of the cations with tetrahedral charge sites were observed for all hydrates, whereas outer-sphere surface complexes of the cations with octahedral charge sites, found also in the one-layer hydrate, tended to dissociate from the clay mineral basal planes into a diffuse layer in the two- and three-layer hydrates. Differences in the interlayer water structure among the hydrates mainly reflected cation solvation, although some water molecules were entrapped within cavities in the montmorillonite surface. All of the interlayer cation and water species exchanged on the time scale (0.2 ns) of the MD simulations. Comparisons with results obtained using, instead of the MCY model, the TIP4P model for water-water, cation-water, and cation-clay interactions indicated that layer spacings and interlayer species mobilities tend to be under-predicted by the TIP4P model.

  11. Unusual photoelectric behaviors of Mo-doped TiO2 multilayer thin films prepared by RF magnetron co-sputtering: effect of barrier tunneling on internal charge transfer

    Science.gov (United States)

    Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.

    2013-01-01

    Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.

  12. Cationic disorder and Mn{sup 3+}/Mn{sup 4+} charge ordering in the B′ and B″ sites of Ca{sub 3}Mn{sub 2}NbO{sub 9} perovskite: a comparison with Ca{sub 3}Mn{sub 2}WO{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    López, C.A., E-mail: calopez@unsl.edu.ar [INTEQUI-Área de Química General e Inorgánica “Dr. G. F. Puelles”, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis (Argentina); Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400S.C. de Bariloche, Río Negro (Argentina); Saleta, M.E. [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400S.C. de Bariloche, Río Negro (Argentina); Pedregosa, J.C. [INTEQUI-Área de Química General e Inorgánica “Dr. G. F. Puelles”, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis (Argentina); Sánchez, R.D. [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400S.C. de Bariloche, Río Negro (Argentina); Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); and others

    2014-02-15

    We describe the preparation, crystal structure determination, magnetic and transport properties of two novel Mn-containing perovskites, with a different electronic configuration for Mn atoms located in B site. Ca{sub 3}Mn{sup 3+}{sub 2}WO{sub 9} and Ca{sub 3}Mn{sup 3+/4+}{sub 2}NbO{sub 9} were synthesized by standard ceramic procedures; the crystallographic structure was studied from X-ray powder diffraction (XRPD) and neutron powder diffraction (NPD). Both phases exhibit a monoclinic symmetry (S.G.: P2{sub 1}/n); Ca{sub 3}Mn{sub 2}WO{sub 9} presents a long-range ordering over the B sites, whereas Ca{sub 3}Mn{sub 2}NbO{sub 9} is strongly disordered. By “in-situ” NPD, the temperature evolution of the structure study presents an interesting evolution in the octahedral size (〈Mn–O〉) for Ca{sub 3}Mn{sub 2}NbO{sub 9}, driven by a charge ordering effect between Mn{sup 3+} and Mn{sup 4+} atoms, related to the anomaly observed in the transport measurements at T≈160 K. Both materials present a magnetic order below T{sub C}=30 K and 40 K for W and Nb materials, respectively. The magneto-transport measurements display non-negligible magnetoresistance properties in the paramagnetic regime. - Graphical abstract: Comparison between the octahedron size and the magnetic behaviour for Ca{sub 3}Mn{sub 2}NbO{sub 9} in the temperature region where the charge and magnetic order occur. Display Omitted - Highlights: • Two novel Mn-containing double perovskites were obtained by solid-state reactions. • Both double perovskites are monoclinic (P2{sub 1}/n) determined by XRPD and NPD. • Ca{sub 3}Mn{sub 2}WO{sub 9} contains Mn{sup 3+} while Ca{sub 3}Mn{sub 2}NbO{sub 9} includes mixed-valence cations Mn{sup 3+}/Mn{sup 4+}. • Ca{sub 3}Mn{sub 2}NbO{sub 9} presents a charge-ordering effect between Mn{sup 3+} and Mn{sup 4+} evidenced by NPD. • The magnetic and transport studies evidenced the charge ordering in Ca{sub 3}Mn{sub 2}NbO{sub 9}.

  13. Fe3+/TiO2纳米空心球的制备及其对阳离子蓝的可见光降解%SYNTHESIS OF Fe3+/TiO2 HOLLOW NANOSPHERES AND THEIR PHOTODEGRADATION OF CATIONIC BLUE UNDER VISIBLE-LIGHT IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    张文莉; 戴飞; 陈欣; 蒋银花; 郭雷群

    2013-01-01

    以钛酸正丁酯和硝酸铁为原料,纳米碳球为硬模板剂采用低温回流-煅烧法成功制备了不同比例的Fe3+/TiO2纳米空心球.采用FE-SEM、TEM、XRD,UV-Vis及EDS对制得的样品进行表征.FE-SEM和TEM结果表明,制得样品均为空心球结构,其中Fe3+掺杂后空心球的壁厚有所增加.UV-Vis光谱表明,Fe3+掺杂的TiO2样品对可见光的响应明显增强.以阳离子蓝为目标污染物进行可见光催化降解,试验结果表明,Fe3+/Ti4+摩尔比为0.5:100时,样品的光催化效果最好,降解效率达到83.2%,是TiO2空心球降解效率的4.16倍.降解反应符合1级动力学方程.

  14. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2011-01-01

    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  15. A Cationic Diode Based on Asymmetric Nafion® Film Deposits

    NARCIS (Netherlands)

    He, Daping; Madrid, Elena; Aaronson, Barak; Fan, Lian; Doughty, James; Mathwig, Klaus; Bond, Alan M; McKeown, Neil B; Marken, Frank

    2017-01-01

    A thin film of Nafion®, of approximately 5 microm thickness, asymmetrically deposited onto a 6 microm thick film of poly(ethylene terephthalate) (PET) fabricated with a 5, 10, 20, or 40 microm microhole, is shown to exhibit prominent ionic diode behaviour involving cation charge carrier ("cationic d

  16. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  17. Charge transfer to a semi-esterified bifunctional phenol

    Energy Technology Data Exchange (ETDEWEB)

    Brede, O.; Hermann, R.; Orthner, H. [Leipzig Univ. (Germany)

    1996-03-01

    The charge transfer from solvent radical cations of n-butyl chloride and cyclohexane to 2-butyl-6(3`-t-butyl-2`-hydroxy-5`-methylbenzyl)-4-methyl-phenylac rylate (GM) yields in the first step phenoxyl radicals as well as acrylate radical cations of this semi-acrylated bifunctional phenol. Subsequently an intramolecular charge transfer from the acrylate radical cation to the phenol group takes place. Because of the instability of phenol radical cations, under our experimental conditions (nanosecond pulse radiolysis, non-polar solvents, room temperature) phenoxyl radicals are the only observable products of phenol ionization. (author).

  18. Anionic and cationic Hofmeister effects on hydrophobic and hydrophilic surfaces.

    Science.gov (United States)

    Schwierz, Nadine; Horinek, Dominik; Netz, Roland R

    2013-02-26

    Using a two-step modeling approach, we address the full spectrum of direct, reversed, and altered ionic sequences as the charge of the ion, the charge of the surface, and the surface polarity are varied. From solvent-explicit molecular dynamics simulations, we extract single-ion surface interaction potentials for halide and alkali ions at hydrophilic and hydrophobic surfaces. These are used within Poisson-Boltzmann theory to calculate ion density and electrostatic potential distributions at mixed polar/unpolar surfaces for varying surface charge. The resulting interfacial tension increments agree quantitatively with experimental data and capture the Hofmeister series, especially the anomaly of lithium, which is difficult to obtain using continuum theory. Phase diagrams that feature different Hofmeister series as a function of surface charge, salt concentration, and surface polarity are constructed from the long-range force between two surfaces interacting across electrolyte solutions. Large anions such as iodide have a high hydrophobic surface affinity and increase the effective charge magnitude on negatively charged unpolar surfaces. Large cations such as cesium also have a large hydrophobic surface affinity and thereby compensate an external negative charge surface charge most efficiently, which explains the well-known asymmetry between cations and anions. On the hydrophilic surface, the size-dependence of the ion surface affinity is reversed, explaining the Hofmeister series reversal when comparing hydrophobic with hydrophilic surfaces.

  19. Effect of electrolyte valency, alginate concentration and pH on engineered TiO₂ nanoparticle stability in aqueous solution.

    Science.gov (United States)

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2015-12-01

    Agglomeration and disagglomeration processes are expected to play a key role on the fate of engineered nanoparticles in natural aquatic systems. These processes are investigated here in detail by studying first the stability of TiO2 nanoparticles in the presence of monovalent and divalent electrolytes at different pHs (below and above the point of zero charge of TiO2) and discussing the importance of specific divalent cation adsorption with the help of the DLVO theory as well as the importance of the nature of the counterions. Then the impact of one polysaccharide (alginate) on the stability of agglomerates formed under pH and water hardness representative of Lake Geneva environmental conditions is investigated. In these conditions the large TiO2 agglomerates (diameter>1μm) are positively charged due to Ca(2+) and Mg(2+) specific adsorption and alginate, which is negatively charged, adsorbs onto the agglomerate surface. Our results indicate that the presence of alginate at typical natural organic matter concentration (1-10 mg L(-1)) strongly modifies the TiO2 agglomerate (50 mg L(-1)) stability by inducing their partial and rapid disagglomeration. The importance of disagglomeration is found dependent on the alginate concentration with maximum of disagglomeration obtained for alginate concentration ≥8 mg L(-1) and leading to 400 nm fragments. From an environmental point of view partial restabilization of TiO2 agglomerates in the presence of alginate constitutes an important outcome. Disagglomeration will enhance their transport and residence time in aquatic systems which is an important step in the current knowledge on risk assessment associated to engineered nanoparticles.

  20. Average and local atomic-scale structure in BaZrxTi(1-x)O3 (x = 0. 10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy.

    Science.gov (United States)

    Buscaglia, Vincenzo; Tripathi, Saurabh; Petkov, Valeri; Dapiaggi, Monica; Deluca, Marco; Gajović, Andreja; Ren, Yang

    2014-02-12

    High-resolution x-ray diffraction (XRD), Raman spectroscopy and total scattering XRD coupled to atomic pair distribution function (PDF) analysis studies of the atomic-scale structure of archetypal BaZrxTi(1-x)O3 (x = 0.10, 0.20, 0.40) ceramics are presented over a wide temperature range (100-450 K). For x = 0.1 and 0.2 the results reveal, well above the Curie temperature, the presence of Ti-rich polar clusters which are precursors of a long-range ferroelectric order observed below TC. Polar nanoregions (PNRs) and relaxor behaviour are observed over the whole temperature range for x = 0.4. Irrespective of ceramic composition, the polar clusters are due to locally correlated off-centre displacement of Zr/Ti cations compatible with local rhombohedral symmetry. Formation of Zr-rich clusters is indicated by Raman spectroscopy for all compositions. Considering the isovalent substitution of Ti with Zr in BaZrxTi1-xO3, the mechanism of formation and growth of the PNRs is not due to charge ordering and random fields, but rather to a reduction of the local strain promoted by the large difference in ion size between Zr(4+) and Ti(4+). As a result, non-polar or weakly polar Zr-rich clusters and polar Ti-rich clusters are randomly distributed in a paraelectric lattice and the long-range ferroelectric order is disrupted with increasing Zr concentration.

  1. Solidification cracking in austenitic stainless steel welds

    Indian Academy of Sciences (India)

    V Shankar; T P S Gill; S L Mannan; S Sundaresan

    2003-06-01

    Solidification cracking is a significant problem during the welding of austenitic stainless steels, particularly in fully austenitic and stabilized compositions. Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, P and alloy elements such as Ti, Nb. The WRC-92 diagram can be used as a general guide to maintain a desirable solidification mode during welding. Nitrogen has complex effects on weld-metal microstructure and cracking. In stabilized stainless steels, Ti and Nb react with S, N and C to form low-melting eutectics. Nitrogen picked up during welding significantly enhances cracking, which is reduced by minimizing the ratio of Ti or Nb to that of C and N present. The metallurgical propensity to solidification cracking is determined by elemental segregation, which manifests itself as a brittleness temperature range or BTR, that can be determined using the varestraint test. Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to extraneous factors as compared to BTR. In austenitic stainless steels, segregation plays an overwhelming role in determining cracking susceptibility.

  2. Preparation and Photocatalytic Characterization of Nanoporous TiO2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nanoporous TiO2 photocatalysts were prepared by use of controlled drying method with surfactants. The surface area and porous properties are dependent on the chain length of incorporated surfactant cation. The TiO2 materials prepared in the presence of surfactant molecules during the gel formation exhibit much higher photocatalytic activity than that prepared in the absence of surfactants.

  3. Anatase TiO2 sheet-assisted synthesis of Ti(3+) self-doped mixed phase TiO2 sheet with superior visible-light photocatalytic performance: Roles of anatase TiO2 sheet.

    Science.gov (United States)

    Zhang, Xiaojie; Zuo, Guoqing; Lu, Xin; Tang, Changqing; Cao, Shuo; Yu, Miao

    2017-03-15

    On the basis of measurements, such as field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, X-ray diffraction, electron paramagnetic resonance, photoluminescence spectra, and photocurrent measurements, the roles of anatase TiO2 sheet on synthesizing Ti(3+) self-doped mixed phase TiO2 nanosheets (doped TiO2 (A/R, TiO2 (A))) and on improving the performance for photocatalytic CO2 reduction were explored systematically. High surface area anatase TiO2 nanosheets (TiO2 (A)) as a substrate, structure directing agent, and inhibitor, mediated the synthesis of Ti(3+) self-doped mixed phase TiO2 nanosheets. Addition of TiO2 (A) significantly improved not only visible light absorption of doped TiO2 (A/R, TiO2 (A)), but also the efficiency of photo-excited charges separations due to the existence of interfacial regions of anatase-rutile TiO2 junctions. Finally, a possible mechanism for interfacial charge transfer at the anatase-rutile TiO2 interface and for photocatalytic CO2 reduction over Pt loaded doped TiO2 (A/R, TiO2 (A)) were proposed.

  4. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    Science.gov (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  5. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  6. The first-principles study of ferroelectric behaviours of PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhen-Ye; Wang Biao; Wang Hai; Zheng Yue; Li Qing-Kun

    2007-01-01

    We have performed the first-principles calculation to investigate the origins of ferroelectricities and different polarization behaviours of superlattices BaTiO3/SrTiO3 and PbTiO3/SrTiO3- The density of state (DOS) and electronic charge profiles show that there are strong hybridizations between atoms Ti and O and between atoms Pb and O which play very important roles in producing the ferroelectricities of superlattices BaTiO3/rTiO3 and PbTiO3/SrTiO3. Owing to the decline of internal electric field in SrTiO3 (ST) layer, the tetragonality and polarizations of superlattices decrease with increasing the fraction of SrTiO3 in the superlattices. We find that the polarization of PbTiO3/SrTiO3 is largerthan that of BaTiO3/SrTiO3 at the same ratio of components, because the polarization mismatch between PbTiO3 and SrTiO3 is larger than that between BaTiO3 and SrTiO3. The polarization and tetragonality are enhanced with respect to those of bulk tetragonal BaTiO3 in the superlattices BaTiO3/SrTiO3, while the polarization and tetragonality are reduced with respect to those of bulk tetragonal PbTiO3 in superlattices PbTiO3/SrTiO3.

  7. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  8. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Luitel, Homnath [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India); Sarkar, A. [Department of Physics, Bangabasi Morning College, 19 Rajkumar Chakraborty Sarani, Kolkata 700009 (India); Chakrabarti, Mahuya [Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata 700131 (India); Chattopadhyay, S. [Department of Physics, Maulana Azad College, 8 Rafi Ahmed Kidwai Road, Kolkata 700013 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Sanyal, D., E-mail: dirtha@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-07-15

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO{sub 2} polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO{sub 2} sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (V{sub Ti}, Ti vacancy) in these irradiated TiO{sub 2} samples. Ab initio density functional theoretical calculations indicate that in TiO{sub 2} magnetic moment can be induced either by creating Ti or O vacancies.

  9. Interactions between liposomes and cations in aqueous solution.

    Science.gov (United States)

    Ruso, Juan M; Besada, Lina; Martínez-Landeira, Pablo; Seoane, Laura; Prieto, Gerardo; Sarmiento, Félix

    2003-05-01

    An investigation on the dependence of electrophoretic mobilities of unilamellar vesicles of phosphatidylcholine-cholesterol-phosphatidylinositol (PC-Chol-PI) on the concentration of several cations with variations in the relation charge/radius in the range Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, and La3+ has been realized. Plots of zeta potential against ion concentration exhibit a maximum for all the cations under study, the position of the maximum is greatly affected by the charge of the ion. From the feature of these plots two phenomenon were observed: an initial binding of cations into the slipping plane for ion concentration below the maximum and a phenomenon of vesicle association for concentration above the maximum. To confirm these observations measurements on dynamic light scattering were performed to obtain the corresponding size distribution of the liposomes at different ion concentrations. Finally the ability of the Stern isotherm to describe the adsorption of the cations to vesicles was tested by two methods. The two main parameters of the theory: the total number of adsorption sites per unit area, N1, and the equilibrium constant, K; (and consequently the free energy of adsorption, deltaG0ads) were calculated for the different ions, showing good agreement. The equilibrium constants of adsorption have been found to obey a linear relationship with ion radius the slope of which decreases with the ion charge.

  10. Cationic PAMAM dendrimers aggressively initiate blood clot formation.

    Science.gov (United States)

    Jones, Clinton F; Campbell, Robert A; Brooks, Amanda E; Assemi, Shoeleh; Tadjiki, Soheyl; Thiagarajan, Giridhar; Mulcock, Cheyanne; Weyrich, Andrew S; Brooks, Benjamin D; Ghandehari, Hamidreza; Grainger, David W

    2012-11-27

    Poly(amidoamine) (PAMAM) dendrimers are increasingly studied as model nanoparticles for a variety of biomedical applications, notably in systemic administrations. However, with respect to blood-contacting applications, amine-terminated dendrimers have recently been shown to activate platelets and cause a fatal, disseminated intravascular coagulation (DIC)-like condition in mice and rats. We here demonstrate that, upon addition to blood, cationic G7 PAMAM dendrimers induce fibrinogen aggregation, which may contribute to the in vivo DIC-like phenomenon. We demonstrate that amine-terminated dendrimers act directly on fibrinogen in a thrombin-independent manner to generate dense, high-molecular-weight fibrinogen aggregates with minimal fibrin fibril formation. In addition, we hypothesize this clot-like behavior is likely mediated by electrostatic interactions between the densely charged cationic dendrimer surface and negatively charged fibrinogen domains. Interestingly, cationic dendrimers also induced aggregation of albumin, suggesting that many negatively charged blood proteins may be affected by cationic dendrimers. To investigate this further, zebrafish embryos were employed to more specifically determine the speed of this phenomenon and the pathway- and dose-dependency of the resulting vascular occlusion phenotype. These novel findings show that G7 PAMAM dendrimers significantly and adversely impact many blood components to produce rapid coagulation and strongly suggest that these effects are independent of classic coagulation mechanisms. These results also strongly suggest the need to fully characterize amine-terminated PAMAM dendrimers in regard to their adverse effects on both coagulation and platelets, which may contribute to blood toxicity.

  11. Quantitative analysis of monoclonal antibodies by cation-exchange chromatofocusing.

    Science.gov (United States)

    Rozhkova, Anna

    2009-08-07

    A robust cation-exchange chromatofocusing method was developed for the routine analysis of a recombinant humanized monoclonal IgG antibody. We compare the chromatofocusing method to the conventional cation-exchange chromatography (CEX) employing a salt gradient and show clear advantages of chromatofocusing over CEX. We demonstrate the suitability of the present chromatofocusing method for its intended purpose by testing the validation characteristics. To our knowledge, this is the first chromatofocusing method developed for the routine analysis of monoclonal antibody charge species.

  12. Switchable Pickering emulsions stabilized by silica nanoparticles hydrophobized in situ with a conventional cationic surfactant.

    Science.gov (United States)

    Zhu, Yue; Jiang, Jianzhong; Liu, Kaihong; Cui, Zhenggang; Binks, Bernard P

    2015-03-24

    A stable oil-in-water Pickering emulsion stabilized by negatively charged silica nanoparticles hydrophobized in situ with a trace amount of a conventional cationic surfactant can be rendered unstable on addition of an equimolar amount of an anionic surfactant. The emulsion can be subsequently restabilized by adding a similar trace amount of cationic surfactant along with rehomogenization. This destabilization-stabilization behavior can be cycled many times, demonstrating that the Pickering emulsion is switchable. The trigger is the stronger electrostatic interaction between the oppositely charged ionic surfactants compared with that between the cationic surfactant and the (initially) negatively charged particle surfaces. The cationic surfactant prefers to form ion pairs with the added anionic surfactant and thus desorbs from particle surfaces rendering them surface-inactive. This access to switchable Pickering emulsions is easier than those employing switchable surfactants, polymers, or surface-active particles, avoiding both the complicated synthesis and the stringent switching conditions.

  13. Transport limits in defect-engineered LaAlO3/SrTiO3 bilayers

    NARCIS (Netherlands)

    Gunkel, F.; Wicklein, S.; Hoffmann-Eifert, S.; Meuffels, P.; Brinks, Peter; Huijben, Mark; Waser, R.; Dittmann, R.

    2014-01-01

    The electrical properties of the metallic interface in LaAlO3/SrTiO3 (LAO/STO) bilayers are investigated with focus on the role of cationic defects in thin film STO. Systematic growth-control of the STO thin film cation stoichiometry (defect-engineering) yields a relation between cationic defects in

  14. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery

    NARCIS (Netherlands)

    Piest, Martin; Engbersen, Johan F.J.

    2010-01-01

    High cationic charge densities in polymeric vectors result in tight DNA condensation, leading to small highly positively charged polyplexes which show generally high cellular uptake in vitro. However, high cationic charge densities also introduce membrane-disruptive properties to the polymers, there

  15. Magnetic and charge ordering properties of Bi{sub 0.2}Ca{sub 0.8}Mn{sub 0.9}X{sub 0.1}O{sub 3} (where X = Ti, Cr, Fe, Co, Ni, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Kamlesh [Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Vaithyanathan, V.; Inbanathan, S.S.R. [Post Graduate and Research Department of Physics, The American College, Madurai 625002 (India); Varma, G.D., E-mail: gdvarfph@iitr.ernet.in [Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer Structural, magnetic and transport properties of Bi{sub 0.2}Ca{sub 0.8}Mn{sub 0.9}X{sub 0.1}O{sub 3} (where X = Ti, Cr, Fe, Co, Ni, Cu) have been studied. Black-Right-Pointing-Pointer T{sub CO} decreases by {approx}10 K and {approx}33 K, in Ni{sup 2+} and Cu{sup 2+} doped samples, while it increases by 42 K in Ti{sup 4+} doped sample. Black-Right-Pointing-Pointer In case of Fe{sup 3+}, Co{sup 3+} and Cr{sup 3+} doped samples charge-ordering (CO) completely disappears. Black-Right-Pointing-Pointer Furthermore, the enhancement in resistivity in all the doped samples with respect to undoped one has been observed. Black-Right-Pointing-Pointer The magnetic exchange interactions between Mn and doped ions explain magnetic and electrical properties. - Abstract: Structural, magnetic and transport properties of Bi{sub 0.2}Ca{sub 0.8}Mn{sub 0.9}X{sub 0.1}O{sub 3} (where X = Ti, Cr, Fe, Co, Ni, Cu) have been investigated. The parent sample Bi{sub 0.2}Ca{sub 0.8}MnO{sub 3} (BCMO) exhibits robust charge-ordered antiferrromagnetic (COAFM) phase with charge ordering temperature (T{sub CO}) {approx}155 K and AFM Neel temperature (T{sub N}) {approx}105 K. T{sub CO} decreases by {approx}10 K and {approx}33 K, respectively, in Ni{sup 2+} and Cu{sup 2+} doped samples, while it increases by 42 K in Ti{sup 4+} doped sample. In case of Fe{sup 3+}, Co{sup 3+} and Cr{sup 3+} doped samples charge-ordering (CO) completely melts. The paramagnetic (PM) to ferromagnetic (FM) transition temperatures (T{sub C}) of doped samples have lower values as compared to undoped one. In addition, a spin glass (SG) state is observed in all the samples and the magnetic state at T < T{sub C} is akin to a cluster glass (CG) for undoped and Ni, Cu, Ti doped samples formed due to the presence of FM clusters in COAFM matrix. Furthermore, the enhancement in resistivity in all the doped samples with respect to undoped one has been observed. Based on the present study it has

  16. Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study.

    Science.gov (United States)

    Huang, Yinjuan; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinyu; Zhang, Xinjie; Liu, Zhen

    2013-07-01

    This research demonstrated the preparation of ultra-small cationic starch nanospheres for the first time. Unlike conventional cationic starch, the cationic starch in here could not form gel. The starch nanoparticles were obtained via reverse micro-emulsion method and were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The formation mechanism of cationic starch nanospheres was proposed and the effects of preparation conditions on particle size were also investigated. A cationic starch nanosphere with a size of 50 nm can be obtained under the optimal condition. Moreover, the drug release behaviors, cytotoxicity test and degradation analysis were tested and indicated that the particles possess good capacity in delivering the negatively charged molecules, biocompatibility and biodegradability. Thus, the cationic nanoparticles exhibit potential applications in the areas of food and medical sciences. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Periodic modeling of zeolite Ti-LTA

    Science.gov (United States)

    Hernandez-Tamargo, Carlos E.; Roldan, Alberto; Ngoepe, Phuti E.; de Leeuw, Nora H.

    2017-08-01

    We have proposed a combination of density functional theory calculations and interatomic potential-based simulations to study the structural, electronic, and mechanical properties of pure-silica zeolite Linde Type A (LTA), as well as two titanium-doped compositions. The energetics of the titanium distribution within the zeolite framework suggest that the inclusion of a second titanium atom with configurations Ti-(Si0)-Ti, Ti-(Si1)-Ti, and Ti-(Si2)-Ti is more energetically favorable than the mono-substitution. Infra-red spectra have been simulated for the pure-silica LTA, the single titanium substitution, and the configurations Ti-(Si0)-Ti and Ti-(Si2)-Ti, comparing against experimental benchmarks where available. The energetics of the direct dissociation of water on these Lewis acid sites indicate that this process is only favored when two titanium atoms form a two-membered ring (2MR) sharing two hydroxy groups, Ti-(OH2)-Ti, which suggests that the presence of water may tune the distribution of titanium atoms within the framework of zeolite LTA. The electronic analysis indicates charge transfer from H2O to the Lewis acid site and hybridization of their electronic states.

  18. Adsorption of water on TiN (1 0 0), (1 1 0) and (1 1 1) surfaces: A first-principles study

    Science.gov (United States)

    Sanyal, Suchismita; Waghmare, Umesh V.; Ruud, James A.

    2011-05-01

    We use first-principles density functional theory-based calculations in the analysis of the interaction of H 2O with (1 0 0), (1 1 0) and (1 1 1) surfaces of TiN, and develop understanding in terms of surface energies, polarity of the surface and chemistry of the cation, through comparison with H 2O adsorption on ZrN. While water molecule physisorbs preferentially at Ti site of (1 0 0) and (1 1 1) surfaces, it adsorbs dissociatively on (1 1 0) surface of TiN with binding stronger than almost 1.32 eV/molecule. Our analysis reveals the following general trends: (a) surfaces with higher energies typically lead to stronger adsorption, (b) dissociative adsorption of H 2O necessarily occurs on a charge neutral high energy surface and (c) lower symmetry of the (1 1 0) plane results in many configurations of comparable stability, as opposed to the higher symmetry (1 0 0) and (1 1 1) surfaces, which also consistently explain the results of H 2O adsorption on MgO available in literature. Finally, weaker adsorption of H 2O on TiN than on ZrN can be rationalized in terms of greater chemical stability of Ti arising from its ability to be in mixed valence.

  19. Adsorption and reactions of O2 on anatase TiO2.

    Science.gov (United States)

    Li, Ye-Fei; Aschauer, Ulrich; Chen, Jia; Selloni, Annabella

    2014-11-18

    CONSPECTUS: The interaction of molecular oxygen with titanium dioxide (TiO2) surfaces plays a key role in many technologically important processes such as catalytic oxidation reactions, chemical sensing, and photocatalysis. While O2 interacts weakly with fully oxidized TiO2, excess electrons are often present in TiO2 samples. These excess electrons originate from intrinsic reducing defects (oxygen vacancies and titanium interstitials), doping, or photoexcitation and form polaronic Ti(3+) states in the band gap near the bottom of the conduction band. Oxygen adsorption involves the transfer of one or more of these excess electrons to an O2 molecule at the TiO2 surface. This results in an adsorbed superoxo (O2(-)) or peroxo (O2(2-)) species or in molecular dissociation and formation of two oxygen adatoms (2 × O(2-)). Oxygen adsorption is also the first step toward oxygen incorporation, a fundamental reaction that strongly affects the chemical properties and charge-carrier densities; for instance, it can transform the material from an n-type semiconductor to a poor electronic conductor. In this Account, we present an overview of recent theoretical work on O2 adsorption and reactions on the reduced anatase (101) surface. Anatase is the TiO2 polymorph that is generally considered most active in photocatalysis. Experiments on anatase powders have shown that the properties of photoexcited electrons are similar to those of excess electrons from reducing defects, and therefore, oxygen on reduced anatase is also a model system for studying the role of O2 in photocatalysis. Experimentally, the characteristic Ti(3+) defect states disappear after adsorption of molecular oxygen, which indicates that the excess electrons are indeed trapped by O2. Moreover, superoxide surface species associated with two different cation surface sites, possibly a regular cation site and a cation close to an anion vacancy, were identified by electron paramagnetic resonance spectroscopy. On the

  20. Nanoengineered field induced charge separation membranes manufacture thereof

    Science.gov (United States)

    O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary

    2016-08-02

    A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.

  1. A Novel Synthesis of Two-dimensional Nanopatterned TiO2 Thin Film

    Institute of Scientific and Technical Information of China (English)

    Ming Xian LIU; Li Hua GAN; Gen CHEN; Zi Jie XU; Zhi Xian HAO; Long Wu CHEN

    2006-01-01

    A novel two-dimensional nanopatterned TiO2 thin film has been synthesized through the interaction between cationic Gemini surfactant molecules and the prepared TiO2 colloid nanoparticles with average diameters of 8 nm by controlling the surface pressure of the monolayer. TEM photographs from the formed Gemini-TiO2 composite monolayer confirm that the prepared TiO2 film is of a branch nanopattem.

  2. Solubility and transport of cationic and anionic patterned nanoparticles

    Science.gov (United States)

    Su, Jiaye; Guo, Hongxia; Olvera de La Cruz, Monica

    2012-02-01

    Diffusion and transport of nanoparticles (NPs) though nanochannels is important for desalination, drug delivery, and biomedicine. Their surface composition dictate their efficiency separating them by reverse osmosis, delivering into into cells, as well as their toxicity. We analyze bulk diffusion and transport through nanochannels of NPs with different hydrophobic-hydrophilic patterns achieved by coating a fraction of the NP sites with positive or negative charges via explicit solvent molecular dynamics simulations. The cationic NPs are more affected by the patterns, less water soluble, and have higher diffusion constants and fluxes than their anionic NPs counterparts. The NP-water interaction dependence on surface pattern and field strength explains these observations. For equivalent patterns, anionic NPs solubilize more than cationic NPs since the Coulomb interaction of free anionic NPs, which are much stronger than hydrophobic NP-water interactions, are about twice that of cationic NPs.

  3. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  4. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties.

    Science.gov (United States)

    Sehaqui, Houssine; Mautner, Andreas; Perez de Larraya, Uxua; Pfenninger, Numa; Tingaut, Philippe; Zimmermann, Tanja

    2016-01-01

    Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process.

  5. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  6. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, M.; Wesolowski, D.; Rosenqvist, J.; Predota, M.; Vlcek, L.; Ridley, M.; Kohli, V.; Zhang, Z.; Fenter, P.; Cummings, P.; Lvov, S.; Fedkin, M.; Rodriguez-Santiago, V.; Kupicki, J.; Bandura, A. (X-Ray Science Division); (Illinois State Water Survey); (Oak Ridge National Laboratory); (University of South Branisovska); (Texas Tech University); (Vanderbilt University); (The Pennsylvania State University); (St. Petersburg State University)

    2011-01-01

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl{sub 2} in NaCl, and trace ZnCl{sub 2} in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ({epsilon}{sub bulk} {approx} 11). Inner-sphere adsorption is also significant for Rb{sup +} and Na{sup +} on neutral surfaces, whereas Cl{sup -} binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb{sup +}, Na{sup +}, and especially Sr{sup 2+} are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn{sup 2+} are very steep but similar for both oxides, reflective of Zn{sup 2+} hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH{sup +} on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the

  7. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  8. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite.

    Science.gov (United States)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca(2+) as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK(a2) (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d(001)) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Cationic Nitrogen Doped Helical Nanographenes.

    Science.gov (United States)

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.

    1985-12-01

    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  11. THE CHARACTERISTICS OF HIGH MOLECULAR WEIGHT CATIONIC POLYACRYLAMIDE

    Institute of Scientific and Technical Information of China (English)

    Hongjie Zhang; Huiren Hu; Fushan Chen

    2004-01-01

    In this paper, the cationic polyacrylamide (CPAM)with high molecular weight was prepared in aqueous solution through a complex initiator system. The CPAM was characterized by Fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance spectroscopy (13C NMR), and the charge density of the CPAM was determined by colloid titration. The results obtained indicated that the copolymerization technology used in the experiment was successful.

  12. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  13. High-performance cation-exchange chromatofocusing of proteins.

    Science.gov (United States)

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  14. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  15. Enthalpy-entropy compensation for n-hexane adsorption on Y zeolite containing transition metal cations

    Directory of Open Access Journals (Sweden)

    Hercigonja R.

    2015-01-01

    Full Text Available In this work, the values of entropy changes related to n-hexane adsorption onto cation exchanged Y zeolite were calculated from differential heats. Various transition metal cations (Co2+, Ni2+, Zn2+ and Cd2+ were introduced into the lattice of the parent NaY, and the existence of enthalpy-entropy compensation effect related to n-hexane adsorption, id. est, the linearity of -ΔH vs. -ΔS plots was examined. The compensation effect was confirmed for all investigated zeolites. The compensation effect can be comprehended as governed by ion-induced dipole interaction between highly polarizing cationic centers in zeolite and nonopolar n-hexane molecules. Finally, the compensation effect and so the compensation temperature were found to depend on the type of charge-balancing cation (charge, size and electronic configuration. [Projekat Ministarstva nauke Republike Srbije, br. 172018

  16. CHARGE syndrome

    Directory of Open Access Journals (Sweden)

    Prasad Chitra

    2006-09-01

    Full Text Available Abstract CHARGE syndrome was initially defined as a non-random association of anomalies (Coloboma, Heart defect, Atresia choanae, Retarded growth and development, Genital hypoplasia, Ear anomalies/deafness. In 1998, an expert group defined the major (the classical 4C's: Choanal atresia, Coloboma, Characteristic ears and Cranial nerve anomalies and minor criteria of CHARGE syndrome. Individuals with all four major characteristics or three major and three minor characteristics are highly likely to have CHARGE syndrome. However, there have been individuals genetically identified with CHARGE syndrome without the classical choanal atresia and coloboma. The reported incidence of CHARGE syndrome ranges from 0.1–1.2/10,000 and depends on professional recognition. Coloboma mainly affects the retina. Major and minor congenital heart defects (the commonest cyanotic heart defect is tetralogy of Fallot occur in 75–80% of patients. Choanal atresia may be membranous or bony; bilateral or unilateral. Mental retardation is variable with intelligence quotients (IQ ranging from normal to profound retardation. Under-development of the external genitalia is a common finding in males but it is less apparent in females. Ear abnormalities include a classical finding of unusually shaped ears and hearing loss (conductive and/or nerve deafness that ranges from mild to severe deafness. Multiple cranial nerve dysfunctions are common. A behavioral phenotype for CHARGE syndrome is emerging. Mutations in the CHD7 gene (member of the chromodomain helicase DNA protein family are detected in over 75% of patients with CHARGE syndrome. Children with CHARGE syndrome require intensive medical management as well as numerous surgical interventions. They also need multidisciplinary follow up. Some of the hidden issues of CHARGE syndrome are often forgotten, one being the feeding adaptation of these children, which needs an early aggressive approach from a feeding team. As the child

  17. EXAFS determination of cation local order in layered perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Montero C, M. E.; Fuentes M, L.; Duarte M, J. A.; Fuentes C, L. [Centro de Investigacion en Materiales Avanzados S. C., Miguel de Cervantes Saavedra 120, Complejo Industrial Chihuahua, 31109 Chihuahua (Mexico); Garcia G, M. [Instituto de Fisica, UNAM, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Mehta, A.; Webb, S. [Stanford Synchrotron Radiation Laboratory, CA (United States)

    2008-02-15

    EXAFS analysis of Bi{sub 6}Ti{sub 3}Fe{sub 2}O{sub 18} Aurivillius ceramic was performed to elucidate the local environment of Fe cations. Experiments were performed at Stanford Synchrotron Radiation Laboratory, at T = 10, 30, 50, 75, 100 and 298 K, in fluorescence regime. EXAFS spectra were processed using the ab initio multiple scattering program FEFF6. Distances among representative atomic pairs were refined. As a basic result, the previous hypothesis suggested by X-ray diffraction experiments, regarding a preference of iron atoms for the centered perovskite layer of the unit cell, was confirmed. (Author)

  18. Bonding charge density from atomic perturbations.

    Science.gov (United States)

    Wang, Yi; Wang, William Yi; Chen, Long-Qing; Liu, Zi-Kui

    2015-05-15

    Charge transfer among individual atoms is the key concept in modern electronic theory of chemical bonding. In this work, we present a first-principles approach to calculating the charge transfer. Based on the effects of perturbations of an individual atom or a group of atoms on the electron charge density, we determine unambiguously the amount of electron charge associated with a particular atom or a group of atoms. We computed the topological electron loss versus gain using ethylene, graphene, MgO, and SrTiO3 as examples. Our results verify the nature of chemical bonds in these materials at the atomic level.

  19. Thin carbon layer coated Ti(3+)-TiO2 nanocrystallites for visible-light driven photocatalysis.

    Science.gov (United States)

    Jiang, Baojiang; Tang, Yunqi; Qu, Yang; Wang, Jian-Qiang; Xie, Ying; Tian, Chungui; Zhou, Wei; Fu, Honggang

    2015-03-21

    Black TiO2 containing Ti(3+) attracts enormous attention due to its excellent visible-light driven photocatalytic activity. Herein, an in situ thermal decomposition approach to synthesize uniform thin carbon coated Ti(3+)-TiO2 nanocrystals is presented. During the oleic acid-assisted solvothermal process, the crystal size and morphology of TiO2 were controlled through oleic acid with carboxylic acid groups. Then the residual small quantities of oleic acid anchored on TiO2 were used as a carbon source, which could be in situ pyrolyzed into a carbon layer on TiO2 at high temperature and under an inert atmosphere. Meanwhile, Ti(4+) species were partly reduced into Ti(3+) states/oxygen vacancies on the surface of TiO2 due to the carbothermal reduction reaction for the carbon-encapsulated Ti(3+)-TiO2 structure. A series of characterizations indicated that the 20-25 nm TiO2 nanocrystals obtained were wrapped evenly by 1-2 nm carbon layers, which had an important effect on the energy band structure change of TiO2. The presence of the carbon layer also improves the Ti(3+) stability and the conduction behavior of the composites. The Ti(3+) states/oxygen vacancies created on the surface of TiO2 were responsible for the remarkable photogenerated charge separation and extended visible-light absorption range. Furthermore, Ti(3+) states/oxygen vacancies and the carbon layer together could enhance the adsorption ability of O2 so as to promote the photogenerated electrons captured by the adsorbed O2, leading to a great increase in the charge separation. As a result, the composites exhibit high photocatalytic performance for organic pollutants under visible light irradiation. This simple and new method may pave the way to practical applications for efficient photocatalytic degradation under visible light.

  20. A DFT study on the correlation between topology and Bader charges: Part IV, on the change of atomic charges in polymorphic transitions - A case study on CaCl2

    Science.gov (United States)

    Beck, Horst P.

    2016-02-01

    Referring to the experimental results of high pressure experiments of Léger et al. (1998) we have calculated the energies of all phases observed for CaCl2 within the DFT formalism using the VASP package, and we have retrieved enthalpies and transition pressures. All phases can be considerably compressed or dilated without much change in energy. This energetic "softness" could even be quantified. We classify the high temperature TiO2-type structure and the PbCl2-type one at highest pressures as the energetically "softest" ones and the SrI2-type one as the "hardest". We furthermore discuss the energy density (E/V) of the different phases and redefine it as a fictive cohesive pressure within these structures. Pursuing our earlier approaches we have analysed the charges of the atoms in the different CaCl2 phases and their change on compression or dilation. On comparing the gradients of the charge curves we define a sort of "charge hardness" which will generally depend on the type of cation-anion pair but also on their topological connection in the respective structures. We speculate that exhausting the "charge softness or hardness" of individual ions in such arrangements may initiate the structural reorganization at the transition pressures.

  1. Probing the defect nanostructure of helium and proton tracks in LiF:Mg,Ti using optical absorption: Implications to track structure theory calculations of heavy charged particle relative efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Eliyahu, I., E-mail: ilan.eliyahu@gmail.com [Ben Gurion University of the Negev, Beersheva 84105 (Israel); Soreq Nuclear Research Center, Yavne 81800 (Israel); Horowitz, Y.S. [Ben Gurion University of the Negev, Beersheva 84105 (Israel); Oster, L. [Sami Shamoon College of Engineering, Beersheva 84100 (Israel); Weissman, L.; Kreisel, A. [Soreq Nuclear Research Center, Yavne 81800 (Israel); Girshevitz, O. [Bar Ilan University, Ramat Gan 5290002, Israel. (Israel); Marino, S. [Radiological Research Accelerator Facility, Irvington, New York (United States); Druzhyna, S. [Ben Gurion University of the Negev, Beersheva 84105 (Israel); Biderman, S. [Nuclear Research Center Negev, Beersheva (Israel); Mardor, I. [Soreq Nuclear Research Center, Yavne 81800 (Israel)

    2015-04-15

    A major objective of track structure theory (TST) is the calculation of heavy charged particle (HCP) induced effects. Previous calculations have been based exclusively on the radiation action/dose response of the released secondary electrons during the HCP slowing down. The validity of this presumption is investigated herein using optical absorption (OA) measurements on LiF:Mg,Ti (TLD-100) samples following irradiation with 1.4 MeV protons and 4 MeV He ions at levels of fluence from 10{sup 10} cm{sup −2} to 2 × 10{sup 14} cm{sup −2}. The major bands in the OA spectrum are the 5.08 eV (F band), 4.77 eV, 5.45 eV and the 4.0 eV band (associated with the trapping structure leading to composite peak 5 in the thermoluminescence (TL) glow curve). The maximum intensity of composite peak 5 occurs at a temperature of ∼200 °C in the glow curve and is the glow peak used for most dosimetric applications. The TST calculations use experimentally measured OA dose response following low ionization density (LID) {sup 60}Co photon irradiation over the dose-range 10–10{sup 5} Gy for the simulation of the radiation action of the HCP induced secondary electron spectrum. Following proton and He irradiation the saturation levels of concentration for the F band and the 4.77 eV band are approximately one order of magnitude greater than following LID irradiation indicating enhanced HCP creation of the relevant defects. Relative HCP OA efficiencies, η{sub HCP}, are calculated by TST and are compared with experimentally measured values, η{sub m}, at levels of fluence from 10{sup 10} cm{sup −2} to 10{sup 11} cm{sup −2} where the response is linear due to negligible track overlap. For the F band, values of η{sub m}/η{sub HCP} = 2.0 and 2.6 for the He ions and protons respectively arise from the neglect of enhanced Fluorine vacancy/F center creation by the HCPs in the TST calculations. It is demonstrated that kinetic analysis simulating LID F band dose response with enhanced

  2. Charged Leptons

    CERN Document Server

    Albrecht, J; Babu, K; Bernstein, R H; Blum, T; Brown, D N; Casey, B C K; Cheng, C -h; Cirigliano, V; Cohen, A; Deshpande, A; Dukes, E C; Echenard, B; Gaponenko, A; Glenzinski, D; Gonzalez-Alonso, M; Grancagnolo, F; Grossman, Y; Harnik, R; Hitlin, D G; Kiburg, B; Knoepfe, K; Kumar, K; Lim, G; Lu, Z -T; McKeen, D; Miller, J P; Ramsey-Musolf, M; Ray, R; Roberts, B L; Rominsky, M; Semertzidis, Y; Stoeckinger, D; Talman, R; Van De Water, R; Winter, P

    2013-01-01

    This is the report of the Intensity Frontier Charged Lepton Working Group of the 2013 Community Summer Study "Snowmass on the Mississippi", summarizing the current status and future experimental opportunities in muon and tau lepton studies and their sensitivity to new physics. These include searches for charged lepton flavor violation, measurements of magnetic and electric dipole moments, and precision measurements of the decay spectrum and parity-violating asymmetries.

  3. INTERACTIONS BETWEEN CATIONIC POLYELECTROLYTE AND PULP FINES

    Directory of Open Access Journals (Sweden)

    Elina Orblin

    2011-05-01

    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  4. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  5. Understanding the salinity effect on cationic polymers in inducing flocculation of the microalga Neochloris oleoabundans.

    Science.gov (United States)

    't Lam, G P; Giraldo, J B; Vermuë, M H; Olivieri, G; Eppink, M H M; Wijffels, R H

    2016-05-10

    A mechanistic study was performed to evaluate the effect of salinity on cationic polymeric flocculants, that are used for the harvesting of microalgae. The polyacrylamide Synthofloc 5080H and the polysaccharide Chitosan were employed for the flocculation of Neochloris oleoabundans. In seawater conditions, a maximum biomass recovery of 66% was obtained with a dosage of 90mg/L Chitosan. This recovery was approximately 25% lower compared to Synthofloc 5080H reaching recoveries greater than 90% with dosages of 30mg/L. Although different recoveries were obtained with both flocculants, the polymers exhibit a similar apparent polymer length, as was evaluated from viscosity measurements. While both flocculants exhibit similar polymer lengths in increasing salinity, the zeta potential differs. This indicates that polymeric charge dominates flocculation. With increased salinity, the effectivity of cationic polymeric flocculants decreases due to a reduction in cationic charge. This mechanism was confirmed through a SEM analysis and additional experiments using flocculants with various charge densities.

  6. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.

    Science.gov (United States)

    Khan, Asif Ali; Baig, Umair; Khalid, Mohd

    2011-02-28

    In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature.

  7. Synthesis of heterostructured Pd@TiO{sub 2}/TiOF{sub 2} nanohybrids with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xixia [State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580 (China); Wei, Guijuan [Department of Materials Physics and Chemistry, College of Science, China University of Petroleum, Qingdao, Shandong 266580 (China); Liu, Junxue [State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580 (China); Wang, Zhaojie [Department of Materials Physics and Chemistry, College of Science, China University of Petroleum, Qingdao, Shandong 266580 (China); An, Changhua, E-mail: anchh@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580 (China); Department of Materials Physics and Chemistry, College of Science, China University of Petroleum, Qingdao, Shandong 266580 (China); Zhang, Jun [State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580 (China)

    2016-08-15

    Highlights: • TiO{sub 2}/TiOF{sub 2} nanohybrids was synthesized via a two-step solvothermal method. • TiO{sub 2}/TiOF{sub 2} exhibited superior photoactivity in comparison with TiOF{sub 2} or TiO{sub 2}. • The photocatalytic activity was further improved by loading Pd nanoparticles. • Synergistic effect between TiOF{sub 2} and TiO{sub 2} was responsible for the enhanced photocatalytic performance over TiO{sub 2}/TiOF{sub 2}. - Abstract: TiO{sub 2}/TiOF{sub 2} heterostructured nanocomposites has been synthesized through a solvothermal method and characterized by X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, nitrogen adsorption–desorption isotherms, UV–vis and photo-luminescent spectroscopy. It was found that, compared with single TiOF{sub 2} or TiO{sub 2}, the as-prepared TiO{sub 2}/TiOF{sub 2} nanocomposites exhibited superior photoactivity towards the degradation of organic pollutants, i.e. rhodamine B and solar hydrogen evolution. The results are in accordance with the prohibition of photogenerated electrons and holes recombination in these two samples under light illumination. The photocatalytic activity can be further boosted by introducing Pd nanoparticles onto the surfaces of TiO{sub 2}/TiOF{sub 2} through a simple deposition method without using any stabilizers, which is probably attributed to the enhanced visible-light absorption as well as the facilitated charge-carrier separation after the introduction of Pd nanoparticles. The synergistic effect between TiOF{sub 2} and TiO{sub 2} was discussed and was responsible for the enhancement of their activity in comparison with single counterpart.

  8. Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells.

    Science.gov (United States)

    Liu, Zonghao; Chen, Qi; Hong, Ziruo; Zhou, Huanping; Xu, Xiaobao; De Marco, Nicholas; Sun, Pengyu; Zhao, Zhixin; Cheng, Yi-Bing; Yang, Yang

    2016-05-04

    Here, we demonstrate an effective low-temperature approach to fabricate a uniform and pinhole-free compact TiO2 layer for enhancing photovoltaic performance of perovskite solar cells. TiCl4 was used to modify TiO2 for efficient charge generation and significantly reduced recombination loss. We found that a TiO2 layer with an appropriate TiCl4 treatment possesses a smooth surface with full coverage of the conductive electrode. Further studies on charge carrier dynamics confirmed that the TiCl4 treatment improves the contact of the TiO2/perovskite interface, facilitating charge extraction and suppressing charge recombination. On the basis of the treatment, we improved the open circuit voltage from 1.01 V of the reference cell to 1.08 V, and achieved a power conversion efficiency of 16.4%.

  9. Studies on Tansport Mechanism of Photo-induced Charge Carrier on Nano-TiO2 Film Electrode Using Transient Photovoltage Technique%利用瞬态光电压技术对纳米TiO2 薄膜电极中光生电荷传输机理的研究

    Institute of Scientific and Technical Information of China (English)

    张清林; 王德军; 魏霄; 肇启东; 林艳红; 杨敏

    2006-01-01

    @@ TiO2作为一种宽带隙半导体材料,由于具有显著的光电响应、良好的化学稳定性和绿色环保性,在太阳能转换、光催化杀菌及污染处理等方面具有广泛的用途.纳米TiO2薄膜已被广泛应用于TiO2染料敏化太阳能电池(DSSC)[1~4].

  10. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P., E-mail: jcoutinho@ua.pt [CICECO, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Gonçalves, Fernando [Departamento de Biologia e CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, 3810-193 Aveiro (Portugal); Esperança, José [Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-901 Oeiras (Portugal); Mutelet, Fabrice [Laboratoire Réactions et Génie des Procédés, CNRS (UPR3349), Nancy-Université, 1 rue Grandville, BP 20451 54001 Nancy (France)

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  11. Pt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H₂ at Room Temperature.

    Science.gov (United States)

    Hong, Xiaowei; Sun, Ye; Zhu, Tianle; Liu, Zhiming

    2017-02-27

    A series of nanostructured Pt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H₂) were evaluated at room temperature. The results showed that MOx promoted the CO oxidation of Pt-Au/CeO₂, but only the TiO₂ could enhance co-oxidation of CO and H₂ over Pt-Au/CeO₂. Related characterizations were conducted to clarify the promoting effect of MOx. Temperature-programmed reduction of hydrogen (H₂-TPR) and X-ray photoelectron spectroscopy (XPS) results suggested that MOx could improve the charge transfer from Au sites to CeO₂, resulting in a high concentration of Ce(3+) and cationic Au species which benefits for the CO oxidation. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS) results indicated that TiO₂ could facilitate the oxidation of H₂ over the Pt-Au/TiO₂-CeO₂ catalyst.

  12. Pt-Au/MOx-CeO2 (M = Mn, Fe, Ti Catalysts for the Co-Oxidation of CO and H2 at Room Temperature

    Directory of Open Access Journals (Sweden)

    Xiaowei Hong

    2017-02-01

    Full Text Available A series of nanostructured Pt-Au/MOx-CeO2 (M = Mn, Fe, Ti catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO and hydrogen (H2 were evaluated at room temperature. The results showed that MOx promoted the CO oxidation of Pt-Au/CeO2, but only the TiO2 could enhance co-oxidation of CO and H2 over Pt-Au/CeO2. Related characterizations were conducted to clarify the promoting effect of MOx. Temperature-programmed reduction of hydrogen (H2-TPR and X-ray photoelectron spectroscopy (XPS results suggested that MOx could improve the charge transfer from Au sites to CeO2, resulting in a high concentration of Ce3+ and cationic Au species which benefits for the CO oxidation. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS results indicated that TiO2 could facilitate the oxidation of H2 over the Pt-Au/TiO2-CeO2 catalyst.

  13. Structural Role of Alkali Cations in Calcium Aluminosilicate Glasses as Examined Using Oxygen-17 Solid-State Nuclear Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Sukenaga, Sohei; Kanehashi, Koji; Shibata, Hiroyuki; Saito, Noritaka; Nakashima, Kunihiko

    2016-08-01

    The structural roles of alkali and calcium cations are important for understanding the physical and chemical properties of aluminosilicate melts and glasses. Recently, oxygen-17 nuclear magnetic resonance (17O NMR) studies of calcium-sodium aluminosilicate glasses showed that these structural roles are not randomly given, but rather each cation has its own preferential role. However, the relationship between cation type and role preference in calcium aluminosilicate glass is not completely understood. In the present study, the structural roles of lithium, sodium, and potassium cations in selected calcium aluminosilicate glasses are investigated using 17O solid-state NMR experiments. Data from these experiments clearly show that potassium cations have a notably stronger tendency to act as charge compensators within the network structure, compared to sodium and lithium cations. The result of 17O NMR experiment also showed that sodium and lithium cations in part act as network modifier alongside with calcium cations.

  14. Compensation of steric demand by cation-pi interactions, cobaltocenium cations as guests in tetraurea calix[4]arene dimers.

    Science.gov (United States)

    Frish, Limor; Vysotsky, Myroslav O; Böhmer, Volker; Cohen, Yoram

    2003-06-07

    The affinities of ferrocene (2) and the cobaltocenium cation (3+), which have roughly the same size and differ in their charge, towards the inner cavity of the dimeric capsule formed by tetraurea calix[4]arene (1) were studied in C2D4Cl2 solutions. While 3+, which occupies more than 75% of the internal volume of the dimer, is readily encapsulated this is not the case for 2. This is probably due to cation-pi interactions, which operate only between 3+ and the aromatic rings of the calix[4]arene dimer. We found that the affinity of the cobaltocenium cation is higher than that of the tropylium cation (4+) and is only 2-3 times less than that of the tetraethylammoniun cation (5+). From the variable temperature 1H NMR spectra of this capsule, the free energy of activation at 298 K (deltaGdouble dagger(298K)) for the reorientation of the hydrogen bonded belt between the two parts of the dimer could be determined by total line shape analysis for the aromatic protons of the calixarene. The value of 14.3 +/- 0.2 kcal mol(-1) for the dimeric capsules of 3+ PF6- is very similar to the free activation energy found for dimeric capsules of 1 with 4+ PF6- and 5+ PF6- in C2D4Cl2. It becomes significantly lower, if PF6- is replaced by BF4-. We also found that ten times more DMSO is needed to disrupt the capsule 1 x 3+ x 1 than the corresponding 1 x 1 dimer containing benzene as guest. This demonstrates again the importance of the cation-pi interactions for the stability of such hydrogen-bonded dimeric capsules.

  15. Probing optical band gaps at nanoscale from tetrahedral cation vacancy defects and variation of cation ordering in NiCo2O4 epitaxial thin films

    Science.gov (United States)

    Dileep, K.; Loukya, B.; Silwal, P.; Gupta, A.; Datta, R.

    2014-10-01

    High resolution electron energy loss spectroscopy (HREELS) is utilized to probe the optical band gaps at the nanoscale in epitaxial NiCo2O4 (NCO) thin films with different structural order (cation/charge). The structure of NCO deviates from the ideal inverse spinel (non-magnetic and insulating) for films grown at higher temperatures (>500 °C) towards a mixed cation structure (magnetic with metallic conductivity) at lower deposition temperatures (<450 °C). This significantly modifies the electronic structure as well as the nature of the band gap of the material. Nanoscale regions with unoccupied tetrahedral A site cations are additionally observed in all the samples and direct measurement from such areas reveals considerably lower band gap values as compared to the ideal inverse spinel and mixed cation configurations. Experimental values of band gaps have been found to be in good agreement with the theoretical mBJLDA exchange potential based calculated band gaps for various cation ordering and consideration of A site cation vacancy defects. The origin of rich variation in cation ordering observed in this system is discussed.

  16. The electric double layer at a rutile TiO₂ water interface modelled using density functional theory based molecular dynamics simulation.

    Science.gov (United States)

    Cheng, J; Sprik, M

    2014-06-18

    A fully atomistic model of a compact electric double layer at the rutile TiO2(1 1 0)-water interface is constructed by adding protons to bridging oxygens or removing them from H2O molecules adsorbed on terminal metal cation sites. The surface charge is compensated by F(-) or Na(+) counter ions in outer as well as inner sphere coordination. For each of the protonation states the energy of the TiO2 conduction band minimum is determined relative to the standard hydrogen electrode by computing the free energy for the combined insertion of an electron in the solid and a proton in solution away from the double layer using density functional theory based molecular dynamics methods. Interpreted as electrode potentials, this gives an estimate of the capacitance which is compared to the capacitance obtained from the difference in the average electrostatic potentials in the solid and aqueous phase. When aligned at the point of zero charge these two methods lead to almost identical potential-charge profiles. We find that inner sphere complexes have a slightly larger capacitance (0.4 F m(-2)) compared to outer sphere complexes (0.3 F m(-2)).

  17. The dielectric and photochromic properties of defect-rich BaTiO{sub 3} microcrystallites synthesized from Ti{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qian [State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100 (China); Liu Duo, E-mail: liuduo@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100 (China); Wang Ruijun; Feng Zhaobin; Zuo Zhiyuan; Qin Shubin; Liu Hong; Xu Xiangang [State Key Laboratory of Crystal Materials, Shandong University, 27 South Shanda Road, Jinan, Shandong 250100 (China)

    2012-05-25

    We report here the synthesis of barium titanate (BaTiO{sub 3}) microcrystallites by using Ti{sub 2}O{sub 3} powders as the raw material through a modified hydrothermal method. The BaTiO{sub 3} contains abundant (1 1 1) twinned microcrystallites, along with a large amount of oxygen vacancies and Ti{sup 3+} cations. It is considered that (1 1 1) twins nucleate and grow from the face-shared Ti-O octahedra of rhombohedral Ti{sub 2}O{sub 3}. This unique BaTiO{sub 3} structure presents lower phase transition temperature than normal BaTiO{sub 3} and exhibits reversible photochromic effects under UV and NIR irradiation.

  18. Cell Volume Effect on the Ferroelectric Stability of Perovskite Oxides PbTiO3 and BaTiO3 from First Principle Calculation

    Institute of Scientific and Technical Information of China (English)

    王渊旭; 王春雷

    2003-01-01

    Electronic structure of ferroelectric PbTiO3 and BaTiO3 is calculated by the full potential linearized augmented plane wave method. The total energy as a function of the displacement of Ti-cation is obtained for PbTiO3 and BaTiO3 at different cell volumes. At experimental cell volume, Ti-displacement lowers the total energy and the ferroelectricity is stable. When the cell volume is reduced to 90%, total energy is increased with Ti-displacement and ferroelectricity will disappear. The cell volume effect is also confirmed by comparison of the density of states of Ti and O at different cell volumes.

  19. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  20. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  1. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells.

    Science.gov (United States)

    Xia, Jiangbin; Masaki, Naruhiko; Jiang, Kejian; Yanagida, Shozo

    2006-12-21

    In dye-sensitized TiO2 solar cells, charge recombination processes at interfaces between fluorine-doped tin oxide (FTO), TiO2, dye, and electrolyte play an important role in limiting the photon-to-electron conversion efficiency. From this point of view, a high work function material such as titanium deposited by sputtering on FTO has been investigated as an effective blocking layer for preventing electron leakage from FTO without influencing electron injection. X-ray photoelectron spectroscopy analysis indicates that different species of Ti (Ti4+, Ti3+, Ti2+, and a small amount of Ti0) exist on FTO. Electrochemical and photoelectrochemical measurements reveal that thin films of titanium species, expressed as TiOx, work as a compact blocking layer between FTO and TiO2 nanocrystaline film, improving Voc and the fill factor, finally giving a better conversion efficiency for dye-sensitized TiO2 solar cells with ionic liquid electrolytes.

  2. Cation ordering and superstructures in natural layered double hydroxides.

    Science.gov (United States)

    Krivovichev, Sergey V; Yakovenchuk, Victor N; Zolotarev, Andrey A; Ivanyuk, Gregory N; Pakhomovsky, Yakov A

    2010-01-01

    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M(2+)(n)M(3+)(m)(OH)(2(m+n)](m+), where M(2+) = Mg(2+), Fe(2+), Mn(2+), Zn(2+), etc.; M(3+) = Al(3+), Fe(3+), Cr(3+), Mn(3+), etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels.

  3. Photoelectrochemistry at particulate systems. 4. Photosensitization of a TiO/sub 2/ semiconductor with a chlorophyll analogue

    Energy Technology Data Exchange (ETDEWEB)

    Kamat, P.V.; Chauvet, J.P.; Fessenden, R.W.

    1986-03-27

    Chlorophyllin, an analogue of chlorophyll a, when adsorbed on colloidal TiO/sub 2/ can participate in the sensitization process by injecting electrons from its excited states into the conduction band of the semiconductor. Upon excitation in its absorption band, 90% of the fluorescence emission of chlorophyllin could be quenched by colloidal TiO/sub 2/. The apparent association constant for the association between colloidal TiO/sub 2/ and chlorophyllin, as measured from the fluorescence quenching data, was 2 x 10/sup 4/ M/sup -1/. Picosecond lifetime measurements gave the rate constant for the electron injection process from the excited singlet state into the conduction band of the semiconductor as 4.2 x 10/sup 9/ s/sup -1/. The net charge transfer across the sensitizer-semiconductor interface was investigated with the laser flash photolysis and time-resolved microwave absorption techniques. Analysis of the transient absorption spectrum confirmed the generation of the cation radical of chlorphyllin with a quantum yield of 0.015. 32 references, 8 figures, 1 table.

  4. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly

    2013-03-01

    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  5. Cation-Cation Interactions in [(UO2)2(OH)n](4-n) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Odoh, Samuel O.; Govind, Niranjan; Schreckenbach, Georg; De Jong, Wibe A.

    2013-10-07

    The structures and bonding of gas-phase [(UO2)2(OH)n]4-n (n=2-6) complexes have been studied using density functional theory (DFT), MP2 and CCSD(T) methods with particular emphasis on ground state structures featuring cation-cation interactions (CCIs) between the uranyl groups. An interesting trend is observed in the stabilities of members of this series of complexes. The structures of [(UO2)2(OH)2]2+, [(UO2)2(OH)4] and [(UO2)2(OH)6]2- featuring CCIs are found at higher energies (by 3-20 kcal/mol) in comparison to their conventional μ2-dihydroxo structures. In contrast, the CCI structures of [(UO2)2(OH)3]+ and [(UO2)2(OH)5]- are respectively almost degenerate with and lower in energy than the structures with the μ2-dihydroxo format. The origin of this trend lies in the ‘symmetry’-based need to balance the coordination numbers and effective atomic charges of each uranium center. The calculated IR vibrational frequencies provide signature probes that can be used in differentiating the lowenergy structures and in experimentally confirming the existence of the structures featuring CCIs. Analysis of the bonding in the structures of [(UO2)2(OH)3]+ and [(UO2)2(OH)5]- shows that the CCIs and bridging hydroxo between the dioxo-uranium units are mainly electrostatic in nature.

  6. In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity

    Science.gov (United States)

    Huo, Junchao; Hu, Yanjie; Jiang, Hao; Li, Chunzhong

    2014-07-01

    A novel one-step, vapor-fed aerosol flame synthetic process (VAFS) has been developed to prepare Ti3+ self-doped titanium dioxide (TiO2). The freshly formed TiO2 was in situ surface hydrogenated during the condensation stage by introducing H2 above the flame, and Ti3+ ions were created near the surface of TiO2. The relative content of Ti3+ ions near the surface of TiO2 is estimated to be 8%. Because of the high absorption of visible light and suppression of charge recombination, the photocurrent density and decomposition of MB under visible light irradiation were remarkably enhanced. This study demonstrates a simple, potential method to produce Ti3+ self-doped TiO2 with effective photoactivity in visible light.A novel one-step, vapor-fed aerosol flame synthetic process (VAFS) has been developed to prepare Ti3+ self-doped titanium dioxide (TiO2). The freshly formed TiO2 was in situ surface hydrogenated during the condensation stage by introducing H2 above the flame, and Ti3+ ions were created near the surface of TiO2. The relative content of Ti3+ ions near the surface of TiO2 is estimated to be 8%. Because of the high absorption of visible light and suppression of charge recombination, the photocurrent density and decomposition of MB under visible light irradiation were remarkably enhanced. This study demonstrates a simple, potential method to produce Ti3+ self-doped TiO2 with effective photoactivity in visible light. Electronic supplementary information (ESI) available: Schematic setup for Ti3+ self-doped TiO2 nanoparticles is shown in Fig. S1. The BET specific surface and pore-size distribution of Ti3+ self-doped TiO2 is shown in Fig. S2. XRD patterns of pristine TiO2 and Ti3+ self-doped TiO2 are shown in Fig. S3. HRTEM image of Ti3+ self-doped TiO2 with mixture phase is shown in Fig. S4. The photographs of different colors of Ti3+ self-doped TiO2 with different flow rates of hydrogen are shown in Fig. S5. TEM images of Ti3+ self-doped TiO2 samples with different

  7. Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation.

    Science.gov (United States)

    Moomaw, Andrea S; Maguire, Michael E

    2010-07-27

    The CorA Mg(2+) channel is the primary uptake system in about half of all bacteria and archaea. However, the basis for its Mg(2+) selectivity is unknown. Previous data suggested that CorA binds a fully hydrated Mg(2+) ion, unlike other ion channels. The crystal structure of Thermotoga maritima CorA shows a homopentamer with two transmembrane segments per monomer connected by a short periplasmic loop. This highly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the only portion of the channel outside of the cell, suggesting a role in cation selectivity. Mutation of charged residues in the loop, E281 and K287, to any of several amino acids had little effect, demonstrating that despite conservation electrostatic interactions with these residues are not essential. While mutation of the universally conserved E285 gave a minimally functional channel, E285A and E285K mutants were the most functional, again indicating that the negative charge at this position is not a determining factor. Several mutations at K287 and W288 behaved anomalously in a transport assay. Analysis indicated that mutation of K287 and W288 disrupts cooperative interactions between distinct Mg(2+) binding sites. Overall, these results are not compatible with electrostatic interaction of the Mg(2+) ion with the periplasmic loop. Instead, the loop appears to form an initial binding site for hydrated Mg(2+), not for the dehydrated cation. The loop residues may function to accelerate dehydration of the before entry of Mg(2+) into the pore of the channel.

  8. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  9. Studies on Structural, Magnetic and Thermal Properties of xFe{sub 2}TiO{sub 4}-(1-x)Fe{sub 3}O{sub 4} (0{<=}x{<=}1) Pseudo-binary System

    Energy Technology Data Exchange (ETDEWEB)

    Sorescu, Monica, E-mail: sorescu@duq.edu [Department of Physics, Duquesne University, Fisher Hall, Pittsburgh, PA 15282 (United States); Xu Tianhong [Department of Physics, Duquesne University, Fisher Hall, Pittsburgh, PA 15282 (United States); Wise, Adam [Department of Materials Science and Engineering, Carnegie Mellon University, Roberts Hall, Pittsburgh, PA 15213 (United States); Diaz-Michelena, Marina [Space Programs and Space Sciences Department, Instituto Nacional de Tecnica Aeroespacial (INTA), Madrid 28850 (Spain); McHenry, Michael E. [Department of Materials Science and Engineering, Carnegie Mellon University, Roberts Hall, Pittsburgh, PA 15213 (United States)

    2012-04-15

    The xFe{sub 2}TiO{sub 4}-(1-x)Fe{sub 3}O{sub 4} pseudo-binary systems (0{<=}x{<=}1) of ulvoespinel component were synthesized by solid-state reaction between ulvoespinel Fe{sub 2}TiO{sub 4} precursors and commercial Fe{sub 3}O{sub 4} powders in stochiometric proportions. Crystalline structures were determined by X-ray powder diffraction (XRD) and it was found that the as-obtained titanomagnetites maintain an inverse spinel structure. The lattice parameter a of synthesized titanomagnetite increases linearly with the increase in the ulvoespinel component. {sup 57}Fe room temperature Moessbauer spectra were employed to evaluate the magnetic properties and cation distribution. The hyperfine magnetic field is observed to decrease with increasing Fe{sub 2}TiO{sub 4} component. The fraction of Fe{sup 2+} in both tetrahedral and octahedral sites increases with the increase in Ti{sup 4+} content, due to the substitution and reduction of Fe{sup 3+} by Ti{sup 4+} that maintains the charge balance in the spinel structure. For x in the range of 0 {<=}x{<=}0.4, the solid solution is ferrimagnetic at room temperature. However, it shows weak ferrimagnetic and paramagnetic behavior for x in the range of 0.40.70, it only shows paramagnetic behavior, with the appearance of quadrupole doublets in the Moessbauer spectra. Simultaneous differential scanning calorimetry and thermogravimetric analysis (DSC-TGA) studies showed that magnetite is not stable, and thermal decomposition of magnetite occurs with weight losses accompanying with exothermic processes under heat treatment in inert atmosphere. - Highlights: Black-Right-Pointing-Pointer X-ray powder diffraction, simultaneous DSC/TGA and Moessbauer spectroscopy. Black-Right-Pointing-Pointer Structural, thermal and magnetic properties. Black-Right-Pointing-Pointer Cation distributions derived from isomer shifts.

  10. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.

    Science.gov (United States)

    Matamouros, Susana; Miller, Samuel I

    2015-11-01

    S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  11. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  12. TiO2–Polymer Nano–Composites by Sol–Gel

    OpenAIRE

    A. C. Pierre; Campet, G.; Han, S.D.; Huang, S.Y.; E. DUGUET; Portier, J.

    1995-01-01

    Sol-gel processes make it possible to develop new hybrid electrolyte materials of the type ceramic-polymer, known as Nano-Crystallite-Insertion-Material (NCIM). They can be used in reversible alkali electrochemical cells after insertion with cations such as Li+. In the present study, TiO2-polyethylene oxide hybrid materials were synthesized from TiCl4 and from Ti ethoxide. Their structure is analyzed in relation with the processing parameters. A primary evaluation of the nanoscale co...

  13. Fabrication of High Efficiency Dye-Sensitized Solar Cells Based on TiO2 Nanoparticles Embedded in Ti Substrate.

    Science.gov (United States)

    Kim, Kang-Pil; Lee, Sang-Ju; Hwang, Dae-Kue; Kim, Dae-Hwan; Heo, Young-Woo

    2015-01-01

    We have embedded a TiO2 nanoparticle (NP) photoelectrode in a Ti substrate to improve the cell efficiency of conventional TiO2 NP based dye-sensitized solar cells (DSSCs) using Ti substrate. Compared to the conventional standing-type (TiO2 NPs on Ti substrate) DSSCs, the embedded-type (TiO2 NPs embedded in Ti substrate) DSSCs have shown an approximately 35% improvement in power conversion efficiency due to the improvement of J(sc). The embedded-type DSSCs have more charge transport paths than do standing-type DSSCs due to the increase of contact area between the TiO2 NP sidewall and the Ti substrate. This increased contact area decreases the electrical resistance and increases the charge collection efficiency, which leads to the improvement of J(sc). The embedded-type NP-DSSCs are very effective DSSC structures for enhancing the power conversion efficiency of Ti substrate based DSSCs.

  14. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  15. Structure and Charge Density Properties of (1 - x)(Na1-y K y NbO3)-xBaTiO3 Lead-Free Ceramic Solid Solution

    Science.gov (United States)

    Sasikumar, S.; Saravanan, R.

    2017-02-01

    (1 - x)(Na1-y K y )NbO3-xBaTiO3 (abbreviated as NKN-BT, x = 0.1, 0.2; y = 0.01, 0.05) ceramics were synthesized by the solid-state reaction method. Powder x-ray diffraction analysis in combination with the profile refinement method was employed for quantitative phase analysis and structural refinement. The x-ray diffraction study shows that phase transition occurs from tetragonal to distorted cubic with the compositions between x = 0.1 and x = 0.2. The spatial arrangements of the electron distribution and bonding nature of the samples have been analyzed through the maximum entropy method. The optical band gap energy of the prepared solid solutions has been determined using UV-visible spectrophotometry. The optical band gap energy of the solid solutions decreases with the increase in BaTiO3 content. The elemental composition of these ceramics has been studied using energy dispersive x-ray analysis and the microstructure has been examined by scanning electron microscopy. The piezoelectric coefficient (d 33 ) measurement of the ceramics shows the enhancement of piezoelectric properties in the tetragonal phase. The maximum value of the piezoelectric coefficient (d 33 ) obtained for the solid solution is 120 pC/N. With increasing BaTiO3 content in the solid solutions, the ferroelectric behavior weakens.

  16. 表面敏化TiO_2基复合薄膜的能带结构与光致电荷转移的研究%Band Structure and Photo-induced Charge Transfer in Surface-sensitized TiO_2-based Composite Films

    Institute of Scientific and Technical Information of China (English)

    董江舟; 赵峻岩; 巢晖; 曹亚安

    2011-01-01

    采用离子束溅射方法制备出TiO2/ITO,Zr4+掺杂的TiO2(TiO2-Zr)/ITO和ZrO2/TiO2/ITO复合薄膜.利用表面敏化方法制备出(1,10-邻菲咯啉)2(3,4,5-三氟苯基)咪唑并[5,6-f]邻菲咯啉钌混配配合物[Rup2O](p=1,10-邻菲咯啉,O=(3,4,5-三氟苯基)咪唑并[5,6-f]邻菲咯啉)/TiO2/ITO,Rup2O/TiO2-Zr/ITO和Rup2O/ZrO2/TiO2/ITO表面敏化TiO2基复合薄膜.表面光电压谱(SPS)表明,表面敏化TiO2基复合薄膜在400~600和350 nm产生的SPS响应峰的峰高比与TiO2基复合薄膜的结构密切相关.利用电场诱导表面光电压谱(EFISPS)确定了复合薄膜的能带结构,其结果分析表明,400~600 nm的SPS响应峰主要源于Rup2O分子的中心离子Ru 4d能级到配体邻菲咯啉π1*和配体咪唑并邻菲咯啉π2*跃迁;TiO2禁带内Zr4+掺杂能级的存在减小了光生载流子的复合,增加导带光生电子的数量;ZrO2/TiO2异质结构的存在有利于光生电子向ITO表面的转移,从而导致400~600 nm和350 nm SPS响应峰的峰高比的增加,意味着光致电荷转移效率的提高.%The films of TiO2/ITO,ZrO2/ITO,TiO2-Zr/ITO and TiO2/ZrO2/ITO were prepared by ion-beam sputtering,all of which were also surface-sensitized with Rup2O(p=1,10-phenanthroline,O=(3,4,5-tri-fluorophenyl) imidazo phenanthroline) by using the rolling coat method.The physical parameters and energy levels of TiO2-based and Rup2O modified TiO2-based films were ascertained by SPS and EFISPS.Because of the electron transitions between Ru 4d level and ligand levels(1* and 2*),there were SPS peaks generated in Rup2O modified films in the spectral wavelength range from 400 nm to 600 nm.The SPS intensity ratios between each of the SPS peak at 400~600 nm and that at 350 nm were different for different energy levels in the TiO2-based films.The existence of Zr4+ doping level in TiO2-Zr forbidden bands makes the decrease of the recombination of photo-induced carriers

  17. Synthesis and rheological properties of cation-exchanged Laponite suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Tran X. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States); Howard, Bret H. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Chyu, Minking K. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States)

    2009-11-01

    In this paper we report our new approach to synthesize cation-exchanged Laponite suspensions. General observations of the prepared samples indicated that an aqueous suspension of 1 wt.% Laponite retained its free flowing liquid phase characteristics even after aging for several weeks. When bivalent cationic metals (Cu, Co, Ni) were ablated into the suspension, the strong charge of the crystal face was reduced and, on standing, the suspension gelled becoming highly viscous. This sol-gel transition was induced by the formation of a space-filled structure due to both van der Waals and electrostatic bonds between the positively charged rims and negatively charged faces. Rheological properties of such prepared suspensions were measured using a Brookfield DV-II Pro Viscometer with a small sample adapter (SSA18/13RPY). The yield strengths of 2.2 N/m2, 3.2 N/m2, and 1.7 N/m2 were measured for Ni-, Co-, and Cumodified Laponite suspensions, respectively. These yield strengths are sufficiently high for suspending weighting materials such as barite which requires the gel strength of about 0.5 N/m2.

  18. Synthesis and rheological properties of cation exchanged Laponite suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Tran, X P; Howard, B; Chyu, M K

    2009-01-01

    In this paper we report our new approach to synthesize cation-exchanged Laponite suspensions. General observations of the prepared samples indicated that an aqueous suspension of 1 wt% Laponite retained its free flowing liquid phase characteristics even after aging for several weeks. When bivalent cationic metals (Cu, Co, Ni) were ablated into the suspension, the strong charge of the crystal face was reduced and, on standing, the suspension gelled becoming highly viscous. This sol-gel transition was induced by the formation of a space-filled structure due to both van derWaals and electrostatic bonds between the positively charged rims and negatively charged faces. Rheological properties of such prepared suspensions were measured using a Brookfield DV-H Pro Viscometer with a small sample adapter{SSA18/13RPY). The yield strengths of2.2 N/m2, 3.2 N/m2, and 1.7 N/m2 were measured for Ni-, Co-, and Cu-modified Laponite suspensions, respectively. These yield strengths are sufficiently high for suspending weighting materials such as barite which requires the gel strength of about 0.5 N/m2.

  19. USING COLLOIDAL LAYERED DOUBLE HYDROXIDES AS CATIONIC MICROPARTICULATE COMPONENT

    Institute of Scientific and Technical Information of China (English)

    Songlin Wang; Wenxia Liu

    2004-01-01

    Layered double hydroxides consisting of layers with cationic charges may be potential candidates of cationic microparticles forming synergetic retention effect with anionic polyacrylamide. In this work, the layered double hydroxides with various molar ratios of Mg/Al were synthesized by co-precipitation of magnesium chloride and aluminum chloride and peptized by intense washing with water. The chemical formula, particle size, Zeta potential of the layered double hydroxide were analyzed. It was found that positively charged magnesium aluminum hydroxide with particle diameter in nanoparticle size could be prepared. The Zeta potential and particle size vary with the feed molar ratio of Mg/Al and the peptizing process, respectively. The Zeta potential is also pH dependent. The retention experiments carried out on DDJ show that when used together with anionic polyacrylamide, the positively charged colloidal double hydroxide greatly improves the retention of reed pulps. The chemical formula, particle size and Zeta potential of the colloidal double hydroxide all affect its retention behavior.

  20. Use of statistical modeling to predict the effect of formulation composition on coacervation, silicone deposition, and conditioning sensory performance of cationic cassia polymers.

    Science.gov (United States)

    Lepilleur, Carole; Mullay, John; Kyer, Carol; McCalister, Pam; Clifford, Ted

    2011-01-01

    Formulation composition has a dramatic influence on coacervate formation in conditioning shampoo. The purpose of this study is to correlate the amount of coacervate formation of novel cationic cassia polymers to the corresponding conditioning profiles on European brown hair using silicone deposition, cationic polymer deposition and sensory evaluation. A design of experiments was conducted by varying the levels of three surfactants (sodium lauryl ether sulfate, sodium lauryl sulfate, and cocamidopropyl betaine) in formulations containing cationic cassia polymers of different cationic charge density (1.7 and 3.0m Eq/g). The results show formulation composition dramatically affects physical properties, coacervation, silicone deposition, cationic polymer deposition and hair sensory attributes. Particularly, three parameters are of importance in determining silicone deposition: polymer charge, surfactant (micelle) charge and total amount of surfactant (micelle aspect ratio). Both sensory panel testing and silicone deposition results can be predicted with a high confidence level using statistical models that incorporate these parameters.

  1. Cationic Redistribution at Epitaxial Interfaces in Superconducting Two-Dimensionally Doped Lanthanum Cuprate Films.

    Science.gov (United States)

    Baiutti, Federico; Gregori, Giuliano; Wang, Yi; Suyolcu, Y Eren; Cristiani, Georg; van Aken, Peter A; Maier, Joachim; Logvenov, Gennady

    2016-10-12

    The exploration of interface effects in complex oxide heterostructures has led to the discovery of novel intriguing phenomena in recent years and has opened the path toward the precise tuning of material properties at the nanoscale. One recent example is space-charge superconductivity. Among the complex range of effects which may arise from phase interaction, a crucial role is played by cationic intermixing, which defines the final chemical composition of the interface. In this work, we performed a systematic study on the local cationic redistribution of two-dimensionally doped lanthanum cuprate films grown by oxide molecular beam epitaxy, in which single LaO layers in the epitaxial crystal structure were substituted by layers of differently sized and charged dopants (Ca, Sr, Ba, and Dy). In such a model system, in which the dopant undergoes an asymmetric redistribution across the interface, the evolution of the cationic concentration profile can be effectively tracked by means of atomically resolved imaging and spectroscopic methods. This allowed for the investigation of the impact of the dopant chemistry (ionic size and charge) and of the growth conditions (temperature) on the final superconducting and structural properties. A qualitative model for interface cationic intermixing, based on thermodynamic considerations, is proposed. This work highlights the key role which cationic redistribution may have in the definition of the final interface properties and represents a further step forward the realization of heterostructures with improved quality.

  2. First-principle Calculation of the Properties of Ti3SiC2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The electronic and structural properties for Ti3SiC2 were studied using the first-principle calculation method. By using the calculated band structure and density of states, the high electrical conductivity of Ti3SiC2 are explained.The bonding character of Ti3SiC2 is analyzed in the map of charge density distribution.

  3. Efficient CO2 capture and photoreduction by amine-functionalized TiO2.

    Science.gov (United States)

    Liao, Yusen; Cao, Shao-Wen; Yuan, Yupeng; Gu, Quan; Zhang, Zhenyi; Xue, Can

    2014-08-11

    Amine-functionalization of TiO2 nanoparticles, through a solvothermal approach, substantially increases the affinity of CO2 on TiO2 surfaces through chemisorption. This chemisorption allows for more effective activation of CO2 and charge transfer from excited TiO2 , and significantly enhances the photocatalytic rate of CO2 reduction into methane and CO.

  4. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    Science.gov (United States)

    Buyukdagli, Sahin

    2017-02-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test-charge theory [S. Buyukdagli et al., Phys. Rev. E 94, 042502 (2016), 10.1103/PhysRevE.94.042502] to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the experimental phase diagrams for polymer solutions. First, the addition of polyvalent cations to the electrolyte solution results in the attraction of the negatively charged polymer by the DNA molecule. The glue of the like-charge attraction is the enhanced shielding of the polymer charges by the dense counterion layer at the DNA surface. Second, through the shielding of the DNA-induced electrostatic potential, mono- and polyvalent cations of large concentration both suppress the like-charge attraction. Within the same formalism, we also predict a new opposite-charge repulsion effect between the DNA molecule and a positively charged polymer. In the presence of polyvalent anions such as sulfate or phosphate, their repulsion by the DNA charges leads to the charge screening deficiency of the region around the DNA molecule. This translates into a repulsive force that results in the decomplexation of the polymer from DNA. This opposite-charge repulsion phenomenon can be verified by current experiments and the underlying mechanism can be beneficial to gene therapeutic applications where the control over polymer-DNA interactions is the key factor.

  5. Photochemical and photocatalytic evaluation of 1D titanate/TiO2 based nanomaterials

    Science.gov (United States)

    Conceição, D. S.; Ferreira, D. P.; Graça, C. A. L.; Júlio, M. F.; Ilharco, L. M.; Velosa, A. C.; Santos, P. F.; Vieira Ferreira, L. F.

    2017-01-01

    One-dimensional (1D) titanate based nanomaterials were synthesized following an alkaline hydrothermal approach of commercial TiO2 nanopowder. The morphological features of all materials were monitored by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and also Brunauer-Emmett-Teller (BET) technique. In addition the photochemical behaviour of these nanostructured materials were evaluated with the use of laser induced luminescence (LIL), ground-state diffuse reflectance (GSDR), and laser-flash photolysis in diffuse reflectance mode (DRLFP). The mixed titanate/TiO2 nanowires presented the least intense fluorescence spectra, suggesting the presence of surficial defects that can extend the lifetime of the excited charge carriers. A fluorescent 'rhodamine-like' dye was adsorbed onto different materials and examined via photoexcitation in the visible range to study the self-photosensitization mechanism. The presence of the radical cation of the dye and the degradation kinetics, when compared with a neutral substrate-cellulose, provided significant evidences regarding the photoactivity of the different materials. Regarding all the materials under study, the nanowires exhibited a strong photocatalytic efficiency, for the adsorbed fluorescent probe. The photocatalytic mechanism was also considered by studying the photodegradation capability of the titanate based materials in the presence of an herbicide, Amicarbazone, after ultraviolet (UVA) photoexcitation.

  6. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chunya [Harbin Institute of Technology; Skelton, Adam [Vanderbilt University; Chen, Mingjun [Harbin Institute of Technology; Vlcek, Lukas [ORNL; Cummings, Peter T [ORNL

    2012-01-01

    The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg{sup 2+}, Ca{sup 2+}, or Sr{sup 2+}) or monovalent (Na{sup +}, K{sup +}, or Rb{sup +}) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na{sup +} > K{sup +} > Rb{sup +} shows a 'reverse' lyotropic trend, while the divalent cations on the same surface exhibit a 'regular' lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr{sup 2+} > Ca{sup 2+} > Mg{sup 2+}). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO{sup -} group and the rutile, helping to 'trap' the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO{sup -} group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.

  7. Computational and analytical modeling of cationic lipid-DNA complexes.

    Science.gov (United States)

    Farago, Oded; Grønbech-Jensen, Niels

    2007-05-01

    We present a theoretical study of the physical properties of cationic lipid-DNA (CL-DNA) complexes--a promising synthetically based nonviral carrier of DNA for gene therapy. The study is based on a coarse-grained molecular model, which is used in Monte Carlo simulations of mesoscopically large systems over timescales long enough to address experimental reality. In the present work, we focus on the statistical-mechanical behavior of lamellar complexes, which in Monte Carlo simulations self-assemble spontaneously from a disordered random initial state. We measure the DNA-interaxial spacing, d(DNA), and the local cationic area charge density, sigma(M), for a wide range of values of the parameter (c) representing the fraction of cationic lipids. For weakly charged complexes (low values of (c)), we find that d(DNA) has a linear dependence on (c)(-1), which is in excellent agreement with x-ray diffraction experimental data. We also observe, in qualitative agreement with previous Poisson-Boltzmann calculations of the system, large fluctuations in the local area charge density with a pronounced minimum of sigma(M) halfway between adjacent DNA molecules. For highly-charged complexes (large (c)), we find moderate charge density fluctuations and observe deviations from linear dependence of d(DNA) on (c)(-1). This last result, together with other findings such as the decrease in the effective stretching modulus of the complex and the increased rate at which pores are formed in the complex membranes, are indicative of the gradual loss of mechanical stability of the complex, which occurs when (c) becomes large. We suggest that this may be the origin of the recently observed enhanced transfection efficiency of lamellar CL-DNA complexes at high charge densities, because the completion of the transfection process requires the disassembly of the complex and the release of the DNA into the cytoplasm. Some of the structural properties of the system are also predicted by a continuum

  8. Effects of charging and electric field on graphene functionalized with titanium.

    Science.gov (United States)

    Gürel, H Hakan; Ciraci, S

    2013-07-10

    Titanium atoms are adsorbed to graphene with a significant binding energy and render diverse functionalities to it. Carrying out first-principles calculations, we investigated the effects of charging and static electric field on the physical and chemical properties of graphene covered by Ti adatoms. When uniformly Ti covered graphene is charged positively, its antiferromagnetic ground state changes to ferromagnetic metal and attains a permanent magnetic moment. Static electric field applied perpendicularly causes charge transfer between Ti and graphene, and can induce metal-insulator transition. While each Ti adatom adsorbed to graphene atom can hold four hydrogen molecules with a weak binding, these molecules can be released by charging or applying electric field perpendicularly. Hence, it is demonstrated that charging and applied static electric field induce quasi-continuous and side specific modifications in the charge distribution and potential energy of adatoms absorbed to single-layer nanostructures, resulting in fundamentally crucial effects on their physical and chemical properties.

  9. Vibrational studies of benzene, pyridine, pyridine-N-oxide and their cations.

    Science.gov (United States)

    Kumar, M; Srivastava, Mayuri; Yadav, R A

    2013-07-01

    IR and Raman spectra of pyridine and pyridine-N-oxide have been recorded and analyzed. The optimized molecular geometries, APT charges and vibrational characteristics for benzene, pyridine, pyridine-N-oxide and their cations have been computed using DFT method. Due to attachment of O atom at N site or removal of electron all the modes are affected in magnitudes. However, significant changes are noticed in their IR intensities, Raman activities and depolarization ratios of the Raman bands in going from pyridine to its N-oxide or in going from neutrals to their cations. It is interesting to note that in going from benzene to benzene cation charge redistribution takes place to reduce the symmetry from D6h to D2h. The calculated frequencies have been correlated with the experimental frequencies for the pyridine and pyridine-N-oxide molecules.

  10. Charge renormalization of nanoparticles immersed in a molecular electrolyte.

    Science.gov (United States)

    Arenas-Gómez, B L; González-Mozuelos, P

    2010-01-07

    The renormalization of the electric charge of nanoparticles (small colloids) at infinite dilution immersed in a supporting electrolyte containing molecular ions is studied here using a simple model. The nanoparticles are represented by charged spheres of finite diameter, the anions are assumed to be pointlike, and the cations are modeled as two identical charged points connected by a rigid rod. The static structure of this model system is determined using the reference interaction site model equations with suitable closure relations and the renormalized charges are analyzed employing the dressed interactions site theory approach. It is found that for a wide range of ionic strengths these renormalized charges are clearly dependent on the length of the cations for nanoparticles with negative bare charge, but this dependence is practically negligible for nanoparticles with positive bare charges. In the limit of zero cation length and small nanoparticle charges the standard Derjaguin-Landau-Verwey-Overbeek model renormalization is recovered. A brief account of the structural and thermodynamic properties of the model molecular electrolyte is also provided.

  11. The effect of Ni(2+) and Cu(2+) on the photocatalytic degradation of dyes by the chitosan-TiO(2) complex.

    Science.gov (United States)

    Zhao, Xiaolei; Xiao, Gang; Zhang, Xin; Su, Haijia; Tan, Tianwei

    2012-09-01

    The present research combines biosorption and photocatalysis in a functional TiO(2)-immobilized chitosan adsorbent (CTA). CTA can degrade organic pollutants and adsorb metal ions simultaneously. Target pollutants were dyes of cationic (rhodamine B, Rh.B) and anionic (methyl orange, MO) nature, with Ni(2+) and Cu(2+) selected as heavy metals. The presence of Ni(2+) or Cu(2+) improved the degradation ability of CTA for MO, but inhibited the degradation of Rh.B, with Cu(2+) exhibiting stronger effects than Ni(2+). There was no significant difference in CTA activity when the metal ions were pre-adsorbed or when they coexisted in the solution with the organic dyes. Protons in the reaction system affected the degradation performance in a similar way for Ni(2+) and Cu(2+) leading to a different effect on the degradation for MO and Rh.B. An X-ray photoelectron spectroscopy analysis of the binding energies of the metal ions on the surface in the presence of the cationic or anionic dyes explained the different behaviors. Since anionic and cationic dyes possess chromogenic groups of different charges, they adversely affect the production of OH• radicals when coexisting with Cu(2+) or Ni(2+).

  12. Exciton Coupling of Phenylalanine Reveals Conformational Changes of Cationic Peptides

    DEFF Research Database (Denmark)

    Bortolini, Christian; Liu, Lei; Hoffmann, Soren V.

    2017-01-01

    Circular dichroism (CD) is a versatile tool to investigate the secondary structure of proteins. Conventionally, CD signals in the far-UV region are primarily attributed to peptide bond absorption; likewise aromatic residue analysis has typically only focussed on the near-UV absorption characteris...... of overcoming antimicrobial resistance......., we strive towards a quantitative interpretation of CD spectra by detailing the contributions of aromatic chromophores in the far-UV and accurately describing unfolded states of charged amino acid side chains. To this end, we probe conformational changes of cationic peptides, which impact...

  13. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;

    2012-01-01

    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances...... and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure...... and stability of SF6-based clusters....

  14. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane.

    Science.gov (United States)

    Leontiev, Alexandre V; Jemmett, Charlotte A; Beer, Paul D

    2011-01-17

    A heteroditopic [2]rotaxane consisting of a calix[4]diquinone-isophthalamide macrocycle and 3,5-bis-amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane's interlocked cavity together with Na(+) , K(+) , NH(4) (+) and Ba(2+) cation recognition capabilities are elucidated by (1) H NMR and UV-visible spectroscopic titration experiments. Upon binding of Ba(2+) , molecular displacement of the axle's positively charged pyridinium group from the rotaxane's macrocyclic cavity occurs, whereas the monovalent cations Na(+) , K(+) and NH(4) (+) are bound without causing significant co-conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.

  15. Cationic liposomal drug delivery system for specific targeting of human cd14+ monocytes in whole blood

    DEFF Research Database (Denmark)

    2013-01-01

    This invention concerns a liposome comprising lipids and at least one active ingredient, wherein at least one of the lipids is a cationic lipid; said liposome exhibiting a net positive charge at physiological conditions at which said liposome preferentially adheres to monocytes in freshly drawn b......, an infectious disease, an inflammatory disease, an autoimmune disease or allergy....

  16. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    . Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance technique was used to determine the amount of charge inserted and the total mass change during the reduction process in a polypyrrole film. From these values, the number of water molecules accompanying each cation was evaluated...

  17. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    Science.gov (United States)

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  18. Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds.

    Science.gov (United States)

    Shkrob, Ilya A; Marin, Timothy W

    2014-04-01

    Halogenoplumbate perovskites (MeNH3PbX3, where X is I and/or Br) have emerged as promising solar panel materials. Their limiting photovoltaic efficiency depends on charge localization and trapping processes that are presently insufficiently understood. We demonstrate that in halogenoplumbate materials the holes are trapped by organic cations (that deprotonate from their oxidized state) and Pb(2+) cations (as Pb(3+) centers), whereas the electrons are trapped by several Pb(2+) cations, forming diamagnetic lead clusters that also serve as color centers. In some cases, paramagnetic variants of these clusters can be observed. We suggest that charge separation in the halogenoplumbates resembles latent image formation in silver halide photography. Electron and hole trapping by lead clusters in extended dislocations in the bulk may be responsible for accumulation of trapped charge observed in this photovoltaic material.

  19. Strong blue emission from Ti-doped MgAl{sub 2}O{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tokushi [Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan); Shirai, Masanobu [Department of Physics, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Japan Science and Technology Agency, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan); Tanaka, Koichiro [Department of Physics, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502 (Japan); Japan Science and Technology Agency, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan); Kawabe, Yutaka [Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan); Japan Science and Technology Agency, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan); Hanamura, Eiichi [Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan) and Japan Science and Technology Agency, 758-65 Bibi, Chitose, Hokkaido 066-8655 (Japan)]. E-mail: hanamura@photon.chitose.ac.jp

    2005-08-15

    Strong blue emission was observed from Ti-doped spinel crystals. We conclude that Ti ion is located at B-site with D{sub 3d} symmetry as Ti{sup 4+} from the optical and electron spin resonance measurement. The charge-transfer excitation and deexcitation between O{sup 2-}-Ti{sup 4+} and O{sup -}-Ti{sup 3+} ion pairs are assigned to these optical absorption and emission processes.

  20. Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides.

    Science.gov (United States)

    Lee, Byung Joon; Schlautman, Mark A; Toorman, Erik; Fettweis, Michael

    2012-11-01

    Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca(2+) and Mg(2+) can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.

  1. Revealing the multi-bonding state between hydrogen and graphene-supported Ti clusters

    CERN Document Server

    Takahashi, Keisuke; Omori, Kengo; Mashoff, Torge; Convertino, Domenica; Miseikis, Vaidotas; Coletti, Camilla; Tozzini, Valentina; Heun, Stefan

    2016-01-01

    Hydrogen adsorption on graphene-supported metal clusters has brought much controversy due to the complex nature of the bonding between hydrogen and metal clusters. The bond types of hydrogen and graphene-supported Ti clusters are experimentally and theoretically investigated. Transmission electron microscopy shows that Ti clusters of nanometer-size are formed on graphene. Thermal desorption spectroscopy captures three hydrogen desorption peaks from hydrogenated graphene-supported Ti clusters. First principle calculations also found three types of interaction: Two types of bonds with different partial ionic character and physisorption. The physical origin for this rests on the charge state of the Ti clusters: when Ti clusters are neutral, H2 is dissociated, and H forms bonds with the Ti cluster. On the other hand, H2 is adsorbed in molecular form on positively charged Ti clusters, resulting in physisorption. Thus, this work clarifies the bonding mechanisms of hydrogen on graphene-supported Ti clusters.

  2. Structure and optical absorption properties of NiTiO3 nanocrystallites

    Science.gov (United States)

    Li, Ming-Wei; Yuan, Jin-Pei; Gao, Xiao-Mei; Liang, Er-Qian; Wang, Cheng-Yang

    2016-08-01

    Nickel titanate (NiTiO3) nanocrystallites are synthesized via a solid-state reaction from a precursor prepared by a homogeneous precipitation method. Ilmenite-structural NiTiO3 consists of alternating layers of NiO6 and TiO6 octahedra. It not only strongly absorbs ultraviolet light (wavelength photocatalytic activity in the degradation of methylene blue in water. It is proposed that the visible light absorbance peaks of NiTiO3 mainly originate from the Ni: d → d charge-transfer transitions within its valence band. NiTiO3 has wide energy gaps from the hybridized Ni 3 d and O 2 p orbitals to the Ti 3 d orbitals, which block both Ni2+ → Ti4+ and O2- → Ti4+ charge-transfer transitions between valence band and conduction band, and thus baffle its photocatalytic performance.

  3. One atmosphere experimental study on the partitioning of the HFSE between olivine, pyroxene and lunar basaltic melts in the CMAS + Fe + Ti system

    Science.gov (United States)

    Padilha Leitzke, Felipe; Fonseca, Raúl O. C.; Michely, Lina T.

    2016-04-01

    Titanium is generally regarded as a minor element in the Bulk Silicate Earth (1265 μg/g), with average and maximum TiO2 contents of 1.06 and 5.57 wt. %, respectively. In the Moon, however, TiO2 can be found in concentrations as high as 17 wt. %. In order to better explain this enrichment, petrogenetic models require precise knowledge of major and trace elements fractionation under conditions similar to the ones that may have prevailed on the lunar mantle. Previous studies show that Fe-Ti-O melt species may affect the fractionation of the high-field strength elements (HFSE) between Fe-Ti oxides and silicate melt. However, there is a scarcity of data on the behaviour of these elements between silicates and lunar mare basalts with different TiO2 contents. To address this issue, we present results from an experimental campaign on a HFSE-doped basalt in the CMAS system with different amounts of Cr2O3 (0.1 - 1.5 wt.%), P2O5 (0.1 - 0.5 wt.%), FeO (0 -17 wt.%) and TiO2 (1 - 21 wt.%). Experiments were carried out in a vertical tube gas-mixing furnace with temperatures ranging from 1100 to 1300 °C and ΔFMQ from -5.2 to +6.6. Major and trace elements were acquired with the EMP and LA-ICP-MS, respectively. Our results for DHFSEsilicate/melt are in agreement with the literature for glasses with ca. 1.0 wt.% TiO2. Nevertheless, DHFSEolv/melt for 4+ and 5+ cations have a negative correlation until ca. 4.8 wt. % TiO2 in the silicate glass and after that values are constant until ca. 20 wt. % TiO2. This may be used to indicate that a melt complex may be present, since DTiolv/melt< 0.01. Regarding the DUolv/melt, values change by almost one order of magnitude from more incompatible at the more oxidizing experiments, where the main species present is U6+ to relatively more compatible at the more reducing experiments, where there is a greater contribution of U4+. Results for DHFSEopx/melt do not show any change over the range of TiO2 in the glass in this study, apart from the same

  4. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. J.; Xiao, H. Y.; Zu, X. T.; Zhang, Y.; Weber, W. J.

    2013-01-01

    The development of ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion-solid interactions in materials, with identification determination of threshold displacement energies with ab initio accuracy, and prediction of new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order-disorder are more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be ~0.15, ~0.11-0.27 and ~0.1-0.13 |e| for Gd, Zr (or Ti), and O, respectively. Negligence of the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

  5. Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. J.; Xiao, Haiyan Y.; Zu, Xiaotao; Zhang, Yanwen; Weber, William J.

    2012-12-21

    The development of the ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion–solid interactions in materials, with the determination of threshold displacement energies with ab initio accuracy, and prediction of a new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order–disorder is more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be [similar]0.15, [similar]0.11 to 0.27 and [similar]0.1 to 0.13 |e| for Gd, Zr (or Ti), and O, respectively. Neglecting the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

  6. From cation to oxide: hydroxylation and condensation of aqueous complexes; Du cation a l'oxyde: hydroxylation et condensation en solution

    Energy Technology Data Exchange (ETDEWEB)

    Jolivet, J.P. [Universite Pierre et Marie Curie, Chimie de la Matiere Condensee, URA CNRS 1466, 75 - Paris (France)

    1997-07-01

    Hydroxylation, condensation and precipitation of metal cations in aqueous solution are briefly reviewed. Hydroxylation of aqueous complexes essentially depends on the format charge (oxidation state), the size and the pH of the medium. It is the step allowing the condensation reaction. Depending on the nature of complexes (aqua-hydroxo, oxo-hydroxo), the. mechanism of condensation is different, olation or ox-olation respectively. The first one leads to poly-cations or hydroxides more or less stable against dehydration. The second one leads to poly-anions or oxides. Oligomeric species (poly-cations, poly-anions) are form from charged monomer complexes while the formation of solid phases requires non-charged precursors. Because of their high lability, charged oligomers are never the precursors of solids phases. The main routes for the formation of solid phases from solution are studied with two important and representative elements, Al and Si. For Al{sup 3+} ions, different methods (base addition in solution, thermo-hydrolysis, hydrothermal synthesis) are discussed in relation to the crystal structure of the solid phase obtained. For silicic species condensing by ox-olation, the role of acid or base catalysis on the morphology of gels is studied. The influence of complexing ligands on the processes and on the characteristics of solids (morphology of particles, basic salts and polymetallic oxides formation) is studied. (author)

  7. Chiral DNA packaging in DNA-cationic liposome assemblies.

    Science.gov (United States)

    Zuidam, N J; Barenholz, Y; Minsky, A

    1999-09-03

    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  8. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  9. Synthesis, structure and photocatalytic activity of calcined Mg-Al-Ti-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Khaled; Abdelkarim, Omar; Srasra, Ezzeddine [Centre National des Recherches en Sciences des Matériaux (CNRSM), Soliman (Turkey); Frini-Srasra, Najoua [Faculté des Sciences de Tunis (FST), Tunis (Turkey)

    2015-01-15

    Mg-Al-Ti layered double hydroxides (LDH), consisting of di-, tri- and tetra-valent cations with different Al{sup 3+}/Ti{sup 4+} ratio, have been synthesized by co-precipitation which was demonstrated as efficient visible-light photocatalysts. The structure and chemical composition of the compound were characterized by PXRD, FT-IR, SAA, N{sub 2} adsorption-desorption isotherms, and DSC techniques. It is found that no hydrotalcites structure were formed for Ti{sup 4+}/(Ti{sup 4+}+ Al{sup 3+})>0.5 and the substitution of Ti(IV) for Al(III) in the layer increases the thermal stability of the resulting LDH materials. The calcined sample containing titanium showed relatively high adsorption capacity for MB as compared to that without titanium. Results show that the pseudo-second-order kinetic model and the Langmuir were found to correlate the experimental data well. The photocatalytic activity was evaluated for the degradation of the methylene blue. The photocatalytic activity increased with the increase of the Al/Ti cationic ratio. 71% of the dye could be removed by the Mg/Al/Ti-LDH with the cationic ratio Al/Ti=0 : 1 and calcined at 500 .deg. C.

  10. Tubular nitrogen-doped TiO2 samples with efficient photocatalytic properties based on long-lived charge separation under visible-light irradiation: synthesis, characterization and reactivity.

    Science.gov (United States)

    Hirose, Yoshikazu; Itadani, Atsushi; Ohkubo, Takahiro; Hashimoto, Hideki; Takada, Jun; Kittaka, Shigeharu; Kuroda, Yasushige

    2017-03-27

    A nitrogen-doped TiO2 sample was prepared at 413 K by direct hydrothermal treatment of titanium isopropoxide in an aqueous solution of NH3. This new material has a large specific surface area of ca. 220 m(2) g(-1) because of its tubular structure and it exhibits a prominent absorption feature in the region between 400 and 650 nm. It responds strongly to light in the visible region, which is key to its potential performance as a photocatalyst that may improve the efficiency for utilization of solar energy. Actually, this sample exhibits very efficient activity in the decomposition of CH3COOH under visible light among the samples prepared. This effective photocatalysis of the present sample was substantiated by characteristic spectroscopic features, such as: (1) an optical absorption band with λ > 400 nm because of the doped nitrogen species; (2) the formation of EPR-active, long-lived N˙ and O2(-) species, as well as N2(-) species, under visible-light irradiation in the O2 or N2 adsorption process at 300 K by way of the monovalent nitrogen ions in the bulk (both substitutional and interstitial); (3) the existence of IR-active O2 species adsorbed on the nitrogen-doped TiO2 sample even without light irradiation; and (4) an XPS N1s band around 399.6 eV that is assignable to the N(-) species. The amounts of N˙ and O2(-) species formed in the nitrogen-doped TiO2 sample under visible-light irradiation correlated well with the levels of reactivity observed in the decomposition of CH3COOH on the samples with varying amounts and types of doped nitrogen species. We conclude that the photoactive N˙ and O2(-) species created in the present sample are responsible for the decomposition of organic materials assisted by visible light irradiation. These features may be attributable to the interface between the sample's tubular structure and anatase with poor crystallinity, which probably causes the resistance to the recombination of electron-hole pairs formed by irradiation.

  11. Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium

    Energy Technology Data Exchange (ETDEWEB)

    Marcalo, Joaquim; Gibson, John K.

    2009-08-10

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  12. Binding of single stranded nucleic acids to cationic ligand functionalized gold nanoparticles.

    Science.gov (United States)

    Nash, Jessica A; Tucker, Tasha L; Therriault, William; Yingling, Yaroslava G

    2016-11-11

    The interactions of nanoparticles (NPs) with single stranded nucleic acids (NAs) have important implications in gene delivery, and nanotechnological and biomedical applications. Here, the complexation of cationic ligand functionalized gold nanoparticles with single stranded deoxyribose nucleic acid (DNA) and ribonucleic acid (RNA) are examined using all atom molecular dynamics simulations. The results indicated that complexation depends mostly on charge of nanoparticle, and, to lesser extent, sequence and type of nucleic acid. For cationic nanoparticles, electrostatic interactions between charged ligands and the nucleic acid backbone dominate binding regardless of nanoparticle charge. Highly charged nanoparticles bind more tightly and cause compaction of the single-stranded NAs through disruption of intrastrand π-π stacking and hydrogen bonding. However, poly-purine strands (polyA-DNA, polyA-RNA) show less change in structure than poly-pyrimidine strands (polyT-DNA, polyU-RNA). Overall, the results show that control over ssNA structure may be achieved with cationic NPs with a charge of more than 30, but the extent of the structural changes depends on sequence.

  13. The net charge at interfaces between insulators

    Science.gov (United States)

    Bristowe, N. C.; Littlewood, P. B.; Artacho, Emilio

    2011-03-01

    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO3 over SrTiO3 in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta.

  14. Polarization induced self-doping in epitaxial Pb(Zr0.20Ti0.80)O3 thin films

    Science.gov (United States)

    Pintilie, Lucian; Ghica, Corneliu; Teodorescu, Cristian Mihail; Pintilie, Ioana; Chirila, Cristina; Pasuk, Iuliana; Trupina, Lucian; Hrib, Luminita; Boni, Andra Georgia; Georgiana Apostol, Nicoleta; Abramiuc, Laura Elena; Negrea, Raluca; Stefan, Mariana; Ghica, Daniela

    2015-01-01

    The compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.2Ti0.8)O3, consisting in generation of point defects (vacancies) acting as donors/acceptors. These are introducing free carriers that partly compensate the depolarization field occurring in the film. It is found that the concentration of the free carriers introduced by self-doping increases with decreasing the thickness of the ferroelectric layer, reaching values of the order of 1026 m−3 for 10 nm thick films. One the other hand, microscopic investigations show that, for thicknesses higher than 50 nm, the 2O/(Ti+Zr+Pb) atomic ratio increases with the thickness of the layers. These results suggest that the ratio between the oxygen and cation vacancies varies with the thickness of the layer in such a way that the net free carrier density is sufficient to efficiently compensate the depolarization field and to preserve the outward direction of the polarization. PMID:26446442

  15. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    Science.gov (United States)

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the

  16. Theoretical study on the correlation between the nature of atomic Li intercalation and electrochemical reactivity in TiS2 and TiO2.

    Science.gov (United States)

    Kim, Yang-Soo; Kim, Hee-Jin; Jeon, Young-A; Kang, Yong-Mook

    2009-02-12

    The electronic structures of LiTiS(2) and LiTiO(2) (having alpha-NaFeO(2) structure) have been investigated using discrete variational Xalpha molecular orbital methods. The alpha-NaFeO(2) structure is the equilibrium structure for LiCoO(2), which is widely used as a commercial cathode material for lithium secondary batteries. This study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. When the average voltage of lithium intercalation was calculated using pseudopotential methods, the average intercalation voltage of LiTiO(2) (2.076 V) was higher than that of LiTiS(2) (1.958 V). This can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anion in LiTiO(2) as well as LiTiS(2). The Mulliken charge, which is the ionicity of Li atom, was approximately 0.12 in LiTiS(2), and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. When compared with the BOP (0.6) of C-H, which is one of the most famous example of covalent bonding, the intercalated Li ions in LiTiS(2) tend to form a quite strong covalent bond with the host material. In contrast, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized and the BOP, the covalency between Ti and O, was 0.181 in LiTiO(2). Because of the high ionicity of Li and the weak covalency between Ti and the nearest anion, LiTiO(2) has a higher intercalation voltage than LiTiS(2).

  17. High and rapid alkali cation storage in ultramicroporous carbonaceous materials

    Science.gov (United States)

    Yun, Young Soo; Lee, Seulbee; Kim, Na Rae; Kang, Minjee; Leal, Cecilia; Park, Kyu-Young; Kang, Kisuk; Jin, Hyoung-Joon

    2016-05-01

    To achieve better supercapacitor performance, efforts have focused on increasing the specific surface area of electrode materials to obtain higher energy and power density. The control of pores in these materials is one of the most effective ways to increase the surface area. However, when the size of pores decreases to a sub-nanometer regime, it becomes difficult to apply the conventional parallel-plate capacitor model because the charge separation distance (d-value) of the electrical double layer has a similar length scale. In this study, ultramicroporous carbonaceous materials (UCMs) containing sub-nanometer-scale pores are fabricated using a simple in situ carbonization/activation of cellulose-based compounds containing potassium. The results show that alkali cations act as charge carriers in the ultramicropores (<0.7 nm), and these materials can deliver high capacitances of ∼300 F g-1 at 0.5 A g-1 and 130 F g-1, even at a high current rate of 65 A g-1 in an aqueous medium. In addition, the UCM-based symmetric supercapacitors are stable over 10,000 cycles and have a high energy and power densities of 8.4 Wh kg-1 and 15,000 W kg-1, respectively. This study provides a better understanding of the effects of ultramicropores in alkali cation storage.

  18. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  19. CO 2 adsorption in mono-, di- and trivalent cation-exchanged metal-organic frameworks: A molecular simulation study

    KAUST Repository

    Chen, Yifei

    2012-02-28

    A molecular simulation study is reported for CO 2 adsorption in rho zeolite-like metal-organic framework (rho-ZMOF) exchanged with a series of cations (Na +, K +, Rb +, Cs +, Mg 2+, Ca 2+, and Al 3+). The isosteric heat and Henry\\'s constant at infinite dilution increase monotonically with increasing charge-to-diameter ratio of cation (Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ < Al 3+). At low pressures, cations act as preferential adsorption sites for CO 2 and the capacity follows the charge-to-diameter ratio. However, the free volume of framework becomes predominant with increasing pressure and Mg-rho-ZMOF appears to possess the highest saturation capacity. The equilibrium locations of cations are observed to shift slightly upon CO 2 adsorption. Furthermore, the adsorption selectivity of CO 2/H 2 mixture increases as Cs + < Rb + < K + < Na + < Ca 2+ < Mg 2+ ≈ Al 3+. At ambient conditions, the selectivity is in the range of 800-3000 and significantly higher than in other nanoporous materials. In the presence of 0.1% H 2O, the selectivity decreases drastically because of the competitive adsorption between H 2O and CO 2, and shows a similar value in all of the cation-exchanged rho-ZMOFs. This simulation study provides microscopic insight into the important role of cations in governing gas adsorption and separation, and suggests that the performance of ionic rho-ZMOF can be tailored by cations. © 2012 American Chemical Society.

  20. Optical properties and structure of the TiN–nitrogen-doped TiO{sub 2} nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Buha, J., E-mail: jokabuha@yahoo.com

    2014-12-01

    Highlights: • Excessive N doping of TiO{sub 2} produces TiN–N-doped TiO{sub 2} nanocomposite. • Metal TiN-semiconductor TiO{sub 2} interfaces may aid separation of photogenerated charge carriers. • Excessive N doping adds high density of new electronic states at the top of TiO{sub 2} valence band. - Abstract: As one of the most versatile photocatalysts, TiO{sub 2} is suitable for numerous environmental and energy-related applications, however its efficiency is limited by its wide band gap. Doping with anions such as nitrogen has been successful in extending the TiO{sub 2} solar absorption into the visible spectrum, although the exact nature and optimal level of N doping are still debated. Present study shows that excessive and mostly substitutional N doping can result in an in situ formation of nanocomposite structure consisting of TiN nano-crystals embedded in the N-doped anatase TiO{sub 2}, in addition to effectively doping TiO{sub 2} by adding electronic states at the valence band edge thereby narrowing its band gap, as reported before. The metal-semiconductor interfaces in the thin film induce local band bending in the N-doped TiO{sub 2} phase and this may assist in separating the photogenerated charge carriers. The possible interplay between the two phases is discussed. Very low levels of N doping were found not to have any impact on the band gap of TiO{sub 2}.

  1. Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

    Science.gov (United States)

    Liu, Lichen; Liu, Zhe; Liu, Annai; Gu, Xianrui; Ge, Chengyan; Gao, Fei; Dong, Lin

    2014-02-01

    In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances.

  2. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  3. Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system

    CERN Document Server

    Marrocchelli, Dario; Norberg, Stefan T; Hull, Stephen

    2009-01-01

    Realistic, first-principles-based interatomic potentials have been used in molecular dynamics simulations to study the effect of cation composition on the ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical properties to the degree of lattice disorder. Across the composition range, this system retains a disordered fluorite crystal structure and the vacancy concentration is constant. The observed trends of decreasing conductivity and increasing disorder with increasing Nb5+ content were reproduced in simulations with the cations randomly assigned to positions on the cation sublattice. The trends were traced to the influences of the cation charges and relative sizes and their effect on vacancy ordering by carrying out additional calculations in which, for example, the charges of the cations were equalised. The simulations did not, however, reproduce all the observed properties, particularly for Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse scattering featur...

  4. Influences of TiO2 phase structures on the structures and photocatalytic hydrogen production of CuOx/TiO2 photocatalysts

    Science.gov (United States)

    Liu, Yuanxu; Wang, Zhonglei; Huang, Weixin

    2016-12-01

    CuOx/TiO2 photocatalysts employing TiO2 with different phase structures as well as P25 as supports were prepared, and their structures and activity for photocatalytic H2 production in methanol/water solution under simulated solar light were comparatively studied. Structural characterization results demonstrated that the TiO2 phase structure strongly affects the CuOx-TiO2 interaction and copper species in various CuOx/TiO2 photocatalysts. The Cu2O-rutile TiO2 interaction is much stronger than the Cu2O-anatase TiO2 interaction, facilitates the interfacial charge transfer process within the Cu2O-rutile TiO2 heterojunction but disables supported Cu2O to catalyze the hole-participated methanol oxidation. The Cu2O-anatase TiO2 heterojunction with the appropriate Cu2O-anatase TiO2 interaction and thus the balancing efficiencies between the interfacial charge transfer process and hole-participated methanol oxidation is most photocatalytic active, and CuOx/P25 with the largest population of Cu2O-anatase TiO2 heterojunction exhibits the highest photocatalytic H2 production. These results provide novel insights in the applied surface science of CuOx/TiO2 photocatalysts.

  5. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  6. Investigation into Photoconductivity in Single CNF/TiO2-Dye Core–Shell Nanowire Devices

    Directory of Open Access Journals (Sweden)

    Rochford Caitlin

    2010-01-01

    Full Text Available Abstract A vertically aligned carbon nanofiber array coated with anatase TiO2 (CNF/TiO2 is an attractive possible replacement for the sintered TiO2 nanoparticle network in the original dye-sensitized solar cell (DSSC design due to the potential for improved charge transport and reduced charge recombination. Although the reported efficiency of 1.1% in these modified DSSC’s is encouraging, the limiting factors must be identified before a higher efficiency can be obtained. This work employs a single nanowire approach to investigate the charge transport in individual CNF/TiO2 core–shell nanowires with adsorbed N719 dye molecules in dark and under illumination. The results shed light on the role of charge traps and dye adsorption on the (photo conductivity of nanocrystalline TiO2 CNF’s as related to dye-sensitized solar cell performance.

  7. Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds

    Science.gov (United States)

    Berenov, A.; Le Goupil, F.; Alford, N.

    2016-06-01

    A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.

  8. Polar phonon mixing in magnetoelectric EuTiO3

    Science.gov (United States)

    Goian, V.; Kamba, S.; Hlinka, J.; Vaněk, P.; Belik, A. A.; Kolodiazhnyi, T.; Petzelt, J.

    2009-10-01

    Infrared reflectivity spectra of antiferromagnetic incipient ferroelectric EuTiO3 were investigated up to 600 K. Three polar phonons typical for the cubic perovskite Pmbar {3}m structure were observed. Analysis of phonon plasma frequencies showed that the lowest-energy TO1 phonon corresponds predominantly to the Slater mode describing vibration of Ti cations against the oxygen octahedra and the TO2 phonon expresses vibrations of the Eu cation against the TiO6 octahedra. The highest frequency TO4 phonon represents O-octahedra bending. Incipient ferroelectric behavior of the permittivity is caused by pronounced softening of the TO1 phonon, which is coupled to the TO2 mode. Although the Eu cations are not involved in the TO1 mode, the spin ordering of the 4f electrons at Eu cations has influence on the frequency of the TO1 mode due to Eu-O-Eu super-exchange interaction. This is probably responsible for the 7% change of the permittivity induced by the magnetic field in the antiferromagnetic phase, as reported by Katsufuji and Takagi [Phys. Rev. B 64, 054415 (2001)].

  9. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wangyang; Liu Chunxi; Ye Jiesheng; Zou Weiwei; Zhang Na; Xu Wenfang [School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji' nan (China)], E-mail: zhangnancy9@sdu.edu.cn

    2009-05-27

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  10. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Science.gov (United States)

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang

    2009-05-01

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  11. Pore with gate: modulating hydrogen storage in metal-organic framework materials via cation exchange.

    Science.gov (United States)

    Yang, Sihai; Callear, Samantha K; Ramirez-Cuesta, Anibal J; David, William I F; Sun, Junliang; Blake, Alexander J; Champness, Neil R; Schröder, Martin

    2011-01-01

    A range of anionic metal-organic framework (MOF) materials has been prepared by combination of In(III) with tetracarboxylate isophthalate-based ligands. These materials incorporate organic cations, either H2ppz2+ (ppz = piperazine) or Me2NH2+, that are hydrogen bonded to the pore wall. These cations act as a gate controlling entry of N2 and H2 gas into and out of the porous host. Thus, hysteretic adsorption/desorption for N2 and H2 is observed in these systems, reflecting the role of the bulky hydrogen bonded organic cations in controlling the kinetic trapping of substrates. Post-synthetic cation exchange with Li+ leads to removal of the organic cation and the formation of the corresponding Li+ salts. Replacement of the organic cation with smaller Li+ leads to an increase in internal surface area and pore volume of the framework material, and in some cases to an increase in the isosteric heat of adsorption of H2 at zero coverage, as predicted by theoretical modelling. The structures, characterisation and analysis of these charged porous materials as storage portals for H2 are discussed. Inelastic neutron scattering experiments confirm interaction of H2 with the carboxylate groups of the isophthalate ligands bound to In(III) centres.

  12. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials.

  13. 具有高电荷分离效率和光催化活性的锆掺杂钛酸钙的制备%Preparation of Zr-doped CaTiO3 with enhanced charge separation efficiency and photocatalytic activity

    Institute of Scientific and Technical Information of China (English)

    黄晓俊; 严欣; 吴海燕; 方莹; 闵亚红; 李文生; 王双印; 吴振军

    2016-01-01

    A series of Zr-doped CaTiO3 powders were prepared with the mild co-precipitation method and calcined at 850 °C for 3 h. The as-prepared Zr-doped CaTiO3 samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV−Vis diffuse reflectance spectra (DRS) and X-ray photoelectron spectra (XPS). XRD result revealed the presence of single perovskite phase of CaTiO3. UV−Vis diffusive reflection spectra of Zr-doped CaTiO3 indicated that the absorbance obviously increased in the visible light irradiation. XPS analysis showed that two types of oxygen existed on the photocatalyst surface, including lattice oxygen and absorbed oxygen. Their photocatalytic activity in the case of the degradation of methyl orange in water and photoelectrochemical activity were also tested. The 5%Zr-doped (mole fraction) CaTiO3 sample showed the highest photocatalytic activity. The enhanced photocatalytic activity was ascribed to the change of the lattice structure, existence of oxygen vacancies and increase of the photogenerated charge separation efficiency.%通过温和共沉淀方法合成一系列锆掺杂的钛酸钙,并在850°C下焙烧3 h。采用扫描电镜(SEM)、X射线衍射(XRD)、紫外−可见漫反射光谱(DRS)和X射线光电子能谱(XPS)等手段对合成的锆掺杂的钛酸钙进行表征。XRD结果表明,锆掺杂钛酸钙以单一的钙钛矿相存在;紫外−可见漫反射光谱分析表明,锆掺杂钛酸钙在可见光区的吸收明显增强;XPS分析显示,在光催化剂表面存在2种类型的氧,即晶格氧和吸附氧。此外,对其光催化降解甲基橙的性能以及光电化学性能进行测试。结果表明,5% Zr(摩尔分数)掺杂钛酸钙具有最高光催化活性。晶格结构的改变、氧空穴的存在、光生电荷分离效率的提高都有利于提高锆掺杂的钛酸钙的光催化活性。

  14. Characterization of TiO{sub 2} thin films obtained by m