Anisotropic charged generalized polytropic models
Nasim, A.; Azam, M.
2018-06-01
In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.
Anisotropic charged physical models with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Nasim, A.; Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2018-01-15
In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state. (orig.)
On cracking of charged anisotropic polytropes
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)
2017-01-01
Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.
Modeling of charged anisotropic compact stars in general relativity
Energy Technology Data Exchange (ETDEWEB)
Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)
2017-06-15
A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)
All spherically symmetric charged anisotropic solutions for compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2017-06-15
In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)
Holographic models with anisotropic scaling
Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.
2013-12-01
We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.
Anisotropic superfluidity of hadronic matter
International Nuclear Information System (INIS)
Chela Flores, J.
1977-10-01
From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions
Stability of anisotropic beams with space charge
International Nuclear Information System (INIS)
Hofmann, I.
1997-07-01
We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)
Charged anisotropic star on paraboloidal space-time
Indian Academy of Sciences (India)
dr2 − r2 ( dθ2 + sin2 θdφ2). ,. (1) with the energy–momentum tensor for anisotropic charged fluid,. Tij = diag. ( ρ + E2, pr − E2, pt + E2, pt + E2). ,. (2) where ρ is the energy density, pr is the radial pressure, pt is the tangential pressure and. E is the electric field intensity. These quantities are measured relative to the comoving.
Screening of the field of a static charge in an anisotropic magnetized plasma
International Nuclear Information System (INIS)
Arsenin, V.V.; Puzitskii, M.L.
1991-01-01
The field of a static charge placed in an equilibrium plasma is screened at a distance of the order of the Debye radius. Debye screening occurs both with and without an external magnetic field. This property also persists when the plasma is not an equilibrium plasma but the velocity distribution function of the particles is isotropic (the screening radius in this case contains the characteristic value of the energy instead of the temperature). The situation can change if the distribution is anisotropic. First, the drop in the field can become non-Debye. In particular, in an unmagnetized plasma some distribution functions are characterized by a power-law decrease of the field. Second, a static test charge induces a magnetic as well as an electrostatic field in an anisotropic plasma. In this communication the authors describe the anomalies of screening of the field of a static charge in a magnetized plasma. For definiteness they consider a situation (typical, e.g., of magnetic mirror systems) when the ionic component is anisotropic. The simplifications for the sake of computations are limited to the case of a charge which extends along the magnetic field and only harmonics much longer than the Debye length are significant in the Fourier expansion of the density of this charge in the longitudinal coordinate
International Nuclear Information System (INIS)
Feng, Jonathan L.; Kaplinghat, Manoj; Tu, Huitzu; Yu, Hai-Bo
2009-01-01
Can dark matter be stabilized by charge conservation, just as the electron is in the standard model? We examine the possibility that dark matter is hidden, that is, neutral under all standard model gauge interactions, but charged under an exact (\\rm U)(1) gauge symmetry of the hidden sector. Such candidates are predicted in WIMPless models, supersymmetric models in which hidden dark matter has the desired thermal relic density for a wide range of masses. Hidden charged dark matter has many novel properties not shared by neutral dark matter: (1) bound state formation and Sommerfeld-enhanced annihilation after chemical freeze out may reduce its relic density, (2) similar effects greatly enhance dark matter annihilation in protohalos at redshifts of z ∼ 30, (3) Compton scattering off hidden photons delays kinetic decoupling, suppressing small scale structure, and (4) Rutherford scattering makes such dark matter self-interacting and collisional, potentially impacting properties of the Bullet Cluster and the observed morphology of galactic halos. We analyze all of these effects in a WIMPless model in which the hidden sector is a simplified version of the minimal supersymmetric standard model and the dark matter is a hidden sector stau. We find that charged hidden dark matter is viable and consistent with the correct relic density for reasonable model parameters and dark matter masses in the range 1 GeV ∼ X ∼< 10 TeV. At the same time, in the preferred range of parameters, this model predicts cores in the dark matter halos of small galaxies and other halo properties that may be within the reach of future observations. These models therefore provide a viable and well-motivated framework for collisional dark matter with Sommerfeld enhancement, with novel implications for astrophysics and dark matter searches
Energy Technology Data Exchange (ETDEWEB)
Aliev, Yu.M.; Bychenkov, V.Yu.; Frolov, A.A. (AN SSSR, Moscow. Fizicheskij Inst.)
Structure of electomagnetic field generated with a charge in a plasma with anisotropic electron temperature has been studied. Unlike a hydrodynamical approach to study on the magnetic field qeneration with a test charge a kinetic theory describing spatial distribution of both magnetic and electrostatic components of charge field was constructed. Such theory results permit to investigate the charge field structure both at distances larger than length of free electron path and not exceeding it. The developed theory can serve as the basis for development of new methods for anisotropic plasma diagnostics.
Anisotropic dark matter distribution functions and impact on WIMP direct detection
International Nuclear Information System (INIS)
Bozorgnia, Nassim; Schwetz, Thomas; Catena, Riccardo
2013-01-01
Dark matter N-body simulations suggest that the velocity distribution of dark matter is anisotropic. In this work we employ a mass model for the Milky Way whose parameters are determined from a fit to kinematical data. Then we adopt an ansatz for the dark matter phase space distribution which allows to construct self-consistent halo models which feature a degree of anisotropy as a function of the radius such as suggested by the simulations. The resulting velocity distributions are then used for an analysis of current data from dark matter direct detection experiments. We find that velocity distributions which are radially biased at large galactocentric distances (up to the virial radius) lead to an increased high velocity tail of the local dark matter distribution. This affects the interpretation of data from direct detection experiments, especially for dark matter masses around 10 GeV, since in this region the high velocity tail is sampled. We find that the allowed regions in the dark matter mass-cross section plane as indicated by possible hints for a dark matter signal reported by several experiments as well as conflicting exclusion limits from other experiments shift in a similar way when the halo model is varied. Hence, it is not possible to improve the consistency of the data by referring to anisotropic halo models of the type considered in this work
Make dark matter charged again
Energy Technology Data Exchange (ETDEWEB)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub, E-mail: prateekagrawal@fas.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: randall@physics.harvard.edu, E-mail: jscholtz@physics.harvard.edu [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui
2016-01-07
The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.
Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene
International Nuclear Information System (INIS)
Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei
2014-01-01
The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T −γ ) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced
Anisotropic charged impurity-limited carrier mobility in monolayer phosphorene
Energy Technology Data Exchange (ETDEWEB)
Ong, Zhun-Yong; Zhang, Gang; Zhang, Yong Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)
2014-12-07
The room temperature carrier mobility in atomically thin 2D materials is usually far below the intrinsic limit imposed by phonon scattering as a result of scattering by remote charged impurities in its environment. We simulate the charged impurity-limited carrier mobility μ in bare and encapsulated monolayer phosphorene. We find a significant temperature dependence in the carrier mobilities (μ ∝ T{sup −γ}) that results from the temperature variability of the charge screening and varies with the crystal orientation. The anisotropy in the effective mass leads to an anisotropic carrier mobility, with the mobility in the armchair direction about one order of magnitude larger than in the zigzag direction. In particular, this mobility anisotropy is enhanced at low temperatures and high carrier densities. Under encapsulation with a high-κ overlayer, the mobility increases by up to an order of magnitude although its temperature dependence and its anisotropy are reduced.
Anisotropic swim stress in active matter with nematic order
Yan, Wen; Brady, John F.
2018-05-01
Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.
Electromagnetic effects on cracking of anisotropic polytropes
Energy Technology Data Exchange (ETDEWEB)
Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-10-15
In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)
A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition
Bhar, Piyali; Singh, Ksh. Newton; Rahaman, Farook; Pant, Neeraj; Banerjee, Sumita
In the present paper, we discover a new well-behaved charged anisotropic solution of Einstein-Maxwell’s field equations. We ansatz the metric potential g00 of the form given by Maurya et al. (Eur. Phys. J. C 76(12) (2016) 693) with n = 2. In their paper, it is mentioned that for n = 2, the solution is not well-behaved for neutral configuration as the speed of sound is nondecreasing radially outward. However, the solution can represent a physically possible configuration with the inclusion of some net electric charge, i.e. the solution can become a well-behaved solution with decreasing sound speed radially outward for a charged configuration. Due to the inclusion of electric charge, the solution leads to a very stiff equation-of-state (EoS) with the velocity of sound at the center vr02 = 0.819, vt02 = 0.923 and the compactness parameter u = 0.823 is close to the Buchdahl limit 0.889. This stiff EoS support a compact star configuration of mass 5.418M⊙ and radius of 10.1km.
Anisotropic Flow of Charged Particles in Pb-Pb Collisions at √[s{NN}]=5.02 TeV.
Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Belyaev, V; Benacek, P; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, A; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Horak, D; Hosokawa, R; Hristov, P; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Incani, E; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kostarakis, P; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, D; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Pereira Da Costa, H; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shahzad, M I; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; de Souza, R D; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Szabo, A; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thakur, D; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yang, H; Yang, P; Yano, S; Yasin, Z; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Yushmanov, I; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M
2016-04-01
We report the first results of elliptic (v_{2}), triangular (v_{3}), and quadrangular (v_{4}) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of sqrt[s_{NN}]=5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region |η|<0.8 and for the transverse momentum range 0.2
Space-charge driven emittance growth in a 3D mismatched anisotropic beam
International Nuclear Information System (INIS)
Qiang, J.; Ryne, R.D.; Hofmann, I.
2002-01-01
In this paper we present a 3D simulation study of the emittance growth in a mismatched anisotropic beam. The equipartitioning driven by a 4th order space-charge resonance can be significantly modified by the presence of mismatch oscillation and halo formation. This causes emittance growth in both the longitudinal and transverse directions which could drive the beam even further away from equipartition. The averaged emittance growth per degree freedom follows the upper bound of the 2D free energy limit plus the contributions from equipartitioning
Anisotropic Bianchi II cosmological models with matter and electromagnetic fields
International Nuclear Information System (INIS)
Soares, D.
1978-01-01
A class of solutions of Einstein-Maxwell equations is presented, which corresponds to anisotropic Bianchi II spatially homogeneous cosmological models with perfect fluid and electromagnetic field. A particular model is examined and shown to be unstable for perturbations of the electromagnetic field strength parameter about a particular value. This value defines a limiar unstable case in which the ratio epsilon, of the fluid density to the e.m. energy density is monotonically increasing with a minimum finite value at the singularity. Beyond this limiar, the model has a matter dominated singularity, and a characteristic stage appears where epsilon has a minimum, at a finite time from the singularity. For large times, the models tend to an exact solution for zero electromagnetic field and fluid with p = (1/5)p. Some cosmological features of the models are calculated, as the effect of anisotropy on matter density and expansion time scale factors, as compared to the corresponding Friedmann model [pt
International Nuclear Information System (INIS)
Isayev, A. A.; Yang, J.
2011-01-01
Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20 parametrization) are considered in the magnetic fields H up to 10 20 G at finite temperature. In a strong magnetic field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and perpendicular to the field direction becomes significant at H>H th ∼10 18 G. The longitudinal pressure decreases with the magnetic field and vanishes in the critical field 10 18 c 19 G, resulting in the longitudinal instability of neutron matter. With increasing temperature, the threshold H th and critical H c magnetic fields also increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down in a polarized state.
A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.
Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui
2018-06-01
The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.
International Nuclear Information System (INIS)
Piraud, M; Pezzé, L; Sanchez-Palencia, L
2013-01-01
The macroscopic transport properties in a disordered potential, namely diffusion and weak/strong localization, closely depend on the microscopic and statistical properties of the disorder itself. This dependence is rich in counter-intuitive consequences. It can be particularly exploited in matter wave experiments, where the disordered potential can be tailored and controlled, and anisotropies are naturally present. In this work, we apply a perturbative microscopic transport theory and the self-consistent theory of Anderson localization to study the transport properties of ultracold atoms in anisotropic two-dimensional (2D) and three-dimensional (3D) speckle potentials. In particular, we discuss the anisotropy of single-scattering, diffusion and localization. We also calculate disorder-induced shift of the energy states and propose a method to include it, which amounts to renormalizing energies in the standard on-shell approximation. We show that the renormalization of energies strongly affects the prediction for the 3D localization threshold (mobility edge). We illustrate the theoretical findings with examples which are relevant for current matter wave experiments, where the disorder is created with laser speckle. This paper provides a guideline for future experiments aiming at the precise location of the 3D mobility edge and study of anisotropic diffusion and localization effects in 2D and 3D. (paper)
Relativistic modeling of compact stars for anisotropic matter distribution
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)
2017-05-15
In this paper we have solved Einstein's field equations of spherically symmetric spacetime for anisotropic matter distribution by assuming physically valid expressions of the metric function e{sup λ} and radial pressure (p{sub r}). Next we have discussed the physical properties of the model in details by taking the radial pressure p{sub r} equal to zero at the boundary of the star. The physical analysis of the star indicates that its model parameters such as density, redshift, radial pressure, transverse pressure and anisotropy are well behaved. Also we have obtained the mass and radius of our compact star which are 2.29M {sub CircleDot} and 11.02 km, respectively. It is observed that the model obtained here for compact stars is compatible with the mass and radius of the strange star PSR 1937 +21. (orig.)
Charge Asymmetric Cosmic Rays as a probe of Flavor Violating Asymmetric Dark Matter
DEFF Research Database (Denmark)
Masina, Isabella; Sannino, Francesco
2011-01-01
The recently introduced cosmic sum rules combine the data from PAMELA and Fermi-LAT cosmic ray experiments in a way that permits to neatly investigate whether the experimentally observed lepton excesses violate charge symmetry. One can in a simple way determine universal properties of the unknown...... component of the cosmic rays. Here we attribute a potential charge asymmetry to the dark sector. In particular we provide models of asymmetric dark matter able to produce charge asymmetric cosmic rays. We consider spin zero, spin one and spin one-half decaying dark matter candidates. We show that lepton...... flavor violation and asymmetric dark matter are both required to have a charge asymmetry in the cosmic ray lepton excesses. Therefore, an experimental evidence of charge asymmetry in the cosmic ray lepton excesses implies that dark matter is asymmetric....
Constraints on dark matter particles charged under a hidden gauge group from primordial black holes
International Nuclear Information System (INIS)
Dai, De-Chang; Stojkovic, Dejan; Freese, Katherine
2009-01-01
In order to accommodate increasingly tighter observational constraints on dark matter, several models have been proposed recently in which dark matter particles are charged under some hidden gauge group. Hidden gauge charges are invisible for the standard model particles, hence such scenarios are very difficult to constrain directly. However black holes are sensitive to all gauge charges, whether they belong to the standard model or not. Here, we examine the constraints on the possible values of the dark matter particle mass and hidden gauge charge from the evolution of primordial black holes. We find that the existence of the primordial black holes with reasonable mass is incompatible with dark matter particles whose charge to mass ratio is of the order of one. For dark matter particles whose charge to mass ratio is much less than one, we are able to exclude only heavy dark matter in the mass range of 10 11 GeV–10 16 GeV. Finally, for dark matter particles whose charge to mass ratio is much greater than one, there are no useful limits coming from primordial black holes
Ray, J. R.
1982-01-01
Two theories of matter in general relativity, the fluid theory and the kinetic theory, were studied. Results include: (1) a discussion of various methods of completing the fluid equations; (2) a method of constructing charged general relativistic solutions in kinetic theory; and (3) a proof and discussion of the incompatibility of perfect fluid solutions in anisotropic cosmologies. Interpretations of NASA gravitational experiments using the above mentioned results were started. Two papers were prepared for publications based on this work.
Order-disorder transition of vortex matter in Mg{sub 0.9}B{sub 2}: anisotropic effects
Energy Technology Data Exchange (ETDEWEB)
Oliveira, A A M; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, SP (Brazil); Sharma, P A; Hur, N; Cheong, S-W, E-mail: ana@df.ufscar.b, E-mail: ana@df.ufscar.b [Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers, NJ (United States)
2009-03-01
Third-harmonic susceptibility studies have been employed to probe the order-disorder transition of Vortex Matter of a magnesium-deficient sample of MgB{sub 2}. Our results reveal that the measured threshold is anisotropic for different orientations of the applied magnetic field, suggesting that the pinning efficiency of the magnesium-deficient regions depend on the orientation of the penetrated vortices.
Energy Technology Data Exchange (ETDEWEB)
Chen, Ya-Hui; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, Shanxi (China)
2017-11-15
Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces. (orig.)
Chen, Ya-Hui; Liu, Fu-Hu
2017-11-01
Event patterns extracted from anisotropic spectra of charged particles produced in lead-lead collisions at 2.76 TeV are investigated. We use an inverse power-law resulted from the QCD calculus to describe the transverse momentum spectrum in the hard scattering process, and a revised Erlang distribution resulted from a multisource thermal model to describe the transverse momentum spectrum and anisotropic flow in the soft excitation process. The pseudorapidity distribution is described by a three-Gaussian function which is a revision of the Landau hydrodynamic model. Thus, the event patterns at the kinetic freeze-out are displayed by the scatter plots of the considered particles in the three-dimensional velocity, momentum, and rapidity spaces.
Nature’s Particulate Matter with and without Charge and Travelling
Ursem, W.N.J.
2016-01-01
Natures and anthropogenic particulates can travel long distances on wind flows, but negative electrical charge due to friction can increase dispersion. Models for calculations of distance travelling of biological particulate matter with and without charge are never been calculated in a theoretical
Apparatus to detect stable fractional charges on matter
International Nuclear Information System (INIS)
Vanderspek, R.
1980-04-01
The construction of an apparatus designed to detect stable fractional charges on matter, if they exist, to the level of 10 -24 per nucleon is reported and discussed. The charges on a stream of highly consistent droplets produced by the apparatus are determined by accurate measurement of the deflection of the droplets in falling through a static electric field. Maintenance of certain parameters of operation calculated to limit the random effects of electrical and aerodynamical disturbances on the droplets indicate a precision in the measurement of the charge on a droplet of 0.02e can be attained. 7 figures
Charged Q-ball dark matter from B and L direction
Energy Technology Data Exchange (ETDEWEB)
Hong, Jeong-Pyong; Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Yamada, Masaki [Institute for Cosmic Ray Research, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582 (Japan); Kavli IPMU (WPI), UTIAS, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Department of Physics, Tohoku University,Sendai, Miyagi 980-8578 (Japan)
2016-08-24
We consider nearly equal number of gauge mediation type charged (anti-) Q-balls with charge of ±α{sup −1}≃±137 well before the BBN epoch and discussed how they evolve in time. We found that ion-like objects with electric charges of +O(1) are likely to become relics in the present universe, which we expect to be the dark matter. These are constrained by MICA experiment, where the trail of heavy atom-like or ion-like object in 10{sup 9} years old ancient mica crystals is not observed. We found that the allowed region for gauge mediation model parameter and reheating temperature have to be smaller than the case of the neutral Q-ball dark matter.
First results from ALICE on anisotropic flow at Run 2 at LHC
CERN. Geneva
2016-01-01
The goal of studies with relativistic heavy-ion collisions is to investigate the Quark-Gluon Plasma (QGP), a state of matter where quarks and gluons move freely over distances large in comparison to the typical size of a hadron. The exploration of QGP properties has broken new ground with the recent heavy-ion collisions from Run 2 operations at Large Hadron Collider, at the highest energies to date. The ALICE Collaboration has made the first observation of anisotropic flow of charged particles in lead-lead collisions at the record breaking energy of 5.02 TeV per nucleon pair. The talk presents these new results and discusses how they further enlighten the properties of matter produced in ultrarelativistic nuclear collisions.
Kar, J. K.; Panda, Saswati; Rout, G. C.
2017-05-01
We propose here a tight binding model study of the interplay between charge and spin orderings in the CMR manganites taking anisotropic effect due to electron hoppings and spin exchanges. The Hamiltonian consists of the kinetic energies of eg and t2g electrons of manganese ion. It further includes double exchange and Heisenberg interactions. The charge density wave interaction (CDW) describes an extra mechanism for the insulating character of the system. The CDW gap and spin parameters are calculated using Zubarev's Green's function technique and computed self-consistently. The results are reported in this communication.
Mass, matter, materialization, mattergenesis and conservation of charge
International Nuclear Information System (INIS)
Tsan, Ung Chan
2013-01-01
Conservation of mass in classical physics and in chemistry is considered to be equivalent to conservation of matter and is a necessary condition together with other universal conservation laws to account for observed experiments. Indeed matter conservation is associated to conservation of building blocks (molecules, atoms, nucleons, quarks and leptons). Matter is massive but mass and matter are two distinct concepts even if conservation of mass and conservation of matter represent the same reality in classical physics and chemistry. Conservation of mass is a consequence of conservation of atoms. Conservation of mass is valid because in these cases it is a very good approximation, the variation of mass being tiny and undetectable by weighing. However, nuclear physics and particle physics clearly show that conservation of mass is not valid to express conservation of matter. Mass is one form of energy, is a positive quantity and plays a fundamental role in dynamics allowing particles to be accelerated. Origin of mass may be linked to recently discovered Higgs bosons. Matter conservation means conservation of baryonic number A and leptonic number L, A and L being algebraic numbers. Positive A and L are associated to matter particles, negative A and L are associated to antimatter particles. All known interactions do conserve matter thus could not generate, from pure energy, a number of matter particles different from that of number of antimatter particles. But our universe is material and neutral, this double message has to be deciphered simultaneously. Asymmetry of our universe demands an interaction which violates matter conservation but obeys all universal conservation laws, in particular conservation of electric charge Q. Expression of Q shows that conservation of (A–L) and total flavor TF are necessary and sufficient to conserve Q. Conservation of A and L is indeed a trivial case of conservation of (A–L) and is valid for all known interactions of the standard
Atomic interactions of charged particles with matter
International Nuclear Information System (INIS)
Bichsel, H.
1993-01-01
Ideas about the interactions of charged particles with matter are discussed. First, some experimental information is presented. Concepts related to collision cross sections and the Bethe model for them are given. The stopping power is derived and applied to the discussion of depth dose functions ('Bragg curves'). Some details of the energy loss in microscopic volumes are discussed
Energy Technology Data Exchange (ETDEWEB)
Mirzagholi, Leila; Vikman, Alexander, E-mail: l.mirzagholi@physik.uni-muenchen.de, E-mail: alexander.vikman@lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University Munich, Theresienstr. 37, Munich, D-80333 Germany (Germany)
2015-06-01
We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.
International Nuclear Information System (INIS)
Mirzagholi, Leila; Vikman, Alexander
2015-01-01
We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models
Mirzagholi, Leila; Vikman, Alexander
2015-06-01
We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.
Charge diffusion and the butterfly effect in striped holographic matter
Energy Technology Data Exchange (ETDEWEB)
Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)
2016-10-26
Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.
Charge diffusion and the butterfly effect in striped holographic matter
International Nuclear Information System (INIS)
Lucas, Andrew; Steinberg, Julia
2016-01-01
Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.
Cracking on anisotropic neutron stars
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films
Liu, Xiang
2017-12-26
The anisotropic magnetoresistance (AMR) near the Verwey temperature (T-V) is investigated in charge ordered Fe3O4 epitaxial films. When the temperature continuously decreases below T-V, the symmetry of AMR in Fe3O4(100) film evolves from twofold to fourfold at a magnetic field of 50 kOe, where the magnetic field is parallel to the film surface, whereas AMR in Fe3O4(111) film maintains twofold symmetry. By analyzing AMR below T-V, it is found that the Verwey transition contains two steps, including a fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR at a lower temperature can be ascribed to the in-plane trimerons. By comparing the AMR in the films with two orientations, it is found that the trimeron shows a smaller resistivity in a parallel magnetic field. The field-dependent AMR results show that the trimeron-sensitive field has a minimum threshold of about 2 kOe.
Cracking of anisotropic cylindrical polytropes
Energy Technology Data Exchange (ETDEWEB)
Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2017-06-15
We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)
Charge symmetry breaking nuclear forces and the properties of nuclear matter
International Nuclear Information System (INIS)
Haensel, P.
1977-01-01
The charge symmetry breaking (CSB) component of the nuclear forces yields the charge asymmetric term Esub(a)(N-Z)/A in the nuclear binding energy of nuclear matter. Calculation performed with several models of the CSB nuclear forces, and accounting for the strong short-range two-body correlations, gives Esub(a) approximately -0.2 MeV at the normal nuclear density. The charge asymmetry of the effective nucleon-nucleon interaction is determined primarily by the CSB nuclear forces at the neutron excess, observed in finite nuclei. The exclusion principle and dispersion (self-consistency) effects of the nuclear medium decrease this charge asymmetry. (author)
Gravitational Collapse of Charged Matter in Einstein-DeSitter Universe
Avinash, K.; Krishnan, V.
1997-11-01
Gravitational collapse of charged matter in expanding universe is studied. We consider a quasi neutral electron-ion-massive grain plasma in which all the three species are expanding at the same rate i.e., ni ∝ 1/R^3 [ ni is the number density of the i^ th species and R is the scale factor ]. In Einstein-DeSitter universe the scale factor R goes as ~ t^2/3. The electrons and ions follow Boltzmann's relation. The stability of this equilibrium is studied on Jeans times scale. Depending on the ratio a = fracq d^2Gmd^2 the growth of gravitational collapse is further moderated from t^2/3 growth. For a=1, the instability is completely quenched. In curvature and radiation dominated universe, there is no additional effect due to finite charge of the matter.
Anisotropic flow of charged particles in Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$ = 5.02 TeV
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Benacek, Pavel; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kostarakis, Panagiotis; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Derradi De Souza, Rafael; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-04-01
We report the first results of elliptic ($v_2$), triangular ($v_3$) and quadrangular flow ($v_4$) of charged particles in Pb--Pb collisions at $\\sqrt{s_{_{\\rm NN}}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region $|\\eta| <$ 0.8 and for the transverse momentum range 0.2 $< p_{\\rm T} < $ 5 GeV/$c$. The anisotropic flow is measured using two--particle correlations with a pseudorapidity gap greater than one unit and with the multi--particle cumulant method. Compared to results from Pb--Pb collisions at $\\sqrt{s_{_{\\rm NN}}}=$ 2.76 TeV, the anisotropic flow coefficients $v_{2}$, $v_{3}$ and $v_{4}$ are found to increase by (3.0$\\pm$0.6)\\%, (4.3$\\pm$1.4)\\% and (10.2$\\pm$3.8)\\%, respectively, over the centrality range 0-50\\%. This can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This com...
Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory
International Nuclear Information System (INIS)
Kuang, Xiao-Mei; Fang, Li-Qing
2015-01-01
We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated
Inside charged black holes. II. Baryons plus dark matter
International Nuclear Information System (INIS)
Hamilton, Andrew J.S.; Pollack, Scott E.
2005-01-01
This is the second of two companion papers on the interior structure of self-similar accreting charged black holes. In the first paper, the black hole was allowed to accrete only a single fluid of charged baryons. In this second paper, the black hole is allowed to accrete in addition a neutral fluid of almost noninteracting dark matter. Relativistic streaming between outgoing baryons and ingoing dark matter leads to mass inflation near the inner horizon. When enough dark matter has been accreted that the center-of-mass frame near the inner horizon is ingoing, then mass inflation ceases and the fluid collapses to a central singularity. A null singularity does not form on the Cauchy horizon. Although the simultaneous presence of ingoing and outgoing fluids near the inner horizon is essential to mass inflation, reducing one or the other of the ingoing dark matter or outgoing baryonic streams to a trace relative to the other stream makes mass inflation more extreme, not the other way around as one might naively have expected. Consequently, if the dark matter has a finite cross section for being absorbed into the baryonic fluid, then the reduction of the amount of ingoing dark matter merely makes inflation more extreme, the interior mass exponentiating more rapidly and to a larger value before mass inflation ceases. However, if the dark matter absorption cross section is effectively infinite at high collision energy, so that the ingoing dark matter stream disappears completely, then the outgoing baryonic fluid can drop through the Cauchy horizon. In all cases, as the baryons and the dark matter voyage to their diverse fates inside the black hole, they only ever see a finite amount of time pass by in the outside universe. Thus the solutions do not depend on what happens in the infinite past or future. We discuss in some detail the physical mechanism that drives mass inflation. Although the gravitational force is inward, inward means opposite direction for ingoing and
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for
Field theoretic approach to structure formation in an anisotropic medium
International Nuclear Information System (INIS)
Joy, Minu; Kuriakose, V.C.
2003-01-01
Considering a real scalar field distribution which is assumed to be locally anisotropic and coupled to a Bianchi type-I background spacetime, the energy density and pressure associated with the anisotropic matter field distribution are evaluated. The vanishing of the expectation values of the nondiagonal components of T μν allows us to treat the scalar field in complete analogy with the distribution of fluid. The primeval density perturbations produced by the vacuum fluctuations of the scalar field are considered and the Jeans criterion for structure formation is obtained. The metric and matter field perturbations are considered and it is found that for the present anisotropic case the perturbations of the pressure in the radial and tangential directions are different. The Jeans instability is discussed and the Jeans wave number for the present case is evaluated. It is found that for the anisotropic case the Jeans length depends on the velocity of the fluctuations in the radial and transverse directions and thus on the direction of propagation of the perturbations
Dynamic of charged planar geometry in tilted and non-tilted frames
Energy Technology Data Exchange (ETDEWEB)
Sharif, M., E-mail: msharif.math@pu.edu.pk; Zaeem Ul Haq Bhatti, M., E-mail: mzaeem.math@pu.edu.pk [University of the Punjab, Department of Mathematics (Pakistan)
2015-05-15
We investigate the dynamics of charged planar symmetry with an anisotropic matter field subject to a radially moving observer called a tilted observer. The Einstein-Maxwell field equations are used to obtain a relation between non-tilted and tilted frames and between kinematical and dynamical quantities. Using the Taub mass formalism and conservation laws, two evolution equations are developed to analyze the inhomogeneities in the tilted congruence. It is found that the radial velocity (due to the tilted observer) and the electric charge have a crucial effect on the inhomogeneity factor. Finally, we discuss the stability in the non-tilted frame in the pure diffusion case and examine the effects of the electromagnetic field.
Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua
2018-03-07
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.
Anisotropic stars obeying Chaplygin equation of state
Indian Academy of Sciences (India)
P Bhar
2017-12-14
Dec 14, 2017 ... Anisotropic effects may also originate from slow rotation of the core ... to include the effects of pressure anisotropy, electric charge, scalar field, dark energy and the cosmological constant in .... Generating solutions. In order to ...
Anisotropic inflation from charged scalar fields
International Nuclear Information System (INIS)
Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem
2011-01-01
We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities
Anisotropic spheres with Van der Waals-type equation of state
Indian Academy of Sciences (India)
We study static spherically symmetric space-time to describe relativistic compact objects with anisotropic matter distribution and derive two classes of exact models to the Einstein–Maxwell system ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science
Elastic properties of spherically anisotropic piezoelectric composites
International Nuclear Information System (INIS)
En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon
2010-01-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)
Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples
Ciftja, Orion
2017-02-01
Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.
Jets in a strongly coupled anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)
2018-01-15
In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)
Interaction of low-energy highly charged ions with matter
International Nuclear Information System (INIS)
Ginzel, Rainer
2010-01-01
The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)
Anisotropic conducting films for electromagnetic radiation applications
Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard
2015-06-16
Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.
Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge
Energy Technology Data Exchange (ETDEWEB)
Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2016-02-15
The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)
Hidden charged dark matter and chiral dark radiation
Ko, P.; Nagata, Natsumi; Tang, Yong
2017-10-01
In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.
Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory
Directory of Open Access Journals (Sweden)
Melis ULU DOĞRU
2018-02-01
Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.
Charged composite scalar dark matter
Balkin, Reuven; Ruhdorfer, Maximilian; Salvioni, Ennio; Weiler, Andreas
2017-11-01
We consider a composite model where both the Higgs and a complex scalar χ, which is the dark matter (DM) candidate, arise as light pseudo Nambu-Goldstone bosons (pNGBs) from a strongly coupled sector with TeV scale confinement. The global symmetry structure is SO(7)/SO(6), and the DM is charged under an exact U(1)DM ⊂ SO(6) that ensures its stability. Depending on whether the χ shift symmetry is respected or broken by the coupling of the top quark to the strong sector, the DM can be much lighter than the Higgs or have a weak-scale mass. Here we focus primarily on the latter possibility. We introduce the lowest-lying composite resonances and impose calculability of the scalar potential via generalized Weinberg sum rules. Compared to previous analyses of pNGB DM, the computation of the relic density is improved by fully accounting for the effects of the fermionic top partners. This plays a crucial role in relaxing the tension with the current DM direct detection constraints. The spectrum of resonances contains exotic top partners charged under the U(1)DM, whose LHC phenomenology is analyzed. We identify a region of parameters with f = 1.4 TeV and 200 GeV ≲ m χ ≲ 400 GeV that satisfies all existing bounds. This DM candidate will be tested by XENON1T in the near future.
Directory of Open Access Journals (Sweden)
Hyeon Seo
Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.
Carrier Transport and Related Effects in Detectors of the Cryogenic Dark Matter Search
Energy Technology Data Exchange (ETDEWEB)
Sundqvist, Kyle Michael [Univ. of California, Berkeley, CA (United States)
2012-01-01
The Cryogenic Dark Matter Search (CDMS) is searching for weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring signals from deposited charge and the energy in nonequilibrium phonons created by particle interactions in intrinsic germanium crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier scattering is dominated by the spontaneous emission of Luke-Neganov phonons due to zeropoint fluctuations of the lattice ions. Drift fields are maintained at only a few V/cm, else these emitted phonons would dominate the phonons of the original interaction. The dominant systematic issues with CDMS detectors are due to the effects of space charge accumulation. It has been an open question how space charge accrues, and by which of several potential recombination and ionization processes. In this work, we have simulated the transport of electrons and holes in germanium under CDMS conditions. We have implemented both a traditional Monte Carlo technique based on carrier energy, followed later by a novel Monte Carlo algorithm with scattering rates defined and sampled by vector momentum. This vector-based method provides for a full anisotropic simulation of carrier transport including free-fight acceleration with an anisotropic mass, and anisotropic scattering rates. With knowledge of steady state carrier dynamics as a function of applied field, the results of our Monte Carlo simulations allow us to make a wide variety of predictions for energy dependent processes for both electrons and holes. Such processes include carrier capture by charged impurities, neutral impurities, static
A small amount of mini-charged dark matter could cool the baryons in the early Universe.
Muñoz, Julian B; Loeb, Abraham
2018-05-01
The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.
Lee, Won Hee; Kim, Tae-Seong
2012-01-01
This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions
The most general cosmological dynamics for ELKO matter fields
International Nuclear Information System (INIS)
Fabbri, Luca
2011-01-01
Not long ago, the definition of eigenspinors of charge-conjugation belonging to a special Wigner class has lead to the unexpected theoretical discovery of a form of matter with spin 1/2 and mass dimension 1, called ELKO matter field; ELKO matter fields defined in flat spacetimes have been later extended to curved and twisted spacetimes, in order to include in their dynamics the coupling to gravitational fields possessing both metric and torsional degrees of freedom: the inclusion of non-commuting spinorial covariant derivatives allows for the introduction of more general dynamical terms influencing the behaviour of ELKO matter fields. In this Letter, we shall solve the theoretical problem of finding the most general dynamics for ELKO matter, and we will face the phenomenological issue concerning how the new dynamical terms may affect the behavior of ELKO matter; we will see that new effects will arise for which the very existence of ELKO matter will be endangered, due to the fact that ELKOs will turn incompatible with the cosmological principle. Thus we have that anisotropic universes must be taken into account if ELKOs are to be considered in their most general form.
Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking
International Nuclear Information System (INIS)
Colatto, L.P.; Penna, A.L.A.; Santos, W.C.
2003-10-01
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)
Fundamentals of charged particle transport in gases and condensed matter
Robson, Robert E; Hildebrandt, Malte
2018-01-01
This book offers a comprehensive and cohesive overview of transport processes associated with all kinds of charged particles, including electrons, ions, positrons, and muons, in both gases and condensed matter. The emphasis is on fundamental physics, linking experiment, theory and applications. In particular, the authors discuss: The kinetic theory of gases, from the traditional Boltzmann equation to modern generalizations A complementary approach: Maxwell’s equations of change and fluid modeling Calculation of ion-atom scattering cross sections Extension to soft condensed matter, amorphous materials Applications: drift tube experiments, including the Franck-Hertz experiment, modeling plasma processing devices, muon catalysed fusion, positron emission tomography, gaseous radiation detectors Straightforward, physically-based arguments are used wherever possible to complement mathematical rigor.
Directory of Open Access Journals (Sweden)
Y.O. Uhryn
2017-12-01
Full Text Available Magnetoresistance as a tool of basic parameters determination of minority charge carriers and the ratio of minority charge carriers conductivity to majority ones in solid matter has been considered within the framework of the phenomenological two-band model. The criterion of the application of this model has been found. As examples of these equations usage the conductor, semiconductor and superconductor have been introduced. From the obtained temperature dependences of the aforementioned values in superconductor, a supposition of a deciding role of minority charge carriers in the emergence of superconductivity state has been made.
Modelling of anisotropic compact stars of embedding class one
Energy Technology Data Exchange (ETDEWEB)
Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)
2016-10-15
In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)
An anisotropic standing wave braneworld and associated Sturm-Liouville problem
International Nuclear Information System (INIS)
Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto
2012-01-01
We present a consistent derivation of the recently proposed 5D anisotropic standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We explicitly solve the corresponding junction conditions, a fact that enables us to give a physical interpretation to the anisotropic energy-momentum tensor components of the brane. So matter on the brane represents an oscillating fluid which emits anisotropic waves into the bulk. We also analyze the Sturm-Liouville problem associated with the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model. (paper)
Study of dark matter and QCD-charged mediators in the quasidegenerate regime
Davidson, Andrew; Kelso, Chris; Kumar, Jason; Sandick, Pearl; Stengel, Patrick
2017-12-01
We study a scenario in which the only light new particles are a Majorana fermion dark matter candidate and one or more QCD-charged scalars, which couple to light quarks. This scenario has several interesting phenomenological features if the new particles are nearly degenerate in mass. In particular, LHC searches for the light scalars have reduced sensitivity, since the visible and invisible products tend to be softer. Moreover, dark matter-scalar coannihilation can allow even relatively heavy dark matter candidates to be consistent thermal relics. Finally, the dark matter nucleon scattering cross section is enhanced in the quasidegenerate limit, allowing direct detection experiments to use both spin-independent and spin-dependent scattering to probe regions of parameter space beyond those probed by the LHC. Although this scenario has a broad application, we phrase this study in terms of the minimal supersymmetric standard model, in the limit where the only light sparticles are a binolike dark matter candidate and light-flavored squarks.
International Nuclear Information System (INIS)
Gauthier, Maxence
2013-01-01
The determination if the ion slowing down process (or stopping power) in warm dense matter is essential especially in the frame of inertial confinement fusion. During my thesis, our interest was driven by the modification of the charge state of ion beam emerging from warm dense matter, this quantity playing a major role in ion stopping power calculation. We took advantage of the properties exhibited by ion beams produced by high intensity short pulse lasers to study during two experiments performed at ELFIE and TITAN facilities, the charge state modification of a carbon and helium ion beams emerging from an aluminum foil isochorically heated by an energetic proton beam. In the first two chapters are presented the major challenges regarding the subject from both a theoretical and experimental point of view. Here are exposed the different simulation tools used during the thesis. The third chapter is devoted to the study of the property of laser-produced ion beams in the scope of our experiments aiming at studying the stopping power. We have studied in particular ion beams generated using lower-than-solid density targets during two experiments: helium gas jet and laser-exploded target. In the last chapter are presented the set-ups and results of the two experiments on the charge state of ion beam emerging from warm dense matter. The data we measured in solid-density cold aluminum are successfully compared with the results already obtained in conventional accelerators. (author) [fr
Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures
Energy Technology Data Exchange (ETDEWEB)
Moffatt, Robert [Stanford Univ., CA (United States)
2016-03-01
In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.
Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation
Brainerd, Tereasa G.
2017-06-01
In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the
Symmetry analysis for anisotropic field theories
International Nuclear Information System (INIS)
Parra, Lorena; Vergara, J. David
2012-01-01
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Anomalously large anisotropic magnetoresistance in a perovskite manganite
Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi
2009-01-01
The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504
Quark–gluon plasma phenomenology from anisotropic lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Skullerud, Jon-Ivar; Kelly, Aoife [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Aarts, Gert; Allton, Chris; Amato, Alessandro; Evans, P. Wynne M.; Hands, Simon [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Burnier, Yannis [Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne (Switzerland); Giudice, Pietro [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, Tim; Ryan, Sinéad M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kim, Seyong [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, Maria Paola [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Oktay, Mehmet B. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rothkopf, Alexander [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)
2016-01-22
The FASTSUM collaboration has been carrying out simulations of N{sub f} = 2 + 1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Anisotropic spheres with Van der Waals-type equation of state
Indian Academy of Sciences (India)
2014-07-02
Jul 2, 2014 ... Einstein–Maxwell system; anisotropic matter; equation of state; relativistic star. ... the temperature-dominated phase in the early Universe or in ..... of Lobo [22], the de Sitter isotropic model and Einstein's model can be regained ...
The search for fractional charge elemental particles and very massive particles in bulk matter
International Nuclear Information System (INIS)
Perl, M.
2000-01-01
The authors describe their ongoing work on, and future plans for, searches in bulk matter for fractional charge elementary particles and very massive elementary particles. Their primary interest is in searching for such particles that may have been produced in the early universe and may be found in the more primeval matter available in the solar system: meteorites, material from the moon's surface, and certain types of ancient terrestrial rocks. In the future the authors are interested in examining material brought back by sample return probes from asteroids. The authors will describe their experimental methods that are based on new modifications of the Millikan liquid drop technique and modern technology: micromachining, CCD cameras, and desktop computers. Extensions of the experimental methods and technology allow searches for very massive charged particles in primeval matter; particles with masses greater than 1,013 GeV. In the first such searches carried out on earth there will be uncertainties in the mass search range. Therefore the authors will also discuss the advantages of eventually carrying out such searches directly on an asteroid
Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers
Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter
2015-01-01
A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the
The traces of anisotropic dark energy in light of Planck
Energy Technology Data Exchange (ETDEWEB)
Cardona, Wilmar; Kunz, Martin [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 Quai Ernest Ansermet, 1211 Genève 4 (Switzerland); Hollenstein, Lukas, E-mail: wilmar.cardona@unige.ch, E-mail: lukas.hollenstein@zhaw.ch, E-mail: martin.kunz@unige.ch [IAS Institute of Applied Simulation, ZHAW Zurich University of Applied Sciences, Grüental, PO Box, 8820 Wädenswil (Switzerland)
2014-07-01
We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.
Stability of anisotropic stellar filaments
Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.
2017-12-01
The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.
Particle dark matter searches in the anisotropic sky
Fornengo, Nicolao; Regis, Marco
2014-02-01
Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.
Particle dark matter searches in the anisotropic sky
Directory of Open Access Journals (Sweden)
Nicolao eFornengo
2014-02-01
Full Text Available Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.
Spin-coupled charge dynamics in layered manganite crystals
Tokura, Y; Ishikawa, T
1998-01-01
Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.
Energy Technology Data Exchange (ETDEWEB)
Lemos, Jose P.S.; Lopes, Francisco J.; Quinta, Goncalo [Universidade de Lisboa, UL, Departamento de Fisica, Centro Multidisciplinar de Astrofisica, CENTRA, Instituto Superior Tecnico, IST, Lisbon (Portugal); Zanchin, Vilson T. [Universidade Federal do ABC, Centro de Ciencias Naturais e Humanas, Santo Andre, SP (Brazil)
2015-02-01
One of the stiffest equations of state for matter in a compact star is constant energy density and this generates the interior Schwarzschild radius to mass relation and the Misner maximum mass for relativistic compact stars. If dark matter populates the interior of stars, and this matter is supersymmetric or of some other type, some of it possessing a tiny electric charge, there is the possibility that highly compact stars can trap a small but non-negligible electric charge. In this case the radius to mass relation for such compact stars should get modifications. We use an analytical scheme to investigate the limiting radius to mass relation and the maximum mass of relativistic stars made of an incompressible fluid with a small electric charge. The investigation is carried out by using the hydrostatic equilibrium equation, i.e., the Tolman-Oppenheimer-Volkoff (TOV) equation, together with the other equations of structure, with the further hypothesis that the charge distribution is proportional to the energy density. The approach relies on Volkoff and Misner's method to solve the TOV equation. For zero charge one gets the interior Schwarzschild limit, and supposing incompressible boson or fermion matter with constituents with masses of the order of the neutron mass one finds that the maximum mass is the Misner mass. For a small electric charge, our analytical approximating scheme, valid in first order in the star's electric charge, shows that the maximum mass increases relatively to the uncharged case, whereas the minimum possible radius decreases, an expected effect since the new field is repulsive, aiding the pressure to sustain the star against gravitational collapse. (orig.)
Anisotropic diffusion within human white matter
International Nuclear Information System (INIS)
Chenevert, T.L.; Brunberg, J.A.; Pipe, J.G.
1990-01-01
This paper reports on measurements performed to assess the impact of fiber orientation on the apparent diffusion coefficient of human white matter in vivo. Orthogonal section selection pulses and strong motion sensitization gradient pulses were used for localized diffusion measurement along an anteroposteriorly oriented 1 x 1 cm tissue column in the left cerebral hemisphere. This region was selected since white matter fiber orientations are reasonably well defined. Independent acquisitions with motion sensitivity along anteroposterior and right-left directions allowed study of diffusion anisotropy. Motion artifacts were minimized by magnitude summation after one-dimensional Fourier transform of frequency-encoded echoes; consequently, cardiac gating was not required. Five normal volunteers were studied on a 1.5-T clinical MR system
Characterizing dark matter interacting with extra charged leptons
Barducci, D.; Deandrea, A.; Moretti, S.; Panizzi, L.; Prager, H.
2018-04-01
In the context of a simplified leptophilic dark matter (DM) scenario where the mediator is a new charged fermion carrying leptonic quantum number and the DM candidate is either scalar or vector, the complementarity of different bounds is analyzed. In this framework, the extra lepton and DM are odd under a Z2 symmetry, and hence the leptonic mediator can only interact with the DM state and Standard Model leptons of various flavors. We show that there is the possibility to characterize the DM spin (scalar or vector), as well as the nature of the mediator, through a combined analysis of cosmological, flavor and collider data. We present an explicit numerical analysis for a set of benchmarks points of the viable parameter space of our scenario.
The TT, TB, EB and BB correlations in anisotropic inflation
Energy Technology Data Exchange (ETDEWEB)
Chen, Xingang [Department of Physics, The University of Texas at Dallas, Richardson, TX 75083 (United States); Emami, Razieh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Wang, Yi, E-mail: Xingang.Chen@utdallas.edu, E-mail: emami@ipm.ir, E-mail: firouz@ipm.ir, E-mail: yw366@cam.ac.uk [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom)
2014-08-01
The ongoing and future experiments will measure the B-mode from different sky coverage and frequency bands, with the potential to reveal non-trivial features in polarization map. In this work we study the TT, TB, EB and BB correlations associated with the B-mode polarization of CMB map in models of charged anisotropic inflation. The model contains a chaotic-type large field complex inflaton which is charged under the U(1) gauge field. We calculate the statistical anisotropies generated in the power spectra of the curvature perturbation, the tensor perturbation and their cross-correlation. It is shown that the asymmetry in tensor power spectrum is a very sensitive probe of the gauge coupling. While the level of statistical anisotropy in temperature power spectrum can be small and satisfy the observational bounds, the interactions from the gauge coupling can induce large directional dependence in tensor modes. This will leave interesting anisotropic fingerprints in various correlations involving the B-mode polarization such as the TB cross-correlation which may be detected in upcoming Planck polarization data. In addition, the TT correlation receives an anisotropic contribution from the tensor sector which naturally decays after l ∼> 100. We expect that the mechanism of using tensor sector to induce asymmetry at low l to be generic which can also be applied to address other low l CMB anomalies.
Ghosh, Avirup; Mondal, Tanmoy; Mukhopadhyaya, Biswarup
2017-12-01
We consider two theoretical scenarios, each including a ℤ 2-odd sector and leading to an elementary dark matter candidate. The first one is a variant of the Type-III seesaw model where one lepton triplet is ℤ 2-odd, together with a heavy sterile neutrino. It leads to a fermionic dark matter, together with the charged component of the triplet being a quasi-stable particle which decays only via a higher-dimensional operator suppressed by a high scale. The second model consists of an inert scalar doublet together with a ℤ 2-odd right-handed Majorana neutrino dark matter. A tiny Yukawa coupling delays the decay of the charged component of the inert doublet into the dark matter candidate, making the former long-lived on the scale of collider detectors. The parameter space of each model has been constrained by big-bang nucleosynthesis constraints, and also by estimating the contribution to the relic density through freeze-out of the long-lived charged particle as well the freeze-in production of the dark matter candidate. We consider two kinds of signals at the Large Hadron Collider for each case. For the first kind of models, namely two charged tracks and single track [InlineMediaObject not available: see fulltext.] and for the second kind, the characteristic signals are opposite as well as same-sign charged track pairs. We perform a detailed analysis using event selection criteria consistent with the current experimental programmes. It is found that the scenario with a lepton triplet can be probed upto 960 (1190) GeV with an integrated luminosity of 300 (3000) fb-1, while the corresponding numbers for the inert doublet scenario are 630 (800) GeV. Furthermore, the second kind of signal mentioned in each case allows us to differentiate different dark matter scenarios from each other.
Anisotropic magnetoresistance of GaMnAs ferromagnetic semiconductors
Czech Academy of Sciences Publication Activity Database
Vašek, Petr; Svoboda, Pavel; Novák, Vít; Cukr, Miroslav; Výborný, Karel; Jurka, Vlastimil; Stuchlík, Jiří; Orlita, Milan; Maude, D. K.
2010-01-01
Roč. 23, č. 6 (2010), 1161-1163 ISSN 1557-1939 R&D Projects: GA AV ČR KAN400100652; GA MŠk MEB020928 Grant - others:EU EuroMagNET II(XE) Egide 19535NF Institutional research plan: CEZ:AV0Z10100521 Keywords : GaMnAs * anisotropic magnetoresistance * hydrogenation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2010
Charge density waves in solids
Gor'kov, LP
2012-01-01
The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an
Anisotropic spheres admitting a one-parameter group of conformal motions
International Nuclear Information System (INIS)
Herrera, L.; Ponce de Leon, J.
1985-01-01
The Einstein equations for spherically symmetric distributions of anisotropic matter (principal stresses unequal), are solved, assuming the existence of a one-parameter group of conformal motions. All solutions can be matched with the Schwarzschild exterior metric on the boundary of matter. Two families of solutions represent, respectively, expanding and contracting spheres which asymptotically tend to a static sphere with a surface potential equal to (1)/(3) . A third family of solutions describes ''oscillating black holes.'' All solutions possess a positive energy density larger than the stresses everywhere
Pseudorapidity Dependence of Anisotropic Azimuthal Flow with the ALICE Detector
DEFF Research Database (Denmark)
Hansen, Alexander Colliander
In ultra-relativistic heavy-ion collisions a new state of matter known as the strongly interacting quark-gluon plasma (sQGP) is produced. A key observable in the study of the sQGP is anisotropic azimuthal ow. The anisotropies are described by ow harmonics, vn. In this thesis, bias arising from non...
Charged anisotropic star on paraboloidal space-time
Indian Academy of Sciences (India)
2015-11-27
Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2017 Indian Academy of Sciences, Bengaluru. Contact | Site index.
Matter with dilaton charge in Weyl-Cartan spacetime and evolution of the universe
International Nuclear Information System (INIS)
Babourova, Olga V; Frolov, Boris N
2003-01-01
The perfect dilaton-spin fluid (as a model of the dilaton matter, the particles of which are endowed with intrinsic spin and dilaton charge) is considered as the source of the gravitational field in a Weyl-Cartan spacetime. The variational formalism of the gravitational field in a Weyl-Cartan spacetime is developed in the exterior form language. A homogeneous and isotropic universe filled with the dilaton matter as the dark matter is considered and one of the field equations is represented as the Einstein-like equation which leads to the modified Friedmann-Lemaitre equation. From this equation the absence of the initial singularity in the cosmological solution follows. Also the existence of two points of inflection of the scale factor function is established, the first of which corresponds to the early stage of the universe and the second to the modern era when the expansion with deceleration is replaced by the expansion with acceleration. Possible equations of state for the self-interacting cold dark matter are found on the basis of the modern observational data. An inflation-like solution is obtained
An approach to anisotropic cosmologies. 6
International Nuclear Information System (INIS)
Raychaudhuri, A.K.
1989-01-01
In this paper the motivation for the study of anisotropic cosmological models is set out. Then the mathematical basis for the study of such models as well as the description of some of the exact solutions of this genre are given. Killing vectors that spell out spacetime symmetries, are defined and the Bianchi classification of spacetimes based on the structure of the Killing vectors described. After a consideration of the kinematics of matter flow some of the known solutions are presented and their properties described. (author)
Charge orders in organic charge-transfer salts
International Nuclear Information System (INIS)
Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico
2017-01-01
Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)
Longitudinal fluctuations and decorrelation of anisotropic flow
Energy Technology Data Exchange (ETDEWEB)
Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)
2016-12-15
We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.
Boltzmann theory of engineered anisotropic magnetoresistance in (Ga, Mn)As
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; Abolfath, M.; Sinova, J.; Kučera, Jan; MacDonald, A. H.
2002-01-01
Roč. 81, č. 21 (2002), s. 4029-4031 ISSN 0003-6951 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.207, year: 2002
Anisotropic magnetoresistance components in (Ga,Mn)As
Czech Academy of Sciences Publication Activity Database
Rushforth, A.W.; Výborný, Karel; King, C.S.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.; Irvine, A.C.; Vašek, Petr; Novák, Vít; Olejník, Kamil; Sinova, J.; Jungwirth, Tomáš; Gallagher, B. L.
2007-01-01
Roč. 99, č. 14 (2007), 147207/1-147207/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 Grant - others:UK(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.944, year: 2007
Anisotropic static solutions in modelling highly compact bodies
Indian Academy of Sciences (India)
x2µ(x)dx which is the mass function. The radial pressure pr = p + 2S/. √. 3 and the tangential pressure p⊥ = p − S/. √. 3 are not equal for anisotropic matter. The magnitude S provides a measure of anisotropy. The field equations (1)–(3) were integrated by Chaisi and Maharaj [12] for the energy density. µ = j r2. + k + lr2,. (4).
Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.
2018-05-01
We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.
Anisotropic phenomena in gauge/gravity duality
International Nuclear Information System (INIS)
Zeller, Hansjoerg
2014-01-01
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
Anisotropic phenomena in gauge/gravity duality
Energy Technology Data Exchange (ETDEWEB)
Zeller, Hansjoerg
2014-05-26
In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the
Sterile neutrino dark matter and low scale leptogenesis from a charged scalar.
Frigerio, Michele; Yaguna, Carlos E
We show that novel paths to dark matter generation and baryogenesis are open when the standard model is extended with three sterile neutrinos [Formula: see text] and a charged scalar [Formula: see text]. Specifically, we propose a new production mechanism for the dark matter particle-a multi-keV sterile neutrino, [Formula: see text]-that does not depend on the active-sterile mixing angle and does not rely on a large primordial lepton asymmetry. Instead, [Formula: see text] is produced, via freeze-in, by the decays of [Formula: see text] while it is in equilibrium in the early Universe. In addition, we demonstrate that, thanks to the couplings between the heavier sterile neutrinos [Formula: see text] and [Formula: see text], baryogenesis via leptogenesis can be realized close to the electroweak scale. The lepton asymmetry is generated either by [Formula: see text]-decays for masses [Formula: see text] TeV, or by [Formula: see text]-oscillations for [Formula: see text] GeV. Experimental signatures of this scenario include an X-ray line from dark matter decays, and the direct production of [Formula: see text] at the LHC. This model thus describes a minimal, testable scenario for neutrino masses, the baryon asymmetry, and dark matter.
Fractionally charged particles and one Dirac charge magnetic monopoles: Are they compatible?
Directory of Open Access Journals (Sweden)
V.A. Rubakov
1983-01-01
Full Text Available The simultaneous existence of fractional electric charges and one Dirac charge magnetic monopoles implies the existence of a long-ranged force different from electromagnetism. This may be either unconfined colour or/and some new gauge interaction. In the latter case, ordinary matter could (and, if colour is unbroken, should carry new charge. This charge, however small the coupling constant be, could be experimentally observed in interactions of monopoles with matter. An experiment for checking this possibility is suggested.
Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge
de Celis, Emilio Rubín
2015-01-01
The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a $bulk$ field and a $shell$ field. The $bulk$ part corresponds to a field sourced by the test charge placed in a space-time without the shell. The $shell$ field accounts for the discontinuity of the extrinsic curvature ${\\kappa^p}_q$. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential prod...
Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
International Nuclear Information System (INIS)
Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.
2008-01-01
We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties
Multi-charge-state molecular dynamics and self-diffusion coefficient in the warm dense matter regime
Fu, Yongsheng; Hou, Yong; Kang, Dongdong; Gao, Cheng; Jin, Fengtao; Yuan, Jianmin
2018-01-01
We present a multi-ion molecular dynamics (MIMD) simulation and apply it to calculating the self-diffusion coefficients of ions with different charge-states in the warm dense matter (WDM) regime. First, the method is used for the self-consistent calculation of electron structures of different charge-state ions in the ion sphere, with the ion-sphere radii being determined by the plasma density and the ion charges. The ionic fraction is then obtained by solving the Saha equation, taking account of interactions among different charge-state ions in the system, and ion-ion pair potentials are computed using the modified Gordon-Kim method in the framework of temperature-dependent density functional theory on the basis of the electron structures. Finally, MIMD is used to calculate ionic self-diffusion coefficients from the velocity correlation function according to the Green-Kubo relation. A comparison with the results of the average-atom model shows that different statistical processes will influence the ionic diffusion coefficient in the WDM regime.
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe
Czech Academy of Sciences Publication Activity Database
Kriegner, D.; Výborný, Karel; Olejník, Kamil; Reichlová, Helena; Novák, Vít; Martí, Xavier; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V.V.; Springholz, G.; Holý, V.; Jungwirth, Tomáš
2016-01-01
Roč. 7, Jun (2016), 1-7, č. článku 11623. ISSN 2041-1723 R&D Projects: GA ČR GA15-13436S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.124, year: 2016
Debije, M.G.; Haas, de M.P.; Savenije, T.J.; Warman, J.M.; Fontana, M.; Stutzmann, N.; Caseri, W.R.; Smith, P.
2003-01-01
Self-assembled columns of alternating tetrachloro- and tetraalkylaminoplatinum moieties form stable, highly oriented, optically anisotropic films on a friction-deposited polytetrafluoroethylene surface (see Figure). Charge transport in the films is rapid (mobility =¿ca. 10–2 cm2¿V–1¿s–1) and highly
MR imaging evidence of anisotropic diffusion in the cat brain
International Nuclear Information System (INIS)
Moseley, M.E.; Mintorovich, J.; Cohen, Y.; Chilevitt, L.; Tsuruda, J.; Norman, D.; Weinstein, P.
1989-01-01
This paper discusses a study of diffusion behavior of brain water in the cat. Diffusion-weighted images, acquired with large gradient b values of 1,000-2,000 sec/mm 2 , showed no clear evidence of anisotropic water diffusion in either gray matter or basal ganglia. Large directional differences in image intensities and diffusion values were observed in cortical and deep white matter. Faster diffusion was sen when the direction of the applied diffusion gradient was parallel to the orientation of the white matter. Diffusion perpendicular to the gradient direction was significantly lower. This effect was proportional to gradient duration and strength and was seen in both pre- and immediate post-mortem images in all axial, sagittal, and coronal images
Conformal collineations and anisotropic fluids in general relativity
International Nuclear Information System (INIS)
Duggal, K.L.; Sharma, R.
1986-01-01
Recently, Herrera et al. [L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. Galino, J. Math. Phys. 25, 3274 (1984)] studied the consequences of the existence of a one-parameter group of conformal motions for anisotropic matter. They concluded that for special conformal motions, the stiff equation of state (p = μ) is singled out in a unique way, provided the generating conformal vector field is orthogonal to the four-velocity. In this paper, the same problem is studied by using conformal collineations (which include conformal motions as subgroups). It is shown that, for a special conformal collineation, the stiff equation of state is not singled out. Non-Einstein Ricci-recurrent spaces are considered as physical models for the fluid matter
Probes for dark matter physics
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
International Nuclear Information System (INIS)
Wang, Y. T.; Xu, L. X.; Gui, Y. X.
2010-01-01
In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .
Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin
2018-04-01
We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.
Electromagnetism on anisotropic fractal media
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Anisotropy of dark matter velocity distribution
Nagao, Keiko I.
2018-01-01
Direct detection of dark matter with directional sensitivity has the potential to discriminate the dark matter velocity distribution. Especially, it will be suitable to discriminate isotropic distribution from anisotropic one. Analyzing data produced with Monte-Carlo simulation, required conditions for the discrimination is estimated. If energy threshold of detector is optimized, $O(10^3-10^4)$ event number is required to discriminate the anisotropy.
Anisotropic cosmological solutions in massive vector theories
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji, E-mail: Lavinia.heisenberg@googlemail.com, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2016-11-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v {sup 2} || φ{sup 2} are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w {sub DE} in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w {sub DE}{sup (iso)} typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Anisotropic cosmological solutions in massive vector theories
International Nuclear Information System (INIS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-01-01
In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.
Energy Technology Data Exchange (ETDEWEB)
Ginzel, Rainer
2010-06-09
The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)
Anisotropic to Isotropic Phase Transitions in the Early Universe
Directory of Open Access Journals (Sweden)
Ajaib M. A.
2012-04-01
Full Text Available We attempt to develop a minimal formalism to describe an anisotropic to isotropic tran- sition in the early Universe. Assuming an underlying theory that violates Lorentz in- variance, we start with a Dirac like equation, involving four massless fields, and which does not exhibit Lorentz invariance. We then perform transformations that restore it to its covariant form along with a mass term for the fermion field. It is proposed that these transformations can be visualized as waves traveling in an anisotropic media. The trans- formation it = ℏ ! is then utilized to transit to a statistical thermodynamics system and the partition function then gives a better insight into the character of this transition. The statistical system hence realized is a two level system with each state doubly degenerate. We propose that modeling the transition this way can help explain the matter antimatter asymmetry of the Universe.
Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions
Czech Academy of Sciences Publication Activity Database
Giddings, A.D.; Makarovsky, O. N.; Khalid, M.N.; Yasin, S.; Edmonds, K. W.; Campion, R. P.; Wunderlich, J.; Jungwirth, Tomáš; Williams, D.A.; Gallagher, B. L.; Foxon, C. T.
2008-01-01
Roč. 10, č. 8 (2008), 085004/1-085004/9 ISSN 1367-2630 R&D Projects: GA ČR GEFON/06/E002; GA MŠk LC510; GA ČR GA202/05/0575; GA ČR GA202/04/1519 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductor * nanoconstriction * tunneling anisotropic magnetoresistance , Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2008
Anisotropic gravitational instability
International Nuclear Information System (INIS)
Polyachenko, V.L.; Fridman, A.M.
1988-01-01
Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common
Charge Transport Phenomena in Detectors of the Cryogenic Dark Matter Search
Sundqvist, Kyle
2008-03-01
The Cryogenic Dark Matter Search (CDMS) seeks to detect putative weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring the number of charge carriers and the energy in athermal phonons created by particle interactions in intrinsic Ge and Si crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei apart from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier drift-fields are maintained at only a few V/cm, else drift-emitted Luke-Neganov phonons would dominate the phonons of the original interaction. Under such conditions, carrier scattering is dominated by zero-point fluctuations of the lattice ions. It has been an open question how well the 8 Kelvin data prominent in the literature depicts this case. We compare the simulated transport properties of electrons and holes in Ge at 40 mK and at 8 K, and apply this understanding to our detectors.
Anisotropic constant-roll inflation
Energy Technology Data Exchange (ETDEWEB)
Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)
2018-01-15
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)
Anisotropy-Driven Instability in Intense Charged Particle Beams
Startsev, Edward; Qin, Hong
2005-01-01
In electrically neutral plasmas with strongly anisotropic distribution functions, free energy is available to drive different collective instabilities such as the electrostatic Harris instability and the transverse electromagnetic Weibel instability. Such anisotropies develop naturally in particle accelerators and may lead to a detoriation of beam quality. We have generalized the analysis of the classical Harris and Weibel instabilities to the case of a one-component intense charged particle beam with anisotropic temperature including the important effects of finite transverse geometry and beam space-charge. For a long costing beam, the delta-f particle-in-cell code BEST and the eighenmode code bEASt have been used to determine detailed 3D stability properties over a wide range of temperature anisotropy and beam intensity. A theoretical model is developed which describes the essential features of the linear stage of these instabilities. Both, the simulations and analytical theory, clearly show that moderately...
Czech Academy of Sciences Publication Activity Database
Gould, C.; Rüster, C.; Jungwirth, Tomáš; Girgis, E.; Schott, G. M.; Giraud, R.; Brunner, K.; Schmidt, G.; Molenkamp, L. W.
2004-01-01
Roč. 93, č. 11 (2004), 117203/1-117203/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor spintronics * tunneling anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004
Directory of Open Access Journals (Sweden)
G. Sandhya
2017-01-01
Full Text Available This work explains an advanced and accurate brain MRI segmentation method. MR brain image segmentation is to know the anatomical structure, to identify the abnormalities, and to detect various tissues which help in treatment planning prior to radiation therapy. This proposed technique is a Multilevel Thresholding (MT method based on the phenomenon of Electromagnetism and it segments the image into three tissues such as White Matter (WM, Gray Matter (GM, and CSF. The approach incorporates skull stripping and filtering using anisotropic diffusion filter in the preprocessing stage. This thresholding method uses the force of attraction-repulsion between the charged particles to increase the population. It is the combination of Electromagnetism-Like optimization algorithm with the Otsu and Kapur objective functions. The results obtained by using the proposed method are compared with the ground-truth images and have given best values for the measures sensitivity, specificity, and segmentation accuracy. The results using 10 MR brain images proved that the proposed method has accurately segmented the three brain tissues compared to the existing segmentation methods such as K-means, fuzzy C-means, OTSU MT, Particle Swarm Optimization (PSO, Bacterial Foraging Algorithm (BFA, Genetic Algorithm (GA, and Fuzzy Local Gaussian Mixture Model (FLGMM.
Charged mediators in dark matter scattering
Stengel, Patrick
2017-11-01
We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.
Static charged spheres with anisotropic pressure in general relativity
Indian Academy of Sciences (India)
Department of Mathematics, Vasavi Engineering College, Hyderabad 500 031, India. £ ... In both cases the field equations are integrated completely. ... 1. Introduction. Spherically symmetric static charged dust/perfect fluid distributions of null ...
Spinodal instability of baryon-rich quark matter
International Nuclear Information System (INIS)
Li, Feng; Ko, Che Ming
2017-01-01
The spinodal instabilities of both confined and expanding baryon-rich quark matters are studied in a transport model derived from the Nambu-Jona-Lasino model. Appreciable higher-order density moments are seen as a result of the first-order phase transition in both cases. The skewness of the quark number event-by-event distribution in a small subvolume of the system becomes appreciable for the confined quark matter. For the expanding quark matter, the density fluctuations lead to enhanced anisotropic flows and dilepton yield. (paper)
Anisotropic pressure and hyperons in neutron stars
International Nuclear Information System (INIS)
Sulaksono, A.
2015-01-01
We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M ⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M ⊙ cannot rule out the presence of hyperons in the NS core. (author)
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Shakeel; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Balasubramanian, Supraja; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Bonora, Matthias; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crkovska, Jana; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Di Ruzza, Benedetto; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Sanchez Gonzalez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grosso, Raffaele; Gruber, Lukas; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hamon, Julien Charles; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Horak, David; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Hughes, Charles; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Incani, Elisa; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Lutz, Tyler Harrison; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Mhlanga, Sibaliso; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Davide; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Martin; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shahzad, Muhammed Ikram; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Szabo, Alexander; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thakur, Dhananjaya; Thomas, Deepa; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yang, Ping; Yano, Satoshi; Yasin, Zafar; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-11-10
We present measurements of the elliptic ($\\mathrm{v}_2$), triangular ($\\mathrm{v}_3$) and quadrangular ($\\mathrm{v}_4$) anisotropic azimuthal flow over a wide range of pseudorapidities ($-3.5< \\eta < 5$). The measurements are performed with Pb-Pb collisions at $\\sqrt{s_{\\text{NN}}} = 2.76$ TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of $\\mathrm{v}_n(\\eta)$ is largely independent of centrality for the flow harmonics $n=2-4$, however the higher harmonics fall off more steeply with increasing $|\\eta|$. We assess the validity of extended longitudinal scaling of $\\mathrm{v}_2$ by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and...
Warped, anisotropic wormhole/soliton configurations in vacuum 5D gravity
International Nuclear Information System (INIS)
Vacaru, Sergiu I; Singleton, D
2002-01-01
In this paper we apply the anholonomic frames method developed in previous work to construct and study anisotropic vacuum field configurations in 5D gravity. Starting with an off-diagonal 5D metric, parametrized in terms of several ansatz functions, we show that using anholonomic frames greatly simplifies the resulting Einstein field equations. These simplified equations contain an interesting freedom in that one can choose one of the ansatz functions and then determine the remaining ansatz functions in terms of this choice. As examples we take one of the ansatz functions to be a solitonic solution of either the Kadomtsev-Petviashvili equation or the sine-Gordon equation. There are several interesting physical consequences of these solutions. First, a certain subclass of the solutions discussed in this paper has an exponential warp factor similar to that of the Randall-Sundrum model. However, the warp factor depends on more than just the fifth coordinate. In addition the warp factor arises from anisotropic vacuum solutions rather than from any explicit matter. Second, the solitonic character of these solutions might allow them to be interpreted either as gravitational models for particles (i.e. analogous to the 't Hooft-Polyakov monopole, but in the context of gravity), or as nonlinear, anisotropic gravitational waves
Stochastic Lorentz forces on a point charge moving near the conducting plate
International Nuclear Information System (INIS)
Hsiang, J.-T.; Wu, T.-H.; Lee, D.-S.
2008-01-01
The influence of quantized electromagnetic fields on a nonrelativistic charged particle moving near a conducting plate is studied. We give a field-theoretic derivation of the nonlinear, non-Markovian Langevin equation of the particle by the method of Feynman-Vernon influence functional. This stochastic approach incorporates not only the stochastic noise manifested from electromagnetic vacuum fluctuations, but also dissipation backreaction on a charge in the form of the retarded Lorentz forces. Since the imposition of the boundary is expected to anisotropically modify the effects of the fields on the evolution of the particle, we consider the motion of a charge undergoing small-amplitude oscillations in the direction either parallel or normal to the plane boundary. Under the dipole approximation for nonrelativistic motion, velocity fluctuations of the charge are found to grow linearly with time in the early stage of the evolution at the rather different rate, revealing strong anisotropic behavior. They are then asymptotically saturated as a result of the fluctuation-dissipation relation, and the same saturated value is found for the motion in both directions. The observational consequences are discussed
Brown, A.R.; Asenov, A.; Watling, J.R.
2002-01-01
We study, using numerical simulation, the intrinsic parameter fluctuations in sub 10 nm gate length double gate MOSFETs introduced by discreteness of charge and atomicity of matter. The employed "atomistic" drift-diffusion simulation approach includes quantum corrections based on the density gradient formalism. The quantum confinement and source-to-drain tunnelling effects are carefully calibrated in respect of self-consistent Poisson-Schrodinger and nonequilibrium Green's function simulation...
Out-of-Bounds Hydrodynamics in Anisotropic Dirac Fluids
Link, Julia M.; Narozhny, Boris N.; Kiselev, Egor I.; Schmalian, Jörg
2018-05-01
We study hydrodynamic transport in two-dimensional, interacting electronic systems with merging Dirac points at charge neutrality. The dispersion along one crystallographic direction is Dirac-like, while it is Newtonian-like in the orthogonal direction. As a result, the electrical conductivity is metallic in one and insulating in the other direction. The shear viscosity tensor contains six independent components, which can be probed by measuring an anisotropic thermal flow. One of the viscosity components vanishes at zero temperature leading to a generalization of the previously conjectured lower bound for the shear viscosity to entropy density ratio.
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-10-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10°. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
International Nuclear Information System (INIS)
Hallez, Hans; Staelens, Steven; Lemahieu, Ignace
2009-01-01
EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10 deg. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.
Feng, Yuan; Okamoto, Ruth J.; Namani, Ravi; Genin, Guy M.; Bayly, Philip V.
2013-01-01
White matter in the brain is structurally anisotropic, consisting largely of bundles of aligned, myelin-sheathed axonal fibers. White matter is believed to be mechanically anisotropic as well. Specifically, transverse isotropy is expected locally, with the plane of isotropy normal to the local mean fiber direction. Suitable material models involve strain energy density functions that depend on the I4 and I5 pseudo-invariants of the Cauchy–Green strain tensor to account for the effects of rela...
Gamma-ray signatures of annihilation to charged leptons in dark matter substructure
International Nuclear Information System (INIS)
Kistler, Matthew D.; Siegal-Gaskins, Jennifer M.
2010-01-01
Because of their higher concentrations and small internal velocities, Milky Way subhalos can be at least as important as the smooth halo in accounting for the GeV positron excess via dark matter annihilation. After showing how this can be achieved in various scenarios, including in Sommerfeld models, we demonstrate that, in this case, the diffuse inverse-Compton emission resulting from electrons and positrons produced in substructure leads to a nearly-isotropic signal close to the level of the isotropic GeV gamma-ray background seen by Fermi. Moreover, we show that HESS cosmic-ray electron measurements can be used to constrain multi-TeV internal bremsstrahlung gamma rays arising from annihilation to charged leptons.
Directory of Open Access Journals (Sweden)
J. Adam
2016-11-01
Full Text Available We present measurements of the elliptic (v2, triangular (v3 and quadrangular (v4 anisotropic azimuthal flow over a wide range of pseudorapidities (−3.5<η<5. The measurements are performed with Pb–Pb collisions at sNN=2.76 TeV using the ALICE detector at the Large Hadron Collider (LHC. The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of vn(η is largely independent of centrality for the flow harmonics n=2–4, however the higher harmonics fall off more steeply with increasing |η|. We assess the validity of extended longitudinal scaling of v2 by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data.
Energy Technology Data Exchange (ETDEWEB)
Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)
1998-06-01
Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)
Flow shapes and higher harmonics in anisotropic transverse collective flow
Energy Technology Data Exchange (ETDEWEB)
Argintaru, Danut; Baban, Valerica [Constanta Maritime University, Faculty of Navigation and Naval Transport, Constanta (Romania); Besliu, Calin; Jipa, Alexandru; Grossu, Valeriu [University of Bucharest, Faculty of Physics, Bucharest (Romania); Esanu, Tiberiu; Cherciu, Madalin [Institute of Space Sciences Bucharest-Magurele, Bucharest (Romania)
2017-01-15
In this paper we show that by using a jet-finder algorithm (the Anti-k{sub T} one) on UrQMD/C simulated (Au+Au at 4, 10 and 15A GeV) collisions, we can identify different flow shape structures (single flow stream events, two flow streams events, three flow streams events, etc.) and order the bulk of events in equivalence flow shape classes. Considering these flow streams as the main directions of anisotropic transverse flow, we show that the Fourier coefficients v{sub n} of anisotropic flow are better emphasized when we analyze the different event flow shape classes than when the events are mixed. Also, if we do not know the real orientation of the reaction plane, we can use as reference the Flow stream 1 - the main particle flow stream - orientation (Ψ{sub Flowstream} {sub 1}) to highlight the initial shape of the participant nuclear matter in a central to peripheral collision, and the orientation of the participant plane of order n. (orig.)
Anisotropic contrast optical microscope.
Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
Ezeribe, A. C.; Robinson, M.; Robinson, N.; Scarff, A.; Spooner, N. J. C.; Yuriev, L.
2018-02-01
More target mass is required in current TPC based directional dark matter detectors for improved detector sensitivity. This can be achieved by scaling up the detector volumes, but this results in the need for more analogue signal channels. A possible solution to reducing the overall cost of the charge readout electronics is to multiplex the signal readout channels. Here, we present a multiplexer system in expanded mode based on LMH6574 chips produced by Texas Instruments, originally designed for video processing. The setup has a capability of reducing the number of readouts in such TPC detectors by a factor of 20. Results indicate that the important charge distribution asymmetry along an ionization track is retained after multiplexed signals are demultiplexed.
Simple types of anisotropic inflation
International Nuclear Information System (INIS)
Barrow, John D.; Hervik, Sigbjoern
2010-01-01
We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.
A model with charges and polarizability for CS2 in an ionic liquid
Indian Academy of Sciences (India)
RUTH M LYNDEN-BELL
the static electrostatic distribution in the CS2 molecule with 7 charged sites and anisotropic polarizability on the carbon site and isotropic .... the charges modified to reproduce the molecular quad- ... face at 1.5 times the van der Waals radii from the nuclei ..... shows the probability distribution of induced dipoles on the C site ...
2015-01-01
This note provides a supplemental figure for data on ``Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions $\\mathbf{\\sqrt{{\\textit s}_{\\rm NN}}}$ = 2.76~TeV" published in \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{Phys.\\ Lett.\\ B {\\bf 719}, 18 (2013)}, \\href{http://arxiv.org/abs/1205.5761}{arXiv:1205.5761}. The figure~(\\ref{fig:v2_pid}) presents the $v_2$ of charged pions and protons (particles and anti-particles are not distinguished in this analysis) from the event plane method as a function of transverse momentum for different centrality classes as reported in Fig. 5 of the \\href{http://www.sciencedirect.com/science/article/pii/S037026931300004X}{publication}. The proton $v_2$ is higher than that of pions out to $\\pt=8$~GeV/$c$ where the uncertainties become large.
Direct observation of anisotropic small-hole polarons in an orthorhombic structure of BiV O4 films
Chaudhuri, A.; Mandal, L.; Chi, X.; Yang, M.; Scott, M. C.; Motapothula, M.; Yu, X. J.; Yang, P.; Shao-Horn, Y.; Venkatesan, T.; Wee, A. T. S.; Rusydi, A.
2018-05-01
Here, we report an anisotropic small-hole polaron in an orthorhombic structure of BiV O4 films grown by pulsed-laser deposition on yttrium-doped zirconium oxide substrate. The polaronic state and electronic structure of BiV O4 films are revealed using a combination of polarization-dependent x-ray absorption spectroscopy at V L3 ,2 edges, spectroscopic ellipsometry, x-ray photoemission spectroscopies, and high-resolution x-ray diffraction with the support of first-principles calculations. We find that in the orthorhombic phase, which is slightly different from the conventional pucherite structure, the unoccupied V 3d orbitals and charge inhomogeneities lead to an anisotropic small-hole polaron state. Our result shows the importance of the interplay of charge and lattice for the formation of a hole polaronic state, which has a significant impact in the electrical conductivity of BiV O4 , hence its potential use as a photoanode for water splitting.
Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor
Czech Academy of Sciences Publication Activity Database
Wunderlich, J.; Jungwirth, Tomáš; Kaestner, B.; Irvine, A.C.; Shick, Alexander; Stone, N.; Wang, K. Y.; Rana, U.; Giddings, A.D.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.
2006-01-01
Roč. 97, č. 7 (2006), 077201/1-077201/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510 Grant - others:EPSRC(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * Coulomb blockade * single electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.072, year: 2006
Relativistic model for anisotropic strange stars
Deb, Debabrata; Chowdhury, Sourav Roy; Ray, Saibal; Rahaman, Farook; Guha, B. K.
2017-12-01
In this article, we attempt to find a singularity free solution of Einstein's field equations for compact stellar objects, precisely strange (quark) stars, considering Schwarzschild metric as the exterior spacetime. To this end, we consider that the stellar object is spherically symmetric, static and anisotropic in nature and follows the density profile given by Mak and Harko (2002) , which satisfies all the physical conditions. To investigate different properties of the ultra-dense strange stars we have employed the MIT bag model for the quark matter. Our investigation displays an interesting feature that the anisotropy of compact stars increases with the radial coordinate and attains its maximum value at the surface which seems an inherent property for the singularity free anisotropic compact stellar objects. In this connection we also perform several tests for physical features of the proposed model and show that these are reasonably acceptable within certain range. Further, we find that the model is consistent with the energy conditions and the compact stellar structure is stable with the validity of the TOV equation and Herrera cracking concept. For the masses below the maximum mass point in mass vs radius curve the typical behavior achieved within the framework of general relativity. We have calculated the maximum mass and radius of the strange stars for the three finite values of bag constant Bg.
Dynamical charge fluctuation at FAIR energy
International Nuclear Information System (INIS)
Ghosh, Somnath; Mukhopadhyay, Amitabha
2015-01-01
The Compressed Baryonic Matter (CBM) experiment to be held at the Facility for antiproton and ion research (FAIR) is being designed to investigate the baryonic matter under extreme thermodynamic conditions. The hot and dense matter produced in this experiment will be rich in baryon number. It would be worthwhile to examine how the signatures proposed for identifying and characterizing a baryon free QGP like state behave in a baryon rich environment. Event-by-event fluctuation of net electrical charge and/or baryon number is one such indicator of the formation of the QGP, used and tested in RHIC and LHC heavy-ion experiments. One starts by defining the net charge Q = (N + - N - ) and the total charge N ch = (N + + N - ) where the quantities N + and N - are respectively, the multiplicities of positively and negatively charged particles
Anisotropic hydrodynamics, holography and the chiral magnetic effect
International Nuclear Information System (INIS)
Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo; Hamburg Univ.
2012-03-01
We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient υ 2 . We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on υ 2 . We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)
Anisotropic superconducting state parameters of Tl-2212 superconductors
International Nuclear Information System (INIS)
Khaskalam, Amit K.; Singh, R.K.; Varshney, Dinesh
2001-01-01
We have estimated the superconducting state parameters and their anisotropy in thallium based superconductors (Tl-2212), in the frame work of Fermi liquid approach. Determination of the effective mass of the charge carriers from the Fermi velocity and estimated anisotropic superconducting state parameters, particularly, the magnetic penetration depth along and perpendicular to the conducting plane. The coherence length along and perpendicular to the ab plane is evaluated and appears to be higher. The temperature dependence of penetration depth, their anisotropy and Ginsburg Landau parameter for optimised doped Tl based cuprates shows the power law. The technique permits a consistency with the reported data. (author)
Anisotropic hydrodynamics, holography and the chiral magnetic effect
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik
2012-03-15
We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)
Turning off the lights: How dark is dark matter?
International Nuclear Information System (INIS)
McDermott, Samuel D.; Yu Haibo; Zurek, Kathryn M.
2011-01-01
We consider current observational constraints on the electromagnetic charge of dark matter. The velocity dependence of the scattering cross section through the photon gives rise to qualitatively different constraints than standard dark matter scattering through massive force carriers. In particular, recombination epoch observations of dark matter density perturbations require that ε, the ratio of the dark matter to electronic charge, is less than 10 -6 for m X =1 GeV, rising to ε -4 for m X =10 TeV. Though naively one would expect that dark matter carrying a charge well below this constraint could still give rise to large scattering in current direct detection experiments, we show that charged dark matter particles that could be detected with upcoming experiments are expected to be evacuated from the Galactic disk by the Galactic magnetic fields and supernova shock waves and hence will not give rise to a signal. Thus dark matter with a small charge is likely not a source of a signal in current or upcoming dark matter direct detection experiments.
Collapsing stage of 'bosonic matter'
International Nuclear Information System (INIS)
Manoukian, E.B.; Muthaporn, C.; Sirininlakul, S.
2006-01-01
We prove rigorously that for 'bosonic matter', if deflation occurs upon collapse as more and more such matter is put together, then for a non-vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily cannot decrease faster than N -1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N
Dibb, Russell; Liu, Chunlei
2017-06-01
To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Energy Technology Data Exchange (ETDEWEB)
Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)
2017-02-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Drag force in strongly coupled, anisotropic plasma at finite chemical potential
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Somdeb; Haque, Najmul [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700 064 (India)
2014-12-30
We employ methods of gauge/string duality to analyze the drag force on a heavy quark moving through a strongly coupled, anisotropic N=4,SU(N) super Yang-Mills plasma in the presence of a finite U(1) chemical potential. We present numerical results valid for any value of the anisotropy parameter and the U(1) charge density and arbitrary direction of the quark velocity with respect to the direction of anisotropy. In the small anisotropy limit we are also able to furnish analytical results.
International Nuclear Information System (INIS)
Kaplan, David E.; Luty, Markus A.; Zurek, Kathryn M.
2009-01-01
We consider a simple class of models in which the relic density of dark matter is determined by the baryon asymmetry of the Universe. In these models a B-L asymmetry generated at high temperatures is transferred to the dark matter, which is charged under B-L. The interactions that transfer the asymmetry decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for the dark matter mass in the range 5-15 GeV. The symmetric component of the dark matter can annihilate efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The first possibility allows for h 0 →aa decays, while the second predicts a light charged Higgs-like scalar decaying to τν. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.
Anisotropic Conductivity Tensor Imaging of In Vivo Canine Brain Using DT-MREIT.
Jeong, Woo Chul; Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
We present in vivo images of anisotropic electrical conductivity tensor distributions inside canine brains using diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT). The conductivity tensor is represented as a product of an ion mobility tensor and a scale factor of ion concentrations. Incorporating directional mobility information from water diffusion tensors, we developed a stable process to reconstruct anisotropic conductivity tensor images from measured magnetic flux density data using an MRI scanner. Devising a new image reconstruction algorithm, we reconstructed anisotropic conductivity tensor images of two canine brains with a pixel size of 1.25 mm. Though the reconstructed conductivity values matched well in general with those measured by using invasive probing methods, there were some discrepancies as well. The degree of white matter anisotropy was 2 to 4.5, which is smaller than previous findings of 5 to 10. The reconstructed conductivity value of the cerebrospinal fluid was about 1.3 S/m, which is smaller than previous measurements of about 1.8 S/m. Future studies of in vivo imaging experiments with disease models should follow this initial trial to validate clinical significance of DT-MREIT as a new diagnostic imaging modality. Applications in modeling and simulation studies of bioelectromagnetic phenomena including source imaging and electrical stimulation are also promising.
Anisotropic strange stars under simplest minimal matter-geometry coupling in the f (R ,T ) gravity
Deb, Debabrata; Guha, B. K.; Rahaman, Farook; Ray, Saibal
2018-04-01
We study strange stars in the framework of f (R ,T ) theory of gravity. To provide exact solutions of the field equations it is considered that the gravitational Lagrangian can be expressed as the linear function of the Ricci scalar R and the trace of the stress-energy tensor T , i.e. f (R ,T )=R +2 χ T , where χ is a constant. We also consider that the strange quark matter (SQM) distribution inside the stellar system is governed by the phenomenological MIT bag model equation of state (EOS), given as pr=1/3 (ρ -4 B ) , where B is the bag constant. Further, for a specific value of B and observed values of mass of the strange star candidates we obtain the exact solution of the modified Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of f (R ,T ) gravity and have studied in detail the dependence of the different physical parameters, like the metric potentials, energy density, radial and tangential pressures and anisotropy etc., due to the chosen different values of χ . Likewise in GR, as have been shown in our previous work [Deb et al., Ann. Phys. (Amsterdam) 387, 239 (2017), 10.1016/j.aop.2017.10.010] in the present work also we find maximum anisotropy at the surface which seems an inherent property of the strange stars in modified f (R ,T ) theory of gravity. To check the physical acceptability and stability of the stellar system based on the obtained solutions we have performed different physical tests, viz., the energy conditions, Herrera cracking concept, adiabatic index etc. In this work, we also have explained the effects, those are arising due to the interaction between the matter and the curvature terms in f (R ,T ) gravity, on the anisotropic compact stellar system. It is interesting to note that as the values of χ increase the strange stars become more massive and their radius increase gradually so that eventually they gradually turn into less dense compact objects. The present study reveals that the modified f (R ,T ) gravity is a suitable
Energy Technology Data Exchange (ETDEWEB)
Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park
2009-06-19
We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.
Wang, Junzheng; Winardi, Suminto; Sugawara-Narutaki, Ayae; Kumamoto, Akihito; Tohei, Tetsuya; Shimojima, Atsushi; Okubo, Tatsuya
2012-11-21
A facile method is reported for the preparation of chain-like nanostructures by anisotropic self-assembly of TiO(2) and SnO(2) nanoparticles with the aid of a block copolymer in an aqueous medium. Well-defined crystallographic orientations between neighbouring nanoparticles are observed in TiO(2) nanochains, which is important for tailoring the grain boundaries and thus enhancing charge transport.
Charge ordering in amorphous WOx films
International Nuclear Information System (INIS)
Kopelevich, Yakov; Silva, Robson R. da; Rougier, Aline; Luk'yanchuk, Igor A.
2008-01-01
We observed highly anisotropic viscous electronic conducting phase in amorphous WO 1.55 films that occurs below a current (I)- and frequency (f)-dependent temperature T*(I, f). At T< T*(I, f) the rotational symmetry of randomly disordered electronic background is broken leading to the appearance of mutually perpendicular metallic- and insulating-like states. A rich dynamic behavior of the electronic matter occurring at T< T*(I, f) provides evidence for an interplay between pinning effects and electron-electron interactions. The results suggest a dynamic crystallization of the disordered electronic matter, viz. formation of sliding Wigner crystal, as well as the occurrence of quantum liquid-like crystal or stripe phase at low drives
Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th
2017-01-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonschior, Alexey; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jangal, Swensy Gwladys; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kanaki, Kalliopi; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Ajit Kumar; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pujol Teixido, Jordi; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym
2013-02-12
The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb–Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range |$\\eta$|8 GeV/c. The small $p_T$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_T$ =8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_T$ =8 GeV/c indicating that the particle type dependence persists out to high $p_T$.
Processing of poly-Si electrodes for charge-coupled devices
Energy Technology Data Exchange (ETDEWEB)
Sherohman, J.W.; Cook, F.D.
1978-12-06
A technique has been developed to fabricate poly-Si electrodes for charge-coupled devices. By controlling the microstructure of a poly-Si film, an anisotropic etchant was selected to provide essentially uniform electrode width dimensions. The electrode widths have only a 6% variation for the majority of the devices over the area of a 2 inch silicon wafer.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain
2014-01-01
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Analytical study of anisotropic compact star models
Energy Technology Data Exchange (ETDEWEB)
Ivanov, B.V. [Bulgarian Academy of Science, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
2017-11-15
A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method. (orig.)
International Nuclear Information System (INIS)
Udomsamuthirun, P.; Peamsuwan, R.; Kumvongsa, C.
2009-01-01
The effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors in BCS weak-coupling limit is investigated. An analytical specific heat jump and the numerical specific heat are shown by using anisotropic order parameters, and the electron-phonon interaction and non-electron-phonon interaction. The two models of anisotropic order parameters are used for numerical calculation that we find little effect on the numerical results. The specific heat jump of MgB 2 , Lu 2 Fe 3 Si 5 and Nb 3 Sn superconductors can fit well with both of them. By comparing the experimental data with overall range of temperature, the best fit is Nb 3 Sn, MgB 2 , and Lu 2 Fe 3 Si 5 superconductors.
Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
Sharma, Ankur; Yan, Han; Zhang, Linglong; Sun, Xueqian; Liu, Boqing; Lu, Yuerui
2018-05-15
Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe 2 , 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space. In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the
Numerical investigation of nanoparticles transport in anisotropic porous media
Salama, Amgad
2015-07-13
In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.
Numerical investigation of nanoparticles transport in anisotropic porous media
Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu
2015-01-01
In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.
Anisotropic charge transport in large single crystals of π-conjugated organic molecules.
Hourani, Wael; Rahimi, Khosrow; Botiz, Ioan; Koch, Felix Peter Vinzenz; Reiter, Günter; Lienerth, Peter; Heiser, Thomas; Bubendorff, Jean-Luc; Simon, Laurent
2014-05-07
The electronic properties of organic semiconductors depend strongly on the nature of the molecules, their conjugation and conformation, their mutual distance and the orientation between adjacent molecules. Variations of intramolecular distances and conformation disturb the conjugation and perturb the delocalization of charges. As a result, the mobility considerably decreases compared to that of a covalently well-organized crystal. Here, we present electrical characterization of large single crystals made of the regioregular octamer of 3-hexyl-thiophene (3HT)8 using a conductive-atomic force microscope (C-AFM) in air. We find a large anisotropy in the conduction with charge mobility values depending on the crystallographic orientation of the single crystal. The smaller conduction is in the direction of π-π stacking (along the long axis of the single crystal) with a mobility value in the order of 10(-3) cm(2) V(-1) s(-1), and the larger one is along the molecular axis (in the direction normal to the single crystal surface) with a mobility value in the order of 0.5 cm(2) V(-1) s(-1). The measured current-voltage (I-V) curves showed that along the molecular axis, the current followed an exponential dependence corresponding to an injection mode. In the π-π stacking direction, the current exhibits a space charge limited current (SCLC) behavior, which allows us to estimate the charge carrier mobility.
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Cosmological anisotropy from non-comoving dark matter and dark energy
International Nuclear Information System (INIS)
Harko, Tiberiu; Lobo, Francisco S. N.
2013-01-01
We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a
A quantum criticality perspective on the charging of narrow quantum-dot levels
Kashcheyevs, V.; Karrasch, C.; Hecht, T.; Weichselbaum, A.; Meden, V.; Schiller, A.
2008-01-01
Understanding the charging of exceptionally narrow levels in quantum dots in the presence of interactions remains a challenge within mesoscopic physics. We address this fundamental question in the generic model of a narrow level capacitively coupled to a broad one. Using bosonization we show that for arbitrary capacitive coupling charging can be described by an analogy to the magnetization in the anisotropic Kondo model, featuring a low-energy crossover scale that depends in a power-law fashi...
Cracking of charged polytropes with generalized polytropic equation of state
Energy Technology Data Exchange (ETDEWEB)
Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)
2017-02-15
We discuss the occurrence of cracking in charged anisotropic polytropes with generalized polytropic equation of state through two different assumptions; (i) by carrying out local density perturbations under a conformally flat condition (ii) by perturbing anisotropy, polytropic index and charge parameters. For this purpose, we consider two different definitions of polytropes that exist in literature. We conclude that under local density perturbations scheme cracking does not appear in both types of polytropes and stable configuration is observed, while with the second type of perturbation cracking appears in both types of polytropes under certain conditions. (orig.)
Anisotropic evaluation of synthetic surgical meshes.
Saberski, E R; Orenstein, S B; Novitsky, Y W
2011-02-01
The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.
21-cm Fluctuations from Charged Dark Matter
Muñoz, Julian B.; Dvorkin, Cora; Loeb, Abraham
2018-01-01
The epoch of the formation of the first stars, known as the cosmic dawn, has emerged as a new arena in the search for dark matter. In particular, the first claimed 21-cm detection exhibits a deeper global absorption feature than expected, which could be caused by a low baryonic temperature. This has been interpreted as a sign for electromagnetic interactions between baryons and dark matter. However, in order to remain consistent with the rest of cosmological observations, only part of the dar...
Manipulating colloids with charges and electric fields
Leunissen, M. E.
2007-02-01
This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various
Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.
2018-03-01
In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.
Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers
Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.
2015-01-01
A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931
Resolving astrophysical uncertainties in dark matter direct detection
DEFF Research Database (Denmark)
Frandsen, Mads Toudal; Kahlhoefer, Felix; McCabe, Christopher
2012-01-01
We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without...... implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large...
The motion of color-charged particles as a means of testing the non-Abelian dark matter model
Dzhunushaliev, V.; Folomeev, V.; Protsenko, N.
2018-01-01
A possibility is discussed for experimental testing of the dark matter model supported by a classic non-Abelian SU(3) gauge (Yang-Mills) field. Our approach is based on the analysis of the motion of color-charged particles on the background of color electric and magnetic fields using the Wong equations. Estimating the magnitudes of the color fields near the edge of a galaxy, we employ them in obtaining the general analytic solutions to the Wong equations. Using the latter, we calculate the ma...
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As
Czech Academy of Sciences Publication Activity Database
Výborný, Karel; Kučera, Jan; Sinova, J.; Rushforth, A.W.; Gallagher, B. L.; Jungwirth, Tomáš
2009-01-01
Roč. 80, č. 16 (2009), 165204/1-165204/8 ISSN 1098-0121 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 215368 - SemiSpinNet; European Commission(XE) 214499 - NAMASTE Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * diluted magnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://arxiv.org/abs/0906.3151
Charge ordering in the rare earth manganates: the experimental situation
International Nuclear Information System (INIS)
Rao, C.N.R.; Cheetham, A.K.; Raveau, Bernard
2000-01-01
Charge-ordered phases of rare earth manganates are novel manifestations arising from interactions between the charge carriers and phonons, giving rise to the localization of carriers at specific sites in the lattice below a certain temperature. Accompanying this phenomenon, the Mn 3+ (e g ) orbitals and the associated lattice distortions also exhibit long range ordering (orbital ordering). What makes the manganates even more interesting is the occurrence of complex spin ordering related to anisotropic magnetic interactions. In this article, we discuss the emerging scenario of charge-ordered rare earth manganates in the light of specific case studies and highlight some of the new experimental findings related to spin, orbital and charge ordering. We also examine features such as the charge stripes and phase separation found experimentally in these materials, and discuss the factors that affect charge-ordering such as the size of A-site cations and magnetic and electric fields, as well as isotopic and chemical substitutions. (author)
International Nuclear Information System (INIS)
Satter, M.A.
1990-08-01
In this paper, a formalism for studying the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in a dilute noble metal- transition metal magnetic alloy has been developed from relativistic scattering theory. The theoretical development and the computational techniques of this formalism are based on relativistic spin-polarized scattering theory and relativistic band structure frameworks. For studying the magnetic anisotropic effect a convenient ''working'' frame of reference with its axes oriented along the fcc crystal axes is set up. This formalism is applied to study the situation for two Fe impurities in paramagnetic Au hosts. For AuFe dilute alloy, the two impurity site interaction as a function of separation is not oscillatory and the anisotropic effect is found to be less than the two site interaction itself only by an order of magnitude. Apart from the anisotropic coupling of the two impurity spins to the separation vector, for the first time, another weak anisotropic coupling to the crystal axes is also contained in the two site interaction. These anisotropic effects are the results of the relativistic spin-orbit interaction which are incorporated into the formalism. (author). 22 refs, 5 figs
Electroweakly-interacting Dirac dark matter
International Nuclear Information System (INIS)
Nagata, Natsumi
2014-11-01
We consider a class of fermionic dark matter candidates that are charged under both the SU(2) L and U(1) Y gauge interactions. Such a dark matter is stringently restricted by the dark matter direct detection experiments, since the Z-boson exchange processes induce too large dark matter-nucleus elastic scattering cross sections. Effects of ultraviolet (UV) physics, however, split it into two Majorana fermions to evade the constraint. These effects may be probed by means of the dark matter-nucleus scattering via the Higgs-boson exchange process, as well as the electric dipole moments induced by the dark matter and its SU(2) L partner fields. In this Letter, we evaluate them with effective operators that describe the UV-physics effects. It turns out that the constraints coming from the experiments for the quantities have already restricted the dark matters with hypercharge Y≥3/2. Future experiments have sensitivities to probe this class of dark matter candidates, and may disfavor the Y≥1 cases if no signal is observed. In this case, only the Y=0 and 1/2 cases may be the remaining possibilities for the SU(2) L charged fermionic dark matter candidates.
Implications of the DAMA and CRESST experiments for mirror matter-type dark matter
International Nuclear Information System (INIS)
Foot, R.
2004-01-01
Mirror atoms are expected to be a significant component of the galactic dark matter halo if mirror matter is identified with the nonbaryonic dark matter in the Universe. Mirror matter can interact with ordinary matter via gravity and via the photon-mirror photon kinetic mixing interaction--causing mirror charged particles to couple to ordinary photons with an effective electric charge εe. This means that the nuclei of mirror atoms can elastically scatter off the nuclei of ordinary atoms, leading to nuclear recoils, which can be detected in existing dark matter experiments. We show that the dark matter experiments most sensitive to this type of dark matter candidate (via the nuclear recoil signature) are the DAMA/NaI and CRESST/Sapphire experiments. Furthermore, we show that the impressive annual modulation signal obtained by the DAMA/NaI experiment can be explained by mirror matter-type dark matter for vertical bar ε vertical bar ∼5x10 -9 and is supported by DAMA's absolute rate measurement as well as the CRESST/Sapphire data. This value of vertical bar ε vertical bar is consistent with the value obtained from various solar system anomalies including the Pioneer spacecraft anomaly, anomalous meteorite events and lack of small craters on the asteroid Eros. It is also consistent with standard big bang nucleosynthesis
Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.
Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue
2018-06-06
Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Dynamics of anisotropic tissue growth
Energy Technology Data Exchange (ETDEWEB)
Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de
2008-06-15
We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.
Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony
2016-09-01
This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nonlinear constitutive relations for anisotropic elastic materials
Sokolova, Marina; Khristich, Dmitrii
2018-03-01
A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.
Characterization of Anisotropic Behavior for High Grade Pipes
Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong
With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the
Orthonormal bases for anisotropic α-modulation spaces
DEFF Research Database (Denmark)
Rasmussen, Kenneth Niemann
2012-01-01
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....
Orthonormal bases for anisotropic α-modulation spaces
DEFF Research Database (Denmark)
Rasmussen, Kenneth Niemann
In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Temperature-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions.
Yang, D Z; Wang, T; Sui, W B; Si, M S; Guo, D W; Shi, Z; Wang, F C; Xue, D S
2015-09-01
We report a large but asymmetric magnetoresistance in silicon p-n junctions, which contrasts with the fact of magnetoresistance being symmetric in magnetic metals and semiconductors. With temperature decreasing from 293 K to 100 K, the magnetoresistance sharply increases from 50% to 150% under a magnetic field of 2 T. At the same time, an asymmetric magnetoresistance, which manifests itself as a magnetoresistance voltage offset with respect to the sign of magnetic field, occurs and linearly increases with magnetoresistance. More interestingly, in contrast with other materials, the lineshape of anisotropic magnetoresistance in silicon p-n junctions significantly depends on temperature. As temperature decreases from 293 K to 100 K, the width of peak shrinks from 90° to 70°. We ascribe these novel magnetoresistance to the asymmetric geometry of the space charge region in p-n junction induced by the magnetic field. In the vicinity of the space charge region the current paths are deflected, contributing the Hall field to the asymmetric magnetoresistance. Therefore, the observed temperature-dependent asymmetry of magnetoresistance is proved to be a direct consequence of the spatial configuration evolution of space charge region with temperature.
Foot, R.
2004-01-01
The self consistency between the impressive DAMA annual modulation signal and the differential energy spectrum is an important test for dark matter candidates.Mirror matter-type dark matter passes this test while other dark matter candidates, including standard (spin-independent) WIMPs and mini-electric charged particle dark matter, do not do so well.We argue that the unique properties of mirror matter-type dark matter seem to be just those required to fully explain the data, suggesting that ...
Ryblewski, Radoslaw; Strickland, Michael
2015-07-01
We compute dilepton production from the deconfined phase of the quark-gluon plasma using leading-order (3 +1 )-dimensional anisotropic hydrodynamics. The anisotropic hydrodynamics equations employed describe the full spatiotemporal evolution of the transverse temperature, spheroidal momentum-space anisotropy parameter, and the associated three-dimensional collective flow of the matter. The momentum-space anisotropy is also taken into account in the computation of the dilepton production rate, allowing for a self-consistent description of dilepton production from the quark-gluon plasma. For our final results, we present predictions for high-energy dilepton yields as a function of invariant mass, transverse momentum, and pair rapidity. We demonstrate that high-energy dilepton production is extremely sensitive to the assumed level of initial momentum-space anisotropy of the quark-gluon plasma. As a result, it may be possible to experimentally constrain the early-time momentum-space anisotropy of the quark-gluon plasma generated in relativistic heavy-ion collisions using high-energy dilepton yields.
Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.
Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying
2011-02-01
Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.
Anisotropic elliptic optical fibers
Kang, Soon Ahm
1991-05-01
The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.
DEFF Research Database (Denmark)
Del Nobile, Eugenio; Sannino, Francesco
2012-01-01
We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
Intrinsic mobility limit for anisotropic electron transport in Alq3.
Drew, A J; Pratt, F L; Hoppler, J; Schulz, L; Malik-Kumar, V; Morley, N A; Desai, P; Shakya, P; Kreouzis, T; Gillin, W P; Kim, K W; Dubroka, A; Scheuermann, R
2008-03-21
Muon spin relaxation has been used to probe the charge carrier motion in the molecular conductor Alq3 (tris[8-hydroxy-quinoline] aluminum). At 290 K, the magnetic field dependence of the muon spin relaxation corresponds to that expected for highly anisotropic intermolecular electron hopping. Intermolecular mobility in the fast hopping direction has been found to be 0.23+/-0.03 cm2 V-1 s(-1) in the absence of an electric- field gradient, increasing to 0.32+/-0.06 cm2 V-1 s(-1) in an electric field gradient of 1 MV m(-1). These intrinsic mobility values provide an estimate of the upper limit for mobility achievable in bulk material.
Views on the Anisotropic Nature of Ilva Valley Region
Directory of Open Access Journals (Sweden)
GABRIELA-ALINA MUREŞAN
2012-01-01
Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan
2015-01-20
Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.
Interaction of ionising radiations with matter
International Nuclear Information System (INIS)
Caudrelier, Olivier
2010-01-01
In a first part, this academic course addresses the interaction of non-charged particles with matter. The author more particularly addresses the interaction of a photon plasma with matter (attenuation of electromagnetic radiations, law of exponential attenuation, attenuation half value layer), the elementary phenomena of the interaction of a photon with matter (photoelectric effect, Compton effect, Thomson-Rayleigh scattering, materialisation, photo-nuclear reaction, prevalence domains, application in medical imagery), and the interaction of fast and slow neutrons with matter (elastic and inelastic scattering, radiative and non-radiative capture). The second part addresses the interaction of charged particles with matter. The author more particularly addresses the interaction with electrons present in the medium (ionization, excitation, stop efficiency, linear energy transfer, ionization linear density), the interaction with the nucleus (Bremsstrahlung), and the case of light particles (electrons) and of heavy particles (protons, alpha, fission products)
Tunneling anisotropic magnetoresistance driven by magnetic phase transition.
Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F
2017-09-06
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.
A Variational Approach to Perturbed Discrete Anisotropic Equations
Directory of Open Access Journals (Sweden)
Amjad Salari
2016-01-01
Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.
Irrational Charge from Topological Order
Moessner, R.; Sondhi, S. L.
2010-10-01
Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.
An anisotropic elastoplasticity model implemented in FLAG
Energy Technology Data Exchange (ETDEWEB)
Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.
Electrical conductivity and charge diffusion in thermal QCD from the lattice
Energy Technology Data Exchange (ETDEWEB)
Aarts, Gert; Allton, Chris [Department of Physics, College of Science, Swansea University Swansea SA2 8PP (United Kingdom); Amato, Alessandro [Department of Physics, College of Science, Swansea University Swansea SA2 8PP (United Kingdom); Department of Physics and Helsinki Institute of Physics P.O. Box 64, FI-00014 University of Helsinki (Finland); Giudice, Pietro [Universität Münster, Institut für Theoretische Physik Wilhelm-Klemm-Str. 9, D-48149 Münster (Germany); Hands, Simon [Department of Physics, College of Science, Swansea University Swansea SA2 8PP (United Kingdom); Skullerud, Jon-Ivar [Department of Mathematical Physics, National University of Ireland Maynooth Maynooth, Co Kildare (Ireland)
2015-02-27
We present a lattice QCD calculation of the charge diffusion coefficient, the electrical conductivity and various susceptibilities of conserved charges, for a range of temperatures below and above the deconfinement crossover. The calculations include the contributions from up, down and strange quarks. We find that the diffusion coefficient is of the order of 1/(2πT) and has a dip around the crossover temperature. Our results are obtained with lattice simulations containing 2+1 dynamical flavours on anisotropic lattices. The Maximum Entropy Method is used to construct spectral functions from correlators of the conserved vector current.
Theoretical and numerical study of highly anisotropic turbulent flows
Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.
2004-01-01
We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical
Numerical simulation of anisotropic polymeric foams
Directory of Open Access Journals (Sweden)
Volnei Tita
Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.
On the existence of combined condensation of neutral and charged pions in neutron matter
International Nuclear Information System (INIS)
Muto, Takumi; Tatsumi, Toshitaka
1987-01-01
Combined condensation of neutral and charged pions at high-density neutron matter is studied in an approach based on the chiral symmetry. Energy density in the combined π 0 -π c condensed phase to be considered as most energetically favored is derived in a realistic calculation, where we take into account the isobar Δ (1232) degrees of freedom, baryon-baryon short-range correlations described in terms of the Landau-Migdal parameter g', and form factors in the π-baryon vertex. Characteristic features of this phase are discussed in comparison with those of the pure π 0 or the pure π c condensation. The combined π 0 -π c condensed phase sets in at baryon density (3 ∼ 5) times the nuclear density ρ 0 depending on g' after the appearance of the pure π c condensed phase. (author)
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang; Schuster, Gerard T.
2016-01-01
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially
Obtuse triangle suppression in anisotropic meshes
Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.
2011-01-01
Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
Obtuse triangle suppression in anisotropic meshes
Sun, Feng
2011-12-01
Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
An improved limit on the charge of antihydrogen from stochastic acceleration
Ahmadi, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I
2016-01-01
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than...
Spin-orbit interaction induced anisotropic property in interacting quantum wires
Directory of Open Access Journals (Sweden)
Chang Kai
2011-01-01
Full Text Available We investigate theoretically the ground state and transport property of electrons in interacting quantum wires (QWs oriented along different crystallographic directions in (001 and (110 planes in the presence of the Rashba spin-orbit interaction (RSOI and Dresselhaus SOI (DSOI. The electron ground state can cross over different phases, e.g., spin density wave, charge density wave, singlet superconductivity, and metamagnetism, by changing the strengths of the SOIs and the crystallographic orientation of the QW. The interplay between the SOIs and Coulomb interaction leads to the anisotropic dc transport property of QW which provides us a possible way to detect the strengths of the RSOI and DSOI. PACS numbers: 73.63.Nm, 71.10.Pm, 73.23.-b, 71.70.Ej
Hypernuclear matter in strong magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sinha, Monika [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany); Indian Institute of Technology Rajasthan, Old Residency Road, Ratanada, Jodhpur 342011 (India); Mukhopadhyay, Banibrata [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Sedrakian, Armen, E-mail: sedrakian@th.physik.uni-frankfurt.de [Institute for Theoretical Physics, J.W. Goethe-University, D-60438 Frankfurt am Main (Germany)
2013-01-17
Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10{sup 14}–10{sup 15} G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta–Bodmer–Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B⩾10{sup 17} G, in particular the matter properties become anisotropic. Moreover, for the central fields B⩾10{sup 18} G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B{sub cr}≃10{sup 19} G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B{sub cr}.
Resolving astrophysical uncertainties in dark matter direct detection
Frandsen, Mads T; McCabe, Christopher; Sarkar, Subir; Schmidt-Hoberg, Kai
2012-01-01
We study the impact of the assumed velocity distribution of galactic dark matter particles on the interpretation of results from nuclear recoil detectors. By converting experimental data to variables that make the astrophysical unknowns explicit, different experiments can be compared without implicit assumptions concerning the dark matter halo. We extend this framework to include the annual modulation signal, as well as multiple target elements. Recent results from DAMA, CoGeNT and CRESST-II can be brought into agreement if the velocity distribution is very anisotropic and thus allows a large modulation fraction. However constraints from CDMS and XENON cannot be evaded by appealing to such astrophysical uncertainties alone.
Band gaps in periodically magnetized homogeneous anisotropic media
Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.
2010-11-01
In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.
Radial stability of anisotropic strange quark stars
Energy Technology Data Exchange (ETDEWEB)
Arbañil, José D.V.; Malheiro, M., E-mail: jose.arbanil@upn.pe, E-mail: malheiro@ita.br [ITA—Instituto Tecnológico de Aeronáutica—Departamento de Física, 12228-900, São José dos Campos, São Paulo (Brazil)
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = p {sub t} − p {sub r} are considered, where p {sub t} and p {sub r} are respectively the tangential and the radial pressure: one that is null at the star's surface defined by p {sub r} ( R ) = 0, and one that is nonnull at the surface, namely, σ {sub s} = 0 and σ {sub s} {sub ≠} {sub 0}. In the case σ {sub s} = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σ {sub s} {sub ≠} {sub 0}, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σ {sub s} . Thus, the stability star regions are determined always by the condition dM / d ρ {sub c} {sub >} {sub 0} only when the tangential pressure is maintained fixed at the star surface's p {sub t} ( R ). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Anisotropic Bianchi Type-III Bulk Viscous Fluid Universe in Lyra Geometry
Directory of Open Access Journals (Sweden)
Priyanka Kumari
2013-01-01
Full Text Available An anisotropic Bianchi type-III cosmological model is investigated in the presence of a bulk viscous fluid within the framework of Lyra geometry with time-dependent displacement vector. It is shown that the field equations are solvable for any arbitrary function of a scale factor. To get the deterministic model of the universe, we have assumed that (i a simple power-law form of a scale factor and (ii the bulk viscosity coefficient are proportional to the energy density of the matter. The exact solutions of the Einstein’s field equations are obtained which represent an expanding, shearing, and decelerating model of the universe. Some physical and kinematical behaviors of the cosmological model are briefly discussed.
Neutrino interactions in hot and dense matter
International Nuclear Information System (INIS)
Reddy, S.; Prakash, M.; Lattimer, J.M.
1998-01-01
We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society
Magnetostatics of anisotropic superconducting ellipsoid
International Nuclear Information System (INIS)
Saif, A.G.
1987-09-01
The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs
International Nuclear Information System (INIS)
Vasiliev, Roman B; Dirin, Dmitry N; Gaskov, Alexander M
2011-01-01
The results of studies on core/shell semiconductor nanoparticles with spatial separation of photoexcited charge carriers are analyzed and generalized. Peculiarities of the electronic properties of semiconductor/semiconductor heterojunctions formed inside such particles are considered. Data on the effect of spatial separation of charge carriers on the optical properties of nanoparticles including spectral shifts of the exciton bands, absorption coefficients and electron–hole pair recombination times are presented. Methods of synthesis of core/shell semiconductor nanoparticles in solutions are discussed. Specific features of the optical properties of anisotropic semiconductor nanoparticles with the semiconductor/semiconductor junctions are noted. The bibliography includes 165 references.
Jubb, Thomas; Kirk, Matthew; Lenz, Alexander
2017-12-01
We have considered a model of Dark Minimal Flavour Violation (DMFV), in which a triplet of dark matter particles couple to right-handed up-type quarks via a heavy colour-charged scalar mediator. By studying a large spectrum of possible constraints, and assessing the entire parameter space using a Markov Chain Monte Carlo (MCMC), we can place strong restrictions on the allowed parameter space for dark matter models of this type.
Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry
Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.
2017-11-01
We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.
International Nuclear Information System (INIS)
Retinskaya, Ekaterina
2014-01-01
Ultra-Relativistic heavy-ion physics is a promising field of high energy physics connecting two fields: nuclear physics and elementary particle physics. Experimental achievements of the last years have provided an opportunity to study the properties of a new state of matter created in heavy-ion collisions called quark-gluon plasma. The initial state of two colliding nuclei is affected by fluctuations coming from wave- functions of nucleons. These fluctuations lead to the momentum anisotropy of the hadronic matter which is observed by the detectors. The system created in the collision behaves like a fluid, so the initial state is connected to the final state via hydrodynamic evolution. In this thesis we model the evolution with relativistic viscous hydrodynamics. Our results, combined with experimental data, give non trivial constraints on the initial state, thus achieving 'reverse engineering' of the heavy-ion collisions. The observable which characterizes the momentum anisotropy is the anisotropic flow v n . We present the first measurements of the first harmonic of the anisotropic flow called directed flow v 1 in Pb-Pb collisions at the LHC. We then perform the first viscous hydrodynamic modeling of directed flow and show that it is less sensitive to viscosity than higher harmonics. Comparison of these experimental data with the modeling allows to extract the values of the dipole asymmetry of the initial state, which provides constraints on the models of initial states. A prediction for directed flow v 1 in Au-Au collisions is also made for RHIC. We then perform a similar modeling of the second and third harmonics of the anisotropic flow, called respectively elliptic v 2 and triangular v 3 flow. A combined analysis of the elliptic and triangular flow data compared with viscous hydrodynamic calculations allows us to put constraints on initial ellipticity and triangularity of the system. These constraints are then used as a filter for different models of
Regular black holes: electrically charged solutions, Reissner-Nordstroem outside a De Sitter core
Energy Technology Data Exchange (ETDEWEB)
Lemos, Jose P.S. [Universidade Tecnica de Lisboa (CENTRA/IST/UTL) (Portugal). Instituto Superior Tecnico. Centro Multidisciplinar de Astrofisica; Zanchin, Vilson T. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas
2011-07-01
Full text: The understanding of the inside of a black hole is of crucial importance in order to have the correct picture of a black hole as a whole. The singularities that lurk inside of the usual black hole solutions are things to avoid. Their substitution by a regular part is of great interest, the process generating regular black holes. In the present work regular black hole solutions are found within general relativity coupled to Maxwell's electromagnetism and charged matter. We show that there are objects which correspond to regular charged black holes, whose interior region is de Sitter, whose exterior region is Reissner-Nordstroem, and the boundary between both regions is made of an electrically charged spherically symmetric coat. There are several solutions: the regular nonextremal black holes with a null matter boundary, the regular nonextremal black holes with a timelike matter boundary, the regular extremal black holes with a timelike matter boundary, and the regular overcharged stars with a timelike matter boundary. The main physical and geometrical properties of such charged regular solutions are analyzed. (author)
Jet quenching in a strongly coupled anisotropic plasma
Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego
2012-08-01
The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.
Anisotropic solutions by gravitational decoupling
Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.
2018-02-01
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.
Anisotropic solutions by gravitational decoupling
Energy Technology Data Exchange (ETDEWEB)
Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)
2018-02-15
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)
Charge and Spin Transport in Spin-orbit Coupled and Topological Systems
Ndiaye, Papa Birame
2017-10-31
In the search for low power operation of microelectronic devices, spin-based solutions have attracted undeniable increasing interest due to their intrinsic magnetic nonvolatility. The ability to electrically manipulate the magnetic order using spin-orbit interaction, associated with the recent emergence of topological spintronics with its promise of highly efficient charge-to-spin conversion in solid state, offer alluring opportunities in terms of system design. Although the related technology is still at its infancy, this thesis intends to contribute to this engaging field by investigating the nature of the charge and spin transport in spin-orbit coupled and topological systems using quantum transport methods. We identified three promising building blocks for next-generation technology, three classes of systems that possibly enhance the spin and charge transport efficiency: (i)- topological insulators, (ii)- spin-orbit coupled magnonic systems, (iii)- topological magnetic textures (skyrmions and 3Q magnetic state). Chapter 2 reviews the basics and essential concepts used throughout the thesis: the spin-orbit coupling, the mathematical notion of topology and its importance in condensed matter physics, then topological magnetism and a zest of magnonics. In Chapter 3, we study the spin-orbit torques at the magnetized interfaces of 3D topological insulators. We demonstrated that their peculiar form, compared to other spin-orbit torques, have important repercussions in terms of magnetization reversal, charge pumping and anisotropic damping. In Chapter 4, we showed that the interplay between magnon current jm and magnetization m in homogeneous ferromagnets with Dzyaloshinskii-Moriya (DM) interaction, produces a field-like torque as well as a damping-like torque. These DM torques mediated by spin wave can tilt the imeaveraged magnetization direction and are similar to Rashba torques for electronic systems. Moreover, the DM torque is more efficient when magnons are
Elements of a dialogue between nonlinear models in condensed matter and biophysics
International Nuclear Information System (INIS)
Bishop, A.R.; Lomdahl, P.S.; Kerr, W.C.
1985-01-01
We indicate some of the emerging thematic connections between strongly nonlinear effects in condensed matter and biological materials. These are illustrated with model studies of: (1) structural phase transitions in anisotropic lattices; and (2) finite temperature effects on self-trapped states in vibron-phonon models of α-helix proteins. 13 refs., 8 figs
How good are Hartree-Fock charge densities
International Nuclear Information System (INIS)
Campi, X.
1975-01-01
The principle characteristics of Hartree-Fock charge densities (mean square radius, surface thickness, quantum fluctuation) calculated using different effective interactions are discussed in terms of their nuclear matter properties (Fermi momentum, effective mass, incompressibility). A comparison with the experimental charge distributions is made. Differences between the charge densities of neighbouring nuclei (isotope and isotone shifts) are also considered and the main factors governing these effects are discussed [fr
International Nuclear Information System (INIS)
Nojiri, Mihoko M.
2007-01-01
We now believe that the dark matter in our Universe must be an unknown elementary particle, which is charge neutral and weakly interacting. The standard model must be extended to include it. The dark matter was likely produced in the early universe from the high energy collisions of the particles. Now LHC experiment starting from 2008 will create such high energy collision to explore the nature of the dark matter. In this article we explain how dark matter and LHC physics will be connected in detail. (author)
Energy Technology Data Exchange (ETDEWEB)
Borgne, H.
2004-12-01
Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the
Plasma dark matter direct detection
Energy Technology Data Exchange (ETDEWEB)
Clarke, J.D.; Foot, R., E-mail: j.clarke5@pgrad.unimelb.edu.au, E-mail: rfoot@unimelb.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, University of Melbourne, Victoria 3010 Australia (Australia)
2016-01-01
Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.
Delocalization of charge and current in a chiral quasiparticle wave packet
Sarkar, Subhajit
2018-03-01
A chiral quasiparticle wave packet (c-QPWP) is defined as a conventional superposition of chiral quasiparticle states corresponding to an interacting electron system in two dimensions (2D) in the presence of Rashba spin-orbit coupling (RSOC). I investigate its internal structure via studying the charge and the current densities within the first-order perturbation in the electron-electron interaction. It is found that the c-QPWP contains a localized charge which is less than the magnitude of the bare charge and the remaining charge resides at the system boundary. The amount of charge delocalized turns out to be inversely proportional to the degenerate Fermi velocity v0(=√{α2+2 μ /m }) when RSOC (with strength α ) is weak, and therefore externally tunable. For strong RSOC, the magnitudes of both the delocalized charge and the current further strongly depend on the direction of propagation of the wave packet. Both the charge and the current densities consist of an anisotropic r-2 tail away from the center of the wave packet. Possible implications of such delocalizations in real systems corresponding to 2D semiconductor heterostructure are also discussed within the context of particle injection experiments.
International Nuclear Information System (INIS)
Helmi, Amina; White, Simon D.M.; Springel, Volker
2002-01-01
We study the phase-space structure of a dark-matter halo formed in a high resolution simulation of a ΛCDM cosmology. Our goal is to quantify how much substructure is left over from the inhomogeneous growth of the halo, and how it may affect the signal in experiments aimed at detecting the dark matter particles directly. If we focus on the equivalent of 'solar vicinity', we find that the dark matter is smoothly distributed in space. The probability of detecting particles bound within dense lumps of individual mass less than 10 7 M · h -1 is small, less than 10 -2 . The velocity ellipsoid in the solar neighborhood deviates only slightly from a multivariate Gaussian, and can be thought of as a superposition of thousands of kinematically cold streams. The motions of the most energetic particles are, however, strongly clumped and highly anisotropic. We conclude that experiments may safely assume a smooth multivariate Gaussian distribution to represent the kinematics of dark-matter particles in the solar neighborhood. Experiments sensitive to the direction of motion of the incident particles could exploit the expected anisotropy to learn about the recent merging history of our Galaxy
Open problems in condensed matter physics, 1987
International Nuclear Information System (INIS)
Falicov, L.M.
1988-08-01
The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs
Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter
International Nuclear Information System (INIS)
Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris
2010-01-01
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
Unified origin for baryonic visible matter and antibaryonic dark matter.
Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean
2010-11-19
We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.
Coherent radiation of photon by fast particles in exited matter
International Nuclear Information System (INIS)
Ryazanov, M.I.
1981-01-01
The review on the theory of coherent photon radiation by fast charged particle interaction with excited by external electromagnetic field atoms of matter is presented. The motive particle excites in the matter longitudinal electric oscillations (plasmons, longitudinal optical phonons, longitudinal excitons). Energy and momentum conservation laws in the course of quantum radiation in the matter by a charged particle are considered taking into account the energy-matter exchange. It follows from the conservation laws that for the processes investigated the quantum angle of escape is stiffly connected with its frequency. The cohe-- rent luminescence processes are considered as generalized Vavilov- Cherenkov radiation [ru
Anisotropic Metal Deposition on TiO2 Particles by Electric-Field-Induced Charge Separation.
Tiewcharoen, Supakit; Warakulwit, Chompunuch; Lapeyre, Veronique; Garrigue, Patrick; Fourier, Lucas; Elissalde, Catherine; Buffière, Sonia; Legros, Philippe; Gayot, Marion; Limtrakul, Jumras; Kuhn, Alexander
2017-09-11
Deposition of metals on TiO 2 semiconductor particles (M-TiO 2 ) results in hybrid Janus objects combining the properties of both materials. One of the techniques proposed to generate Janus particles is bipolar electrochemistry (BPE). The concept can be applied in a straightforward way for the site-selective modification of conducting particles, but is much less obvious to use for semiconductors. Herein we report the bulk synthesis of anisotropic M-TiO 2 particles based on the synergy of BPE and photochemistry, allowing the intrinsic limitations, when they are used separately, to be overcome. When applying electric fields during irradiation, electrons and holes can be efficiently separated, thus breaking the symmetry of particles by modifying them selectively and in a wireless way on one side with either gold or platinum. Such hybrid materials are an important first step towards high-performance designer catalyst particles, for example for photosplitting of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
First-principles engineering of charged defects for two-dimensional quantum technologies
Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan
2017-12-01
Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.
Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.
2017-10-01
The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Directory of Open Access Journals (Sweden)
Harry H. Hilton
2012-01-01
Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
Properties of exotic matter for heavy-ion searches
International Nuclear Information System (INIS)
Schaffner-Bielich, J.; Greiner, C.; Stoecker, H.; Vischer, A.P.
1997-01-01
We examine the properties of both forms of strange matter, small lumps of strange quark matter (strangelets) and of strange hadronic matter (metastable exotic multihypernuclear objects (MEMOs)) and their relevance for present and future heavy-ion searches. The strong and weak decays are discussed separately to distinguish between long- and short-lived candidates where the former ones are detectable in present heavy-ion experiments while the latter ones are present in future heavy-ion experiments, respectively. We find some long-lived strangelet candidates which are highly negatively charged with a mass-to-charge ratio like a anti deuteron (M/Z approx.= -2) but masses of A 10-16. We also predict many short-lived candidates, both in quark and hadronic form, which can be highly charged. Purely hyperonic nuclei such as the Ξα (2Ξ 0 2Ξ - ) are bound and have a negative charge while carrying a positive baryon number. We also demonstrate that multiply charmed exotics (charmlets) might be bound and can be produced at future heavy-ion colliders. (author)
a Movable Charging Unit for Green Mobility
ElBanhawy, E. Y.; Nassar, K.
2013-05-01
Battery swapping of electric vehicles (EVs) matter appears to be the swiftest and most convenient to users. The existence of swapping stations increases the feasibility of distributed energy storage via the electric grid. However, it is a cost-prohibitive way of charging. Early adaptors' preferences of /perceptions about EV system in general, has its inflectional effects on potential users hence the market penetration level. Yet, the charging matter of electric batteries worries the users and puts more pressure on them with the more rigorous planning-ahead they have to make prior to any trip. This paper presents a distinctive way of charging. It aims at making the overall charging process at ease. From a closer look into the literature, most of EVs' populations depend on domestic charge. Domestic charging gives them more confidence and increases the usability factor of the EV system. Nevertheless, they still need to count on the publically available charging points to reach their destination(s). And when it comes to multifamily residences, it becomes a thorny problem as these apartments do not have a room for charging outlets. Having said the irritating charging time needed to fatten the batteries over the day and the minimal average mileage drove daily, hypothetically, home delivery charging (Movable Charging Unit-MCU) would be a stupendous solution. The paper discusses the integration of shortest path algorithm problem with the information about EV users within a metropolitan area, developing an optimal route for a charging unit. This MCU delivers charging till homes whether by swapping batteries or by fast charging facility. Information about users is to be provided by the service provider of the neighbourhood, which includes charging patterns (timing, power capacity). This problem lies under the shortest path algorithms problem. It provides optimal route of charging that in return shall add more reliability and usability values and alleviate the charging
Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics
International Nuclear Information System (INIS)
Cissoko, Mahdy
1975-01-01
This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr
Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects
International Nuclear Information System (INIS)
Abreu, H; Hernandez, H; Nunez, L A
2007-01-01
Using the concept of cracking we explore the influence that density fluctuations and local anisotropy have on the stability of local and non-local anisotropic matter configurations in general relativity. This concept, conceived to describe the behavior of a fluid distribution just after its departure from equilibrium, provides an alternative approach to consider the stability of self-gravitating compact objects. We show that potentially unstable regions within a configuration can be identified as a function of the difference of propagations of sound along tangential and radial directions. In fact, it is found that these regions could occur when, at a particular point within the distribution, the tangential speed of sound is greater than the radial one
Anisotropic interpolation theorems of Musielak-Orlicz type
Directory of Open Access Journals (Sweden)
Jinxia Li
2016-10-01
Full Text Available Abstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k : k ∈ Z } $\\{A^{k}: k\\in\\mathbb{Z}\\}$ , where A is a real n × n $n\\times n$ matrix with all its eigenvalues λ satisfy | λ | > 1 $|\\lambda|>1$ . Let φ : R n × [ 0 , ∞ → [ 0 , ∞ $\\varphi: \\mathbb{R}^{n}\\times[0, \\infty\\to[0,\\infty$ be an anisotropic Musielak-Orlicz function such that φ ( x , ⋅ $\\varphi(x,\\cdot$ is an Orlicz function and φ ( ⋅ , t $\\varphi(\\cdot,t$ is a Muckenhoupt A ∞ ( A $\\mathbb {A}_{\\infty}(A$ weight. The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic extension of Marcinkiewicz interpolation theorems. The above results are new even for the isotropic weighted settings.
Anisotropic conductivity imaging with MREIT using equipotential projection algorithm
Energy Technology Data Exchange (ETDEWEB)
Degirmenci, Evren [Department of Electrical and Electronics Engineering, Mersin University, Mersin (Turkey); Eyueboglu, B Murat [Department of Electrical and Electronics Engineering, Middle East Technical University, 06531, Ankara (Turkey)
2007-12-21
Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.
LEP shines light on dark matter
International Nuclear Information System (INIS)
Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin
2011-01-01
Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.
International Nuclear Information System (INIS)
Artru, X.; Fayolle, D.
2001-01-01
For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed
Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems
International Nuclear Information System (INIS)
Smith, Peter M; Kennett, Malcolm P
2012-01-01
Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role. (paper)
An improved limit on the charge of antihydrogen from stochastic acceleration.
Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I
2016-01-21
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Stability conditions for the Bianchi type II anisotropically inflating universes
International Nuclear Information System (INIS)
Kao, W.F.; Lin, Ing-Chen
2009-01-01
Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Gamma-ray lines from radiative dark matter decay
International Nuclear Information System (INIS)
Garny, Mathias; Ibarra, Alejandro; Tran, David; Weniger, Christoph
2011-01-01
The decay of dark matter particles which are coupled predominantly to charged leptons has been proposed as a possible origin of excess high-energy positrons and electrons observed by cosmic-ray telescopes PAMELA and Fermi LAT. Even though the dark matter itself is electrically neutral, the tree-level decay of dark matter into charged lepton pairs will generically induce radiative two-body decays of dark matter at the quantum level. Using an effective theory of leptophilic dark matter decay, we calculate the rates of radiative two-body decays for scalar and fermionic dark matter particles. Due to the absence of astrophysical sources of monochromatic gamma rays, the observation of a line in the diffuse gamma-ray spectrum would constitute a strong indication of a particle physics origin of these photons. We estimate the intensity of the gamma-ray line that may be present in the energy range of a few TeV if the dark matter decay interpretation of the leptonic cosmic-ray anomalies is correct and comment on observational prospects of present and future Imaging Cherenkov Telescopes, in particular the CTA
Hydrodynamic cavitation in Stokes flow of anisotropic fluids
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam
2017-05-01
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.
Modelling of the charge carrier mobility in disordered linear polymer materials
Czech Academy of Sciences Publication Activity Database
Toman, Petr; Menšík, Miroslav; Bartkowiak, W.; Pfleger, Jiří
2017-01-01
Roč. 19, č. 11 (2017), s. 7760-7771 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA15-05095S Grant - others:AV ČR(CZ) M200501204 Program:M Institutional support: RVO:61389013 Keywords : charge carrier mobility * conjugated polymer * charge transport modelling Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.123, year: 2016
Calculation of the stopping power and the path of charged particles in matter. Application example
International Nuclear Information System (INIS)
Barre, Bertrand; Du Lieu, Pierre
1969-05-01
The path of a charged particle in matter is calculated by integrating the stopping power of the medium against this particle. Depending on the energy of the particle, stopping powers are calculated using Lindhard, Bethe, or semi-empirical smoothing solutions. After exposing recent theories in this field, the authors present a Fortran subroutine which performs these various operations, and covers all energy domains. This routine is available for operation on IBM 360; it uses a magnetic tape library that can take into account experimental results. The subprogram presentation, leaving the user the option of entering the data and using the results at his discretion, allows a particularly flexible use. At the end of this note, some considerations on possible further improvements in the program, and a bibliography of the articles that have dealt with the question from a theoretical or an experimental point of view are discussed [fr
Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions
Jaiswal, Amaresh; Bhaduri, Partha Pratim
2018-04-01
We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.
A Morphing framework to couple non-local and local anisotropic continua
Azdoud, Yan
2013-05-01
In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.
Margutti, Jacopo
2016-01-01
ALICE (A Large Ion Collider Experiment) is designed and optimised to study the properties of the Quark-Gluon Plasma (QGP), a new state of matter, which is expected to be created at the high energy densities reached at the LHC. One of the key observables used to characterize the proper- ties of the QGP is the azimuthal anisotropy in particle production. This so-called anisotropic flow is sensitive to the transport properties and equation of state of the QGP. In this presentation, we report the first measurements of anisotropic flow in Pb–Pb collisions at √ s NN = 5 . 02 TeV with ALICE and compare them with both theoretical predictions and experimental measurements at lower energies and other collision systems. This provides a unique opportunity to test the validity of the hydrodynamic paradigm and to further constraint the key transport parameters of the QGP.
Acoustic frequency filter based on anisotropic topological phononic crystals
Chen, Zeguo
2017-11-02
We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.
Acoustic frequency filter based on anisotropic topological phononic crystals
Chen, Zeguo; Zhao, Jiajun; Mei, Jun; Wu, Ying
2017-01-01
We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.
Emerging anisotropic compact stars in f(G,T) gravity
Energy Technology Data Exchange (ETDEWEB)
Shamir, M.F.; Ahmad, Mushtaq [National University of Computer and Emerging Sciences, Lahore (Pakistan)
2017-10-15
The possible emergence of compact stars has been investigated in the recently introduced modified Gauss-Bonnet f(G,T) gravity, where G is the Gauss-Bonnet term and T is the trace of the energy-momentum tensor (Sharif and Ikram, Eur Phys J C 76:640, 2016). Specifically, for this modified f(G,T) theory, the analytic solutions of Krori and Barua have been applied to an anisotropic matter distribution. To determine the unknown constants appearing in the Krori and Barua metric, the well-known three models of the compact stars, namely 4U1820-30, Her X-I, and SAX J 1808.4-3658 have been used. The analysis of the physical behaviour of the compact stars has been presented and the physical features like energy density and pressure, energy conditions, static equilibrium, stability, measure of anisotropy, and regularity of the compact stars, have been discussed. (orig.)
Anisotropic nanomaterials preparation, properties, and applications
Li, Quan
2015-01-01
In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi
Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics
International Nuclear Information System (INIS)
Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud
2010-01-01
Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors
International Nuclear Information System (INIS)
Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.
2011-01-01
We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1) B-L gauge symmetry, Z 2 (B-L). We introduce a set of chiral fermions charged under the U(1) B-L in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1) B-L gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z 2 (B-L).
International Nuclear Information System (INIS)
Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.
1983-04-01
Some features of anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. The distributions of the number of charged particles/event are presented. The angular distributions indicate som anisotropic process in the nuclear matter, possibly shock waves, and some back-to-back emission
Energy Technology Data Exchange (ETDEWEB)
Breivik, F.O.; Jacobsen, T.; Soerensen, S.O. (Oslo Univ. (Norway). Fysisk Inst.)
1983-09-01
Some features of anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. The distribution of the number of charged particles/event are presented. The angular distributions indicate some anisotropic process in the nuclear matter, possibly shock-waves, and some back-to-back emission.
Signals of dark matter in a supersymmetric two dark matter model
International Nuclear Information System (INIS)
Fukuoka, Hiroki; Suematsu, Daijiro; Toma, Takashi
2011-01-01
Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z 2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z 2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively
Impact of Tortuosity on Charge-Carrier Transport in Organic Bulk Heterojunction Blends
Heiber, Michael C.; Kister, Klaus; Baumann, Andreas; Dyakonov, Vladimir; Deibel, Carsten; Nguyen, Thuc-Quyen
2017-11-01
The impact of the tortuosity of the charge-transport pathways through a bulk heterojunction film on the charge-carrier mobility is theoretically investigated using model morphologies and kinetic Monte Carlo simulations. The tortuosity descriptor provides a quantitative metric to characterize the quality of the charge-transport pathways, and model morphologies with controlled domain size and tortuosity are created using an anisotropic domain growth procedure. The tortuosity is found to be dependent on the anisotropy of the domain structure and is highly tunable. Time-of-flight charge-transport simulations on morphologies with a range of tortuosity values reveal that tortuosity can significantly reduce the magnitude of the mobility and the electric-field dependence relative to a neat material. These reductions are found to be further controlled by the energetic disorder and temperature. Most significantly, the sensitivity of the electric-field dependence to the tortuosity can explain the different experimental relationships previously reported, and exploiting this sensitivity could lead to simpler methods for characterizing and optimizing charge transport in organic solar cells.
Analysis of the theoretical bias in dark matter direct detection
International Nuclear Information System (INIS)
Catena, Riccardo
2014-01-01
Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias
Anisotropic Intervalley Plasmon Excitations in Graphene
International Nuclear Information System (INIS)
Chen Jian; Xu Huai-Zhe
2015-01-01
We investigate theoretically the intervalley plasmon excitations (IPEs) in graphene monolayer within the random-phase approximation. We derive an analytical expression of the real part of the dielectric function. We find a low-energy plasmon mode with a linear anisotropic dispersion which depends on the Fermi energy and the dielectric constant of substrate. The IPEs show strongly anisotropic behavior, which becomes significant around the zigzag crystallographic direction. More interestingly, the group velocity of IPE varies from negative to positive, and vanishes at special energy. (paper)
Modelling of CMUTs with Anisotropic Plates
DEFF Research Database (Denmark)
la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt
2012-01-01
Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...
Doping dependence of charge order in electron-doped cuprate superconductors
Mou, Yingping; Feng, Shiping
2017-12-01
In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.
Collapsed Dark Matter Structures
Buckley, Matthew R.; DiFranzo, Anthony
2018-02-01
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
Collapsed Dark Matter Structures.
Buckley, Matthew R; DiFranzo, Anthony
2018-02-02
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
On Pokrovskii's anisotropic gap equations in superconductivity theory
Yang, Yisong
2003-11-01
An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.
International Nuclear Information System (INIS)
Innes, W.; Klein, S.; Perl, M.; Price, J.C.
1982-06-01
A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour
Dynamical analysis of cylindrically symmetric anisotropic sources in f(R, T) gravity
Energy Technology Data Exchange (ETDEWEB)
Zubair, M.; Azmat, Hina [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Noureen, Ifra [University of Management and Technology, Department of Mathematics, Lahore (Pakistan)
2017-03-15
In this paper, we have analyzed the stability of cylindrically symmetric collapsing object filled with locally anisotropic fluid in f(R, T) theory, where R is the scalar curvature and T is the trace of stress-energy tensor of matter. Modified field equations and dynamical equations are constructed in f(R, T) gravity. The evolution or collapse equation is derived from dynamical equations by performing a linear perturbation on them. The instability range is explored in both the Newtonian and the post-Newtonian regimes with the help of an adiabatic index, which defines the impact of the physical parameters on the instability range. Some conditions are imposed on the physical quantities to secure the stability of the gravitating sources. (orig.)
A Search for Free Fractional Electric Charge Elementary Particles
Energy Technology Data Exchange (ETDEWEB)
Halyo, Valerie
2000-12-04
A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied--about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.
A Search for Free Fractional Electric Charge Elementary Particles
Energy Technology Data Exchange (ETDEWEB)
Halyo, Valerie
2000-12-04
A direct search was carried out in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied| about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0.16 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71 x 10{sup -22} particles per nucleon with 95% confidence.
Data-driven imaging in anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Volker, Arno; Hunter, Alan [TNO Stieltjes weg 1, 2600 AD, Delft (Netherlands)
2012-05-17
Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.
International Nuclear Information System (INIS)
Reinges, Marcus H.T.; Schoth, Felix; Coenen, Volker A.; Krings, Timo
2004-01-01
Diffusion weighted MRI offers the possibility to study the course of the cerebral white matter tracts. In the present manuscript, the basics, the technique and the limitations of diffusion tensor imaging and anisotropic diffusion weighted MRI are presented and their applications in various neurological and neurosurgical diseases are discussed with special emphasis on the visual system. A special focus is laid on the combination of fiber tract imaging, anatomical imaging and functional MRI for presurgical planning and intraoperative neuronavigation of lesions near the visual system
Fundamental Particle Structure in the Cosmological Dark Matter
Khlopov, Maxim
2013-11-01
The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying
Connecting dark matter annihilation to the vertex functions of Standard Model fermions
Energy Technology Data Exchange (ETDEWEB)
Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu [Department of Physics and Astronomy, University of Hawaii, Honolulu, HI 96822, Hawaii (United States)
2017-07-01
We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner from collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.
Layers of deformed instantons in holographic baryonic matter
Energy Technology Data Exchange (ETDEWEB)
Preis, Florian [Institut für Theoretische Physik, Technische Universität Wien,1040 Vienna (Austria); Schmitt, Andreas [Mathematical Sciences and STAG Research Centre, University of Southampton,Southampton SO17 1BJ (United Kingdom)
2016-07-01
We discuss homogeneous baryonic matter in the decompactified limit of the Sakai-Sugimoto model, improving existing approximations based on flat-space instantons. We allow for an anisotropic deformation of the instantons in the holographic and spatial directions and for a density-dependent distribution of arbitrarily many instanton layers in the bulk. Within our approximation, the baryon onset turns out to be a second-order phase transition, at odds with nature, and there is no transition to quark matter at high densities, at odds with expectations from QCD. This changes when we impose certain constraints on the shape of single instantons, motivated by known features of holographic baryons in the vacuum. Then, a first-order baryon onset and chiral restoration at high density are possible, and at sufficiently large densities two instanton layers are formed dynamically. Our results are a further step towards describing realistic, strongly interacting matter over a large density regime within a single model, desirable for studies of compact stars.
Anisotropic characterization of magnetorheological materials
Energy Technology Data Exchange (ETDEWEB)
Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.
2017-06-01
For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and
Fermi system with planes and charge reservoir: Anisotropic in-plane resistivity
International Nuclear Information System (INIS)
Levin, G.A.; Quader, K.F.
1992-01-01
The authors explore the normal state in-plane resistivity of a model Fermi system with two planes and a charge reservoir. When the Fermi energy lies near the top of one of the resulting sub-bands, the system can be described by two types of quasiparticle excitations with different energy spectra and relaxation times. They show that for certain stoichiometry, ρ ab is linear in temperature with positive or negative intercepts. A relation between the slopes and intercepts of resistivities in the a and b directions in untwinned crystals is derived. The results are in good agreement with experimental data on YBCO. 7 refs., 1 tab
International Nuclear Information System (INIS)
Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.
1983-01-01
Some features of anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. The distribution of the number of charged particles/event are present. The angular distributions indicate some anisotropic process in the nuclear matter, possibly shock-waves, and some back-to-back emission. (Auth.)
A unified theoretical and experimental study of anisotropic hardening
International Nuclear Information System (INIS)
Boehler, J.P.; Raclin, J.
1981-01-01
The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)
Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli
2015-12-02
Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.
Extra U(1), effective operators, anomalies and dark matter
Dudas, Emilian; Mambrini, Yann; Zaldivar, Bryan
2013-01-01
A general analysis is performed on the dimension-six operators mixing an almost hidden Z' to the Standard Model (SM), when the Z' communicates with the SM via heavy mediators. These are fermions charged under both Z' and the SM, while all SM fermions are neutral under Z'. We classify the operators as a function of the gauge anomalies behaviour of mediators and explicitly compute the dimension-six operators coupling Z' to gluons, generated at one-loop by chiral but anomaly-free, sets of fermion mediators. We prove that only one operator contribute to the couplings between Z' charged matter and on-shell gluons. We then make a complete phenomenological analysis of the scenario where the lightest fermion charged under Z' is the dark matter candidate. Combining results from WMAP/PLANCK data, mono-jet searches at LHC, and direct/indirect dark matter detections restrict considerably the allowed parameter space.
Development of laser ablation plasma by anisotropic self-radiation
Directory of Open Access Journals (Sweden)
Ohnishi Naofumi
2013-11-01
Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.
Anisotropic inflation with derivative couplings
Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne
2018-05-01
We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Kazunori [Theory Center, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Takahashi, Fuminobu, E-mail: fumi@tuhep.phys.tohoku.ac.jp [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Yanagida, Tsutomu T. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa 277-8568 (Japan); Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan)
2011-05-23
We propose that the stability of dark matter is ensured by a discrete subgroup of the U(1){sub B-L} gauge symmetry, Z{sub 2}(B-L). We introduce a set of chiral fermions charged under the U(1){sub B-L} in addition to the right-handed neutrinos, and require the anomaly-cancellation conditions associated with the U(1){sub B-L} gauge symmetry. We find that the possible number of fermions and their charges are tightly constrained, and that non-trivial solutions appear when at least five additional chiral fermions are introduced. The Fermat theorem in the number theory plays an important role in this argument. Focusing on one of the solutions, we show that there is indeed a good candidate for dark matter, whose stability is guaranteed by Z{sub 2}(B-L).
Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O
2002-01-01
The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.
Model improvements to simulate charging in SEM
Arat, K. T.; Klimpel, T.; Hagen, C. W.
2018-03-01
Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.
Pulse splitting in nonlinear media with anisotropic dispersion properties
DEFF Research Database (Denmark)
Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.
1998-01-01
The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse...
Limits to differences in active and passive charges
Laemmerzahl, C.; Macias, A.; Mueller, H.
2007-01-01
We explore consequences of a hypothetical difference between active charges, which generate electric fields, and passive charges, which respond to them. A confrontation to experiments using atoms, molecules, or macroscopic matter yields limits on their fractional difference at levels down to 10^-21, which at the same time corresponds to an experimental confirmation of Newtons third law.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre
2013-01-01
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Energy Technology Data Exchange (ETDEWEB)
Cogollo, D. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970, Campina Grande, PB (Brazil); Gonzalez-Morales, Alma X.; Queiroz, Farinaldo S. [Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Teles, P. Rebello, E-mail: diegocogollo@df.ufcg.edu.br, E-mail: alxogonz@ucsc.edu, E-mail: fdasilva@ucsc.edu, E-mail: patricia.rebello.teles@cern.ch [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2014-11-01
We sift the impact of the recent Higgs precise measurements, and recent dark matter direct detection results, on the dark sector of an electroweak extension of the Standard Model that has a complex scalar as dark matter. We find that in this model the Higgs decays with a large branching ratio into dark matter particles, and charged scalars when these are kinematically available, for any coupling strength differently from the so called Higgs portal. Moreover, we compute the abundance and spin-independent WIMP-nucleon scattering cross section, which are driven by the Higgs and Z{sup '} boson processes. We decisively exclude the 1–500 GeV dark matter window and find the most stringent lower bound in the literature on the scale of symmetry breaking of the model namely 10 TeV, after applying the LUX-2013 limit. Interestingly, the projected XENON1T constraint will be able to rule out the entire 1 GeV–1000 GeV dark matter mass range. Lastly, for completeness, we compute the charged scalar production cross section at the LHC and comment on the possibility of detection at current and future LHC runnings.
International Nuclear Information System (INIS)
Cogollo, D.; Gonzalez-Morales, Alma X.; Queiroz, Farinaldo S.; Teles, P. Rebello
2014-01-01
We sift the impact of the recent Higgs precise measurements, and recent dark matter direct detection results, on the dark sector of an electroweak extension of the Standard Model that has a complex scalar as dark matter. We find that in this model the Higgs decays with a large branching ratio into dark matter particles, and charged scalars when these are kinematically available, for any coupling strength differently from the so called Higgs portal. Moreover, we compute the abundance and spin-independent WIMP-nucleon scattering cross section, which are driven by the Higgs and Z ' boson processes. We decisively exclude the 1–500 GeV dark matter window and find the most stringent lower bound in the literature on the scale of symmetry breaking of the model namely 10 TeV, after applying the LUX-2013 limit. Interestingly, the projected XENON1T constraint will be able to rule out the entire 1 GeV–1000 GeV dark matter mass range. Lastly, for completeness, we compute the charged scalar production cross section at the LHC and comment on the possibility of detection at current and future LHC runnings
Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.
Wang, By Lili; Heng, Liping; Jiang, Lei
2018-02-28
Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.
Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.
Rudenko, A N; Brener, S; Katsnelson, M I
2016-06-17
We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13} cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300 K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700) cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.
From basic processes to sensors: particle-matter interactions
International Nuclear Information System (INIS)
Laforge, Bertrand; Bourgeois, Christian
2005-11-01
This academic course aims at presenting and explaining techniques of detection of radiations displaying an energy higher that some tens of keV, such as those met in nuclear physics or in particle physics. In a first part, the author first analyses the operation of a biological sensor (the eye), and then presents some generalities about matter: Rutherford experiment, the atom, molecules and solids. The second part deals with interactions between radiations and matter. The author there addresses interactions of heavy charged particles (ionization with high or low energy transfer), interactions of electrons (ionization, Bremsstrahlung), multiple scattering and straggling, the Cherenkov effect, transition radiation, the interaction of γ radiations in matter (Compton effect, photoelectric effect), the interaction of neutrons in matter. Appendices address γ spectrometry, the radiation of a charged particle moving in a dielectric medium, and issues related to statistical fluctuations (distribution functions, fluctuation propagation, energy resolution, noises)
Dark matter deprivation in the field elliptical galaxy NGC 7507
Lane, Richard R.; Salinas, Ricardo; Richtler, Tom
2015-02-01
Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor
Anisotropic wave-equation traveltime and waveform inversion
Feng, Shihang
2016-09-06
The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.
Anisotropic microporous supports impregnated with polymeric ion-exchange materials
Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark
1985-05-07
Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.
Alfven waves in dusty plasmas with plasma particles described by anisotropic kappa distributions
Energy Technology Data Exchange (ETDEWEB)
Galvao, R. A.; Ziebell, L. F. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP: 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Gaelzer, R. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354-Campus UFPel, CEP: 96010-900 Pelotas, Rio Grande do Sul (Brazil); Juli, M. C. de [Centro de Radio-Astronomia e Astrofisica Mackenzie-CRAAM, Universidade Presbiteriana Mackenzie, Rua da Consolacao 896, CEP: 01302-907 Sao Paulo, Sao Paulo (Brazil)
2012-12-15
We utilize a kinetic description to study the dispersion relation of Alfven waves propagating parallelly to the ambient magnetic field in a dusty plasma, taking into account the fluctuation of the charge of the dust particles, which is due to inelastic collisions with electrons and ions. We consider a plasma in which the velocity distribution functions of the plasma particles are modelled as anisotropic kappa distributions, study the dispersion relation for several combinations of the parameters {kappa}{sub Parallel-To} and {kappa}{sub Up-Tack }, and emphasize the effect of the anisotropy of the distributions on the mode coupling which occurs in a dusty plasma, between waves in the branch of circularly polarized waves and waves in the whistler branch.
Detecting gamma-ray anisotropies from decaying dark matter. Prospects for Fermi LAT
International Nuclear Information System (INIS)
Ibarra, Alejandro; Tran, David
2009-09-01
Decaying dark matter particles could be indirectly detected as an excess over a simple power law in the energy spectrum of the diffuse extragalactic gamma-ray background. Furthermore, since the Earth is not located at the center of the Galactic dark matter halo, the exotic contribution from dark matter decay to the diffuse gamma-ray flux is expected to be anisotropic, offering a complementary method for the indirect search for decaying dark matter particles. In this paper we discuss in detail the expected dipole-like anisotropies in the dark matter signal, taking also into account the radiation from inverse Compton scattering of electrons and positrons from dark matter decay. A different source for anisotropies in the gamma-ray flux are the dark matter density fluctuations on cosmic scales. We calculate the corresponding angular power spectrum of the gamma-ray flux and comment on observational prospects. Finally, we calculate the expected anisotropies for the decaying dark matter scenarios that can reproduce the electron/positron excesses reported by PAMELA and the Fermi LAT, and we estimate the prospects for detecting the predicted gamma-ray anisotropy in the near future. (orig.)
Disadvantage factor for anisotropic scattering
International Nuclear Information System (INIS)
Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.
1990-01-01
The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters
Toward a minimum branching fraction for dark matter annihilation into electromagnetic final states
International Nuclear Information System (INIS)
Dent, James B.; Scherrer, Robert J.; Weiler, Thomas J.
2008-01-01
Observational limits on the high-energy neutrino background have been used to place general constraints on dark matter that annihilates only into standard model particles. Dark matter particles that annihilate into neutrinos will also inevitably branch into electromagnetic final states through higher-order tree and loop diagrams that give rise to charged leptons, and these charged particles can transfer their energy into photons via synchrotron radiation or inverse Compton scattering. In the context of effective field theory, we calculate the loop-induced branching ratio to charged leptons and show that it is generally quite large, typically > or approx. 1%, when the scale of the dark matter mass exceeds the electroweak scale, M W . For a branching fraction >or approx. 3%, the synchrotron radiation bounds on dark matter annihilation are currently stronger than the corresponding neutrino bounds in the interesting mass range from 100 GeV to 1 TeV. For dark matter masses below M W , our work provides a plausible framework for the construction of a model for 'neutrinos-only' dark matter annihilations.
Adaptive weighted anisotropic diffusion for computed tomography denoising
Energy Technology Data Exchange (ETDEWEB)
Yang, Zhi; Silver, Michael D. [Toshiba Medical Research Institute USA, Inc., Vernon Hills, IL (United States); Noshi, Yasuhiro [Toshiba Medical System Corporation, Tokyo (Japan)
2011-07-01
With increasing awareness of radiation safety, dose reduction has become an important task of modern CT system development. This paper proposes an adaptive weighted anisotropic diffusion method and an adaptive weighted sharp source anisotropic diffusion method as image domain filters to potentially help dose reduction. Different from existing anisotropic diffusion methods, the proposed methods incorporate an edge-sensitive adaptive source term as part of the diffusion iteration. It provides better edge and detail preservation. Visual evaluation showed that the new methods can reduce noise substantially without apparent edge and detail loss. The quantitative evaluations also showed over 50% of noise reduction in terms of noise standard deviations, which is equivalent to over 75% of dose reduction for a normal dose image quality. (orig.)
Balancing anisotropic curvature with gauge fields in a class of shear-free cosmological models
Thorsrud, Mikjel
2018-05-01
We present a complete list of general relativistic shear-free solutions in a class of anisotropic, spatially homogeneous and orthogonal cosmological models containing a collection of n independent p-form gauge fields, where p\\in\\{0, 1, 2, 3\\} , in addition to standard ΛCDM matter fields modelled as perfect fluids. Here a (collection of) gauge field(s) balances anisotropic spatial curvature on the right-hand side of the shear propagation equation. The result is a class of solutions dynamically equivalent to standard FLRW cosmologies, with an effective curvature constant Keff that depends both on spatial curvature and the energy density of the gauge field(s). In the case of a single gauge field (n = 1) we show that the only spacetimes that admit such solutions are the LRS Bianchi type III, Bianchi type VI0 and Kantowski–Sachs metric, which are dynamically equivalent to open (Keff0 ) FLRW models, respectively. With a collection of gauge fields (n > 1) also Bianchi type II admits a shear-free solution (Keff>0 ). We identify the LRS Bianchi type III solution to be the unique shear-free solution with a gauge field Hamiltonian bounded from below in the entire class of models.
Czech Academy of Sciences Publication Activity Database
Richard, P.; Jandl, S.; Poirier, M.; Furnier, P.; Nekvasil, Vladimír; Sadowski, M.L.
2005-01-01
Roč. 72, č. 1 (2005), 014506/1-014506/10 ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA202/03/0552 Institutional research plan: CEZ:AV0Z1010914 Keywords : cuprate superconductors * Nd 2 CuO 4 * Zeeman and Stark splitting * anisotropic exchange interaction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.185, year: 2005
Chiral magnetic effect in the anisotropic quark-gluon plasma
International Nuclear Information System (INIS)
Ali-Akbari, Mohammad; Taghavi, Seyed Farid
2015-01-01
An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.
Simplified dark matter models with charged mediators: prospects for direct detection
Energy Technology Data Exchange (ETDEWEB)
Sandick, Pearl; Sinha, Kuver; Teng, Fei [Department of Physics and Astronomy, University of Utah,Salt Lake City, UT 84112 (United States)
2016-10-05
We consider direct detection prospects for a class of simplified models of fermionic dark matter (DM) coupled to left and right-handed Standard Model fermions via two charged scalar mediators with arbitrary mixing angle α. DM interactions with the nucleus are mediated by higher electromagnetic moments, which, for Majorana DM, is the anapole moment. After giving a full analytic calculation of the anapole moment, including its α dependence, and matching with limits in the literature, we compute the DM-nucleon scattering cross-section and show the LUX and future LZ constraints on the parameter space of these models. We then compare these results with constraints coming from Fermi-LAT continuum and line searches. Results in the supersymmetric limit of these simplified models are provided in all cases. We find that future direct detection experiments will be able to probe most of the parameter space of these models for O(100−200) GeV DM and lightest mediator mass ≲O(5%) larger than the DM mass. The direct detection prospects dwindle for larger DM mass and larger mass gap between the DM and the lightest mediator mass, although appreciable regions are still probed for O(200) GeV DM and lightest mediator mass ≲O(20%) larger than the DM mass. The direct detection bounds are also attenuated near certain “blind spots' in the parameter space, where the anapole moment is severely suppressed due to cancellation of different terms. We carefully study these blind spots and the associated Fermi-LAT signals in these regions.
Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation
Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan
2018-03-01
Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.
Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure
Energy Technology Data Exchange (ETDEWEB)
Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)
2015-12-01
Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.
Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure
International Nuclear Information System (INIS)
Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze
2015-01-01
Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.
Charge-transfer mobility and electrical conductivity of PANI as conjugated organic semiconductors.
Zhang, Yahong; Duan, Yuping; Song, Lulu; Zheng, Daoyuan; Zhang, Mingxing; Zhao, Guangjiu
2017-09-21
The intramolecular charge transfer properties of a phenyl-end-capped aniline tetramer (ANIH) and a chloro-substituted derivative (ANICl) as organic semiconductors were theoretically studied through the first-principles calculation based on the Marcus-Hush theory. The reorganization energies, intermolecular electronic couplings, angular resolution anisotropic mobilities, and density of states of the two crystals were evaluated. The calculated results demonstrate that both ANIH and ANICl crystals show the higher electron transfer mobilities than the hole-transfer mobilities, which means that the two crystals should prefer to function as n-type organic semiconductors. Furthermore, the angle dependence mobilities of the two crystals show remarkable anisotropic character. The maximum mobility μ max of ANIH and ANICl crystals is 1.3893 and 0.0272 cm 2 V -1 s -1 , which appear at the orientation angles near 176°/356° and 119°/299° of a conducting channel on the a-b reference plane. It is synthetically evaluated that the ANIH crystal possesses relatively lower reorganization energy, higher electronic coupling, and electron transfer mobility, which means that the ANIH crystal may be the more ideal candidate as a high performance n-type organic semiconductor material. The systematic theoretical studies on organic crystals should be conducive to evaluating the charge-transport properties and designing higher performance organic semiconductor materials.
Anisotropic Concrete Compressive Strength
DEFF Research Database (Denmark)
Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao
2017-01-01
When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...
Dark matter and electroweak phase transition in the mixed scalar dark matter model
Liu, Xuewen; Bian, Ligong
2018-03-01
We study the electroweak phase transition in the framework of the scalar singlet-doublet mixed dark matter model, in which the particle dark matter candidate is the lightest neutral Higgs that comprises the C P -even component of the inert doublet and a singlet scalar. The dark matter can be dominated by the inert doublet or singlet scalar depending on the mixing. We present several benchmark models to investigate the two situations after imposing several theoretical and experimental constraints. An additional singlet scalar and the inert doublet drive the electroweak phase transition to be strongly first order. A strong first-order electroweak phase transition and a viable dark matter candidate can be accomplished in two benchmark models simultaneously, for which a proper mass splitting among the neutral and charged Higgs masses is needed.
Hydrodynamic cavitation in Stokes flow of anisotropic fluids
Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam
2017-01-01
Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...
Motions in the relativistic fields of a charged dust
International Nuclear Information System (INIS)
Fonseca Teixeira, A.F. da.
1980-04-01
The general relativistic motion of arbitrarily charged test particles is investigated, in the spherically symmetric fields of a charged, static, incoherent matter with T 0 0 = const. The condition for existence of stable circular orbits is established, inside and outside the diffused source. The null geodesics are also investigated, as a limiting case. (Author) [pt
Lin, Guoxing
2018-05-01
Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.
Astronomical Signatures of Dark Matter
Directory of Open Access Journals (Sweden)
Paul Gorenstein
2014-01-01
Full Text Available Several independent astronomical observations in different wavelength bands reveal the existence of much larger quantities of matter than what we would deduce from assuming a solar mass to light ratio. They are very high velocities of individual galaxies within clusters of galaxies, higher than expected rotation rates of stars in the outer regions of galaxies, 21 cm line studies indicative of increasing mass to light ratios with radius in the halos of spiral galaxies, hot gaseous X-ray emitting halos around many elliptical galaxies, and clusters of galaxies requiring a much larger component of unseen mass for the hot gas to be bound. The level of gravitational attraction needed for the spatial distribution of galaxies to evolve from the small perturbations implied by the very slightly anisotropic cosmic microwave background radiation to its current web-like configuration requires much more mass than is observed across the entire electromagnetic spectrum. Distorted shapes of galaxies and other features created by gravitational lensing in the images of many astronomical objects require an amount of dark matter consistent with other estimates. The unambiguous detection of dark matter and more recently evidence for dark energy has positioned astronomy at the frontier of fundamental physics as it was in the 17th century.
Dark matter and dark radiation
International Nuclear Information System (INIS)
Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc
2009-01-01
We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant α-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α-circumflex -3 for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
Bryan's effect and anisotropic nonlinear damping
Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.
2018-03-01
In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.
Anisotropic hydrodynamics for conformal Gubser flow
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)
2016-12-15
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Anisotropic hydrodynamics for conformal Gubser flow
International Nuclear Information System (INIS)
Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw
2016-01-01
In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.
Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I
2014-10-01
For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright
International Nuclear Information System (INIS)
Imai, Makoto; Shibata, Hiromi; Sataka, Masao; Sugai, Hiroyuki; Nishio, Katsuhisa; Sugiyama, Koji; Komaki, Ken-ichiro
2005-01-01
Charge state distributions of 2.0 MeV/u (64 MeV) sulfur ions of various initial charge states (6+, 10+, 11+, 13+) after passing through 0.9, 1.1, 1.5, 2.0, 3.0, 4.7, 6.9 and 10 μg/cm 2 carbon foils have been studied experimentally using the heavy ion spectrometer 'ENMA'. Measured charge state distributions do not flat off to establish equilibrium within the measured thickness, proving to be the first systematic measurement of non-equilibrium charge state distribution using solid target at this energy range. The mean charge states and their distribution widths almost saturate to 12.4 and 1.03, respectively, for all initial charge states examined. Calculation with ETACHA code, developed by Rozet et al. [Nucl. Instr. and Meth. B 107 (1996) 67], is employed, although the present impact energy is lower than the assumed energy region for this code. It was also confirmed that a certain portion of 16 O q+ (q=3, 4, 7) beam is included in 32 S q+ (q=6, 8, 14) beam provided from the Tandem Accelerator, which originates in the Negative Ion Source forming O 2 - . (author)
Anisotropic, Mixed-Norm Lizorkin-Triebel Spaces and Diffeomorphic Maps
DEFF Research Database (Denmark)
Johnsen, Jon; Hansen, Sabrina Munch; Sickel, Winfried
2014-01-01
This paper gives general results on invariance of anisotropic Lizorkin-Triebel spaces with mixed norms under coordinate transformations on Euclidean space, open sets, and cylindrical domains.......This paper gives general results on invariance of anisotropic Lizorkin-Triebel spaces with mixed norms under coordinate transformations on Euclidean space, open sets, and cylindrical domains....
Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.
Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki
2017-03-01
Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The anisotropic Ising correlations as elliptic integrals: duality and differential equations
International Nuclear Information System (INIS)
McCoy, B M; Maillard, J-M
2016-01-01
We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers–Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorized in a very simple way, in operators of decreasing orders. (paper)
Hybrid localized waves supported by resonant anisotropic metasurfaces
DEFF Research Database (Denmark)
Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.
2016-01-01
We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....
Asymmetric condensed dark matter
Energy Technology Data Exchange (ETDEWEB)
Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)
2016-04-01
We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.
Ji, Xiang; Wang, Yang; Zhang, Junqian
2018-06-01
The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.
Measuring neutrino mass imprinted on the anisotropic galaxy clustering
Energy Technology Data Exchange (ETDEWEB)
Oh, Minji; Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)
2017-04-01
The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.
Charge equilibrium processes of energetic incident ions and their range
International Nuclear Information System (INIS)
Kawagoshi, Hiroshi; Karashima, Shosuke; Watanabe, Tsutomu.
1984-01-01
The charge state of energetic ions passing through a certain matter is varied by charge-exchange processes. A rate equation for charge fraction is given by using electron loss and capture cross sections in collision with a target atom under idealized condition. We solved the rate equation of the charge-exchange process of a single electron in a form of linear coupled differential equation. Our calcuiation for the range of ion were carried out for He, Ne and Ar ions passing through an atomic hydrogen gas target. We discuss the charge states of the projectile in relation to a local charge balance consituting a state of charge equilibrium in the target. (author)
Thermal diffusivity and butterfly velocity in anisotropic Q-lattice models
Jeong, Hyun-Sik; Ahn, Yongjun; Ahn, Dujin; Niu, Chao; Li, Wei-Jia; Kim, Keun-Young
2018-01-01
We study a relation between the thermal diffusivity ( D T ) and two quantum chaotic properties, Lyapunov time (τ L ) and butterfly velocity ( v B ) in strongly correlated systems by using a holographic method. Recently, it was shown that E_i:={D}_{T,i}/({v}{^{B,i}}^2{τ}_L)(i=x,y) is universal in the sense that it is determined only by some scaling exponents of the IR metric in the low temperature limit regardless of the matter fields and ultraviolet data. Inspired by this observation, by analyzing the anisotropic IR scaling geometry carefully, we find the concrete expressions for E_i in terms of the critical dynamical exponents z i in each direction, E_i={z}_i/2({z}_i-1) . Furthermore, we find the lower bound of E_i is always 1 /2, which is not affected by anisotropy, contrary to the η/s case. However, there may be an upper bound determined by given fixed anisotropy.
Probing surface charge potentials of clay basal planes and edges by direct force measurements.
Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe
2008-11-18
The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the
A new model for spherically symmetric anisotropic compact star
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2016-05-15
In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star. (orig.)
Prestack exploding reflector modelling and migration for anisotropic media
Alkhalifah, Tariq Ali
2014-10-09
The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.
Dynamical anisotropic response of black phosphorus under magnetic field
Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong
2018-04-01
Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.
Anisotropic light scattering of individual sickle red blood cells.
Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun
2012-04-01
We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.
Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study
International Nuclear Information System (INIS)
Fan, B.B.; Yang, X.B.; Zhang, R.
2010-01-01
We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp 2 hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.
Penetration of charged particles through ordered isotropic matter
International Nuclear Information System (INIS)
Sigmund, P.
1977-01-01
A brief summary of some new results on fluctuation phenomena in particle penetration is presented. The results include collision statistics, positive and negative correlations and a framework for the treatment of cumulative effects in particle penetration. Incorporation of projectile and target states in the description and energy-loss straggling are discussed. Small-angle multiple scattering is considered and a comment made on ionic charge states. (B.R.H.)
An anisotropic elasto-viscoplastic model for short-fiber reinforced polymers
Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.
2017-01-01
The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and
An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymers
Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.
2018-01-01
The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and
Modeling of anisotropic properties of double quantum rings by the terahertz laser field.
Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David
2018-04-18
The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.
Bianchi-type II spacetime and anisotropic brane-world cosmology
International Nuclear Information System (INIS)
Sevinc, O.
2010-01-01
Anisotropic generalization of Randall and Sundrum brane-world model is considered. I studied a bulk with an anisotropic space of motion of the brane, depending on both time and extra coordinate. Then I discussed possibility of obtaining the fine-tuning condition of Randall and Sundrum following the method of Andrei V. Frolov (Phys. Lett. B, 514,213).
Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid
International Nuclear Information System (INIS)
Ignat, M.
1980-01-01
Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)
International Nuclear Information System (INIS)
Liang, Yande; Shu, Liming; Natsu, Wataru; He, Fuben
2015-01-01
Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones
Magnetic charge, black holes, and cosmic censorship
International Nuclear Information System (INIS)
Hiscock, W.H.
1981-01-01
The possibility of converting a Reissner-Nordstroem black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordstroem metric describes a black hole only when M 2 >Q 2 +P 2 . The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed
Anisotropic plasma with flows in tokamak: Steady state and stability
International Nuclear Information System (INIS)
Ilgisonis, V.I.
1996-01-01
An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics
Topological gravity with minimal matter
International Nuclear Information System (INIS)
Li Keke
1991-01-01
Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)
Anisotropic Ripple Deformation in Phosphorene.
Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng
2015-05-07
Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Scalar dark matter in the B−L model
International Nuclear Information System (INIS)
Rodejohann, Werner; Yaguna, Carlos E.
2015-01-01
The U(1) B−L extension of the Standard Model requires the existence of right-handed neutrinos and naturally realizes the seesaw mechanism of neutrino mass generation. We study the possibility of explaining the dark matter in this model with an additional scalar field, ϕ DM , that is a singlet of the Standard Model but charged under U(1) B−L . An advantage of this scenario is that the stability of ϕ DM can be guaranteed by appropriately choosing its B−L charge, without the need of an extra ad hoc discrete symmetry. We investigate in detail the dark matter phenomenology of this model. We show that the observed dark matter density can be obtained via gauge or scalar interactions, and that semi-annihilations could play an important role in the latter case. The regions consistent with the dark matter density are determined in each instance and the prospects for detection in future experiments are analyzed. If dark matter annihilations are controlled by the B−L gauge interaction, the mass of the dark matter particle should lie below 5 TeV and its direct detection cross section can be easily probed by XENON1T; if instead they are controlled by scalar interactions, the dark matter mass can be much larger and the detection prospects are less certain. Finally, we show that this scenario can be readily extended to accommodate multiple dark matter particles
Charged particles as Kaluza-Klein monopoles
International Nuclear Information System (INIS)
Chan, H.-M.; Tsou, S.T.
1984-05-01
The authors describe some explorations into the possibility of treating charged particles as monopoles in a Kaluza-Klein world. Such considerations may be useful in the future for constructing model theories in which both matter and gauge structure emerge as consequences of space-time geometry. (author)
Veselago focusing of anisotropic massless Dirac fermions
Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.
2018-05-01
Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.
Directory of Open Access Journals (Sweden)
Soo-Min Choi
2016-07-01
Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.
Influence of kinematic cuts on the net charge distribution
Energy Technology Data Exchange (ETDEWEB)
Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Oliinychenko, Dmytro [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine); Steinheimer, Jan [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany)
2016-12-15
The higher moments of the net charge distributions, e.g. the skewness and kurtosis, are studied within an infinite hadronic matter calculation in a transport approach. By dividing the box into several parts, the volume dependence of the fluctuations is investigated. After confirming that the initial distributions follow the expectations from a binomial distribution, the influence of quantum number conservation in this case the net charge in the system on the higher moments is evaluated. For this purpose, the composition of the hadron gas is adjusted and only pions and ρ mesons are simulated to investigate the charge conservation effect. In addition, the effect of imposing kinematic cuts in momentum space is analysed. The role of resonance excitations and decays on the higher moments can also be studied within this model. This work is highly relevant to understand the experimental measurements of higher moments obtained in the RHIC beam energy scan and their comparison to lattice results and other theoretical calculations assuming infinite matter.
Gamma ray constraints on flavor violating asymmetric dark matter
DEFF Research Database (Denmark)
Masina, I.; Panci, P.; Sannino, F.
2012-01-01
We show how cosmic gamma rays can be used to constrain models of asymmetric Dark Matter decaying into lepton pairs by violating flavor. First of all we require the models to explain the anomalies in the charged cosmic rays measured by PAMELA, Fermi and H.E.S.S.; performing combined fits we...... determine the allowed values of the Dark Matter mass and lifetime. For these models, we then determine the constraints coming from the measurement of the isotropic gamma-ray background by Fermi for a complete set of lepton flavor violating primary modes and over a range of DM masses from 100 GeV to 10 Te......V. We find that the Fermi constraints rule out the flavor violating asymmetric Dark Matter interpretation of the charged cosmic ray anomalies....
Dark Matter Decay between Phase Transitions at the Weak Scale.
Baker, Michael J; Kopp, Joachim
2017-08-11
We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.
Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.
Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo
2015-10-27
Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.
International Nuclear Information System (INIS)
Smith, Nigel; Spooner, Neil
2000-01-01
Experiments housed deep underground are searching for new particles that could simultaneously solve one of the biggest mysteries in astrophysics and reveal what lies beyond the Standard Model of particle physics. Physicists are very particular about balancing budgets. Energy, charge and momentum all have to be conserved and often money as well. Astronomers were therefore surprised and disturbed to learn in the 1930s that our own Milky Way galaxy behaved as if it contained more matter than could be seen with telescopes. This puzzling non-luminous matter became known as ''dark matter'' and we now know that over 90% of the matter in the entire universe is dark. In later decades the search for this dark matter shifted from the heavens to the Earth. In fact, the search for dark matter went underground. Today there are experiments searching for dark matter hundreds and thousands of metres below ground in mines, road tunnels and other subterranean locations. These experiments are becoming more sensitive every year and are beginning to test various new models and theories in particle physics and cosmology. (UK)
Sign rules for anisotropic quantum spin systems
International Nuclear Information System (INIS)
Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.
2000-01-01
We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model
Nakonieczna, Anna; Yeom, Dong-han
2016-05-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.
Feng, Yuan; Okamoto, Ruth J.; Namani, Ravi; Genin, Guy M.; Bayly, Philip V.
2013-01-01
White matter in the brain is structurally anisotropic, consisting largely of bundles of aligned, myelin-sheathed axonal fibers. White matter is believed to be mechanically anisotropic as well. Specifically, transverse isotropy is expected locally, with the plane of isotropy normal to the local mean fiber direction. Suitable material models involve strain energy density functions that depend on the I4 and I5 pseudo-invariants of the Cauchy–Green strain tensor to account for the effects of relatively stiff fibers. The pseudo-invariant I4 is the square of the stretch ratio in the fiber direction; I5 contains contributions of shear strain in planes parallel to the fiber axis. Most, if not all, published models of white matter depend on I4 but not on I5. Here, we explore the small strain limits of these models in the context of experimental measurements that probe these dependencies. Models in which strain energy depends on I4 but not I5 can capture differences in Young’s (tensile) moduli, but will not exhibit differences in shear moduli for loading parallel and normal to the mean direction of axons. We show experimentally, using a combination of shear and asymmetric indentation tests, that white matter does exhibit such differences in both tensile and shear moduli. Indentation tests were interpreted through inverse fitting of finite element models in the limit of small strains. Results highlight that: (1) hyperelastic models of transversely isotropic tissues such as white matter should include contributions of both the I4 and I5 strain pseudo-invariants; and (2) behavior in the small strain regime can usefully guide the choice and initial parameterization of more general material models of white matter. PMID:23680651
DEFF Research Database (Denmark)
Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene
2017-01-01
Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe....... Assuming that the distribution of the neutrino sources follows that of matter we look for correlations between `warm' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance...... (including that of IceCube-Gen2) we demonstrate that sources with local density exceeding $10^{-6} \\, \\text{Mpc}^{-3}$ and neutrino luminosity $L_{\
Decaying Dark Matter at the LHC
CERN. Geneva
2015-01-01
We discuss a few scenarios with decaying Dark Matter and their prospect for detection at the LHC. First we present a simple minimal scenario, where Dark Matter is produced from the decay of a heavier colored or EW charged scalar via the FIMP or SuperWIMP mechanisms, then we discuss supersymmetric scenarios with RPV and gravitino DM, in particular a scenario allowing for simultaneous generation of DM and baryogenesis at a (relatively) low scale.
Anisotropic Flow Measurements in ALICE at the Large Hadron Collider
Bilandzic, A.
2012-01-01
Anisotropic ﬂow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy
Double anisotropic electrically conductive flexible Janus-typed membranes.
Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia
2017-12-07
Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.
Anisotropic models for compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2015-05-15
In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)
Composite dark matter from a model with composite Higgs boson
DEFF Research Database (Denmark)
Yu. Khlopov, Maxim; Kouvaris, Christoforos
2008-01-01
In a previous paper \\cite{Khlopov:2007ic}, we showed how the minimal walking technicolor model (WTC) can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a $^4He^{++}$. We studied the properties of these \\emph......{techni-O-helium} $tOHe$ "atoms", which behave as warmer dark matter rather than cold. In this paper we extend our work on several different aspects. We study the possibility of a mixed scenario where both $tOHe$ and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density....... We argue that these newly proposed bound states solely made of techniparticles, although they behave as Weakly Interacting Massive Particles (WIMPs), due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore we conclude...
International Nuclear Information System (INIS)
Sanchez, Richard.
1975-11-01
The Integral Transform Method for the neutron transport equation has been developed in last years by Asaoka and others. The method uses Fourier transform techniques in solving isotropic one-dimensional transport problems in homogeneous media. The method has been extended to linearly anisotropic transport in one-dimensional homogeneous media. Series expansions were also obtained using Hembd techniques for the new anisotropic matrix elements in cylindrical geometry. Carlvik spatial-spherical harmonics method was generalized to solve the same problem. By applying a relation between the isotropic and anisotropic one-dimensional kernels, it was demonstrated that anisotropic matrix elements can be calculated by a linear combination of a few isotropic matrix elements. This means in practice that the anisotropic problem of order N with the N+2 isotropic matrix for the plane and spherical geometries, and N+1 isotropic matrix for cylindrical geometries can be solved. A method of solving linearly anisotropic one-dimensional transport problems in homogeneous media was defined by applying Mika and Stankiewicz observations: isotropic matrix elements were computed by Hembd series and anisotropic matrix elements then calculated from recursive relations. The method has been applied to albedo and critical problems in cylindrical geometries. Finally, a number of results were computed with 12-digit accuracy for use as benchmarks [fr
Dark matter assimilation into the baryon asymmetry
International Nuclear Information System (INIS)
D'Eramo, Francesco; Fei, Lin; Thaler, Jesse
2012-01-01
Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called a ssimilation , which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter
Hybrid anisotropic materials for wind power turbine blades
Golfman, Yosif
2012-01-01
Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo
Anisotropic behavior of quantum transport in graphene superlattices
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan
2014-01-01
We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...
Quenching of weak interactions in nucleon matter
International Nuclear Information System (INIS)
Cowell, S.; Pandharipande, V.R.
2003-01-01
We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-01-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...
The Cosmology of Composite Inelastic Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; /SLAC /Stanford U., ITP; Schuster, Philip; Wacker, Jay G.; /SLAC
2011-08-19
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.
Anisotropic flow in Xe-Xe collisions at 5.44 TeV
Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Anaam, Mustafa Naji; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhatt, Himani; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Dani, Sanskruti; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiorenza, Gabriele; Flor, Fernando; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamid, Mohammed; Hamon, Julien Charles; Hannigan, Ryan; Haque, Md Rihan; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hota, Jyotishree; Hristov, Peter Zahariev; Huang, Chun-lu; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Jena, Chitrasen; Jercic, Marko; Jevons, Oliver; Jimenez Bustamante, Raul Tonatiuh; Jin, Muqing; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Ahsan Mehmood; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kvapil, Jakub; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Larionov, Pavel; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malik, Qasim Waheed; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Jacobb Lee; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Nassirpour, Adrian Fereydon; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parkkila, Jasper Elias; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rode, Sudhir Pandurang; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Meenakshi; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singh, Randhir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zherebchevskii, Vladimir; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang
2018-01-01
The first measurements of anisotropic flow coefficients $v_{n}$ for mid-rapidity charged particles in Xe-Xe collisions at $\\sqrt{s_{NN}}=5.44$ TeV are presented. Comparing these measurements to those from Pb-Pb collisions at $\\sqrt{s_{NN}}=5.02$ TeV, $v_{2}$ is found to be suppressed for mid-central collisions at the same centrality, and enhanced for central collisions. The values of $v_{3}$ are generally larger in Xe-Xe than in Pb-Pb at a given centrality. These observations are consistent with expectations from hydrodynamic predictions. When both $v_{2}$ and $v_{3}$ are divided by their corresponding eccentricities for a variety of initial state models, they generally scale with transverse density when comparing Xe-Xe and Pb-Pb, with some deviations observed in central Xe-Xe and Pb-Pb collisions. These results assist in placing strong constraints on both the initial state geometry and medium response for relativistic heavy-ion collisions.
Anisotropic MoS2 Nanosheets Grown on Self-Organized Nanopatterned Substrates.
Martella, Christian; Mennucci, Carlo; Cinquanta, Eugenio; Lamperti, Alessio; Cappelluti, Emmanuele; Buatier de Mongeot, Francesco; Molle, Alessandro
2017-05-01
Manipulating the anisotropy in 2D nanosheets is a promising way to tune or trigger functional properties at the nanoscale. Here, a novel approach is presented to introduce a one-directional anisotropy in MoS 2 nanosheets via chemical vapor deposition (CVD) onto rippled patterns prepared on ion-sputtered SiO 2 /Si substrates. The optoelectronic properties of MoS 2 are dramatically affected by the rippled MoS 2 morphology both at the macro- and the nanoscale. In particular, strongly anisotropic phonon modes are observed depending on the polarization orientation with respect to the ripple axis. Moreover, the rippled morphology induces localization of strain and charge doping at the nanoscale, thus causing substantial redshifts of the phonon mode frequencies and a topography-dependent modulation of the MoS 2 workfunction, respectively. This study paves the way to a controllable tuning of the anisotropy via substrate pattern engineering in CVD-grown 2D nanosheets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W
2017-04-21
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.
Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion
Directory of Open Access Journals (Sweden)
Fengcheng Guo
2018-05-01
Full Text Available To better reduce image speckle noise while also maintaining edge information in synthetic aperture radar (SAR images, we propose a novel anisotropic diffusion algorithm using weighted Euclidean distance (WEDAD. Presented here is a modified speckle reducing anisotropic diffusion (SRAD method, which constructs a new edge detection operator using weighted Euclidean distances. The new edge detection operator can adaptively distinguish between homogenous and heterogeneous image regions, effectively generate anisotropic diffusion coefficients for each image pixel, and filter each pixel at different scales. Additionally, the effects of two different weighting methods (Gaussian weighting and non-linear weighting of de-noising were analyzed. The effect of different adjustment coefficient settings on speckle suppression was also explored. A series of experiments were conducted using an added noise image, GF-3 SAR image, and YG-29 SAR image. The experimental results demonstrate that the proposed method can not only significantly suppress speckle, thus improving the visual effects, but also better preserve the edge information of images.
Self-force on dislocation segments in anisotropic crystals
International Nuclear Information System (INIS)
Fitzgerald, S P; Aubry, S
2010-01-01
A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.
Sharpless, Charles M; Blough, Neil V
2014-04-01
Absorption of sunlight by chromophoric dissolved natural organic matter (CDOM) is environmentally significant because it controls photic zone depth and causes photochemistry that affects elemental cycling and contaminant fate. Both the optics (absorbance and fluorescence) and photochemistry of CDOM display unusual properties that cannot easily be ascribed to a superposition of individual chromophores. These include (i) broad, unstructured absorbance that decreases monotonically well into the visible and near IR, (ii) fluorescence emission spectra that all fall into a single envelope regardless of the excitation wavelength, and (iii) photobleaching and photochemical quantum yields that decrease monotonically with increasing wavelength. In contrast to a simple superposition model, these phenomena and others can be reasonably well explained by a physical model in which charge-transfer interactions between electron donating and accepting chromophores within the CDOM control the optical and photophysical properties. This review summarizes current understanding of the processes underlying CDOM photophysics and photochemistry as well as their physical basis.
Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures
Noor, Ahmed K.; Peters, Jeanne M.
1987-01-01
An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.
Gravitational, shear and matter waves in Kantowski-Sachs cosmologies
Energy Technology Data Exchange (ETDEWEB)
Keresztes, Zoltán; Gergely, László Á. [Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Forsberg, Mats; Bradley, Michael [Department of Physics, UmeåUniversity (Sweden); Dunsby, Peter K.S., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: forsberg.mats.a.b@gmail.com, E-mail: michael.bradley@physics.umu.se, E-mail: peter.dunsby@uct.ac.za, E-mail: gergely@physx.u-szeged.hu [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2015-11-01
A general treatment of vorticity-free, perfect fluid perturbations of Kantowski-Sachs models with a positive cosmological constant are considered within the framework of the 1+1+2 covariant decomposition of spacetime. The dynamics is encompassed in six evolution equations for six harmonic coefficients, describing gravito-magnetic, kinematic and matter perturbations, while a set of algebraic expressions determine the rest of the variables. The six equations further decouple into a set of four equations sourced by the perfect fluid, representing forced oscillations and two uncoupled damped oscillator equations. The two gravitational degrees of freedom are represented by pairs of gravito-magnetic perturbations. In contrast with the Friedmann case one of them is coupled to the matter density perturbations, becoming decoupled only in the geometrical optics limit. In this approximation, the even and odd tensorial perturbations of the Weyl tensor evolve as gravitational waves on the anisotropic Kantowski-Sachs background, while the modes describing the shear and the matter density gradient are out of phase dephased by π /2 and share the same speed of sound.
Energy Technology Data Exchange (ETDEWEB)
Kaloper, Nemanja [Department of Physics, University of California, Davis, CA 95616 (United States); Padilla, Antonio, E-mail: kaloper@physics.ucdavis.edu, E-mail: antonio.padilla@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)
2009-10-01
A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra 'antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < −1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger 'Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.
Kaloper, Nemanja; Padilla, Antonio
2009-10-01
A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
International Nuclear Information System (INIS)
Khattab, K.M.; Larsen, E.W.
1992-01-01
The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
International Nuclear Information System (INIS)
Khattab, K.M.; Larsen, E.W.
1991-01-01
This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented
On the Field of a Stationary Charged Spherical Source
Directory of Open Access Journals (Sweden)
Stavroulakis N.
2009-04-01
Full Text Available The equations of gravitation related to the field of a spherical charged source imply the existence of an interdependence between gravitation and electricity [5]. The present paper deals with the joint action of gravitation and electricity in the case of a stationary charged spherical source. Let m and " be respectively the mass and the charge of the source, and let k be the gravitational constant. Then the equations of gravitation need specific discussion according as j " j m p k (source strongly charged. In any case the curvature radius of the sphere bounding the matter possesses a strictly positive greatest lower hound, so that the source is necessarily an extended object. Pointwise sources do not exist. In particular, charged black holes do not exist.
Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.
2015-02-01
Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.
Dark sector impact on gravitational collapse of an electrically charged scalar field
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)
2015-11-04
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
ANALYSIS OF DEFORMABILITY OF ANISOTROPIC AGRILLITE CLAYSTONES
Directory of Open Access Journals (Sweden)
Ponomaryov Andrey Budimirovicn
2017-08-01
Full Text Available In the paper, the results of deformability study of agrillite claystones are used for determination of the Jointed rock model parameters. The number of stamp, pressuremeter and compressive tests allowed to research anisotropic deformability of argillite claystone in vertical and horizontal direction. The following problems were solved during the study: 1 the in-place and laboratory experiments to calculate the anisotropy coefficient were done for anisotropic agrillite claystones with both natural moisture and total water saturation; 2 the deformation parameters were determined and the numerical simulation of the stress-strain state of claystone in field tests was carried out with the use of Plaxis 2D software application; 3 the comparative analysis was done for calculated claystone deformation and the values obtained during the in-place tests. The authors proved that agrillite claystones shows two times less deformation under loading in the horizontal direction than vertically. The ratio is obtained to determine the parameters for numerical simulation of the Jointed Rock model used as a practical tool for analysis of stress-strain behavior of anisotropic soils. The authors provided a recommended practice for consideration of specific properties of argillite claystones when carrying out foundation works.
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
International Nuclear Information System (INIS)
Larroche, O.
2007-01-01
A locally split-step explicit (LSSE) algorithm was developed for efficiently solving a multi-dimensional advection-diffusion type equation involving a highly inhomogeneous and highly anisotropic diffusion tensor, which makes the problem very ill-conditioned for standard implicit methods involving the iterative solution of large linear systems. The need for such an optimized algorithm arises, in particular, in the frame of thermonuclear fusion applications, for the purpose of simulating fast charged-particle slowing-down with an ion Fokker-Planck code. The LSSE algorithm is presented in this paper along with the results of a model slowing-down problem to which it has been applied
Failure in imperfect anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...
Effective Medium Theory for Anisotropic Metamaterials
Zhang, Xiujuan
2017-11-12
This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering
Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.
2017-01-01
An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar
Characterization of highly anisotropic three-dimensionally nanostructured surfaces
International Nuclear Information System (INIS)
Schmidt, Daniel
2014-01-01
Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example of metal slanted columnar thin films, which have been conformally coated with a thin passivating oxide layer by atomic layer deposition. Furthermore, the application of an effective medium approximation approach to in-situ growth monitoring of this anisotropic thin film functionalization process is presented. It was found that structural parameters determined with the presented optical model equivalents for slanted columnar thin films agree very well with scanning electron microscope image estimates. - Highlights: • Summary of optical model strategies for sculptured thin films with arbitrary geometries • Application of the rigorous anisotropic Bruggeman effective medium applications • In-situ growth monitoring of atomic layer deposition on biaxial metal slanted columnar thin film
On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution
International Nuclear Information System (INIS)
Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.
2015-01-01
In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)
Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights
Directory of Open Access Journals (Sweden)
Tianshou Ma
2018-01-01
Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.
Phase transition detection by surface photo charge effect in liquid crystals
Ivanov, O.; Petrov, M.; Naradikian, H.; Perez-Diaz, J. L.
2018-05-01
The surface photo charge effect (SPCE) was applied for the first time at structure and phase transitions study of hydrogen bonded in dimer liquid crystals (HBDLCs). Due to the high sensitivity of this method, besides first-order phase transitions, characteristic for the p,n-octyloxibenzoic acids (8OBA), an order transition was definitely detected within the nematic range. We state that the SPCE, arising at the solid-HBDLCs interface due to the double electrical layer, is invariably concomitant with solid surface-liquid interfaces, and indicates that the changes of the characteristics of this layer, under incident optical irradiation, induce surface charge rearrangement and alternating potential difference. A mechanism of induction of the SPCE at the interface of solid surface-anisotropic liquids is proposed. We also indicate that this mechanism can be adapted for solid surface-isotropic liquid interface, including colloids (milk) and fog (aerosols)-condensed medium.
Debonding analyses in anisotropic materials with strain- gradient effects
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2012-01-01
A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...
Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem
Servan-Camas, Borja; Tsai, Frank T.-C.
2010-02-01
This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).
Energy Technology Data Exchange (ETDEWEB)
Strauss, R. D.; Engelbrecht, N. E.; Dunzlaff, P. [Center for Space Research, North-West University, Potchefstroom, 2522 (South Africa); Roux, J. A. le [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 3585 (United States); Ruffolo, D., E-mail: dutoit.strauss@nwu.ac.za [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)
2016-07-01
We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.
Directory of Open Access Journals (Sweden)
Kyong-Min Lee
2017-11-01
Full Text Available Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.
Anisotropic spin motive force in multi-layered Dirac fermion system, α-(BEDT-TTF)2I3
International Nuclear Information System (INIS)
Kubo, K; Morinari, T
2015-01-01
We investigate the anisotropic spin motive force in α-(BEDT-TTF) 2 I 3 , which is a multi-layered massless Dirac fermion system under pressure. Assuming the interlayer antiferromagnetic interaction and the interlayer anisotropic ferromagnetic interaction, we numerically examine the spin ordered state of the ground state using the steepest descent method. The anisotropic interaction leads to the anisotropic spin ordered state. We calculate the spin motive force produced by the anisotropic spin texture. The result quantitatively agrees with the experiment. (paper)
Quark seesaw mechanism, dark U (1 ) symmetry, and the baryon-dark matter coincidence
Gu, Pei-Hong; Mohapatra, Rabindra N.
2017-09-01
We attempt to understand the baryon-dark matter coincidence problem within the quark seesaw extension of the standard model where parity invariance is used to solve the strong C P problem. The S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry of this model is extended by a dark U (1 )X group plus inclusion of a heavy neutral vector-like fermion χL ,R charged under the dark group which plays the role of dark matter. All fermions are Dirac type in this model. Decay of heavy scalars charged under U (1 )X leads to simultaneous asymmetry generation of the dark matter and baryons after sphaleron effects are included. The U (1 )X group not only helps to stabilize the dark matter but also helps in the elimination of the symmetric part of the dark matter via χ -χ ¯ annihilation. For dark matter mass near the proton mass, it explains why the baryon and dark matter abundances are of similar magnitude (the baryon-dark matter coincidence problem). This model is testable in low threshold (sub-keV) direct dark matter search experiments.
Age-related changes of diffusional anisotropy in the cerebral white matter in normal subjects
International Nuclear Information System (INIS)
Hanyu, Haruo; Asano, Tetsuichi; Ogawa, Kimikazu; Takasaki, Masaru; Shindo, Hiroaki; Kakizaki, Dai; Abe, Kimihiko
1997-01-01
To investigate age-related changes of diffusional anisotropy in the cerebral white matter, we performed diffusion-weighted MRI studies in 21 normal subjects aged 25 to 96 years. The anisotropic rations (ARs), defined as the apparent diffusion coefficients perpendicular to the nerve fibers to those parallel to the nerve fibers, were significantly higher in elderly than in young subjects in the anterior and posterior white matter surrounding the lateral ventricle. Moreover, significant correlation between age and AR was found in the anterior white matter. The ventricular index (VI) measured on MRI, as a quantitative indicator of brain atrophy, was significantly higher in elderly than younger subjects, and significantly correlated with AR in the anterior white matter. Multiple regression analysis demonstrated that the VI showed the highest correlation for AR. On the other hand, there was no significant correlations between ARs in the corpus callosum and age. These results suggest that morphological changes in the myelin and axon in the white matter occur in elderly normal subjects, probably due to neuronal loss with aging. (author)
Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing
2017-09-01
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic
Interaction of the radiation and the matter
International Nuclear Information System (INIS)
Bermudez Jimenez, L.; Pacheco Jimenez, R.
2000-01-01
This document, has the purpose to introduce the reader, in the aspects and factors, which determine or affect, the interaction of ionizing radiations with the matter radiation, such as charged particles and electromagnetic radiations. (author)
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)
2017-01-15
The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.
A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting
Wu, Dong; Chen, Qi-Dai; Yao, Jia; Guan, Yong-Chao; Wang, Jian-Nan; Niu, Li-Gang; Fang, Hong-Hua; Sun, Hong-Bo
2010-02-01
The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μm. This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves' height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.
Discrimination of Charged Particles in a Neutral Beam Line by Using a Solid Scintillation Detector
Energy Technology Data Exchange (ETDEWEB)
Woo, Jong-Kwan; Ko, Jewou; Liu, Dong [Jeju National University, Jeju (Korea, Republic of)
2017-01-15
In the past several decades, many studies have been conducted to search for non-baryonic dark matter, such as weakly interactive massive particles (WIMPs). In the search for WIMPs, charged particles incident on the detector are background particles because WIMPs are neutral. Charged particles originate from various sources, such as cosmic rays and laboratory materials surrounding the main detector. Therefore, a veto that discriminates charged particles can improve the particle detection efficiency of the entire experiment for detecting WIMPs. Here, we investigate in the thickness range of 1 mm to 5 mm, the optimal thickness of a polystyrene scintillator as a charged particle veto detector. We found that 3-mm-thick polystyrene provides the best performance to veto charged particles and the charged-particle background in the search for the WIMP signal. Furthermore, we fabricated 3-mm-thick and 5-mm-thick polystyrene charged particle veto detectors that will be used in an underground laboratory in the search for WIMP dark matter. After exposing those detectors are the actual beam line, we compared the rate of charged particles measured using those detectors and the rate simulated through a Monte Carlo simulation.
Prymidis, V.
2017-01-01
In this thesis we study emergent statistical properties of many-particle systems of self-propelled particles using computer simulations. Ensembles of self-propelled particles belong to the class of physical systems labeled active matter, a term that refers to systems whose individual components are
Pattern formation of a nonlocal, anisotropic interaction model
Burger, Martin
2017-11-24
We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.
Pattern formation of a nonlocal, anisotropic interaction model
Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane
2017-01-01
We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.
DNA-nanoparticle superlattices formed from anisotropic building blocks
Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.
2010-11-01
Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.
Surface Waves Propagating on Grounded Anisotropic Dielectric Slab
Directory of Open Access Journals (Sweden)
Zhuozhu Chen
2018-01-01
Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.
SO-FDTD analysis of anisotropic magnetized plasma
International Nuclear Information System (INIS)
Yang Hongwei; Nanjing Univ. of Science and Technology, Nanjing; Yuan Hong; Chen Rushan; Yang Yang
2007-01-01
A novel finite-difference time-domain (FDTD) method, called shift operator FDTD (SO-FDTD) method is developed for anisotropic magnetized dispersive media. The recursive relation between operators is used. In this paper, some expressions containing the dielectric constants of magnetized dispersive media are written as rational polynomial function. The SO-FDTD formulation for anisotropic magnetized plasma is derived. The high efficiency and effectiveness of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer, with the direction of the propagation parallel to the direction of the biasing field. A comparison with frequency domain analytic results is included. The CPU time was several times shorter than that of the JEC method. (authors)
Newton–Hooke-type symmetry of anisotropic oscillators
International Nuclear Information System (INIS)
Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.
2013-01-01
Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition
Inflationary perturbations in anisotropic, shear-free universes
International Nuclear Information System (INIS)
Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena
2012-01-01
In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes
Bing, Xue; Yicai, Ji
2018-06-01
In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.
A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions
International Nuclear Information System (INIS)
Mulder, C.W.R.
1984-01-01
The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)
Anisotropic magnetoresistance in a Fermi glass
International Nuclear Information System (INIS)
Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)
1986-01-01
Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity
Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions
International Nuclear Information System (INIS)
Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R
2003-01-01
The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust
Charged Higgs Beyond the MSSM at the LHC
Huitu, Katri
2017-01-01
The charged Higgs boson is an inevitable particle in supersymmetric models, both in the minimal version and in extensions. It is also a particle, which may have different decay channels depending on the scalar representations in the model, and thus it may help in identifying the model. In this talk I will consider the simplest singlet and triplet extensions of the minimal supersymmetric standard model, and in particular, describe some smoking gun signals of charged Higgs at the LHC collider. Then I will move on to supersymmetric left-right models, in which neutrino masses are naturally generated and which have several dark matter candidates, in addition to possibly solving both the strong and weak CP-problems. I will discuss the charged Higgses, both singly and doubly charged, in such models.
Cosmological signatures of anisotropic spatial curvature
International Nuclear Information System (INIS)
Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo
2015-01-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature
Cosmological signatures of anisotropic spatial curvature
Energy Technology Data Exchange (ETDEWEB)
Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)
2015-07-01
If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....
ADHESION EFFECTS WITHIN THE HARD MATTER – SOFT MATTER INTERFACE: MOLECULAR DYNAMICS
Directory of Open Access Journals (Sweden)
Alexey Tsukanov
2016-12-01
Full Text Available In the present study three soft matter – hard matter systems consisting of different nanomaterials and organic molecules were studied using the steered molecular dynamics approach in order to reveal regularities in the formation of organic-inorganic hybrids and the stability of multimolecular complexes, as well as to analyze the energy aspects of adhesion between bio-molecules and layered ceramics. The combined process free energy estimation (COPFEE procedure was used for quantitative and qualitative assessment of the considered heterogeneous systems. Interaction of anionic and cationic amino acids with the surface of a [Mg4Al2(OH122+ 2Cl–] layered double hydroxide (LDH nanosheet was considered. In both cases, strong adhesion was observed despite the opposite signs of electric charge. The free energy of the aspartic amino acid anion, which has two deprotonated carboxylic groups, was determined to be –45 kJ/mol for adsorption on the LDH surface. For the cationic arginine, with only one carboxylic group and a positive net charge, the energy of adsorption was –26 kJ/mol, which is twice higher than that of chloride anion adsorption on the same cationic nanosheet. This fact clearly demonstrates the capability of “soft matter” species to adjust themselves and fit into the surface, minimizing energy of the system. The adsorption of protonated histamine, having no carboxylic groups, on a boehmite nanosheet is also energetically favorable, but the depth of free energy well is quite small at 3.6 kJ/mol. In the adsorbed state the protonated amino-group of histamine plays the role of proton donor, while the hydroxyl oxygens of the layered hydroxide have the role of proton acceptor, which is unusual. The obtained results represent a small step towards further understanding of the adhesion effects within the hard matter – soft matter contact zone.
Anisotropic stress as a signature of nonstandard propagation of gravitational waves.
Saltas, Ippocratis D; Sawicki, Ignacy; Amendola, Luca; Kunz, Martin
2014-11-07
We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity-all scalar-tensor theories (Horndeski), Einstein-aether models, and bimetric massive gravity-a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could, in principle, lead to new constraints on the theory of gravity.
Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.
Cheng, Cheng; Li, Xiao; Qian, Haitao
2017-11-15
Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.
Observation and applications of single-electron charge signals in the XENON100 experiment
Aprile, E.; et al., [Unknown; Alfonsi, M.; Colijn, A.P.; Decowski, M.P.
2014-01-01
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are
Composite dark matter from a model with composite Higgs boson
International Nuclear Information System (INIS)
Khlopov, Maxim Yu.; Kouvaris, Chris
2008-01-01
In a previous paper [Phys. Rev. D77, 065002 (2008)], we showed how the minimal walking technicolor model can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a 4 He ++ . We studied the properties of these techni-O-helium tOHe''atoms,'' which behave as warmer dark matter rather than cold. In this paper, we extend our work on several different aspects. We study the possibility of a mixed scenario where both tOHe and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density. We argue that these newly proposed bound states are solely made of techniparticles, although they behave as weakly interacting massive particles, due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore, we conclude that within the minimal walking technicolor model, composite dark matter should be mostly composed of tOHe. Moreover, in this paper, we put cosmological bounds in the masses of the techniparticles, if they compose the dark matter density. Finally, we propose within this setup, a possible explanation of the discrepancy between the DAMA/NaI and DAMA/LIBRA findings and the negative results of CDMS and other direct dark matter searches that imply nuclear recoil measurement, which should accompany ionization.
An optimization-based framework for anisotropic simplex mesh adaptation
Yano, Masayuki; Darmofal, David L.
2012-09-01
We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.
A study of charge-pickup interactions by (158A GeV) Pb nuclei
International Nuclear Information System (INIS)
Sher, G.; Shahzad, M.I.
2012-01-01
Study of the relativistic heavy-ion collision is important to focus on probing phase transitions between hadrons and quark-gluon phases in the extreme conditions of temperature and density of nuclear matter formed in the collisions. These states of nuclear matter are expected to be created in relativistic nuclear collisions with large overlap of interacting nuclei, the Lorentz-boosted Coulomb potential Vc proportional to alpha gamma Z/b of a partner with charge Z is very strong, where b is impact parameter and is the fine structure constant. Either one or both nuclei may be disintegrated by the electromagnetic forces in ultra-peripheral collisions at b = R1 + R2, where R1 and R2 are the nuclear radii. This distinct feature of electromagnetic dissociation makes it possible to study the behavior of nuclear matter under electromagnetic fields. The nuclear charge-pickup ( delta Z = +1) by Pb projectiles at energy 158A GeV interacting with targets Bi, Pb, Cu and Al was investigated using CR39 nuclear track detectors. The target-detector stacks were exposed at CERN SPS beam facility. The projectile and fragments charge states have been identified using the etch-cone lengths for charge-pickup at Z = 83 of residual nuclei. Our measured charge-pickup cross sections (delta Z = +1) are shown. It was observed that for the heavy targets the increase in the cross section is anticipated by substantial contribution of electromagnetic dissociation process of production by virtual photons which is almost negligible at 10.6A GeV. In the light target region, our measured cross sections and charge-pickup cross sections reported at energy 10.6A GeV show dominant nuclear contribution and very small contribution of electromagnetic dissociation term. A strong dependence of charge-pickup cross sections on the target mass number was observed particularly in the heavy targets. (orig./A.B.)
Study of anisotropic mechanical properties for aeronautical PMMA
Directory of Open Access Journals (Sweden)
Wei Shang
Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.
Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles
Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.
2017-09-01
Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.
MHz gravitational waves from short-term anisotropic inflation
International Nuclear Information System (INIS)
Ito, Asuka; Soda, Jiro
2016-01-01
We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.
Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma
International Nuclear Information System (INIS)
Hazeltine, R. D.; Mahajan, S. M.
2013-01-01
Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained
Effective medium theory for anisotropic metamaterials
Zhang, Xiujuan; Wu, Ying
2015-01-01
-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided
Casimir interactions for anisotropic magnetodielectric metamaterials
Energy Technology Data Exchange (ETDEWEB)
Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory
2008-01-01
We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-01-01
these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons.
Synthetic acceleration methods for linear transport problems with highly anisotropic scattering
International Nuclear Information System (INIS)
Khattab, K.M.
1989-01-01
One of the iterative methods which is used to solve the discretized transport equation is called the Source Iteration Method (SI). The SI method converges very slowly for problems with optically thick regions and scattering ratios (σ s /σ t ) near unity. The Diffusion-Synthetic Acceleration method (DSA) is one of the methods which has been devised to improve the convergence rate of the SI method. The DSA method is a good tool to accelerate the SI method, if the particle which is being dealt with is a neutron. This is because the scattering process for neutrons is not severely anisotropic. However, if the particle is a charged particle (electron), DSA becomes ineffective as an acceleration device because here the scattering process is severely anisotropic. To improve the DSA algorithm for electron transport, the author approaches the problem in two different ways in this thesis. He develops the first approach by accelerating more angular moments (φ 0 , φ 1 , φ 2 , φ 3 ,...) than is done in DSA; he calls this approach the Modified P N Synthetic Acceleration (MPSA) method. In the second approach he modifies the definition of the transport sweep, using the physics of the scattering; he calls this approach the Modified Diffusion Synthetic Acceleration (MDSA) method. In general, he has developed, analyzed, and implemented the MPSA and MDSA methods in this thesis and has shown that for a high order quadrature set and mesh widths about 1.0 cm, they are each about 34 times faster (clock time) than the DSA method. Also, he has found that the MDSA spectral radius decreases as the mesh size increases. This makes the MDSA method a better choice for large spatial meshes
How did matter gain the upper hand over antimatter?
International Nuclear Information System (INIS)
Quinn, Helen
2009-01-01
Antimatter exists. We routinely make it in laboratories. For every familiar particle type we find a matching antiparticle with opposite charge, but exactly the same mass. For example, a positron with positive charge has the same mass as an electron; an antiproton with negative charge has the same mass as a proton. Antimatter occurs naturally all over the universe wherever high-energy particles collide. The laws of physics for antimatter are very, very similar to those for antimatter--so far we know only one tiny difference in them, a detail of the weak interactions of quarks that earned Makoto Kobayashi and Toshihide Maskawa a share of the 2008 Nobel Prize for Physics. Our understanding of the early Universe also tells us that after inflation ended equal amounts of matter and antimatter were produced. Today there's a lot of matter in the universe, but very little antimatter. This leaves a big question for cosmology. How did matter gain the upper hand over antimatter? It's a question at the root of our existence. Without this excess, there would be no stars, no Earth, and no us. When a particle meets its antiparticle, they annihilate each other in a flash of radiation. This process removed all the antimatter and most of the matter as the universe expanded and cooled. All that's left today is the excess amount of matter when destruction began to dominate over production. To get from equality to inequality for matter and antimatter requires a difference in the laws of physics between them and some special situation where it affects the balance between them. But, when we try to use the tiny difference we know about between quark and antiquark weak interactions to generate the imbalance, it doesn't work. We find a way that it can indeed give a small excess of matter over antimatter, but not nearly enough to give us all the matter we see in our universe. We can patch up the theory by adding unknown particles to it to make a scenario that works. Indeed we can do that in
Anisotropic modelling of the electrical conductivity of fractured bedrock
International Nuclear Information System (INIS)
Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.
1995-01-01
The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)
Fourier Multipliers on Anisotropic Mixed-Norm Spaces of Distributions
DEFF Research Database (Denmark)
Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten
2018-01-01
A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity of such operat......A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity...
International Nuclear Information System (INIS)
Filippov, V. V.; Bormontov, E. N.
2013-01-01
A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material’s anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Filippov, V. V., E-mail: wwfilippow@mail.ru [Lipetsk State Pedagogical University (Russian Federation); Bormontov, E. N. [Voronezh State University (Russian Federation)
2013-07-15
A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material's anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors.
Pekşen, Ertan; Yas, Türker; Kıyak, Alper
2014-09-01
We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.
Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene
Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit
2018-01-01
We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.
A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films
Kwiatkowski, Joe J.; Jimison, Leslie H.; Salleo, Alberto; Spakowitz, Andrew J.
2011-01-01
We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.
Kim, Yeong E.; Zubarev, Alexander L.
2006-02-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.
On the central charge in 3 D-supersymmetry
International Nuclear Information System (INIS)
Colatto, L.P.
1994-01-01
A matter self-interacting model with N = 1-supersymmetry in 3 D is discussed in connection with the appearance of a central charge in the algebra of the supersymmetry generators. The result is extended to include gauge fields with a Chern-Simons term. (author)
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, Ramzi
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Interfacial Charge Transfer States in Condensed Phase Systems
Vandewal, Koen
2016-05-01
Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.
International Nuclear Information System (INIS)
Broniatowski, A.; Censier, B.; Juillard, A.; Berge, L.
2006-01-01
Test experiments have been performed on a Ge detector of the Edelweiss collaboration, combining time-resolved acquisition of the ionization signals with heat measurements. Pulse-shape analysis of the charge signals demonstrates the capability to reject surface events of poor charge collection with energies larger than 50 keV in ionization