WorldWideScience

Sample records for charge-exchange-induced x-ray emission

  1. Charge Exchange Induced X-ray Emission of Fe XXV and Fe XXVI via a Streamlined Model

    CERN Document Server

    Mullen, P D; Lyons, D; Stancil, P C

    2016-01-01

    Charge exchange is an important process for the modeling of X-ray spectra obtained by the Chandra, XMM-Newton, and Suzaku X-ray observatories, as well as the anticipated Astro-H mission. The understanding of the observed X-ray spectra produced by many astrophysical environments is hindered by the current incompleteness of available atomic and molecular data -- especially for charge exchange. Here, we implement a streamlined program set that applies quantum defect methods and the Landau-Zener theory to generate total, n-resolved, and nlS-resolved cross sections for any given projectile ion/ target charge exchange collision. Using this data in a cascade model for X-ray emission, theoretical spectra for such systems can be predicted. With these techniques, Fe25+ and Fe26+ charge exchange collisions with H, He, H2, N2, H2O, and CO are studied for single electron capture. These systems have been selected as they illustrate computational difficulties for high projectile charges. Further, Fe XXV and Fe XXVI emission...

  2. Charge Exchange-induced X-Ray Emission of Fe xxv and Fe xxvI via a Streamlined Model

    Science.gov (United States)

    Mullen, P. D.; Cumbee, R. S.; Lyons, D.; Stancil, P. C.

    2016-06-01

    Charge exchange (CX) is an important process for the modeling of X-ray spectra obtained by the Chandra, XMM-Newton, and Suzaku X-ray observatories, as well as the anticipated Astro-H mission. The understanding of the observed X-ray spectra produced by many astrophysical environments is hindered by the current incompleteness of available atomic and molecular data—especially for CX. Here, we implement a streamlined program set that applies quantum defect methods and the Landau-Zener theory to generate total, n-resolved, and n{\\ell }S-resolved cross sections for any given projectile ion/target CX collision. By using these data in a cascade model for X-ray emission, theoretical spectra for such systems can be predicted. With these techniques, Fe25+ and Fe26+ CX collisions with H, He, H2, N2, H2O, and CO are studied for single-electron capture (SEC). These systems have been selected because they illustrate computational difficulties for high projectile charges. Furthermore, Fe xxv and Fe xxvi emission lines have been detected in the Galactic center and Galactic ridge. Theoretical X-ray spectra for these collision systems are compared to experimental data generated by an electron-beam ion trap study. Several ℓ-distribution models have been tested for Fe25+ and Fe26+ SEC. Such analyses suggests that commonly used ℓ-distribution models struggle to accurately reflect the true distribution of electron capture as understood by more advanced theoretical methods.

  3. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    OpenAIRE

    de Groot, F. M. F.

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption process. Section II discusses 1s X-ray absorption, i.e., the K edges, and section III deals with 2p X-ray absorption, the L edges. X-ray emission is discussed in, respectively, the L edges. X-ray emis...

  4. X-ray Emission from Solar Flares

    Indian Academy of Sciences (India)

    Rajmal Jain; Malini Aggarwal; Raghunandan Sharma

    2008-03-01

    Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.

  5. X-ray Emission of Hollow Atoms

    Institute of Scientific and Technical Information of China (English)

    ZhaoYongtao; XiaoGuoqing; ZhangXiaoan; YangZhihu; ChenXimeng; ZhangYanping

    2003-01-01

    We have systematically investigated the X-rays emission of hollow atoms (HA) which formed in the interaction of highly charged ions with a variety of solid surfaces at the atomic physics experimental setup of IMP. The X-ray spectra were measured by Si(Li) detectors with effective energy ranging from 1 keV to 60 keV. The results show that, the X-ray emission from the formed HA is closely correlated with the charge state of the projectile ions, and weakly correlated with the velocity of the projectile ions. For example, it was found that when Ar18+ ions interact with Be-target, the yield of K X-ray with character energy of 3.0 keV is 7.2×10-3 per ion, which is two times and 5 order of magnitude higher than those in the interactions of Ar17+ and Ar16+ ions respectively. When Ar15+ ions interact with the same targets, the Argon K X-ray would be too feeble to be detected. The X-ray yield with single ion in this experiment can be represented by the following equation,

  6. X-ray emission processes in stars

    CERN Document Server

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the HR diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, evolution of X-ray activity with age), to X-ray generating processes (e.g. accretion, jets, magnetically confined winds) that were poorly understood in the pre-Chandra/XMM-Newton era. I discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics no...

  7. X-ray emission from red quasars

    Science.gov (United States)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1985-01-01

    A dozen red quasars were observed with the Einstein Observatory in order to determine their X-ray properties. The observations show that for all these sources, the infrared-optical continuum is so steep that when extrapolated to higher frequencies, it passes orders of magnitude below the measured X-ray flux. The X-ray emission is better correlated with the radio than with the infrared flux, suggesting a connection between the two. By applying the synchrotron-self-Compton model to the data, it is found that the infrared-optical region has a size of 0.01 pc or more and a magnetic field more than 0.1 G, values considerably different than are found in the radio region. Unlike other quasars, the ionizing continuum is dominated by the X-ray emission. The peculiar line ratios seen in these objects can be understood with a photoionization model, provided that the photon to gas density ratio (ionization parameter) is an order of magnitude less than in typical quasars.

  8. Modeling X-ray Emission Around Galaxies

    CERN Document Server

    Anderson, Michael E

    2014-01-01

    Extended X-ray emission can be studied either spatially (through its surface brightness profile) or spectrally (by analyzing the spectrum at various locations in the field). Both techniques have advantages and disadvantages, and when the emission becomes particularly faint and/or extended, the two methods can disagree. We argue that an ideal approach would be to model the events file directly, and therefore to use both the spectral and spatial information which are simultaneously available for each event. In this work we propose a first step in this direction, introducing a method for spatial analysis which can be extended to leverage spectral information simultaneously. We construct a model for the entire X-ray image in a given energy band, and generate a likelihood function to compare the model to the data. A critical goal of this modeling is disentangling vignetted and unvignetted backgrounds through their different spatial distributions. Employing either maximum likelihood or Markov Chain Monte Carlo, we ...

  9. Hard X-ray emission from neutron star X-ray binaries

    Energy Technology Data Exchange (ETDEWEB)

    Di Salvo, T.; Santangelo, A.; Segreto, A

    2004-06-01

    In this paper we review our current knowledge of the hard X-ray emission properties of accreting X-ray Binary Pulsars and old accreting neutron stars in Low Mass X-ray Binaries in light of 7 years of BeppoSAX and RXTE observations. The paper is divided in two parts. In the first part we review the more recent findings on the phase-dependent broad band continua and cyclotron resonance scattering features observed in many systems of the X-ray Binary Pulsar class. In the second part we review the hard X-ray emission of LMXRB focussing on the hard X-ray components extending up to energies of a few hundred keV that have been clearly detected in sources of both the atoll and Z classes. The presence and characteristics of these hard emission components are then discussed in relation to source properties and spectral state. We, also, briefly mention models that have been proposed for the hard X-ray emission of neutron star X-ray binaries.

  10. X-ray emission from Saturn

    CERN Document Server

    Ness, J U; Wolk, S J; Dennerl, K; Burwitz, V

    2004-01-01

    We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ksec with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of Saturn. We found no evidence for smaller or larger angular extent. The expected background level is 56 cts, i.e., the count rate is (1.6 +- 0.2) 10^-3 cts/s. The extracted photons are rather concentrated towards the equator of the apparent disk, while both polar caps have a relative photon deficit. The inclination angle of Saturn during the observation was -27 degrees, so that the northern hemisphere was not visible during the complete observation. In addition, it was occulted by the ring system. We found a small but significant photon excess at one edge of the ring system. The light curve shows a small dip twice at identical phases,...

  11. X-ray lasers: Multicolour emission

    Science.gov (United States)

    Feng, Chao; Deng, Haixiao

    2016-11-01

    The X-ray free-electron laser at the SLAC National Accelerator Laboratory in the US can now generate multicolour X-ray pulses with unprecedented brightness using the fresh-slice technique. The development opens the way to new forms of spectroscopy.

  12. Low-luminosity X-ray sources and the Galactic ridge X-ray emission

    CERN Document Server

    Warwick, R S

    2014-01-01

    Using the XMM-Newton Slew Survey, we construct a hard-band selected sample of low-luminosity Galactic X-ray sources. Two source populations are represented, namely coronally-active stars and binaries (ASBs) and cataclysmic variables (CVs), with X-ray luminosities collectively spanning the range 10^(28-34) erg/s (2-10 keV). We derive the 2-10 keV X-ray luminosity function (XLF) and volume emissivity of each population. Scaled to the local stellar mass density, the latter is found to be 1.08 +/- 0.16 x 10^28 erg/s/M and 2.5 +/- 0.6 x 10^27 erg/s/M, for the ASBs and CVs respectively, which in total is a factor 2 higher than previous estimates. We employ the new XLFs to predict the X-ray source counts on the Galactic plane at l = 28.5 deg and show that the result is consistent with current observational constraints. The X-ray emission of faint, unresolved ASBs and CVs can account for a substantial fraction of the Galactic ridge X-ray emission (GRXE). We discuss a model in which roughly 80 per cent of the 6-10 keV...

  13. X-ray emission from single Wolf-Rayet stars

    CERN Document Server

    Oskinova, Lidia

    2016-01-01

    This review briefly summarizes our knowledge of the X-ray emission from single WN, WC, and WO stars. These stars have relatively modest X-ray luminosities, typically not exceeding L_sun. The analysis of X-ray spectra usually reveals thermal plasma with temperatures reaching a few 10 MK. X-ray variability is detected in some WN stars. At present we don't fully understand how X-ray radiation in produced in WR stars, albeit there are some promising research avenues, such as the presence of CIRs in the winds of some stars. To fully understand WR stars we need to unravel mechanisms of X-ray production in their winds.

  14. X-ray Emission from the Guitar Nebula

    CERN Document Server

    Romani, R W; Yadigaroglu, I A; Romani, Roger W.; Cordes, James M.

    1997-01-01

    We have detected weak soft X-ray emission from the Pulsar Wind Nebula trailing the high velocity star PSR 2224+65 (the `Guitar Nebula'). This X-ray flux gives evidence of \\gamma~10^7 eV particles in the pulsar wind and constrains the properties of the post-shock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near equipartition values.

  15. Uranium M x-ray emission spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Keski-Rahkonen, O.; Krause, M.O.

    1977-03-01

    The uranium M x-ray spectrum from a thick metallic target excited by 12-keV electrons was measured by the PAX (photoelectron spectrometry for the analysis of x rays) technique. Energies of the strongest lines were obtained with an accuracy of 0.1 eV using Ag L..beta../sub 1/ and Ag L..cap alpha../sub 1/ as standards. Widths of the uranium lines were obtained by deconvoluting the measured Voigt profiles, and the experimental values were found to agree satisfactorily with McGuire's Hartree-Slater predictions. Natural widths of 4.0(3) and 3.8(3) eV were derived for the M/sub 4/ and M/sub 5/ levels, respectively, and the energies of the M/sub 4/, M/sub 5/, N/sub 2/, and N/sub 3/ levels in uranium metal were determined. Relative intensities of the M lines were measured, and branching ratios were found to be in fair agreement with relativistic Hartree-Slater predictions. The satellite structures of the M..cap alpha../sub 1/ and M..beta.. lines were interpreted in terms of the pertinent multiple-hole configurations. Finally, an approximate analytic expression for the Voigt half-width and its graphical representation are given.

  16. Stimulated scintillation emission depletion X-ray imaging.

    Science.gov (United States)

    Alekhin, M S; Patton, G; Dujardin, C; Douissard, P-A; Lebugle, M; Novotny, L; Stampanoni, M

    2017-01-23

    X-ray microtomography is a widely applied tool for noninvasive structure investigations. The related detectors are usually based on a scintillator screen for the fast in situ conversion of an X-ray image into an optical image. Spatial resolution of the latter is fundamentally diffraction limited. In this work, we introduce stimulated scintillation emission depletion (SSED) X-ray imaging where, similar to stimulated emission depletion (STED) microscopy, a depletion beam is applied to the scintillator screen to overcome the diffraction limit. The requirements for the X-ray source, the X-ray flux, the scintillator screen, and the STED beam were evaluated. Fundamental spatial resolution limits due to the spread of absorbed X-ray energy were estimated with Monte Carlo simulations. The SSED proof-of-concept experiments demonstrated 1) depletion of X-ray excited scintillation, 2) partial confinement of scintillating regions to sub-diffraction sized volumes, and 3) improvement of the imaging contrast by applying SSED.

  17. X-ray and radio emission from colliding stellar winds

    CERN Document Server

    Pittard, J M; Coker, R F; Corcoran, M F

    2004-01-01

    The collision of the hypersonic winds in early-type binaries produces shock heated gas, which radiates thermal X-ray emission, and relativistic electrons, which emit nonthermal radio emission. We review our current understanding of the emission in these spectral regions and discuss models which have been developed for the interpretation of this emission. Physical processes which affect the resulting emission are reviewed and ideas for the future are noted.

  18. X-Ray Emission from Rotation-Powered Pulsars

    Institute of Scientific and Technical Information of China (English)

    LIN Gui-Fang; ZHANG Li

    2005-01-01

    @@ We study the properties of pulsed component of hard (2-10keV) x-ray emission from pulsars based on the new version of outer gap model we proposed previously [Astrophys.J.604 (2004) 317].On the frame of this outer gap model, we derive an expression of non-thermal pulsed x-ray luminosity of rotation-powered pulsars, and then apply it to the pulsars whose pulsed x-rays are detected by ASCA.Using the Kolmogorov-Smirnov test,we determine the model parameter.The present results indicate LX ∝ L1.15sd for these x-ray pulsars, which is consistent with the observed data.

  19. Extended X-ray emission from radio galaxy cocoons

    CERN Document Server

    Nath, Biman B

    2010-01-01

    We study the emission of X-rays from lobes of FR-II radio galaxies by inverse Compton scattering of microwave background photons. Using a simple model that takes into account injection of relativistic electrons, their energy losses through adiabatic expansion, synchrotron and inverse Compton emission, and also the stopping of the jet after a certain time, we study the evolution of the total X-ray power, the surface brightness, angular size of the X-ray bright region and the X-ray photon index, as functions of time and cocoon size, and compare the predictions with observations. We find that the radio power drops rapidly after the stopping of the jet, with a shorter time-scale than the X-ray power. The X-ray spectrum initially hardens until the jet stops because the steepening of electron spectrum is mitigated by the injection of fresh particles, for electrons with $\\gamma \\ge 10^3$. This happens because of the concurrence of two times scales, that of the typical jet lifetimes and cooling due to inverse Compton...

  20. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  1. Exotic x-ray emission from dense plasmas

    Science.gov (United States)

    Rosmej, F. B.; Dachicourt, R.; Deschaud, B.; Khaghani, D.; Dozières, M.; Šmíd, M.; Renner, O.

    2015-11-01

    Exotic x-ray emission from dense matter is identified as the complex high intensity satellite emission from autoionizing states of highly charged ions. Among a vast amount of possible transitions, double K-hole hollow ion (HI) x-ray emission K0L X → K1L X-1 + hν hollow is of exceptional interest due to its advanced diagnostic potential for matter under extreme conditions where opacity and radiation fields play important roles. Transient ab initio simulations identify intense short pulse radiation fields (e.g., those emitted by x-ray free electron lasers) as possible driving mechanisms of HI x-ray emission via two distinct channels: first, successive photoionization of K-shell electrons, second, photoionization followed by resonant photoexciation among various ionic charge states that are simultaneously present in high density matter. We demonstrated that charge exchange of intermixing inhomogenous plasmas as well as collisions driven by suprathermal electrons are possible mechanisms to populate HIs to observable levels in dense plasmas, particularly in high current Z-pinch plasmas and high intensity field-ionized laser produced plasmas. Although the HI x-ray transitions were repeatedly identified in many other cases of dense optical laser produced plasmas on the basis of atomic structure calculations, their origin is far from being understood and remains one of the last holy grails of high intensity laser-matter interaction.

  2. Understanding X-ray reflection emissivity profiles in AGN: Locating the X-ray source

    CERN Document Server

    Wilkins, D R

    2012-01-01

    The illumination pattern (or emissivity profile) of the accretion disc due to the reflection of X-rays in AGN can be understood in terms of relativistic effects on the rays propagating from a source in a corona surrounding the central black hole, both on their trajectories and on the accretion disc itself. Theoretical emissivity profiles due to isotropic point sources as well as simple extended geometries are computed in general relativistic ray tracing simulations performed on graphics processing units (GPUs). Such simulations assuming only general relativity naturally explain the accretion disc emissivity profiles determined from relativistically broadened emission lines which fall off steeply (with power law indices of between 6 and 8) over the inner regions of the disc, then flattening off to almost a constant before tending to a constant power law of index 3 over the outer disc. Simulations for a variety of source locations, extents and geometries show how the emissivity profiles depend on these properti...

  3. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  4. L X-ray emission induced by heavy ions

    Science.gov (United States)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  5. K alpha line emission during solar X-ray bursts

    Science.gov (United States)

    Phillips, K. J. H.; Neupert, W. M.

    1973-01-01

    The expected flux of K alpha line emission from sulfur, argon, calcium, and iron is calculated during both thermal and nonthermal solar X-ray events. Such emission is shown to be weak during the course of most of the nonthermal hard X-ray bursts that Kane and Anderson (1970) have observed. If Compton backscattering is significant at high energies, the flux is reduced still further for disk flares, but it is noted that the strong, near-limb burst of June 26 would have produced about 100 photons /sq cm/sec of sulfur and iron K alpha emission. The impulsive hard X-ray bursts may in general be too short-lived for much K alpha emission. It may be noted that sulfur K alpha emission in particular depends sensitively on the lower-energy limit of the nonthermal electron spectrum, assuming such a sharply defined boundary exists. During soft X-ray bursts, when temperatures of a few 10 to the 7th power K are obtained, K alpha emission from certain iron ions, specifically Fe XVIII-XXIII, may be important.

  6. Typing Supernova Remnants Using X-ray Line Emission Morphologies

    CERN Document Server

    Lopez, Laura A; Badenes, Carles; Huppenkothen, Daniela; Jeltema, Tesla E; Pooley, David A

    2009-01-01

    We present a new observational method to type the explosions of young supernova remnants (SNRs). By measuring the morphology of the Chandra X-ray line emission in seventeen Galactic and Large Magellanic Cloud SNRs with a multipole expansion analysis (using power ratios), we find that the core-collapse SNRs are statistically more asymmetric than the Type Ia SNRs. We show that the two classes of supernovae can be separated naturally using this technique because X-ray line morphologies reflect the distinct explosion mechanisms and structure of the circumstellar material. These findings are consistent with recent spectropolarimetry results showing that core-collapse SNe are intrinsically more asymmetric.

  7. Screening in resonant X-ray emission of molecules

    DEFF Research Database (Denmark)

    Ågren, Hans; Luo, Yi; Gelmukhanov, Faris;

    1996-01-01

    We explore the effects of screening in resonant X-ray emission from molecules by means of unconstrained multi-configurational self-consistent field optimizations of each state involved in the resonant and nonresonant X-ray processes. It is found that, although screening can produce shifts...... in transition energies of a few eV, its effect on the transition intensities is relatively minor. Using results from the investigated molecules, we find that the screening is quite dependent on the type of molecule - saturated versus unsaturated - and on the core site, but depends little on the particular core...

  8. X-ray emission from hot subdwarfs with compact companions

    CERN Document Server

    Mereghetti, Sandro; Esposito, Paolo; Tiengo, Andrea

    2012-01-01

    We review the X-ray observations of hot subdwarf stars. While no X-ray emission has been detected yet from binaries containing B-type subdwarfs, interesting results have been obtained in the case of the two luminous O-type subdwarfs HD 49798 and BD +37 442. Both of them are members of binary systems in which the X-ray luminosity is powered by accretion onto a compact object: a rapidly spinning (13.2 s) and massive (1.28 M_sun) white dwarf in the case of HD 49798 and most likely a neutron star, spinning at 19.2 s, in the case of BD +37 442. Their study can shed light on the poorly known processes taking place during common envelope evolutionary phases and on the properties of wind mass loss from hot subdwarfs.

  9. Near-Infrared Spectroscopy of Faint Discrete X-ray Point Sources Constituting the Galactic Ridge X-ray Emission

    CERN Document Server

    Morihana, Kumiko; Dubath, Pierre; Yoshida, Tessei; Suzuki, Kensuke; Ebisawa, Ken

    2016-01-01

    The Galactic Ridge X-ray Emission (GRXE) is apparently extended X-ray emission along the Galactic Plane. The X-ray spectrum is characterized by hard continuum with a strong Fe K emission feature in the 6-7 keV band. A substantial fraction (~80%) of the GRXE in the Fe band was resolved into point sources by deep Chandra imaging observations, thus GRXE is mostly composed of dim Galactic X-ray point sources at least in this energy band. To investigate the populations of these dim X-ray point sources, we carried out Near-Infrared (NIR) follow-up spectroscopic observations in two deep Chandra fields located in the Galactic plane at (l,b)=(0.1{\\arcdeg}, -1.4{\\arcdeg}) and (28.5{\\arcdeg}, 0.0{\\arcdeg}) using NTT/SofI and Subaru/MOIRCS. We obtained well-exposed NIR spectra from 65 objects and found that there are three main classes of Galactic sources based on the X-ray color and NIR spectral features: those having (A) hard X-ray spectra and NIR emission features such as HI(Br{\\gamma}), HeI, and HeII (2 objects), (B)...

  10. Soft X-ray emission in flaring coronal loops

    CERN Document Server

    Pinto, R F; Brun, A S

    2014-01-01

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  11. Formation and X-ray Emission from Hot Bubbles in Planetary Nebulae. II. Hot bubble X-ray emission

    CERN Document Server

    Toalá, J A

    2016-01-01

    We present a study of the X-ray emission from numerical simulations of hot bubbles in planetary nebulae (PNe). High-resolution, two-dimensional, radiation-hydrodynamical simulations of the formation and evolution of hot bubbles in PNe, with and without thermal conduction, are used to calculate the X-ray emission and study its time-dependence and relationship to the changing stellar parameters. Instabilities in the wind-wind interaction zone produce clumps and filaments in the swept-up shell of nebular material. Turbulent mixing and thermal conduction at the corrugated interface can produce quantities of intermediate temperature and density gas between the hot, shocked wind bubble and the swept-up photoionized nebular material, which can emit in soft, diffuse X-rays. We use the CHIANTI software to compute synthetic spectra for the models and calculate their luminosities. We find that models both with conduction and those without can produce the X-ray temperatures and luminosities that are in the ranges reporte...

  12. Hard X-ray emission of Sco X-1

    CERN Document Server

    Revnivtsev, Mikhail G; Churazov, Eugene M; Krivonos, Roman A

    2014-01-01

    We study hard X-ray emission of the brightest accreting neutron star Sco X-1 with INTEGRAL observatory. Up to now INTEGRAL have collected ~4 Msec of deadtime corrected exposure on this source. We show that hard X-ray tail in time average spectrum of Sco X-1 has a power law shape without cutoff up to energies ~200-300 keV. An absence of the high energy cutoff does not agree with the predictions of a model, in which the tail is formed as a result of Comptonization of soft seed photons on bulk motion of matter near the compact object. The amplitude of the tail varies with time with factor more than ten with the faintest tail at the top of the so-called flaring branch of its color-color diagram. We show that the minimal amplitude of the power law tail is recorded when the component, corresponding to the innermost part of optically thick accretion disk, disappears from the emission spectrum. Therefore we show that the presence of the hard X-ray tail may be related with the existence of the inner part of the optica...

  13. Chemical Speciation via X-ray Emission Spectra

    Science.gov (United States)

    Ankudinov, A. L.; Rehr, J. J.; Elam, W. T.; Sieber, J. R.

    2002-03-01

    We have extended our calculations of lineshapes in x-ray emission and x-ray fluorescence (XRF) spectroscopy to investigate the dependence on formal oxidation state. We used the self-consistent x-ray spectroscopy code FEFF8.1 [1], which is based on a real-space Green's function formalism, to calculate the phosphorus K-M_2,3 line and the Cr K and L emission lines for a range of simple oxides. These lines exhibit changes depending on oxidation state. Convolution with an algorithm describing the response function of the spectrometer is necessary to compare to experimental measurements. The calculated spectra are compared to measured spectra and to other relevant calculations, e.g., Fujikawa and Kawai [2]. The comparisons thus far indicate that calculations and measurements together can yield a quantitative analysis of compounds. [1] A. L. Ankudinov and J. J. Rehr, Phys. Rev. B 62, 2437 (2000). [2] T. Fujikawa and J. Kawai, J. Phys. Soc. Japan 68, 4032 (1999).

  14. Soft X-ray emission of nearby galaxy M81

    Institute of Scientific and Technical Information of China (English)

    苏旸; 毕红光; 李启斌

    1997-01-01

    The pointed observations of NGC3077 are analyzed by position sensitive proportional counter (PSPC) on board the ROSAT satellite on 1991-04-18, 1991, finding out that the X-ray emission range of M81 galaxy has, in the softer and more sensitive ROSAT PSPC band (0. 2-2. 4 keV), extended by 40% larger than ever observed by image proportional counter (IPC) on board the Einstein satellite, which shows that M81 galaxy has a larger X-ray corona. And by the aid of the timing analysis, it is concluded that M81 nucleus has no variabilities on time scale of a few minutes; hence the possibility of M81 nucleus having the marginal variability over time scale of about 2 min that Fabbiano (1988) found from the Einstein IPC observation is ruled out.

  15. Spatially Varying X-ray Synchrotron Emission in SN 1006

    CERN Document Server

    Dyer, K K; Borkowski, K; Petre, R; Dyer, Kristy; Reynolds, Stephen P; Borkowski, Kazik; Petre, Rob

    2001-01-01

    A growing number of both galactic and extragalactic supernova remnants show non-thermal (non-plerionic) emission in the X-ray band. New synchrotron models, realized as SRESC and SRCUT in XSPEC 11, which use the radio spectral index and flux as inputs and include the full single-particle emissivity, have demonstrated that synchrotron emission is capable of producing the spectra of dominantly non-thermal supernova remnants with interesting consequences for residual thermal abundances and acceleration of particles. In addition, these models deliver a much better-constrained separation between the thermal and non-thermal components, whereas combining an unconstrained powerlaw with modern thermal models can produce a range of acceptable fits. While synchrotron emission can be approximated by a powerlaw over small ranges of energy, the synchrotron spectrum is in fact steepening over the X-ray band. Having demonstrated that the integrated spectrum of SN 1006, a remnant dominated by non-thermal emission, is well desc...

  16. X-ray Emission Characteristics of Flares Associated with CMEs

    Indian Academy of Sciences (India)

    Malini Aggarwal; Rajmal Jain; A. P. Mishra; P. G. Kulkarni; Chintan Vyas; R. Sharma; Meera Gupta

    2008-03-01

    We present the study of 20 solar flares observed by ``Solar X-ray Spectrometer (SOXS)” mission during November 2003 to December 2006 and found associated with coronal mass ejections (CMEs) seen by LASCO/SOHO mission. In this investigation, X-ray emission characteristics of solar flares and their relationship with the dynamics of CMEs have been presented.We found that the fast moving CMEs, i.e., positive acceleration are better associated with short rise time (< 150 s) flares. However, the velocity of CMEs increases as a function of duration of the flares in both 4.1–10 and 10–20 keV bands. This indicates that the possibility of association of CMEs with larger speeds exists with long duration flare events. We observed that CMEs decelerate with increasing rise time, decay time and duration of the associated X-ray flares. A total 10 out of 20 CMEs under current investigation showed positive acceleration, and 5 of them whose speed did not exceed 589 km/s were associated with short rise time (< 150 s) and short duration (< 1300 s) flares. The other 5 CMEs were associated with long duration or large rise time flare events. The unusual feature of all these positive accelerating CMEs was their low linear speed ranging between 176 and 775 km/s. We do not find any significant correlation between X-ray peak intensity of the flares with linear speed as well as acceleration of the associated CMEs. Based on the onset time of flares and associated CMEs within the observing cadence of CMEs by LASCO, we found that in 16 cases CME preceded the flare by 23 to 1786 s, while in 4 cases flare occurred before the CME by 47 to 685 s. We argue that both events are closely associated with each other and are integral parts of one energy release system.

  17. The Hard X-ray Emission of Cen A

    CERN Document Server

    Beckmann, V; Lubinski, P; Soldi, S; Terrier, R

    2011-01-01

    The radio galaxy Cen A has been detected all the way up to the TeV energy range. This raises the question about the dominant emission mechanisms in the high-energy domain. Spectral analysis allows us to put constraints on the possible emission processes. Here we study the hard X-ray emission as measured by INTEGRAL in the 3-1000 keV energy range, in order to distinguish between a thermal and non-thermal inverse Compton process. The hard X-ray spectrum of Cen A shows a significant cut-off at energies Ec = 434 (+106 -73) keV with an underlying power law of photon index 1.73 +- 0.02. A more physical model of thermal Comptonisation (compPS) gives a plasma temperature of kT = 206+-62 keV within the optically thin corona with Compton parameter y = 0.42 (+0.09 -0.06). The reflection component is significant at the 1.9 sigma level with R = 0.12 (+0.09 -0.10), and a reflection strength R>0.3 can be excluded on a 3 sigma level. Time resolved spectral studies show that the flux, absorption, and spectral slope varied in ...

  18. Characterizing X-ray and Radio emission in the Black Hole X-Ray Binary V404 Cygni during Quiescence

    CERN Document Server

    Rana, Vikram; Corbel, Stephane; Tomsick, John A; Chakrabarty, Deepto; Walton, Dominic J; Barret, Didier; Boggs, Steven E; Christensen, Finn E; Craig, William; Fuerst, Felix; Gandhi, Poshak; Grefenstette, Brian W; Hailey, Charles; Harrison, Fiona A; Madsen, Kristin K; Rahoui, Farid; Stern, Daniel; Tendulkar, Shriharsh; Zhang, William W

    2015-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broad-band (0.3-30 keV) quiescent luminosity of the source is 8.9$\\times$10$^{32}$ erg s$^{-1}$ for a distance of 2.4 kpc. The source shows clear variability on short time scales in radio, soft X-ray and hard X-ray bands in the form of multiple flares. The broad-band X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having photon index {\\Gamma}=2.13$\\pm$0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3{\\sigma} confidence level with e-folding energy of the cutoff to be 19$^{+19}_{-7}$ keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the JVLA reveal that the sp...

  19. Strongly absorbed quiescent X-ray emission from the X-ray transient XTE J0421+56

    CERN Document Server

    Boirin, L; Lumb, D H; Orlandini, M; Schartel, N

    2002-01-01

    We have observed the soft X-ray transient XTE J0421+56 in quiescence with XMM-Newton. The observed spectrum is highly unusual being dominated by a broad feature at 6.5 keV and can be modeled by a strongly absorbed continuum. The spectra of X-ray transients observed so far are normally modeled using Advection Dominated Accretion Flow models, black-bodies, power-laws, or by the thermal emission from a neutron star surface. The strongly absorbed X-ray emission of XTE J0421+56 could result from the compact object being embedded within the dense circumstellar wind emitted from the supergiant B[e] companion star.

  20. Weak Hard X-ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-ray Weakness

    CERN Document Server

    Luo, B; Alexander, D M; Stern, D; Teng, S H; Arévalo, P; Bauer, F E; Boggs, S E; Christensen, F E; Comastri, A; Craig, W W; Farrah, D; Gandhi, P; Hailey, C J; Harrison, F A; Koss, M; Ogle, P; Puccetti, S; Saez, C; Scott, A E; Walton, D J; Zhang, W W

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  1. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    Energy Technology Data Exchange (ETDEWEB)

    Luo, B.; Brandt, W. N.; Scott, A. E. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Gandhi, P. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Teng, S. H. [Observational Cosmology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Arévalo, P.; Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF—Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Harrison, F. A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Koss, M. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); Puccetti, S. [ASDC—ASI, Via del Politecnico, I-00133 Roma (Italy); Saez, C. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  2. X-ray emission simulation from hollow atoms produced by high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Zhidkov, A. [Japan Atomic Energy Research Inst., Kansai Research Establishment, Neyagawa, Osaka (Japan); Suto, Keiko [Nara Women' s Univ., Graduate School of Human Culture, Nara (Japan); Kagawa, Takashi [Nara Women' s Univ., Department of Physics, Nara (Japan)

    2001-10-01

    We theoretically study the x-ray emission from hollow atoms produced by collisions of multiply charged ions accelerated by a short pulse laser with a solid or foil. By using the multistep-capture-and-loss (MSCL) model a high conversion efficiency to x-rays in an ultrafast atomic process is obtained. It is also proposed to apply this x-ray emission process to the x-ray source. For a few keV x-rays this x-ray source has a clear advantage. The number of x-ray photons increases as the laser energy becomes larger. For a laser energy of 10 J, the number of x-ray photons of 3x10{sup 11} is estimated. (author)

  3. X-ray emission as a diagnostic from pseudospark-sourced electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Bowes, D., E-mail: david.bowes@strath.ac.uk [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Yin, H.; He, W.; Zhang, L.; Cross, A.W.; Ronald, K.; Phelps, A.D.R. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Chen, D.; Zhang, P. [Computed Tomography Lab, School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Chen, X.; Li, D. [Department of Electronic Engineering, Queen Mary University of London, London E1 4NS (United Kingdom)

    2014-09-15

    X-ray emission has been achieved using an electron beam generated by a pseudospark low-pressure discharge and utilised as a diagnostic for beam detection. A 300 A, 34 kV PS-sourced electron beam pulse of 3 mm diameter impacting on a 0.1 mm-thick molybdenum target generated X-rays which were detected via the use of a small, portable X-ray detector. Clear X-ray images of a micro-sized object were captured using an X-ray photodetector. This demonstrates the inducement of proton induced X-ray emission (PIXE) not only as an indicator of beam presence but also as a future X-ray source for small-spot X-ray imaging of materials.

  4. X-ray line emission in Hercules X-1

    CERN Document Server

    Jiménez-Garate, M A; Den Herder, J W A; Zane, S; Ramsay, G

    2002-01-01

    We find line emission from the hydrogen- and/or helium-like ions of Ne, O, N and C in the low and short-on states of Her X-1, using the XMM-Newton Reflection Grating Spectrometer. The emission line velocity broadening is 200 < sigma < 500 km/s. Plasma diagnostics with the Ne IX, O VII and N VI He-alpha lines and the radiative recombination continua of O VII and N VII, indicate the gas is heated by photoionization. We use spectral models to measure the element abundance ratios N/O, C/O, and Ne/O, which quantify CNO processing in HZ Her. Photoexcitation and high-density effects are not differentiated by the measured He-alpha lines. We set limits on the location, temperature and density of the line emission region. The narrow emission lines can be attributed to reprocessing in either an accretion disk atmosphere and corona or on the X-ray illuminated face of HZ Her. In the main-on state, the bright continuum only allows the detection of interstellar absorption, plus O VII He-alpha emission lines with sigma...

  5. Modeling X-ray emission from stellar coronae

    CERN Document Server

    Gregory, S G; Argiroffi, C; Donati, J -F

    2008-01-01

    By extrapolating from observationally derived surface magnetograms of low-mass stars we construct models of their coronal magnetic fields and compare the 3D field geometry with axial multipoles. AB Dor, which has a radiative core, has a very complex field, whereas V374 Peg, which is completely convective, has a simple dipolar field. We calculate global X-ray emission measures assuming that the plasma trapped along the coronal loops is in hydrostatic equilibrium and compare the differences between assuming isothermal coronae, or by considering a loop temperature profiles. Our preliminary results suggest that the non-isothermal model works well for the complex field of AB Dor, but not for the simple field of V374 Peg.

  6. Soft X-ray emission studies of biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kurmaev, E.Z. E-mail: kurmaev@ifmlrs.uran.ru; Werner, J.P.; Moewes, A.; Chiuzbaian, S.; Bach, M.; Ching, W.-Y.; Motozaki, W.; Otsuka, T.; Matsuya, S.; Endo, K.; Neumann, M

    2004-07-01

    Soft X-ray fluorescence measurements are used to characterize three groups of biomaterials: Vitamin B{sub 12} and derivatives, antioxidants (aspirin and paracetamol), and human teeth. We show that the chemical bonding in Vitamin B{sub 12} is characterized by the strong Co-C bond and the relatively weak Co-N bond. The Co-C bond in cyanocobalamin is found to be stronger than that of methylcobalamin leading to their different biological activity. The chemical bonding of paracetamol and aspirin is characterized by the formation of oxygen lone-pair {pi}-orbitals, which can neutralize free radicals and therefore be related to antioxidant activity of these compounds. Carbon K{alpha} emission spectra of a caries lesion suggest that the CaCO{sub 3} like phase exists in sound enamel and that a selective loss of carbonate occurs during the early stages of a caries attack.

  7. X-ray emission from a small 2 kJ plasma focus

    Science.gov (United States)

    Beg, F. N.; Ross, I.; Dangor, A. E.

    1997-05-01

    We report on a study of a 2 kJ, 200 kA plasma focus device as an x-ray source. The x-ray yield from a number of pure gases, deuterium, nitrogen, neon, argon, and xenon, was measured as a function of pressure. X-ray emission is mainly due to line radiation. Maximum x-ray yield of 12.5 J obtained for neon. At lower pressures, electron beams are generated which play an important role.

  8. Extended X-ray Monitoring of Gravitational Lenses with Chandra and Joint Constraints on X-ray Emission Regions

    CERN Document Server

    Guerras, Eduardo; Steele, Shaun; Liu, Ang; Kochanek, Christopher S; Chartas, George; Morgan, Christopher W; Chen, Bin

    2016-01-01

    We present an X-ray photometric analysis of six gravitationally lensed quasars spanning from 5 to 14 years, measuring the total (0.83-21.8 keV restframe), soft (0.83-3.6 keV), and hard (3.6-21.8 keV) band image flux ratios for each epoch. Using the ratios of the model-predicted macro-magnifications as baselines, we build differential microlensing curves and obtain joint likelihood functions for the average X-ray emission region sizes. Our analysis yields a Probability Distribution Function for the average half-light radius of the X-Ray emission region in the sample that peaks slightly above 1 gravitational radius, and yields nearly indistinguishable 68 % confidence (one-sided) upper limits of 17.8 (18.9) gravitational radii for the soft (hard) X-ray emitting region, assuming a mean stellar mass of 0.3 solar masses. We see hints of energy dependent microlensing between the soft and hard bands in two of the objects. In a separate analysis on the root-mean-square (RMS) of the microlensing variability, we find si...

  9. X-ray/UV variability and the origin of soft X-ray excess emission from II Zw 177

    CERN Document Server

    Pal, Main; Misra, Ranjeev; Pawar, Pramod K

    2016-01-01

    We study X-ray and UV emission from the narrow-line Seyfert 1 galaxy II~Zw~177 using a $137\\ks$ long and another $13\\ks$ short \\xmm{} observation performed in 2012 and 2001, respectively. Both observations show soft X-ray excess emission contributing $76.9\\pm4.9\\%$ in 2012 and $58.8\\pm10.2\\%$ in 2001 in the $0.3-2\\kev$ band. We find that both blurred reflection from an ionized disc and Comptonized disc emission describe the observed soft excess well. Time-resolved spectroscopy on scales of $\\sim20\\ks$ reveals strong correlation between the soft excess and the powerlaw components. The fractional variability amplitude $F_{var}$ derived from EPIC-pn lightcurves at different energy bands is nearly constant ($F_{var} \\sim20\\%$). This is in contrast to other AGNs where the lack of short term variation in soft X-ray excess emission has been attributed to intense light bending in the framework of the "lamppost" model. Thus, the variations in powerlaw emission are most likely intrinsic to corona rather than just due t...

  10. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    Science.gov (United States)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  11. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  12. Prompt and afterglow X-ray emission from the X-Ray Flash of 2002 April 27

    CERN Document Server

    Amati, L; in 't Zand, J J M; Capalbi, M; Landi, R; Soffitta, P; Vetere, L; Antonelli, L A; Costa, E; Del Sordo, S; Feroci, M; Guidorzi, C; Heise, J; Masetti, N; Montanari, E; Nicastro, L; Palazzi, E; Piro, L

    2004-01-01

    We report on the X-ray observations of the X-ray flash (XRF) which occurred on 2002 April 27, three days before BeppoSAX was switched off. The event was detected with the BeppoSAX Wide Field Cameras but not with the Gamma ray Burst Monitor. A follow-up observation with the BeppoSAX Narrow Field Instruments was soon performed and a candidate afterglow source was discovered. We present the results obtained. We also include the results obtained from the observations of the XRF field with the Chandra X-ray satellite. The spectral analysis of the prompt emission shows that the peak energy of the EF(E) spectrum is lower than 5.5 keV, with negligible spectral evolution. The X-ray afterglow spectrum is consistent with a power law model with photon index of about 2, while the 2-10 keV flux fades as a power law with a decay index -1.33. Both these indices are typical of GRBs. A very marginal excess around 4.5-5 keV is found in the afterglow spectrum measured by BeppoSAX . As for many GRBs, the extrapolation of the 2-10...

  13. Variation of soft x-ray emission with gas pressure in a plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.M.; Moo, S.P.; Wong, C.S. [Univ. of Malaya, Kuala Lumpur (Malaysia). Plasma Research Lab.

    1998-08-01

    The variation of the soft X-ray emission in a low energy (3 kJ, 15 kV) plasma focus over a range of pressures is investigated. The working gases ar argon and an argon-hydrogen mixture. The X rays are detected using an assembly of PIN-Si diodes with differential filtering and with a multipinhole camera. Soft X rays originating from the plasma and from electron beam activity on the copper anode are observed. In general, three pressure regimes can be discerned. In the first regime, both the plasma X rays and the copper line radiation are weak. In the second regime, the X-ray emission is intense and the contribution from copper lines is strong. In the third pressure regime, the plasma X rays are intense while contribution from the copper X-rays are weak.

  14. PAHs in protoplanetary disks: emission and X-ray destruction

    CERN Document Server

    Siebenmorgen, Ralf

    2012-01-01

    We study the PAH emission from protoplanetary disks. First, we discuss the dependence of the PAH band ratios on the hardness of the absorbed photons and the temperature of the stars. We show that the photon energy together with a varying degree of the PAH hydrogenation accounts for most of the observed PAH band ratios without the need to change the ionization degree of the molecules. We present an accurate treatment of stochastic heated grains in a vectorized three dimensional Monte Carlo dust radiative transfer code. The program is verified against results using ray tracing techniques. Disk models are presented for T Tauri and Herbig Ae stars. Particular attention is given to the photo-dissociation of the molecules. We consider beside PAH destruction also the survival of the molecules by vertical mixing within the disk. By applying typical X-ray luminosities the model accounts for the low PAH detection probability observed in T Tauri and the high PAH detection statistics found in Herbig Ae disks. Spherical h...

  15. Determination of 198Au X-rays emission probabilities.

    Science.gov (United States)

    Moreira, D S; Koskinas, M F; Dias, M S; Yamazaki, I M

    2010-01-01

    This work describes the measurements of the K X-ray and gamma-ray emission probabilities per decay of (198)Au performed at the Nuclear Metrology Laboratory (LMN) at the IPEN, São Paulo. The radioactive sample was obtained by means of (197)Au(n, gamma)(198)Au reaction irradiating an Au foil in a thermal neutron flux near the core of the IPEN 3.5 MW research reactor. The activity of samples was determined in a 4pibeta-gamma coincidence system, setting the gamma window at the 411.80 keV total energy absorption peak. The same samples were measured in two different spectrometers: a HPGe planar spectrometer with Be window, suitable for measurements in the low energy range and a coaxial REGe spectrometer. Both spectrometers were previously calibrated in a well defined geometry by means of standard sources calibrated in a 4pibeta-gamma coincidence system. MCNP4C Monte Carlo code was used for simulating the REGe spectrometer calibration curve, and a new version of code ESQUEMA was adopted for simulating the detection processes in the coincidence system, in order to predict the efficiency extrapolation curve.

  16. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    Science.gov (United States)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  17. Is optical Fe II emission related to the soft X-ray properties of quasars?

    Science.gov (United States)

    Wilkes, Belinda J.; Elvis, Martin; Mchardy, Ian

    1987-01-01

    Radio-quiet quasars generally show broad, blended multiplets of Fe II emission in their optical and UV spectra. Radio-loud quasars also show UV Fe II emission, but their optical Fe II emission is generally weaker. No satisfactory theory connecting the generation of Fe II and radio emission has been found to explain this effect. A second, well-established distinction between the two clases of quasar is in their X-ray properties: radio-loud quasars are more X-ray luminous, and recent results have shown that they also have systematically flatter soft X-ray slopes. Here it is proposed that the second effect causes the first; i.e., that the primary factor controlling the optical Fe II emission is the soft X-ray spectrum. This proposition is supported by X-ray and optical data for nine quasars, which shows a correlation between the soft X-ray slope and the strength of the optical Fe II emission. One of these quasars (1803+676) is radio-quiet, and yet its optical spectrum shows no evidence for Fe II emission. This quasar is also unusual in that it has a flat X-ray spectrum. This further supports the proposal that the X-ray spectrum is important in determining the relative strengths of UV and optical Fe II emission.

  18. Discovery of extended X-ray emission around the highly magnetic RRAT J1819-1458

    NARCIS (Netherlands)

    Rea, N.; McLaughlin, M.A.; Gaensler, B.M.; Slane, P.O.; Stella, L.; Reynolds, S.P.; Burgay, M.; Israel, G.L.; Possenti, A.; Chatterjee, S.

    2009-01-01

    We report on the discovery of extended X-ray emission around the high magnetic field rotating radio transient J1819-1458. Using a 30 ks Chandra ACIS-S observation, we found significant evidence for extended X-ray emission with a peculiar shape: a compact region out to similar to 5.'' 5, and more dif

  19. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    Science.gov (United States)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  20. Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.

    2012-01-01

    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.

  1. On the X-Ray emission of Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo; De Rújula, Alvaro

    2007-01-01

    Recent data gathered and triggered by the SWIFT satellite have greatly improved our knowledge of long-duration gamma ray bursts (GRBs) and X-ray flashes (XRFs). This is particularly the case for the X-ray data at all times. We show that the entire X-ray observations are in excellent agreement with the predictions of the `cannonball' model of GRBs and XRFs, which are based on simple physics and were published long before the launch of SWIFT. Two mechanisms underlie these predictions: inverse Compton scattering and synchrotron radiation, generally dominant at early and late times, respectively. The former mechanism provides a unified description of the gamma-ray peaks, X-ray flares and even the optical `humps' seen in some favourable cases; i.e. their very different durations, fluxes and peak-times are related precisely as predicted. The observed smooth or bumpy fast decay of the X-ray light curve is correctly described case-by-case, in minute detail. The `canonical' X-ray plateau, as well as the subsequent gra...

  2. High energy X-ray emission from recurrent novae in quiescence: T CrB

    CERN Document Server

    Luna, Gerardo J M; Mukai, Koji

    2007-01-01

    We present Suzaku X-ray observations of the recurrent nova T CrB in quiescence. T CrB is the first recurrent nova to be detected in the hard-X-ray band (E ~ 40.0 keV) during quiescence. The X-ray spectrum is consistent with cooling-flow emission emanating from an optically thin region in the boundary layer of an accretion disk around the white dwarf. The detection of strong stochastic flux variations in the light curve supports the interpretation of the hard X-ray emission as emanating from a boundary layer.

  3. Detection of X-ray Emission from the Eastern Radio Lobe of PICTOR A

    CERN Document Server

    Grandi, P; Maraschi, L; Morganti, R; Fusco-Femiano, R; Fiocchi, M; Ballo, L; Tavecchio, F; Grandi, Paola; Guainazzi, Matteo; Maraschi, Laura; Morganti, Raffaella; Fusco-Femiano, Roberto; Fiocchi, Mariateresa; Ballo, Lucia; Tavecchio, Fabrizio

    2003-01-01

    The XMM-Newton satellite has revealed extended X-ray emission from the eastern radio lobe of the Fanaroff-Riley II Radio Galaxy Pictor A. The X-ray spectrum, accumulated on a region covering about half the entire radio lobe, is well described by both a thermal model and a power law. The X-ray emission could be thermal and produced by circum-galactic gas shocked by the expanding radio lobe or, alternatively, by Inverse Compton (IC) of cosmic microwave background photons by relativistic electrons in the lobe. The latter possibility seems to be supported by the good agreement between the lobe-average synchrotron radio index and the X-ray energy slope. However, if this is the case, the magnetic field, as deduced from the comparison of the IC X-ray and radio fluxes, is more than a factor 2 below the equipartition value estimated in the same X-ray region.

  4. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, Yaël [GAPHE, Département AGO, Université de Liège, Allée du 6 Août 17, Bat. B5C, B-4000 Liège (Belgium); Petit, Véronique [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Rinbrand, Melanie; Owocki, Stan [Department of Physics and Astronomy, University of Delaware, Bartol Research Institute, Newark, DE 19716 (United States); Cohen, David [Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081 (United States); Ud-Doula, Asif [Penn State Worthington Scranton, Dunmore, PA 18512 (United States); Wade, Gregg A., E-mail: naze@astro.ulg.ac.be [Department of Physics, Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON K7K 4B4 (Canada)

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  5. Mapping the X-Ray Emission Region in a Laser-Plasma Accelerator

    Science.gov (United States)

    Corde, S.; Thaury, C.; Phuoc, K. Ta; Lifschitz, A.; Lambert, G.; Faure, J.; Lundh, O.; Benveniste, E.; Ben-Ismail, A.; Arantchuk, L.; Marciniak, A.; Stordeur, A.; Brijesh, P.; Rousse, A.; Specka, A.; Malka, V.

    2011-11-01

    The x-ray emission in laser-plasma accelerators can be a powerful tool to understand the physics of relativistic laser-plasma interaction. It is shown here that the mapping of betatron x-ray radiation can be obtained from the x-ray beam profile when an aperture mask is positioned just beyond the end of the emission region. The influence of the plasma density on the position and the longitudinal profile of the x-ray emission is investigated and compared to particle-in-cell simulations. The measurement of the x-ray emission position and length provides insight on the dynamics of the interaction, including the electron self-injection region, possible multiple injection, and the role of the electron beam driven wakefield.

  6. Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts

    CERN Document Server

    Shao, L; Mirabal, N

    2007-01-01

    We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs). We find that the echo emission can provide an alternative way of understanding X-ray shallow decays and jet breaks. In particular, a shallow decay followed by a "normal" decay and a further rapid decay of X-ray afterglows can be together explained as being due to the echo from prompt X-ray emission scattered by dust grains in a massive wind bubble around a GRB progenitor. We also introduce an extra temporal break in the X-ray echo emission. By fitting the afterglow light curves, we can measure the locations of the massive wind bubbles, which will bring us closer to finding the mass loss rate, wind velocity, and the age of the progenitors prior to the GRB explosions.

  7. X-Ray Emission from the Halo of M31

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  8. The 300 Kpc Long X-Ray Jet in PKS 1127-145, Z=1.18 Quasar: Constraining X-Ray Emission Models

    Energy Technology Data Exchange (ETDEWEB)

    Siemiginowska, Aneta; /Harvard-Smithsonian Ctr. Astrophys.; Stawarz, Lukasz; /Heidelberg Observ. /Jagiellonian U., Astron. Observ. /KIPAC, Menlo Park; Cheung, C.C.; /KIPAC,; Harris, D.E.; /Harvard-Smithsonian Ctr. Astrophys.; Sikora, Marek; /Warsaw, Copernicus Astron. Ctr.; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Bechtold,; /Arizona U., Astron. Dept. - Steward Observ.

    2006-11-20

    We present a {approx} 100 ksec Chandra X-ray observation and new VLA radio data of the large scale, 300 kpc long X-ray jet in PKS 1127-145, a radio loud quasar at redshift z=1.18. With this deep X-ray observation we now clearly discern the complex X-ray jet morphology and see substructure within the knots. The X-ray and radio jet intensity profiles are seen to be strikingly different with the radio emission peaking strongly at the two outer knots while the X-ray emission is strongest in the inner jet region. The jet X-ray surface brightness gradually decreases by an order of magnitude going out from the core. The new X-ray data contain sufficient counts to do spectral analysis of the key jet features. The X-ray energy index of the inner jet is relatively flat with {alpha}{sub x} = 0.66 {+-} 0.15 and steep in the outer jet with {alpha}{sub x} = 1.0 {+-} 0.2. We discuss the constraints implied by the new data on the X-ray emission models and conclude that ''one-zone'' models fail and at least a two component model is needed to explain the jet's broad-band emission. We propose that the X-ray emission originates in the jet proper while the bulk of the radio emission comes from a surrounding jet sheath. We also consider intermittent jet activity as a possible cause of the observed jet morphology.

  9. Discovery of X-ray emission from young suns in the Small Magellanic Cloud

    CERN Document Server

    Oskinova, L M; Evans, C J; Hénault-Brunet, V; Chu, Y -H; Gallagher, J S; Guerrero, M A; Gruendl, R A; Güdel, M; Silich, S; Chen, Y; Nazé, Y; Hainich, R; Reyes-Iturbide, J

    2013-01-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602 in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the HII region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the new-born stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NG...

  10. Simulation of Soft X-ray Emission Lines from the Missing Baryons

    CERN Document Server

    Fang, T; Sanders, W T; Houck, J; Davé, R; Katz, N; Weinberg, D H; Hernquist, L

    2003-01-01

    We study the soft X-ray emission (0.1 - 1 keV) from the Warm-Hot Intergalactic Medium (WHIM) in a hydrodynamic simulation of a Cold Dark Matter universe. Our main goal is to investigate how such emission can be explored with a combination of imaging and spectroscopy, and to motivate future X-ray missions. We first present high resolution images of the X-ray emission in several energy bands, in which emission from different ion species dominates. We pick three different areas to study the high resolution spectra of X-rays from the warm-hot IGM: (a) a galaxy group; (b) a filament and (c) an underluminous region. By taking into account the background X-ray emission from AGNs and foreground emission from the Galaxy, we compute composite X-ray spectra of the selected regions. We briefly investigate angular clustering of the soft-X-ray emission, finding a strong signal. Most interestingly, the combination of high spectral resolution and angular information allows us to map the emission from the WHIM in 3 dimensions...

  11. EVIDENCE OF NON-THERMAL X-RAY EMISSION FROM HH 80

    Energy Technology Data Exchange (ETDEWEB)

    López-Santiago, J. [Instituto de Matemática Interdisciplinar, S. D. Astronomía y Geodesia, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Peri, C. S.; Benaglia, P. [Instituto Argentino de Radioastronomía (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Bonito, R. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Miceli, M. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Albacete-Colombo, J. F. [Universidad Nacional del COMAHUE, Monseñor Esandi y Ayacucho, 8500 Viedma, Río Negro (Argentina); De Castro, E. [Dpto. de Astrofísica y CC. de la Atmósfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2013-10-20

    Protostellar jets appear at all stages of star formation when the accretion process is still at work. Jets travel at velocities of hundreds of km s{sup –1}, creating strong shocks when interacting with the interstellar medium. Several cases of jets have been detected in X-rays, typically showing soft emission. For the first time, we report evidence of hard X-ray emission possibly related to non-thermal processes not explained by previous models of the post-shock emission predicted in the jet/ambient interaction scenario. HH 80 is located at the south head of the jet associated with the massive protostar IRAS 18162-2048. It shows soft and hard X-ray emission in regions that are spatially separated, with the soft X-ray emission region situated behind the region of hard X-ray emission. We propose a scenario for HH 80 where soft X-ray emission is associated with thermal processes from the interaction of the jet with denser ambient matter and hard X-ray emission is produced by synchrotron radiation at the front shock.

  12. DISCOVERY OF X-RAY EMISSION FROM YOUNG SUNS IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hainich, R. [Institute for Physics and Astronomy, University Potsdam, D-14476 Potsdam (Germany); Sun, W.; Chen, Y. [Department of Astronomy, Nanjing University, Nanjing, 210093 Jiangsu (China); Evans, C. J. [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Henault-Brunet, V. [Scottish Universities Physics Alliance (SUPA), Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Chu, Y.-H.; Gruendl, R. A. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Gallagher, J. S. III [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling, 475 North Charter Street, Madison, WI 53706 (United States); Guerrero, M. A. [Instituto de Astrofisica de Andalucia, IAA-CSIC, Glorieta de la Astronomia s/n, E-18008 Granada (Spain); Guedel, M. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Silich, S. [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico); Naze, Y. [GAPHE, Departement AGO, Universite de Liege, Allee du 6 Aout 17, Bat. B5C, B-4000 Liege (Belgium); Reyes-Iturbide, J. [LATO-DCET/Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-000 Ilheus, BA (Brazil)

    2013-03-01

    We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low- and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low- and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy.

  13. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    Science.gov (United States)

    Sahai, R.; Sanz-Forcada, J.; Sánchez Contreras, C.; Stute, M.

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ˜(0.002-0.2) L⊙ and the X-ray-emitting plasma temperatures are ˜(35-160) × 106 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  14. Hard X-ray and Infrared Emission from Apparently Single White Dwarfs

    CERN Document Server

    Chu, Y H; Guerrero, M A; Su, K Y L

    2007-01-01

    The photospheric emission of a white dwarf (WD) is not expected to be detectable in hard X-rays or the mid-IR. Hard X-ray (~1 keV) emission associated with a WD is usually attributed to a binary companion; however, emission at 1 keV has been detected from three WDs without companions: KPD 0005+5106, PG 1159, and WD 2226-210. The origin of their hard X-ray emission is unknown, although it has been suggested that WD 2226-210 has a late-type companion whose coronal activity is responsible for the hard X-rays. Recent Spitzer observations of WD 2226-210 revealed mid-IR excess emission indicative of the existence of a dust disk. It now becomes much less clear whether WD 2226-210's hard X-ray emission originates from the corona of a late-type companion or from the accretion of the disk material. High-quality X-ray observations and mid-IR observations of KPD 0005+5106 and PG 1159 are needed to help us understand the origin of their hard X-ray emission.

  15. X-Ray Emission from the Warm Hot Intergalactic Medium

    CERN Document Server

    Galeazzi, E U M

    2006-01-01

    The number of detected baryons in the Universe at z<0.5 is much smaller than predicted by standard big bang nucleosynthesis and by the detailed observation of the Lyman alpha forest at red-shift z=2. Hydrodynamical simulations indicate that a large fraction of the baryons today is expected to be in a ``warm-hot'' (10^5-10^7K) filamentary gas, distributed in the intergalactic medium. This gas, if it exists, should be observable only in the soft X-ray and UV bands. Using the predictions of a particular hydrodynamic model, we simulated the expected X-ray flux as a function of energy in the 0.1-2 keV band due to the Warm-Hot Intergalactic Medium (WHIM), and compared it with the flux from local and high red-shift diffuse components. Our results show that as much as 20% of the total diffuse X-ray background (DXB) in the energy range 0.37-0.925keV could be due to X-ray flux from the WHIM, 70% of which comes from filaments at redshift z between 0.1 and 0.6. Simulations done using a FOV of 3', comparable with that ...

  16. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  17. STELLAR WIND INDUCED SOFT X-RAY EMISSION FROM CLOSE-IN EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kislyakova, K. G.; Lammer, H. [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Fossati, L. [Argelander-Institut für Astronomie der Universität Bonn, Bonn (Germany); Johnstone, C. P. [Department of Astrophysics, University of Vienna, Vienna (Austria); Holmström, M. [Swedish Institute of Space Physics, Kiruna (Sweden); Zaitsev, V. V., E-mail: kristina.kislyakova@oeaw.ac.at [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

    2015-01-30

    In this Letter, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX), which produces soft X-ray emission, is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the solar system, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus, and the Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈10{sup 22} erg s{sup –1}, which is 10{sup 6} times stronger than the emission from the Jovian aurora. We discuss also the possibility of observing the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  18. Stelllar wind induced soft X-ray emission from close-in exoplanets

    Science.gov (United States)

    Kislyakova, Kristina; Fossati, Luca; Johnstone, Colin P.; Holmström, Mats; Zaitsev, Valery V.; Lammer, Helmut

    2016-04-01

    We estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX) which produces soft X-ray radiation is very effective for hot Jupiters. In this mechanism, X-ray photons are produces by charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. This mechanism is know to generate X-ray emission of comets in the Solar system. It has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus and Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not effective for the Solar system giants. We present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar Hot Jupiters due to charge exchange with the heavy ions of the stellar wind. Using the example of HD 209458b, we show that this mechanism alone can be responsible for an X-ray emission of ≈ 1022 erg s-1, which is 106 times stronger than the emission from the Jovian aurora. We discuss the possibility to observe the predicted soft X-ray flux of hot Jupiters and show that despite high emission intensities they are unobservable with current facilities.

  19. BAT AGN Spectroscopic Survey II: X-ray Emission and High Ionization Optical Emission Lines

    CERN Document Server

    Berney, Simon; Trakhtenbrot, Benny; Ricci, Claudio; Lamperti, Isabella; Schawinski, Kevin; Balokovic, Mislav; Crenshaw, D Michael; Fischer, Travis; Gehrels, Neil; Harrison, Fiona; Hashimoto, Yasuhiro; Ichikawa, Kohei; Mushotzky, Richard; Oh, Kyuseok; Stern, Daniel; Treister, Ezequiel; Ueda, Yoshihiro; Veilleux, Sylvain; Winter, Lisa

    2015-01-01

    We investigate the relationship between X-ray and optical line emission in 340 nearby AGN selected above 10 keV using Swift BAT. We find a weak correlation between the extinction corrected [O III] and hard X-ray luminosity (14-195 keV) with a [OIII] large scatter (R_Pear = 0.64, sigma = 0.62 dex) and a similarly large scatter with the intrinsic 2-10 keV to [O III] luminosities (RPear=0.63, sigma = 0.63 dex). Correlations of the hard X-ray fluxes with the fluxes of high-ionization narrow lines ([O III], He II, [Ne III] and [Ne V]) are not significantly better than with the low ionization lines (Halpha, [SII]). Factors like obscuration or physical slit size are not found to be a significant part of the large scatter. In contrast, the optical emission lines show much better correlations with each other (sigma = 0.3 dex) than with the X-ray flux. The inherent large scatter questions the common usage of narrow emission lines as AGN bolometric luminosity indicators and suggests that other issues such as geometrical...

  20. Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X

    CERN Document Server

    Katsuda, Satoru; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3x2 degrees, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma~2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  1. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    Science.gov (United States)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  2. X-ray emission from spiral galaxies with normal and low-activity nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Giuricin, G. (Trieste Univ. (Italy). Dip. di Astronomia); Bertotti, G. (Centre for Advanced Research in Space Optics, Trieste (Italy)); Mardirossian, F.; Mezzetti, M. (Trieste Univ. (Italy). Dip. di Astronomia Centro Interuniversitario Regionale per l' Astrofisica e la Cosmologia (CIRAC), Trieste (Italy))

    1991-05-15

    A statistical analysis of the soft X-ray emission from spiral galaxies with normal and low-luminosity active nuclei (LINERs and Seyfert 2) - derived from published observations obtained with the Einstein Observatory - has revealed a number of previously unrecognised characteristics of the X-ray emission. Seyfert 2 galaxies (the least powerful X-ray sources of the Seyfert class) turn out to be, on average, stronger X-ray emitters (per unit light) than non-Seyfert galaxies, whereas galaxies with LINER nuclei and H II-region-like nuclei exhibit X-ray emissions of comparable strength. We have verified that the X-ray luminosity (per unit light) is linked to the total H {alpha} emission-line strength. Remarkably, more enhanced X-ray emission (per unit light) has been found in Arp atlas galaxies, in galaxies included in the Atlas and Catalogue of Interacting Galaxies of Vorontsov-Vel'yaminov, and in interacting galaxies compared to normal galaxies. (Author).

  3. A Comprehensive Archival Chandra Search for X-ray Emission from Ultracompact Dwarf Galaxies

    CERN Document Server

    Pandya, Viraj; Greene, Jenny E

    2016-01-01

    We present the first comprehensive archival study of the X-ray properties of ultracompact dwarf (UCD) galaxies, with the goal of identifying weakly-accreting central black holes in UCDs. Our study spans 578 UCDs distributed across thirteen different host systems, including clusters, groups, fossil groups, and isolated galaxies. Of the 336 spectroscopically-confirmed UCDs with usable archival Chandra imaging observations, 21 are X-ray-detected. Imposing a completeness limit of $L_X>2\\times10^{38}$ erg s$^{-1}$, the global X-ray detection fraction for the UCD population is $\\sim3\\%$. Of the 21 X-ray-detected UCDs, seven show evidence of long-term X-ray time variability on the order of months to years. X-ray-detected UCDs tend to be more compact than non-X-ray-detected UCDs, and we find tentative evidence that the X-ray detection fraction increases with surface luminosity density and global stellar velocity dispersion. The X-ray emission of UCDs is fully consistent with arising from a population of low-mass X-ra...

  4. NuSTAR Hard X-ray Survey of the Galactic Center Region I: Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    CERN Document Server

    Mori, Kaya; Krivonos, Roman; Hong, Jaesub; Ponti, Gabriele; Bauer, Franz; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Tomsick, John A; Alexander, David M; Baganoff, Frederick K; Barret, Didier; Barriere, Nicolas; Boggs, Steven E; Canipe, Alicia M; Christensen, Finn E; Craig, William W; Forster, Karl; Giommi, Paolo; Grefenstette, Brian W; Grindlay, Jonathan E; Harrison, Fiona A; Hornstrup, Allan; Kitaguchi, Takao; Koglin, Jason E; Luu, Vy; Madsen, Kristen K; Mao, Peter H; Miyasaka, Hiromasa; Perri, Matteo; Pivovaroff, Michael J; Puccetti, Simonetta; Rana, Vikram; Stern, Daniel; Westergaard, Niels J; Zhang, William W; Zoglauer, Andreas

    2015-01-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with $\\Gamma\\sim1.3$-$2.3$ up to ~50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe K$\\alpha$ fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broad-band X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density ($\\sim10^{23}$ cm$^{-2}$), primary X-ray spectra (power-laws wi...

  5. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...

  6. Emission Angles for Soft X-Ray Coherent Transition Radiation.

    Science.gov (United States)

    1987-09-01

    School is used to study radiation effects and damage, radiation characteristics and nuclear structure. The LINAC is capable of operating from...Private communication.) 43 ........ 11. "PCD Linear Image Sensors (S3201 Series)," HAMAMATSU Technical Data Sheet, July 1985. 12. "Application of Reticon ...Photodiode Arrays as Electron and X-Ray Detectors," EG&G Reticon Application Notes No. 101, 1975. 13. Chu, A.N., M.A. Piestrup and R.H. Pantell

  7. AGN X-Ray emission and black holes (Kelly+, 2008)

    DEFF Research Database (Denmark)

    Kelly, B. C.; Bechtold, J.; Trump, J. R.

    2009-01-01

    In this analysis we combine 169 RQQs from Kelly et al. (2007ApJ...665.1489K) with 149 RQQs from the main SDSS sample of Strateva et al. (2005, Cat. J/AJ/130/387) to create a sample of 318 RQQs. Out of these 318 sources, 276 (86.8%) are detected in the X-ray. (1 data file)....

  8. The evolution of X-ray emission in young stars

    CERN Document Server

    Preibisch, T; Preibisch, Thomas; Feigelson, Eric D.

    2005-01-01

    We study the relation between age and magnetic activity in late-type pre-main sequence (PMS) stars, for the first time using mass-stratified subsamples. The effort is based on the Chandra Orion Ultradeep Project (COUP) which provides very sensitive and homogenous X-ray data on a uniquely large sample of 481 optically well-characterized low-extinction low-mass members of the Orion Nebula Cluster, for which individual stellar masses and ages could be determined. More than 98 percent of the stars in this sample are detected as X-ray sources. Within the PMS phase for stellar ages in the range $\\sim 0.1-10$ Myr, we establish a mild decay in activity with stellar age $\\tau$ roughly as $L_{\\rm X} \\propto \\tau^{-1/3}$. On longer timescales, when the Orion stars are compared to main sequence stars, the X-ray luminosity decay law for stars in the $0.5 < M < 1.2$ M$_\\odot$ mass range is more rapid with $L_{\\rm X} \\propto \\tau^{-0.75}$ over the wide range of ages $5 < \\log \\tau < 9.5$ yr. The magnetic activit...

  9. Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission

    CERN Document Server

    Wang, Lile

    2015-01-01

    Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to $2\\ \\mathrm{pc}$ around the central supermassive black hole of mass $10^8 M_\\odot$, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature ($\\geq 10^8\\ \\mathrm{K}$) coronal gas in the inner ($\\leq 10^4 r_\\mathrm{sch}$) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are phys...

  10. X-ray emission from protostellar jet HH 154: the first evidence of a diamond shock?

    CERN Document Server

    Bonito, R; Miceli, M; Peres, G; Micela, G; Favata, F

    2011-01-01

    X-ray emission from about ten protostellar jets has been discovered and it appears as a feature common to the most energetic jets. Although X-ray emission seems to originate from shocks internal to jets, the mechanism forming these shocks remains controversial. One of the best studied X-ray jet is HH 154 that has been observed by Chandra over a time base of about 10 years. We analyze the Chandra observations of HH 154 by investigating the evolution of its X-ray source. We show that the X-ray emission consists of a bright stationary component and a faint elongated component. We interpret the observations by developing a hydrodynamic model describing a protostellar jet originating from a nozzle and compare the X-ray emission synthesized from the model with the X-ray observations. The model takes into account the thermal conduction and radiative losses and shows that the jet/nozzle leads to the formation of a diamond shock at the nozzle exit. The shock is stationary over the period covered by our simulations and...

  11. A Pilot Deep Survey for X-Ray Emission from fuvAGB Stars

    CERN Document Server

    Sahai, R; Contreras, C Sanchez; Stute, M

    2015-01-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in 3 of 6 fuvAGB stars observed -- the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ~(0.002-0.2 ) Lsun, and the X-ray emitting plasma temperatures are ~(35-160) x 10^6 K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively...

  12. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    Science.gov (United States)

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  13. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  14. Composition variations in Cu{sub 2}ZnSnSe{sub 4} thin films analyzed by X-ray diffraction, energy dispersive X-ray spectroscopy, particle induced X-ray emission, photoluminescence, and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Dahyun [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Opanasyuk, A.S.; Koval, P.V.; Ponomarev, A.G. [Department of Electronics and Computer Technology, Sumy State University, Sumy UA-40007 (Ukraine); Jeong, Ah Reum; Kim, Gee Yeong; Jo, William [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Cheong, Hyeonsik, E-mail: hcheong@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-07-01

    Compositional and structural studies of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films were carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), particle induced X-ray emission (PIXE), photoluminescence, and Raman spectroscopy. CZTSe thin films with different compositions were deposited on sodalime glass by co-evaporation. The composition of the films measured by two different methods, EDS and PIXE, showed significant differences. Generally, the Zn/Sn ratio measured by EDS is larger than that measured by PIXE. Both the micro-PIXE and the micro-Raman imaging results indicated the compositional and structural inhomogeneity of the sample. - Highlights: • Particle induced X-ray emission was used to analyze the composition of CZTSe films. • Energy dispersive X-ray spectroscopy tends to underestimate the Sn composition. • Local Raman intensity is related with the composition rather than the crystallinity.

  15. Radio emission from the high-mass X-ray binary BP Cru: first detection

    CERN Document Server

    Pestalozzi, M; Hobbs, G; Lopez-Sanchez, A R

    2009-01-01

    BP Cru is a well known high-mass X-ray binary composed of a late B hypergiant (Wray 977) and a neutron star, also observed as the X-ray pulsar GX 301-2. No information about emission from BP Cru in other bands than X-rays and optical has been reported to date in the literature, though massive X-ray binaries containing black holes can have radio emission from a jet. In order to assess the presence of a radio jet, we searched for radio emission towards BP Cru using the Australia Compact Array Telescope during a survey for radio emission from Be/X-ray transients. We probed the 41.5d orbit of BP Cru with the Australia Telescope Compact Array not only close to periastron but also close to apastron. BP Cru was clearly detected in our data on 4, possibly 6, of 12 occasions at 4.8 and 8.6 GHz. Our data suggest that the spectral index of the radio emission is modulated either by the X-ray flux or the orbital phase of the system. We propose that the radio emission of BP Cru probably arises from two components: a persis...

  16. Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn

    CERN Document Server

    Bhardwaj, A; Waite, J H; Gladstone, G R; Cravens, T E; Ford, P G; Bhardwaj, Anil; Elsner, Ronald F.; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (~37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (~130 eV wide) energy band centered on the atomic oxygen K-alpha fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is 84 MW, which is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H2O icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen at...

  17. Hard X-ray and ultraviolet emission during the 2011 June 7 solar flare

    CERN Document Server

    Inglis, Andrew R

    2013-01-01

    The relationship between X-ray and UV emission during flares, particularly in the context of quasi-periodic pulsations, remains unclear. To address this, we study the X-ray and UV emission during the eruptive flare of 2011 June 7 utilising X-ray imaging from RHESSI and UV 1700A imaging from SDO/AIA. This event is associated with synchronous quasi-periodic pulsations in both the X-ray and UV emission, as well as substantial motion of the hard X-ray footpoints. The motion of the footpoint associated with the left-hand flare ribbon is shown to reverse direction along the flare ribbons on at least two occasions. Over the same time interval, the footpoints also gradually move apart at v ~ 12 km/s. This is consistent with the measured plane-of-sky thermal X-ray source outward velocity of ~ 14 km/s, and matches the gradual outward expansion of the UV ribbons. However, there is no associated short-timescale motion of the UV bright regions. We find that the locations of the brightest X-ray and UV regions are different...

  18. High-energy neutrino emission from X-ray binaries

    CERN Document Server

    Christiansen, H R; Romero, G E; Christiansen, Hugo R.; Orellana, Mariana; Romero, Gustavo E.

    2006-01-01

    We show that high-energy neutrinos can be efficiently produced in X-ray binaries with relativistic jets and high-mass primary stars. We consider a system where the star presents a dense equatorial wind and the jet has a small content of relativistic protons. In this scenario, neutrinos and correlated gamma-rays result from pp interactions and the subsequent pion decays. As a particular example we consider the microquasar LSI +61 303. Above 1 TeV, we obtain a mean-orbital $\

  19. A Johann-type X-ray emission spectrometer at the Rossendorf beamline.

    Science.gov (United States)

    Kvashnina, Kristina O; Scheinost, Andreas C

    2016-05-01

    This paper gives a detailed description, including equations, of the Johann-type X-ray emission spectrometer which has been recently installed and tested at the Rossendorf beamline (ROBL) of the European Synchrotron Radiation Facility. The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle of 1 m diameter. The hard X-ray emission spectrometer (∼3.5-25 keV) operates at atmospheric pressure and covers the Bragg angles of 65°-89°. The instrument has been tested at high and intermediate incident energies, i.e. at the Zr K-edge and at the Au L3-edge, in the second experimental hutch of ROBL. The spectrometer is dedicated for studying actinides in materials and environmental samples by high-energy-resolution X-ray absorption and X-ray emission spectroscopies.

  20. Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula

    CERN Document Server

    Corcoran, M F; Gull, T R; Davidson, K; Petre, R; Hillier, D J; Smith, N; Damineli, A; Morse, J A; Walborn, N R; Verner, E; Collins, N; White, S; Pittard, J M; Weis, K; Bomans, D; Butt, Y

    2004-01-01

    We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star Eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.

  1. NuSTAR Hard X-ray Survey of the Galactic Center Region. I. Hard X-ray Morphology and Spectroscopy of the Diffuse Emission

    DEFF Research Database (Denmark)

    Mori, Kaya; Hailey, Charles J.; Krivonos, Roman

    2015-01-01

    pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe K alpha fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model......We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456-2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). Nu......STAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Gamma similar to 1.3-2.3 up to similar to 50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young...

  2. Catalytic action of β source on x-ray emission from plasma focus

    Science.gov (United States)

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-01

    The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.

  3. Observation of solar high energy gamma and X-ray emission and solar energetic particles

    CERN Document Server

    Struminsky, Alexei

    2015-01-01

    We considered 18 solar flares observed between June 2010 and July 2012, in which high energy >100 MeV {\\gamma}-emission was registered by the Large Area Telescope (LAT) aboard FermiGRO. We examined for these {\\gamma}-events soft X-ray observations by GOES, hard X-ray observations by the Anti-Coincidence Shield of the SPectrometer aboard INTEGRAL (ACS SPI) and the Gamma-Ray burst Monitor (GBM) aboard FermiGRO. Hard X-ray and {\\pi}0-decay {\\gamma}-ray emissions are used as tracers of electron and proton acceleration, respectively. Bursts of hard X-ray were observed by ACS SPI during impulsive phase of 13 events. Bursts of hard X-ray >100 keV were not found during time intervals, when prolonged hard {\\gamma}-emission was registered by LAT/FermiGRO. Those events showing prolonged high-energy gamma-ray emission not accompanied by >100 keV hard X-ray emission are interpreted as an indication of either different acceleration processes for protons and electrons or as the presence of a proton population accelerated du...

  4. The X-ray emission from the knots in 3C 120

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    3C 120 is a Seyfert galaxy with a well detected X-ray jet.We investigate the X-ray emission of its five jet knots and fit their spectral energy distributions(SEDs) from the radio to the X-ray bands with a single-zone lepton model.We find that the SEDs of knots k7,s2,and s3 can be explained by synchrotron radiation,and the X-rays are the simple extension of the radio-optical emission component,but that of the inner knot k4 requires the IC/CMB model,in which the X-rays are due to the inverse Compton scattering of the cosmic microwave background photons by relativistic electrons in the jet with a beaming factor δ-14.The outer knot k25 is resolved into a three-part sub-structure.It is shown that the fitting of the X-rays from this knot with the IC/CMB model needs an extraordinary beaming factor δ-15-25 for a jet at the kpc scale.If the X-rays of knot k25 are produced by synchrotron radiation similar to k7,s2,and s3,they may be contributed by a relativistic electron population whose radiations in other wavelengths are not detected.

  5. A Search For X-ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries

    CERN Document Server

    Getman, Konstantin V; Kospal, Agnes; Salter, Demerese M; Garmire, Gordon P

    2016-01-01

    Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all 4 binaries the current X-ray data show an increasing average X-ray flux near periastron (at about 2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries can not be...

  6. Ultra fast atomic process in X-ray emission by inner-shell ionization

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Tajima, T.

    1998-03-01

    An ultra-fast atomic process together with X-ray emission by inner-shell ionization using high intensity (10{sup 18} W/cm{sup 2}) short pulse (20fs) X-ray is studied. A new class of experiment is proposed and a useful pumping source is suggested. In this method, it is found that the gain value of X-ray laser amounts to larger than 1000(1/cm) with use of the density of 10{sup 22}/cm{sup 3} of carbon atom. Electron impact ionization effect and initial density effect as well as intensity of pumping source effect are also discussed. (author)

  7. Relation between X-Ray and -Ray Emissions for Fermi Blazars

    Indian Academy of Sciences (India)

    Bijun Li; Xiong Zhang

    2014-09-01

    Using -ray band data detected by Fermi Large Area Telescope (LAT) and X-ray band data for 78 blazars, we find a medium correlation between X-ray and -ray fluxes in the average state. A medium anticorrelation is also found between X-ray (1 KeV) mean spectral index and -ray mean spectral index for blazars. Our results suggest that the most likely radiation mechanism for the high energy -ray would be SSC. And that the -ray emission mechanism may be somewhat different for BL Lacs and FSRQs.

  8. On the X-ray Emission from Massive Star Clusters and their Evolving Superbubbles

    CERN Document Server

    Silich, S; Zeferino, G A A; Silich, Sergiy; Tenorio-Tagle, Guillermo; Zeferino, Gabriel Alejandro Anorve

    2005-01-01

    The X-ray emission properties from the hot thermalized plasma that results from the collisions of individual stellar winds and supernovae ejecta within rich and compact star clusters are discussed. We propose a simple analytical way of estimating the X-ray emission generated by super star clusters and derive an expression that indicates how this X-ray emission depends on the main cluster parameters. Our model predicts that the X-ray luminosity from the star cluster region is highly dependent on the star cluster wind terminal speed, a quantity related to the temperature of the thermalized ejecta.We have also compared the X-ray luminosity from the SSC plasma with the luminosity of the interstellar bubbles generated from the mechanical interaction of the high velocity star cluster winds with the ISM.We found that the hard (2.0 keV - 8.0 keV) X-ray emission is usually dominated by the hotter SSC plasma whereas the soft (0.3 keV - 2.0 keV) component is dominated by the bubble plasma. This implies that compact and ...

  9. Solar wind charge exchange X-ray emission from Mars Model and data comparison

    CERN Document Server

    Koutroumpa, Dimitra; Chanteur, Gerard; Chaufray, Jean-Yves; Kharchenko, Vasili; Lallement, Rosine

    2012-01-01

    Aims. We study the soft X-ray emission induced by charge exchange (CX) collisions between solar-wind, highly charged ions and neutral atoms of the Martian exosphere. Methods. A 3D multi species hybrid simulation model with improved spatial resolution (130 km) is used to describe the interaction between the solar wind and the Martian neutrals. We calculated velocity and density distributions of the solar wind plasma in the Martian environment with realistic planetary ions description, using spherically symmetric exospheric H and O profiles. Following that, a 3D test-particle model was developed to compute the X-ray emission produced by CX collisions between neutrals and solar wind minor ions. The model results are compared to XMM-Newton observations of Mars. Results. We calculate projected X-ray emission maps for the XMM-Newton observing conditions and demonstrate how the X-ray emission reflects the Martian electromagnetic structure in accordance with the observed X-ray images. Our maps confirm that X-ray imag...

  10. Experimental study of conversion from atomic high-order harmonics to x-ray emissions

    Institute of Scientific and Technical Information of China (English)

    王骐; 陈建新; 夏元钦; 陈德应

    2003-01-01

    There are two physical phenomena in a strong laser intensity. One is the high-order harmonic emission; the other is x-ray emission from optical-field ionized plasmas. The experiment of conversion from high-order harmonics to x-ray emissions was given with a 105fs Ti:sapphire laser by adjusting laser intensities. The ingredient in plasma was investigated by the numerical simulations. Our experimental results suggested that the free electrons have detrimental effects on harmonic generation but are favourable for x-ray emission from optical-field ionized plasmas. If we want to obtain more intense harmonic signals as a coherent light source in the soft x-ray region, we must avoid the production of free electrons in plasmas. At the same time, if we want to observe x-rays for the development of high-repetition-rate table-top soft x-ray lasers, we should strip all atoms in the plasmas to a necessary ionized stage by the optical-fieldionization in the field of a high-intensity laser pulse.

  11. Stellar wind induced soft X-ray emission from close-in exoplanets

    CERN Document Server

    Kislyakova, K G; Johnstone, C P; Holmström, M; Zaitsev, V V; Lammer, H

    2015-01-01

    In this paper, we estimate the X-ray emission from close-in exoplanets. We show that the Solar/Stellar Wind Charge Exchange Mechanism (SWCX) which produces soft X-ray emission is very effective for hot Jupiters. In this mechanism, X-ray photons are emitted as a result of the charge exchange between heavy ions in the solar wind and the atmospheric neutral particles. In the Solar System, comets produce X-rays mostly through the SWCX mechanism, but it has also been shown to operate in the heliosphere, in the terrestrial magnetosheath, and on Mars, Venus and Moon. Since the number of emitted photons is proportional to the solar wind mass flux, this mechanism is not very effective for the Solar system giants. Here we present a simple estimate of the X-ray emission intensity that can be produced by close-in extrasolar giant planets due to charge exchange with the heavy ions of the stellar wind. Using the example of HD~209458b, we show that this mechanism alone can be responsible for an X-ray emission of $\\approx 10...

  12. Do Some AGN Lack X-ray Emission?

    CERN Document Server

    Simmonds, Charlotte; Thuan, Trinh X; Izotov, Yuri I; Stern, Daniel; Harrison, Fiona A

    2016-01-01

    $Context:$ Intermediate-Mass Black Holes (IMBHs) are thought to be the seeds of early Supermassive Black Holes (SMBHs). While $\\gtrsim$100 IMBH and small SMBH candidates have been identified in recent years, few have been robustly confirmed to date, leaving their number density in considerable doubt. Placing firmer constraints both on the methods used to identify and confirm IMBHs/SMBHs, as well as characterizing the range of host environments that IMBHs/SMBHs likely inhabit is therefore of considerable interest and importance. Additionally, finding significant numbers of IMBHs in metal-poor systems would be particularly intriguing, since such systems may represent local analogs of primordial galaxies, and therefore could provide clues of early accretion processes. $Aims:$ Here we study in detail several candidate Active Galactic Nuclei (AGN) found in metal-poor hosts. $Methods:$ We utilize new X-ray and optical observations to characterize these metal-poor AGN candidates and compare them against known AGN lu...

  13. X-ray emission from hot accretion flows

    CERN Document Server

    Niedzwiecki, Andrzej; Stepnik, Agnieszka

    2014-01-01

    Radiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index--Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.

  14. X-ray emission from hot accretion flows

    Science.gov (United States)

    Niedźwiecki, Andrzej; Xie, Fu-Guo; Stȩpnik, Agnieszka

    2014-07-01

    Radiatively inefficient, hot accretion flows are widely considered as a relevant accretion mode in low-luminosity AGNs. We study spectral formation in such flows using a refined model with a fully general relativistic description of both the radiative (leptonic and hadronic) and hydrodynamic processes, as well as with an exact treatment of global Comptonization. We find that the X-ray spectral index-Eddington ratio anticorrelation as well as the cut-off energy measured in the best-studied objects favor accretion flows with rather strong magnetic field and with a weak direct heating of electrons. Furthermore, they require a much stronger source of seed photons than considered in previous studies. The nonthermal synchrotron radiation of relativistic electrons seems to be the most likely process capable of providing a sufficient flux of seed photons. Hadronic processes, which should occur due to basic properties of hot flows, provide an attractive explanation for the origin of such electrons.

  15. Feasibility tests of transmission x-ray photoelectron emission microscopy of wet samples

    Science.gov (United States)

    De Stasio, Gelsomina; Gilbert, B.; Nelson, T.; Hansen, R.; Wallace, J.; Mercanti, D.; Capozi, M.; Baudat, P. A.; Perfetti, P.; Margaritondo, G.; Tonner, B. P.

    2000-01-01

    We performed feasibility tests of photoelectron emission spectromicroscopy of wet samples in the water window (285-532 eV) soft x-ray spectral region. Water was successfully confined in an ultrahigh vacuum compatible compartment with x-ray transparent sides. This water cell was placed in the MEPHISTO spectromicroscope in a transmission geometry, and complete x-ray absorption spectra of the water window region were acquired. We also show micrographs of test samples, mounted outside of the compartment, and imaged through the water. This technique can be used to study liquid chemistry and, at least to the micron level, the microstructure of wet samples. Possibilities include cells in water or buffer, proteins in solution, oils of tribological interest, liquid crystals, and other samples not presently accessible to the powerful x-ray photoelectron emission spectromicroscopy technique.

  16. THERMAL X-RAY EMISSION FROM THE SHOCKED STELLAR WIND OF PULSAR GAMMA-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zabalza, V.; Paredes, J. M. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E08028 Barcelona (Spain); Bosch-Ramon, V., E-mail: vzabalza@am.ub.es [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2011-12-10

    Gamma-ray-loud X-ray binaries are binary systems that show non-thermal broadband emission from radio to gamma rays. If the system comprises a massive star and a young non-accreting pulsar, their winds will collide producing broadband non-thermal emission, most likely originated in the shocked pulsar wind. Thermal X-ray emission is expected from the shocked stellar wind, but until now it has neither been detected nor studied in the context of gamma-ray binaries. We present a semi-analytic model of the thermal X-ray emission from the shocked stellar wind in pulsar gamma-ray binaries, and find that the thermal X-ray emission increases monotonically with the pulsar spin-down luminosity, reaching luminosities of the order of 10{sup 33} erg s{sup -1}. The lack of thermal features in the X-ray spectrum of gamma-ray binaries can then be used to constrain the properties of the pulsar and stellar winds. By fitting the observed X-ray spectra of gamma-ray binaries with a source model composed of an absorbed non-thermal power law and the computed thermal X-ray emission, we are able to derive upper limits on the spin-down luminosity of the putative pulsar. We applied this method to LS 5039, the only gamma-ray binary with a radial, powerful wind, and obtain an upper limit on the pulsar spin-down luminosity of {approx}6 Multiplication-Sign 10{sup 36} erg s{sup -1}. Given the energetic constraints from its high-energy gamma-ray emission, a non-thermal to spin-down luminosity ratio very close to unity may be required.

  17. The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae

    Science.gov (United States)

    Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.

    2007-01-01

    The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.

  18. Scaling of X-ray emission and ion velocity in laser produced Cu plasmas

    Science.gov (United States)

    Prasad, Y. B. S. R.; Senecha, V. K.; Pant, H. C.; Kamath, M. P.; Solanki, G. S.; Tripathi, P. K.; Kulkarni, A. P.; Gupta, S.; Pareek, R.; Joshi, A. S.; Sreedhar, N.; Nigam, Sameer; Navathe, C. P.

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m m, 5 and 15 ns) at intensities between 1012 and 1014 W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2--1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form Fb where b ~ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  19. X-Ray Emission from the Pre-Planetary Nebula Henize 3-1475

    CERN Document Server

    Sahai, R; Frank, A; Morris, M; Blackman, E G; Sahai, Raghvendra; Kastner, Joel H.; Frank, Adam; Morris, Mark; Blackman, Eric G.

    2003-01-01

    We report the first detection of X-ray emission in a pre-planetary nebula, Hen 3-1475. Pre-planetary nebulae are rare objects in the short transition stage between the Asymptotic Giant Branch and planetary nebula evolutionary phases, and Hen 3-1475, characterised by a remarkable S-shaped chain of optical knots, is one of the most noteworthy members of this class. Observations with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-Ray observatory show the presence of compact emission coincident with the brightest optical knot in this bipolar object, which is displaced from the central star by 2.7 arcsec along the polar axis. Model fits to the X-ray spectrum indicate an X-ray temperature and luminosity, respectively, of (4.3-5.7) 10^6 K and (4+/-1.4) 10^{31} (D/5 kpc)^2 erg s^{-1}, respectively. Our 3-sigma upper limit on the luminosity of compact X-ray emission from the central star in Hen 3-1475 is ~5 10^{31} (D/5 kpc)^2 erg s^{-1}. The detection of X-rays in Hen 3-1475 is consistent with mod...

  20. Scaling of x-ray emission and ion velocity in laser produced Cu plasmas

    Indian Academy of Sciences (India)

    Y B S R Prasad; V K Senecha; H C Pant; M P Kamath; G S Solanki; P K Tripathi; A P Kulkarni; S Gupta; R Pareek; A S Joshi; N Sreedhar; Sameer Nigam; C P Navathe

    2000-11-01

    The x-ray emission from slab targets of copper irradiated by Nd:glass laser (1.054 m, 5 and 15 ns) at intensities between 1012 and 1014W/cm2 has been studied. The x-ray emissions were monitored with the help of high quantum efficiency x-ray silicon photo diodes and vacuum photo diodes, all covered with aluminium filters of different thickness. The x-ray intensity vs the laser intensity has a scaling factor of (1.2–1.92). The relative x-ray conversion efficiency follows an empirical relationship which is in close agreement with the one reported by Babonneau et al. The ion velocities were monitored using Langmuir probes placed at different angles and radial distances from the target position. The variation of the ion velocity with the laser intensity follows a scaling of the form where ∼ 0.22 which is in good agreement with the reported scaling factor values. The results on the x-ray emission from Cu plasma are reported.

  1. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hong, Jaesub [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max-Planck-Institut f. extraterrestrische Physik, HEG, Garching (Germany); Bauer, Franz [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusets Institute of Technology, Cambridge, MA 02139 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Forster, Karl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Giommi, Paolo, E-mail: kaya@astro.columbia.edu [ASI Science Data Center, Via del Politecnico snc I-00133, Roma (Italy); and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  2. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    Science.gov (United States)

    Chernyshov, D. O.; Cheng, K.-S.; Dogiel, V. A.; Ko, C. M.

    2017-02-01

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6‑2858 (or 3FGL J1745.6‑2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array, as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or a combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.

  3. Weak Hard X-ray Emission from Two Broad Absorption Line Quasars Observed with NuSTAR: Compton-thick Absorption or Intrinsic X-ray Weakness?

    CERN Document Server

    Luo, B; Alexander, D M; Harrison, F A; Stern, D; Bauer, F E; Boggs, S E; Christensen, F E; Comastri, A; Craig, W W; Fabian, A C; Farrah, D; Fiore, F; Fuerst, F; Grefenstette, B W; Hailey, C J; Hickox, R; Madsen, K K; Matt, G; Ogle, P; Risaliti, G; Saez, C; Teng, S H; Walton, D J; Zhang, W W

    2013-01-01

    We present NuSTAR hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain ~400-600 hard X-ray (>10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (NH<1E24 cm^{-2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be NH~7E24 cm^{-2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We d...

  4. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    CERN Document Server

    Gu, Liyi; Raassen, A J J

    2016-01-01

    Charge exchange X-ray emission provides unique insights into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to $n$ and $l$ atomic subshells, and carrying out complete radiative cascade calculation, we create a new spectral code to evaluate the charge exchange emission in the X-ray band. Comparing to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-$n$ shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge ...

  5. Rebirth of X-ray Emission from the Born-Again Planetary Nebula A 30

    CERN Document Server

    Guerrero, M A; Hamann, W -R; Chu, Y -H; Todt, H; Schoenberner, D; Oskinova, L; Gruendl, R A; Steffen, M; Blair, W P; Toala, J A

    2012-01-01

    The planetary nebula (PN) A 30 is believed to have undergone a very late thermal pulse resulting in the ejection of knots of hydrogen-poor material. Using multi-epoch HST images we have detected the angular expansion of these knots and derived an age of 850+280-150 yr. To investigate the spectral and spatial properties of the soft X-ray emission detected by ROSAT, we have obtained Chandra and XMM-Newton deep observations of A 30. The X-ray emission from A 30 can be separated into two components: a point-source at the central star and diffuse X-ray emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. To help us assess the role of the current stellar wind in powering this X-ray emission, we have determined the stellar parameters and wind properties of the central star of A 30 using a non-LTE model fit to its optical and UV spectrum. The spatial distribution and spectral properties of the diffuse X-ray emission is highly suggestive that it is generated by the po...

  6. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  7. Origin of Thermal and Non-Thermal Hard X-ray Emission from the Galactic Center

    CERN Document Server

    Dogiel, Vladimir; Yuasa, Takayuki; Prokhorov, Dmitrii; Cheng, Kwong-Sang; Bamba, Aya; Inoue, Hajime; Ko, Chung-Ming; Kokubun, Motohide; Maeda, Yoshitomo; Mitsuda, Kazuhisa; Nakazawa, Kazuhiro; Yamasaki, Noriko Y

    2009-01-01

    We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^\\ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.

  8. Quiescent X-ray emission from Cen X-4: a variable thermal component

    NARCIS (Netherlands)

    E.M. Cackett; E.F. Brown; J.M. Miller; R. Wijnands

    2010-01-01

    The nearby neutron star low-mass X-ray binary, Cen X-4, has been in a quiescent state since its last outburst in 1979. Typically, quiescent emission from these objects consists of thermal emission (presumably from the neutron star surface) with an additional hard power-law tail of unknown nature. Va

  9. X-Ray Emission from a prominent dust lane lenticular galaxy NGC 5866

    CERN Document Server

    Vagshette, N D; Pandey, S K; Patil, M K

    2015-01-01

    We report the multiband imagery with an emphasis on the X-ray emission properties of a prominent dust lane lenticular galaxy NGC 5866. X-ray emission from this galaxy is due to a diffuse component and a substantial contribution from the population of discrete X-ray binary sources. A total of 22 discrete sources have been detected within the optical D25 extent of the galaxy, few of which exhibit spatial association with the globular clusters hosted by this system. Composite spectrum of the diffuse emission from this galaxy was well constrained by a thermal plasma model plus a power law component to represent the emission from unresolved sources, while that of the discrete sources was well fitted by an absorbed power law component of photon index 1.82$\\pm$0.14. X-ray color-color plot for the resolved source was used to classify the detected sources. The cumulative X-ray luminosity function of the XRBs is well represented by a power law function of index of {\\Gamma} ~ 0.82$\\pm$0.12. Optical imagery of NGC 5866 r...

  10. Two distinct phases of hard x-ray emissions in a solar eruptive flare

    CERN Document Server

    Joshi, Bhuwan; Cho, K -S; Bong, S -C; Moon, Y -J; Lee, Jeongwoo; Somov, B V; Manoharan, P K; Kim, Y -H

    2008-01-01

    We present a detailed analysis of the evolution of an M7.6 flare that occurred near the south-east limb on October 24, 2003 utilizing a multi-wavelength data set. Preflare images at TRACE 195 A show that the bright and complex system of coronal loops already existed at the flaring site. The X-ray light curves clearly reveal two phases of flare evolution. The emission during the first phase is seen in GOES and RHESSI measurements at energies below 25 keV, while the second phase is evident in all the X-ray energies as high as 300 keV. The first phase is gradual whereas the second phase shows impulsive emission with several individual hard X-ray bursts. The first phase starts with the appearance of an X-ray loop-top (LT) source in RHESSI images below 25 keV. About 5 minute later, the TRACE 195 A images show an intense emission that is cospatial with RHESSI LT source. This hot and diffuse TRACE emission is attributed to the existence of 15-20 MK plasma, heated directly from the primary energy source. Both X-ray a...

  11. Soft X-ray emission in kink-unstable coronal loops

    Science.gov (United States)

    Pinto, R. F.; Vilmer, N.; Brun, A. S.

    2015-04-01

    Context. Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink-unstable twisted flux-ropes provide a source of magnetic energy that can be released impulsively and may account for the heating of the plasma in flares. Aims: We investigate the temporal, spectral, and spatial evolution of the properties of the thermal continuum X-ray emission produced in such kink-unstable magnetic flux-ropes and discuss the results of the simulations with respect to solar flare observations. Methods: We computed the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops based on a series of magnetohydrodynamical numerical simulations. The numerical setup consisted of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, computed the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduced the X-ray emission properties of the plasma during the whole flaring episode. Results: During the initial (linear) phase of the instability, plasma heating is mostly adiabatic (as a result of compression). Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (up to more than 20 MK), to a quick enhancement of X-ray emission, and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures higher than 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events, but cools down globally by thermal conduction. The total thermal X-ray emission slowly fades away during this phase, and the high

  12. The Chandra planetary nebula survey (CHANPLANS). II. X-ray emission from compact planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Kastner, J. H. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Jones, D. [Departamento de Física, Universidad de Atacama, Copayapu 485, Copiapó (Chile); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, Granada, E-18008 (Spain); Lopez, J. A. [Instituto de Astronomía, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Bujarrabal, V. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain); Corradi, R. L. M. [Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife (Spain); Nordhaus, J. [NSF Astronomy and Astrophysics Fellow, Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2014-10-20

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (CHANPLANS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ∼1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. CHANPLANS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. CHANPLANS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R {sub neb} ≲ 0.4 pc), young PNe that lie within ∼1.5 kpc. Results from these Cycle 14 observations include first-time X-ray detections of hot bubbles within NGC 1501, 3918, 6153, and 6369, and point sources in HbDs 1, NGC 6337, and Sp 1. The addition of the Cycle 14 results brings the overall CHANPLANS diffuse X-ray detection rate to ∼27% and the point source detection rate to ∼36%. It has become clearer that diffuse X-ray emission is associated with young (≲ 5 × 10{sup 3} yr), and likewise compact (R {sub neb} ≲ 0.15 pc), PNe with closed structures and high central electron densities (n{sub e} ≳ 1000 cm{sup –3}), and is rarely associated with PNe that show H{sub 2} emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, two of the five new diffuse X-ray detections (NGC 1501 and NGC 6369) host [WR]-type central stars, supporting the hypothesis that PNe with central stars of [WR]-type are likely to display diffuse X-ray emission.

  13. Giant coronal loops dominate the quiescent X-ray emission in rapidly rotating M stars

    CERN Document Server

    Cohen, O; Garraffo, C; Saar, S H; Wolk, S J; Kashyap, V L; Drake, J J; Pillitteri, I

    2016-01-01

    Observations indicate that magnetic fields in rapidly rotating stars are very strong, on both small and large scales. What is the nature of the resulting corona? Here we seek to shed some light on this question. We use the results of an anelastic dynamo simulation of a rapidly rotating fully-convective M-star to drive a physics-based model for the stellar corona. We find that due to the several kilo Gauss large-scale magnetic fields at high latitudes, the corona and its X-ray emission are dominated by star-size large hot loops, while the smaller, underlying colder loops are not visible much in the X-ray. Based on this result we propose that, in rapidly rotating stars, emission from such coronal structures dominates the quiescent, cooler but saturated X-ray emission.

  14. X-RAY EMISSION AND ABSORPTION FEATURES DURING AN ENERGETIC THERMONUCLEAR X-RAY BURST FROM IGR J17062-6143

    Energy Technology Data Exchange (ETDEWEB)

    Degenaar, N.; Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Wijnands, R.; Altamirano, D. [Astronomical Institute ' ' Anton Pannekoek' ' , University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands); Fabian, A. C., E-mail: degenaar@umich.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom)

    2013-04-20

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the {approx_equal}18 minute long X-ray burst tail shows an episode of {approx_equal}10 minutes during which the intensity is strongly fluctuating by a factor of {approx_equal}3 above and below the underlying decay trend on a timescale of seconds. The X-ray spectrum reveals a highly significant emission line around {approx_equal}1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line (assuming Keplerian motion), and photoionization modeling of the Fe-K absorption features each independently point to gas at a radius of {approx_equal} 10{sup 3} km as the source of these features. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  15. Ultrafast atomic process in X-ray emission by using inner-shell ionization method for sodium and carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Moribayashi, Kengo; Sasaki, Akira; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment

    1998-07-01

    An ultrafast inner-shell ionization process with X-ray emission stimulated by high-intensity short-pulse X-ray is studied. Carbon and sodium atoms are treated as target matter. It is shown that atomic processes of the target determine the necessary X-ray intensity for X-ray laser emission as well as the features of X-ray laser such as wavelength and duration time. The intensity also depends on the density of initial atoms. Furthermore, we show that as the intensity of X-ray source becomes high, the multi-inner-shell ionization predominates, leading to the formation of hollow atoms. As the density of hollow atoms is increased by the pumping X-ray power, the emission of X-rays is not only of significance for high brightness X-ray measurement but also is good for X-ray lasing. New classes of experiments of pump X-ray probe and X-ray laser are suggested. (author)

  16. X-ray Emission from the Born-Again Planetary Nebula Abell 30

    Science.gov (United States)

    Guerrero, M. A.

    2013-05-01

    The planetary nebula (PN) Abell 30 underwent a very late thermal pulse that resulted in the ejection of knots of hydrogen-poor material. ROSAT detected soft X-ray emission from these knots. We present deep Chandra and XMM-Newton observations that show this X-ray emission to consist of two components: a point-source at the central star and diffuse emission associated with the hydrogen-poor knots and the cloverleaf structure inside the nebular shell. The spatial distribution and spectral properties of the diffuse X-ray emission suggest that it is generated by the shock-heated plasma produced by the interaction of the present stellar wind with the hydrogen-poor ejecta of the born-again event. Charge-exchange reactions between the ions of the stellar winds and the born-again ejecta may also contribute to this emission. The origin of the X-ray emission from the central star of A 30 is puzzling: shocks in the present fast stellar wind and photospheric emission can be ruled out, while the development of a new, compact hot bubble confining the fast stellar wind seems implausible.

  17. X-Ray Emission from the Wolf-Rayet Bubble S 308

    Science.gov (United States)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  18. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    CERN Document Server

    Shelton, Robin L

    2008-01-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local...

  19. Evidence for Elevated X-ray Emission in Local Lyman Break Galaxy Analogs

    CERN Document Server

    Basu-Zych, Antara R; Hornschemeier, Ann E; Goncalves, Thiago S; Fragos, Tassos; Heckman, Tim; Overzier, Roderik A; Ptak, Andrew F; Schiminovich, David

    2013-01-01

    In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L_X), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in UV-selected z2). We show that these LBAs are unlikely to harbor AGN, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. We expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs=SFR/M* > 10^{-9}/yr), which suggest the prevalence of young stellar populations. Since both LBAs and LBGs have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L_X/SFR for the broader population of galaxies with high sSFRs (>10^{-10}/yr). The estimated dust extinctions (corresponding to column densities of N_H2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local Universe.

  20. [C II] emission from galactic nuclei in the presence of X-rays

    CERN Document Server

    Langer, William D

    2015-01-01

    The luminosity of [C II] is used to probe the star formation rate in galaxies, but the correlation breaks down in some active galactic nuclei (AGNs). Models of the [C II] emission from galactic nuclei do not include the influence of X-rays on the carbon ionization balance, which may be a factor in reducing the [C II] luminosity. We calculate the [C II] luminosity in galactic nuclei under the influence of bright sources of X-rays. We solve the balance equation of the ionization states of carbon as a function of X-ray flux, electron, atomic hydrogen, and molecular hydrogen density. These are input to models of [CII] emission from the interstellar medium (ISM) in galactic nuclei. We also solve the distribution of the ionization states of oxygen and nitrogen in highly ionized regions. We find that the dense warm ionized medium (WIM) and dense photon dominated regions (PDRs) dominate the [C II] emission when no X-rays are present. The X-rays in galactic nuclei can affect strongly the C$^+$ abundance in the WIM con...

  1. MODELING THE THERMAL DIFFUSE SOFT AND HARD X-RAY EMISSION IN M17

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, P. F.; Rodriguez-Gonzalez, A.; Esquivel, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico); Rosado, M. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ap. 70-248, 04510 D.F. (Mexico); Reyes-Iturbide, J., E-mail: pablo@nucleares.unam.mx, E-mail: ary@nucleares.unam.mx, E-mail: esquivel@nucleares.unam.mx, E-mail: margarit@astro.unam.mx [LATO-DCET/Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-000 Ilheus, BA (Brazil)

    2013-04-10

    We present numerical models of very young wind driven superbubbles. The parameters chosen for the simulations correspond to the particular case of the M17 nebula, but are appropriate for any young superbubble in which the wind sources have not completely dispersed their parental cloud. From the simulations, we computed the diffuse emission in the soft ([0.5-1.5] keV) and hard ([1.5-5] keV) X-ray bands. The total luminosity in our simulations agrees with the observations of Hyodo et al., about two orders of magnitude below the prediction of the standard model of Weaver et al.. The difference with respect to the standard (adiabatic) model is the inclusion of radiative cooling, which is still important in such young bubbles. We show that for this type of object the diffuse hard X-ray luminosity is significant compared to that of soft X-rays, contributing as much as 10% of the total luminosity, in contrast with more evolved bubbles where the hard X-ray emission is indeed negligible, being at least four orders of magnitude lower than the soft X-ray emission.

  2. X-Ray Emission by A Shocked Fast Wind from the Central Stars of Planetary Nebulae

    CERN Document Server

    Akashi, M; Behar, E; Akashi, Muhammad; Soker, Noam; Behar, Ehud

    2005-01-01

    We calculate the X-ray emission from the shocked fast wind blown by the central stars of planetary nebulae (PNs) and compare with observations. Using spherically symmetric self similar solutions with radiative cooling, we calculate the flow structure and X-ray temperature for a fast wind slamming into a previously ejected slow wind. We find that the observed X-ray emission of six PNs can be accounted for by shocked wind segments that were expelled during the early PN phase, if the fast wind speed is moderate, ~400-600 km/sec, and the mass loss rate is a few times 10^{-7} Mo/year. We find, as proposed previously, that the morphology of the X-ray emission is in the form of a narrow ring inner to the optical bright part of the nebula. The bipolar X-ray morphology of several observed PNs, which indicates an important role of jets rather than a spherical fast wind, cannot be explained by the flow studied here.

  3. X-ray emission from Planetary Nebulae. I. Spherically symmetric numerical simulations

    CERN Document Server

    Stute, M; Stute, Matthias; Sahai, Raghvendra

    2006-01-01

    (abridged) The interaction of a fast wind with a spherical Asymptotic Giant Branch (AGB) wind is thought to be the basic mechanism for shaping Pre-Planetary Nebulae (PPN) and later Planetary Nebulae (PN). Due to the large speed of the fast wind, one expects extended X-ray emission from these objects, but X-ray emission has only been detected in a small fraction of PNs and only in one PPN. Using numerical simulations we investigate the constraints that can be set on the physical properties of the fast wind (speed, mass-flux, opening angle) in order to produce the observed X-ray emission properties of PPNs and PNs. We combine numerical hydrodynamical simulations including radiative cooling using the code FLASH with calculations of the X-ray properties of the resulting expanding hot bubble using the atomic database ATOMDB. In this first study, we compute X-ray fluxes and spectra using one-dimensional models. Comparing our results with analytical solutions, we find some agreements and many disagreements. In parti...

  4. X-ray Emission from Eta Carinae near Periastron in 2009 I: A Two State Solution

    CERN Document Server

    Hamaguchi, Kenji; Russell, Christopher; Pollock, Andrew M T; Gull, Theodore R; Teodoro, Mairan; Madura, Thomas I; Damineli, Augusto; Pittard, Julian M

    2014-01-01

    X-ray emission from the supermassive binary system Eta Carinae declines sharply around periastron. This X-ray minimum has two distinct phases - the lowest flux phase in the first ~3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at ~1.9e-12 ergs cm-2 s-1 (3-8 keV). The spectral shape changed such that the hard band above ~4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in ~2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas downstream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is ...

  5. Search of X-ray emission from roAp stars: The case of gamma Equulei

    CERN Document Server

    Stelzer, B; Schöller, M; Hubrig, S; Cowley, C

    2011-01-01

    The detection of X-ray emission from Ap stars can be an indicator for the presence of magnetic activity and dynamo action, provided different origins for the emission, such as wind shocks and close late-type companions, can be excluded. Here we report on results for gamma Equu, the only roAp star for which an X-ray detection is reported in ROSAT catalogs. We use high resolution imaging in X-rays with Chandra and in the near-infrared with NACO/VLT that allow us to spatially resolve companions down to ~1" and ~0.06" separations, respectively. The bulk of the X-ray emission is associated with a companion of gamma Equu identified in our NACO image. Assuming coevality with the primary roAp star (~900 Myr), the available photometry for the companion points at a K-type star with ~0.6 M_sun. Its X-ray properties are in agreement with the predictions for its age and mass. An excess of photons with respect to the expected background and contribution from the nearby companion is observed near the optical position of gam...

  6. Volume effect of laser produced plasma on X-ray emissions

    Indian Academy of Sciences (India)

    V K Senecha; Y B S R Prasad; M P Kamath; A S Joshi; G S Solanki; A P Kulkarni; S Gupta; R Pareek; H C Pant

    2000-11-01

    An investigation of x-ray emission from Cu plasma produced by 1.054 m Nd:glass laser pulses of 5 ns duration, at 2 × 1012-2 × 1013 W cm-2 is reported. The x-ray emission has been studied as a function of target position with respect to the laser beam focus position. It has been observed that x-ray emissions from ns duration plasma show a volume effect similar to subnanosecond plasmas. Due to this effect the x-ray yield increases when target is moved away relative to the best focal plane of the laser beam. This result supports the theoretical model of Tallents and has also been testified independently using suitably modified theoretical model for our experimental conditions. While above result is in good agreement with similar experimental results obtained for sub-nanosecond laser produced plasmas, it differs from result claiming filamentation rather than pure geometrical effect leading to x-ray enhancement for ns plasmas.

  7. Radio emission of the Galactic X-rays binaries with relativistic jets

    CERN Document Server

    Trushkin, S A

    2000-01-01

    Variable non-thermal radio emission from Galactic X-ray binaries is a trace of relativistic jets, created near accretion disks. The spectral characteristics of a lot of radio flares in the X-ray binaries with jets (RJXB) is discussed in this report. We carried out several long daily monitoring programs with the RATAN-600 radio telescope of the sources: SS433, Cyg X-3, LSI+61o303, GRS 1915+10 and some others. We also reviewed some data from the GBI monitoring program at two frequencies and hard X-ray BATSE (20-100 keV) and soft X-ray RTXE (2-12 keV) ASM data. We confirmed that flaring radio emission of Cyg X-3 correlated with hard and anti-correlated with soft X-ray emission during the strong flare (>$ Jy) in May 1997. During two orbital periods we investigated radio light curves of the remarkable X-binary LSI+61o303. Two flaring events near a phase 0.6 of the 26.5-day orbital period have been detected for first time at four frequencies simultaneously. Powerful flaring events of SS433 were detected at six freq...

  8. A Model of Polarized X-ray Emission from Twinkling Synchrotron Supernova Shells

    CERN Document Server

    Bykov, A M; Bloemen, J B G M; Herder, J W den; Kaastra, J S

    2009-01-01

    Synchrotron X-ray emission components were recently detected in many young supernova remnants (SNRs). There is even an emerging class - SN1006, RXJ1713.72-3946, Vela Jr, and others - that is dominated by non-thermal emission in X-rays, also probably of synchrotron origin. Such emission results from electrons/positrons accelerated well above TeV energies in the spectral cut-off regime. In the case of diffusive shock acceleration, which is the most promising acceleration mechanism in SNRs, very strong magnetic fluctuations with amplitudes well above the mean magnetic field must be present. Starting from such a fluctuating field, we have simulated images of polarized X-ray emission of SNR shells and show that these are highly clumpy with high polarizations up to 50%. Another distinct characteristic of this emission is the strong intermittency, resulting from the fluctuating field amplifications. The details of this "twinkling" polarized X-ray emission of SNRs depend strongly on the magnetic-field fluctuation spe...

  9. Anisotropy of BN and Be x-ray-emission bands

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, A.; Schnatterly, S.E.

    1987-12-15

    We present measurements of the K emission spectra of hexagonal Be and BN (h-Be and h-BN). The anisotropy of the emission allows us to separate the bands into their sigma and ..pi.. components, enabling us to demonstrate the unambiguous ..pi.. character of the B core exciton. We find that the exciton presents a double-peaked structure which we attribute to phonon ringing. For the first time we are able to separate into ..pi.. and sigma components the doubly ionized K emission bands of B and N in h-BN and of Be in h-Be, revealing the effect of the spectator core hole on the shape of the density of states. Such an effect is in qualitative agreement with the final-state rule, although the local p density of states is distorted more than has previously been reported.

  10. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  11. X-ray emission and absorption features during an energetic thermonuclear X-ray burst from IGR J17062-6143

    CERN Document Server

    Degenaar, N; Wijnands, R; Altamirano, D; Fabian, A C

    2012-01-01

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. We analyze a very energetic type-I X-ray burst from the neutron star low-mass X-ray binary IGR J17062-6143 that was detected with Swift on 2012 June 25. The light curve of the ~18 min long X-ray burst tail shows an episode of ~10 min during which the intensity is strongly fluctuating by a factor of ~3 above and below the underlying decay trend, on a time scale of seconds. The X-ray spectrum reveals a highly significant emission line around ~1 keV, which can be interpreted as a Fe-L shell line caused by irradiation of cold gas. We also detect significant absorption lines and edges in the Fe-K band, which are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent X-ray spectrum of the source. The time scale of the stro...

  12. Study of x-ray emission from a table top plasma focus and its application as an x-ray backlighter

    Science.gov (United States)

    Beg, F. N.; Ross, I.; Lorenz, A.; Worley, J. F.; Dangor, A. E.; Haines, M. G.

    2000-09-01

    A study of a 2 kJ, 200 kA, table top plasma focus device as an intense x-ray source is reported. The x-ray yield from a number of gases, (deuterium, nitrogen, neon, argon, and xenon) is measured as a function of filling pressure and in neon as a function of anode length. In gases with Zplasma implodes to form a uniform cylindrical column, whereas for Z⩾18, the plasma consists of a number of hot spots. A maximum x-ray yield of 16.6 J and pulse length of 10-15 ns was obtained in neon. The x-ray emission was established to be due to H- and He-like line radiation. The temperature estimated from spectroscopic observations was about 300-400 eV at an electron density of (3-5)×1020cm-3 in neon. At low pressures in neon, hard x-ray radiation, presumably due to electron beams was dominant. Mesh images of different wire materials were recorded at the optimum pressure in neon as a proof of principle for x-ray backlighting.

  13. Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    CERN Document Server

    Bhardwaj, A; Elsner, R F; Ford, P G; Gladstone, G R; Bhardwaj, Anil; Cravens, Thomas E.; Elsner, Ronald F.; Ford, Peter G.

    2005-01-01

    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.

  14. X-ray emission and dynamics from large diameter superbubbles: The case of N 70 superbubble

    CERN Document Server

    Rodríguez-González, Ary; Rosado, Margarita; Esquivel, Alejandro; Reyes-Iturbide, Jorge; Toledo-Roy, J Claudio

    2011-01-01

    The morphology, dynamics and thermal X-ray emission of the superbubble N70 is studied by means of 3D hydrodynamical simulations, carried out with the {\\sc{yguaz\\'u-a}} code. We have considered different scenarios: the superbubble being the product of a single supernova remnant, of the stellar winds from an OB association, or the result of the joint action of stellar winds and a supernova event. Our results show that, in spite that all scenarios produce bubbles with the observed physical size, only those where the bubble is driven by stellar winds and a SN event are successful to explain the general morphology, dynamics and the X-ray luminosity of N70. Our models predict temperatures in excess of $10^8 \\mathrm{K}$ at the interior of the superbubble, however the density is too low and the emission in thermal X-ray above $2 \\mathrm{keV}$ is too faint to be detected.

  15. Water maser emission from X-ray-heated circumnuclear gas in active galaxies

    Science.gov (United States)

    Neufeld, David A.; Maloney, Philip R.; Conger, Sarah

    1994-12-01

    We have modeled the physical and chemical conditions present within dense circumnuclear gas that is irradiated by X-rays from an active galactic nucleus. Over a wide range of X-ray fluxes and gas pressures, the effects of X-ray heating give rise to a molecular layer at temperatures of 400-1000 K within which the water abundance is large. The physical conditions within this molecular layer naturally give rise to collisionally pumped maser emission in the 616 - 523 22 GHz transition of ortho-water, with predicted maser luminosities of 102 +/- 0.5 solar luminosity per sq. pc of illuminated area. Given plausible assumptions about the geometry of the source and about the degree to which the maser emission is anisotropic, such surface luminosities are sufficient to explain the large apparent luminosities observed in water maser sources that are associated with active galactic nuclei.

  16. Probing the X-ray emission of old nulling pulsars with high magnetic fields

    Science.gov (United States)

    Posselt, Bettina

    2013-10-01

    We propose XMM-Newton observations of two nulling radio pulsars with magnetic fields B>10^(13)G. These long-period pulsars have spin-down properties, including characteristic ages, similar to those of the Magnificent Seven which are bright thermal X-ray emitters. Nulling pulsars have been suggested as evolutionary stage where the magnetospheric emission of a pulsar ceases. In contrast, no magnetospheric emission was detected at all at X-ray or radio wavelengths for the Magnificent Seven. The proposed XMM-Newton observations will probe the magneto-thermal NS evolution model as a potential link between the radio pulsar population and the Magnificent Seven. They will also provide for the first time an X-ray characterization of nulling pulsars with large magnetic fields.

  17. Charge-Transfer induced EUV and Soft X-ray emissions in the Heliosphere

    CERN Document Server

    Koutroumpa, D; Kharchenko, V; Dalgarno, A; Pepino, R; Izmodenov, V; Quemerais, E

    2006-01-01

    We study the EUV/soft X-ray emission generated by charge transfer between solar wind heavy ions and interstellar H and He neutral atoms in the inner Heliosphere. We present heliospheric maps and spectra for stationary solar wind, depending on solar cycle phase, solar wind anisotropies and composition, line of sight direction and observer position. A time-dependant simulation of the X-ray intensity variations due to temporary solar wind enhancement is compared to XMM Newton recorded data of the Hubble Deep Field North observation (Snowden et al. 2004). Results show that the heliospheric component can explain a large fraction of the line intensity below 1.3 keV, strongly attenuating the need for soft X-ray emission from the Local Interstellar Bubble.

  18. The X-ray synchrotron emission of RCW 86 and the implications for its age

    CERN Document Server

    Vink, J; Van der Heyden, K J; Bykov, A; Bamba, A; Yamazaki, R; Vink, Jacco; Bleeker, Johan; Heyden, Kurt van der; Bykov, Andrei; Bamba, Aya; Yamazaki, Ryo

    2006-01-01

    We report here X-ray imaging spectroscopy observations of the northeastern shell of the supernova remnant RCW 86 with Chandra and XMM-Newton. Along this part of the shell the dominant X-ray radiation mechanism changes from thermal to synchrotron emission. We argue that both the presence of X-ray synchrotron radiation and the width of the synchrotron emitting region suggest a locally higher shock velocity of V_s = 2700 km/s and a magnetic field of B = 24+/-5 microGauss. Moreover, we also show that a simple power law cosmic ray electron spectrum with an exponential cut-off cannot explain the broad band synchrotron emission. Instead a concave electron spectrum is needed, as predicted by non-linear shock acceleration models. Finally, we show that the derived shock velocity strengthens the case that RCW 86 is the remnant of SN 185.

  19. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the populatio...... outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre....... of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... range. This emission is more sharply peaked towards the Galactic Centre than is the surface brightness of the soft-X-ray population. This could indicate a significantly more massive population of accreting white dwarfs, large populations of low-mass X-ray binaries or millisecond pulsars, or particle...

  20. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    Science.gov (United States)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  1. Development of an X-ray tube for irradiation experiments using a field emission electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hidetoshi, E-mail: katou-h@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation (RIMA), National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology - AIST, Tsukuba-Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); O' Rourke, Brian E.; Suzuki, Ryoichi [Research Institute for Measurement and Analytical Instrumentation (RIMA), National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology - AIST, Tsukuba-Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Wang, Jiayu; Ooi, Takashi; Nakajima, Hidetoshi [Pureron Japan Co., Ltd., 1-37 Yoshima Industrial Park, Iwaki, Fukushima, 970-1144 (Japan)

    2016-01-21

    A new X-ray tube using a ring-shaped emitter as a field emission electron source has been developed. By using a ring shaped cathode, X-rays can be extracted along the axial direction through the central hole. This cylindrically symmetrical design allows for the tube to be arranged in the axial direction with the high voltage target at one end and the X-ray beam at the other. The newly developed X-ray tube can operate at a tube voltage of more than 100 kV and at a tube current of more than 4 mA, and can be used for irradiation experiments with an irradiation dose range from mGy up to kGy. The X-ray tube can be used immediately after turning on (i.e. there is no stand-by time). In the experimental model, we demonstrated stable electron emission at a tube voltage of 100 kV and at a tube current of 4 mA during a 560 h continuous test.

  2. The Sun's X-ray Emission During the Recent Solar Minimum

    Science.gov (United States)

    Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2010-02-01

    The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.

  3. Laboratory Setup for Scanning-Free Grazing Emission X-ray Fluorescence.

    Science.gov (United States)

    Baumann, J; Herzog, C; Spanier, M; Grötzsch, D; Lühl, L; Witte, K; Jonas, A; Günther, S; Förste, F; Hartmann, R; Huth, M; Kalok, D; Steigenhöfer, D; Krämer, M; Holz, T; Dietsch, R; Strüder, L; Kanngießer, B; Mantouvalou, I

    2017-02-07

    Grazing incidence and grazing emission X-ray fluorescence spectroscopy (GI/GE-XRF) are techniques that enable nondestructive, quantitative analysis of elemental depth profiles with a resolution in the nanometer regime. A laboratory setup for soft X-ray GEXRF measurements is presented. Reasonable measurement times could be achieved by combining a highly brilliant laser produced plasma (LPP) source with a scanning-free GEXRF setup, providing a large solid angle of detection. The detector, a pnCCD, was operated in a single photon counting mode in order to utilize its energy dispersive properties. GEXRF profiles of the Ni-Lα,β line of a nickel-carbon multilayer sample, which displays a lateral (bi)layer thickness gradient, were recorded at several positions. Simulations of theoretical profiles predicted a prominent intensity minimum at grazing emission angles between 5° and 12°, depending strongly on the bilayer thickness of the sample. This information was used to retrieve the bilayer thickness gradient. The results are in good agreement with values obtained by X-ray reflectometry, conventional X-ray fluorescence and transmission electron microscopy measurements and serve as proof-of-principle for the realized GEXRF setup. The presented work demonstrates the potential of nanometer resolved elemental depth profiling in the soft X-ray range with a laboratory source, opening, for example, the possibility of in-line or even in situ process control in semiconductor industry.

  4. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    CERN Document Server

    Henley, D B; Pittard, J M; Stevens, I R; Hamaguchi, K; Gull, T R

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star Eta Carinae, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of Eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggestin...

  5. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.

    Science.gov (United States)

    Hwang, Jae Won; Mo, Chan Bin; Jung, Hyun Kyu; Ryu, Seongwoo; Hong, Soon Hyung

    2013-11-01

    Carbon nanotube (CNT) has excellent electrical and thermal conductivity and high aspect ratio for X-ray tube cathode. However, CNT field emission cathode has been shown unstable field emission and short life time due to field evaporation by high current density and detachment by electrostatic force. An alternative approach in this direction is the introduction of CNT yarn, which is a one dimensional assembly of individual carbon nanotubes bonded by the Van der Waals force. Because CNT yarn is composed with many CNTs, CNT yarns are expected to increase current density and life time for X-ray tube applications. In this research, CNT yarn was fabricated by spinning of a super-aligned CNT forest and was characterized for application to an X-ray tube cathode. CNT yarn showed a high field emission current density and a long lifetime of over 450 hours. Applying the CNT yarn field emitter to the X-ray tube cathode, it was possible to obtain micro-scale resolution images. The relationship between the field emission properties and the microstructure evolution was investigated and the unraveling effect of the CNT yarn was discussed.

  6. X-ray Emission from the Radio Jet in 3C 120

    DEFF Research Database (Denmark)

    Harris, D. E.; Hjorth, J.; Sadun, A. C.;

    1999-01-01

    We report the discovery of X-ray emission from a radio knot at a projected distance of 25" from the nucleus of the Seyfert galaxy, 3C 120. The data were obtained with the ROSAT High Resolution Imager (HRI). Optical upper limits for the knot preclude a simple power law extension of the radio spect...

  7. Evidence for Intermediate Polars as the Origin of the Galactic Center Hard X-ray Emission

    DEFF Research Database (Denmark)

    Hailey, Charles J.; Mori, Kaya; Perez, Kerstin;

    2016-01-01

    Recently, unresolved hard (20-40 keV) X-ray emission has been discovered within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements in the surrounding ∼50 pc imply a much lighter population of IPs with 〈MWD〉≈0.5...

  8. 2p3d Resonant X-ray emission spectroscopy of cobalt compounds

    NARCIS (Netherlands)

    van Schooneveld, M.M.

    2013-01-01

    This manuscript demonstrates that 2p3d resonant X-ray emission spectroscopy (RXES) yields unique information on the chemically relevant valence electrons of transition metal atoms or ions. Experimental data on cobalt compounds and several theories were used hand-in-hand. In chapter 1 2p3d RXES was s

  9. Hard X-ray Emission From A Flare-related Jet

    Science.gov (United States)

    Bain, Hazel; Fletcher, L.

    2009-05-01

    Solar X-ray jets were first observed by Yohkoh (Shibata 1992, Strong 1992). During these events, collimated flows of plasma are accelerated in the corona. Previous observations have detected jet-related electrons directly in space as well as via radio signatures (type III bursts). However the major diagnostic of fast electrons is bremsstrahlung X-ray emission, but until now we have never seen any evidence of hard X-ray emission directly from the jet in the corona. This could be because it is rare to find a coronal jet dense enough to provide a bremsstrahlung target for the electrons, or hot enough to generate high energy thermal emission. We report what we believe to be the first observation of hard X-ray emission formed in a coronal jet. The event occurred on the 22nd of August 2002 and its evolution was observed by a number of instruments. In particular we study the pre-impulsive and impulsive phase of the flare using data from RHESSI, TRACE and the Nobeyama Radioheliograph. During this period RHESSI observed significant hard X-ray emission to energies as high as 50 keV in the jet. Radio observations from the Nobeyama Radioheliograph show a positive spectral index for the ejected material, which may be explained by optically-thick gyrosynchrotron emission from non-thermal electrons in the jet. HMB gratefully acknowledges the support of an SPD and STFC studentship. LF gratefully acknowledges the support of an STFC Rolling Grant, and financial support by the European Commission through the SOLAIRE Network (MTRN-CT_2006-035484)

  10. Suzaku Detection of Diffuse Hard X-Ray Emission outside Vela X

    OpenAIRE

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; Uchida, Hiroyuki; Yoshii, Rie

    2011-01-01

    Vela X is a large, 3x2 degrees, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma~2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the...

  11. Chemical Analysis of Impurity Boron Atoms in Diamond Using Soft X-ray Emission Spectroscopy

    OpenAIRE

    Muramatsu, Yasuji

    2009-01-01

    To analyze the local structure and/or chemical states of boron atoms in boron-doped diamond, which can be synthesized by the microwave plasma-assisted chemical vapor deposition method (CVD-B-diamond) and the temperature gradient method at high pressure and high temperature (HPT-B-diamond), we measured the soft X-ray emission spectra in the CK and BK regions of B-diamonds using synchrotron radiation at the Advanced Light Source (ALS). X-ray spectral analyses using the fingerprint method and mo...

  12. Extended Hard-X-Ray Emission in the Inner Few Parsecs of the Galaxy

    Science.gov (United States)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.; Krivonos, Roman A.; Mori, Kaya; Baganoff, Frederick K.; Barriere, Nicholas M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.; Grindlay, Jonathan E.; Harrison, Fiona A.; Hong, Jaesub; Madsen, Kristin K.; Nynka, Melania; Stern, Daniel; Tomsick, John A.; Wik, Daniel R.; Zhang, Shuo; Zhang, William W.; Zoglauer, Andreas

    2015-01-01

    The Galactic Centre hosts a puzzling stellar population in its inner few parsecs, with a high abundance of surprisingly young, relatively massive stars bound within the deep potential well of the central supermassive black hole, Sagittarius A* (ref. 1). Previous studies suggest that the population of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems2, 3, 4, 5.

  13. Weak Hard X-Ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-Ray Weakness

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.;

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z <1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expec...

  14. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    Science.gov (United States)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  15. X-ray emission from the giant molecular clouds in the Galactic Center region and the discovery of new X-ray sources

    CERN Document Server

    Sidoli, L; Treves, A; Parmar, A N; Turolla, R; Favata, F

    2001-01-01

    We report the results of X-ray (2-10 keV) observations of the giant molecular clouds SgrB, SgrC and SgrD in the Galactic Center region, together with the discovery of the point-like source SAXJ1748.2-2808. The data have been obtained with the MECS instrument on the BeppoSAX satellite. The core of SgrB2 has an X-ray luminosity of 6x10^34 erg/s and its spectrum is characterized by a strong Fe emission line at 6.5 keV with an equivalent width of 2 keV. Faint diffuse X-ray emission is detected from SgrC and from the SNR G1.05-0.15 (SgrD). A new, unresolved source with a strong Fe line has been discovered in the SgrD region. This source, SAXJ1748.2-2808, is probably associated with a SiO and OH maser source at the Galactic Center distance. If so, its luminosity is 10^34 erg/s. We propose that the X-ray emission from SAX J1748.2-2808 is produced either by protostars or by a giant molecular cloud core. Emission from sources similar to SAX J1748.2-2808 could have an impact on the expected contribution on the observed...

  16. Thermal X-ray emission from massive, fast rotating, highly magnetized white dwarfs

    CERN Document Server

    Caceres, D L; Coelho, J G; de Lima, R C R; Rueda, Jorge A

    2016-01-01

    There is solid observational evidence on the existence of massive, $M\\sim 1~M_\\odot$, highly magnetized white dwarfs (WDs) with surface magnetic fields up to $B\\sim 10^9$ G. We show that, if in addition to these features, the star is fast rotating, it can become a rotation-powered pulsar-like WD and emit detectable high-energy radiation. We infer the values of the structure parameters (mass, radius, moment of inertia), magnetic field, rotation period and spin-down rates of a WD pulsar death-line. We show that WDs above the death-line emit blackbody radiation in the soft X-ray band via the magnetic polar cap heating by back flowing pair-created particle bombardment and discuss as an example the X-ray emission of soft gamma-repeaters and anomalous X-ray pulsars within the WD model.

  17. Analyzing x-ray emissions from meter-scale negative discharges in ambient air

    DEFF Research Database (Denmark)

    Kochkin, Pavlo; Köhn, Christoph; Ebert, Ute

    2016-01-01

    When voltage pulses of 1 MV drive meter long air discharges, short and intense bursts of x-rays are measured. Here we develop a model for electron acceleration and subsequent photon generation within this discharge to understand these bursts. We start from the observation that the encounter of two...... streamers of opposite polarity launches the electrons, that they are further accelerated in the discharge field and then lose their energy, e.g., by photon emission through Bremsstrahlung. We model electron and photon dynamics in space and energy with a Monte Carlo model. Also the detector response...... to incoming photons is modelled in detail. The model justifies the approximation that the x-ray bursts are isotropic in space; this assumption is used to conclude that x-ray bursts near the high-voltage electrode with 6x 104 photons and characteristic energies of 160 keV closely reproduce the measured spectra...

  18. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    Science.gov (United States)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above

  19. Observations of X-rays and Thermal Dust Emission from the Supernova Remnant Kes 75

    CERN Document Server

    Morton, T D; Borkowski, K J; Reynolds, S P; Helfand, D J; Gaensler, B M; Hughes, J P

    2007-01-01

    We present Spitzer Space Telescope and Chandra X-ray Observatory observations of the composite Galactic supernova remnant Kes 75 (G29.7-0.3). We use the detected flux at 24 microns and hot gas parameters from fitting spectra from new, deep X-ray observations to constrain models of dust emission, obtaining a dust-to-gas mass ratio M_dust/M_gas ~0.001. We find that a two-component thermal model, nominally representing shocked swept-up interstellar or circumstellar material and reverse-shocked ejecta, adequately fits the X-ray spectrum, albeit with somewhat high implied densities for both components. We surmise that this model implies a Wolf-Rayet progenitor for the remnant. We also present infrared flux upper limits for the central pulsar wind nebula.

  20. Quasi Periodic Oscillations and Strongly Comptonized X-ray emission from Holmberg IX X-1

    CERN Document Server

    Dewangan, G C; Rao, A R

    2006-01-01

    We report the discovery of a 200mHz quasi-periodic oscillation (QPO) in the X-ray emission from a bright ultra-luminous X-ray source (ULX) Holmberg IX X-1 using a long XMM-Newton observation. The QPO has a centroid at 202.5_{-3.8}^{+4.9}mHz, a coherence Q ~9.3 and an amplitude (rms) of 6% in the 0.2-10keV band. This is only the second detection of a QPO from an ULX, after M82 X-1, and provides strong evidence against beaming. The power spectrum is well fitted by a power law with an index of ~0.7. The total integrated power (rms) is ~9.4% in the 0.001-1Hz range. The X-ray spectrum shows clear evidence for a soft X-ray excess component that is well described by a multicolor disk blackbody (kT_in ~ 0.3keV) and a high energy curvature that can be modeled either by a cut-off power law (Gamma ~ 1; E_cutoff ~9keV) or as a strongly Comptonized continuum in an optically thick (tau ~7.3) and cool (kT_e ~3keV) plasma. Both the presence of the QPO and the shape of the X-ray spectrum strongly suggest that the ULX is not i...

  1. Correlation of hard X-ray and white light emission in solar flares

    CERN Document Server

    Kuhar, Matej; Oliveros, Juan Carlos Martínez; Battaglia, Marina; Kleint, Lucia; Casadei, Diego; Hudson, Hugh S

    2015-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and HMI (Helioseismic and Magnetic Imager). We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 \\r{A} summed over the hard X-ray flare ribbons with an integration time of 45 seconds around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ~50 keV. At higher electron energies the co...

  2. The origin of the puzzling hard X-ray emission of $\\gamma$ Cassiopeiae

    CERN Document Server

    Motch, Christian; Smith, Myron A

    2015-01-01

    Massive B and Be stars produce X-rays from shocks in high velocity winds with temperatures of a few million degrees and maximum X-ray luminosities of $\\approx$ 10$^{31}$ erg/s. Surprisingly, a sub-group of early Be stars exhibits > 20 times hotter X-ray temperatures and > 10 times higher X-ray luminosities than normal. This group of Be stars, dubbed Gamma-Cas analogs, contains about 10 known objects. The origin of this bizarre behavior has been extensively debated in the past decades. Two mechanisms have been put forward, accretion of circumstellar disk matter onto an orbiting white dwarf, or magnetic field interaction between the star and the circumstellar disk (Smith & Robinson 1999). We show here that the X-ray and optical emissions of the prototype of the class, Gamma-Cas, are very well correlated on year time scales with no significant time delay. Since the expected migration time from internal disk regions that emit most of the optical flux to the orbit of the companion star is of several years, the...

  3. Extranuclear X-ray Emission in the Edge-on Seyfert Galaxy NGC 2992

    CERN Document Server

    Colbert, E J M; Veilleux, S; Weaver, K A; Colbert, Edward J. M.; Strickland, David K.; Veilleux, Sylvain; Weaver, Kimberly A.

    2005-01-01

    We found several extranuclear (r >~ 3") X-ray nebulae within 40" (6.3 kpc at 32.5 Mpc) of the nucleus of the Seyfert galaxy NGC 2992. The net X-ray luminosity from the extranuclear sources is ~2-3 E39 erg/s (0.3-8.0 keV). The X-ray core itself (r <~ 1") is positioned at 9:45:41.95 -14:19:34.8 (J2000) and has a remarkably simple power-law spectrum with photon index Gamma=1.86 and Nh=7E21 /cm2. The near-nuclear (3" <~ r <~ 18") Chandra spectrum is best modelled by three components: (1) a direct AGN component with Gamma fixed at 1.86, (2) cold Compton reflection of the AGN component, and (3) a 0.5 keV low-abundance (Z < 0.03 Zsolar) "thermal plasma," with ~10% of the flux of either of the first two components. The X-ray luminosity of the 3rd component (the "soft excess") is ~1.4E40 erg/s, or ~5X that of all of the detected extranuclear X-ray sources. We suggest that most (~75-80%) of the soft excess emission originates from 1" < r < 3", which is not imaged in our observation due to severe CCD p...

  4. Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

    CERN Document Server

    Nomura, H; Tsujimoto, M; Nakagawa, Y; Millar, T J

    2007-01-01

    Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of...

  5. X-ray Emission from Nitrogen-Type Wolf-Rayet Stars

    CERN Document Server

    Skinner, S L; Guedel, M; Schmutz, W; Sokal, K R

    2009-01-01

    We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars obtained in a limited survey aimed at establishing the X-ray properties of WN stars across their full range of spectral subtypes. None of the detected stars is so far known to be a close binary. We report Chandra detections of WR 2 (WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a (WN9ha). These observations clearly demonstrate that both WNE and WNL stars are X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR 20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78 (WN7h). The X-ray spectra of all WN detections show prominent emission lines and an admixture of cool (kT 2 keV) plasma. The hotter plasma is not predicted by radiative wind shock models and other as yet unidentified mechanisms are at work. Most stars show X-ray absorption in excess of that expected from visual extinction (Av), likely due to their strong winds or cold circumstellar gas. Existing data s...

  6. Supernova Remnants in the Sedov Expansion Phase Thermal X-Ray Emission

    CERN Document Server

    Borkowski, K J; Reynolds, S P

    2001-01-01

    Improved calculations of X-ray spectra for supernova remnants (SNRs) in the Sedov-Taylor phase are reported, which for the first time include reliable atomic data for Fe L-shell lines. This new set of Sedov models also allows for a partial collisionless heating of electrons at the blast wave and for energy transfer from ions to electrons through Coulomb collisions. X-ray emission calculations are based on the updated Hamilton-Sarazin spectral model. The calculated X-ray spectra are succesfully interpreted in terms of three distribution functions: the electron temperature and ionization timescale distributions, and the ionization timescale averaged electron temperature distribution. The comparison of Sedov models with a frequently used single nonequilibrium ionization (NEI) timescale model reveals that this simple model is generally not an appropriate approximation to X-ray spectra of SNRs. We find instead that plane-parallel shocks provide a useful approximation to X-ray spectra of SNRs, particularly for youn...

  7. CORRELATION OF HARD X-RAY AND WHITE LIGHT EMISSION IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, Matej; Krucker, Säm; Battaglia, Marina; Kleint, Lucia; Casadei, Diego [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Oliveros, Juan Carlos Martinez; Hudson, Hugh S. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States)

    2016-01-01

    A statistical study of the correlation between hard X-ray and white light emission in solar flares is performed in order to search for a link between flare-accelerated electrons and white light formation. We analyze 43 flares spanning GOES classes M and X using observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager and Helioseismic and Magnetic Imager. We calculate X-ray fluxes at 30 keV and white light fluxes at 6173 Å summed over the hard X-ray flare ribbons with an integration time of 45 s around the peak hard-X ray time. We find a good correlation between hard X-ray fluxes and excess white light fluxes, with a highest correlation coefficient of 0.68 for photons with energy of 30 keV. Assuming the thick target model, a similar correlation is found between the deposited power by flare-accelerated electrons and the white light fluxes. The correlation coefficient is found to be largest for energy deposition by electrons above ∼50 keV. At higher electron energies the correlation decreases gradually while a rapid decrease is seen if the energy provided by low-energy electrons is added. This suggests that flare-accelerated electrons of energy ∼50 keV are the main source for white light production.

  8. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  9. Modeling of the EUV and X-Ray Emission Spectra Induced by the Solar Winds Ions in the Heliosphere

    Science.gov (United States)

    Kharchenko, Vasili

    2005-01-01

    We have carried out investigation of the EUV and X-ray emission spectra induced in interaction between the Solar Wind (SW) and interstellar neutral gas. The spectra of most important SW ions have been computed for the charge-exchange mechanism of X-ray emission using new accurate spectroscopic data from recent laboratory measurements and theoretical calculations. Total spectra have been constructed as a sum of spectra induced in the charge-exchange collisions by individual O(exp q+), C(exp q+), N(exp q+), Ne(exp q+), Mg (exp q+) and Fe(exp q+) ions. Calculations have been performed for X-ray emission from the heliospheric hydrogen and helium gas. X-ray maps of the heliosphere have been computed. The power density of X-ray sources in the heliospheric ecliptic plane is shown for the H gas and for the He gas. Distances from the Sun (0,0) are given in AU. The helium cone is clear seen in the X-ray map of the charge-exchange emission induced by the solar wind. X-ray emission spectra detected by the Chandra X-ray telescope from the "dark" side of Moon has been identified as a X-ray background emission induced by the solar wind from the geocorona. Spectra and intensities of this charge-exchange X-rays have been compared with the heliospheric component of the X-ray background. Observations and modeling of the SW spectra induced from the geocorona indicate a strong presence of emission lines of highly charged oxygen ions. Anisotropy in distribution of heliospheric X-rays has been predicted and calculated for the regions of the fast and slow solar winds.

  10. Evidence of non-thermal X-ray emission from radio lobes of Cygnus A

    CERN Document Server

    Yaji, Y; Isobe, N; Kino, M; Asada, K; Nagai, H; Koyama, S; Kusunose, M

    2010-01-01

    Using deep Chandra ACIS observation data for Cygnus A, we report evidence of non-thermal X-ray emission from radio lobes surrounded by a rich intra-cluster medium (ICM). The diffuse X-ray emission, which are associated with the eastern and western radio lobes, were observed in a 0.7--7 keV Chandra$ ACIS image. The lobe spectra are reproduced with not only a single-temperature Mekal model, such as that of the surrounding ICM component, but also an additional power-law (PL) model. The X-ray flux densities of PL components for the eastern and western lobes at 1 keV are derived as 77.7^{+28.9}_{-31.9} nJy and 52.4^{+42.9}_{-42.4} nJy, respectively, and the photon indices are 1.69^{+0.07}_{-0.13} and 1.84^{+2.90}_{-0.12}, respectively. The non-thermal component is considered to be produced via the inverse Compton (IC) process, as is often seen in the X-ray emission from radio lobes. From a re-analysis of radio observation data, the multiwavelength spectra strongly suggest that the seed photon source of the IC X-ra...

  11. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    CERN Document Server

    La Mura, G; Ciroi, S; Cracco, V; Di Mille, F; Rafanelli, P

    2013-01-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size $r 2000 km/s) and narrow line (1000 km/s < FWHMH$_{\\rm H\\beta}\\, \\leq$ 2000 km/s) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z = 0.35, and detected at X-ray energies. We present anal...

  12. A comparison of X-ray and radio emission from the supernova remnant Cassiopeia A

    CERN Document Server

    Keohane, J W; Anderson, M C; Keohane, Jonathan W; Rudnick, Lawrence; Anderson, Martha C

    1996-01-01

    We compare the radio and soft X-ray brightness as a function of position within the young supernova remnant Cassiopeia A. A moderately strong correlation (r = 0.7) was found between the X-ray emission (corrected for interstellar absorption) and radio emission, showing that the thermal and relativistic plasmas occupy the same volumes and are regulated by common underlying parameters. The logarithmic slope of the relationship, ln(Sx-ray) = 1.2 x Sradio + ln(k) implies that the variations in brightness are primarily due to path length differences. The X-ray and radio emissivities are both high in the same general locations, but their more detailed relationship is poorly constrained and probably shows significant scatter. The strongest radio and X-ray absorption is found at the western boundary of Cas A. Based on the properties of Cas A and the absorbing molecular cloud, we argue that they are physically interacting. We also compare ASCA derived column densities with 21 cm H I and 18 cm OH optical depths in the d...

  13. Origin of X-ray Emission from Transient Black Hole Candidates in Quiescence

    CERN Document Server

    Pszota, Gabor; Yuan, Feng; Cui, Wei

    2008-01-01

    We report results from a systematic study of X-ray emission from black hole transients in quiescence. In this state mass accretion is thought to follow the geometry of an outer optically thick, geometrically thin disc and an inner optically thin, geometrically thick radiatively inefficient accretion flow (RIAF). The inner flow is likely also coupled to the jets near the black hole that are often seen in such systems. The goal of the study is to see whether the X-ray emission in the quiescent state is mainly powered by the accretion flow or the jets. Using data from deep XMM-Newton observations of selected black hole transients, we have found that the quiescent X-ray spectra are, to a high precision, of power-law shape in the cases of GRO J1655-40 and V404 Cyg. Such spectra deviate significantly from the expected X-ray spectrum of the RIAF at very low accretion rates. On the other hand, they can naturally be explained by emission from the jets, if the emitting electrons follow a power-law spectral distribution...

  14. X-ray emission from the local hot bubble and solar wind charge exchange

    Science.gov (United States)

    Uprety, Youaraj

    DXL (Diffuse X-rays from the Local galaxy) is a sounding rocket mission to quantify the Solar Wind Charge Exchange (SWCX) X-ray emission in the interplanetary medium, and separate its contribution from the Local Hot Bubble (LHB) emission. The first launch of DXL took place in December 2012. This thesis will describe the DXL instrumentation and calibrations, and discuss the results obtained. The mission uses two large area proportional counters to scan through the Helium Focusing Cone (HFC), a high helium density region in the solar system emitting excess X-rays due to SWCX. Using well determined models of the interplanetary neutral distribution and comparing the DXL results with data from the same region obtained by the ROSAT satellite away from the cone, we calculated that SWCX contributes at most 36% to the ¼ keV ROSAT band and 13% to the ¾ keV ROSAT band, in the galactic plane. This provides a firm proof for existence of a LHB which dominates the Diffuse X-ray Background (DXB) at ¼ keV, while raising new questions on the origin of the ¾ keV emission.

  15. Thermal X-ray emission from a baryonic jet: a self-consistent multicolour spectral model

    CERN Document Server

    Khabibullin, Ildar; Sazonov, Sergey

    2015-01-01

    We present a publicly-available spectral model for thermal X-ray emission from a baryonic jet in an X-ray binary system, inspired by the microquasar SS 433. The jet is assumed to be strongly collimated (half-opening angle $\\Theta\\sim 1\\deg$) and mildly relativistic (bulk velocity $\\beta=V_{b}/c\\sim 0.03-0.3$). Its X-ray spectrum is found by integrating over thin slices of constant temperature, radiating in optically thin coronal regime. The temperature profile along the jet and corresponding differential emission measure distribution are calculated with full account for gas cooling due to expansion and radiative losses. Since the model predicts both the spectral shape and luminosity of the jet's emission, its normalisation is not a free parameter if the source distance is known. We also explore the possibility of using simple X-ray observables (such as flux ratios in different energy bands) to constrain physical parameters of the jet (e.g. gas temperature and density at its base) without broad-band fitting of...

  16. Accretion states in X-ray binaries and their connection to GeV emission

    Science.gov (United States)

    Koerding, Elmar

    Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.

  17. Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation : experiment and simulations

    CERN Document Server

    Casta, R; Sence, M; Moretto-Capelle, P; Cafarelli, P; Amsellem, A; Sicard-Roselli, C

    2014-01-01

    In this paper we present new results on electronic emission of Gold Nanoparticles (GNPs) using X-ray photoelectron spectroscopy (XPS) and compare them to the gold bulk electron emission. This subject has undergone new interest within the perspective of using GNPs as a radiotherapy enhancer. The experimental results were simulated using various models (Livermore and PENELOPE) of the Geant 4 simulation toolkit dedicated to the calculation of the transportation of particles through the matter. Our results show that the GNPs coating is a key parameter to correctly construe the experimental GNPs electronic emission after X-ray irradiation and point out some limitations of the PENELOPE model. Using XPS spectra and Geant4 Livermore simulations,we propose a method to determine precisely the coating surface density of the GNPs. We also show that the expected intrinsic nano-scale electronic emission enhancement effect - suspected to contribute to the GNPs radio-sensitizing properties - participates at most for a few pe...

  18. X-ray attenuation around -edge of Zr, Nb, Mo and Pd: A comparative study using proton-induced X-ray emission and 241Am gamma rays

    Indian Academy of Sciences (India)

    K K Abdullah; K Karunakaran Nair; N Ramachandran; K M Varier; B R S Babu; Antony Joseph; Rajive Thomas; P Magudapathy; K G M Nair

    2010-09-01

    Mass attenuation coefficients (/ρ) for Zr, Nb, Mo and Pd elements around their -edges are measured at 14 energies in the range 15.744–28.564 keV using secondary excitation from thin Zr, Nb, Mo, Rh, Pd, Cd and Sn foils. The measurements were carried out at the and energy values of the target elements by two techniques: (1) Proton-induced X-ray emission (PIXE) and (2) 241Am (300 mCi) source. In PIXE, 2 MeV proton-excited X-rays were detected by a Si(Li) detector. In the second case, X-rays excited by 59.54 keV photons from the targets were counted by an HPGe detector under a narrow beam good geometry set-up with sufficient shielding. The results are consistent with theoretical values derived from the XCOM package and indicate that the PIXE data have better statistical accuracy.

  19. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation, and resonant effects

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.-H. [IBM Almaden Research Center, San Jose, California 95120 (United States); Gray, A. X. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Stanford Institute for Materials and Energy Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A. M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Peter Grunberg Institute, PGI-6, Forschungszentrum Juelich, 52425 Juelich (Germany); Mun, B. S. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Applied Physics, Hanyang University, Ansan, Gyeonggi 426-791 (Korea, Republic of); Sell, B. C. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States); Department of Physics, Otterbein College, Westerville, Ohio 43081 (United States); Kortright, J. B. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Fadley, C. S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94740 (United States); Department of Physics, University of California at Davis, Davis, California 95616 (United States)

    2013-02-21

    We present a general theoretical methodology and related open-access computer program for carrying out the calculation of photoelectron, Auger electron, and x-ray emission intensities in the presence of several x-ray optical effects, including total reflection at grazing incidence, excitation with standing-waves produced by reflection from synthetic multilayers and at core-level resonance conditions, and the use of variable polarization to produce magnetic circular dichroism. Calculations illustrating all of these effects are presented, including in some cases comparisons to experimental results. Sample types include both semi-infinite flat surfaces and arbitrary multilayer configurations, with interdiffusion/roughness at their interfaces. These x-ray optical effects can significantly alter observed photoelectron, Auger, and x-ray intensities, and in fact lead to several generally useful techniques for enhancing surface and buried-layer sensitivity, including layer-resolved densities of states and depth profiles of element-specific magnetization. The computer program used in this study should thus be useful for a broad range of studies in which x-ray optical effects are involved or are to be exploited in next-generation surface and interface studies of nanoscale systems.

  20. Electronic emission of radio-sensitizing gold nanoparticles under X-ray irradiation : experiment and simulations

    OpenAIRE

    Casta, R.; Champeaux, J. -P.; Sence, M.; Moretto-Capelle, P.; Cafarelli, P.; Amsellem, A.; Sicard-Roselli, C.

    2014-01-01

    In this paper we present new results on electronic emission of Gold Nanoparticles (GNPs) using X-ray photoelectron spectroscopy (XPS) and compare them to the gold bulk electron emission. This subject has undergone new interest within the perspective of using GNPs as a radiotherapy enhancer. The experimental results were simulated using various models (Livermore and PENELOPE) of the Geant 4 simulation toolkit dedicated to the calculation of the transportation of particles through the matter. O...

  1. Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups

    Science.gov (United States)

    Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.; Konstantopoulos, Iraklis, S.; Zabludoff, Ann I.

    2013-01-01

    Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.

  2. Gamma-ray emitting radio galaxies at hard X-rays: Seyfert core or jet emission?

    CERN Document Server

    Beckmann, V; Mattana, F; Saez, D; Soldi, S

    2013-01-01

    A number of radio galaxies has been detected by Fermi/LAT in the gamma-ray domain. In some cases, like Cen A and M 87, these objects have been seen even in the TeV range by Cherenkov telescopes. Whereas the gamma-ray emission is likely to be connected with the non-thermal jet emission, dominating also the radio band, the situation is less clear at hard X-rays. While the smoothly curved continuum emission and the overall spectral energy distribution indicate a non-thermal emission, other features such as the iron line emission and the low variability appear to be rather of Seyfert type, i.e. created in the accretion disk and corona around the central black hole. We investigate several prominent cases using combined X-ray and gamma-ray data in order to constrain the possible contributions of the jet and the accretion disk to the overall spectral energy distribution in radio galaxies. Among the three sources we study, three different origins of the hard X-ray flux can be identified. The emission can be purely no...

  3. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.; Ptak, Andrew F. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Goncalves, Thiago S. [Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio 43, Saude, Rio de Janeiro-RJ, CEP 22240-060 (Brazil); Fragos, Tassos [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Overzier, Roderik A. [Department of Astronomy, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712 (United States); Schiminovich, David, E-mail: antara.r.basu-zych@nasa.gov [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} compared to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to

  4. BeppoSAX Observations of Synchrotron X-ray Emission from Radio Quasars

    CERN Document Server

    Padovani, P; Ghisellini, G; Giommi, P; Perlman, E

    2002-01-01

    We present new BeppoSAX LECS, MECS, and PDS observations of four flat-spectrum radio quasars (FSRQ) having effective spectral indices alpha_ro and alpha_ox typical of high-energy peaked BL Lacs. Our sources have X-ray-to-radio flux ratios on average ~ 70 times larger than ``classical'' FSRQ and lie at the extreme end of the FSRQ X-ray-to-radio flux ratio distribution. The collected data cover the energy range 0.1 - 10 keV (observer's frame), reaching ~ 100 keV for one object. The BeppoSAX band in one of our sources, RGB J1629+4008, is dominated by synchrotron emission peaking at ~ 2 x 10^16 Hz, as also shown by its steep (energy index alpha_x ~ 1.5) spectrum. This makes this object the FIRST known FSRQ whose X-ray emission is not due to inverse Compton radiation. Two other sources display a flat BeppoSAX spectrum (alpha_x ~ 0.7), with weak indications of steepening at low X-ray energies. The combination of BeppoSAX and ROSAT observations, (non-simultaneous) multifrequency data, and a synchrotron inverse Compt...

  5. A common stochastic process rules gamma-ray burst prompt emission and X-ray flares

    CERN Document Server

    Guidorzi, C; Frontera, F; Margutti, R; Baldeschi, A; Amati, L

    2015-01-01

    Prompt gamma-ray and early X-ray afterglow emission in gamma-ray bursts (GRBs) are characterized by a bursty behavior and are often interspersed with long quiescent times. There is compelling evidence that X-ray flares are linked to prompt gamma-rays. However, the physical mechanism that leads to the complex temporal distribution of gamma-ray pulses and X-ray flares is not understood. Here we show that the waiting time distribution (WTD) of pulses and flares exhibits a power-law tail extending over 4 decades with index ~2 and can be the manifestation of a common time-dependent Poisson process. This result is robust and is obtained on different catalogs. Surprisingly, GRBs with many (>=8) gamma-ray pulses are very unlikely to be accompanied by X-ray flares after the end of the prompt emission (3.1 sigma Gaussian confidence). These results are consistent with a simple interpretation: an hyperaccreting disk breaks up into one or a few groups of fragments, each of which is independently accreted with the same pro...

  6. Interpretation of perturbed temperature based on X-ray emissivity in fusion plasma experiments

    Science.gov (United States)

    Janicki, C.; Cote, A.; Dichaud, D.

    1995-05-01

    The relationship between the dynamical response to perturbations of the soft X-ray emissivity (δE), the electron temperature (δTe), the electron density (δne) and the impurity concentration (δni) for a Maxwellian plasma is analysed in detail. In particular, the so-called 'impurity function' F(Zeff) is also strongly dependent on Te via the direct radiative recombination (DRR) contribution to the X-ray emission, which significantly affects the relation between the perturbed quantities as derived from the popular expression E propto F(Zeff)ne2Tealpha even if the impurity content (or Zeff) remains constant. In order to overcome this difficulty, a simple analytical approximation is derived for F(Zeff,Te) that can be used as a formula to relate the perturbed quantities δE, δTe, δne and δF with ease and accuracy. This simple approximation is illustrated by studying saw-toothing discharges on the Tokamak de Varennes (TdeV) with Te, ne and E measured by the Thomson scattering, the FIR interferometer and the X-ray camera diagnostics, and its accuracy is tested against the predictions of a full X-ray modelling code

  7. Comparison of Millimeter-wave and X-Ray Emission in Seyfert Galaxies

    CERN Document Server

    Monje, R R; Phillips, T G; 10.1088/0067-0049/195/2/23

    2011-01-01

    We compare the emission at multiple wavelengths of an extended Seyfert galaxy sample, including both types of Seyfert nuclei. We use the Caltech Submillimeter Observatory to observe the CO J = 2-1 transition line in a sample of 45 Seyfert galaxies and detect 35 of them. The galaxies are selected by their joint soft X-ray (0.1-2.4 keV) and far-infrared ({\\lambda} = 60-100 {\\mu}m) emission from the ROSAT/IRAS sample. Since the CO line widths (W CO) reflect the orbital motion in the gravitational potential of the host galaxy, we study how the kinematics are affected by the central massive black hole (BH), using the X-ray luminosity. A significant correlation is found between the CO line width and hard (0.3-8 keV from Chandra and XMM-Newton) X-ray luminosity for both types of Seyfert nuclei. Assuming an Eddington accretion to estimate the BH mass (M BH) from the X-ray luminosity, the W CO-L X relation establishes a direct connection between the kinematics of the molecular gas of the host galaxy and the nuclear ac...

  8. The XMM-Newton X-ray emission of the SNR N120 in the LMC

    CERN Document Server

    Reyes-Iturbide, Jorge; Velazquez, Pablo F

    2009-01-01

    We present new XMM-Newton observations of the supernova remnant N120 in the LMC, and numerical simulations on the evolution of this supernova remnant which we compare with the X-ray observations. The supernova remnant N120, together with several HII regions, forms a large nebular complex5D (also called N120) whose shape resembles a semicircular ring. From the XMM-Newton data we generate images and spectra of this remnant in the energy band between 0.2 to 2.0 keV. The images show that the X-ray emission is brighter towards the east (i.e., towards the rim of the large nebular complex). The EPIC/MOS1 and MOS2 data reveal a thermal spectrum in soft X-rays. 2D axisymmetric numerical simulations with the Yguaz\\'u-a code were carried out assuming that the remnant is expanding into an inhomogeneous ISM with an exponential density gradient and showing that thermal conduction effects are negligible. Simulated X-ray emission maps were obtained from the numerical simulations in order to compare them with the observations...

  9. RT Cru: a look into the X-ray emission of a peculiar symbiotic star

    CERN Document Server

    Ducci, L; Suleimanov, V; Nikolajuk, M; Santangelo, A; Ferrigno, C

    2016-01-01

    Symbiotic stars are a heterogeneous class of interacting binaries. Among them, RT Cru has been classified as prototype of a subclass that is characterised by hard X-ray spectra extending past ~20 keV. We analyse ~8.6 Ms of archival INTEGRAL data collected in the period 2003-2014, ~140 ks of Swift/XRT data, and a Suzaku observation of 39 ks, to study the spectral X-ray emission and investigate the nature of the compact object. Based on the 2MASS photometry, we estimate the distance to the source of 1.2-2.4 kpc. The X-ray spectrum obtained with Swift/XRT, JEM-X, IBIS/ISGRI, and Suzaku data is well fitted by a cooling flow model modified by an absorber that fully covers the source and two partial covering absorbers. Assuming that the hard X-ray emission of RT Cru originates from an optically thin boundary layer around a non-magnetic white dwarf, we estimated a mass of the WD of about 1.2 M_Sun. The mass accretion rate obtained for this source might be too high for the optically thin boundary layer scenario. Ther...

  10. X-ray and radio emission from Type In supernova SN 2010jl

    CERN Document Server

    Chandra, Poonam; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M

    2015-01-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR and Swift-XRT. The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for \\chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day $\\sim 300$. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with t...

  11. Transition-Edge Sensors for Particle Induced X-ray Emission Measurements

    CERN Document Server

    Palosaari, M R J; Julin, J; Laitinen, M; Napari, M; Sajavaara, T; Doriese, W B; Fowler, J; Reintsema, C; Swetz, D; Schmidt, D; Ullom, J; Maasilta, I J

    2013-01-01

    In this paper we present a new measurement setup, where a transitionedge sensor detector array is used to detect X-rays in particle induced X-ray emission measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window to couple in the radiation. For the best pixel, the measured instrumental energy resolution was 3.06 eV full width at half maximum at 5.9 keV.We discuss the current status of the project, benefits of transition-edge sensors when used in particle induced X-ray emission spectroscopy, and the results from the first measuremen...

  12. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies.

    Science.gov (United States)

    Szlachetko, J; Nachtegaal, M; de Boni, E; Willimann, M; Safonova, O; Sa, J; Smolentsev, G; Szlachetko, M; van Bokhoven, J A; Dousse, J-Cl; Hoszowska, J; Kayser, Y; Jagodzinski, P; Bergamaschi, A; Schmitt, B; David, C; Lücke, A

    2012-10-01

    We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

  13. Using Poisson statistics to analyze supernova remnant emission in the low counts X-ray regime

    Science.gov (United States)

    Roper, Quentin Jeffrey

    We utilize a Poisson likelihood in a maximum likelihood statistical analysis to analyze X-ray spectragraphic data. Specifically, we examine four extragalactic supernova remnants (SNR). IKT 5 (SNR 0047-73.5), IKT 25 (SNR 0104-72.3), and DEM S 128 (SNR 0103-72.4) which are designated as Type Ia in the literature due to their spectra and morphology. This is troublesome because of their asymmetry, a trait not usually associated with young Type Ia remnants. We present Chandra X-ray Observatory data on these three remnants, and perform a maximum likelihood analysis on their spectra. We find that the X-ray emission is dominated by interactions with the interstellar medium. In spite of this, we find a significant Fe overabundance in all three remnants. Through examination of radio, optical, and infrared data, we conclude that these three remnants are likely not "classical" Type Ia SNR, but may be examples of so-called "prompt" Type Ia SNR. We detect potential point sources that may be members of the progenitor systems of both DEM S 128 and IKT 5, which could suggest a new subclass of prompt Type Ia SNR, Fe-rich CC remnants. In addition, we examine IKT 18. This remnant is positionally coincident with the X-ray point source HD 5980. Due to an outburst in 1994, in which its brightness changed by 3 magnitudes (corrsponding to an increase in luminosity by a factor of 16) HD 5980 was classified as a luminous blue variable star. We examine this point source and the remnant IKT 18 in the X-ray, and find that its non-thermal photon index has decreased from 2002 to 2013, corresponding to a larger proportion of more energetic X-rays, which is unexpected.

  14. X-ray Emission from Young Stars in the TW Hya Association

    Science.gov (United States)

    Brown, Alexander; Herczeg, Gregory J.; Ayres, Thomas R.; France, Kevin; Brown, Joanna M.

    2015-01-01

    The 9 Myr old TW Hya Association (TWA) is the nearest group (typical distances of ˜50 pc) of pre-main-sequence (PMS) stars with ages less than 10 Myr and contains stars with both actively accreting disks and debris disks. We have studied the coronal X-ray emission from a group of low mass TWA common proper motion binaries using the Chandra and Swift satellites. Our aim is to understand better their coronal properties and how high energy photons affect the conditions around young stars and their role in photo-exciting atoms, molecules and dust grains in circumstellar disks and lower density circumstellar gas. Once planet formation is underway, this emission influences protoplanetary evolution and the atmospheric conditions of the newly-formed planets. The X-ray properties for 7 individual stars (TWA 13A, TWA 13B, TWA 9A, TWA 9B, TWA 8A, TWA 8B, and TWA 7) and 2 combined binary systems (TWA 3AB and TWA 2AB) have been measured. All the stars with sufficient signal require two-component fits to their CCD-resolution X-ray spectra, typically with a dominant hot (~2 kev (25 MK)) component and a cooler component at ~0.4 keV (4 MK). The brighter sources all show significant X-ray variability (at a level of 50-100% of quiescence) over the course of 5-15 ksec observations due to flares. We present the X-ray properties for each of the stars and find that the coronal emission is in the super-saturated rotational domain.

  15. X-Ray Emission from Star-Forming Galaxies - Signatures of Cosmic Rays and Magnetic Fields

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2014-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons traveling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the evolution of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional cont...

  16. X-ray/GeV emissions from Crab-like pulsars in LMC

    CERN Document Server

    Takata, J

    2016-01-01

    We discuss X-ray and gamma-ray emissions from Crab-like pulsars, PSRs~J0537-6910 and~J0540-6919, in Large Magellanic Cloud. Fermi-LAT observations have resolved the gamma-ray emissions from these two pulsars and found the pulsed emissions from PSR~J0540-6919. The total pulsed radiation in the X-ray/gamma-ray energy bands of PSR~J0540-6919 is observed with the efficiency $\\eta_{J0540}\\sim 0.06$ (in 4$\\pi$ sr), which is about a factor of ten larger than $\\eta_{Crab}\\sim 0.006$ of the Crab pulsar. Although PSR~J0537-6910 has the highest spin-down power among currently known pulsars, the efficiency of the observed X-ray emissions is about two orders of magnitude smaller than that of PSR~J0540-6919. This paper mainly discusses what causes the difference in the radiation efficiencies of these three energetic Crab-like pulsars. We discuss electron/positron acceleration and high-energy emission processes within the outer gap model. By solving the outer gap structure with the dipole magnetic field, we show that the ra...

  17. On the Nature of the X-ray Emission from the Galactic Center Region

    CERN Document Server

    Wang, Q D; Lang, C C

    2002-01-01

    The origin of the X-ray emission from the central region of the Galaxy has remained a mystery, despite extensive study over the past two decades. A fundamental question is the relative contribution of the point-source and diffuse components of this emission, which is critical to understanding the high-energy phenomena and processes unique to this Galactic nuclear environment. Here, we report on results from a large-scale imaging survey of the Galactic center with sufficient spatial resolution to allow a clean separation of the two components. The highly-ionized Fe emission, previously attributed to the diffuse emission, is found largely due to the discrete X-ray source population. The number and spectrum of such sources indicate the presence of numerous accreting white dwarfs, neutron stars, and/or black holes in the region. The diffuse X-ray emission dominates over the contribution from the faint discrete sources and is shown to be associated with distinct interstellar structures observed at radio and mid-in...

  18. Resonant x-ray emission from gas-phase TiCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Hague, C.F.; Tronc, M. [Universite Pierre et Marie Curie, Paris (France); De Groot, F. [Univ. of Groningen (Netherlands)] [and others

    1997-04-01

    Resonant x-ray emission spectroscopy (RXES) has proved to be a powerful tool for studying the electronic structure of condensed matter. Over the past few years it has been used mainly for studying the valence bands of solids and condensed molecules. Very recently the advent of high brightness photon beams provided by third generation synchrotron radiation source undulators, associated with efficient x-ray emission spectrometers has made it possible to perform experiments on free diatomic molecular systems. RXE spectra of free molecules are of prime importance to gain insight into their electronic structure and bonding as they reflect the symmetry of orbitals engaged in the two-electron, two-step process with the l = 0, {+-}2 parity-conserving selection rule, and are free from solid state effects which can introduce difficulties in the interpretation. They provide information (more so than XAS) on the core excited states, and, when performed at fixed incident photon energy as a function of the emitted photon energy, on the electronic excitation (charge transfer, multiplet states). Moreover the anisotropy of the angular distribution of resonant x-ray emission affects the relative intensity of the emission peaks and provides information concerning the symmetries of final states. This is a preliminary report on what are the first RXE spectra of a 3d transition metal complex in the gas phase. The experiment concerns the Ti 3d {yields}2p emission spectrum of TiCl{sub 4} over the 450 to 470 eV region.

  19. A Deep X-Ray View of the Bare AGN Ark 120. I. Revealing the Soft X-Ray Line Emission

    Science.gov (United States)

    Reeves, J. N.; Porquet, D.; Braito, V.; Nardini, E.; Lobban, A.; Turner, T. J.

    2016-09-01

    The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra/High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our own Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ˜5000 km s-1, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n e ˜ 1011 cm-3, while the photoionization calculations infer that the emitting gas covers at least 10% of 4π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical-UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.

  20. Measurements of fast electron beams and soft X-ray emission from plasma-focus experiments

    Directory of Open Access Journals (Sweden)

    Surała Władysław

    2016-06-01

    Full Text Available The paper reports results of the recent experimental studies of pulsed electron beams and soft X-rays in plasma-focus (PF experiments carried out within a modified PF-360U facility at the NCBJ, Poland. Particular attention was focused on time-resolved measurements of the fast electron beams by means of two different magnetic analyzers, which could record electrons of energy ranging from about 41 keV to about 715 keV in several (6 or 8 measuring channels. For discharges performed with the pure deuterium filling, many strong electron signals were recorded in all the measuring channels. Those signals were well correlated with the first hard X-ray pulse detected by an external scintillation neutron-counter. In some of the analyzer channels, electron spikes (lasting about dozens of nanoseconds and appearing in different instants after the current peculiarity (so-called current dip were also recorded. For several discharges, fast ion beams, which were emitted along the z-axis and recorded with nuclear track detectors, were also investigated. Those measurements confirmed a multibeam character of the ion emission. The time-integrated soft X-ray images, which were taken side-on by means of a pinhole camera and sensitive X-ray films, showed the appearance of some filamentary structures and so-called hot spots. The application of small amounts of admixtures of different heavy noble gases, i.e. of argon (4.8% volumetric, krypton (1.6% volumetric, or xenon (0.8% volumetric, decreased intensity of the recorded electron beams, but increased intensity of the soft X-ray emission and showed more distinct and numerous hot spots. The recorded electron spikes have been explained as signals produced by quasi-mono-energetic microbeams emitted from tiny sources (probably plasma diodes, which can be formed near the observed hot spots.

  1. Plasma code for astrophysical charge exchange emission at X-ray wavelengths

    Science.gov (United States)

    Gu, Liyi; Kaastra, Jelle; Raassen, A. J. J.

    2016-04-01

    Charge exchange X-ray emission provides unique insight into the interactions between cold and hot astrophysical plasmas. Besides its own profound science, this emission is also technically crucial to all observations in the X-ray band, since charge exchange with the solar wind often contributes a significant foreground component that contaminates the signal of interest. By approximating the cross sections resolved to n and l atomic subshells and carrying out complete radiative cascade calculation, we have created a new spectral code to evaluate the charge exchange emission in the X-ray band. Compared to collisional thermal emission, charge exchange radiation exhibits enhanced lines from large-n shells to the ground, as well as large forbidden-to-resonance ratios of triplet transitions. Our new model successfully reproduces an observed high-quality spectrum of comet C/2000 WM1 (LINEAR), which emits purely by charge exchange between solar wind ions and cometary neutrals. It demonstrates that a proper charge exchange model will allow us to probe the ion properties remotely, including charge state, dynamics, and composition, at the interface between the cold and hot plasmas.

  2. Soft X-ray and Ultraviolet Emission Relations in Optically Selected AGN Samples

    CERN Document Server

    Strateva, I; Schneider, D; Vanden Berk, Daniel E; Vignali, C; Strateva, Iskra; Brandt, Niel; Schneider, Donald; Berk, Daniel Vanden; Vignali, Cristian

    2005-01-01

    Using a sample of 228 optically selected Active Galactic Nuclei (AGNs) in the 0.01-6.3 redshift range with a high fraction of X-ray detections (81-86%), we study the relation between rest-frame UV and soft X-ray emission and its evolution with cosmic time. The majority of the AGNs in our sample (155 objects) have been selected from the Sloan Digital Sky Survey (SDSS) in an unbiased way, rendering the sample results representative of all SDSS AGNs in particular, and highly complete optically selected AGN samples in general. The addition of two heterogeneous samples of 36 high-redshift and 37 low-redshift AGNs further supports and extends our conclusions. We confirm that the X-ray emission from AGNs is correlated with their UV emission, and that the ratio of the monochromatic luminosity emitted at 2keV compared to 2500A decreases with increasing luminosity (alpha_ox = -0.136l_uv+2.616, where l_uv is in log units), but does not change with cosmic time. These results apply to intrinsic AGN emission, as we correct...

  3. Variation of the X-ray non-thermal emission in the Arches cloud

    CERN Document Server

    Clavel, Maïca; Terrier, R; Tatischeff, V; Maurin, G; Ponti, G; Goldwurm, A; Decourchelle, A

    2014-01-01

    The origin of the iron fluorescent line at 6.4 keV from an extended region surrounding the Arches cluster is debated and the non-variability of this emission up to 2009 has favored the low-energy cosmic-ray origin over a possible irradiation by hard X-rays. By probing the variability of the Arches cloud non-thermal emission in the most recent years, including a deep observation in 2012, we intend to discriminate between the two competing scenarios. We perform a spectral fit of XMM-Newton observations collected from 2000 to 2013 in order to build the Arches cloud lightcurve corresponding to both the neutral Fe Kalpha line and the X-ray continuum emissions. We reveal a 30% flux drop in 2012, detected with more than 4 sigma significance for both components. This implies that a large fraction of the studied non-thermal emission is due to the reflection of an X-ray transient source.

  4. Enhancement of Terrestrial Diffuse X-ray Emission Associated With Coronal Mass Ejection and Geomagnetic Storm

    CERN Document Server

    Ezoe, Yuichiro; Yoshitake, Hiroshi; Mitsuda, Kazuhisa; Terada, Naoki; Oishi, Shihoko; Ohashi, Takaya

    2011-01-01

    We present an analysis of a Suzaku observation taken during the geomagnetic storm of 2005 August 23-24. We found time variation of diffuse soft X-ray emission when a coronal mass ejection hit Earth and caused a geomagnetic storm. The diffuse emission consists of fluorescent scattering of solar X-rays and exospheric solarwind charge exchange. The former is characterized by a neutral oxygen emission line due to strong heating of the upper atmosphere during the storm time, while the latter is dominated by a sum of C V, C VI, N VI, N VII, O VII, and O VIII emission lines due to the enhanced solar wind flux in the vicinity of the exosphere. Using the solar wind data taken with the ACE and WIND satellites,a time correlation between the solar wind and the strong O VII line flux were investigated. We estimated necessary column densities for the solar X-ray scattering and exospheric SWCX. From these results, we argue that a part of the solar wind ions enter inside the magnetosphere and cause the SWCX reaction.

  5. Conduction-Zone Measurements Using X-Ray Self-Emission Images

    Science.gov (United States)

    Davis, A. K.; Michel, D. T.; Epstein, R.; Hu, S. X.; Knauer, J. P.; Froula, D. H.

    2016-10-01

    Time-gated soft x-ray self-emission images of directly driven implosions were used to measure the hydrodynamic conditions between the critical-density surface and the ablation front of a CH target (conduction zone) at the beginning of a laser pulse. These images were calibrated using the time-resolved broadband soft x-ray spectrometer Dante, azimuthally averaged to reduce the noise, and Abel-inverted to determine the emissivity at each point in the plasma. The electron temperature was determined using co-timed images taken with three different filters to obtain a coarse measurement of the emission spectrum at each point. With the temperature determined, the density profile in the corona was determined from the emissivity profile. This measurement is critical for inertial confinement fusion since it governs the length of time that the plasma is too small to provide substantial beam smoothing through thermal conduction, determining the laser imprint efficiency. This region has previously proven challenging to probe because the density is too high for optical diagnostics and the temperature is too high for x-ray radiography. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Hard X-Ray Emission from Partially Occulted Solar Flares: RHESSI Observations in Two Solar Cycles

    Science.gov (United States)

    Effenberger, Frederic; Rubio da Costa, Fatima; Oka, Mitsuo; Saint-Hilaire, Pascal; Liu, Wei; Petrosian, Vahé; Glesener, Lindsay; Krucker, Säm

    2017-02-01

    Flares close to the solar limb, where the footpoints are occulted, can reveal the spectrum and structure of the coronal looptop source in X-rays. We aim at studying the properties of the corresponding energetic electrons near their acceleration site, without footpoint contamination. To this end, a statistical study of partially occulted flares observed with Reuven Ramaty High-Energy Solar Spectroscopic Imager is presented here, covering a large part of solar cycles 23 and 24. We perform detailed spectra, imaging, and light curve analyses for 116 flares and include contextual observations from SDO and STEREO when available, providing further insights into flare emission that were previously not accessible. We find that most spectra are fitted well with a thermal component plus a broken power-law, non-thermal component. A thin-target kappa distribution model gives satisfactory fits after the addition of a thermal component. X-ray imaging reveals small spatial separation between the thermal and non-thermal components, except for a few flares with a richer coronal source structure. A comprehensive light curve analysis shows a very good correlation between the derivative of the soft X-ray flux (from GOES) and the hard X-rays for a substantial number of flares, indicative of the Neupert effect. The results confirm that non-thermal particles are accelerated in the corona and estimated timescales support the validity of a thin-target scenario with similar magnitudes of thermal and non-thermal energy fluxes.

  7. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    Science.gov (United States)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  8. Superorbital modulation of X-ray emission from gamma-ray binary LSI +61 303

    CERN Document Server

    Chernyakova, M; Molkov, S; Malyshev, D; Lutovinov, A; Pooley, G; 10.1088/2041-8205/747/2/L29

    2012-01-01

    We report the discovery of a systematic constant time lag between the X-ray and radio flares of the gamma-ray binary LSI +61 303, persistent over long, multi-year, time scale. Using the data of monitoring of the system by RXTE we show that the orbital phase of X-ray flares from the source varies from $\\phi_X\\simeq 0.35$ to $\\phi_X\\simeq 0.75$ on the superorbital 4.6 yr time scale. Simultaneous radio observations show that periodic radio flares always lag the X-ray flare by $\\Delta\\phi_{X-R}\\simeq 0.2$. We propose that the constant phase lag corresponds to the time of flight of the high-energy particle filled plasma blobs from inside the binary to the radio emission region at the distance ~10 times the binary separation distance. We put forward a hypothesis that the X-ray bursts correspond to the moments of formation of plasma blobs inside the binary system.

  9. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    Science.gov (United States)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  10. GAMMA-RAY AND X-RAY EMISSION FROM GAMMA-RAY-LOUD BLAZARS

    Institute of Scientific and Technical Information of China (English)

    ZHANG XIONG; ZHAO GANG; XIE GUANG-ZHONG; ZHENG GUANG-SHENG; ZHANG LI

    2001-01-01

    We present a strong correlation of the gamma-ray (above 100 MeV) mean spectral indices aγ and X-ray (1 keV)mean spectral indices cX for 34 gamma-ray-loud blazars (16 BL Lac objects and 18 flat spectrum radio quasars). Astrong correlation is also found between the gamma-ray flux densities F-γ and X-ray flux densities Fx in the low state for 47 blazars (17 BL Lac and 30 flat spectrum radio quasars). Possible correlation on the gamma-ray emission mechanism is discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron process. The gamma-ray emission may be somewhat different from that of BL Lac objects and flat spectrum radio quasars.

  11. Models of Heliospheric solar wind charge exchange X-ray emission

    Science.gov (United States)

    Koutroumpa, Dimitra

    2016-04-01

    The first models of the solar wind charge exchange (SWCX) X-ray production in the heliosphere were developed shortly after the discovery of SWCX emission at the end of 1990s. Since then, continuous monitoring of the global solar wind evolution through the solar cycle has allowed better constraints on its interaction with the interstellar neutrals. We have a fairly accurate description of the interstellar neutral density distributions in interplanetary space. However, the solar wind heavy ion fluxes, and especially their short term variability and propagation through interplanetary space, have remained relatively elusive due to the sparseness or lack of in situ data, especially towards high ecliptic latitudes. In this talk, I will present a summary the heliospheric SWCX modeling efforts, and an overview of the global solar cycle variability of heliospheric SWCX emission, while commenting on the difficulties of modeling the real-time variability of the heliospheric X-ray signal.

  12. Second launch of the Diffuse X-ray emission from the Local Galaxy (DXL) mission

    Science.gov (United States)

    Mohan Sapkota, Dhaka

    2016-04-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) is a sounding rocket mission to study the Solar Wind Charge Exchange (SWCX) and Local Hot Bubble (LHB) X-ray emission. After a successful launch of December 2012, DXL’s capabilities were expanded by using two additional proportional counters and three unique filters for the launch of December 2015. Employing Be-, B- and C-based plastic filters, DXL mission re-scanned the Helium Focusing Cone for better spectral and positional information (to address the IBEX controversy). In this paper, we will review the upgraded mission hardware and performance, while sharing some preliminary results from the latest observation.Submitted for the DXL Collaboration

  13. Diffuse X-ray emission from the superbubbles N 70 and N 185 in the Large Magellanic Cloud

    CERN Document Server

    Reyes-Iturbide., Jorge; Rodríguez-González., Ary; Velázquez., Pablo F; Sánchez-Cruces, Mónica; Ambrocio-Cruz, Patricia

    2014-01-01

    We present a study of the diffuse X-ray emission from superbubbles N 70 (DEM L301) and N 185 (DEM L25) located in the Large Magellanic Cloud, based on data from the XMM-Newton Satellite. We obtained spectra and images of these objects in the soft X-ray energy band. These X-ray spectra were fitted by a thermal plasma model, with temperatures of $2.6 \\times 10^{6}$ K and $2.3 \\times 10^{6}$ K, for N 70 and N 185, respectively. For N 70, images show that X-ray emission comes from the inner regions of the superbubble, when we compare the distribution of the X-ray and the optical emission; while for N 185, the X-ray emission is partially confined by the optical shell. We suggest that the observed X-ray emission is caused by shock-heated gas, inside of the optical shells. We also obtained X-ray luminosities which exceed the values predicted by the standard analytical model. This fact shows that, in addition to the winds of the interior stars, it is necessary to consider another ingredient in the description, such a...

  14. Diffuse X-ray emission from the superbubbles N70 and N185 in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Iturbide, J.; Rodríguez-González, A.; Velázquez, P. F. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70–543, D.F. México (Mexico); Rosado, M.; Sánchez-Cruces, M. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 70–264, C.P. 04510, México, D.F. (Mexico); Ambrocio-Cruz, P. [Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Ciudad Universitaria, Km 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, C.P. 42184, Mineral de la Reforma, Hgo. (Mexico)

    2014-11-01

    We present a study of the diffuse X-ray emission from superbubbles (SBs) N70 (DEM L301) and N185 (DEM L25) located in the Large Magellanic Cloud, based on data from the XMM-Newton Satellite. We obtained spectra and images of these objects in the soft X-ray energy band. These X-ray spectra were fitted by a thermal plasma model, with temperatures of 2.6×10{sup 6} K and 2.3×10{sup 6} K, for N70 and N185, respectively. For N70, images show that X-ray emission comes from the inner regions of the SB when we compare the distribution of the X-ray and the optical emission, while for N185, the X-ray emission is partially confined by the optical shell. We suggest that the observed X-ray emission is caused by shock-heated gas, inside of the optical shells. We also obtained X-ray luminosities which exceed the values predicted by the standard analytical model. This fact shows that, in addition to the winds of the interior stars, it is necessary to consider another ingredient in the description, such as a supernova explosion, as has been proposed in previous numerical models.

  15. Laboratory Measurements of the X-ray Line Emission from Neon-like Fe XVII

    Science.gov (United States)

    Brown, G. V.; Beiersdorfer, P.; Chen, H.; Scofield, J. H.; Boyce, K. R.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Gu, M. F.; Kahn, S. M.

    2006-01-01

    We have conducted a systematic study of the dominant x-ray line emission from Fe XVII. These studies include relative line intensities in the optically thin limit, intensities in the presence of radiation from satellite lines from lower charge states of iron, and the absolute excitation cross sections of some of the strongest lines. These measurements were conducted at the Lawrence Livermore National Laboratory electron beam ion trap facility using crystal spectrometers and a NASA-Goddard Space Flight Center microcalorimeter array.

  16. Variable X-Ray and UV emission from AGB stars: Accretion activity associated with binarity

    Science.gov (United States)

    Sahai, Raghvendra; Sanz-Forcada, Jorge; Sánchez Contreras, Carmen

    2016-07-01

    Almost all of our current understanding of the late evolutionary stages of (1 — 8) Mʘ stars is based on single-star models. However, binarity can drastically affect late stellar evolution, producing dramatic changes in the history and geometry of mass loss that occurs in stars as they evolve off the AGB to become planetary nebulae (PNe). A variety of binary models have been proposed, which can lead to the generation of accretion disks and magnetic fields, which in turn produce the highly collimated jets that have been proposed as the primary agents for the formation of bipolar and multipolar PNe. However, observational evidence of binarity in AGB stars is sorely lacking simply these stars are very luminous and variable, invalidating standard techniques for binary detection. Using an innovative technique of searching for UV emission from AGB stars with GALEX, we have identified a class of AGB stars with far- ultraviolet excesses (fuvAGB stars), that are likely candidates for active accretion associated with a binary companion. We have carried out a pilot survey for X-ray emission from fuvAGB stars. The X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long times-scales, and simultaneous UV observations show similar variations in the UV fluxes. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a main-sequence companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  17. Measurements of laser generated soft X-ray emission from irradiated gold foils

    Science.gov (United States)

    Davis, J. S.; Frank, Y.; Raicher, E.; Fraenkel, M.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D.

    2016-11-01

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  18. X-ray continuum emission spectroscopy from hot dense matter at Gbar pressures

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, D., E-mail: dominik.kraus@berkeley.edu; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Döppner, T.; Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Hawreliak, J. A.; Landen, O. L.; Ma, T.; Le Pape, S.; Swift, D. C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Chapman, D. A. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR, United Kingdom and Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Neumayer, P. [GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt (Germany)

    2014-11-15

    We have measured the time-resolved x-ray continuum emission spectrum of ∼30 times compressed polystyrene created at stagnation of spherically convergent shock waves within the Gbar fundamental science campaign at the National Ignition Facility. From an exponential emission slope between 7.7 keV and 8.1 keV photon energy and using an emission model which accounts for reabsorption, we infer an average electron temperature of 375 ± 21 eV, which is in good agreement with HYDRA-1D simulations.

  19. Depth-resolved soft x-ray photoelectron emission microscopy in nanostructures via standing-wave excited photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Kronast, F.; Ovsyannikov, R.; Kaiser, A.; Wiemann, C.; Yang, S.-H.; Locatelli, A.; Burgler, D.E.; Schreiber, R.; Salmassi, F.; Fischer, P.; Durr, H.A.; Schneider, C.M.; Eberhardt, W.; Fadley, C.S.

    2008-11-24

    We present an extension of conventional laterally resolved soft x-ray photoelectron emission microscopy. A depth resolution along the surface normal down to a few {angstrom} can be achieved by setting up standing x-ray wave fields in a multilayer substrate. The sample is an Ag/Co/Au trilayer, whose first layer has a wedge profile, grown on a Si/MoSi2 multilayer mirror. Tuning the incident x-ray to the mirror Bragg angle we set up standing x-ray wave fields. We demonstrate the resulting depth resolution by imaging the standing wave fields as they move through the trilayer wedge structure.

  20. Thermal X-Ray Emission and Cooling of Solid Quark Stars

    CERN Document Server

    Yu, M

    2009-01-01

    We try to understand the thermal X-ray emission and reproduce the cooling behavior of isolated pulsars in a solid quark star regime. We focus on the population with common properties of manifesting considerable thermal emission, owning ordinary magnetic fields $\\sim10^{11-13}$ G, comparatively young ages $10^{3-6}$ yrs, and spins of a few tens of milliseconds to a few seconds. The sample thus includes 14 active cooling pulsar candidates, 6 central compact objects (CCOs) and the Magnificent Seven, or 7 X-ray dim isolated neutron stars (XDINs); other 11 sources with identification of the upper limits on their thermal luminosity are also considered. The release rate of residual inner energy of solid quark stars, evaluated by Debye elastic medium theory, is found to be negligible comparing with the observational X-ray bolometric luminosity, and hence, for solid quark stars, the thermal emission could predominantly originate from stellar heating processes. For pulsars with magnetospheric activities, the heating co...

  1. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L.; Steinberg, A.D. [Univ. of Illinois, Chicago, IL (United States); Krauss, A.R. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  2. Modelling the Central Constant Emission X-ray component of eta Carinae

    CERN Document Server

    Russell, Christopher M P; Hamaguchi, Kenji; Madura, Thomas I; Owocki, Stanley P; Hillier, D John

    2016-01-01

    The X-ray emission of $\\eta$ Carinae shows multiple features at various spatial and temporal scales. The central constant emission (CCE) component is centred on the binary and arises from spatial scales much smaller than the bipolar Homunculus nebula, but likely larger than the central wind--wind collision region between the stars as it does not vary over the $\\sim$2-3 month X-ray minimum when it can be observed. Using large-scale 3D smoothed particle hydrodynamics (SPH) simulations, we model both the colliding-wind region between the stars, and the region where the secondary wind collides with primary wind ejected from the previous periastron passage. The simulations extend out to one hundred semimajor axes and make two limiting assumptions (strong coupling and no coupling) about the influence of the primary radiation field on the secondary wind. We perform 3D radiative transfer calculations on the SPH output to synthesize the X-ray emission, with the aim of reproducing the CCE spectrum. For the preferred pr...

  3. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; Sekiguchi, Akiko; Kokubun, Motohide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  4. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    CERN Document Server

    Hamaguchi, K; Matsumoto, H; Tsujimoto, M; Holt, S S; Ezoe, Y; Ozawa, H; Tsuboi, Y; Soong, Y; Kitamoto, S; Sekiguchi, A; Kokubun, M; Hamaguchi, Kenji; Petre, Robert; Matsumoto, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; Sekiguchi, Akiko; Kokubun, Motohide

    2006-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various species including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of Eta Carinae showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to th...

  5. Some Like it Hot: The X-Ray Emission of The Giant Star YY Mensae

    CERN Document Server

    Audard, M; Güdel, M; Skinner, S L; Pallavicini, R; Mitra-Kraev, U; Audard, Marc; Telleschi, Alessandra; Guedel, Manuel; Skinner, Stephen L.; Pallavicini, Roberto; Mitra-Kraev, Urmila

    2004-01-01

    (Abridged abstract) We present an analysis of the X-ray emission of the rapidly rotating giant star YY Mensae observed by Chandra HETGS and XMM-Newton. Although no obvious flare was detected, the X-ray luminosity changed by a factor of two between the XMM-Newton and Chandra observations taken 4 months apart. The coronal abundances and the emission measure distribution have been derived from three different methods using optically thin collisional ionization equilibrium models. The abundances show an inverse first ionization potential (FIP) effect. We further find a high N abundance which we interpret as a signature of material processed in the CNO cycle. The corona is dominated by a very high temperature (20-40 MK) plasma, which places YY Men among the magnetically active stars with the hottest coronae. Lower temperature plasma also coexists, albeit with much lower emission measure. Line broadening is reported, which we interpret as Doppler thermal broadening, although rotational broadening due to X-ray emitt...

  6. Suzaku observations of X-ray excess emission in the cluster of galaxies A 3112

    Science.gov (United States)

    Lehto, T.; Nevalainen, J.; Bonamente, M.; Ota, N.; Kaastra, J.

    2010-12-01

    Aims: We analysed the Suzaku XIS1 data of the A 3112 cluster of galaxies in order to examine the X-ray excess emission in this cluster reported earlier with the XMM-Newton and Chandra satellites. Methods: We performed X-ray spectroscopy on the data of a single large region. We carried out simulations to estimate the systematic uncertainties affecting the X-ray excess signal. Results: The best-fit temperature of the intracluster gas depends strongly on the choice of the energy band used for the spectral analysis. This proves the existence of excess emission component in addition to the single-temperature MEKAL in A 3112. We showed that this effect is not an artifact due to uncertainties of the background modeling, instrument calibration or the amount of Galactic absorption. Neither does the PSF scatter of the emission from the cool core nor the projection of the cool gas in the cluster outskirts produce the effect. Finally we modeled the excess emission either by using an additional MEKAL or powerlaw component. Due to the small differencies between thermal and non-thermal model we can not rule out the non-thermal origin of the excess emission based on the goodness of the fit. Assuming that it has a thermal origin, we further examined the differential emission measure (DEM) models. We utilised two different DEM models, a Gaussian differential emission measure distribution (GDEM) and WDEM model, where the emission measure of a number of thermal components is distributed as a truncated power law. The best-fit XIS1 MEKAL temperature for the 0.4-7.0 keV band is 4.7 ± 0.1 keV, consistent with that obtained using GDEM and WDEM models.

  7. X-ray survey with microcalorimeters: from GRB in the far universe to diffuse emission in our galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Piro, L.; Colasanti, L. E-mail: colasant@iasf.rm.cnr.it; Gandolfi, G.; Pacciani, L.; De Rosa, A.; Hampai, D.; Costa, E.; Feroci, M.; Soffitta, P.; Gatti, F.; Pergolesi, D.; Vaccarone, R.; Orio, M.; Ferrari, A.; Trussoni, E.; McCammon, D.; Sanders, W.T.; Porter, F.S.; Kelley, R.L.; Stahle, C.K.; Figueroa, E.; Szymkowiak, A.; Galeazzi, M

    2004-03-11

    IMBOSS is an experiment based on X-ray microcalorimeters and aimed to perform a high spectral resolution all-sky survey. One of the primary scientific goals is the observation of the baryon 'missing' matter at z<2. This is expected to be in the form of a warm-hot medium emitting in soft X-rays. We aim to detect and study the WHIM via X-ray emission lines. Another key goal is the detection of X-ray features in the prompt emission of GRBs, ultimately leading to a measurement of z for those class of GRBs still embedded in the mystery. Finally, a high-resolution spectroscopy survey will clarify the origin of the many components thought to make up the diffuse galactic X-ray emission.

  8. X-ray emission of SNRs in nonuniform medium: properties of thermal and nonthermal spectra

    Science.gov (United States)

    Petruk, O.

    2006-05-01

    In this report we consider two effects in the thermal and nonthermal spectra of supernova remnants (SNRs) which could be caused by the nonuniform ISM: i) the mimicry of the thermal X-ray spectrum of SNRs under the nonthermal one and ii) artificial broadening of the high-energy end of the nonthermal X-ray spectrum of SNRs. 1.There is possibility that the nonthermal features in the X-ray spectrum of some supernova remnants may be in fact of the thermal origin. Observed spectrum from SNRs is a superposition of ``individual'' spectra from different small volumes along the line of sight. The plasma is under different conditions in different places in SNR. The thermal X-ray spectrum of emission from a volume with high enough gradients of density and temperature may mimic under nonthermal one. This effect is studied with special attention to the case of supernova remnant evolution in the nonuniform interstellar medium like near molecular cloud. The mimicry-effect may be responsible for the nonthermal properties of X-ray spectra in those SNRs where nonthermal flux in photons with energy nonuniform interstellar medium. Time dependence of the maximum energy of electrons accelerated by the shock is also not able to make the observed spectrum considerably broader. The only possibility to produce broadening in the spectrum is the variation of the maximum energy of electrons over the surface of SNR. In such a case, the obliquity dependence of injection efficiency and/or magnetic field strength make also effect on the shape of the spectrum but their role is of the second order.

  9. Non-thermal x-ray emission from wire array z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Ampleford, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Webb, Timothy Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Timothy McGuire [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bell, Kate Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Brent M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Leroy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chittenden, Jeremy P. [Imperial College, London (United Kingdom); Sherlock, Mark [Imperial College, London (United Kingdom); Appelbe, Brian [Imperial College, London (United Kingdom); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States); Ouart, Nicholas [Naval Research Lab. (NRL), Washington, DC (United States); Seely, John [Artep Inc., Ellicott City, MD (United States)

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  10. DISCOVERY OF X-RAY EMISSION FROM THE FIRST Be/BLACK HOLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M. [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Iwasawa, K. [ICREA, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Zabalza, V. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Casares, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2014-05-10

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k{sub B}T=0.07{sub −0.03}{sup +0.04} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above ≅0.8 keV. The obtained total flux is F(0.3-5.5 keV)=(4.6{sub −1.1}{sup +1.3})×10{sup −14} erg cm{sup –2} s{sup –1}. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L {sub X} = (3.7 ± 1.7) × 10{sup 31} erg s{sup –1}. Considering the estimated range of BH masses to be 3.8-6.9 M {sub ☉}, this luminosity represents (6.7 ± 4.4) × 10{sup –8} L {sub Edd}, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ∼10{sup –8} L {sub Edd}. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  11. Discovery of X-Ray Emission from the First Be/Black Hole System

    Science.gov (United States)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M.; Iwasawa, K.; Zabalza, V.; Casares, J.

    2014-05-01

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k_BT = 0.07^{+0.04}_{-0.03} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above sime0.8 keV. The obtained total flux is F(0.3-5.5\\, keV) = (4.6^{+1.3}_{-1.1})\\times 10^{-14} erg cm-2 s-1. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L X = (3.7 ± 1.7) × 1031 erg s-1. Considering the estimated range of BH masses to be 3.8-6.9 M ⊙, this luminosity represents (6.7 ± 4.4) × 10-8 L Edd, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ~10-8 L Edd. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  12. Modelling the Central Constant Emission X-ray component of η Carinae

    Science.gov (United States)

    Russell, Christopher M. P.; Corcoran, Michael F.; Hamaguchi, Kenji; Madura, Thomas I.; Owocki, Stanley P.; Hillier, D. John

    2016-05-01

    The X-ray emission of η Carinae shows multiple features at various spatial and temporal scales. The central constant emission (CCE) component is centred on the binary and arises from spatial scales much smaller than the bipolar Homunculus nebula, but likely larger than the central wind-wind collision region between the stars as it does not vary over the ˜2-3 month X-ray minimum when it can be observed. Using large-scale 3D smoothed particle hydrodynamics (SPH) simulations, we model both the colliding-wind region between the stars, and the region where the secondary wind collides with primary wind ejected from the previous periastron passage. The simulations extend out to one hundred semimajor axes and make two limiting assumptions (strong coupling and no coupling) about the influence of the primary radiation field on the secondary wind. We perform 3D radiative transfer calculations on the SPH output to synthesize the X-ray emission, with the aim of reproducing the CCE spectrum. For the preferred primary mass-loss rate dot{M}_A≈ 8.5× 10^{-4} M_{⊙} yr-1, the model spectra well reproduce the observation as the strong- and no-coupling spectra bound the CCE observation for longitude of periastron ω ≈ 252°, and bound/converge on the observation for ω ≈ 90°. This suggests that η Carinae has moderate coupling between the primary radiation and secondary wind, that both the region between the stars and the comoving collision on the backside of the secondary generate the CCE, and that the CCE cannot place constraints on the binary's line of sight. We also discuss comparisons with common X-ray fitting parameters.

  13. Evidence for Intermediate Polars as the Origin of the Galactic Center Hard X-ray Emission

    Science.gov (United States)

    Hailey, Charles J.; Mori, Kaya; Perez, Kerstin; Canipe, Alicia M.; Hong, Jaesub; Tomsick, John A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fornasini, Francesca; Grindlay, Jonathan E.; Harrison, Fiona A.; Nynka, Melania; Rahoui, Farid; Stern, Daniel; Zhang, Shuo; Zhang, William W.

    2016-08-01

    Recently, unresolved hard (20-40 keV) X-ray emission has been discovered within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements in the surrounding ˜50 pc imply a much lighter population of IPs with ≈ 0.5{M}⊙ . Here we use broadband NuSTAR observations of two IPs: TV Columbae, which has a fairly typical but widely varying reported mass of {M}{{WD}}≈ 0.5-1.0{M}⊙ , and IGR J17303-0601, with a heavy reported mass of {M}{{WD}}≈ 1.0-1.2{M}⊙ . We investigate how varying spectral models and observed energy ranges influences estimated white dwarf mass. Observations of the inner 10 pc can be accounted for by IPs with ≈ 0.9{M}⊙ , consistent with that of the CV population in general and the X-ray observed field IPs in particular. The lower mass derived by Chandra and XMM-Newton appears to be an artifact of narrow energy-band fitting. To explain the (unresolved) central hard X-ray emission (CHXE) by IPs requires an X-ray (2-8 keV) luminosity function (XLF) extending down to at least 5 × 1031 erg s-1. The CHXE XLF, if extended to the surrounding ˜50 pc observed by Chandra and XMM-Newton, requires that at least ˜20%-40% of the ˜9000 point sources are IPs. If the XLF extends just a factor of a few lower in luminosity, then the vast majority of these sources are IPs. This is in contrast to recent observations of the Galactic ridge, where the bulk of the 2-8 keV emission is ascribed to non-magnetic CVs.

  14. Neutron star population in the Galactic center region as a potential source of polarized X-ray emission

    Science.gov (United States)

    Zajacek, Michal; Karas, Vladimir; Eckart, Andreas

    2016-06-01

    We analyse the emission properties of neutron stars that are predicted to exist in large numbers of the order of 10000 in the innermost parts of the Galactic center. A part of the population of isolated neutron stars propagates supersonically through denser ionized streams of the Minispiral (Sgr A West), forming bow shocks where particles are accelerated and are expected to produce polarized X-ray synchrotron signal. Another source of the synchrotron emission is an elongated magnetosphere and tail. We investigate whether the polarized X-ray emission from Galactic center neutron stars will be potentially detectable in the framework of future X-ray polarimeters. A special case is a detected young neutron star - magnetar SGRJ1745-2900 - that has undergone a series of outbursts with a peak X-ray luminosity of the order of 10^{35} erg s^{-1} (1-10 keV). Apart from an intrinsic X-ray emission, the X-ray emission from neutron star outbursts may be scattered by molecular clouds in the Central Molecular Zone by Thomson scattering, which is another potential source of polarized X-ray emission.

  15. Population synthesis of accreting white dwarfs: II. X-ray and UV emission

    CERN Document Server

    Chen, Hai-Liang; Yungelson, L R; Gilfanov, M; Han, Zhanwen

    2015-01-01

    Accreting white dwarfs (WDs) with non-degenerate companions are expected to emit in soft X-rays and the UV, if accreted H-rich material burns stably. They are an important component of the unresolved emission of elliptical galaxies, and their combined ionizing luminosity may significantly influence the optical line emission from warm ISM. In an earlier paper we modeled populations of accreting WDs, first generating WD with main-sequence, Hertzsprung gap and red giant companions with the population synthesis code \\textsc{BSE}, and then following their evolution with a grid of evolutionary tracks computed with \\textsc{MESA}. Now we use these results to estimate the soft X-ray (0.3-0.7keV), H- and He II-ionizing luminosities of nuclear burning WDs and the number of super-soft X-ray sources for galaxies with different star formation histories. For the starburst case, these quantities peak at $\\sim 1$ Gyr and decline by $\\sim 1-3$ orders of magnitude by the age of 10 Gyr. For stellar ages of $\\sim$~10 Gyr, predict...

  16. Implications of IR continua for x-ray emission/reflection in AGN

    CERN Document Server

    Ferland, G J; Van Hoof, P A M; Weingartner, J C; Ferland, Gary J.; Martin, Peter G.; Hoof, Peter A.M. van

    2003-01-01

    Observations of infrared emission from AGN show that grains exist over a broad range of distances from the central object, extending to the point where they are destroyed by sublimation. These ~1000 K grains produce much of the 1 micron continuum. In this region closest to the central object there must be a gaseous component associated with the hot grains. This paper employs a state of the art grain model and shows that the gas must be very hot, with temperatures in the neighborhood of 10^6 K. The dusty component has a covering factor of roughly 50% and so this region also reprocesses much of the total x-ray emission. Our explicit models of the IR through x-ray spectral energy distributions allow the x-ray component to be predicted from IR observations. We are creating a grid of such predictions and will make them available as an XSPEC add-in, allowing this spectral component to be included in quantitative modeling of AGN spectra.

  17. Too Young to Shine? Chandra analysis of X-ray emission in nearby primordial galaxies

    Science.gov (United States)

    Basu-Zych, Antara; Henry, Alaina L.; Yukita, Mihoko; Fragos, Tassos; Hornschemeier, Ann E.; Lehmer, Bret; Ptak, Andrew; Zezas, Andreas

    2017-01-01

    The 2—10 keV X-ray emission in star-forming galaxies traces the population of high mass X-ray binaries (HMXBs) and is a function of both the star formation rate (SFR) and metallicity, according to several studies. Theoretical studies predict that stars retain more mass over their lifetimes due to weaker stellar winds in lower metallicity environments, and therefore, produce more luminous and numerous HMXBs. We present Chandra analysis for a local sample of primordial galaxies, Hα emitters (HAEs). Our selection is based on large Hα equivalent widths (EW(Hα)>500Å, suggestive of bursts of star formation within 6 Myr), SFR >1 M⊙/yr and low metallicities (Z extreme youth (young stellar age) of the galaxies, where HMXBs may not have fully formed. Our investigation of HMXB formation as a function of stellar age, metallicity and SFR offers important refinements to the X-ray emission from the first galaxies and on predictions of black hole binaries, which are precursors of gravitational wave sources.

  18. Role of screening and angular distributions in resonant soft-x-ray emission of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In the present work the authors focus on two particular properties of resonant X-ray emission, namely core hole screening of the excited electron, and anisotropy caused by the polarization of the exciting synchrotron radiation. The screening of the core hole by the excited electron causes energy shifts and intensity variations in resonant spectra compared to the non-resonant case. The linear polarization of the synchrotron radiation and the dipole nature of the absorption process create a preferential alignment selection of the randomly oriented molecules in the case of resonant excitation, producing an anisotropy in the angular distribution of the emitted X-rays. The authors have chosen CO for this study because this molecule has previously served as a showcase for non-resonant X-ray emission, mapping the valence electronic structure differently according to the local selection rules. With the present work they take interest in how this characteristic feature of the spectroscopy is represented in the resonant case.

  19. X-Ray and Radio Emission from the Luminous Supernova 2005kd

    CERN Document Server

    Dwarkadas, Vikram V; Reddy, R; Bauer, F E

    2016-01-01

    SN 2005kd is among the most luminous supernovae (SNe) to be discovered at X-ray wavelengths. We have re-analysed all good angular resolution (better than $20"$ FWHM PSF) archival X-ray data for SN 2005kd. The data reveal an X-ray light curve that decreases as t$^{-1.62 \\pm 0.06}$. Our modelling of the data suggests that the early evolution is dominated by emission from the forward shock in a high-density medium. Emission from the radiative reverse shock is absorbed by the cold dense shell formed behind the reverse shock. Our results suggest a progenitor with a mass-loss rate towards the end of its evolution of $\\ge$ 4.3 $\\times$ 10$^{-4} M_{\\odot} \\,{\\rm yr}^{-1}$, for a wind velocity of 10 km s$^{-1}$, at 4.0 $\\times$ 10$^{16}$ cm. This mass-loss rate is too high for most known stars, except perhaps hypergiant stars. A higher wind velocity would lead to a correspondingly higher mass-loss rate. A Luminous Blue Variable star undergoing a giant eruption could potentially fulfill this requirement, but would need...

  20. On the origin of the X-ray emission from a narrow-line radioquasar at z>1

    CERN Document Server

    Barcons, X; Carrera, F J; Ceballos, M T; González-Serrano, J I; Paredes, J M; Ribó, M; Warwick, R S

    2003-01-01

    We present new XMM-Newton X-ray observations of the z=1.246 narrow-line radioquasar RX J1011.2+5545 serendipitously discovered by ROSAT. The flat X-ray spectrum previously measured by ROSAT and ASCA is shown to be the result of a steep Gamma~1.8 power law spectrum seen through a moderate intrinsic absorbing column NH~4E21 cm^-2. The position of the X-ray source is entirely coincident with the nucleus of the radio source that we have resolved in new sensitive VLA observations at 3.6 and 6 cm, implying that scattering in the radio lobes is not responsible for the bulk of X-ray emission. In the EPIC pn image, a faint patch of X-ray emission is apparent 14'' to the NE of the main X-ray source. The former is positionally coincident with an apparently extended optical object with R~21.9, but there is no associated radio emission, thus ruling out the possibility that this represents a hotspot in a jet emanating from the primary X-ray source. No reflection features are detected in the X-ray spectrum of the narrow-lin...

  1. Supermassive binary black holes - possible observational effects in the x-ray emission

    Directory of Open Access Journals (Sweden)

    Jovanović Predrag

    2014-01-01

    Full Text Available Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe Kα line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe i br. 176001: Astrophysical Spectroscopy of Extragalactic Objects

  2. MCNP Simulation to Hard X-Ray Emission of KSU Dense Plasma Focus Machine

    CERN Document Server

    Mohamed, Amgad E

    2015-01-01

    The MCNP program used to simulate the hard x-ray emission from KSU dense plasma focus device, an electron beam spectrum of maximum energy 100 keV was used to hit anode target. The bremsstrahlung radiation was measured using the F2 tally functions on the chamber walls and on a virtual sphere surrounding the machine, the radiation spectrum was recorded for various anode materials like tungsten, stainless steel and molybdenum. It was found that tungsten gives the best and the most intense radiation for the same electron beam. An aluminum filter of thickness 2mm and 4mm was used to cutoff the lower energy band from the x-ray spectrum. It was found that the filters achieved the mission and there is no distinct difference in between.

  3. A review of molecular effects in gas-phase KL X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Guillemin, Renaud; Carniato, Stéphane; Journel, Loïc [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Stolte, Wayne C. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Marchenko, Tatiana; Khoury, Lara El; Kawerk, Elie; Piancastelli, Maria Novella [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); Hudson, Amanda C.; Lindle, Dennis W. [Department of Chemistry, University of Nevada, Las Vegas, NV 89154-4003 (United States); Simon, Marc, E-mail: marc.simon@upmc.fr [UPMC Univ Paris 06, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France); CNRS, UMR 7614, Laboratoire de Chimie Physique Matière et Rayonnement, F-75005 Paris (France)

    2013-06-15

    The unique capabilities of resonant inelastic X-ray scattering (RIXS) to provide a deep insight into molecular dynamics following core excitation are reviewed here. Characteristic features of molecular X-ray emission are experimentally observed and theoretically interpreted. Some of our most significant results on molecular dynamics following deep core excitation are presented. In particular, we provide several examples of nuclear dynamics on the femtosecond or subfemtosecond time scale; line-narrowing effects related to the quenching of vibrational structure due to parallelism of intermediate and final state curves; anomalous line dispersion across a resonance, which is due to core-hole lifetime effects; spin–orbit-state populations derived from polarized RIXS experiments. We also show how to connect the RIXS results to the general chemical properties of the investigated systems.

  4. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    CERN Document Server

    Ruderman, M

    2003-01-01

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  5. G346.6-0.2: The Mixed-Morphology Supernova Remnant with Non-Thermal X-Ray Emission

    Science.gov (United States)

    Auchettl, Katie; Slane, Patrick; Ng, Stephen C.-Y.; Wong, B. T. T.

    2016-07-01

    The detection of non-thermal X-ray emission from supernova remnants (SNRs) provides us with a unique window into studying particle acceleration at the shock-front. All of the 14 or so SNRs in which non-thermal X-ray synchrotron emission has been detected are shell-like in nature, and show no evidence of interaction with large nearby molecular clouds. Here we present a new X-ray study of the molecular cloud interacting mixed-morphology (MM) SNR G346.6-0.2 using XMM-Newton. We found that the X-ray emission arises from a cool recombining plasma with subsolar abundances, confirming previous Suzaku results. In addition, we identified an additional power-law component in the spectrum, with a photon index of ˜2. We investigated its possible origin and conclude that it most likely arises from synchrotron emission produced by particles accelerated at the shock. This makes G346.6-0.2 an important new object in the class of synchrotron emitting SNRs, as unlike shell type X-ray synchrotron SNRs, MM SNRs are usually thought to have shock velocities that are effectively too slow to accelerate electrons. The dense environment and nature of the remnant, provide conditions unseen in shell type X-ray synchrotron SNRs, providing a unique opportunity to study the effect that these properties have on the production of X-ray synchrotron emission.

  6. Winds in collision. II - An analysis of the X-ray emission from the eruptive symbiotic HM Sge

    Science.gov (United States)

    Willson, L. A.; Wallerstein, G.; Brugel, E. W.; Stencel, R. E.

    1984-01-01

    X-ray emissions from HM Sge obtained in 1981 from the HEAO-2 satellite are analyzed and compared quantitatively with observations of HM Sge made in 1980 and of HM Sge, V 1016 Cyg, and RR Tel made in 1979. The change in the X-ray emission from HM Sge between 1979 and 1981 is found to be consistent with the X-ray luminosity and/or temperature of the emitting region declining with an e-folding timescale of the order of one to several decades. Comparison with X-ray data from V 1016 Cyg and RR Tel gives a composite X-ray light curve that is also consistent with such a decline. A comparison of the X-ray observation with spectroscopic information makes it possible to constrain the properties of the X-ray emitting region: the result is consistent with emission from an optically thin region between the two stars in the system where their winds collide head on. It is also shown that the observations are inconsistent with a stellar (blackbody) source, with emission from an accretion disk around a white dwarf or a neutron star, and with emission from a single star wind from either a white dwarf or a neutron star.

  7. X-ray spectra from magnetar candidates - III. Fitting SGRs/AXPs soft X-ray emission with non-relativistic Monte Carlo models

    CERN Document Server

    Zane, S; Turolla, R; Nobili, L

    2009-01-01

    Within the magnetar scenario, the "twisted magnetosphere" model appears very promising in explaining the persistent X-ray emission from the Soft Gamma Repeaters and the Anomalous X-ray Pulsars (SGRs and AXPs). In the first two papers of the series, we have presented a 3D Monte Carlo code for solving radiation transport as soft, thermal photons emitted by the star surface are resonantly upscattered by the magnetospheric particles. A spectral model archive has been generated and implemented in XSPEC. Here we report on the systematic application of our spectral model to different XMM-Newton and Integral observations of SGRs and AXPs. We find that the synthetic spectra provide a very good fit to the data for the nearly all the source (and source states) we have analyzed.

  8. Origin of power-law X-ray emission in the steep power-law state of X-ray binaries

    Institute of Scientific and Technical Information of China (English)

    Li-Hong Yan; Jian-Cheng Wang

    2011-01-01

    We present a new explanation for the origin of the steep power-law (SPL) state of X-ray binaries.The power-law component of X-ray emission is the synchrotron radiation of relativistic electrons in highly magnetized compact spots orbiting near the inner stable circular orbit of a black hole.It has a hard spectrum that extends to above MeV energies, which is determined by the electron acceleration rate.These photons are then down-scattered by the surrounding plasma to form an observed steep spectrum.We discuss the relevance of the model to high-frequency quasi-periodic oscillations and the extremely high luminosity of the SPL state.

  9. Micro X-ray Fluorescence Imaging in a Tabletop Full Field-X-ray Fluorescence Instrument and in a Full Field-Particle Induced X-ray Emission End Station.

    Science.gov (United States)

    Romano, Francesco Paolo; Caliri, Claudia; Cosentino, Luigi; Gammino, Santo; Mascali, David; Pappalardo, Lighea; Rizzo, Francesca; Scharf, Oliver; Santos, Hellen Cristine

    2016-10-08

    A full field-X-ray camera (FF-XRC) was developed for performing the simultaneous mapping of chemical elements with a high lateral resolution. The device is based on a conventional CCD detector coupled to a straight shaped polycapillary. Samples are illuminated at once with a broad primary beam that can consist of X-rays or charged particles in two different analytical setups. The characteristic photons induced in the samples are guided by the polycapillary to the detector allowing the elemental imaging without the need for scanning. A single photon counting detection operated in a multiframe acquisition mode and a processing algorithm developed for event hitting reconstruction have enabled one to use the CCD as a high energy resolution X-ray detector. A novel software with a graphical user interface (GUI) programmed in Matlab allows full control of the device and the real-time imaging with a region-of-interest (ROI) method. At the end of the measurement, the software produces spectra for each of the pixels in the detector allowing the application of a least-squares fitting with external analytical tools. The FF-XRC is very compact and can be installed in different experimental setups. This work shows the potentialities of the instrument in both a full field-micro X-ray fluorescence (FF-MXRF) tabletop device and in a full field-micro particle induced X-ray emission (FF-MPIXE) end-station operated with an external proton beam. Some examples of applications are given as well.

  10. X-Ray/GeV Emissions from Crab-like Pulsars in the LMC

    Science.gov (United States)

    Takata, J.; Cheng, K. S.

    2017-01-01

    We discuss X-ray and gamma-ray emissions from Crab-like pulsars, PSRs J0537-6910 and J0540-6919, in the Large Magellanic Cloud. Fermi-LAT observations have resolved the gamma-ray emissions from these two pulsars and found pulsed emissions from PSR J0540-6919. The total pulsed radiation in the X-ray/gamma-ray energy bands of PSR J0540-6919 is observed with efficiency {η }J0540∼ 0.06 (in 4π sr), which is about a factor of ten larger than {η }{Crab}∼ 0.006 of the Crab pulsar. Although PSR J0537-6910 has the highest spin-down power among currently known pulsars, the efficiency of the observed X-ray emissions is about two orders of magnitude smaller than that of PSR J0540-6919. This paper mainly discusses what causes the difference in the radiation efficiencies of these three energetic Crab-like pulsars. We discuss electron/positron acceleration and high-energy emission processes within the outer gap model. By solving the outer gap structure with the dipole magnetic field, we show that the radiation efficiency decreases as the inclination angle between the magnetic axis and the rotation axis increases. To explain the difference in the pulse profile and in the radiation efficiency, our model suggests that PSR J0540-6919 has an inclination angle much smaller than that of the Crab pulsar (here we assume the inclination angles of both pulsars are α Earth viewing angle, and that we see PSR J0537-6910 with an Earth viewing angle \\zeta \\gg 90^\\circ (or \\ll 90^\\circ ) measured from the spin axis, while we see PSR J0540-6919 with \\zeta ∼ 90^\\circ .

  11. A Suzaku Search for Dark Matter Emission Lines in the X-ray Brightest Galaxy Clusters

    CERN Document Server

    Urban, O; Allen, S W; Simionescu, A; Kaastra, J S; Strigari, L E

    2014-01-01

    We present the results of a search for unidentified emission lines in deep Suzaku X-ray spectra for the central regions of the four X-ray brightest galaxy clusters: Perseus, Coma, Virgo and Ophiuchus. We employ an optimized energy range for our analysis (3.2-5.3 keV) that is relatively free of instrumental features, and a baseline plasma emission model that incorporates the abundances of elements with the strongest expected emission lines at these energies (S, Ar, Ca) as free parameters. For the Perseus Cluster core, employing this baseline model, we find evidence for an additional emission feature at an energy $3.51^{+0.02}_{-0.01}$ keV with a flux of ~$2.87\\times10^{-7}$ ph/s/cm^2/arcmin^2. At slightly larger radii, we detect an emission line at 3.59+/-0.02 keV with a flux of ~$4.8\\times10^{-8}$ ph/s/cm^2/arcmin^2. The energies and fluxes of these features are broadly consistent with previous claims, although the radial variation of the line strength appears in tension with standard dark matter (DM) model p...

  12. Space and time resolved emission of hard X-rays from a plasma focus

    Science.gov (United States)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.

  13. Diffuse X-ray Emission from the Carina Nebula Observed with Suzaku

    CERN Document Server

    Hamaguchi, Kenji

    2007-01-01

    A number of giant HII regions are associated with soft diffuse X-ray emission. Among these, the Carina nebula possesses the brightest soft diffuse emission. The required plasma temperature and thermal energy can be produced by collisions or termination of fast winds from main-sequence or embedded young O stars, but the extended emission is often observed from regions apart from massive stellar clusters. The origin of the X-ray emission is unknown. The XIS CCD camera onboard Suzaku has the best spectral resolution for extended soft sources so far, and is therefore capable of measuring key emission lines in the soft band. Suzaku observed the core and the eastern side of the Carina nebula (Car-D1) in 2005 Aug and 2006 June, respectively. Spectra of the south part of the core and Car-D1 similarly showed strong L-shell lines of iron ions and K-shell lines of silicon ions, while in the north of the core these lines were much weaker. Fitting the spectra with an absorbed thin-thermal plasma model showed kT~0.2, 0.6 k...

  14. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor; Kostyrya, Igor D. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); Ma Hao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-12-15

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30-40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  15. Observation of iron spin-states using tabletop x-ray emission spectroscopy and microcalorimeter sensors

    Science.gov (United States)

    Joe, Y. I.; O'Neil, G. C.; Miaja-Avila, L.; Fowler, J. W.; Jimenez, R.; Silverman, K. L.; Swetz, D. S.; Ullom, J. N.

    2016-01-01

    X-ray emission spectroscopy (XES) is a powerful probe of the electronic and chemical state of elemental species embedded within complex compounds. X-ray sensors that combine high resolving power and high collecting efficiency are desirable for photon-starved XES experiments such as measurements of dilute, gaseous, and radiation-sensitive samples, time-resolved measurements, and in-laboratory XES. To assess whether arrays of cryogenic microcalorimeters will be useful in photon-starved XES scenarios, we demonstrate that these emerging energy-dispersive sensors can detect the spin-state of 3d electrons of iron in two different compounds, Fe2O3 and FeS2. The measurements were conducted with a picosecond pulsed laser-driven plasma as the exciting x-ray source. The use of this tabletop source suggests that time-resolved in-laboratory XES will be possible in the future. We also present simulations of {{K}}α and {{K}}β spectra that reveal the spin-state sensitivity of different combinations of sensor resolution and accumulated counts. These simulations predict that our current experimental apparatus can perform time-resolved XES measurements on some samples with a measurement time of a few 10 s of hours per time delay.

  16. 3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    CERN Document Server

    Reyes-Iturbide, J; Rosado, M; Rodríguez-Gónzalez, A; González, R F; Esquivel, A

    2009-01-01

    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.

  17. Neon Fine-Structure Line Emission By X-ray Irradiated Protoplanetary Disks

    CERN Document Server

    Glassgold, A E; Igea, J; Glassgold, Alfred E.; Najita, Joan R.; Igea, Javier

    2006-01-01

    Using a thermal-chemical model for the generic T-Tauri disk of D'Alessio et al. (1999), we estimate the strength of the fine-structure emission lines of NeII and NeIII at 12.81 and 15.55 microns that arise from the warm atmosphere of the disk exposed to hard stellar X-rays. The Ne ions are produced by the absorption of keV X-rays from the K shell of neutral Ne, followed by the Auger ejection of several additional electrons. The recombination cascade of the Ne ions is slow because of weak charge transfer with atomic hydrogen in the case of Ne2+ and by essentially no charge transfer for Ne+. For a distance of 140pc, the 12.81 micron line of Ne II has a flux of 1e-14 erg/cm2s, which should be observable with the Spitzer Infrared Spectrometer and suitable ground based instrumentation. The detection of these fine-structure lines would clearly demonstrate the effects of X-rays on the physical and chemical properties of the disks of young stellar objects and provide a diagnostic of the warm gas in protoplanetary dis...

  18. Examining the hard X-ray emission of the redback PSR J2129-0429

    Science.gov (United States)

    Noori, Hind Al; Roberts, Mallory; McLaughlin, Maura; Hessels, Jason; Breton, Rene; 17077031498

    2016-06-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems; hence, this system can help in understanding the intrabinary shock of eclipsing MSPs.

  19. Inverse Compton X-ray Emission from Supernovae with Compact Progenitors: Application to SN2011fe

    CERN Document Server

    Margutti, R; Chomiuk, L; Chevalier, R; Hurley, K; Milisavljevic, D; Foley, R J; Hughes, J P; Slane, P; Fransson, C; Moe, M; Barthelmy, S; Boynton, W; Briggs, M; Connaughton, V; Costa, E; Cummings, J; Del Monte, E; Enos, H; Fellows, C; Feroci, M; Fukazawa, Y; Gehrels, N; Goldsten, J; Golovin, D; Hanabata, Y; Harshman, K; Krimm, H; Litvak, M L; Makishima, K; Marisaldi, M; Mitrofanov, I G; Murakami, T; Ohno, M; Palmer, D M; Sanin, A B; Starr, R; Svinkin, D

    2012-01-01

    We present a generalized analytic formalism for the inverse Compton X-ray emission from hydrogen-poor supernovae and apply this framework to SN2011fe using Swift-XRT, UVOT and Chandra observations. We characterize the optical properties of SN2011fe in the Swift bands and find them to be broadly consistent with a "normal" SN Ia, however, no X-ray source is detected by either XRT or Chandra. We constrain the progenitor system mass loss rate to be lower than 2x10^-9 M_sun/yr (3sigma c.l.) for wind velocity v_w=100 km/s. Our result rules out symbiotic binary progenitors for SN2011fe and argues against Roche-lobe overflowing subgiants and main sequence secondary stars if >1% of the transferred mass is lost at the Lagrangian points. Regardless of the density profile, the X-ray non-detections are suggestive of a clean environment (particle density < 150 cm-3) for (2x10^15

  20. Doppler Shifts and Broadening and the Structure of the X-ray Emission from Algol

    CERN Document Server

    Chung, S M; Kashyap, V L; Lin, L W; Ratzlaff, P W; Chung, Sun Mi; Drake, Jeremy J.; Kashyap, Vinay L.; Lin, Li Wei; Ratzlaff, Peter W.

    2004-01-01

    In a study of Chandra High Energy Transmission Grating spectra of Algol, we clearly detect Doppler shifts caused by the orbital motion of Algol B. These data provide the first definitive proof that the X-ray emission of Algol is dominated by the secondary, in concordance with expectations that Algol A (B8) is X-ray dark. The measured Doppler shifts are slightly smaller than expected, implying an effective orbital radius of about 10 Rsolar, instead of 11.5 Rsolar for the Algol B center of mass. This could be caused by a small contribution of X-ray flux from Algol A (10-15%), possibly through accretion. The more likely explanation is an asymmetric corona biased toward the system center of mass by the tidal distortion of the surface of Algol B. Analysis of the strongest lines indicates excess line broadening of ~150 km/s above that expected from thermal motion and surface rotation. Possible explanations include turbulence, flows or explosive events, or rotational broadening from a radially extended corona. We fa...

  1. Emission lines between 1 and 2 keV in Cometary X-ray Spectra

    CERN Document Server

    Ewing, Ian; Bodewits, Dennis; Dennerl, Konrad; Lisse, Carey M; Wolk, Scott J

    2012-01-01

    We present the detection of new cometary X-ray emission lines in the 1.0 to 2.0 keV range using a sample of comets observed with the Chandra X-ray observatory and ACIS spectrometer. We have selected 5 comets from the Chandra sample with good signal-to-noise spectra. The surveyed comets are: C/1999 S4 (LINEAR), C/1999 T1 (McNaught-Hartley), 153P/2002 (Ikeya-Zhang), 2P/2003 (Encke), and C/2008 8P (Tuttle). We modeled the spectra with an extended version of our solar wind charge exchange (SWCX) emission model (Bodewits et al. 2007). Above 1 keV, we find Ikeya-Zhang to have strong emission lines at 1340 and 1850 eV that we identify as being created by solar wind charge exchange lines of Mg XI and Si XIII, respectively, and weaker emission lines at 1470, 1600, and 1950 eV formed by SWCX of Mg XII, Mg XI, and Si XIV, respectively. The Mg XI and XII and Si XIII and XIV lines are detected at a significant level for the other comets in our sample (LS4, MH, Encke, 8P), and these lines promise additional diagnostics to ...

  2. Intrinsic disc emission and the Soft X-ray Excess in AGN

    CERN Document Server

    Done, Chris; Jin, Chichuan; Blaes, Omer; Ward, Martin

    2011-01-01

    (Abridged) Narrow Line Seyfert 1 (NLS1) galaxies have low mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the EUV. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough ($\\sim 2.4$) that the bare disc emission from a zero spin black hole can extend into the soft X-ray bandpass. Part of the soft X-ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. However, the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by cool, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self consistent model assuming that the emission thermalises at large radii, but ...

  3. The Spectacular Radio-Near-IR-X-ray Jet of 3C 111: X-ray Emission Mechanism and Jet Kinematics

    CERN Document Server

    Clautice, Devon; Georganopoulos, Markos; Lister, Matthew L; Tombesi, Francesco; Cara, Mihai; Marshall, Herman L; Hogan, Brandon; Kazanas, Demos

    2016-01-01

    Relativistic jets are the most energetic manifestation of the active galactic nucleus (AGN) phe- nomenon. AGN jets are observed from the radio through gamma-rays and carry copious amounts of matter and energy from the sub-parsec central regions out to the kiloparsec and often megaparsec scale galaxy and cluster environs. While most spatially resolved jets are seen in the radio, an in- creasing number have been discovered to emit in the optical/near-IR and/or X-ray bands. Here we discuss a spectacular example of this class, the 3C 111 jet, housed in one of the nearest, double-lobed FR II radio galaxies known. We discuss new, deep Chandra and HST observations that reveal both near-IR and X-ray emission from several components of the 3C 111 jet, as well as both the northern and southern hotspots. Important differences are seen between the morphologies in the radio, X-ray and near-IR bands. The long (over 100 kpc on each side), straight nature of this jet makes it an excellent prototype for future, deep observati...

  4. A deep X-ray view of the bare AGN Ark 120. I. Revealing the Soft X-ray Line Emission

    CERN Document Server

    Reeves, James; Braito, Valentina; Nardini, Emanuele; Lobban, Andrew; Turner, Jane

    2016-01-01

    The Seyfert 1 galaxy, Ark 120, is a prototype example of the so-called class of bare nucleus AGN, whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep ($>400$ ks exposure), high resolution X-ray spectroscopy of Ark 120 is presented, from XMM-Newton observations which were carried out in March 2014, together with simultaneous Chandra/HETG exposures. The high resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the ISM of our own Galaxy, with a possible slight enhancement of the Oxygen abundance required with respect to the expected ISM values in the Solar neighbourhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated to the AGN and arising from the He and H-like ions of N, O, Ne and Mg. The He-like line profiles of N, O and Ne appear velocity broadened, with typical FWHM widths o...

  5. The Comptonisation of accretion disc X-ray emission: Consequences for X-ray reflection and the geometry of AGN coronae

    CERN Document Server

    Wilkins, D R

    2014-01-01

    We consider the Comptonisation of the photons that make up the relativistically blurred reflection that is commonly detected from the accretion discs of AGN by the coronae of energetic particles believed to give rise to the powerful X-ray continua by the inverse-Compton scattering of thermal seed photons from the disc. Recent measurements of the emissivity profiles of accretion discs as well as reverberation time lags between the primary X-ray continuum and the reflection suggest that this corona is situated at a low height above the disc and extends radially, tens of gravitational radii over the disc surface, hence should also Compton scatter the reflected X-rays. We find that the detection of blurred reflection from as close in as the innermost stable circular orbits (ISCOs) of maximally rotating black holes is consistent with such coronae, but requires that the corona be patchy, consisting perhaps of a number of isolated flares throughout the region. Considering only the requirement that it be possible to ...

  6. Hard X-ray emission from accretion shocks around galaxy clusters

    CERN Document Server

    Kushnir, Doron

    2009-01-01

    We show that the hard X-ray (HXR) emission observed from several galaxy clusters is naturally explained by a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being \\lesssim 0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) gamma-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.

  7. Removing Spectral Diagnostics of Galactic and Stellar X-Ray Emission from Charged Exchange Recombination

    Science.gov (United States)

    Wargelin, Brad

    2004-01-01

    Our research uses the electron beam ion trap (EBIT) at the Lawrence Livermore National Laboratory to study X-ray emission from the charge exchange (CX) of highly charged ions with neutral gases. The resulting data help to fill a void in existing experimental and theoretical understanding of this atomic physics process, and are needed to explain all or part of the observed X-ray emission from the soft X-ray background, stellar winds, the Galactic Center and Galactic Ridge, supernova ejecta, and photoionized nebulae. Appreciation of the astrophysical relevance of our work continues to grow with the publication of roughly a dozen papers in the past four years describing Chandra and XMM observations of geocoronal and heliospheric CX emission, the temporal variation of such emission and correlation with X-ray emission enhancements observed by ROSAT, the theoretical spatial distribution of that emission, and CX emission around other stars. A similar number of papers were also published during that time describing CX emission from planets and comets. We expect that the launch of ASTRSE2, with its second-generation XRS microcalo- (with 6-eV resolution), will reveal even more clearly the contributions of CX to astrophysical emission. In our EBIT work we collected CX spectra from such ions as H-like and He-like Ne, Ar, and Fe. Our early measurements were made with a high-purity Ge detector, but during the second year we began operation of the first-generation XRS microcalorimeter (a twin of the XRS on ASTRO-E) and greatly improved the resolution of our measurements from roughly 150 eV (FWHM) with the Ge detectors to 10 eV with the XRS. We found that saturation of the XRS counting apparatus, which we described in our proposal as a potential concern, is not a problem for studying CX. During the course of our research, we expanded the number of injection gases permitted by the LLNL safety team, purchased and eventually operated an atomic H source, and clearly demonstrated the

  8. X-Ray Supernovae

    CERN Document Server

    Immler, S; Immler, Stefan; Lewin, Walter H.G.

    2002-01-01

    We present a review of X-ray observations of supernovae (SNe). By observing the (~0.1--100 keV) X-ray emission from young SNe, physical key parameters such as the circumstellar matter (CSM) density, mass-loss rate of the progenitor and temperature of the outgoing and reverse shock can be derived as a function of time. Despite intensive search over the last ~25 years, only 15 SNe have been detected in X-rays. We review the individual X-ray observations of these SNe and discuss their implications as to our understanding of the physical processes giving rise to the X-ray emission.

  9. Modeling Flare Hard X-ray Emission from Electrons in Contracting Magnetic Islands

    Science.gov (United States)

    Guidoni, Silvina E.; Allred, Joel C.; Alaoui, Meriem; Holman, Gordon D.; DeVore, C. Richard; Karpen, Judith T.

    2016-05-01

    The mechanism that accelerates particles to the energies required to produce the observed impulsive hard X-ray emission in solar flares is not well understood. It is generally accepted that this emission is produced by a non-thermal beam of electrons that collides with the ambient ions as the beam propagates from the top of a flare loop to its footpoints. Most current models that investigate this transport assume an injected beam with an initial energy spectrum inferred from observed hard X-ray spectra, usually a power law with a low-energy cutoff. In our previous work (Guidoni et al. 2016), we proposed an analytical method to estimate particle energy gain in contracting, large-scale, 2.5-dimensional magnetic islands, based on a kinetic model by Drake et al. (2010). We applied this method to sunward-moving islands formed high in the corona during fast reconnection in a simulated eruptive flare. The overarching purpose of the present work is to test this proposed acceleration model by estimating the hard X-ray flux resulting from its predicted accelerated-particle distribution functions. To do so, we have coupled our model to a unified computational framework that simulates the propagation of an injected beam as it deposits energy and momentum along its way (Allred et al. 2015). This framework includes the effects of radiative transfer and return currents, necessary to estimate flare emission that can be compared directly to observations. We will present preliminary results of the coupling between these models.

  10. On the X-ray emission from massive star clusters and their evolving superbubbles II. Detailed analytics and observational effects

    CERN Document Server

    Añorve-Zeferino, G A; Silich, S

    2009-01-01

    In this work, we present a comprehensive X-ray picture of the interaction between a super star cluster and the ISM. In order to do that, we compare and combine the X-ray emission from the superwind driven by the cluster with the emission from the wind-blown bubble. Detailed analytical models for the hydrodynamics and X-ray luminosity of fast polytropic superwinds are presented. The superwind X-ray luminosity models are an extension of the results obtained in Paper I of this series. Here, the superwind polytropic character allows to parameterize a wide variety of effects, for instance, radiative cooling. Additionally, X-ray properties that are valid for all bubble models taking thermal evaporation into account are derived. The final X-ray picture is obtained by calculating analytically the expected surface brightness and weighted temperature of each component. All of our X-ray models have an explicit dependence on metallicity and admit general emissivities as functions of the hydrodynamical variables. We consi...

  11. Hard X-ray/soft gamma-ray Characteristics of the Persistent Emission from Magnetars

    CERN Document Server

    Kuiper, L; Hermsen, W

    2008-01-01

    In this paper the current status of high-energy research on the hard X-ray characteristics of the persistent emission from magnetars is reviewed. Focus is put on recent intriguing results for 1RXS J1708-40, from phase resolved spectral analysis over a 2 decades wide energy band (~3-300 keV) combining contemporaneous RXTE, XMM and INTEGRAL data. For 1E 1841-045 and SGR 1806-10 we also present updated results. The perspective for future MAXI observations for this source class is also addressed.

  12. A survey of X-ray emission from 100 kpc radio jets

    CERN Document Server

    Schwartz, Daniel A; Worrall, Diana M; Birkinshaw, Mark; Perlman, Eric; Lovell, James E J; Jauncey, David; Murphy, David; Gelbord, Jonathan; Godfrey, Leith; Bicknell, Geoffrey

    2015-01-01

    We have completed a Chandra snapshot survey of 54 radio jets that are extended on arcsec scales. These are associated with flat spectrum radio quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from the jet of approximately 60% of the sample objects. We assume minimum energy and apply conditions consistent with the original Felten-Morrison calculations in order to estimate the Lorentz factors and the apparent Doppler factors. This allows estimates of the enthalpy fluxes, which turn out to be comparable to the radiative luminosities.

  13. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    Institute of Scientific and Technical Information of China (English)

    Bruno LAFITTE; Michel AUBES; Georges ZISSIS

    2007-01-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light.We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic.X-rays photons are mainly absorbed and not scattered by PCA.Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp.By comparing diagnostic methods,we put in evidence the difficulty of taking into account the scattering of light mathematically.

  14. Conversion Efficiency of Kilovolt X- Ray Line Emission in Laser-heated NaF Plasma

    Institute of Scientific and Technical Information of China (English)

    孔令华; 淳于书泰; 何绍堂; 陈涵德; 杨向东; 李孝昌; 王永国

    1994-01-01

    This paper reports the theoretical and experimental work on converting focused Nd-glass laser radiation of LI-11 facility into kilovolt X-ray line emission in laser-heated NaF plasma.This conversion efficiency ε turns out to he in the range from 0.2% to 1% for the laser (λ=1.06μm) power density changing from 10×1013 to 3.5×1013 W/cm2 The relationship between ε and λ has also been discussed.Simultaneously,theoretical results are compared with the experimental.

  15. HARD X-RAY AND MICROWAVE EMISSIONS FROM SOLAR FLARES WITH HARD SPECTRAL INDICES

    Energy Technology Data Exchange (ETDEWEB)

    Kawate, T. [Kwasan and Hida Observatory, Kitashirakawa-oiwakecho, Sakyo, Kyoto 606-8502 (Japan); Nishizuka, N. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510 (Japan); Oi, A. [College of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Ohyama, M. [Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 1-1, Baba Hikone city, Siga 522-8522 (Japan); Nakajima, H., E-mail: kawate@kusastro.kyoto-u.ac.jp [Nobeyama Solar Radio Observatory, NAOJ, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

    2012-03-10

    We analyze 10 flare events that radiate intense hard X-ray (HXR) emission with significant photons over 300 keV to verify that the electrons that have a common origin of acceleration mechanism and energy power-law distribution with solar flares emit HXRs and microwaves. Most of these events have the following characteristics. HXRs emanate from the footpoints of flare loops, while microwaves emanate from the tops of flare loops. The time profiles of the microwave emission show delays of peak with respect to those of the corresponding HXR emission. The spectral indices of microwave emissions show gradual hardening in all events, while the spectral indices of the corresponding HXR emissions are roughly constant in most of the events, though rather rapid hardening is simultaneously observed in some for both indices during the onset time and the peak time. These characteristics suggest that the microwave emission emanates from the trapped electrons. Then, taking into account the role of the trapping of electrons for the microwave emission, we compare the observed microwave spectra with the model spectra calculated by a gyrosynchrotron code. As a result, we successfully reproduce the eight microwave spectra. From this result, we conclude that the electrons that have a common acceleration and a common energy distribution with solar flares emit both HXR and microwave emissions in the eight events, though microwave emission is contributed to by electrons with much higher energy than HXR emission.

  16. A study of diffuse radio sources and X-ray emission in six massive clusters

    CERN Document Server

    Parekh, Viral; Kale, Ruta; Intema, Huib

    2016-01-01

    The goal of the present study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to $z$ $>$ 0.3. Here we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235 and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036 and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic or both) in the first four clusters. In the last two clusters we do not detect any diffuse radio emission but we put stringent upper-limits on their radio powers. We also use archival {\\it Chandra} X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio power...

  17. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    Science.gov (United States)

    Turtos, R. M.; Gundacker, S.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J. Q.

    2016-10-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/CdS GS QDs exhibit a sub-ns value of 849 ps. Further, the respective CdSe NPL and CdSe/CdS GS QD X-ray excited photoluminescence have the emission characteristics of excitons (X) and multiexcitons (MX), with the MXs providing additional prospects for fast timing with substantially shorter lifetimes.

  18. Fe Line Diagnostics of Cataclysmic Variables and Galactic Ridge X-ray Emission

    CERN Document Server

    Xu, Xiao-jie; Li, Xiang-Dong

    2016-01-01

    The properties of the Galactic Ridge X-ray Emission (GRXE) observed in the 2-10 keV band place fundamental constraints on various types of X-ray sources in the Milky Way. Although the primarily discrete origin of the emission is now well established, the responsible populations of these sources remain uncertain, especially at relatively low fluxes. To provide insights into this issue, we systematically characterize the Fe emission line properties of the candidate types of the sources in the solar neighborhood and compare them with those measured for the GRXE. Our source sample includes 6 symbiotic stars (SSs), 16 intermediate polars (IPs), 3 polars, 16 quiescent dwarf novae (DNe) and 4 active binaries (ABs). We find that the mean equivalent width ($EW_{6.7}$) of the 6.7-keV line and the mean 7.0/6.7-keV line ratio are $107\\pm16.0$ eV and $0.71\\pm 0.04$ for intermediate polars and $221\\pm 135$ eV and $0.44\\pm 0.14$ for polars, respectively, which are all substantially different from those ($490\\pm15 $~eV and $...

  19. X-RAY EMISSION FROM STELLAR JETS BY COLLISION AGAINST HIGH-DENSITY MOLECULAR CLOUDS: AN APPLICATION TO HH 248

    Energy Technology Data Exchange (ETDEWEB)

    López-Santiago, J.; Ustamujic, S.; Castro, A. I. Gómez de [S. D. Astronomía y Geodesia, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Bonito, R.; Orlando, S. [Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Orellana, M. [Sede Andina de la Universidad Nacional de Río Negro (Argentina); Miceli, M. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Albacete-Colombo, J. F. [Sede Atlántica de la Universidad Nacional de Río Negro, Don Bosco y Leloir s/n, 8500 Viedma RN (Argentina); Castro, E. de [Dpto. de Astrofísica y CC. de la Atmósfera, Facultad de Física, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2015-06-10

    We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts a dense molecular cloud, a scenario that may be typical for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud using two-dimensional axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig–Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10{sup 7} K, consistent with production of X-ray emission, after impacting a dense cloud. We find that jets denser than the ambient medium but less dense than the cloud produce detectable X-ray emission only at impact with the cloud. From an exploration of the model parameter space, we constrain the physical conditions (jet density and velocity and cloud density) that reproduce the intrinsic luminosity and emission measure of the X-ray source possibly associated with HH 248 well. Thus, we suggest that the extended X-ray source close to HH 248 corresponds to a jet impacting a dense cloud.

  20. A miniature X-ray emission spectrometer (miniXES) for high-pressure studies in a diamond anvil cell.

    Science.gov (United States)

    Pacold, J I; Bradley, J A; Mattern, B A; Lipp, M J; Seidler, G T; Chow, P; Xiao, Y; Rod, Eric; Rusthoven, B; Quintana, J

    2012-03-01

    Core-shell X-ray emission spectroscopy (XES) is a valuable complement to X-ray absorption spectroscopy (XAS) techniques. However, XES in the hard X-ray regime is much less frequently employed than XAS, often as a consequence of the relative scarcity of XES instrumentation having energy resolutions comparable with the relevant core-hole lifetimes. To address this, a family of inexpensive and easily operated short-working-distance X-ray emission spectrometers has been developed. The use of computer-aided design and rapid prototype machining of plastics allows customization for various emission lines having energies from ∼3 keV to ∼10 keV. The specific instrument described here, based on a coarsely diced approximant of the Johansson optic, is intended to study volume collapse in Pr metal and compounds by observing the pressure dependence of the Pr Lα emission spectrum. The collection solid angle is ∼50 msr, roughly equivalent to that of six traditional spherically bent crystal analyzers. The miniature X-ray emission spectrometer (miniXES) methodology will help encourage the adoption and broad application of high-resolution XES capabilities at hard X-ray synchrotron facilities.

  1. Geminga's soft x-ray emission and the structure of its surface

    CERN Document Server

    Page, D; Zavlin, V E; Page, Dany

    1995-01-01

    We present a model to explain the decrease in the amplitude of the pulse profile with increasing energy observed in Geminga's soft X-ray surface thermal emission. We assume the presence of plates surrounded by a surface with very distinct physical properties: these two regions emit spectra of very distinct shapes which present a crossover, the warm plates emitting a softer spectrum than the colder surrounding surface. The strongly pulsed emission from the plates dominates at low energy while the surroundings emission dominates at high energy, producing naturally a strong decrease in the pulsed fraction. In our illustrative example the plates are assumed to be magnetized while the rest of the surface is field free. This plate structure may be seen as a schematic representation of a continuous but very nonuniform distribution of the surface magnetic field or as a quasi realistic structure induced by past tectonic activity on Geminga.

  2. Direct Comparison of the X-Ray Emission and Absorption of Cerium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J G; Yu, S W; Chung, B W; Waddill, G D; Denlinger, J D

    2010-11-24

    Bremstrahlung Isochromat Spectroscopy (BIS). The XES spectra were collected using a Specs electron gun for the excitation and the XES 350 grating monochromator and channel plate system from Scienta as the photon detection. Spectra were collected in 'normal mode,' where the electron gun kinetic energy (KE) and the energy position of the center of the channel plate were both fixed and the energy distribution in the photon (hv) spectrum was derived from the intensities distributed across the channel plate detector in the energy dispersal direction. The polycrystalline Ce sample was oxidized by exposure to air at ambient pressures. After introduction to the ultra-high vacuum system, the oxidized sample was bombarded with Ar, to clean the topmost surface region and stabilize the surface and near surface regions. Although CeO{sub 2} would be the thermodynamically preferred composition in an oxygen rich environment, the combination of a vacuum environment and ion etching may have driven the near surface region into a Ce{sub 2}O{sub 3} stoichiometry. XES data collection occurred with the sample at or near room temperature. The base pressure of the system was 3 x 10{sup -10} torr, but the pressure changed depending the energy and current of the electron gun. For example, with the XES measurements at KE = 3KeV, the pressure was approximately 8 to 9 x 10{sup -10} torr and the excitation current to the sample was typically 0.01 mA. More detail of the sample preparation and analysis can be found in Reference 1. The XAS experiments were performed at Beamline 8 of the Advance Light Source, as part of a larger collaboration. The ex situ sample used at the ALS was prepared in a fashion similar to that described above. X-ray Emission Spectroscopy (XES) and X-ray Absorption Spectroscopy (XAS), have been used to investigate the photon emission and absorption associated with the Ce3d{sub 5/2} and Ce3d{sub 3/2} core-levels in CeOxide. A comparison of the two processes and

  3. Strongly absorbed quiescent X-ray emission from the X-ray transient XTE J0421+56 (CI Cam) observed with XMM-Newton

    CERN Document Server

    Boirin, L; Oosterbroek, T; Lumb, D H; Orlandini, M; Schartel, N

    2002-01-01

    We have observed the X-ray transient XTE J0421+56 in quiescence with XMM-Newton. The observed spectrum is highly unusual being dominated by an emission feature at ~6.5 keV. The spectrum can be fit using a partially covered power-law and Gaussian line model, in which the emission is almost completely covered (covering fraction of 0.98_{-0.06}^{+0.02}) by neutral material and is strongly absorbed with an N_H of (5_{-2}^{+3}) x 10^{23} atom cm^{-2}. This absorption is local and not interstellar. The Gaussian has a centroid energy of 6.4 +/- 0.1 keV, a width < 0.28 keV and an equivalent width of 940 ^{+650}_{-460} eV. It can be interpreted as fluorescent emission line from iron. Using this model and assuming XTE J0421+56 is at a distance of 5 kpc, its 0.5-10 keV luminosity is 3.5 x 10^{33} erg s^{-1}. The Optical Monitor onboard XMM-Newton indicates a V magnitude of 11.86 +/- 0.03. The spectra of X-ray transients in quiescence are normally modeled using advection dominated accretion flows, power-laws, or by th...

  4. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  5. Particle-Induced X-Ray Emission Analysis of Atmospheric Aerosols

    Science.gov (United States)

    Gleason, Colin; Harrington, Charles; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Vineyard, Michael; Labrake, Scott

    2010-11-01

    We are developing a research program in ion-beam analysis (IBA) of atmospheric aerosols at the Union College Ion-Beam Analysis Laboratory to study the transport, transformation, and effects of airborne pollution in Upstate New York. The simultaneous applications of the IBA techniques of particle-induced X-ray emission (PIXE), Rutherford back-scattering spectrometry (RBS), particle-induced gamma-ray emission (PIGE), and proton elastic scattering analysis (PESA) is a powerful tool for the study of airborne pollution because they are non-destructive and provide quantitative information on nearly all elements of the periodic table. PIXE is the main IBA technique because it is able to detect nearly all elements from Na to U with high sensitivities and low detection limits. The aerosol samples are collected with cascade impactors that allow for the study of particulate matter as a function of particle size and the samples are analyzed using proton beams with energies around 2 MeV from the Union College 1.1-MV Pelletron Accelerator. The emitted X-rays are measured using a silicon drift detector with a resolution of 136 eV. We will describe how the aerosol samples were collected, discuss the PIXE analysis, and present preliminary results.

  6. Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys

    CERN Document Server

    Ricci, F; Shankar, F; La Franca, F; Civano, F

    2016-01-01

    The cosmological process of hydrogen (HI) reionization in the intergalactic medium is thought to be driven by UV photons emitted by star-forming galaxies and ionizing active galactic nuclei (AGN). The contribution of QSOs to HI reionization at $z>4$ has been traditionally believed to be quite modest. However, this view has been recently challenged by new estimates of a higher faint-end UV luminosity function (LF). To set firmer constraints on the emissivity of AGN at $z<6$, we here make use of complete X-ray selected samples including deep Chandra and new COSMOS data, capable to efficiently measure the 1 ryd comoving AGN emissivity up to $z\\sim5-6$ and down to five magnitudes fainter than probed by current optical surveys, without any luminosity extrapolation. We find good agreement between the logN$\\rm{_H}\\lesssim21-22$ cm$^{-2}$ X-ray LF and the optically-selected QSO LF at all redshifts for $M_{1450}\\leq -23$. The full range of the logN$\\rm{_H}\\lesssim21-22$ cm$^{-2}$ LF ($M_{1450} \\leq -17$) was then u...

  7. Non-thermal X-ray Emission An Alternative to Cluster Cooling Flows?

    CERN Document Server

    McCarthy, I G; Welch, G A; Carthy, Ian G. Mc; West, Michael J.; Welch, Gary A.

    2002-01-01

    We report the results of experiments aimed at reducing the major problem with cooling flow models of rich cluster X-ray sources: the fact that most of the cooled gas or its products have not been found. Here we show that much of the X-ray emission usually attributed to cooling flows can, in fact, be modeled by a power-law component which is indicative of a source(s) other than thermal bremsstrahlung from the intracluster medium. We find that adequate simultaneous fits to ROSAT PSPCB and ASCA GIS/SIS spectra of the central regions of ten clusters are obtained for two-component models that include a thermal plasma component that is attributable to hot intracluster gas and a power-law component that is likely generated by compact sources and/or extended non-thermal emission. For five of the clusters that purportedly have massive cooling flows, the best-fit models have power-law components that contribute $\\sim$ 30 % of the total flux (0.14 - 10.0 keV) within the central 3 arcminutes. Because cooling flow mass de...

  8. X-ray Emission from Young Stars in the TW Hya Association

    CERN Document Server

    Brown, Alexander; Ayres, Thomas R; France, Kevin; Brown, Joanna M

    2014-01-01

    The 9 Myr old TW Hya Association (TWA) is the nearest group (typical distances of $\\sim$50 pc) of pre-main-sequence (PMS) stars with ages less than 10 Myr and contains stars with both actively accreting disks and debris disks. We have studied the coronal X-ray emission from a group of low mass TWA common proper motion binaries using the {\\it{Chandra}} and {\\it{Swift}} satellites. Our aim is to understand better their coronal properties and how high energy photons affect the conditions around young stars and their role in photo-exciting atoms, molecules and dust grains in circumstellar disks and lower density circumstellar gas. Once planet formation is underway, this emission influences protoplanetary evolution and the atmospheric conditions of the newly-formed planets. The X-ray properties for 7 individual stars (TWA 13A, TWA 13B, TWA 9A, TWA 9B, TWA 8A, TWA 8B, and TWA 7) and 2 combined binary systems (TWA 3AB and TWA 2AB) have been measured. All the stars with sufficient signal require two-component fits to...

  9. X-ray emission on hybird stars: ROSAT observations of alpha Trianguli Australis and iota Aurigae

    Science.gov (United States)

    Kashyap, V.; Rosner, R.; Harnden, F. R., Jr.; Maggio, A.; Micela, G.; Sciortino, S.

    1994-01-01

    We report on deep ROSAT observations of two Hybrid atmosphere stars, alpha TrA and iota Aur, and our analysis of these observations. We detect high-energy transient phenomena on alpha TrA and consider the implications of this discovery to the atmospheres of Hybrid stars. We detect iota Aur in the high-energy passband of ROSAT, implying the existence of multimillion degree plasma on the star. Our major results include the following: discovery of two large flare events, detected during pointed observations of alpha TrA; the demonstration that the flare emission most likely comes from the giant itself, rather than from a previously unseen low-mass companion star; the demonstration that the plasma characteristics associated with the flares and with the 'quiescent' component are essentially indistinguishable; and that the geometric dimensions of the emitting plasma are considerably smaller than the critical dimension characterizing stable 'hot' coronal loop structures. Our results suggest that alpha TrA does not have any steady X-ray emission consistent with theoretical expectations, and support the argument that Hybrid stars constitute a transitional type of object in which large-scale magnetic dynamo activity ceases, and the dominant spatial scales characterizing coronal structure rapidly decline as such stars evolve across the X-ray 'Dividing Line' in the H-R diagram.

  10. AGN emission processes of NGC 4945 in the X-rays and gamma-rays

    CERN Document Server

    Menzel, Marie-Luise; Mattana, Fabio

    2012-01-01

    NGC 4945 has an outstanding role among the Seyfert 2 active galatic nuclei (AGN) because it is one of the few non-blazars which have been detected in the gamma-rays. Here, we analyse the high energy spectrum using Suzaku, INTEGRAL and Fermi data. We reconstruct the spectral energy distribution in the soft X-ray to gamma-ray domain in order to provide a better understanding of the processes in the AGN. We present two models to fit the high-energy data. The first model assumes that the gamma-ray emission originates from one single non-thermal component, e.g. a shock-induced pion decay caused by the starburst processes in the host galaxy, or by interaction with cosmic rays. The second model describes the high-energy spectrum by two independent components: a thermal inverse Compton process of photons in the non-beamed AGN and a non-thermal emission of the gamma-rays. These components are represented by an absorbed cut-off power law for the thermal component in the X-ray energy range and a simple power law for the...

  11. X-ray narrow emission lines from the nuclear region of NGC 1365

    CERN Document Server

    Whewell, M; Page, M J

    2016-01-01

    NGC 1365 is a Seyfert 2 galaxy with a starburst ring in its nuclear region. In this work we look at the XMM Reflection Grating Spectrometer (RGS) data from four 2012-13, three 2007 and two 2004 observations of NGC 1365. We characterise the narrow-line emitting gas visible by XMM RGS and make comparisons between the 2012-13 spectra and those from 2004-07, already published. This source is usually absorbed within the soft X-ray band, with a typical neutral column density of >1.5 x 10$^{23}$ cm$^{-2}$, and only 1 observation of the 9 we investigate shows low enough absorption for the continuum to emerge in the soft X-rays. We stack all observations from 2004-07, and separately three of the four observations from 2012-13, analysing the less absorbed observation separately. We first model the spectra using gaussian profiles representing the narrow line emission. We fit physically motivated models to the 2012-13 stacked spectra, with collisionally ionised components representing the starburst emission and photoioni...

  12. Solar X-ray Emission Measured by the Vernov Mission During September - October of 2014

    Science.gov (United States)

    Myagkova, I. N.; Bogomolov, A. V.; Kashapova, L. K.; Bogomolov, V. V.; Svertilov, S. I.; Panasyuk, M. I.; Kuznetsova, E. A.; Rozhkov, G. V.

    2016-11-01

    Solar hard X-ray and γ-ray emissions were measured by the Detector of the Roentgen and Gamma-ray Emissions (DRGE) instrument, which is part of the RELEC set of instruments operated onboard the Russian satellite Vernov, from July 8, 2014 until December 10, 2014 (on a solar-synchronous orbit with an apogee of 830 km, perigee of 640 km, and an inclination of 98.4°). RELEC measurements of 18 flares with X-ray energy {>} 30 keV, taken in September - October 2014, were connected with the same active region with the number AR 12172 during the first rotation and AR 12192 during the next one. These measurements were compared to the data obtained with RHESSI, Konus-Wind, Fermi Observatory, Radio Solar Telescope Net (RSTN), and the Nobeyama Radioheliograph (NoRH) operating at the same time. Quasi-periodicities with similar periods of 7±2 s were found in about one third of all flares measured by RELEC ( Vernov) from September 24 until October 30, 2014.

  13. A Study of the X-Ray Emission of Magnetic Cataclysmic Variable Ae Aquarii

    CERN Document Server

    Choi, C S; Agrawal, P C; Choi, Chul-Sung; Dotani, Tadayasu

    1999-01-01

    We report results from analysis of the X-ray observations of AE Aqr, made with Ginga in June 1988 and with ASCA in October 1995. Pulsations are detected clearly with a sinusoidal pulse profile with periods of $33.076\\pm0.001$ s (Ginga) and $33.077\\pm0.003$ s (ASCA)\\@. The pulse amplitude is relatively small and the modulated flux remains nearly constant despite a factor of 3 change in the average flux during the flare. We reproduce the time-averaged spectrum in the 0.4 -- 10 keV energy band by a thermal emission model with a combination of two different temperatures: kT$_1 = 0.68^{+0.01}_{-0.02}$ keV and kT$_2 = 2.9^{+0.3}_{-0.2}$ keV\\@. There is no significant difference between the quiescent and flare energy spectra, although a hint of spectral hardening is recognized during the flare. We interpret these observational results with a model in which AE Aqr is in a propeller stage. Based on this propeller scenario, we suggest that the X-ray emission is originated from magnetospheric radiation.

  14. Implications of the non-detection of X-ray emission from HD 149427

    CERN Document Server

    Stute, Matthias

    2011-01-01

    HD 149427 is a very enigmatic object. It has been classified either as a planetary nebula or as a D'-type symbiotic star. Its distance is also highly uncertain. Furthermore, HD 149427 is a potential jet source. We report the non-detection of X-ray emission from HD 149427 and explore the implications to its nature. We observed the object with XMM-Newton with an effective exposure time of 33.5 ks. The upper limit for the flux of the X-ray emission in the soft band (2 keV) it is about 10^-14 erg/s/cm^2. We discuss the implication of our results in light of the possible natures of HD 149427 -- being a planetary nebula or a symbiotic star, close or very distant. The derived upper limits on the mass accretion rate of the white dwarf are untypical for symbiotic stars and may favor the picture of HD 149427 being a young PN. HD 149427 might be a symbiotic star in hibernation -- if a symbiotic star at all. We estimate the possible mass-loss rate and kinetic luminosity of the jet and find no contradiction with our upper...

  15. Diffuse x-ray emission around high-redshift, radio-loud QSOs

    CERN Document Server

    Bartelmann, M; Matthias Bartelmann; Peter Schneider

    1994-01-01

    We announce the detection of correlations on angular scales of \\ga10' between optically bright, high-redshift, radio-loud QSOs with diffuse X-ray emission seen by ROSAT in the {\\it All-Sky Survey}. These correlations reach significance levels of up to 99.8\\%. A comparison of the results with a sample of control fields, bootstrapping analyses, and Kolmogorov-Smirnov tests provide unambiguous support for the statistical significance of the correlations found. We argue that the detected enhanced diffuse X-ray emission is in the foreground of the QSOs, and that it is probably due to galaxy clusters which magnify the QSOs by their gravitational lensing effect, thereby giving rise to a magnification bias in the background source sample. A comparison of the results presented below with correlations previously found between the same QSO sample and either Lick or IRAS galaxies provides further evidence for this interpretation, and identifies positions in the sky where weak gravitational lensing may be detected by sear...

  16. Constraining the UV emissivity of AGN throughout cosmic time via X-ray surveys

    Science.gov (United States)

    Ricci, Federica; Marchesi, Stefano; Shankar, Francesco; La Franca, Fabio; Civano, Francesca

    2017-02-01

    The cosmological process of hydrogen (H I) reionization in the intergalactic medium is thought to be driven by UV photons emitted by star-forming galaxies and ionizing active galactic nuclei (AGN). The contribution of quasars (QSOs) to H I reionization at z > 4 has been traditionally believed to be quite modest. However, this view has been recently challenged by new estimates of a higher faint-end UV luminosity function (LF). To set firmer constraints on the emissivity of AGN at z < 6, we here make use of complete X-ray-selected samples including deep Chandra and new Cosmic Evolution Survey data, capable to efficiently measure the 1 Ryd comoving AGN emissivity up to z ˜ 5-6 and down to 5 mag fainter than probed by current optical surveys, without any luminosity extrapolation. We find good agreement between the logNH ≲ 21-22 cm-2 X-ray LF and the optically selected QSO LF at all redshifts for M1450 ≤ -23. The full range of the logNH ≲ 21-22 cm-2 LF (M1450 ≤ -17) was then used to quantify the contribution of AGN to the critical value of photon budget needed to keep the Universe ionized. We find that the contribution of ionizing AGN at z = 6 is as small as 1-7 per cent, and very unlikely to be greater than 30 per cent, thus excluding an AGN-dominated reionization scenario.

  17. Metal-line emission from the warm-hot intergalactic medium: I. Soft X-rays

    CERN Document Server

    Bertone, Serena; Vecchia, Claudio Dalla; Booth, C M; Theuns, Tom; Wiersma, Robert P C

    2009-01-01

    Emission lines from metals offer one of the most promising ways to detect the elusive warm-hot intergalactic medium (WHIM; 10^5 K 10^6 K). We find that the OVIII 18.97 A is the strongest emission line, with a predicted maximum surface brightness of ~10^2 photon/s/cm^2/sr, but a number of other lines are only slightly weaker. All lines show a strong correlation between the intensity of the observed flux and the density and metallicity of the gas responsible for the emission. On the other hand, the potentially detectable emission consistently corresponds to the temperature at which the emissivity of the electronic transition peaks. The emission traces neither the baryonic nor the metal mass. In particular, the emission that is potentially detectable with proposed missions, traces highly overdense (rho > 10^3 rho_mean) and metal-rich (Z>Z_sun) gas in and around galaxies and groups. While soft X-ray line emission is therefore not a promising route to close the baryon budget, it does offer the exciting possibility...

  18. Spectrometer for X-ray emission experiments at FERMI free-electron-laser

    Energy Technology Data Exchange (ETDEWEB)

    Poletto, L., E-mail: poletto@dei.unipd.it; Frassetto, F.; Miotti, P. [CNR - Institute of Photonics and Nanotechnologies (CNR-IFN), via Trasea 7, I-35131 Padova (Italy); Di Cicco, A.; Iesari, F. [Physics Division, School of Science and Technology, Università di Camerino, I-62032 Camerino (Italy); Finetti, P. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); Grazioli, C. [Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Kivimäki, A. [CNR-Istituto Officina dei Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste (Italy); Stagira, S. [Politecnico di Milano – Department of Physics, I-20133 Milano (Italy); Coreno, M. [ELETTRA - Sincrotrone Trieste, Basovizza Area Science Park, S. S. 14 - km 163,5, I-34149, Basovizza (TS) (Italy); CNR – Istituto di Struttura della Materia (CNR-ISM), UOS Basovizza, I-34149 Trieste (Italy)

    2014-10-15

    A portable and compact photon spectrometer to be used for photon in-photon out experiments, in particular x-ray emission spectroscopy, is presented. The instrument operates in the 25–800 eV energy range to cover the full emissions of the FEL1 and FEL2 stages of FERMI. The optical design consists of two interchangeable spherical varied-lined-spaced gratings and a CCD detector. Different input sections can be accommodated, with/without an entrance slit and with/without an additional relay mirror, that allow to mount the spectrometer in different end-stations and at variable distances from the target area both at synchrotron and at free-electron-laser beamlines. The characterization on the Gas Phase beamline at ELETTRA Synchrotron (Italy) is presented.

  19. X-ray emission from the super-Earth host GJ 1214

    CERN Document Server

    Lalitha, S; Singh, K P; Czesla, S; Schmitt, J H M M

    2014-01-01

    Stellar activity can produce large amounts of high-energy radiation, which is absorbed by the planetary atmosphere leading to irradiation-driven mass-loss. We present the detection and an investigation of high-energy emission in a transiting super-Earth host system, GJ 1214, based on an XMM-Newton observation. We derive an X-ray luminosity LX=7.4E25 erg/s and a corresponding activity level of log(LX/Lbol)~ -5.3. Further, we determine a coronal temperature of about -3.5 MK, which is typical for coronal emission of moderately active low-mass stars. We estimate that GJ 1214 b evaporates at a rate of 1.3E10 g/s and has lost a total of ~2-5.6 MEarth.

  20. X-ray Emission from Strongly Asymmetric Circumstellar Material in the Remnant of Kepler's Supernova

    CERN Document Server

    Burkey, Mary T; Borkowski, Kazimierz J; Blondin, John M

    2012-01-01

    Kepler's supernova remnant resulted from a thermonuclear explosion, but is interacting with circumstellar material (CSM) lost from the progenitor system. We describe a statistical technique for isolating X-ray emission due to CSM from that due to shocked ejecta. Shocked CSM coincides well in position with 24 $\\mu$m emission seen by {\\sl Spitzer}. We find most CSM to be distributed along the bright north rim, but substantial concentrations are also found projected against the center of the remnant, roughly along a diameter with position angle $\\sim 100^\\circ$. We interpret this as evidence for a disk distribution of CSM before the SN, with the line of sight to the observer roughly in the disk plane. We present 2-D hydrodynamic simulations of this scenario, in qualitative agreement with the observed CSM morphology. Our observations require Kepler to have originated in a close binary system with an AGB star companion.

  1. A new sample of X-ray selected narrow emission-line galaxies. II. Looking for True Seyfert 2

    CERN Document Server

    Pons, Estelle

    2016-01-01

    A sample of X-ray and optically selected narrow emission-line galaxies (769 sources) from the 3XMM catalogue cross-correlated with SDSS (DR9) catalogue has been studied. Narrow-emission line active galactic nuclei (AGN; type-2) have been selected on the basis of their emission line ratios and/or X-ray luminosity. We have looked for X-ray unobscured type-2 AGN. As X-ray spectra were not available for our whole sample, we have checked the reliability of using the X-ray hardness ratio (HR) as a probe of the level of obscuration and we found a very good agreement with full spectral fitting results, with only 2% of the sources with apparently unobscured HR turning out to have an obscured spectrum. Despite the fact that type-2 AGN are supposed to be absorbed based on the Unified Model, about 60% of them show no sign or very low level of X-ray obscuration. After subtraction of contaminants to the sample, that is Narrow-Line Seyfert 1 and Compton-thick AGN, the fraction of unobscured Sy2 drops to 47%. For these sourc...

  2. Chandra & XMM-Newton Observations of NGC5253. Analysis of the X-ray Emission from a Dwarf Starburst Galaxy

    CERN Document Server

    Summers, L K; Strickland, D K; Heckman, T M; Summers, Lesley K.; Stevens, Ian R.; Strickland, David K.; Heckman, Timothy M.

    2004-01-01

    We present Chandra and XMM-Newton X-ray data of NGC5253, a local starbursting dwarf elliptical galaxy, in the early stages of a starburst episode. Contributions to the X-ray emission come from discrete point sources and extended diffuse emission, in the form of what appear to be multiple superbubbles, and smaller bubbles probably associated with individual star clusters. Chandra detects 17 sources within the optical extent of NGC5253 down to a completeness level corresponding to a luminosity of 1.5E37 erg/s.The slope of the point source X-ray luminosity function is -0.54, similar to that of other nearby dwarf starburst galaxies. Several different types of source are detected within the galaxy, including X-ray binaries and the emission associated with star-clusters. Comparison of the diffuse X-ray emission with the observed Halpha emission shows similarities in their extent. The best spectral fit to the diffuse emission is obtained with an absorbed, two temperature model giving temperatures for the two gas com...

  3. The Origin of T Tauri X-ray Emission: New Insights from the Chandra Orion Ultradeep Project

    CERN Document Server

    Preibisch, T; Favata, F; Feigelson, E D; Flaccomio, E; Getman, K; Micela, G; Sciortino, S; Stassun, K G; Stelzer, B; Zinnecker, H; Preibisch, Thomas; Kim, Yong -Cheol; Favata, Fabio; Feigelson, Eric D.; Flaccomio, Ettore; Getman, Konstantin; Micela, Giusi; Sciortino, Salvatore; Stassun, Keivan; Stelzer, Beate; Zinnecker, Hans

    2005-01-01

    We use the data of the Chandra Orion Ultradeep Project (COUP) to study the nearly 600 X-ray sources that can be reliably identified with optically well characterized T Tauri stars (TTS) in the Orion Nebula Cluster. We detect X-ray emission from more than 97% of the optically visible late-type (spectral types F to M) cluster stars. This proofs that there is no ``X-ray quiet'' population of late-type stars with suppressed magnetic activity. All TTS with known rotation periods lie in the saturated or super-saturated regime of the relation between activity and Rossby numbers seen for main-sequence (MS) stars, but the TTS show a much larger scatter in X-ray activity than seen for the MS stars. Strong near-linear relations between X-ray luminosities, bolometric luminosities and mass are present. We also find that the fractional X-ray luminosity rises slowly with mass over the 0.1 - 2 M_sun range. The plasma temperatures determined from the X-ray spectra of the TTS are much hotter than in MS stars, but seem to follo...

  4. EBIS-A facility for the studies of X-ray emission from solids bombarded by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Jabłoński, Ł. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Jagodziński, P. [Department of Physics, Kielce University of Technology, 25-314 Kielce (Poland); Kubala-Kukuś, A.; Sobota, D.; Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland)

    2015-07-01

    We report here on the progress in the X-ray spectroscopy program at the EBIS-A facility installed recently at the Institute of Physics of Jan Kochanowski University in Kielce. In this facility the beams of low-energy highly charged ions (HCI) produced by the Dresden EBIS-A ion source, after extraction and charge-state separation in the double focusing magnet, are directed to the experimental UHV chamber equipped with a 5-axis universal sample manipulator. The X-rays emitted in interaction of the highly charged ions with solids can be measured by an energy dispersive X-ray silicon drift detector (SDD) and/or a wavelength-dispersive X-ray spectrometer (WDS) mounted at the experimental chamber. The surface nanostructures formed by an impact of HCI will be studied by the grazing emission X-ray fluorescence (GEXRF) technique and using a multiprobe surface analysis system based on the X-ray photoelectron spectrometer (XPS) coupled to the UHV chamber of the EBIS-A facility. In this paper a brief description of the facility, X-ray instrumentation and the surface analysis system is given and the first results are presented.

  5. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    CERN Document Server

    Bernardini, F; Brown, E F; D'Angelo, C; Degenaar, N; Miller, J M; Reynolds, M; Wijnands, R

    2013-01-01

    We conducted the first long-term (60 days), multiwavelength (optical, ultraviolet, and X-ray) simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band) emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index gamma about 0.2-0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT=59-80 eV) and a power law (with spectral index Gamma=1.4-2.0), with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting ...

  6. A statistical correlation of sunquakes based on their seismic, white light, and X-ray emission

    CERN Document Server

    Buitrago-Casas, J C; Lindsey, C; Calvo-Mozo, B; Krucker, S; Glesener, L; Zharkov, S

    2015-01-01

    Several mechanisms have been proposed to explain the transient seis- mic emission, i.e., sunquakes, from some solar flares. Some theories associate high-energy electrons and/or white-light emission with sunquakes. High-energy charged particles and their subsequent heating of the photosphere and/or chro- mosphere could induce acoustic waves in the solar interior. We carried out a correlative study of solar flares with emission in hard-X rays (HXRs), enhanced continuum emission at 6173{\\AA}, and transient seismic emission. We selected those flares observed by RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) with a considerable flux above 50 keV between January 1, 2010 and June 26, 2014. We then used data from the Helioseismic and Magnetic Imager onboard the Solar Dynamic Observatory (SDO/HMI) to search for excess visible continuum emission and new sunquakes not previously reported. We found a total of 18 sunquakes out of 75 investigated. All of the sunquakes were associated with a enhancement of th...

  7. The Nature of Unresolved Soft X-Ray Emission from the Galactic Disk

    Science.gov (United States)

    Masui, Kensuke; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Takei, Yoh; Kimura, Shunsuke; Yoshino, Tomotaka; McCammon, Dan

    2009-01-01

    Although about 40% of the soft X-ray background emission in 0.4 to 1keV range has extragalactic origins and thus is totally blocked by the galactic absorption in midplane directions, it decreases at most by about 20% in midplane. Suzaku observation of the direction, (l, b) = (235°, 0°), showed an OVII Kα emission intensity comparable with that of the MBM-12 on cloud Suzaku observation, but revealed a narrow bump peaked at ˜0.9keV. The latter component is partly filling the decrease of the extragalactic component in midplane. The feature can be well represented by a thin thermal emission with a temperature of about 0.8keV. Because of the high pressure implied for spatially extended hot gas, the emission is likely a sum of unresolved faint sources. We consider a large fraction of the emission originates from faint dM stars. We constructed a model spectrum for spatially unresolved dM stars that consistently explains the observed spectrum and the surface brightness. The model also suggests that the emission from dM stars decreases very rapidly with increasing b, and thus that it cannot compensate entirely the decrease of the extragalactic component at b ˜ 2°--10°.

  8. Synchrotron soft X-ray and field-emission electron sources: a comparison.

    Science.gov (United States)

    Spence, J C H; Howells, M R

    2002-12-01

    The soft X-ray spectral region and the useful range of electron energy-loss spectroscopy are very similar, both including the energy range 100-1000 eV. Moreover, well-developed monochromators and parallel detection devices with comparable resolution exist for both. Despite the differing interactions of electrons and photons, many complementary experiments in imaging, spectroscopy and diffraction have been performed using both techniques. We therefore compare the brightness, degeneracy, monochromaticity, beam size, source size, spatial and temporal coherence of field-emission electron beams and soft X-ray synchrotron radiation from typical undulators. Recent brightness values for nanotip field emitters and undulators, both measured and calculated, are provided with examples from the Advanced Light Source synchrotron-radiation facility at Berkeley USA. The quantum mechanical upper limit on source brightness, as well as relationships among beam brightness, coherence parameters, and degeneracy, are discussed. Factors which limit these parameters and methods of measurement are reviewed, and the implications for diffraction, imaging and spectroscopic experiments as well as radiation damage are briefly commented on.

  9. Radio and X-ray emission from disc winds in radio-quiet quasars

    CERN Document Server

    Steenbrugge, K C; Kuncic, Z; Blundell, K M

    2010-01-01

    It has been proposed that the radio spectra of radio-quiet quasars is produced by free-free emission in the optically thin part of an accretion disc wind. An important observational constraint on this model is the observed X-ray luminosity. We investigate this constraint using a sample of PG radio-quiet quasars for which XMM-Newton EPIC spectra are available. Comparing the predicted and measured luminosities for 0.5, 2 and 5 keV, we conclude that all of the studied PG quasars require a large hydrogen column density absorber, requiring these quasars to be close to or Compton-thick. Such a large column density can be directly excluded for PG 0050+124, for which a high-resolution RGS spectrum exists. Further constraint on the column density for a further 19 out of the 21 studied PG quasars comes from the EPIC spectrum characteristics such as hard X-ray power-law photon index and the equivalent width of the Fe Kalpha line; and the small equivalent width of the C IV absorber present in UV spectra. For 2 sources: P...

  10. X-ray absorption, nuclear infrared emission and dust covering factors of AGN: testing Unification Schemes

    CERN Document Server

    Mateos, S; Alonso-Herrero, A; Hernán-Caballero, A; Barcons, X; Ramos, A Asensio; Watson, M G; Blain, A; Caccianiga, A; Ballo, L; Braito, V; Almeida, C Ramos

    2016-01-01

    We present the distributions of geometrical covering factors of active galactic nuclei (AGNs) dusty tori (f2) using an X-ray selected complete sample of 227 AGN drawn from the Bright Ultra-hard XMM-Newton Survey. The AGN have z from 0.05 to 1.7, 2-10 keV luminosities between 10^42 and 10^46 erg/s and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS and the Wide-field Infrared Survey Explorer in a previous work we determined the rest-frame 1-20 microns continuum emission from the torus which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGN are intrinsically different, with type 2 AGN having on average tori with higher f2 than type 1 AGN. Nevertheless, ~20 per cent of type 1 AGN have tori with large covering factors while ~23-28 per cent of type 2 AGN have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGN the effect is certainly small. f2 in...

  11. Pulse-periodic generation of supershort avalanche electron beams and X-ray emission

    Science.gov (United States)

    Baksht, E. Kh.; Burachenko, A. G.; Erofeev, M. V.; Tarasenko, V. F.

    2014-05-01

    Pulse-periodic generation of supershort avalanche electron beams (SAEBs) and X-ray emission in nitrogen, as well as the transition from a single-pulse mode to a pulse-periodic mode with a high repetition frequency, was studied experimentally. It is shown that, in the pulse-periodic mode, the full width at halfmaximum of the SAEB is larger and the decrease rate of the gap voltage is lower than those in the single-pulse mode. It is found that, when the front duration of the voltage pulse at a nitrogen pressure of 90 Torr decreases from 2.5 to 0.3 ns, the X-ray exposure dose in the pulse-periodic mode increases by more than one order of magnitude and the number of SAEB electrons also increases. It is shown that, in the pulse-periodic mode of a diffuse discharge, gas heating in the discharge gap results in a severalfold increase in the SAEB amplitude (the number of electrons in the beam). At a generator voltage of 25 kV, nitrogen pressure of 90 Torr, and pulse repetition frequency of 3.5 kHz, a runaway electron beam was detected behind the anode foil.

  12. X-ray powder diffractometry of emissions from the cement industry

    Science.gov (United States)

    Parekh, P. P.; Khan, A. R.; Davin, M. T.

    X-ray powder diffractometry has been found capable of identifying and distinguishing limestone and cement particles, the two important emissions of the cement industry. The limestone shows strong reflections principally at 1.87,1.91,2.09,2.28,2.49,3.03 and 3.83 Å from its main constituent, calcite, whereas cement shows reflections at 1.76, 2.18, 2.60, 2.64, a doublet at 2.73-2.77 and 3.02 Å from its main phases, the di-, and tri-calcium silicates. X-ray diffraction analysis of airborne particles collected on glass fibre filters in the vicinity of cement factories in Karachi, Pakistan and Ravena, New York State, revealed limestone but no cement particles. This observation was consistent with our earlier inference drawn from chemical and statistical methods for Karachi's ambient aerosols. The method can complement the selective leaching technique suggested earlier by us for source identification. On the basis of model calculations, a methodology has been worked out that would make the present technique adaptable to plant conditions.

  13. Evidence for intermediate polars as the origin of the Galactic Center hard X-ray emission

    CERN Document Server

    Hailey, Charles J; Perez, Kerstin; Canipe, Alicia M; Hong, Jaesub; Tomsick, John A; Boggs, Steven E; Christensen, Finn E; Craig, William W; Fornasini, Francesca; Grindlay, Jonathan E; Harrison, Fiona A; Nynka, Melania; Rahoui, Farid; Stern, Daniel; Zhang, Shuo; Zhang, William W

    2016-01-01

    Recently, unresolved hard (20-40 keV) X-ray emission has been discovered within the central 10 pc of the Galaxy, possibly indicating a large population of intermediate polars (IPs). Chandra and XMM-Newton measurements in the surrounding ~50 pc imply a much lighter population of IPs with $\\langle M_{\\rm WD} \\rangle \\approx 0.5 M_\\odot$. Here we use broad-band NuSTAR observations of two IPs: TV Columbae, which has a fairly typical but widely varying reported mass of $M_{\\rm WD} \\approx 0.5-1.0 M_\\odot$, and IGR J17303-0601, with a heavy reported mass of $M_{\\rm WD} \\approx 1.0-1.2 M_\\odot$. We investigate how varying spectral models and observed energy ranges influence estimated white dwarf mass. Observations of the inner 10 pc can be accounted for by IPs with $\\langle M_{\\rm WD} \\rangle \\approx 0.9 M_\\odot$, consistent with that of the CV population in general, and the X-ray observed field IPs in particular. The lower mass derived by Chandra and XMM-Newton appears to be an artifact of narrow energy band fittin...

  14. Global X-ray emission and central properties of early type galaxies

    CERN Document Server

    Pellegrini, S

    1999-01-01

    Hubble Space Telescope observations revealed that the central surface brightness profiles of early type galaxies can be divided into two types: "core" profiles and featureless power law profiles. On the basis of this and previous results, early type galaxies have been grouped into two families: coreless galaxies, which are also rapidly rotating, nearly isotropic spheroids, and with disky isophotes, and core galaxies, which are slowly rotating and boxy-distorted. Here I investigate the relationship between global X-ray emission and shape of the inner surface brightness profile, for a sample of 59 early type galaxies. I find a clear dicothomy also in the X-ray properties, in the sense that core galaxies span the whole observed range of Lx values, while power law galaxies are confined below log Lx (erg/s)=41. Moreover, the relation between Lx and the shape of the central profile is the strongest among the relations of Lx with the basic properties characterizing the two families of early type galaxies. So, a glob...

  15. Spectral Modeling of the Charge-Exchange X-ray Emission from M82

    CERN Document Server

    Zhang, Shuinai; Ji, Li; Smith, Randall K; Foster, Adam R; Zhou, Xin

    2014-01-01

    It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K$\\alpha$ triplets of various He-like ions, but also good fractions of the Ly$\\alpha$ transitions of C VI (~87%), O VIII and N VII ($\\gtrsim$50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 \\AA\\ band originates in the CX. We infer an ion incident rate of $3\\times10^{51}\\,\\rm{s^{-1}}$ undergoing CX at the hot and cool gas interface, and an effective area of the interface as $\\sim2\\times10^{45}\\,{\\rm cm^2}$ that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribu...

  16. Extragalactic H2O Megamaser Sources:Central Black Holes,Nuclear X-ray and Maser Emissions

    Institute of Scientific and Technical Information of China (English)

    Jiang-Bo Su; Jiang-Shui Zhang; Jun-Hui Fan

    2008-01-01

    Extragalactic H2O megamasers are typically found within the innermost few parsecs of active galaxy nuclei (AGN) and the maser emission is considered to be excited most likely by the X-ray irradiation of the AGN.We investigate a comprehensive sample of extragalactic H2O masers in a sample of 38 maser host AGN to check potential correlations of the megamaser emission with parameters of the AGN,such as X-ray luminosity and black hole (BH) masses.We find a relation between the maser luminosities and BH masses,LH2O∝ M3.64-0.4 BH,which supports basically the theoretical prediction.The relation between the maser emission and X-ray emission is also confirmed.

  17. X-Ray Emission from Young Stars in the Massive Star Forming Region IRAS 20126+4104

    CERN Document Server

    Anderson, Crystal Nicole; Shepherd, Debra; Creech-Eakman, Michelle

    2011-01-01

    We present a $40\\,$ks Chandra observation of the IRAS$\\,$20126+4104 core region. In the inner $6^{\\prime\\prime}$ two X-ray sources were detected, which are coincident with the radio jet source I20S and the variable radio source I20Var. No X-ray emission was detected from the nearby massive protostar I20N. The spectra of both detected sources are hard and highly absorbed, with no emission below $3\\,$keV. For I20S, the measured $0.5-8\\,$keV count rate was $4.3\\,$cts$\\,$ks$^{-1}$. The X-ray spectrum was fit with an absorbed 1T APEC model with an energy of kT$\\,=10\\,$keV and an absorbing column of N$_H = 1.2\\times 10^{23}\\,$cm$^{-2}$. An unabsorbed X-ray luminosity of about $1.4\\times 10^{32}\\,$erg$\\,$s$^{-1}$ was estimated. The spectrum shows broad line emission between 6.4 and 6.7\\, keV, indicative of emission from both neutral and highly ionized iron. The X-ray lightcurve indicates that I20S is marginally variable; however, no flare emission was observed. The variable radio source I20Var was detected with a co...

  18. Exploring X-ray and radio emission of type 1 AGN up to z ~ 2.3

    CERN Document Server

    Ballo, L; Barcons, X; Carrera, F J

    2012-01-01

    X-ray emission from AGN is dominated by the accretion disk around a SMBH. The radio luminosity, however, has not such a clear origin except in the most powerful sources where jets are evident. The origin (and even the very existence) of the local bi-modal distribution in radioloudness is also a debated issue. By analysing X-ray, optical and radio properties of a large sample of type 1 AGN up to z>2, where the bulk of this population resides, we aim to explore the interplay between radio and X-ray emission in AGN, in order to further our knowledge on the origin of radio emission, and its relation to accretion. We analyse a large (~800 sources) sample of type 1 AGN and QSOs selected from the 2XMMi X-ray source catalogue, cross-correlated with the SDSS DR7 spectroscopic catalogue, covering a redshift range from z~0.3 to z~2.3. SMBH masses are estimated from the Mg II emission line, bolometric luminosities from the X-ray data, and radio emission or upper limits from the FIRST catalogue. Most of the sources accret...

  19. A study of diffuse radio sources and X-ray emission in six massive clusters

    Science.gov (United States)

    Parekh, V.; Dwarakanath, K. S.; Kale, R.; Intema, H.

    2017-01-01

    The goal of this study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to z > 0.3. Here, we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235, and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036, and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic, or both) in the first four clusters. In the last two clusters, we do not detect any diffuse radio emission but we put stringent upper limits on their radio powers. We also use archival Chandra X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio powers of the first four MACS clusters are consistent with their expected values in the LX-P1.4 GHz plot. However, we found ultrasteep spectrum radio halo in the MACSJ0417.5-1154 cluster whose rest-frame cut-off frequency is at ˜900 MHz. The remaining two clusters whose radio powers are ˜11 times below the expected values are most likely to be in the `off-state' as has been postulated in some of the models of radio halo formation.

  20. A search for iron emission lines in the Chandra X-ray spectra of neutron star low-mass X-ray binaries

    CERN Document Server

    Cackett, E M; Homan, J; Van der Klis, M; Lewin, W H G; Méndez, M; Raymond, J; Steeghs, D; Wijnands, R

    2008-01-01

    While iron emission lines are well studied in black hole systems, both in X-ray binaries and Active Galactic Nuclei, there has been less of a focus on these lines in neutron star low-mass X-ray binaries (LMXBs). However, recent observations with Suzaku and XMM-Newton have revealed broad asymmetric iron line profiles in 4 neutron star LMXBs, confirming an inner disk origin for these lines in neutron star systems. Here, we present a search for iron lines in 6 neutron star LMXBs. For each object we have simultaneous Chandra and RXTE observations at 2 separate epochs, allowing for both a high resolution spectrum, as well as broadband spectral coverage. Out of the six objects in the survey, we only find significant iron lines in two of the objects, GX 17+2 and GX 349+2. However, we cannot rule out that there are weak, broad lines present in the other sources. The equivalent width of the line in GX 17+2 is consistent between the 2 epochs, while in GX 349+2 the line equivalent width increases by a factor of ~3 betwe...

  1. Compression between ion and hard x-ray emissions from nitrogen and argon in Mather type plasma focus device

    Directory of Open Access Journals (Sweden)

    S Paghe

    2016-12-01

    Full Text Available In this study, some characteristics of a Mather type Plasma Focus (PF device such as a discharge current, pinch time, ion flux and hard x-ray intensity has been investigated simultaneously in argon and nitrogen gases separately for various operating gas pressures and charging voltages of capacitor bank. It was observed that pinch phenomena was energy and pressure dependent in current sheath as well as ion and hard x-ray emission intensity. Optimum pressure with maximum ion flux and the most intense hard x-ray showed a nearly linear dependence on the charging voltage of the device. Maximum ion flux was estimated in the order of 1018 ions per steradian in both gases. Hard x-ray emission was registered a little after discharge current and Faraday cup (FC signals. Also, optimum pressure for maximum ion flux was not the same as the pressure for intense hard x-rays. Hard x-ray intensity reached its peak at higher pressures

  2. Influence of near-edge processes in the elemental analysis using X-ray emission-based techniques

    Indian Academy of Sciences (India)

    Gurjeet Singh; Sunil Kumar; N Singh; J Goswamy; D Mehta

    2011-02-01

    The near-edge processes, such as X-ray absorption fine structure (XAFS) andresonant Raman scattering (RRS), are not incorporated in the available theoretical attenuation coefficients, which are known to be reliable at energies away from the shell/subshell ionization thresholds of the attenuator element. Theoretical coefficients are generally used to estimate matrix corrections in routine quantitative elemental analysis based on various X-ray emission techniques. A tabulation of characteristic X-ray energies across the periodic table is provided where those X-rays are expected to alter the attenuation coefficients due to XAFS from a particular shell/subshell of the attenuator element. The influence of XAFS to the attenuation coefficient depends upon the atomic environment and the photoelectron wave vector, i.e., difference in energies of incident X-ray and the shell/subshell ionization threshold of the attenuator element. Further, the XAFS at a shell/subshell will significantly alter the total attenuation coefficient if the jump ratio at that shell/subshell is large, e.g., the K shell, L3 subshell and M5 subshell. The tabulations can be considered as guidelines so as to know what can be expected due to XAFS in typical photon-induced X-ray emission spectrometry.

  3. The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

    CERN Document Server

    Freeman, M; Montez, R; Balick, B; Frew, D J; Jones, D; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Zijlstra, A; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q A; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E

    2014-01-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb ~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothes...

  4. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    Science.gov (United States)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  5. Suzaku observations of X-ray excess emission in the cluster of galaxies A3112

    CERN Document Server

    Lehto, T; Bonamente, M; Ota, N; Kaastra, J

    2010-01-01

    We analysed the Suzaku XIS1 data of the A3112 cluster of galaxies in order to examine the X-ray excess emission in this cluster reported earlier with the XMM-Newton and Chandra satellites. The best-fit temperature of the intracluster gas depends strongly on the choice of the energy band used for the spectral analysis. This proves the existence of excess emission component in addition to the single-temperature MEKAL in A3112. We showed that this effect is not an artifact due to uncertainties of the background modeling, instrument calibration or the amount of Galactic absorption. Neither does the PSF scatter of the emission from the cool core nor the projection of the cool gas in the cluster outskirts produce the effect. Finally we modeled the excess emission either by using an additional MEKAL or powerlaw component. Due to the small differencies between thermal and non-thermal model we can not rule out the non-thermal origin of the excess emission based on the goodness of the fit. Assuming that it has a therma...

  6. X-ray Emission Line Profiles from Wind Clump Bow Shocks in Massive Stars

    CERN Document Server

    Ignace, R; Cassinelli, J P

    2012-01-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two component flow structure of wind and clumps using two "beta" velocity laws. While individual bow shocks tend to generate double horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the...

  7. The Nature of Unresolved Soft X-ray Emission from the Galactic Disk

    CERN Document Server

    Masui, K; Yamasaki, N Y; Takei, Y; Kimura, S; Yoshino, T; McCammon, D

    2008-01-01

    Although about 40% of the soft X-ray background emission in 0.4 to 1 keV range has extragalactic origins and thus is totally blocked by the Galactic absorption in midplane directions, it decreases at most by about 20 % in midplane. Suzaku observation of the direction, (l, b) = (235, 0), showed an OVII Kalpha emission intensity comparable with that of the MBM-12 on cloud Suzaku observation, but revealed a narrow bump peaked at ~ 0.9 keV. The latter component is partly filling the decrease of the extragalactic component in midplane. The feature can be well represented by a thin thermal emission with a temperature of about 0.8 keV. Because of the high pressure implied for spatially extended hot gas, the emission is likely a sum of unresolved faint sources. We consider a large fraction of the emission originates from faint dM stars. We constructed a model spectrum for spatially unresolved dM stars that consistently explains the observed spectrum and the surface brightness. The model also suggests that the emissio...

  8. DISCOVERY OF X-RAY EMISSION FROM THE GALACTIC SUPERNOVA REMNANT G32.8-0.1 WITH SUZAKU

    Energy Technology Data Exchange (ETDEWEB)

    Bamba, Aya; Sawada, Makoto [Department of Physics and Mathematics, Aoyama Gakuin University 5-10-1 Fuchinobe Chuo-ku, Sagamihara, Kanagawa 252-5258 (Japan); Terada, Yukikatsu [Department of Physics, Science, Saitama University, Sakura, Saitama 338-8570 (Japan); Hewitt, John; Petre, Robert; Angelini, Lorella [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Safi-Harb, Samar [Department of Physics and Astronomy, University of Manitoba, Winnipeg MB R3T 2N2 (Canada); Zhou, Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Bocchino, Fabrizio [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy)

    2016-02-10

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8−0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ∼ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ∼ 3.4 keV) component with a very low ionization timescale (∼2.7 × 10{sup 9} cm{sup −3} s), or a hard nonthermal component with a photon index Γ ∼ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10{sup −3}–10{sup −2} cm{sup −3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3−000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  9. Catching some Sun : Probing the solar wind with cometary X-ray and far-ultraviolet emission

    NARCIS (Netherlands)

    Bodewits, D; Juhasz, Z; Hoekstra, R; Tielens, AGGM

    2004-01-01

    Strong X-ray and far-ultraviolet emission from comets is the direct result of charge exchange reactions of solar wind ions with the neutral coma of comets. Here we report experimental state-selective cross sections of electron capture and use these to predict cometary line emission. Our results show

  10. A Curious Source of Extended X-ray Emission in the Outskirts of Globular Cluster GLIMPSE-C01

    CERN Document Server

    Mirabal, N

    2009-01-01

    We report the discovery of an unusual source of extended X-ray emission CXOU J184846.3-013040 (`The Stem') located on the outskirts of the globular cluster GLIMPSE-C01. No point-like source falls within the extended emission which has an X-ray luminosity L_X =10^{32} ergs/s and a physical size of 0.1 pc at the inferred distance to the cluster. These X-ray properties are consistent with the pulsar wind nebula (PWN) of an unseen pulsar located within the 95-percent confidence error contour of unidentified Fermi gamma-ray source 0FGL J1848.6-0138. However, we cannot exclude an alternative interpretation that postulates X-ray emission associated with a bow shock produced from the interaction of the globular cluster and interstellar gas in the Galactic plane. Analysis of the X-ray data reveals that `The Stem' is most significant in the 2-5 keV band, which suggests that the emission may be dominated by non-thermal bremsstrahlung from suprathermal electrons at the bow shock. If the bow shock interpretation is correc...

  11. Soft X-ray Observation of the Prompt Emission of GRB100418A

    CERN Document Server

    Imatani, Ritsuko; Nakahira, Satoshi; Kimura, Masashi; Sakamoto, Takanori; Arimoto, Makoto; Morooka, Yoshitaka; Yonetoku, Daisuke; Kawai, Nobuyuki; Tsunemi, Hiroshi

    2015-01-01

    We have observed the prompt emission of GRB100418A, from its beginning by the MAXI/SSC (0.7-7 keV) on board the International Space Station followed by the Swift/XRT (0.3-10 keV) observation. The light curve can be fitted by a combination of a power law component and an exponential component (decay constant is $31.6\\pm 1.6$). The X-ray spectrum is well expressed by the Band function with $E_{\\rm p}\\leq$8.3 keV. This is the brightest GRB showing a very low value of $E_{\\rm p}$. It is also consistent with the Yonetoku-relation ($E_{\\rm p}$-$L_{\\rm p}$) while it is not clear with the Amati-relation ($E_{\\rm p}$-$E_{\\rm iso}$).

  12. [Surface analysis of intramuscular bioglass ceramic implants using pro ton-induced x-ray emission].

    Science.gov (United States)

    Dittmar, A; Schwabe, F; Thieme, V; Hofmann, H; Berger, G

    1984-01-01

    The method of the proton induced x-ray emission ( PIXE ) was used for the investigation of ion exchange processes on the surface of intramuscularly implanted Bioglass-Ceramics. This method allows a simultaneous analysis free from destruction in concentrations ranges of ppm for several elements. The measurements were carried out with different proton energy, in that manner a relative quantity analysis was possible in different layers. A durable two-layered surface already originates in a short time after the implantation on the implant interface. This one consists of a layer rich in calcium and phosphorus as well as a second zone rich in silicon. The meaning of this two-layered surface for the bio-activity and the bio-stability of the material is discussed.

  13. Photon Temperatures of Hard X-Ray Emission of LHCD Plasmas in HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    Jawad YOUNIS; WAN Baonian; CHEN Zhongyong; LIN Shiyao; SHI Yuejiang; SHAN Jiafang; LIU Fukun

    2008-01-01

    A detailed study of photon temperatures (Tph) of hard X-ray emission in lower hybrid current drive (LHCD) plasmas is presented.The photon temperature increases with the increase in plasma current and decreases with the increase in plasma density.In lower hybrid power and phase scanning experiments;there is no appreciable change in the photon temperature.The numerical results based on ray-tracing calculation and Fokker-Planck solver gives reasonable explanation for the experimental observation.Both experimental and numerical results reveal that the photon temperature depends mainly on global effects of the fast electron population,synergy between the fast electron and the loop voltage and the Coulomb slowing down.

  14. Probing electron acceleration and X-ray emission in laser-plasma accelerator

    CERN Document Server

    Thaury, C; Corde, S; Brijesh, P; Lambert, G; Mangles, S P D; Bloom, M S; Kneip, S; Malka, V

    2013-01-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam is focused in the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  15. The X-ray emission of solar flares generated by anisotropic electron beams

    Science.gov (United States)

    Bogovalov, S. V.; Kelner, S. R.; Kotov, Y. D.

    1987-12-01

    For three types of the initial angle distribution of fast electrons, energy spectra, directivity, and polarization of the bremsstrahlung have been computed with an account for multiple scattering and energy losses. The influence of Compton scattering and of photoabsorption on the observed hard X-ray emission of solar flares has been investigated. It is obtained that the photon spectrum index depends not only on the spectrum of electrons but also on the registered energy range and on the angle of view of the flare. In the 10 - 40 keV range the spectrum is softer at the limb than in the solar disc centre; in the 60 - 360 keV the situation is reverse, the spectrum being softer in the solar disc centre.

  16. Detection of halogenated flame retardants in polyurethane foam by particle induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Maley, Adam M.; Falk, Kyle A.; Hoover, Luke; Earlywine, Elly B.; Seymour, Michael D. [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States); DeYoung, Paul A. [Department of Physics, Hope College, 27 Graves Place, Holland, MI 49423 (United States); Blum, Arlene [Green Science Policy Institute, Box 5455, Berkeley, CA 94705 (United States); Stapleton, Heather M. [Nicholas School of the Environment, Duke University, LSRC Box 90328, Durham, NC 27708 (United States); Peaslee, Graham F., E-mail: peaslee@hope.edu [Department of Chemistry, Hope College, 35 E. 12th Street, Holland, MI 49423 (United States)

    2015-09-01

    A novel application of particle-induced X-ray emission (PIXE) has been developed to detect the presence of chlorinated and brominated flame retardant chemicals in polyurethane foams. Traditional Gas Chromatography–Mass Spectrometry (GC–MS) methods for the detection and identification of halogenated flame retardants in foams require extensive sample preparation and data acquisition time. The elemental analysis of the halogens in polyurethane foam performed by PIXE offers the opportunity to identify the presence of halogenated flame retardants in a fraction of the time and sample preparation cost. Through comparative GC–MS and PIXE analysis of 215 foam samples, excellent agreement between the two methods was obtained. These results suggest that PIXE could be an ideal rapid screening method for the presence of chlorinated and brominated flame retardants in polyurethane foams.

  17. Soft X-ray observation of the prompt emission of GRB 100418A

    Science.gov (United States)

    Imatani, Ritsuko; Tomida, Hiroshi; Nakahira, Satoshi; Kimura, Masashi; Sakamoto, Takanori; Arimoto, Makoto; Morooka, Yoshitaka; Yonetoku, Daisuke; Kawai, Nobuyuki; Tsunemi, Hiroshi

    2016-06-01

    We have observed the prompt emission of GRB 100418A from its beginning captured by the MAXI SSC (0.7-7 keV) on board the International Space Station followed by the Swift XRT (0.3-10 keV) observation. The light curve can be fitted by a combination of a power-law component and an exponential component (the decay constant is 31.6 ± 1.6 s). The X-ray spectrum is well expressed by the Band function with Ep ≤ 8.3 keV. This is the brightest gamma-ray burst showing a very low value of Ep. It satisfies the Yonetoku relation (Ep-Lp). It is also consistent with the Amati relation (Ep-Eiso) within a 2.5σ level.

  18. Benchmarking and Optimizing Techniques for Inverting Images of DIII-D Soft X-Ray Emissions

    Science.gov (United States)

    Chandler, E.; Unterberg, E. A.; Shafer, M. W.; Wingen, A.

    2012-10-01

    A tangential 2-D soft x-ray (SXR) imaging system is installed on DIII-D to directly measure the 3-D magnetic topology at the plasma edge. This diagnostic allows the study of the plasma SXR emissivity at time resolutions >=,0 ms and spatial resolutions ˜1 cm. Extracting 3-D structure from the 2-D image requires the inversion of large ill-posed matrices - a ubiquitous problem in mathematics. The goal of this work is to reduce the memory usage and computational time of the inversion to a point where image inversions can be processed between shots. We implement the Phillips-Tikohnov and Maximum Entropy regularization techniques on a parallel GPU processor. To optimize the memory demands of computing these matrixes, effects of reducing the inversion grid size and binning images are analyzed and benchmarked. Further benchmarking includes a characterization of the final image quality (with respect to numerical and instrumentation noise).

  19. Detecting X-ray Synchrotron Emission in Supernova Remnants Implications for Abundances and Cosmic Rays

    CERN Document Server

    Dyer, K K; Borkowski, K J; Petre, R; Dyer, Kristy K.; Reynolds, Stephen P; Borkowski, Kazik J.; Petre, Robert

    2000-01-01

    The 10^51 ergs released in a supernova have far reaching consequences in the galaxy, determining elemental abundances, accelerating cosmic rays, and affecting the makeup of the interstellar medium. Recently the spectra of several supernova remnants have been found to be dominated by nonthermal emission. Separating the thermal and nonthermal components is important not only for the understanding of cosmic-ray acceleration and shock microphysics properties but for accurate assessment of the temperatures and line strengths. New models designed to model spatially resolved synchrotron X-rays from type Ia supernovae can contribute to the understanding of both the thermal physics (dynamics, abundances) and nonthermal physics (shock acceleration, magnetic-field amplification) of supernova remnants. I will describe model fits to SN 1006, emphasizing the physical constraints that can be placed on SNRs, abundances, and the cosmic-ray acceleration process.

  20. Global structure of isothermal X-ray emission along the Fermi bubbles

    CERN Document Server

    Kataoka, J; Totani, T; Sofue, Y; Inoue, Y; Nakashima, S; Cheung, C C

    2015-01-01

    In our previous works (Kataoka et al. 2013, Tahara et al. 2015), we found absorbed thermal X-ray plasma with kT ~ 0.3 keV observed ubiquitously near the edges of the Fermi bubbles and interpreted this emission as weakly shock-heated Galactic halo (GH) gas. Here we present a systematic and uniform analysis of archival Suzaku (29 pointings; 6 newly presented) and Swift (68 pointings; 49 newly presented) data within Galactic longitudes |l| 0 deg) favors (ii), whereas that of the south (b < 0 deg) is rather close to (i), but weak excess signature is clearly detected also in the south like NPS (South Polar Spur; SPS). Such an asymmetry, if due to the bubbles, cannot be fully understood only by the inclination of bubbles' axis against the Galactic disk normal, thus suggesting asymmetric outflow due to different environmental/initial condition.

  1. X-ray emission from classical T Tauri stars: Accretion shocks and coronae?

    CERN Document Server

    Guenther, H M; Robrade, J; Liefke, C

    2007-01-01

    Classical T Tauri stars (CTTS) are surrounded by actively accreting disks. According to current models material falls along the magnetic field lines from the disk with more or less free-fall velocity onto the star, where the plasma heats up and generates X-rays. We want to quantitatively explain the observed high energy emission and measure the infall parameters from the data. Absolute flux measurements allow to calculate the filling factor and the mass accretion rate.We use a numerical model of the hot accretion spot and solve the conservation equations. A comparison to data from XMM-Newton and Chandra shows that our model reproduces the main features very well. It yields for TW Hya a filling factor of 0.3% and a mass accretion rate 2e-10 M_sun/yr.

  2. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, Hans A.; /NASA, Goddard /Universities Space Research Assoc.; Granot, J.; /KIPAC, Menlo Park; Marshal, F.; /NASA, Goddard; Perri, M.; /ASDC, Frascati; Barthelmy, S.D.; /NASA, Goddard; Burrows, D.N.; /Penn State U., Astron. Astrophys.; Gehrels, N.; /NASA, Goddard; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.

    2007-02-26

    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

  3. X-Ray and Extreme Ultraviolet Emission from Small-Sized Kr Clusters Irradiated by 150-fs Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    王骐; 程元丽; 赵永蓬; 夏元钦; 陈建新; 肖亦凡

    2003-01-01

    x-ray and extreme ultraviolet (EUV) emission from Kr clusters irradiated by 150-fs laser pulses at the peak laser intensity of 5×1015W/cm2 was experimentally investigated. Strong transitions (10nm-13nm) from Kr X and Kr 1X were observed and some spectral lines from Kr ⅩⅢ and Kr ⅩⅣ, which have been predicted to be not produced by optical-field-ionization at the laser intensity used, also appeared. The laser energy absorption and the intensity of x-ray emission started to grow remarkably above the backing pressure of 0.5 MPa and to decrease at the backing pressure of 3 MPa. It is suggested that an optimum backing pressure may exist for Kr clusters heated by 150 fs laser pulses at a certain laser intensity to produce x-ray emission.

  4. X-ray Emission from an Expanding Supergiant Shell in IC 2574

    CERN Document Server

    Walter, F; Duric, N; Brinks, E; Klein, U; Walter, Fabian; Duric, Neb; Brinks, Elias; Klein, Uli

    1998-01-01

    We present a multi--wavelength study of a supergiant shell within the violent interstellar medium of the nearby dwarf galaxy IC 2574, a member of the M81 group of galaxies. Neutral hydrogen (HI) observations obtained with the Very Large Array (VLA) reveal a prominent expanding supergiant HI shell which is thought to be produced by the combined effects of stellar winds and supernova explosions. It measures roughly 1000 x 500 pc in size and is expanding at about 25 km/s. The HI data suggest an age of about 1.4 x 10^6 yrs; the energy input must have been of order (2.6\\pm 1) x 10^53 ergs. Massive star forming regions, as traced by H$\\alpha$ emission, are situated predominantly on the rim of this HI shell. VLA radio continuum observations at 6 cm show that these star-forming regions are the main sources of radio continuum emission in this galaxy. Soft X-ray emission from within the HI hole is detected by a pointed ROSAT PSPC observation. The emission is resolved, coinciding in size and orientation with the HI shel...

  5. Soft X-ray Emission Optimization Studies with Krypton and Xenon Gases in Plasma Focus Using Lee Model

    Science.gov (United States)

    Akel, Mohamad

    2013-10-01

    The X-ray emission properties of krypton and xenon plasmas are numerically investigated using corona plasma equilibrium model. Numerical experiments have been investigated on various low energy plasma focus devices with Kr and Xe filling gases using Lee model. The Lee model was applied to characterize and to find the optimum combination of soft X-ray yields (Ysxr) for krypton (~4 Å) and xenon (~3 Å) plasma focus. These combinations give Ysxr = 0.018 J for krypton, and Ysxr = 0.5 J for xenon. Scaling laws on Kr and Xe soft X-ray yields, in terms of storage energies E0, peak discharge current Ipeak and focus pinch current Ipinch were found over the range from 2.8 to 900 kJ. Soft X-ray yields scaling laws in terms of storage energies were found to be as and for Kr and Xe, respectively, (E0 in kJ and Ysxr in J) with the scaling showing gradual deterioration as E0 rises over the range. The maximum soft X-ray yields are found to be about 0.5 and 27 J from krypton and xenon, respectively, for storage energy of 900 kJ. The optimum efficiencies for soft X-ray yields (0.0002 % for Kr) and (0.0047 % for Xe) are with capacitor bank energies of 67.5 and 225 kJ, respectively.

  6. X-ray investigation of the diffuse emission around plausible gamma-ray emitting pulsar wind nebulae in Kookaburra region

    CERN Document Server

    Kishishita, Tetsuichi; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-01-01

    We report on the results from {\\it Suzaku} X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV $\\gamma$-ray sources HESS J1418-609 and HESS J1420-607. The {\\it Suzaku} observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible PWN Rabbit with elongated sizes of $\\sigma_{\\rm X}=1^{\\prime}.66$ and $\\sigma_{\\rm X}=1^{\\prime}.49$, respectively. The peaks of the diffuse X-ray emission are located within the $\\gamma$-ray excess maps obtained by H.E.S.S. and the offsets from the $\\gamma$-ray peaks are $2^{\\prime}.8$ for PSR J1420-6048 and $4^{\\prime}.5$ for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with $\\Gamma=1.7-2.3$. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one zone electron emission model as the first order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimate...

  7. First attempt of at-cavity cryogenic X-ray detection in a CEBAF cryomodule for field emission monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Rongli [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Daly, Edward [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Drury, Michael [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, Ari [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carried out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.

  8. The non-thermal X-ray emission of SN 1006 and the implications for cosmic rays

    Science.gov (United States)

    Allen, G. E.; Petre, R.; Gotthelf, E. V.

    2001-05-01

    We present the results of a spectral analysis of RXTE, ASCA, and ROSAT data of SN 1006. These data were fit with several sets of thermal and non-thermal X-ray emission models to characterize the global spectral properties of the remnant. The present work represents the first attempt to model both the thermal and non-thermal X-ray emission over the entire X-ray energy band from 0.12-17 keV. The non-thermal X-ray spectrum is described by a broken power-law with low- and high-energy photon indices of 2.1 and 3.0, respectively. Since this spectrum steepens with increasing energy, our results support the claims that the emission is produced by synchrotron radiation from 100 TeV electrons. Using the radio and X-ray data, we estimate the parameters of the cosmic-ray electron, proton, and helium spectra. The results suggest that the ratio of the number densities of protons and electrons is 150 at 1 GeV and that the total energy in cosmic rays is 1050 erg. These results and the spectral index of the electrons at 1 GeV (Γe=2.14+/-0.12) are consistent with the hypothesis that Galactic cosmic rays are predominantly accelerated in the shocks of supernova remnants. However, SN 1006 may or may not accelerate cosmic-ray protons to energies approaching the ``knee'' in the cosmic-ray spectrum. .

  9. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Filiberto; Miranda, Javier [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico, D.F (Mexico)

    2013-07-03

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Fisica for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields ({omega}{sub Li}) and Coster-Kronig transition probabilities (f{sub ij}) for elements with 55 {<=} Z {<=} 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  10. X-RAY EMISSION FROM J1446–4701, J1311–3430, AND OTHER BLACK WIDOW PULSARS

    Energy Technology Data Exchange (ETDEWEB)

    Arumugasamy, Prakash; Pavlov, George G. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Garmire, Gordon P., E-mail: pxa151@ucs.psu.edu [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2015-12-01

    We present the results of detailed X-ray analysis of two black-widow pulsars (BWPs), J1446–4701 and J1311–3430. PSR J1446–4701 is a BWP with orbital parameters near the median values of the sample of known BWPs. Its X-ray emission that was detected by XMM-Newton is well characterized by a soft power-law (PL) spectrum (photon index Γ ≈ 3), and it shows no significant orbital modulations. In view of a lack of radio eclipses and an optical non-detection, the system most likely has a low orbital inclination. PSR J1311–3430 is an extreme BWP with a very compact orbit and the lowest minimum mass companion. Our Chandra data confirm the hard Γ ≈ 1.3 emission seen in previous observations. Through phase-restricted spectral analysis, we found a hint (∼2.6σ) of spectral hardening around pulsar inferior conjunction. We also provide a uniform analysis of the 12 BWPs observed with Chandra and compare their X-ray properties. Pulsars with soft, Γ > 2.5 emission seem to have lower than average X-ray and γ-ray luminosities. We do not, however, see any other prominent correlation between the pulsar’s X-ray emission characteristics and any of its other properties. The contribution of the intra-binary shock to the total X-ray emission, if any, is not discernible in this sample of pulsars with shallow observations.

  11. Hard X-ray emission and $^{44}$Ti line features of Tycho Supernova Remnant

    CERN Document Server

    Wang, Wei

    2014-01-01

    A deep hard X-ray survey of the INTEGRAL satellite first detected the non-thermal emission up to 90 keV in the Tycho supernova (SN) remnant. Its 3 -- 100 keV spectrum is fitted with a thermal bremsstrahlung of $kT\\sim 0.81\\pm 0.45$ keV plus a power-law model of $\\Gamma \\sim 3.01\\pm 0.16$. Based on the diffusive shock acceleration theory, this non-thermal emission, together with radio measurements, implies that Tycho remnant may not accelerate protons up to $>$PeV but hundreds TeV. Only heavier nuclei may be accelerated to the cosmic ray spectral "knee". In addition, we search for soft gamma-ray lines at 67.9 and 78.4 keV coming from the decay of radioactive $^{44}$Ti in Tycho remnant by INTEGRAL. A bump feature in the 60-90 keV energy band, potentially associated with the $^{44}$Ti line emission, is found with a marginal significance level of $\\sim$ 2.6 $\\sigma$. The corresponding 3 $\\sigma$ upper limit on the $^{44}$Ti line flux amounts to 1.5 $\\times$ 10$^{-5}$ ph cm$^{-2}$ s$^{-1}$. Implications on the pro...

  12. X-ray Emission and Corona of the Young Intermediate Mass Binary $\\theta^1$ Ori E

    CERN Document Server

    Huenemoerder, David P; Testa, Paola; Kesich, Anthony; Canizares, Claude R

    2009-01-01

    Theta 1 Ori E is a young, moderate mass binary system, a rarely observed case of spectral-type G-giants of about 3 Solar masses, which are still collapsing towards the main sequence. We have obtained high resolution X-ray spectra with Chandra and find that the system is very active and similar to coronal sources, having emission typical of magnetically confined plasma: a broad temperature distribution with a hot component and significant high energy continuum; narrow emission lines from H- and He-like ions, as well as a range of Fe ions, and relative luminosity, L_x/L_bol = 0.001. Density, while poorly constrained, is consistent with the low density limits as determined from Mg XI and Ne IX emission lines. Coronal elemental abundances are sub-Solar, with Ne being the highest at about 0.4 times Solar. We find a possible trend in Trapezium hot plasmas towards low relative abundances of Fe, O, and Ne, which is hard to explain in terms of the dust depletion scenarios of low-mass young stars. Variability was unusu...

  13. X-ray emission from the young brown dwarfs of the Taurus molecular cloud

    Science.gov (United States)

    Grosso, N.; Briggs, K. R.; Güdel, M.; Guieu, S.; Franciosini, E.; Palla, F.; Dougados, C.; Monin, J.-L.; Ménard, F.; Bouvier, J.; Audard, M.; Telleschi, A.

    2007-06-01

    Aims:We report the X-ray properties of young (~3 Myr) bona fide brown dwarfs of the Taurus Molecular Cloud (TMC). Methods: The XMM-Newton Extended Survey of the TMC (XEST) is a large program designed to systematically investigate the X-ray properties of young stellar/substellar objects in the TMC. In particular, the area surveyed by 15 XMM-Newton pointings (of which three are archival observations), supplemented with one archival Chandra observation, allows us to study 17 brown dwarfs with M spectral types. Results: Half of this sample (9 out of 17 brown dwarfs) is detected; 7 brown dwarfs are detected here for the first time in X-rays. We observed a flare from one brown dwarf. We confirm several previous findings on brown dwarf X-ray activity: a log-log relation between X-ray and bolometric luminosity for stars (with L* ≤ 10 L_⊙) and brown dwarfs detected in X-rays, which is consistent with a mean X-ray fractional luminosity =-3.5 ± 0.4; for the XEST brown dwarfs, the median of log(L_X/L_*) (including upper limits) is -4.0; a shallow log-log relation between X-ray fractional luminosity and mass; a log-log relation between X-ray fractional luminosity and effective temperature; a log-log relation between X-ray surface flux and effective temperature. We find no significant log-log correlation between the X-ray fractional luminosity and EW(Hα). Accreting and nonaccreting brown dwarfs have a similar X-ray fractional luminosity. The median X-ray fractional luminosity of nonaccreting brown dwarfs is about 4 times lower than the mean saturation value for rapidly rotating low-mass field stars. Our TMC brown dwarfs have higher X-ray fractional luminosity than brown dwarfs in the Chandra Orion Ultradeep Project. Conclusions: The X-ray fractional luminosity declines from low-mass stars to M-type brown dwarfs, and as a sample, the brown dwarfs are less efficient X-ray emitters than low-mass stars. We thus conclude that while the brown dwarf atmospheres observed here are

  14. X-ray Emission Spectroscopy to Study Ligand Valence Orbitals in Mn Coordination Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, Grigory; Soldatov, Alexander V; Messinger, Johannes; Merz, Kathrin; Weyhermuller, Thomas; Bergmann, Uwe; Pushkar, Yulia; Yano, Junko; Yachandra, Vittal K.; Glatzel, Pieter

    2009-03-02

    We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H2O)6]2+, [Mn(H2O)5OH]+, [Mn(H2O)5NH2]+, and [Mn(H2O)5NH3]2+. An application of the method, with comparison between theory and experiment, is presented for the solvated Mn2+ ion in water and three Mn coordination complexes, namely [LMn(acac)N3]BPh4, [LMn(B2O3Ph2)(ClO4)], and [LMn(acac)N]BPh4, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B2O3Ph2 represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.

  15. Optimizing and characterizing grating efficiency for a soft X-ray emission spectrometer.

    Science.gov (United States)

    Boots, Mark; Muir, David; Moewes, Alexander

    2013-03-01

    The efficiency of soft X-ray diffraction gratings is studied using measurements and calculations based on the differential method with the S-matrix propagation algorithm. New open-source software is introduced for efficiency modelling that accounts for arbitrary groove profiles, such as those based on atomic force microscopy (AFM) measurements; the software also exploits multi-core processors and high-performance computing resources for faster calculations. Insights from these calculations, including a new principle of optimal incidence angle, are used to design a soft X-ray emission spectrometer with high efficiency and high resolution for the REIXS beamline at the Canadian Light Source: a theoretical grating efficiency above 10% and resolving power E/ΔE > 2500 over the energy range from 100 eV to 1000 eV are achieved. The design also exploits an efficiency peak in the third diffraction order to provide a high-resolution mode offering E/ΔE > 14000 at 280 eV, and E/ΔE > 10000 at 710 eV, with theoretical grating efficiencies from 2% to 5%. The manufactured gratings are characterized using AFM measurements of the grooves and diffractometer measurements of the efficiency as a function of wavelength. The measured and theoretical efficiency spectra are compared, and the discrepancies are explained by accounting for real-world effects: groove geometry errors, oxidation and surface roughness. A curve-fitting process is used to invert the calculations to predict grating parameters that match the calculated and measured efficiency spectra; the predicted blaze angles are found to agree closely with the AFM estimates, and a method of characterizing grating parameters that are difficult or impossible to measure directly is suggested.

  16. Possible mechanism of quasi-periodic oscillation of x-ray and TeV emissions for Mkn 501

    Institute of Scientific and Technical Information of China (English)

    Yuan Yu-Hai; Yang Jiang-He

    2005-01-01

    We propose that the emissions of an advection-dominated accretion flows (ADAF) disc are the seed photons upscattered to x-ray and TeV γ-rays in Mkn 501 and the instability of an ADAF disc may explain the 23-day quasi-periodic oscillation period observed in the x-rays and TeV lightcurves of Mkn 501. In this model, the ADAF emissions of optical and x-rays go into the jet and are up-scattered to high energies by relativistic electrons. In this process, the instability occurring in ADAF results in the quasi-periodic variation in the seed photons and therefore causes the variation in high energy x- and γ-rays.

  17. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Dan’ko, S. A. [National Research Centre Kurchatov Institute (Russian Federation); Mitrofanov, K. N., E-mail: mitrofan@triniti.ru [Troitsk Institute for Innovation and Fusion Research (Russian Federation); Krauz, V. I.; Myalton, V. V.; Zhuzhunashvili, A. I.; Vinogradov, V. P.; Kharrasov, A. M.; Anan’ev, S. S.; Vinogradova, Yu. V.; Kalinin, Yu. G. [National Research Centre Kurchatov Institute (Russian Federation)

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measured soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.

  18. Solar Wind Charge Exchange and Local Hot Bubble X-Ray Emission with the DXL Sounding Rocket Experiment

    Science.gov (United States)

    Galeazzi, M.; Collier, M. R.; Cravens, T.; Koutroumpa, D.; Kuntz, K. D.; Lepri, S.; McCammon, D.; Porter, F. S.; Prasai, K.; Robertson, I.; Snowden, S.; Thomas, N. E.; Uprety, Y.

    2012-01-01

    The Diffuse X-ray emission from the Local Galaxy (DXL) sounding rocket is a NASA approved mission with a scheduled first launch in December 2012. Its goal is to identify and separate the X-ray emission of the SWCX from that of the Local Hot Bubble (LHB) to improve our understanding of both. To separate the SWCX contribution from the LHB. DXL will use the SWCX signature due to the helium focusing cone at 1=185 deg, b=-18 deg, DXL uses large area propostionai counters, with an area of 1.000 sq cm and grasp of about 10 sq cm sr both in the 1/4 and 3/4 keY bands. Thanks to the large grasp, DXL will achieve in a 5 minule flight what cannot be achieved by current and future X-ray satellites.

  19. Broadband X-ray emission and the reality of the broad iron line from the Neutron Star - White Dwarf X-ray binary 4U 1820-30

    CERN Document Server

    Mondal, Aditya S; Pahari, Mayukh; Misra, Ranjeev; Kembhavi, Ajit K; Raychaudhuri, Biplab

    2016-01-01

    Broad relativistic iron lines from neutron star X-ray binaries are important probes of the inner accretion disk. The X-ray reflection features can be weakened due to strong magnetic fields or very low iron abundances such as is possible in X-ray binaries with low mass, first generation stars as companions. Here we investigate the reality of the broad iron line detected earlier from the neutron star low mass X-ray binary 4U~1820--30 with a degenerate helium dwarf companion. We perform a comprehensive, systematic broadband spectral study of the atoll source using \\suzaku{} and simultaneous \

  20. Modelling the thermal X-ray emission around the Galactic Centre from colliding Wolf-Rayet winds

    Science.gov (United States)

    Russell, Christopher M. P.; Wang, Q. Daniel; Cuadra, Jorge

    2017-02-01

    The Galactic Centre is a hotbed of astrophysical activity, with the injection of wind material from ˜30 massive Wolf-Rayet (WR) stars orbiting within 12 arcsec of the supermassive black hole (SMBH) playing an important role. Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. This work aims to confront the 3 Ms of Chandra X-ray Visionary Program observations of this diffuse emission by computing the X-ray emission from these hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that it reproduces the spectral shape from the 2-5 arcsec ring around the SMBH, where most of the stellar wind material that is ultimately captured by Sgr A* is shock-heated and thermalized. This naturally explains that the hot gas comes from colliding WR winds, and that the wind speeds of these stars are, in general, well constrained. The flux level of these spectra, as well as 12 × 12-arcsec2 images of 4-9 keV, shows that the X-ray flux is tied to the SMBH feedback strength; stronger feedback clears out more hot gas, thereby decreasing the thermal X-ray emission. The model in which Sgr A* produced an intermediate-strength outflow during the last few centuries best matches the observations to within about 10 per cent, showing that SMBH feedback is required to interpret the X-ray emission in this region.

  1. OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions

    CERN Document Server

    Koutroumpa, D; Lallement, R; Ballet, J; Kharchenko, V

    2007-01-01

    We study the 0.57 keV (O VII triplet) and 0.65 keV (O VIII) diffuse emission generated by charge transfer collisions between solar wind (SW) oxygen ions and interstellar H and He neutral atoms in the inner Heliosphere. These lines which dominate the 0.3-1.0 keV energy interval are also produced by hot gas in the galactic halo (GH) and possibly the Local Interstellar Bubble (LB). We developed a time-dependent model of the SW Charge-Exchange (SWCX) X-ray emission, based on the localization of the SW Parker spiral at each instant. We include input SW conditions affecting three selected fields, as well as shadowing targets observed with XMM-Newton, Chandra and Suzaku and calculate X-ray emission fot O VII and O VIII lines. We determine SWCX contamination and residual emission to attribute to the galactic soft X-ray background. We obtain ground level intensities and/or simulated lightcurves for each target and compare to X-ray data. The local 3/4 keV emission (O VII and O VIII) detected in front of shadowing cloud...

  2. The luminous X-ray hotspot in 4C 74.26: synchrotron or inverse-Compton emission?

    CERN Document Server

    Erlund, M C; Blundell, Katherine M; Fabian, A C; Moss, C

    2007-01-01

    We report the discovery of an X-ray counterpart to the southern radio hotspot of the largest-known radio quasar 4C 74.26 (whose redshift is z=0.104). Both XMM-Newton and Chandra images reveal the same significant (10arcsec, i.e. 19kpc) offset between the X-ray hotspot and the radio hotspot imaged with MERLIN. The peak of the X-ray emission may be due to synchrotron or inverse-Compton emission. If synchrotron emission, the hotspot represents the site of particle acceleration and the offset arises from either the jet exhibiting Scheuer's `dentist's drill' effect or a fast spine having less momentum than the sheath surrounding it, which creates the radio hotspot. If the emission arises from the inverse-Compton process, it must be inverse-Compton scattering of the CMB in a decelerating relativistic flow, implying that the jet is relativistic (Gamma <= 2) out to a distance of at least 800kpc. Our analysis, including optical data from the Liverpool Telescope, rules out a background AGN for the X-ray emission and...

  3. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature.

    Science.gov (United States)

    Davis, Katherine M; Mattern, Brian A; Pacold, Joseph I; Zakharova, Taisiya; Brewe, Dale; Kosheleva, Irina; Henning, Robert W; Graber, Timothy J; Heald, Steve M; Seidler, Gerald T; Pushkar, Yulia

    2012-07-19

    The paradigm of "detection-before-destruction" was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn Kβ x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn(4)Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*10(7) photons/µm(2) or 1.3*10(4) Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*10(7) photons/µm(2) or 4.2*10(4) Gy) is sufficient for the analysis of this protein's electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources.

  4. X-ray emission from the blazar AO 0235+16: the XMM-Newton and Chandra point of view

    CERN Document Server

    Raiteri, C M; Kadler, M; Krichbaum, T P; Böttcher, M; Fuhrmann, L; Orio, M

    2006-01-01

    In this paper we analyse five observations of the BL Lac object AO 0235+16 performed with the Chandra and XMM-Newton satellites during the years 2000-2005. In the February 2002 observation the source is found in a bright state and presents a steep X-ray spectrum, while in all the other epochs it is faint and the spectrum is hard. The soft X-ray spectrum appears to be strongly absorbed, likely by the intervening system at z=0.524, which also absorbs the optical-UV radiation. We find that models that consider spectral curvature are superior to single power law ones in fitting the X-ray spectrum. In particular, we favour a double power law model, which agrees with the assumption of a superposition of two different components in the X-ray domain. Both in the Chandra and in one of the XMM-Newton observations, a tentative detection of the redshifted Fe Kalpha emission line may suggest its origin from the inner part of an accretion disc. Thermal emission from this accretion disc might explain the UV-soft-X-ray bump ...

  5. Charge-exchange-induced perturbations of ion and atom distribution functions in the heliospheric interface

    CERN Document Server

    Fahr, H J

    2004-01-01

    Various hydrodynamic models of the heliospheric interface have been presented meanwhile, numerically simulating the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In these model approaches the resulting interface flows are found by the use of hydrodynamic simulation codes trying to consistently describe the dynamic and thermodynamic coupling of the different interacting fluids of protons, H-atoms and pick-up ions. Within such approaches, the fluids are generally expected to be correctly described by the three lowest velocity moments, i.e., by shifted Maxwellians. We shall show that in these approaches the charge-exchange-induced momentum coupling is treated in an unsatisfactory representation valid only at supersonic differential flow speeds. Though this flaw can be removed by an improved coupling term, we shall further demonstrate that the assumption of shifted Maxwellians in some regions of the interface is insufficiently well fulfilled both for ...

  6. X-ray Emission in Non-AGN Galaxies at z ~ 1

    CERN Document Server

    Chatterjee, Suchetana; Jeltema, Tesla; Myers, Adam D; Aird, James; Bundy, Kevin; Conselice, Christopher; Cooper, Michael; Laird, Elise; Nandra, Kirpal; Willmer, Christopher

    2015-01-01

    Using data from the DEEP2 galaxy redshift survey and the All Wavelength Extended Groth Strip International Survey we obtain stacked X-ray maps of galaxies at 0.7 1, we find no evidence that our results for X-ray scaling relations depend on optical color.

  7. Lunar Occultation of X-ray Emission from the Crab Nebula.

    Science.gov (United States)

    Bowyer, S; Byram, E T; Chubb, T A; Friedman, H

    1964-11-13

    The x-ray flux from the Crab Nebula was observed during a lunar occultation on 7 July 1964. As the moon covered the central region of the nebula, the x-ray flux decreased gradually. The source appears to extend over a volume about 1 light-year in diameter.

  8. X-ray emission from open star clusters with Spectrum-Rontgen-Gamma

    DEFF Research Database (Denmark)

    Singh, K.P.; Ojha, D.K.; Schnopper, H.W.;

    1998-01-01

    throughput of SPECTRUM-Rontgen-Gamma will help detect main sequence stars like Sun in middle-aged and old clusters. We will study the relationships between various parameters - age, rotation, abundance, UBV colors, X-ray luminosity, coronal temperature etc. X-ray spectra of younger and brighter populations...

  9. Ultrafast emission from colloidal nanocrystals under pulsed X-ray excitation

    CERN Document Server

    Turtos, R.M.; Polovitsyn, A.; Christodoulou, S.; Salomoni, M.; Auffray, E.; Moreels, I.; Lecoq, P.; Grim, J.Q.

    2016-01-01

    Fast timing has emerged as a critical requirement for radiation detection in medical and high energy physics, motivating the search for scintillator materials with high light yield and fast time response. However, light emission rates from conventional scintillation mechanisms fundamentally limit the achievable time resolution, which is presently at least one order of magnitude slower than required for next-generation detectors. One solution to this challenge is to generate an intense prompt signal in response to ionizing radiation. In this paper, we present colloidal semiconductor nanocrystals (NCs) as promising prompt photon sources. We investigate two classes of NCs: two-dimensional CdSe nanoplatelets (NPLs) and spherical CdSe/CdS core/giant shell quantum dots (GS QDs). We demonstrate that the emission rates of these NCs under pulsed X-ray excitation are much faster than traditional mechanisms in bulk scintillators, i.e. 5d-4f transitions. CdSe NPLs have a sub-100 ps effective decay time of 77 ps and CdSe/...

  10. X-RAY EMISSION FROM THE SUPER-EARTH HOST GJ 1214

    Energy Technology Data Exchange (ETDEWEB)

    Lalitha, S.; Singh, K. P. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Poppenhaeger, K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Czesla, S.; Schmitt, J. H. M. M. [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2014-07-20

    Stellar activity can produce large amounts of high-energy radiation, which is absorbed by the planetary atmosphere leading to irradiation-driven mass loss. We present the detection and an investigation of high-energy emission in a transiting super-Earth host system, GJ 1214, based on XMM-Newton observations. We derive an X-ray luminosity of L{sub X} = 7.4 × 10{sup 25} erg s{sup –1} and a corresponding activity level of log (L{sub X} /L {sub bol}) ∼ –5.3. Further, we determine a coronal temperature of about ∼3.5 MK, which is typical for coronal emission of moderately active low-mass stars. We estimate that GJ 1214 b evaporates at a rate of 1.3× 10{sup 10} g s{sup –1} and has lost a total of ≈2-5.6 M {sub ⊕}.

  11. Forensic analysis of tempered sheet glass by particle induced X-ray emission (PIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jisonna, L.J. [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); DeYoung, P.A., E-mail: deyoung@hope.ed [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); Ferens, J.; Hall, C.; Lunderberg, J.M.; Mears, P. [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); Padilla, D. [Department of Physics, San Diego State University, San Diego, CA 92182-1233 (United States); Peaslee, G.F. [Department of Chemistry and Department of Physics, Hope College, Holland, MI 49422-9000 (United States); Sampson, R. [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2011-05-15

    Highlights: {yields} PIXE was found to give the same results for trace elements in glass as ICP. {yields} PIXE can non-destructively determine trace element concentrations in auto glass. {yields} Measured Ca, Fe, Ti, Mn, and Sr in auto glass with PIXE. -- Abstract: The elemental concentrations of five trace elements in tempered sheet glass fragments were determined using particle-induced X-ray emission (PIXE) spectrometry. The trace element concentrations for calcium, iron, manganese, strontium, and titanium are compared to those obtained by inductively-coupled plasma-atomic emission spectrometry (ICP-AES) following complete digestion by hydrofluoric acid. For these five elements, the absolute concentrations obtained by both methods are shown to agree well over a wide range of concentrations. The limits of detection for trace elements are typically lower for the ICP-AES method. However, we show that the concentrations of these five elements can be accurately measured by the PIXE method. Since PIXE is an entirely non-destructive method, there exists a niche for this technique to be used as a complement to the more sensitive ICP-AES technique in the forensic analysis of sheet glass.

  12. Polarized synchrotron emission in quiescent black hole X-ray transients

    CERN Document Server

    Russell, David M; Lewis, Fraser; Gallo, Elena

    2016-01-01

    We present near-infrared polarimetric observations of the black hole X-ray binaries Swift J1357.2-0933 and A0620-00. In both sources, recent studies have demonstrated the presence of variable infrared synchrotron emission in quiescence, most likely from weak compact jets. For Swift J1357.2-0933 we find that the synchrotron emission is polarized at a level of 8.0 +- 2.5 per cent (a 3.2 sigma detection of intrinsic polarization). The mean magnitude and rms variability of the flux (fractional rms of 19-24 per cent in K_s-band) agree with previous observations. These properties imply a continuously launched (stable on long timescales), highly variable (on short timescales) jet in the Swift J1357.2-0933 system in quiescence, which has a moderately tangled magnetic field close to the base of the jet. We find that for A0620-00, there are likely to be three components to the optical-infrared polarization; interstellar dust along the line of sight, scattering within the system, and an additional source that changes th...

  13. The relationship between gamma Cassiopeiae's X-ray emission and its circumstellar environment

    CERN Document Server

    Smith, M A; Motch, C; Henry, G W; Richardson, N D; Bjorkman, K S; Stee, Ph; Mourard, D; Monnier, J D; Che, X; Buecke, R; Pollmann, E; Gies, D R; Schaefer, G H; Brummelaar, T ten; McAlister, H A; Turner, N H; Sturmann, J; Sturmann, L; Ridgway, S T

    2012-01-01

    \\gamma Cas is the prototypical classical Be star and is best known for its variable hard X-ray emission. To elucidate the reasons for this emission, we mounted a multiwavelength campaign in 2010 centered around 4 XMM observations. The observational techniques included long baseline optical interferometry (LBOI), monitoring by an Automated Photometric Telescope and Halpha observations. Because gamma Cas is also known to be in a binary, we measured Halpha radial velocities and redetermined its period as 203.55+/-0.2 days and an eccentricity near zero. The LBOI observations suggest that the star's decretion disk was axisymmetric in 2010, has an inclination angle near 45^o, and a larger radius than previously reported. The Be star began an "outburst" at the beginning of our campaign, made visible by a disk brightening and reddening during our campaign. Our analyses of the new high resolution spectra disclosed many attributes found from spectra obtained in 2001 (Chandra) and 2004 (XMM). As well as a dominant hot 1...

  14. X-ray and UV correlation in the quiescent emission of Cen X-4, evidence of accretion and reprocessing

    Directory of Open Access Journals (Sweden)

    Bernardini F.

    2014-01-01

    Full Text Available We conducted the first long-term (60 days, multiwavelength (optical, ultraviolet, and X-ray simultaneous monitoring of Cen X-4 with daily Swift observations, with the goal of understanding variability in the low mass X-ray binary Cen X-4 during quiescence. We found Cen X-4 to be highly variable in all energy bands on timescales from days to months, with the strongest quiescent variability a factor of 22 drop in the X-ray count rate in only 4 days. The X-ray, UV and optical (V band emission are correlated on timescales down to less than 110 s. The shape of the correlation is a power law with index γ about 0.2–0.6. The X-ray spectrum is well fitted by a hydrogen NS atmosphere (kT = 59 − 80 eV and a power law (with spectral index Γ = 1.4 − 2.0, with the spectral shape remaining constant as the flux varies. Both components vary in tandem, with each responsible for about 50% of the total X-ray flux, implying that they are physically linked. We conclude that the X-rays are likely generated by matter accreting down to the NS surface. Moreover, based on the short timescale of the correlation, we also unambiguously demonstrate that the UV emission can not be due to either thermal emission from the stream impact point, or a standard optically thick, geometrically thin disc. The spectral energy distribution shows a small UV emitting region, too hot to arise from the accretion disk, that we identified as a hot spot on the companion star. Therefore, the UV emission is most likely produced by reprocessing from the companion star, indeed the vertical size of the disc is small and can only reprocess a marginal fraction of the X-ray emission. We also found the accretion disc in quiescence to likely be UV faint, with a minimal contribution to the whole UV flux.

  15. X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248

    CERN Document Server

    Lopez-Santiago, Javier; Orellana, Mariana; Miceli, Marco; Orlando, Salvatore; Ustamujic, Sabina; Albacete-Colombo, Juan Facundo; de Castro, Elisa; de Castro, Ana Ines Gomez

    2015-01-01

    We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with production of X-ray emission, after impacting a dense cloud. We find that jets denser than the ambient medium but less dense than the cloud produce detectable X-ray emission only at the impact onto the cloud. From the exploration of the model parameter space, we constrain the physical conditions (jet density and velocity, cloud den...

  16. NuSTAR detection of high-energy X-ray emission and rapid variability from sagittarius A* flares

    DEFF Research Database (Denmark)

    Barrière, Nicolas M.; Tomsick, John A.; Baganoff, Frederick K.;

    2014-01-01

    of the two brightest flares (∼55 times quiescence in the 2-10 keV band) are compared to simple physical models in an attempt to identify the main X-ray emission mechanism, but the data do not allow us to significantly discriminate between them. However, we confirm the previous finding that the parameters...

  17. A model for emission from jets in X-ray binaries: consequences of a single acceleration episode

    NARCIS (Netherlands)

    A. Pe'er; P. Casella

    2009-01-01

    There is strong evidence for powerful jets in the low/hard state of black hole X-ray binaries (BHXRBs). Here, we present a model in which electrons are accelerated once at the base of the jet, and are cooled by synchrotron emission and possible adiabatic energy losses. The accelerated electrons assu

  18. X-ray emission spectroscopy study of the Verwey transition in Fe sub 3 O sub 4

    CERN Document Server

    Moewes, A; Finkelstein, L D; Galakhov, A V; Gota, S; Gautier-Soyer, M; Rueff, J P; Hague, C F

    2003-01-01

    The temperature-dependent Verwey transition in a 500 A (111) thin film of Fe sub 3 O sub 4 (magnetite) has been studied using soft-x-ray emission spectroscopy at room temperature and below the transition temperature T sub V. The Fe L sub 2 sub , sub 3 x-ray emission spectra show an increase in the intensity of the L sub 2 emission relative to the L sub 3 emission below T sub V. This is independent of the excitation energy and is attributed to a metal-insulator transition across T sub V. Comparison of the Fe L sub 3 emission and O K alpha spectra with LDA band structure calculations supports the suggestion of charge ordering in Fe sub 3 O sub 4 at low temperature.

  19. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  20. Soft X-ray emission spectroscopy of liquids and lithium batterymaterials

    Energy Technology Data Exchange (ETDEWEB)

    Augustsson, Andreas [Uppsala Univ. (Sweden)

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  1. A Model Grid for the Spectral Analysis of X-ray Emission in Young Type Ia Supernova Remnants

    CERN Document Server

    Badenes, C; Borkowski, K

    2005-01-01

    We address a new set of models for the spectral analysis of the X-ray emission from young, ejecta-dominated Type Ia supernova remnants. These models are based on hydrodynamic simulations of the interaction between Type Ia supernova explosion models and the surrounding ambient medium, coupled to self-consistent ionization and electron heating calculations in the shocked supernova ejecta, and the generation of synthetic spectra with an appropriate spectral code. The details are provided elsewhere, but in this paper we concentrate on a specific class of Type Ia explosion models (delayed detonations), commenting on the differences that arise between their synthetic X-ray spectra under a variety of conditions.

  2. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    Energy Technology Data Exchange (ETDEWEB)

    Neilsen, Joseph [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Coriat, Mickaël [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Fender, Rob; Broderick, Jess W. [Department of Physics, Oxford University, Oxford OX1 3RH (United Kingdom); Lee, Julia C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max Planck Institute fur Extraterrestriche Physik, D-85748 Garching (Germany); Tzioumis, Anastasios K.; Edwards, Philip G., E-mail: neilsenj@bu.edu [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia)

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  3. Development of particle induced X-ray emission facility at cyclotron laboratory and its prospective applications

    Energy Technology Data Exchange (ETDEWEB)

    Puri, N.K. [Department of Applied Physics, Delhi Technological Universily (Formerly Delhi College of Engineering, DCE), Delhi (India); Garg, M.L. [Department of Bio-Physics, Panjab Universily, Chandigarh (India); Govil, I.M. [Department of Physics, Panjab University, Chandigarh (India)

    2013-07-01

    Full text: We are presenting here a description of modifications in the Variable Energy Cyclotron (VEC) Chandigarh along with the installation of Proton Induced X-ray Emission (PIXE) setup. The installation of new main magnet power supply of 400A/125V out put with 10 ppm stability (model 853 M/S Danfysik, Denmark) and a new stabilized solid state power supply for RF oscillator gave the beam characteristics substantially good enough for PIXE work. A new chamber [1] was designed to cater for Proton Induced Gamma Emission (PIGE) and Rutherford Back Scattering (RBS) analysis along with PIXE measurements. The HPGe X-ray detector, the Ge(Li) -ray detector and a Silicon Surface Barrier (SSB) detector could be mounted simultaneously in the chamber. A Turbo-Molecular vacuum pump was provided to produce a clean vacuum of the order of 10{sup -7} torr in PIXE chamber. A remotely controlled stepper motor could move the 12/24-position target holder. Beam size optimization along with the minimization of background was done with the help of graphite collimators, thus making the setup suitable for practical applications. We attempted to address some of the limitations using PIXE facility of Institute of Physics (IOP), India [2] and incorporated modifications (e.g. chamber design, sample holder etc.) in our set-up. Preliminary experiments for the PIXE analysis of aerosol samples, gunshot residues samples and bone samples were presented. The aerosol samples were collected using aerosol sampling kit which involves Millipore diaphragmatic vacuum pump and Sequential Filter Unit (SFU) with coarse pored Nucleo pore polycarbonate filter in such a manner that the particles passing through the 8m pore size filter were collected on the 0.4m pore size filter. Two different pistols viz. 7.65mm Indian made and 7.63mm Germany made were used to fire at a filter paper target with card board and cotton wool backing from a distance of 3 feet. Two sheets of Whatman filter paper were used to form the

  4. An emergence of new polarized emission region in blazar Mrk 421 associated with X-ray flare

    CERN Document Server

    Itoh, Ryosuke; Tanaka, Yasuyuki T; Kawabata, Koji S; Takaki, Katsutoshi; Hayashi, Kazuma; Uemura, Makoto; Ui, Takahiro; Sasada, Mahito; Yamanaka, Masayuki; Yoshida, Michitoshi

    2015-01-01

    We report on long-term multi-wavelength monitoring of blazar Mrk~421 from 2010 to 2011. The source exhibited extreme X-ray flares in 2010. Our research group performed optical photopolarimetric follow-up observations using the Kanata telescope. In 2010, the variability in the X-ray band was significant, while the optical and ultraviolet (UV) flux decreased gradually. Polarization properties also exhibited unique variability in 2010, suggesting the presence of systematic component of polarization and magnetic field alignment for the emergence of a new polarized emission region. In contrast, in 2011 the variability in the X-ray band was smaller, and the variability in the optical and UV bands was larger, than in 2010. To explore the reasons for these differences, spectral fitting analysis was performed via simple synchrotron-self Compton modelling; the results revealed different behaviors in terms of spectral evolution between these periods, suggesting different variability mechanisms between 2010 and 2011. In ...

  5. Dominance of the Breit interaction in the x-ray emission of highly charged ions following dielectronic recombination.

    Science.gov (United States)

    Fritzsche, Stephan; Surzhykov, Andrey; Stöhlker, Thomas

    2009-09-11

    The Breit interaction typically appears as a-more or less small-correction to the Coulomb repulsion acting among the electrons. We here propose two x-ray measurements on the angular distribution and linear polarization of the 1s2s(2)2p(1/2) J=1-->1s(2)2s(2) J=0 electric-dipole radiation of high-Z, beryllium-like ions, following the resonant electron capture into initially lithium-like ions, for which the Breit interaction strongly dominates the Coulomb repulsion and leads to a qualitative change in the expected x-ray emission pattern. The proposed measurements are feasible with present-day x-ray detectors and may serve a stringent test on relativistic corrections to the electron-electron interaction in the presence of strong fields.

  6. High energy emission from massive stars: the precocious X-Ray recovery of Eta Carinae after January 2009 minimum

    CERN Document Server

    Pian, Elena; Chincarini, Guido; Corcoran, Michael F; Hamaguchi, Kenji; Gull, Theodore; Mazzali, Paolo A; Thoene, Christina C; Morris, David; Gehrels, Neil

    2009-01-01

    We observed the massive binary stellar system of Eta Carinae in the 0.3-10 keV energy range with the X-ray Telescope onboard the Swift satellite during the period 15 December 2008 - 11 March 2009, i.e. 1 month before to 2 months after the X-ray drop from maximum to minimum, thought to be associated with the periastron encounter of the primary star by the hot companion. Beginning a few months before eclipse, the interaction between the winds of the two stars intensifies and the X-ray flux reaches maximum. The flux drops dramatically thereafter, subsiding in about 20 days to a level that is at least a factor 10 lower than the 'high state', i.e. the X-ray emission state of the system during the largest fraction of its 5.52 yr orbit (~e-11 erg/s/cm2). Unlike in previous cycles, when the low state lasted about 2.5 months, observations with RXTE showed that the X-ray flux started its recovery to normal level about 1.5 months after the minimum. We suggest that this early recovery may be due to the fact that the comp...

  7. 3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries

    CERN Document Server

    Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

    2014-01-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

  8. The Young Binary DQ Tau: A Hunt For X-ray Emission From Colliding Magnetospheres

    CERN Document Server

    Getman, Konstantin V; Salter, Demerese M; Garmire, Gordon P; Hogerheijde, Michiel R

    2011-01-01

    The young high-eccentricity binary DQ Tau exhibits powerful recurring millimeter-band (mm) flaring attributed to collisions between the two stellar magnetospheres near periastron, when the stars are separated by only ~8Rstar. These magnetospheric interactions are expected to have scales and magnetic field strengths comparable to those of large X-ray flares from single pre-main-sequence (PMS) stars observed in the Chandra Orion Ultradeep Project (COUP). To search for X-rays arising from processes associated with colliding magnetospheres, we performed simultaneous X-ray and mm observations of DQ Tau near periastron phase. We report here several results. 1) As anticipated, DQ Tau was caught in a flare state in both mm and X-rays. A single long X-ray flare spanned the entire 16.5 hour Chandra exposure. 2) The inferred morphology, duration, and plasma temperature of the X-ray flare are typical of those of large flares from COUP stars. 3) However, our study provides three lines of evidence that this X-ray flare lik...

  9. X-ray emission from an FU Ori star in early outburst: HBC 722

    CERN Document Server

    Liebhart, Armin; Skinner, Stephen; Green, Joel

    2014-01-01

    Aims: We conducted the first X-ray observations of the newly erupting FU~Ori-type outburst in HBC~722 (V2493 Cyg) with the aim to characterize its X-ray behavior and near-stellar environment during early outburst. Methods: We used data from the \\XMM\\ and \\CXO\\ X-ray observatories to measure X-ray source temperatures and luminosities as well as the gas column densities along the line of sight toward the source. Results: We report a \\CXO\\ X-ray detection of HBC~722 with an X-ray luminosity of $L_{\\rm X}\\approx 4\\times 10^{30}~\\mathrm{ergs~s}^{-1}$. The gas column density exceeds values expected from optical extinction and standard gas-to-dust ratios. We conclude that dust-free gas masses are present around the star, such as strong winds launched from the inner disk, or massive accretion columns. A tentative detection obtained by \\XMM\\ two years earlier after an initial optical peak revealed a fainter X-ray source with only weak absorption.

  10. Effects of Frame-Dragging on X-ray Emission from Black Holes and Neutron Stars

    Science.gov (United States)

    Markovic, D.; Lamb, F. K.

    2000-10-01

    In previous work on the effects of frame-dragging on viscous accretion disks around black holes and neutron stars, we discovered gravitomagnetically precessing global modes localized near the inner edge of the Keplerian flow. The highest-frequency modes of this type precess in the prograde direction with frequencies slightly lower than the Lense-Thirring precession frequency at the mean radius of the mode. Contrary to what had been expected since the pioneering work of Bardeen & Petterson, these modes are very weakly damped (Q ≈ 20--50) and are therefore likely to be excited. We present analytical arguments that shed further light on the nature of these modes and allow a better understanding of the symmetry-breaking pattern of viscous dissipation they create. The two highest-frequency modes tilt the innermost part of the Keplerian flow, redirecting gas crossing the sonic radius. As we discuss, these modes are likely to be the most easily excited and may be excited by magnetoturbulence in the disk or interaction of the disk with a stellar magnetic field. They may modulate X-ray emission from black holes and neutron stars by periodically altering the inspiral of gas from the Keplerian disk, by periodically obscuring emission from the inner disk or star, or by creating a rotating pattern of enhanced emission. This modulation is expected to create power spectral peaks at ~1--10 Hz in black hole sources and at ~10--40 Hz in the kilohertz QPO sources. It may also produce sidebands on the kilohertz QPOs, separated from the main peaks by ~10--40 Hz. Detecting and measuring the frequencies of these modes would provide valuable new information about the strongly curved, twisting spacetime expected near spinning neutron stars and black holes. This research was supported in part by the NSF and NASA.

  11. Chandra Characterization of X-ray Emission in the Young F-Star Binary System HD 113766

    CERN Document Server

    Lisse, C M; Wolk, S J; Günther, H M; Chen, C H; Grady, C A

    2016-01-01

    Using Chandra we have obtained imaging X-ray spectroscopy of the 10 to 16 Myr old F-star binary HD 113766. We individually resolve the binary components for the first time in the X-ray and find a total 0.3 to 2.0 keV luminosity of 2.2e29 erg/sec, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only 10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or sub-stellar member of HD113766 with Lx > 6e25 erg s-1 within 2 arcmin of the binary pair. The ratio of the two stars Xray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. (2012). The emission is soft for both stars, kTApec = 0.30 to 0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks which we rule out. A possible 2.8 +/- 0.15 (2{\\sigma}) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and...

  12. Correlated X-ray and Very High Energy emission in the gamma-ray binary LS I +61 303

    CERN Document Server

    Anderhub, H; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; González, J Becerra; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bigas, O Blanch; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E de Cea; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Göbel, F; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Pérez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Stark, L S; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J; Falcone, A; Vetere, L; Gehrels, N; Trushkin, S; Dhawan, V; Reig, P

    2009-01-01

    The discovery of very high energy (VHE) gamma-ray emitting X-ray binaries has triggered an intense effort to better understand the particle acceleration, absorption, and emission mechanisms in compact binary systems, which provide variable conditions along eccentric orbits. Despite this, the nature of some of these systems, and of the accelerated particles producing the VHE emission, is unclear. To answer some of these open questions, we conducted a multiwavelength campaign of the VHE gamma-ray emitting X-ray binary LS I +61 303 including the MAGIC telescope, XMM-Newton, and Swift during 60% of an orbit in 2007 September. We detect a simultaneous outburst at X-ray and VHE bands, with the peak at phase 0.62 and a similar shape at both wavelengths. A linear fit to the simultaneous X-ray/VHE pairs obtained during the outburst yields a correlation coefficient of r=0.97, while a linear fit to all simultaneous pairs provides r=0.81. Since a variable absorption of the VHE emission towards the observer is not expecte...

  13. Implications on the X-ray emission of evolved pulsar wind nebulae based on VHE gamma-ray observations

    CERN Document Server

    Mayer, Michael J; Jung, Ira; Valerius, Kathrin; Stegmann, Christian

    2012-01-01

    Energetic pulsars power winds of relativistic leptons which produce photon nebulae (so-called pulsar wind nebulae, PWNe) detectable across the electromagnetic spectrum up to energies of several TeV. The spectral energy distribution has a double-humped structure: the first hump lies in the X-ray regime, the second in the gamma-ray range. The X-ray emission is generally understood as synchrotron radiation by highly energetic electrons, the gamma-ray emission as Inverse Compton scattering of energetic electrons with ambient photon fields. The evolution of the spectral energy distribution is influenced by the time-dependent spin-down of the pulsar and the decrease of the magnetic field strength with time. Thus, the present spectral appearance of a PWN depends on the age of the pulsar: while young PWNe are bright in X-rays and gamma-rays, the X-ray emission of evolved PWNe is suppressed. Hence, evolved PWNe may offer an explanation of the nature of some of the unidentified VHE gamma-ray sources not yet associated ...

  14. X-ray emission from the giant magnetosphere of the magnetic O-type star NGC 1624-2

    CERN Document Server

    Petit, V; Wade, G A; Nazé, Y; Owocki, S P; Sundqvist, J O; ud-Doula, A; Fullerton, A; Leutenegger, M; Gagné, M

    2015-01-01

    We observed NGC 1624-2, the O-type star with the largest known magnetic field Bp~20 kG), in X-rays with the ACIS-S camera onboard the Chandra X-ray Observatory. Our two observations were obtained at the minimum and maximum of the periodic Halpha emission cycle, corresponding to the rotational phases where the magnetic field is the closest to equator-on and pole-on, respectively. With these observations, we aim to characterise the star's magnetosphere via the X-ray emission produced by magnetically confined wind shocks. Our main findings are: (i) The observed spectrum of NGC 1624-2 is hard, similar to the magnetic O-type star Theta 1 Ori C, with only a few photons detected below 0.8 keV. The emergent X-ray flux is 30% lower at the Halpha minimum phase. (ii) Our modelling indicated that this seemingly hard spectrum is in fact a consequence of relatively soft intrinsic emission, similar to other magnetic Of?p stars, combined with a large amount of local absorption (~1-3 x 10^22 cm^-2). This combination is necess...

  15. Surface roughness-aided hard X-ray emission from carbon nanotubes

    Indian Academy of Sciences (India)

    Suman Bagchi; P Prem Kiran; M K Bhuyan; M Krishnamurthy; K Yang; A M Rao; G Ravindra Kumar

    2010-12-01

    Efficient low debris hard X-ray source based on multiwalled carbon nanotubes (MWNT) irradiated by intense, femtosecond laser over an intensity range of 1015 –1017 W cm−2 2 is reported. The MWNT targets yield two orders of magnitude higher X-rays (indicating significant enhancement of laser coupling) and three orders of magnitude lower debris compared to conventional metallic targets under identical experimental conditions. The simple analytical model explains the basic experimental observations and also serves as a guide to design efficient targets to achieve low-debris laser plasma-based hard X-ray sources at low laser intensities suitable for multi-kHz operation.

  16. Particle-Induced X-Ray Emission (PIXE) Of Silicate Coatings On High Impact Resistance Polycarbonates

    Science.gov (United States)

    Xing, Qian; Hart, M. A.; Culbertson, R. J.; Bradley, J. D.; Herbots, N.; Wilkens, Barry J.; Sell, David A.; Watson, Clarizza Fiel

    2011-06-01

    Particle-Induced X-ray Emission (PIXE) analysis was employed to characterize hydroxypropyl methylcellulose (HPMC) C32H60O19 polymer film via areal density measurement on silicon-based substrates utilizing the differential PIXE concept, and compared with Rutherford backscattering spectrometry (RBS) results. It is demonstrated in this paper that PIXE and RBS measurements both yield comparable results for areal densities ranging from 1018 atom/cm2 to several 1019 atom/cm2. A collection of techniques including PIXE, RBS, tapping mode atomic force microscopy (TMAFM), and contact angle analysis were used to compute surface free energy, analyze surface topography and roughness parameters, determine surface composition and areal density, and to predict the water affinity and condensation behaviors of silicates and other compounds used for high impact resistance vision ware coatings. The visor surface under study is slightly hydrophilic, with root mean square of surface roughness on the order of one nm, and surface wavelength between 200 nm and 300 nm. Water condensation can be controlled on such surfaces via polymers adsorption. HPMC polymer areal density measurement supports the analysis of the surface water affinity and topography and the subsequent control of condensation behavior. HPMC film between 1018 atom/cm2 and 1019 atom/cm2 was found to effectively alter the water condensation pattern and prevents fogging by forming a wetting layer during condensation.

  17. The EVE plus RHESSI DEM for Solar Flares, and Implications for Residual Non-Thermal X-Ray Emission

    Science.gov (United States)

    McTiernan, James; Caspi, Amir; Warren, Harry

    2016-05-01

    Solar flare spectra are typically dominated by thermal emission in the soft X-ray energy range. The low energy extent of non-thermal emission can only be loosely quantified using currently available X-ray data. To address this issue, we combine observations from the EUV Variability Experiment (EVE) on-board the Solar Dynamics Observatory (SDO) with X-ray data from the Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) to calculate the Differential Emission Measure (DEM) for solar flares. This improvement over the isothermal approximation helps to resolve the ambiguity in the range where the thermal and non-thermal components may have similar photon fluxes. This "crossover" range can extend up to 30 keV.Previous work (Caspi et.al. 2014ApJ...788L..31C) concentrated on obtaining DEM models that fit both instruments' observations well. For this current project we are interested in breaks and cutoffs in the "residual" non-thermal spectrum; i.e., the RHESSI spectrum that is left over after the DEM has accounted for the bulk of the soft X-ray emission. As in our earlier work, thermal emission is modeled using a DEM that is parametrized as multiple gaussians in temperature. Non-thermal emission is modeled as a photon spectrum obtained using a thin-target emission model ('thin2' from the SolarSoft Xray IDL package). Spectra for both instruments are fit simultaneously in a self-consistent manner.For this study, we have examined the DEM and non-thermal resuidual emission for a sample of relatively large (GOES M class and above) solar flares observed from 2011 to 2014. The results for the DEM and non-thermal parameters found using the combined EVE-RHESSI data are compared with those found using only RHESSI data.

  18. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    Science.gov (United States)

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  19. Extended X-ray emission from non-thermal sources in the COSMOS field: A detailed study of a large radio galaxy at z=1.168

    CERN Document Server

    Jelic, Vibor; Finoguenov, Alexis; Tanaka, Masayuki; Civano, Francesca; Schinnerer, Eva; Cappelluti, Nico; Koekemoer, Anton

    2012-01-01

    X-ray selected galaxy group samples are usually generated by searching for extended X- ray sources that reflect the thermal radiation of the intragroup medium. On the other hand, large radio galaxies that regularly occupy galaxy groups also emit in the X-ray window, and their contribution to X-ray selected group samples is still not well understood. In order to investigate their relative importance, we have carried out a systematic search for non-thermal extended X-ray sources in the COSMOS field. Based on the morphological coincidence of X-ray and radio extensions, out of 60 radio galaxies, and \\sim 300 extended X-ray sources, we find only one candidate where the observed extended X-ray emission arises from non- thermal processes related to radio galaxies. We present a detailed analysis of this source, and its environment. Our results yield that external Inverse Compton emission of the lobes is the dominant process that generates the observed X-ray emission of our extended X-ray candidate, with a minor contr...

  20. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.

  1. Reverse and Forward Shock X-Ray Emission in an Evolutionary Model of Supernova Remnants Undergoing Efficient Diffusive Shock Acceleration

    Science.gov (United States)

    Lee, Shiu-Hang; Patnaude, Daniel J.; Ellison, Donald C.; Nagataki, Shigehiro; Slane, Patrick O.

    2014-08-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  2. Reverse and forward shock X-ray emission in an evolutionary model of supernova remnants undergoing efficient diffusive shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Shiu-Hang [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Patnaude, Daniel J.; Slane, Patrick O. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ellison, Donald C. [Physics Department, North Carolina State University, Box 8202, Raleigh, NC 27695 (United States); Nagataki, Shigehiro, E-mail: slee@astro.isas.jaxa.jp, E-mail: shiu-hang.lee@riken.jp, E-mail: shigehiro.nagataki@riken.jp, E-mail: slane@cfa.harvard.edu, E-mail: dpatnaude@cfa.harvard.edu, E-mail: don_ellison@ncsu.edu [RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-08-20

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) that include the efficient production of cosmic rays (CR) via nonlinear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization, hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles that the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line emission from young SNRs is a powerful tool for determining specific SN elemental contributions and for providing critical information that helps to understand the type and energetics of the explosion, the composition of the ambient medium in which the SN exploded, and the ionization and dynamics of the hot plasma in the shocked SN ejecta and interstellar medium. With the approaching launch of the next-generation X-ray satellite Astro-H, observations of spectral lines with unprecedented high resolution will become a reality. Our self-consistent calculations of the X-ray spectra from various progenitors will help interpret future observations of SNRs.

  3. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the first-ro

  4. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Christoph [Univ. of California, Los Angeles, CA (United States)

    2012-05-05

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  5. Pulsar Polar Cap Heating and Surface Thermal X-Ray Emission I. Curvature Radiation Pair Fronts

    CERN Document Server

    Harding, A K; Harding, Alice K.; Muslimov, Alexander G.

    2001-01-01

    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities, and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational X-ray data and suggest that the effect of PC heating should significantly contribute to the thermal X-ray fluxes from middle-aged and old pulsars. The implications for current and future X-ray observations of pulsars are briefly outlined.

  6. Resonant soft X-ray emission and X-ray absorption studies on Ga{sub 1-x}Mn{sub x}N grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, Satheesh [School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Kennedy, Brian; McGee, Fintan; Venkatesan, M.; Coey, J.M.D.; Lunney, James G.; McGuinness, Cormac [School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); Learmonth, Timothy; Smith, Kevin E. [Department of Physilightlycs, Boston University, 590 Commonwealth Avenue, MA 02215 (United States); Schmitt, Thorsten [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2011-05-15

    In this study thin film samples of Ga{sub 1-x}Mn{sub x}N were grown by pulsed laser deposition on Al{sub 2}O{sub 3} (0001) substrates. X-ray diffraction measurements have confirmed these thin films exhibit hexagonal wurtzite structure. SQUID measurements show room temperature ferromagnetism of these dilute magnetic semiconductors (DMS). The techniques of X-ray absorption and soft X-ray emission spectroscopy at the N K-edge were used to study the changes in the unoccupied and occupied N 2p partial density of states respectively as a function of dopant concentration. These element and site specific spectroscopies allow us to characterise the electronic structure of these doped materials and reveal the influence of the Mn doping on the valence band as measured through the N 2p partial density of states. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ga-sites. Finally, measurements of heavily Mn-doped films using both soft X-ray absorption and resonant soft X-ray emission at the N K edge reveal the presence of trapped molecular nitrogen. The trapped molecular nitrogen may be due to the high instantaneous deposition rate in the PLD process for these samples (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. A high spatial resolution X-ray and H-alpha study of hot gas in the halos of star-forming disk galaxies. I. Spatial and spectral properties of the diffuse X-ray emission

    CERN Document Server

    Strickland, D K; Colbert, E J M; Hoopes, C G; Weaver, K A

    2003-01-01

    We present arcsecond resolution Chandra X-ray and ground-based optical H-alpha imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. We use the unprecedented spatial resolution of the Chandra X-ray observatory to robustly remove point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. The X-ray observations are combined with comparable-resolution H-alpha and R-band imaging, and presented as a mini-atlas of images on a common spatial and surface brightness scale. The vertical distribution of the halo-region X-ray surface brightness is best described as an exponential, with the observed scale heights lying in the range H_eff = 2 -- 4 kpc. The ACIS X-ray spectra of extra-planar emission from all these galaxies can be fit with a common two-temperature spectral model with an enhanced alpha-to-iron element ratio. This is consisten...

  8. Hard X-ray Emission along the Z Track in GX 17+2

    Indian Academy of Sciences (India)

    G. Q. Ding; C. P. Huang

    2015-09-01

    Using the data from the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE) on board Rossi X-Ray Timing Explorer for Z source GX 17+2, we investigate the evolution of its PCA spectra and HEXTE spectra along a `Z’ track on its hardness-intensity diagram. A hard X-ray tail is detected in the HEXTE spectra. The detected hard X-ray tails are discontinuously scattered throughout the Z track. The found hard X-ray tail hardens from the horizontal branch, through the normal branch, to the flaring branch in principle and it contributes ∼ (20–50)% of the total flux in 20–200 keV. Our joint fitting results of the PCA+HEXTE spectra in 3–200 keV show that the portion of Comptonization in the Bulk-Motion Comptonization (BMC) model accounts for the hard X-ray tail, which indicates that the BMC process could be responsible for the detected hard tail. The temperature of the seed photons for BMC is ∼ 2.7 keV, implying that these seed photons might be emitted from the surface of the neutron star (NS) or the boundary layer between the NS and the disk and, therefore, this process could take place around the NS or in the boundary layer.

  9. X-Ray Emission from Zr, Mo, In and Pb Targets Bombarded by Slow Highly Charged Arq+(q = 13, 14, 15, 16) Ions

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-Hong; SHAO Jian-Xiong; CUI Ying; XU Xu; CHEN Xi-Meng; YU De-Yang; LU Rong-Chun; SHAO Cao-Jie; LU Jun; RUAN Fang-Fang; YANG Zhi-Hu; DING Bao-Wei; ZHANG Hong-Qiang

    2005-01-01

    @@ We study the L x-ray emission from Zr, Mo and In targets and M x-ray emission from Pb target under bombardment of low energy Arq+ (q = 13, 14, 15, 16) ions. The relative x-ray yields were measured in the projectile kinetic energy range 210-360keV. It is found that the relative x-ray yields from Zr, Mo and Pb targets increase with the increasing projectile kinetic energy for Ar14+ and Ar16+ projectiles and depend on the potential energy of the projectile remarkably.

  10. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    Science.gov (United States)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  11. THE CLOSE T TAURI BINARY SYSTEM V4046 Sgr: ROTATIONALLY MODULATED X-RAY EMISSION FROM ACCRETION SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Argiroffi, C. [Dipartimento di Fisica, Universita di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Maggio, A.; Damiani, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Montmerle, T. [Institut d' Astrophysique de Paris, 98bis bd Arago, FR-75014 Paris (France); Huenemoerder, D. P. [MIT, Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Alecian, E. [Observatoire de Paris, LESIA, 5, place Jules Janssen, F-92195 Meudon Principal Cedex (France); Audard, M. [ISDC Data Center for Astrophysics, University of Geneva, Ch. d' Ecogia 16, CH-1290 Versoix (Switzerland); Bouvier, J. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble (IPAG) UMR 5274, F-38041, Grenoble (France); Donati, J.-F. [IRAP-UMR 5277, CNRS and Universite de Toulouse, 14 Av. E. Belin, F-31400 Toulouse (France); Gregory, S. G. [Astronomy Department, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Guedel, M. [Department of Astronomy, University of Vienna, Trkenschanzstrasse 17, A-1180 Vienna (Austria); Hussain, G. A. J. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Kastner, J. H.; Sacco, G. G., E-mail: argi@astropa.unipa.it [Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2012-06-20

    We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n{sub e}{approx} 10{sup 11}-10{sup 12} cm{sup -3}) plasma at temperatures of 3-4 MK. Our multi-wavelength campaign aims to simultaneously constrain the properties of this X-ray-emitting plasma, the large-scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray-grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22 {+-} 0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.

  12. SUZAKU OBSERVATIONS OF γ-RAY BRIGHT RADIO GALAXIES: ORIGIN OF THE X-RAY EMISSION AND BROADBAND MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Yasushi; Itoh, Ryosuke; Tokuda, Shin' ya [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Finke, Justin [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Avenue SW, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tanaka, Yasuyuki, E-mail: fukazawa@hep01.hepl.hiroshima-u.ac.jp [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-01-10

    We performed a systematic X-ray study of eight nearby γ-ray bright radio galaxies with Suzaku in order to understand the origins of their X-ray emissions. The Suzaku spectra for five of those have been presented previously, while the remaining three (M87, PKS 0625–354, and 3C 78) are presented here for the first time. Based on the Fe-K line strength, X-ray variability, and X-ray power-law photon indices, and using additional information on the [O III] line emission, we argue for a jet origin of the observed X-ray emission in these three sources. We also analyzed five years of Fermi Large Area Telescope (LAT) GeV gamma-ray data on PKS 0625–354 and 3C 78 to understand these sources within the blazar paradigm. We found significant γ-ray variability in the former object. Overall, we note that the Suzaku spectra for both PKS 0625–354 and 3C 78 are rather soft, while the LAT spectra are unusually hard when compared with other γ-ray detected low-power (FR I) radio galaxies. We demonstrate that the constructed broadband spectral energy distributions of PKS 0625–354 and 3C 78 are well described by a one-zone synchrotron/synchrotron self-Compton model. The results of the modeling indicate lower bulk Lorentz factors compared to those typically found in other BL Lacertae (BL Lac) objects, but consistent with the values inferred from modeling other LAT-detected FR I radio galaxies. Interestingly, the modeling also implies very high peak (∼10{sup 16} Hz) synchrotron frequencies in the two analyzed sources, contrary to previously suggested scenarios for Fanaroff-Riley (FR) type I/BL Lac unification. We discuss the implications of our findings in the context of the FR I/BL Lac unification schemes.

  13. Detailed analysis of hollow ions spectra from dense matter pumped by X-ray emission of relativistic laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S. B., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Colgan, J.; Abdallah, J. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Faenov, A. Ya., E-mail: sbhanse@sandia.gov, E-mail: anatolyf@hotmail.com [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Pikuz, S. A.; Skobelev, I. Yu. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Wagenaars, E.; Culfa, O.; Dance, R. J.; Tallents, G. J.; Rossall, A. K.; Woolsey, N. C. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Booth, N.; Lancaster, K. L. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Evans, R. G. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Gray, R. J.; McKenna, P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 ONG (United Kingdom); Kaempfer, T.; Schulze, K. S. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Uschmann, I. [Helmholtzinstitut Jena, Jena D-07743 (Germany); Institut für Optik und Quantenelektronic, Friedrich-Schiller-Universität Jena, Max-Wien Platz 1, Jena, D-07743 (Germany); and others

    2014-03-15

    X-ray emission from hollow ions offers new diagnostic opportunities for dense, strongly coupled plasma. We present extended modeling of the x-ray emission spectrum reported by Colgan et al. [Phys. Rev. Lett. 110, 125001 (2013)] based on two collisional-radiative codes: the hybrid-structure Spectroscopic Collisional-Radiative Atomic Model (SCRAM) and the mixed-unresolved transition arrays (MUTA) ATOMIC model. We show that both accuracy and completeness in the modeled energy level structure are critical for reliable diagnostics, investigate how emission changes with different treatments of ionization potential depression, and discuss two approaches to handling the extensive structure required for hollow-ion models with many multiply excited configurations.

  14. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    Science.gov (United States)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  15. Thermal X-ray emission from shocked ejecta in Type Ia Supernova Remnants. Prospects for explosion mechanism identification

    CERN Document Server

    Badenes, C; Borkowski, K J; Dominguez, I; Badenes, Carles; Bravo, Eduardo; Borkowski, Kazimierz J.; Dominguez, Inmaculada

    2003-01-01

    The explosion mechanism behind Type Ia supernovae is a matter of continuing debate. The diverse attempts to identify or at least constrain the physical processes involved in the explosion have been only partially successful so far. In this paper we propose to use the thermal X-ray emission from young supernova remnants originated in Type Ia events to extract relevant information concerning the explosions themselves. We have produced a grid of thermonuclear supernova models representative of the paradigms currently under debate: pure deflagrations, delayed detonations, pulsating delayed detonations and sub-Chandrasekhar explosions, using their density and chemical composition profiles to simulate the interaction with the surrounding ambient medium and the ensuing plasma heating, non-equilibrium ionization and thermal X-ray emission of the ejecta. Key observational parameters such as electron temperatures, emission measures and ionization time scales are presented and discussed. We find that not only is it poss...

  16. Effect of the Metallicity on the X-ray Emission from the Warm-Hot Intergalactic Medium

    CERN Document Server

    Ursino, Eugenio; Roncarelli, Mauro

    2010-01-01

    Hydrodynamic simulations predict that a significant fraction of the gas in the current Universe is in the form of high temperature, highly ionized plasma emitting and absorbing primarily in the soft X-ray and UV bands, dubbed the Warm-Hot Intergalactic Medium (WHIM). Its signature should be observable in red-shifted emission and absorption lines from highly ionized elements. To determine the expected WHIM emission in the soft X-ray band we used the output of a large scale hydrodynamic SPH simulation to generate images and spectra with angular resolution of 14'' and energy resolution of 1 eV. The current biggest limit of any hydrodynamic simulation in predicting the X-ray emission comes from metal diffusion. In our investigation, by using four different models for the WHIM metallicity we have found a strong dependence of the emission on the model used, with differences up to almost an order of magnitude. For each model we have investigated the redshift distribution and angular scale of the emission, confirming...

  17. Unusual Pulsed X-Ray Emission from the Young, High Magnetic Field Pulsar PSR J1119--6127

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M E; Kaspi, V M; Camilo, F; Gaensler, B M; Pivovaroff, M J

    2005-08-05

    We present XMM-Newton observations of the radio pulsar PSR J1119-6127, which has an inferred age of 1,700 yr and surface dipole magnetic field strength of 4.1 x 10{sup 13} G. We report the first detection of pulsed X-ray emission from PSR J1119-6127. In the 0.5-2.0 keV range, the pulse profile shows a narrow peak with a very high pulsed fraction of (74 {+-} 14)%. In the 2.0-10.0 keV range, the upper limit for the pulsed fraction is 28% (99% confidence). The pulsed emission is well described by a thermal blackbody model with a temperature of T{infinity} = 2.4{sub -0.2}{sup +0.3} x 10{sup 6} K and emitting radius of 3.4{sub -0.3}{sup +1.8} km (at a distance of 8.4 kpc). Atmospheric models result in problematic estimates for the distance/emitting area. PSR J1119-6127 is now the radio pulsar with smallest characteristic age from which thermal X-ray emission has been detected. The combined temporal and spectral characteristics of this emission are unlike those of other radio pulsars detected at X-ray energies and challenge current models of thermal emission from neutron stars.

  18. ECLAIRs A microsatellite for the prompt optical and X-ray emission of Gamma-Ray Bursts

    CERN Document Server

    Barret, D

    2001-01-01

    The prompt gamma-ray emission of Gamma-Ray Bursts (GRBs) is currently interpreted in terms of radiation from electrons accelerated in internal shocks in a relativistic fireball. On the other hand, the origin of the prompt (and early afterglow) optical and X-ray emission is still debated, mostly because very few data exist for comparison with theoretical predictions. It is however commonly agreed that this emission hides important clues on the GRB physics and can be used to constrain the fireball parameters, the acceleration and emission processes and to probe the surroundings of the GRBs. ECLAIRs is a microsatellite devoted to the observation of the prompt optical and X-ray emission of GRBs. For about 150 GRBs/yr, independent of their duration, ECLAIRs will provide high time resolution high sensitivity spectral coverage from a few eV up to ~50 keV and localization to ~ 5'' in near real time. This capability is achieved by combining wide field optical and X-ray cameras sharing a common field of view (>~ 2.2 st...

  19. Chandra Characterization of X-Ray Emission in the Young F-Star Binary System HD 113766

    Science.gov (United States)

    Lisse, C. M.; Christian, D. J.; Wolk, S. J.; Günther, H. M.; Chen, C. H.; Grady, C. A.

    2017-02-01

    Using Chandra, we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 1029 erg s‑1, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with Lx > 6 × 1025 erg s‑1 within 2‧ of the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kTApec = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2σ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to Lx ∼ 2 × 1029 erg s‑1 argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 106 years. At 1028–1029 erg s‑1 X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.

  20. Analysis of memory consolidation and evocation in rats by proton induced X-ray emission

    Energy Technology Data Exchange (ETDEWEB)

    Jobim, P.F.C., E-mail: pjobim@uol.com.br [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Av. Paulo Gama 90050-170, Porto Alegre (Brazil); University Hospital Research Center (HCPA), Federal University of Rio Grande do Sul, 90035-003, Rua Ramiro Barcelos, Porto Alegre (Brazil); Santos, C.E.I. dos [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil); Maurmann, N.; Reolon, G.K. [Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Av. Paulo Gama 90050-170, Porto Alegre (Brazil); University Hospital Research Center (HCPA), Federal University of Rio Grande do Sul, 90035-003, Rua Ramiro Barcelos, Porto Alegre (Brazil); Debastiani, R. [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil); Pedroso, T.R.; Carvalho, L.M. [Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Av. Paulo Gama 90050-170, Porto Alegre (Brazil); University Hospital Research Center (HCPA), Federal University of Rio Grande do Sul, 90035-003, Rua Ramiro Barcelos, Porto Alegre (Brazil); Dias, J.F. [Ion Implantation Laboratory, Physics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, CP 15051, CEP 91501-970, Porto Alegre (Brazil)

    2014-08-01

    It is well known that trace elements such as Mg, Ca, Fe, Cu and Zn have a key role in synapse plasticity and learning. Learning process is conventionally divided in three distinct and complementary stages: memory acquisition, consolidation and evocation. Consolidation is the stabilization of the synaptic trace formed by acquisition, while evocation is the recall of this trace. Ion-based techniques capable of providing information concerning the elemental composition of organic tissues may be helpful to improve our understanding on memory consolidation and evocation processes. In particular, the Particle-Induced X-ray Emission (PIXE) technique can be used to analyze different biological tissues with good accuracy. In this work we explore the versatility of PIXE to measure the elemental concentrations in rat brain tissues in order to establish any possible correlation between them and the memory consolidation and evocation processes. To this end, six groups of middle-age male Wistar rats were trained and tested in a step-down Inhibitory Avoidance conditioning. After the behavior tests, the animals were decapitated in accordance with the legal procedures and their brains were removed and dissected for the PIXE analyses. The results demonstrated that there are differences in the elemental concentration among the groups and such variations may be associated with their availability to the learning processes (by memory consolidation and evocation). Moreover, the control groups circumvent the possibility that a non-specific event involved in learning tasks cause such variations. Our results suggest that PIXE may be a useful tool to investigate memory consolidation and evocation in animal models.

  1. A possible mechanism for magnetar soft X-ray/γ-ray emission

    Institute of Scientific and Technical Information of China (English)

    Gao Zhi-Fu; Peng Qiu-He; Wang Na; Chou Chih-Kang

    2012-01-01

    Once the energies of electrons near the Fermi surface obviously exceed the threshold energy of the inverse β decay,electron capture(EC)dominates inside the magnetar.Since the maximal binding energy of the 3P2 neutron Cooper pair is only about 0.048 MeV,the outgoing high-energy neutrons(Ek(n)> 60 MeV)created by the EC can easily destroy the 3p2 neutron Cooper pairs through the interaction of nuclear force.In the anisotropic neutron superfluid,each 3P2 neutron Cooper pair has magnetic energy 2μn B in the applied magnetic field B,where μn=0.966 × 10-23 erg.G-1 is the absolute value of the neutron abnormal magnetic moment.While being destroyed by the high-energy EC neutrons,the magnetic moments of the 3P2 Cooper pairs are no longer arranged in the paramagnetic direction,and the magnetic energy is released.This released energy can be transformed into thermal energy.Only a small fraction of the generated thermal energy is transported from the interior to the surface by conduction,and then it is radiated in the form of thermal photons from the surface.After highly efficient modulation within the star's magnetosphere,the thermal surface emission is shaped into a spectrum of soft X-rays/γ-rays with the observed characteristics of magnetars.By introducing related parameters,we calculate the theoretical luminosities of magnetars.The calculation results agree well with the observed parameters of magnetars.

  2. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  3. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    Science.gov (United States)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  4. The History of Cosmic Baryons X-ray Emission vs. Star Formation Rate

    CERN Document Server

    Menci, N

    1999-01-01

    We relate the star formation from cold baryons in virialized structures to the X-ray properties of the associated diffuse, hot baryonic component. Our computations use the standard ``semi-analytic'' models to describe i) the evolution of dark matter halos through merging after the hierarchical clustering, ii) the star formation governed by radiative cooling and by supernova feedback, iii) the hydro- and thermodynamics of the hot gas, rendered with our Punctuated Equilibria model. So we relate the X-ray observables concerning the intra-cluster medium to the thermal energy of the gas pre-heated and expelled by supernovae following star formation, and then accreted during the subsequent merging events. We show that at fluxes fainter than $F_X\\approx 10^{-15}$ erg/cm$^2 $ s (well within the reach of next generation X-ray observatories) the X-ray counts of extended extragalactic sources (as well as the faint end of the luminosity function, the contribution to the soft X-ray background, and the $L_X-T$ correlation ...

  5. Research on pinches driven by Speed-2 generator: Hard X-ray and neutron emission in plasma focus configuration

    Energy Technology Data Exchange (ETDEWEB)

    Soto, L.; Moreno, J.; Silva, P.; Sylvester, G.; Zambra, M.; Pavez, C. [Comision Chilena de Energia Nuclear, Santiago (Chile); Pavez, C. [Universidad de Concepcion (Chile); Raspa, V. [Buenos Aires Univ., PLADEMA, CONICET and INFIP (Argentina); Castillo, F. [Insitituto de Ciencias Nucleares, UNAM (Mexico); Kies, W. [Heinrich-Heine-Univ., Dusseldorf (Germany)

    2004-07-01

    Speed-2 is a generator based on Marx technology and was designed in the University of Dusseldorf. Speed-2 consists on 40 +/- Marx modules connected in parallel (4.1 {mu}F equivalent Marx generator capacity, 300 kV, 4 MA in short circuit, 187 kJ, 400 ns rise time, dI/dt {approx} 10{sup 13} A/s). Currently Speed-2 is operating at CCHEN (Chilean nuclear energy commission), being the most powerful and energetic device for dense transient plasma in the Southern Hemisphere. Most of the previous works developed in Speed-2 at Dusseldorf were done in a plasma focus configuration for soft X-ray emission and the neutron emission from Speed-2 was not completely studied. The research program at CCHEN considers experiments in different pinch configurations (plasma focus, gas puffed plasma focus, gas embedded Z-pinch, wire arrays) at current of hundred of kilo- to mega-amperes, using the Speed-2 generator. The Chilean operation has begun implementing and developing diagnostics in a conventional plasma focus configuration operating in deuterium in order to characterize the neutron emission and the hard X-ray production. Silver activation counters, plastics CR39 and scintillator-photomultiplier detectors are used to characterize the neutron emission. Images of metallic plates with different thickness are obtained on commercial radiographic film, Agfa Curix ST-G2, in order to characterize an effective energy of the hard X-ray outside of the discharge. (authors)

  6. Chandra measurements of non-thermal X-ray emission from massive, merging, radio-halo clusters

    CERN Document Server

    Million, E T

    2008-01-01

    We report the discovery of spatially-extended, non-thermal or hot, quasi-thermal emission components in Chandra X-ray spectra for five of a sample of seven massive, merging galaxy clusters with powerful radio halos: Abell 665, 2163, 2255, 2319, and 1E0657-56. The emission components can be fitted by power-law models with mean photon indices in the range 1.4 20 keV. A control sample of regular, dynamically relaxed clusters without radio halos but with comparable thermal temperatures and luminosities shows no evidence for similar components in their Chandra spectra. Detailed X-ray spectral mapping reveals the complex thermodynamic states of the radio halo clusters. We report the discovery of a clear, large-scale shock front in Abell 2219. Our deepest observations, of the Bullet Cluster 1E0657-56, demonstrate a spatial correlation between the strongest power law X-ray emission, highest thermal pressure, and brightest 1.34GHz radio halo emission in this cluster. The integrated flux and mean spectral index of the...

  7. Suzaku Detection of Thermal X-Ray Emission Associated with the Western Radio Lobe of Fornax A

    CERN Document Server

    Seta, Hiromi; Inoue, Susumu

    2013-01-01

    We present the results of X-ray mapping observations of the western radio lobe of the Fornax A galaxy, using the X-ray Imaging Spectrometer (XIS) onboard the Suzaku satellite with a total exposure time of 327 ks. The purpose of this study is to investigate the nature and spatial extent of the diffuse thermal emission around the lobe by exploiting the low and stable background of the XIS. The diffuse thermal emission had been consistently reported in all previous studies of this region, but its physical nature and relation to the radio lobe had not been examined in detail. Using the data set covering the entire western lobe and the central galaxy NGC 1316, as well as comparison sets in the vicinity, we find convincingly the presence of thermal plasma emission with a temperature of ~1 keV in excess of conceivable background and contaminating emission (cosmic X-ray background, Galactic halo, intra-cluster gas of Fornax, interstellar gas of NGC 1316, and the ensemble of point-like sources). Its surface brightness...

  8. X-ray emission from the double-binary OB-star system QZ Car (HD 93206)

    CERN Document Server

    Parkin, E R; Townsley, L K; Pittard, J M; Moffat, A F J; Naze, Y; Rauw, G; Oskinova, L M

    2011-01-01

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The orbit of systems A (O9.7 I+b2 v, PA = 21 d) and B (O8 III+o9 v, PB = 6 d) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three temperature thermal plasma model, characterised by cool, moderate, and hot plasma components at kT ~ 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of ~ 0.2 x 10^22 cm-2. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of ~ 7 x 10^-13 erg s-1 cm-2, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. ...

  9. X-ray emission from the base of a current sheet in the wake of a CME

    CERN Document Server

    Saint-Hilaire, Pascal; Lin, Robert P

    2011-01-01

    Following a CME which started on 2002 November 26, RHESSI, the Ramaty High Energy Solar Spectroscopic Imager, observed for 12 hours an X-ray source above the solar limb, at altitudes between 0.1 and 0.3 RS above the photosphere. The GOES baseline was remarkably high throughout this event. The X-ray source's temperature peaked around 10-11 MK, and its emission measure increased throughout this time interval. Higher up, at 0.7 RS, hot (initially >8 MK) plasma has been observed by UVCS on SoHO for 2.3 days. This hot plasma was interpreted as the signature of a current sheet trailing the CME (Bemporad et al. 2006). The thermal energy content of the X-ray source is more than an order of magnitude larger than in the current sheet. Hence, it could be the source of the hot plasma in the current sheet, although current sheet heating by magnetic reconnection within it cannot be discounted. To better characterize the X-ray spectrum, we have used novel techniques (back-projection based and visibility-based) for long inte...

  10. Energy-dependent Orbital Modulation of X-rays and Constraints on Emission of the Jet in Cyg X-3

    Science.gov (United States)

    Zdziarski, Andrzej A.; Maitra, Chandreyee; Frankowski, Adam; Skinner, Gerald K.; Misra, Ranjeev

    2012-01-01

    We study orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of the presently available data and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above 5 keV, the modulation depth decreases with the increasing energy, which is consistent with the modulation being caused by both bound-free absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below 3 keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies > 0.1 GeV in soft spectral states, is found to be minor up to 100 keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum.We also calculate phase-resolved RXTE X-ray spectra, and show the difference between the spectra corresponding to phases around the superior and inferior conjunctions can indeed be accounted for by a combined effect of bound-free absorption in an ionized medium and Compton scattering.

  11. Charge-exchange Induced Modulation of the Heliosheath Ion Distribution Downstream of the Termination Shock

    Science.gov (United States)

    Fahr, H. J.; Fichtner, H.; Scherer, K.

    2015-12-01

    We consider the evolution of the solar wind ion distribution function alongthe plasma flow downstream from the termination shock induced by chargeexchange processes with cold interstellar H-atoms. We start from a kineticphase space transport equation valid in the bulk frame of the plasma flowthat takes into account convective changes, cooling processes, energydiffusion and ion injection, and describes solar wind and pick-up ionsas a co-moving, isotropic, joint ion population. From this kinetic transportequation one can ascend to an equation for the pressure moment of the iondistribution function, a so-called pressure transport equation, describingthe evolution of the ion pressure in the comoving rest frame. Assuming thatthe local ion distribution can be represented by an adequate kappa functionwith a kappa parameter that varies with the streamline coordinate, weobtain an ordinary differential equation for kappa as function of thestreamline coordinate s. With this result then we gain the heliosheath iondistribution function downstream of the termination shock. The latter thencan be used to predict the Voyager-2 measured moments of the distributionfunction like ion density and ion temperature, and it can also be used topredict spectral fluxes of ENA`s originating from these ions and registeredby IBEX-Hi and IBEX-Lo.We especially analyse the solar wind ion temperature decreasemeasured by Voyager-2 between the years 2008 to 2011 and try to explain itas a charge-exchange induced cooling of the ion distribution function duringthe associated ion convection period.

  12. External Compton emission from relativistic jets in Galactic black hole candidates and ultraluminous X-ray sources

    CERN Document Server

    Georganopoulos, M; Kirk, J G

    2002-01-01

    Galactic binary systems that contain a black hole candidate emit hard X-rays in their low luminosity mode. We show that this emission can be understood as due to the Compton scattering of photons from the companion star and/or the accretion disk by relativistic electrons in a jet. The same electrons are also responsible for the radio emission. Two sources -- XTE J1118+480 and Cygnus X-1 -- are modelled as representatives of black holes with low and high luminosity companion stars respectively. We further show that the ultraluminous compact X-ray sources observed in nearby galaxies have the properties expected of stellar mass black holes with high luminosity companions in which the jet is oriented close to our line of sight.

  13. Enhanced X-ray emission from laser-produced gold plasma by double pulses irradiation of nano-porous targets

    Science.gov (United States)

    Fazeli, R.

    2017-02-01

    Enhancement of the soft X-ray emission including free-free, free-bound and bound-bound emissions from Au nano-porous targets irradiated by single and double laser pulses is studied through numerical simulations. Laser pulses of duration 2 ns are used in calculations considering different prepulse intensities and a fixed intensity of 1013 Wcm-2 for the main pulse. The effects of prepulse intensity and time separation between laser pulses are studied for targets of different porosities. Results show that the X-ray yield can be enhanced significantly by a nano-porous target having optimum initial density. Such enhancement can be more improved when double laser pulses with appropriate delay time and intensities irradiate nano-porous targets. It is shown that the enhancement will be reduced when the prepulse intensity is greater than a specific value.

  14. Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130

    CERN Document Server

    Scott, A E; Miller, B P; Luo, B; Gallagher, S C

    2015-01-01

    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of $N_{H}=8\\times10^{20}-4\\times10^{21}$ cm$^{-2}$ when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the 4 observations. This suggests the observed absorption is not related to the typical "shielding gas" commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the CIV BAL shows strong variability. The equivalent width (EW) in 2014 is EW=11.24$\\pm$0.56 \\AA, showing a fractional increa...

  15. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    Science.gov (United States)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  16. Charge transfer reactions at interfaces between neutral gas and plasma: Dynamical effects and X-ray emission

    Science.gov (United States)

    Provornikova, E.; Izmodenov, V. V.; Lallement, R.

    2012-04-01

    Charge-transfer is the main process linking neutrals and charged particles in the interaction regions of neutral (or partly ionized) gas with a plasma. In this paper we illustrate the importance of charge-transfer with respect to the dynamics and the structure of neutral gas-plasma interfaces. We consider the following phenomena: (1) the heliospheric interface - region where the solar wind plasma interacts with the partly-ionized local interstellar medium (LISM) and (2) neutral interstellar clouds embedded in a hot, tenuous plasma such as the million degree gas that fills the so-called ``Local Bubble". In (1), we discuss several effects in the outer heliosphere caused by charge exchange of interstellar neutral atoms and plasma protons. In (2) we describe the role of charge exchange in the formation of a transition region between the cloud and the surrounding plasma based on a two-component model of the cloud-plasma interaction. In the model the cloud consists of relatively cold and dense atomic hydrogen gas, surrounded by hot, low density, fully ionized plasma. We discuss the structure of the cloud-plasma interface and the effect of charge exchange on the lifetime of interstellar clouds. Charge transfer between neutral atoms and minor ions in the plasma produces X-ray emission. Assuming standard abundances of minor ions in the hot gas surrounding the cold interstellar cloud, we estimate the X-ray emissivity consecutive to the charge transfer reactions. Our model shows that the charge-transfer X-ray emission from the neutral cloud-plasma interface may be comparable to the diffuse thermal X-ray emission from the million degree gas cavity itself.

  17. Characteristics of Solar Flare Hard X-ray Emissions: Observations and Models

    Science.gov (United States)

    Liu, Wei

    2007-05-01

    The main theme of this dissertation is the investigation of the physics of acceleration and transport of particles in solar flares and their radiative signatures. The observational studies, using hard X-rays (HXRs) observed by RHESSI, concentrate on four flares, which support the classical magnetic reconnection model of flares in various ways. In the 11/03/2003 X3.9 flare, there is an upward motion of the loop-top source, accompanied by a systematic increase in the separation of the foot-point sources at a comparable speed. This is consistent with the reconnection model with an inverted-Y geometry. The 04/30/2002 M1.3 event exhibits rarely observed two coronal sources, with very similar spectra and their higher-energy emission being close together. This suggests that reconnection occurs between the two sources. In the 10/29/2003 X10 flare, the logarithmic total HXR flux of the two foot-points correlates with their mean magnetic field. The foot-points show asymmetric HXR fluxes, qualitatively consistent with the magnetic mirroring effect. The 11/13/2003 M1.7 flare reveals evidence of chromospheric evaporation directly imaged by RHESSI for the first time. The emission centroids move toward the loop-top, indicating a density increase in the loop. The theoretical modeling of this work combines the Stanford stochastic acceleration model with the NRL hydrodynamic model to study the interplay of the particle acceleration, transport, and radiation effects and the atmospheric response to the energy deposition by electrons. I find that low-energy electrons in the quasi-thermal portion of the spectrum affects the hydrodynamics by producing more heating in the corona than the previous models that used a power-law spectrum with a low-energy cutoff. The Neupert effect is found to be present and effects of suppression of thermal conduction are tested in the presence of hydrodynamic flows. I gratefully thank my adviser, Prof. Vahe' Petrosian, my collaborators, and funding support

  18. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-Line Quasars: Unification with a Geometrically Thick Accretion Disk?

    CERN Document Server

    Luo, B; Hall, P B; Wu, Jianfeng; Anderson, S F; Garmire, G P; Gibson, R R; Plotkin, R M; Richards, G T; Schneider, D P; Shemmer, O; Shen, Yue

    2015-01-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z ~ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ($\\Gamma=1.16_{-0.32}^{+0.37}$) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite SDSS spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness; e.g., Fe II rest-frame equivalent width and relative color. We describe how ...

  19. Weak hard X-ray emission from two broad absorption line quasars observed with NuSTAR: Compton-thick absorption or intrinsic X-ray weakness?

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2013-01-01

    likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place...... are not significantly absorbed (NH ≲ 1024 cm-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain...... statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%....

  20. Improvement in limit of detection in particle induced X-ray emission by means of rise time and pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Papp, Tibor E-mail: tibpapp@netscape.nettibpapp@yahoo.ca; Lakatos, Tamas; Nejedly, Zdenek; Campbell, John L

    2002-04-01

    A digital signal processor, based upon high-rate sampling of the preamplifier output, and equipped with rise time and pulse shape discrimination, has been tested in three situations. This processor provided significant improvement of particle induced X-ray emission and X-ray fluorescence detection limits over the state of the art analog processors, depending on the energy and intensity distribution of the X-ray spectra. Additionally it had a superior performance when measurements were performed in an environment of large electronic noise and in large nuclear background environment. It has also improved the reduction of several artifacts in X-ray spectra.

  1. Charge exchange and X-ray emission in 70 MeV/u Bi-Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Verma, P. [GSI, D-64291 Darmstadt (Germany) and Vaish College, Rohtak 124 001 (India) and J. Liebig University, D-35392 Giessen (Germany)]. E-mail: P.Verma@gsi.de; Mokler, P.H. [GSI, D-64291 Darmstadt (Germany); JMI University, New Delhi 110 025 (India); Braeuning-Demian, A. [GSI, D-64291 Darmstadt (Germany); Braeuning, H. [JMI University, New Delhi 110 025 (India); Berdermann, E. [GSI, D-64291 Darmstadt (Germany); Chatterjee, S. [GSI, D-64291 Darmstadt (Germany); Gumberidze, A. [GSI, D-64291 Darmstadt (Germany); Hagmann, S. [J.W. Goethe University, D-60486 Frankfurt (Germany); Kozhuharov, C. [GSI, D-64291 Darmstadt (Germany); Orsic-Muthig, A. [GSI, D-64291 Darmstadt (Germany); Reuschl, R. [J.W. Goethe University, D-60486 Frankfurt (Germany); Schoeffler, M. [J.W. Goethe University, D-60486 Frankfurt (Germany); Spillmann, U. [GSI, D-64291 Darmstadt (Germany); Stoehlker, Th. [GSI, D-64291 Darmstadt (Germany); Stachura, Z. [Institute for Nuclear Physics, PL-31-342 Cracow (Poland); Tashenov, S. [GSI, D-64291 Darmstadt (Germany); Wahab, M.A. [Vaish College, Rohtak 124 001 (India)

    2005-07-01

    Charge exchange and X-ray emission for 70 MeV/u highly charged ions of Bi {sup q+} [77 q 82] colliding with thin Au targets [21 t in {mu}g/cm{sup 2} 225] were measured at the heavy ion synchrotron SIS at GSI. For the innermost shells this beam energy implies a quasiadiabatic collision regime. The charge state distribution of the emerging ions was measured by a position sensitive CVD-diamond detector after being analyzed by a magnet spectrometer. Charge exchange cross sections have been deduced from the target thickness dependence of the charge state distribution. Electron capture at distant collision dominates completely over ionization at close collision. The X-ray emission from the collision partners were measured by solid state detectors, Ge(i). The K X-ray emission for closed and open incoming projectile K vacancies gives access to vacancy transfer in the superheavy quasi-molecule transiently formed during collision for the innermost shells.

  2. Impacts of fragmented accretion streams onto Classical T Tauri Stars: UV and X-ray emission lines

    CERN Document Server

    Colombo, Salvatore; Peres, Giovanni; Argiroffi, Costanza; Reale, Fabio

    2016-01-01

    Context. The accretion process in Classical T Tauri Stars (CTTSs) can be studied through the analysis of some UV and X-ray emission lines which trace hot gas flows and act as diagnostics of the post-shock downfalling plasma. In the UV band, where higher spectral resolution is available, these lines are characterized by rather complex profiles whose origin is still not clear. Aims. We investigate the origin of UV and X-ray emission at impact regions of density structured (fragmented) accretion streams.We study if and how the stream fragmentation and the resulting structure of the post-shock region determine the observed profiles of UV and X-ray emission lines. Methods. We model the impact of an accretion stream consisting of a series of dense blobs onto the chromosphere of a CTTS through 2D MHD simulations. We explore different levels of stream fragmentation and accretion rates. From the model results, we synthesize C IV (1550 {\\AA}) and OVIII (18.97 {\\AA}) line profiles. Results. The impacts of accreting blob...

  3. Reverse and Forward Shock X-ray Emission in an Evolutionary Model of Supernova Remnants undergoing Efficient Diffusive Shock Acceleration

    CERN Document Server

    Lee, Shiu-Hang; Ellison, Donald C; Nagataki, Shigehiro; Slane, Patrick O

    2014-01-01

    We present new models for the forward and reverse shock thermal X-ray emission from core-collapse and Type Ia supernova remnants (SNRs) which include the efficient production of cosmic rays via non-linear diffusive shock acceleration (DSA). Our CR-hydro-NEI code takes into account non-equilibrium ionization (NEI), hydrodynamic effects of efficient CR production on the SNR evolution, and collisional temperature equilibration among heavy ions and electrons in both the shocked supernova (SN) ejecta and the shocked circumstellar material. While X-ray emission is emphasized here, our code self-consistently determines both thermal and non-thermal broadband emission from radio to TeV energies. We include Doppler broadening of the spectral lines by thermal motions of the ions and by the remnant expansion. We study, in general terms, the roles which the ambient environment, progenitor models, temperature equilibration, and processes related to DSA have on the thermal and non-thermal spectra. The study of X-ray line em...

  4. Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yields

    Science.gov (United States)

    Michelet, C.; Barberet, Ph.; Devès, G.; Bouguelmouna, B.; Bourret, S.; Delville, M.-H.; Le Trequesser, Q.; Gordillo, N.; Beasley, D. G.; Marques, A. C.; Farau, R.; Toko, B. R.; Campbell, J.; Maxwell, J.; Moretto, Ph.; Seznec, H.

    2015-04-01

    We present here a new development of the TomoRebuild software package, to perform quantitative Particle Induced X-ray Emission Tomography (PIXET) reconstruction. X-ray yields are obtained from the GUPIX code. The GUPIX data base is available for protons up to 5 MeV and also in the 20-100 MeV energy range, deuterons up to 6 MeV, 3He and alphas up to 12 MeV. In this version, X-ray yields are calculated for thin samples, i.e. without simulating X-ray attenuation. PIXET data reconstruction is kept as long as possible independent from Scanning Transmission Ion Microscopy Tomography (STIMT). In this way, the local mass distribution (in g/cm3) of each X-ray emitting element is reconstructed in all voxels of the analyzed volume, only from PIXET data, without the need of associated STIMT data. Only the very last step of data analysis requires STIMT data, in order to normalize PIXET data to obtain concentration distributions, in terms of normalized mass fractions (in μg/g). For this, a noise correction procedure has been designed in ImageJ. Moreover sinogram or image misalignment can be corrected, as well as the difference in beam size between the two experiments. The main features of the TomoRebuild code, user friendly design and modular C++ implementation, were kept. The software package is portable and can run on Windows and Linux operating systems. An optional user-friendly graphic interface was designed in Java, as a plugin for the ImageJ graphic software package. Reconstruction examples are presented from biological specimens of Caenorhabditis elegans - a small nematode constituting a reference model for biology studies. The reconstruction results are compared between the different codes TomoRebuild, DISRA and JPIXET, and different reconstruction methods: Filtered BackProjection (FBP) and Maximum Likelihood Expectation Maximization (MLEM).

  5. Quantitative reconstruction of PIXE-tomography data for thin samples using GUPIX X-ray emission yields

    Energy Technology Data Exchange (ETDEWEB)

    Michelet, C., E-mail: michelet@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Barberet, Ph., E-mail: barberet@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Devès, G., E-mail: deves@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bouguelmouna, B., E-mail: bbouguel@gmail.com [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bourret, S., E-mail: bourret@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Delville, M.-H., E-mail: delville@icmcb-bordeaux.cnrs.fr [Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UPR9048) CNRS, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Le Trequesser, Q., E-mail: letreque@cenbg.in2p3.fr [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB, UPR9048) CNRS, Université de Bordeaux, 87 avenue du Dr. A. Schweitzer, Pessac F-33608 (France); Gordillo, N., E-mail: nuri.gordillo@gmail.com [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Beasley, D.G., E-mail: d.beasley@ucl.ac.uk [Center of Medical Imaging Computing (CMIC), Department of Medical Physics & Bioengineering, University College London, Gower Street, London WC1E 6BT (United Kingdom); and others

    2015-04-01

    We present here a new development of the TomoRebuild software package, to perform quantitative Particle Induced X-ray Emission Tomography (PIXET) reconstruction. X-ray yields are obtained from the GUPIX code. The GUPIX data base is available for protons up to 5 MeV and also in the 20–100 MeV energy range, deuterons up to 6 MeV, {sup 3}He and alphas up to 12 MeV. In this version, X-ray yields are calculated for thin samples, i.e. without simulating X-ray attenuation. PIXET data reconstruction is kept as long as possible independent from Scanning Transmission Ion Microscopy Tomography (STIMT). In this way, the local mass distribution (in g/cm{sup 3}) of each X-ray emitting element is reconstructed in all voxels of the analyzed volume, only from PIXET data, without the need of associated STIMT data. Only the very last step of data analysis requires STIMT data, in order to normalize PIXET data to obtain concentration distributions, in terms of normalized mass fractions (in μg/g). For this, a noise correction procedure has been designed in ImageJ. Moreover sinogram or image misalignment can be corrected, as well as the difference in beam size between the two experiments. The main features of the TomoRebuild code, user friendly design and modular C++ implementation, were kept. The software package is portable and can run on Windows and Linux operating systems. An optional user-friendly graphic interface was designed in Java, as a plugin for the ImageJ graphic software package. Reconstruction examples are presented from biological specimens of Caenorhabditis elegans – a small nematode constituting a reference model for biology studies. The reconstruction results are compared between the different codes TomoRebuild, DISRA and JPIXET, and different reconstruction methods: Filtered BackProjection (FBP) and Maximum Likelihood Expectation Maximization (MLEM)

  6. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Montez, R. Jr. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212 (United States); Kastner, J. H.; Freeman, M. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, Rochester, NY 14623 (United States); and others

    2015-02-10

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.

  7. The variable hard x-ray emission of NGC 4945 as observed by NUSTAR

    DEFF Research Database (Denmark)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio;

    2014-01-01

    We present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a f...

  8. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    Science.gov (United States)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  9. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    Science.gov (United States)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  10. Detection and Analysis of X Ray Emission from the Princeton-Field-Reversed Configuration (PFRC-2)

    Science.gov (United States)

    Bosh, Alexandra; Swanson, Charles; Jandovitz, Peter; Cohen, Samuel

    2016-10-01

    The PFRC is an odd-parity rotating-magnetic-field-driven field-reversed-configuration magnetic confinement experiment. Studying X rays produced via electron Bremsstrahlung with neutral particles is crucial to the further understanding of the energy and particle confinement of the PFRC. The data on the x rays are collected using a detector system comprised of two, spatially scannable Amptek XR-100 CR detectors and a Amptek XR-100 SDD detector that view the plasma column at two axial locations, one in the divertor and one near the axial midplane. These provide X-ray energy and arrival-time information. (Data analysis requires measurement of each detector's efficiency, a parameter that is modified by window transmission. Detector calibrations were performed with a custom-made X-ray tube that impinged 1-microamp 1-5 kV electron beams onto a carbon target.) From the analyzed data, the average electron energy, effective temperature, and electron density can be extracted. Spatial scans then allow the FRC's internal energy to be measured. We present recent measurements of the Bremsstrahlung spectrum from 0.8 to 6 keV and the inferred electron temperature in the PFRC device as functions of heating power, magnetic field and fill gas pressure. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  11. A deep ROSAT survey 10, X-ray luminous narrow emission line galaxies

    CERN Document Server

    Griffiths, R E; Georgantopoulos, I; Boyle, B J; Stewart, G C; Shanks, T; Fruscione, A; Griffiths, Richard E; Della Ceca, Roberto; Georgantopoulos, Ioannis; Boyle, Brian J; Stewart, Gordon C; Shanks, Tom; Fruscione, Antonella

    1996-01-01

    X-ray luminous narrow emision-line galaxies (NELG) have been previously identified and proposed as an important class of extragalactic X-ray sources, with a potentially significant contribution to the total extragalactic X-ray flux at energies below \\sim 10 keV. In order to investigate and clarify this possibility, we have used a sample of NELG found in 5 deep ROSAT fields and similar samples belonging to the Cambridge-Cambridge ROSAT Serendipity Survey and to the {\\it Einstein} Observatory Extended Medium Sensitivity Survey sample. The principal results of this investigation are as follows: a) for a given optical luminosity, the typical X-ray luminosity of NELGs is about one or two orders of magnitude higher than that of normal galaxies; b) the ratio of the surface density of NELGs compared with BLAGN increases from about 0.04 at fx >= 6 x 10^{-13} erg cm^{-2} s^{-1} to about 0.1 at fx >= 10^{-14} erg cm^{-2} s^{-1}, suggesting that the surface density of NL galaxies might be very close to that of BLAGN at f...

  12. Further constraints on thermal quiescent X-ray emission from SAX J1808.4-3658

    NARCIS (Netherlands)

    C.O. Heinke; P.G. Jonker; R. Wijnands; C.J. Deloye; R.E. Taam

    2009-01-01

    We observed SAX J1808.4-3658 (1808), the first accreting millisecond pulsar, in deep quiescence with XMM-Newton and (near simultaneously) Gemini-South. The X-ray spectrum of 1808 is similar to that observed in quiescence in 2001 and 2006, describable by an absorbed power law with photon index 1.74 +

  13. The X-ray emission of the WR+O binary WR 79

    NARCIS (Netherlands)

    Gosset, E.; Sana, H.; Rauw, G.; Nazé, Y.

    2011-01-01

    In the framework of our multiwavelength study of the open cluster NGC6231, we observed the colliding-wind WR+O binary WR79 at six different epochs with the XMM-Newton observatory. These pointings offer the possibility to study the X-ray spectrum of WR79 and its possible variability. Our results are

  14. X-ray Insights into the Nature of PHL 1811 Analogs and Weak Emission-line Quasars: Unification with a Geometrically Thick Accretion Disk?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Hall, P. B.; Wu, Jianfeng; Anderson, S. F.; Garmire, G. P.; Gibson, R. R.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Shemmer, O.; Shen, Yue

    2015-06-01

    We present an X-ray and multiwavelength study of 33 weak emission-line quasars (WLQs) and 18 quasars that are analogs of the extreme WLQ, PHL 1811, at z≈ 0.5-2.9. New Chandra 1.5-9.5 ks exploratory observations were obtained for 32 objects while the others have archival X-ray observations. Significant fractions of these luminous type 1 quasars are distinctly X-ray weak compared to typical quasars, including 16 (48%) of the WLQs and 17 (94%) of the PHL 1811 analogs with average X-ray weakness factors of 17 and 39, respectively. We measure a relatively hard ({Γ }=1.16-0.32+0.37) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption, and spectral analysis of one PHL 1811 analog, J1521+5202, also indicates significant intrinsic X-ray absorption. We compare composite Sloan Digital Sky Survey spectra for the X-ray weak and X-ray normal populations and find several optical-UV tracers of X-ray weakness, e.g., Fe ii rest-frame equivalent width (REW) and relative color. We describe how orientation effects under our previously proposed “shielding-gas” scenario can likely unify the X-ray weak and X-ray normal populations. We suggest that the shielding gas may naturally be understood as a geometrically thick inner accretion disk that shields the broad line region from the ionizing continuum. If WLQs and PHL 1811 analogs have very high Eddington ratios, the inner disk could be significantly puffed up (e.g., a slim disk). Shielding of the broad emission-line region by a geometrically thick disk may have a significant role in setting the broad distributions of C iv REW and blueshift for quasars more generally.

  15. First Hard X-Ray Detection of the Non-Thermal Emission Around the Arches Cluster: Morphology and Spectral Studies With NuSTAR

    Science.gov (United States)

    Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.; Hailey, Charles J.; Harrison, Fiona A.; Hong, JaeSub; Madsen, Kristin K.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Zhang, William W.

    2014-01-01

    The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)

  16. Connection Between X-Ray Emission and Relativistic Jets in the Radio Galaxies 3C 111 and 3C 120

    Science.gov (United States)

    Aller, Margo F.

    2005-01-01

    This work represents a part of a longterm study of the X-ray flux variability in radio galaxies and its relation to flux and structural changes in the associated radio jet. The work described here included: 1) continued study of the emission properties of the FR I radio galaxy 3C 120 known to exhibit a jet/disk connection from our past work; and 2) the commencement of monitoring of a second radio galaxy, the FR I1 object 3C 111 which was selected because of similar radio and X-ray properties to 3C 120, including the presence of Fe K a emission. The association between X-ray dips and new superluminal components, suggesting a picture in which the radio jet is fed by accretion events near the black hole, was identified in 3C 120 using combined RXTE and radio flux monitoring data and bi-monthly to monthly imaging data from the VLBA at 43 GHz. Such data were also obtained for both targets during the period described here. Specific goals were to more broadly investigate the X-ray dip/superluminal connection in 3C 120, thereby determining the epochs of X-ray minima and superluminal ejections more accurately (and hence more precisely determining the distance between the accretion disk and the core of the radio jet), and to determine whether a similar pattern is present in the data for a second radio galaxy. In 3C 111 a different time scale (longer time delays between X-ray dips and superluminal ejections) was expected due to the higher black hole mass implied by its higher radio luminosity: no black hole mass is published for this object but one can be determined from a PDS analysis of the RXTE data. The addition of the second source to the study would identify whether a similar connection was present in other sources and, if found, would provide important information on how time scale (and hence size scale) of accretion disk/jet systems depends on black hole mass. The grant included funding for the reduction and analysis of data obtained during the time period of Rossi

  17. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  18. A physical interpretation of the jet-like X-ray emission from supernova remnant W49B

    CERN Document Server

    Miceli, M; Ballet, J; Bocchino, F; Hughes, J P; Hwang, U; Petre, R

    2007-01-01

    In the framework of the study of supernova remnants and their complex interaction with the interstellar medium and the circumstellar material, we focus on the galactic supernova remnant W49B. Its morphology exhibits an X-ray bright elongated nebula, terminated on its eastern end by a sharp perpendicular structure aligned with the radio shell. The X-ray spectrum of W49B is characterized by strong K emission lines from Si, S, Ar, Ca, and Fe. There is a variation of the temperature in the remnant with the highest temperature found in the eastern side and the lowest one in the western side. The analysis of the recent observations of W49B indicates that the remnant may be the result of an asymmetric bipolar explosion where the ejecta are collimated along a jet-like structure and the eastern jet is hotter and more Fe-rich than the western one. Another possible scenario associates the X-ray emission with a spherical explosion where parts of the ejecta are interacting with a dense belt of ambient material. To overcom...

  19. Non-thermal hard X-ray emission in galaxy clusters observed with the BeppoSAX PDS

    CERN Document Server

    Nevalainen, J; Bonamente, M; Colafrancesco, S

    2004-01-01

    We study the X-ray emission in a sample of galaxy clusters using the BeppoSAX PDS instrument in the 20 -- 80 keV energy band. The non-thermal hard X-ray cluster emission (HXR) is detected at a 2 sigma level in 50% of the non-significantly AGN-contaminated clusters: A2142, A2199, A2256, A3376, Coma, Ophiuchus and Virgo. The data are consistent with a scenario whereby relaxed clusters have no hard X-ray component of non-thermal origin, whereas merger clusters do, with a 20-80 keV luminosity of 10^(43-44) erg/s. The co-added spectrum of the above clusters indicates a power-law spectrum for the HXR with a photon index of 2.8+0.3-0.4 in the 12-115 keV band, and we find indication that it has extended distribution. These indications argue against significant contamination from obscured AGN, which have harder spectra and centrally concentrated distribution. These results are supportive of the assumption of the merger shock acceleration of electrons in clusters. Assuming that the Cosmic Microwave Background photons e...

  20. Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds

    CERN Document Server

    Russell, Christopher M P; Cuadra, Jorge

    2016-01-01

    The Galactic centre is a hotbed of astrophysical activity, with the injection of wind material from $\\sim$30 massive Wolf-Rayet (WR) stars orbiting within 12" of the super-massive black hole (SMBH) playing an important role. Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. This work aims to confront the 3Ms of Chandra X-ray Visionary Program (XVP) observations of this diffuse emission by computing the X-ray emission from these hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that it reproduces the spectral shape from the 2"--5" ring around the SMBH, where most of the stellar wind material that is ultimately captured by Sgr A* is shock-heated and thermalised. This naturally explains that the hot gas comes from colliding WR winds, and that the wind...

  1. The effect of anode shape on neon soft x-ray emissions and current sheath configuration in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M A; Sobhanian, S [Faculty of Physics, University of Tabriz, Tabriz (Iran, Islamic Republic of); Wong, C S [Plasma Research Laboratory, Physics Department, University of Malaya, Kuala Lumpur (Malaysia); Lee, S; Lee, P; Rawat, R S, E-mail: rajdeep.rawat@nie.edu.s [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University (Singapore)

    2009-02-21

    The effect of three different anode shapes, flat, tapered and hemispherical, on the x-ray emission characteristics of a neon filled UNU-ICTP plasma focus device is investigated. The current sheath dynamics, in the radial collapse phase, has been simultaneously interrogated using the laser shadowgraphy method to understand the variation in x-ray emission characteristics for anodes of different shapes used in the experiments. The maximum neon soft x-ray (SXR) yield for the flat anode is about 7.5 {+-} 0.4 J at 4 mbar, whereas for hemispherical and tapered anodes the neon SXR is almost halved with the optimum pressure shifting to a lower value of 3 mbar. The laser shadowgraphic images confirm that the reduction in the overall neon SXR yield is due to the reduced focused plasma column length for these anodes. The relative HXR yield was the highest for the hemispherical anode followed by the tapered and the flat anodes in that order. The shadowgraphic images and the voltage probe signals confirmed that for the hemispherical anode the multiple-pinch phenomenon was most commonly observed, which could be responsible for multiple HXR bursts for this anode with maximum HXR yields.

  2. Scale heights and equivalent widths of the iron K-shell lines in the Galactic diffuse X-ray emission

    CERN Document Server

    Yamauchi, Shigeo; Nobukawa, Masayoshi; Uchiyama, Hideki; Koyama, Katsuji

    2016-01-01

    This paper reports the analysis of the X-ray spectra of the Galactic diffuse X-ray emission (GDXE) in the Suzaku archive. The fluxes of the Fe I K alpha (6.4 keV), Fe XXV,He alpha (6.7 keV) and Fe XXVI Ly alpha (6.97 keV) lines are separately determined. From the latitude distributions, we confirm that the GDXE is decomposed into the Galactic center (GCXE), the Galactic bulge (GBXE) and the Galactic ridge (GRXE) X-ray emissions. The scale heights (SHs) of the Fe XXV He alpha line of the GCXE, GBXE and GRXE are determined to be ~40, ~310 and ~140 pc, while those of the Fe I K alpha line are ~30, ~160 and ~70 pc, respectively. The mean equivalent widths (EWs) of the sum of the Fe XXV He alpha and Fe XXVI Ly alpha lines are ~750 eV, ~600 eV and ~550 eV, while those of the Fe I K alpha line are ~150~eV, ~60~eV and ~100~eV for the GCXE, GBXE and GRXE, respectively. The origin of the GBXE, GRXE and GCXE is separately discussed based on the new results of the SHs and EWs, in comparison with those of the Cataclysmic ...

  3. Hard X-ray Emission from Sh2-104: A NuSTAR search for Gamma-ray Counterparts

    CERN Document Server

    Gotthelf, E V; Aliu, E; Paredes, J M; Tomsick, J A; Boggs, S E; Christensen, F E; Craig, W W; Hailey, C J; Harrison, F A; Hong, J S; Rahoui, F; Stern, D; Zhang, W W

    2016-01-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact HII region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1 +/- 1.0)E22 cm^-2 and photon index Gamma = 2.1 +/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (< 43% modulation), this object is likely a background AGN rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evi...

  4. Modelling the thermal X-ray emission around the Galactic centre from colliding Wolf-Rayet winds

    CERN Document Server

    Russell, Christopher M P; Cuadra, Jorge

    2016-01-01

    The Galactic centre is a hotbed of astrophysical activity. Powering these processes is the injection of wind material from ~30 massive Wolf-Rayet (WR) stars orbiting within 12" of the super-massive black hole (SMBH). Hydrodynamic simulations of such colliding and accreting winds produce a complex density and temperature structure of cold wind material shocking with the ambient medium, creating a large reservoir of hot, X-ray-emitting gas. A Chandra X-ray Visionary Program observed the Galactic centre for 3 Ms and resolved this diffuse emission. This work aims to confront these Chandra observations by computing the X-ray emission from the hydrodynamic simulations of the colliding WR winds, amid exploring a variety of SMBH feedback mechanisms. The major success of the model is that the spectral shape from the 2"-5" ring around the SMBH matches the observation well. This naturally explains that the hot gas comes from colliding WR winds, and that the wind speeds of these stars are in general well constrained. Add...

  5. A jet emission model to probe the dynamics of accretion and ejection coupling in black hole X-ray binaries

    Science.gov (United States)

    Malzac, Julien

    2016-07-01

    Compact jets are probably the most common form of jets in X-ray binaries and Active Galactic Nuclei. They seem to be present in all sources in the so-called hard X-ray spectral state. They are characterised by a nearly flat Spectral Energy Distribution (SED) extending from the radio to the infrared bands. This emission is usually interpreted as partially self absorbed synchrotron emission from relativistic leptons accelerated in the jet. The observed flat spectral shape requires energy dissipation and acceleration of particules over a wide range of distances along the jet. This distributed energy dissipation is likely to be powered by internal shocks caused by fluctuations of the outflow velocity. I will discuss such an internal shock model in the context of black hole binaries. I will show that internal shocks can produce the observed SEDs and also predict a strong, wavelength dependent, variability that resembles the observed one. The assumed velocity fluctuations of the jet must originate in the accretion flow. The model thus predicts a strong connection between the observable properties of the jet in the radio to IR bands, and the variability of the accretion flow as observed in X-rays. If the model is correct, this offers a unique possibility to probe the dynamics of the coupled accretion and ejection processes leading to the formation of compact jets.

  6. Projectile X-ray emission in relativistic ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Salem, Shadi Mohammad Ibrahim

    2010-03-16

    This work reports on the study of the projectile X-ray emission in relativistic ion-atom collisions. Excitation of K-shell in He-like uranium ions, electron capture into H-like uranium ions and Simultaneous ionization and excitation of initially He-like uranium ions have been studied using the experimental storage ring at GSI. For the K{sub {alpha}}{sub 1} and K{sub {alpha}}{sub 2} transitions originating from the excitation of the He-like uranium ions, no alignment was observed. In contrast, the Ly{sub {alpha}}{sub 1} radiation from the simultaneous ionization-excitation process of the He-like uranium ions shows a clear alignment. The experimental value leads to the inclusion of a magnetic term in the interaction potential. The capture process of target electrons into the highly-charged heavy ions was studied using H-like uranium ions at an incident energy of 220 MeV/u, impinging on N{sub 2} gas-target. It was shown that, the strongly aligned electrons captured in 2p{sub 3/2} level couple with the available 1s{sub 1/2} electron which shows no initial directional preference. The magnetic sub-state population of the 2p{sub 3/2} electron is redistributed according to the coupling rules to the magnetic sub-states of the relevant two-electron states. This leads to the large anisotropy in the corresponding individual ground state transitions contributing to the K{sub {alpha}}{sub 1} emission. From the K{sub {alpha}}{sub 1}/K{sub {alpha}}{sub 2} ratio, the current results show that the incoherent addition of the E1 and M2 transition components yield to an almost isotropic emission of the total K{sub {alpha}}{sub 1}. In contrast to the radiative electron capture, the experimental results for the K-shell single excitation of He-like uranium ions indicate that only the {sup 1}P{sub 1} level contributes to the K{sub {alpha}}{sub 1} transition. For this case, the anisotropy parameter {beta}{sub 20} was found to be -0.20{+-}0.03. This work also reports on the study of a two

  7. XMM-Newton confirmation of Soft X-ray excess emission in clusters of galaxies - the discovery of O VII emission from an extended warm baryonic component

    CERN Document Server

    Kaastra, J S; Tamura, T; Paerels, F B S; Den Herder, J W A

    2003-01-01

    We investigate a sample of 14 clusters of galaxies observed with XMM-Newton in a search for soft X-ray excess emission. In five of these clusters a significant soft excess is evident. This soft X-ray excess is compared with the thermal emission from both the hot intracluster gas and any cooling (flow) gas that may be present. A warm (kT=0.2 keV), extended (several Mpc), plasma component is particularly clear in the outer parts of the cluster, where the normal cluster X-ray emission is weak. This warm component causes both a thermal soft X-ray excess at low energies (below 0.4-0.5 keV), as well as O VII line emission with a redshift consistent with a cluster origin, and not easily interpreted as Galactic foreground emission. The intensity of this component is commensurate with what has been measured before with the ROSAT PSPC in the 1/4 keV band. We attribute this component to emission from intercluster filaments of the Warm-Hot Intergalactic Medium in the vicinity of these clusters. For the central regions of...

  8. The soft and hard X-rays thermal emission from star cluster winds with a supernova explosion

    CERN Document Server

    Castellanos-Ramirez, A; Esquivel, A; Toledo-Roy, J C; Olivares, J; Velazquez, P F

    2015-01-01

    Massive young star clusters contain dozens or hundreds of massive stars that inject mechanical energy in the form of winds and supernova explosions, producing an outflow which expands into their surrounding medium, shocking it and forming structures called superbubbles. The regions of shocked material can have temperatures in excess of 10$^6$ K, and emit mainly in thermal X-rays (soft and hard). This X-ray emission is strongly affected by the action of thermal conduction, as well as by the metallicity of the material injected by the massive stars. We present three-dimensional numerical simulations exploring these two effects, metallicity of the stellar winds and supernova explosions, as well as thermal conduction.

  9. Observation of polarised hard X-ray emission from the Crab by the PoGOLite Pathfinder

    CERN Document Server

    Chauvin, M; Jackson, M; Kamae, T; Kawano, T; Kiss, M; Kole, M; Mikhalev, V; Moretti, E; Olofsson, G; Rydström, S; Takahashi, H; Iyudin, A; Arimoto, M; Fukazawa, Y; Kataoka, J; Kawai, N; Mizuno, T; Ryde, F; Tajima, H; Takahashi, T; Pearce, M

    2015-01-01

    We have measured the linear polarisation of hard X-ray emission from the Crab in a previously unexplored energy interval, 20-120 keV. The introduction of two new observational parameters, the polarisation fraction and angle stands to disentangle geometrical and physical effects, thereby providing information on the pulsar wind geometry and magnetic field environment. Measurements are conducted using the PoGOLite Pathfinder - a balloon-borne polarimeter. Polarisation is determined by measuring the azimuthal Compton scattering angle of incident X-rays in an array of plastic scintillators housed in an anticoincidence well. The polarimetric response has been characterised prior to flight using both polarised and unpolarised calibration sources. We address possible systematic effects through observations of a background field. The measured polarisation fraction for the integrated Crab light-curve is ($18.4^{+9.8}_{-10.6}$)%, corresponding to an upper limit (99% credibility) of 42.4%, for a polarisation angle of ($...

  10. Electronic structure of multiferroic BiFeO3 by resonant soft-x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Tohru; Higuchi, T.; Liu, Y.-S.; Yao, P.; Glans, P.-A.; Guo, Jinghua; Chang, C.; Wu, Z.; Sakamoto, W.; Itoh, N.; Shimura, T.; Yogo, T.; Hattori, T.

    2008-07-11

    The electronic structure of multiferroic BiFeO{sub 3} has been studied using soft-X-ray emission spectroscopy. The fluorescence spectra exhibit that the valence band is mainly composed of O 2p state hybridized with Fe 3d state. The band gap corresponding to the energy separation between the top of the O 2p valence band and the bottom of the Fe 3d conduction band is 1.3 eV. The soft-X-ray Raman scattering reflects the features due to charge transfer transition from O 2p valence band to Fe 3d conduction band. These findings are similar to the result of electronic structure calculation by density functional theory within the local spin-density approximation that included the effect of Coulomb repulsion between localized d states.

  11. A Suzaku Search for Non-thermal Emission at Hard X-ray Energies in the Coma Cluster

    CERN Document Server

    Wik, Daniel R; Finoguenov, Alexis; Matsushita, Kyoko; Nakazawa, Kazuhiro; Clarke, Tracy E

    2009-01-01

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the ICM at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial (Fusco-Femiano et al. 2004; Rossetti & Molendi 2004). We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its non-thermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and non-thermal models to it and a spatially equivalent spectrum derived from an XMM-Newton mosaic of the Coma field (Schuecker et al. 2004). We fail to find statistically significant evidence for non-thermal emission in the spectra, which are better described by only a single or multi-temperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on t...

  12. Temporal behavior of unresolved transition array emission in water window soft x-ray spectral region from multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Thanh-Hung, E-mail: dinh@cc.utsunomiya-u.ac.jp; Suzuki, Yuhei; Arai, Goki; Higashiguchi, Takeshi, E-mail: higashi@cc.utsunomiya-u.ac.jp [Department of Electrical and Electronic Engineering, Faculty of Engineering and Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585 (Japan); Li, Bowen [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Dunne, Padraig; O' Sullivan, Gerry [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Fujioka, Shinsuke [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Hasegawa, Noboru; Kawachi, Tetsuya; Nishikino, Masaharu [Quantum Beam Science Center, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215 (Japan)

    2015-09-21

    We have characterized the spectral structure and the temporal history of the laser-produced high-Z multi-charged ion plasmas for the efficient water window soft x-ray sources. Strong unresolved transition array emission was observed due to 4d–4f and 4f–5g transitions from Au, Pb, and Bi plasmas in the 280–700 eV photon energy region. The temporal behavior of the emission was essentially similar of that of the laser pulse with a slight delay between different transitions. These results provide feedback for accurate modeling of the atomic processes with the radiative hydrodynamic simulations.

  13. Relativistic Iron Line Emission from the Neutron Star Low-mass X-ray Binary 4U 1636-536

    OpenAIRE

    Pandel, Dirk; Kaaret, Philip; Corbel, Stephane

    2008-01-01

    We present an analysis of XMM-Newton and RXTE data from three observations of the neutron star LMXB 4U 1636-536. The X-ray spectra show clear evidence of a broad, asymmetric iron emission line extending over the energy range 4-9 keV. The line profile is consistent with relativistically broadened Fe K-alpha emission from the inner accretion disk. The Fe K-alpha line in 4U 1636-536 is considerably broader than the asymmetric iron lines recently found in other neutron star LMXBs, which indicates...

  14. The Chandra Survey of Extragalactic Sources in the 3CR Catalog: X-ray Emission from Nuclei, Jets, and Hotspots in the Chandra Archival Observations

    CERN Document Server

    Massaro, F; Liuzzo, E; Orienti, M; Paladino, R; Paggi, A; Tremblay, G R; Wilkes, B J; Kuraszkiewicz, J; Baum, S A; O'Dea, C P

    2016-01-01

    As part of our program to build a complete radio and X-ray database of all the 3CR extragalactic radio sources, we present an analysis of 93 sources for which Chandra archival data are available. Most of these sources have been already published. Here we provide a uniform re-analysis and present nuclear X-ray fluxes and X-ray emission associated with radio jet knots and hotspots using both publicly available radio images and new radio images that have been constructed from data available in the VLA archive. For about 1/3 of the sources in the selected sample a comparison between the Chandra and the radio observations was not reported in the literature: we find X-ray detections of 2 new radio jet knots and 17 hotspots. We also report the X-ray detection of extended emission from the intergalactic medium of 15 galaxy clusters, two of which were most likely unknown previously.

  15. Hard X-Ray Emission from Sh 2-104: A NuSTAR Search for Gamma-Ray Counterparts

    Science.gov (United States)

    Gotthelf, E. V.; Mori, K.; Aliu, E.; Paredes, J. M.; Tomsick, J. A.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; Hong, J. S.; Rahoui, F.; Stern, D.; Zhang, W. W.

    2016-07-01

    We present NuSTAR hard X-ray observations of Sh 2-104, a compact H ii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Fainter, diffuse X-rays coincident with the eastern YMSC in Sh2-104 likely result from the colliding winds of a component star. Just outside the radio shell of Sh 2-104 lies 3XMM J201744.7+365045 and a nearby nebula, NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with {N}{{H}}=(3.1+/- 1.0)× {10}22 cm-2 and a photon index {{Γ }}=2.1+/- 0.1. Based on possible long-term flux variation and the lack of detected pulsations (≤43% modulation), this object is likely a background active galactic nucleus rather than a Galactic pulsar. The spectrum of the NuSTAR nebula shows evidence of an emission line at E = 5.6 keV, suggesting an optically obscured galaxy cluster at z = 0.19 ± 0.02 (d = 800 Mpc) and L X = 1.2 × 1044 erg s-1. Follow-up Chandra observations of Sh 2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37. We also show that the putative VERITAS excess south of Sh 2-104, is most likely associated with the newly discovered Fermi pulsar PSR J2017+3625 and not the H ii region.

  16. The X-ray emission from Young Stellar Objects in the rho Ophiuchi cloud core as seen by XMM-Newton

    CERN Document Server

    Ozawa, H; Montmerle, T

    2004-01-01

    We observed the main core F of the rho Ophiuchi cloud, an active star-forming region located at ~140 pc, using XMM-Newton with an exposure of 33 ks. We detect 87 X-ray sources within the 30' diameter field-of-view of the it EPIC imaging detector array. We cross-correlate the positions of XMM-Newton X-ray sources with previous X-ray and infrared (IR) catalogs: 25 previously unknown X-ray sources are found from our observation; 43 X-ray sources are detected by both XMM-Newton and Chandra; 68 XMM-Newton X-ray sources have 2MASS near-IR counterparts. We show that XMM-Newton and Chandra have comparable sensitivity for point source detection when the exposure time is set to ~30 ks for both. We detect X-ray emission from 7 Class I sources, 26 Class II sources, and 17 Class III sources. The X-ray detection rate of Class I sources is very high (64 %), which is consistent with previous Chandra observations in this area. We propose that 15 X-ray sources are new class III candidates, which doubles the number of known Cla...

  17. X-ray Emission Induced by Interaction of Highly Charged Ions with Solid Surface

    Institute of Scientific and Technical Information of China (English)

    ZhaoYongtao; XiaoGuoqing; ZhangXiaoan; YangZhihu; ChenXimeng; ZhangYanping

    2003-01-01

    The X-rays with energy from 1 keV to 60 keV in the interaction of highly charged ions (HCI) with a variety of solid surfaces were investigated at the research platform for atomic physics with the electron cyclone resonance (ECR) ion resource at IMP. We altered the projectile kinetic energy from 150 keV to about 400 keV. The X-ray excited by the projectile with the surface is shown in Fig.l, and a threshold of the projectile kinetic energy for this excitation is observed. Combining the colliding theory of classic electrodynamics with the concept of quantized orbits, we crudely give this threshold energy Tm as follows,

  18. The variable hard X-ray emission of NGC 4945 as observed by NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Puccetti, Simonetta [ASDC-ASI, Via del Politecnico, I-00133 Roma (Italy); Comastri, Andrea [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Fiore, Fabrizio [INAF-Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio Catone (RM) (Italy); Arévalo, Patricia; Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Risaliti, Guido [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Brandt, William N.; Luo, Bin [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Alexander, David M.; Gandhi, Poshak; Lansbury, George B. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Boggs, Steve E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, 2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Koss, Michael J. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Madejski, Greg M. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Matt, Giorgio [Dipartimento di Matematica e Fisica, Universit' a Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); and others

    2014-09-20

    We present a broadband (∼0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E <10 keV stays approximately constant. From modeling the complex reflection/transmission spectrum, we derive a Compton depth along the line of sight of τ{sub Thomson} ∼ 2.9, and a global covering factor for the circumnuclear gas of ∼0.15. This agrees with the constraints derived from the high-energy variability, which implies that most of the high-energy flux is transmitted rather than Compton-scattered. This demonstrates the effectiveness of spectral analysis at constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick active galactic nuclei (AGNs). The lower limits on the e-folding energy are between 200 and 300 keV, consistent with previous BeppoSAX, Suzaku, and Swift Burst Alert Telescope observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ∼0.1-0.3 λ{sub Edd} depending on the flux state. The substantial observed X-ray luminosity variability of NGC 4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L {sub Edd} values for obscured AGNs.

  19. Resolving the hard X-ray emission of GX 5-1 with INTEGRAL

    DEFF Research Database (Denmark)

    Paizis, A.; Ebisawa, K.; Tikkanen, T.;

    2005-01-01

    We present the study of one year of INTEGRAL data on the neutron star low mass X-ray binary GX 5-1. Thanks to the excellent angular resolution and sensitivity of INTEGRAL, we are able to obtain a high quality spectrum of GX 5-1 from similar to 5keV to similar to 100 keV, for the first time without...

  20. VizieR Online Data Catalog: AGN X-Ray emission and black holes (Kelly+, 2008)

    Science.gov (United States)

    Kelly, B. C.; Bechtold, J.; Trump, J. R.; Vestergaard, M.; Siemiginowska, A.

    2009-07-01

    In this analysis we combine 169 RQQs from Kelly et al. (2007ApJ...665.1489K) with 149 RQQs from the main SDSS sample of Strateva et al. (2005, Cat. J/AJ/130/387) to create a sample of 318 RQQs. Out of these 318 sources, 276 (86.8%) are detected in the X-ray. (1 data file).