WorldWideScience

Sample records for charge transport mechanism

  1. Mechanisms for DNA Charge Transport

    OpenAIRE

    Genereux, Joseph C.; Barton, Jacqueline K.

    2010-01-01

    DNA charge transport (CT) chemistry has received considerable attention by scientific researchers over the past 15 years since our first provocative publication on long range CT in a DNA assembly.1,2 This interest, shared by physicists, chemists and biologists, reflects the potential of DNA CT to provide a sensitive route for signaling, whether in the construction of nanoscale biosensors or as an enzymatic tool to detect damage in the genome. Research into DNA CT chemistry began as a quest to...

  2. Polaronic charge transport mechanism in DNA

    OpenAIRE

    Hennig, Dirk; Archilla, Juan F. R.

    2006-01-01

    For the detailed understanding of the conduction mechanism in DNA we use models based on the concept of polaron and breather solutions. We describe how charge transport relies on the coupling of the charge carrying unit to the vibrational modes of DNA allowing for the formation of polaron-like localised states. The mobility of these localised states is discussed particularly in the presence of parametrical and structural disorder inherent to biomolecules. It is demonstrated tha...

  3. Charge transport mechanism in lead oxide revealed by CELIV technique.

    Science.gov (United States)

    Semeniuk, O; Juska, G; Oelerich, J-O; Wiemer, M; Baranovskii, S D; Reznik, A

    2016-01-01

    Although polycrystalline lead oxide (PbO) belongs to the most promising photoconductors for optoelectronic and large area detectors applications, the charge transport mechanism in this material still remains unclear. Combining the conventional time-of-flight and the photo-generated charge extraction by linear increasing voltage (photo-CELIV) techniques, we investigate the transport of holes which are shown to be the faster carriers in poly-PbO. Experimentally measured temperature and electric field dependences of the hole mobility suggest a highly dispersive transport. In order to analyze the transport features quantitatively, the theory of the photo-CELIV is extended to account for the dispersive nature of charge transport. While in other materials with dispersive transport the amount of dispersion usually depends on temperature, this is not the case in poly-PbO, which evidences that dispersive transport is caused by the spatial inhomogeneity of the material and not by the energy disorder. PMID:27628537

  4. Charge transport mechanism in lead oxide revealed by CELIV technique

    Science.gov (United States)

    Semeniuk, O.; Juska, G.; Oelerich, J.-O.; Wiemer, M.; Baranovskii, S. D.; Reznik, A.

    2016-09-01

    Although polycrystalline lead oxide (PbO) belongs to the most promising photoconductors for optoelectronic and large area detectors applications, the charge transport mechanism in this material still remains unclear. Combining the conventional time-of-flight and the photo-generated charge extraction by linear increasing voltage (photo-CELIV) techniques, we investigate the transport of holes which are shown to be the faster carriers in poly-PbO. Experimentally measured temperature and electric field dependences of the hole mobility suggest a highly dispersive transport. In order to analyze the transport features quantitatively, the theory of the photo-CELIV is extended to account for the dispersive nature of charge transport. While in other materials with dispersive transport the amount of dispersion usually depends on temperature, this is not the case in poly-PbO, which evidences that dispersive transport is caused by the spatial inhomogeneity of the material and not by the energy disorder.

  5. Nonlinear charge transport mechanism in periodic and disordered DNA

    OpenAIRE

    Hennig, Dirk; Archilla, Juan F. R.; J Agarwal

    2003-01-01

    We study a model for polaron-like charge transport mechanism along DNA molecules with emphasis on the impact of parametrical and structural disorder. Our model Hamiltonian takes into account the coupling of the charge carrier to two different kind of modes representing fluctuating twist motions of the base pairs and H-bond distortions within the double helix structure of $\\lambda-$DNA. Localized stationary states are constructed with the help of a nonlinear map approach for a periodic double ...

  6. [Hopping and superexchange mechanisms of charge transport to DNA].

    Science.gov (United States)

    Lakhno, V D; Sultanov, V B

    2003-01-01

    A theory for charge transport in nucleobase sequences was constructed in which the hole migration proceeds via hopping between guanines. Each hop over the adenine-thymine (A-T) bridge connecting neighboring guanines occurs by means of the superexchange mechanism. The experimental data and theoretical results for various types of nucleobase sequences are compared.

  7. Mechanism of electrochemical charge transport in individual transition metal complexes.

    Science.gov (United States)

    Albrecht, Tim; Guckian, Adrian; Kuznetsov, Alexander M; Vos, Johannes G; Ulstrup, Jens

    2006-12-27

    We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (Vbias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels. PMID:17177467

  8. Charge Transport Mechanism in Thin Cuticles Holding Nandi Flame Seeds

    Directory of Open Access Journals (Sweden)

    Wycliffe K. Kipnusu

    2009-01-01

    Full Text Available Metal-sample-metal sandwich configuration has been used to investigate DC conductivity in 4 m thick Nandi flame [Spathodea campanulata P. Beauv.] seed cuticles. - characteristics showed ohmic conduction at low fields and space charge limited current at high fields. Charge mobility in ohmic region was 4.06×10−5(m2V−1s−1. Temperature-dependent conductivity measurements have been carried out in the temperature range 320 K 450 K. Activation energy within a temperature of 320 K–440 K was about 0.86 eV. Variable range hopping (VRH is the main current transport mechanism at the range of 330–440 K. The VRH mechanism was analyzed based on Mott theory and the Mott parameters: density of localized states near the Fermi-level N(≈9.04×1019(eV−1cm−3 and hopping distance ≈1.44×10−7 cm, while the hopping energy ( was in the range of 0.72 eV–0.98 eV.

  9. Origin of traps and charge transport mechanism in hafnia

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Cheng, C. H. [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan (China); Chin, A., E-mail: albert-achin@hotmail.com [National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-12-01

    In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.

  10. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Science.gov (United States)

    Li, Guochang; Chen, George; Li, Shengtao

    2016-08-01

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  11. Charge trapping and carrier transport mechanism in silicon-rich silicon oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)]. E-mail: yinaoep@yahoo.mx; Aceves, Mariano [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico); Carrillo, Jesus [CIDS, BUAP, Puebla, Pue. (Mexico); Lopez-Estopier, Rosa [Department of Electronics, INAOE, Apdo. 51, Puebla, Pue. 72000 (Mexico)

    2006-12-05

    The charge-trapping and carrier transport properties of silicon-rich silicon oxynitride (SRO:N) were studied. The SRO:N films were deposited by low pressure chemical vapor deposition. Infrared (IR) and transmission electron microscopic (TEM) measurements were performed to characterize their structural properties. Capacitance versus voltage and current versus voltage measurements (I-V) were used to study the charge-trapping and carrier transport mechanism. IR and TEM measurements revealed the existence of Si nanodots in SRO:N films. I-V measurements revealed that there are two conduction regimes divided by a threshold voltage V {sub T}. When the applied voltage is smaller than V {sub T}, the current is dominated by the charge transfer between the SRO:N and substrate; and in this regime only dynamic charging/discharging of the SRO:N layer is observed. When the voltage is larger than V {sub T}, the current increases rapidly and is dominated by the Poole-Frenkel mechanism; and in this regime, large permanent trapped charge density is obtained. Nitrogen incorporation significantly reduced the silicon nanodots or defects near the SRO:N/Si interface. However, a significant increase of the density of silicon nanodot in the bulk of the SRO:N layer is obtained.

  12. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    Science.gov (United States)

    Zhong, Haijian; Xu, Ke; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Wang, Jianfeng; Ren, Guoqiang; Yang, Hui

    2014-01-01

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  13. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  14. Effect of temperature and UV illumination on charge transport mechanisms in DNA

    Science.gov (United States)

    Narenji, Alaleh G.; Goshi, Noah; Bui, Chris; Mokili, John; Kassegne, Sam

    2015-04-01

    Research into the use of DNA molecules as building blocks for nanoelectronics as well as nanosystems continues. Recently, our group has reported significant electrical conductivity in λ-DNA through direct and in-direct measurements involving high-aspect ratio electrodes that eliminate the effect of the substrate. Our results demonstrate that, at moderate to high frequencies, λ-DNA molecular wires show low impedance. In addition, to prove that the conductivity is indeed from DNA bridge, we studied the effect of temperature and UV irradiation on DNA molecular wires. The temperature results indicate that λ-DNA molecular wires have differing impedance responses at two temperature regimes: impedance increases between 4°C - 40°C, then decreases from 40°C to the melting point (~110°C) at which λ-DNA denatures resulting in a complete loss of current transduction. This hysteric and bi-model behavior makes DNA a candidate for nanoelectronics components such as thermal transistors and switches. The data from UV exposure experiments indicates decreased conductivity of λ-DNA molecular wires after UV exposure, due to damage to GC base pairs and phosphate groups reducing the path available for both charge hopping and short-range electron tunneling mechanisms. The lessons learned from these conductivity experiments along with our knowledge of different charge transport mechanisms within DNA can be applied to the design of synthetic molecular wires for the construction of nanoelectronic devices.

  15. Jahn-Teller assisted polaronic hole hopping as a charge transport mechanism in CuO nanograins

    Science.gov (United States)

    Younas, M.; Nadeem, M.; Idrees, M.; Akhtar, M. J.

    2012-04-01

    Impedance spectroscopy has been employed to investigate the dielectric and electric transport phenomena in sol-gel synthesized CuO nanograins. Semiconducting features of the grains and grain boundaries have been endorsed to the thermal activation of the localized charge carriers. On cooling below 303 K, a transition from Jahn-Teller polaron hopping mechanism to the Mott's variable range hopping mechanism has been observed owing to random potential fluctuations among localized sites. Activation energies for conduction and relaxation processes at grain boundaries provide strong signatures for the involvement of Jahn-Teller adiabatic small polarons as a charge transport mechanism in CuO nanograins.

  16. Facet-selective charge carrier transport, deactivation mechanism and stabilization of a Cu2O photo-electro-catalyst.

    Science.gov (United States)

    Li, Yang; Yun, Xiaogang; Chen, Hong; Zhang, Wenqin; Li, Yongdan

    2016-03-14

    A facet-dependent photo-deactivation mechanism of Cu2O was verified and reported, which is caused by the facet-dependent charge carrier transport. During irradiation, the {100} and {110} crystal facets are selectively corroded by the photo-generated holes, while the {111} facets are comparatively stable. PMID:26898270

  17. Charge carrier transport mechanisms in perovskite CdTiO3 fibers

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2014-06-01

    Full Text Available Electrical transport properties of electrospun cadmium titanate (CdTiO3 fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behavior followed by space charge limited current (SCLC with traps at higher voltages at all temperatures (200 K – 420 K. Trap density in our fibers system is Nt = 6.27 × 1017 /cm3. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH from 200 K – 300 K. The localized density of states were found to be N(EF = 5.51 × 1021 eV−1 cm−3 at 2 V. Other VRH parameters such as hopping distance (Rhop and hopping energy (Whop were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO3 fibers efficient material for capacitive energy storage devices.

  18. Quantum-Mechanical Contributions to Numerical Simulations of Charged Particle Transport at the DNA Scale

    Science.gov (United States)

    Champion, Christophe; Galassi, Mariel E.; Weck, Philippe F.; Fojón, Omar; Hanssen, Jocelyn; Rivarola, Roberto D.

    Two quantum mechanical models (CB1 and CDW-EIS) are here presented to provide accurate multiple differential and total cross sections for describing the two most important ionizing processes, namely, ionization and capture induced by heavy charged particles in targets of biological interest. Water and DNA bases are then successively investigated by reporting in particular a detailed study of the influence of the target description on the cross section calculations.

  19. Triboelectric-Potential-Regulated Charge Transport Through p-n Junctions for Area-Scalable Conversion of Mechanical Energy.

    Science.gov (United States)

    Meng, Xian Song; Wang, Zhong Lin; Zhu, Guang

    2016-01-27

    Regulation of charge-transport direction is realized through the coupling of triboelectrification, electrostatic induction, and semiconducting properties for area-scalable conversion of mechanical energy. The output current from each unit triboelectric generator can always constructively add up due to the unidirectional flow of electrons. This work proposes a practical and general route to area-scalable applications of the triboelectric generator and other energy-harvesting techniques. PMID:26611707

  20. Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films

    KAUST Repository

    Duong, Duc T.

    2014-04-09

    In this work, crystallization kinetics and aggregate growth of poly(3-ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X-ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time-dependent, field-effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2-3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter-aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics. Recrystallization kinetics and its relationship to charge transport in poly(3-ethylhexylthiophene) (P3EHT) thin films are investigated using a combination of grazing incidence X-ray diffraction, optical absorption, and field-effect transistor measurements. These results show that thin film crystallization kinetics is limited by polymer chain reorganization and that charge percolation depends strongly on the edge-to-edge distance between aggregates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of Charge Transport Mechanisms in ZnO-ZnTe Nanojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [ORNL; Lee, Sang Hyun [ORNL; Bell, Zane W [ORNL; Smith, Barton [ORNL; Zhang, Xiaoguang [ORNL; Ju, Tong [ORNL; Pan, Zhengwei [University of Georgia, Athens, GA

    2010-01-01

    Improved carrier transport is crucial for enhancing the performance of semiconductor devices such as radiation detectors. Conventionally, semiconductor devices employ planar p-n junctions in which carrier loss occurs mostly in the p-type and n-type diffusion regions. In a nanoscale three-dimensional (3-D) junction, the carriers can be efficiently collected cross the nanostructure by electric field distribution without trapping in the p-n regions. In addition, a nanocone junction should further improve carrier transport properties because this structure can be tailored to be completely depleted. In this work, we studied carrier transport mechanisms in nanojunctions made of vertically aligned ZnO nanostructures and ZnTe matrix using theoretical and experimental methods.

  2. Charge-carrier transport mechanisms in composites containing carbon-nanotube inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Usanov, D. A., E-mail: UsanovDA@info.sgu.ru; Skripal’, A. V.; Romanov, A. V. [Saratov State University (Russian Federation)

    2015-12-15

    From the microwave-radiation transmittance and reflectance spectra, the temperature dependence of the complex permittivity of carbon nanotubes, subjected to high-temperature annealing, and composite materials produced on their basis is determined. The electron transport mechanisms in composites with inclusions of unannealed carbon nanotubes and nanotubes subjected to high-temperature annealing are determined. The influence of the annealing temperature on the parameters that are characteristic of these mechanisms and control the temperature dependence of the conductivity of multiwall carbon nanotubes is established.

  3. Charge-carrier transport mechanisms in composites containing carbon-nanotube inclusions

    International Nuclear Information System (INIS)

    From the microwave-radiation transmittance and reflectance spectra, the temperature dependence of the complex permittivity of carbon nanotubes, subjected to high-temperature annealing, and composite materials produced on their basis is determined. The electron transport mechanisms in composites with inclusions of unannealed carbon nanotubes and nanotubes subjected to high-temperature annealing are determined. The influence of the annealing temperature on the parameters that are characteristic of these mechanisms and control the temperature dependence of the conductivity of multiwall carbon nanotubes is established

  4. Charge transport in organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ortmann, Frank

    2009-07-01

    The understanding of charge transport is one of the central goals in the research on semiconducting crystals. For organic crystals this is particularly complicated due to the strength of the electron-phonon interaction which requires the description of a seamless transition between the limiting cases of a coherent band-transport mechanism and incoherent hopping. In this thesis, charge transport phenomena in organic crystals are studied by theoretical means. A theory for charge transport in organic crystals is developed which covers the whole temperature range from low T, where it reproduces an expression from the Boltzmann equation for band transport, via elevated T, where it generalizes Holstein's small-polaron theory to finite bandwidths, up to high T, for which a temperature dependence equal to Marcus' electron-transfer theory is obtained. Thereby, coherent band transport and thermally induced hopping are treated on equal footing while simultaneously treating the electron-phonon interaction non-perturbatively. By avoiding the approximation of narrow polaron bands the theory allows for the description of large and small polarons and serves as a starting point for computational studies. The theoretical description is completed by using ab initio material parameters for the selected crystals under study. These material parameters are taken from density functional theory calculations for durene, naphthalene, and guanine crystals. Besides the analysis of the transport mechanism, special focus is put on the study of the relationship between mobility anisotropy and structure of the crystals. This study is supported by a 3D-visualization method for the transport channels in such crystals which has been derived in this thesis. (orig.)

  5. Semiconductor nanocrystals in photoconductive polymers: Charge generation and charge transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Herron, Norman; Suna, A. [Du Pont Co., Wilmington, DE (United States)

    1996-10-01

    A new class of photoconductive polymer composites, based on semiconductor nanocrystals (clusters) and carder-transporting polymers, have been developed. These materials are interesting for their potentials in laser printing, imaging, and photorefractives. We will describe material synthesis, charge transport and charge generation mechanisms. In particular, a model of field-dependent charge generation and separation in nonpolar media (e.g. polymers) will be discussed.

  6. Charge transfer and transport in DNA

    OpenAIRE

    Jortner, Joshua; Bixon, Mordechai; Langenbacher, Thomas; Michel-Beyerle, Maria E.

    1998-01-01

    We explore charge migration in DNA, advancing two distinct mechanisms of charge separation in a donor (d)–bridge ({Bj})–acceptor (a) system, where {Bj} = B1,B2, … , BN are the N-specific adjacent bases of B-DNA: (i) two-center unistep superexchange induced charge transfer, d*{Bj}a → d∓{Bj}a±, and (ii) multistep charge transport involves charge injection from d* (or d+) to {Bj}, charge hopping within {Bj}, and charge trapping by a. For off-resonance coupling, mechanism i prevails with the char...

  7. Charge transport in polymeric transistors

    Directory of Open Access Journals (Sweden)

    Alberto Salleo

    2007-03-01

    Full Text Available Polymeric semiconductors have attracted much attention because of their possible use as active materials in printed electronics. Thin-film transistors (TFTs are a convenient tool for studying charge-transport physics in conjugated polymers. Two families of materials are reviewed here: fluorene copolymers and polythiophenes. Because charge transport is highly anisotropic in molecular conductors, the electrical properties of conjugated polymers are strongly dependent on microstructure. Molecular weight, polydispersity, and regioregularity all affect morphology and charge-transport in these materials. Charge transport models based on microstructure are instrumental in identifying the electrical bottlenecks in these materials.

  8. Mechanical and charge transport properties of alkanethiol self-assembled monolayers on Au (111) surface: The Role of Molecular Tilt

    Energy Technology Data Exchange (ETDEWEB)

    Mulleregan, Alice; Qi, Yabing; Ratera, Imma; Park, Jeong Y.; Ashby, Paul D.; Quek, Su Ying; Neaton, J. B.; Salmeron, Miquel

    2007-11-12

    The relationship between charge transport and mechanical properties of alkanethiol self-assembled monolayers (SAM) on Au(111) films has been investigated using an atomic force microscope with a conductive tip. Molecular tilts induced by the pressure applied by the tip cause stepwise increases in film conductivity. A decay constant {beta} = 0.57 {+-} 0.03 {angstrom}{sup -1} was found for the current passing through the film as a function of tip-substrate separation due to this molecular tilt. This is significantly smaller than the value of {approx} 1 {angstrom}{sup -1} found when the separation is changed by changing the length of the alkanethiol molecules. Calculations indicate that for isolated dithiol molecules S-bonded to hollow sites, the junction conductance does not vary significantly as a function of molecular tilt. The impact of S-Au bonding on SAM conductance is discussed.

  9. Monte Carlo Studies of Charge Transport Below the Mobility Edge

    OpenAIRE

    Jakobsson, Mattias

    2012-01-01

    Charge transport below the mobility edge, where the charge carriers are hopping between localized electronic states, is the dominant charge transport mechanism in a wide range of disordered materials. This type of incoherent charge transport is fundamentally different from the coherent charge transport in ordered crystalline materials. With the advent of organic electronics, where small organic molecules or polymers replace traditional inorganic semiconductors, the interest for this type of h...

  10. Space charge dominated beam transport

    International Nuclear Information System (INIS)

    We consider beam transport systems where space charge forces are comparable in strength with the external focusing force. Space charge then plays an important role for beam transmission and emittance growth. We use the envelope model for matching and the generalized field energy equations to study emittance growth. Analytic results are compared with numerical simulation. (orig.)

  11. Charge transport in C60-based dumbbell-type molecules: mechanically induced switching between two distinct conductance states.

    Science.gov (United States)

    Moreno-García, Pavel; La Rosa, Andrea; Kolivoška, Viliam; Bermejo, Daniel; Hong, Wenjing; Yoshida, Koji; Baghernejad, Masoud; Filippone, Salvatore; Broekmann, Peter; Wandlowski, Thomas; Martín, Nazario

    2015-02-18

    Single molecule charge transport characteristics of buckminsterfullerene-capped symmetric fluorene-based dumbbell-type compound 1 were investigated by scanning tunneling microscopy break junction (STM-BJ), current sensing atomic force microscopy break junction (CS-AFM-BJ), and mechanically controlled break junction (MCBJ) techniques, under ambient conditions. We also show that compound 1 is able to form highly organized defect-free surface adlayers, allowing the molecules on the surface to be addressed specifically. Two distinct single molecule conductance states (called high G(H)(1) and low G(L)(1)) were observed, depending on the pressure exerted by the probe on the junction, thus allowing molecule 1 to function as a mechanically driven molecular switch. These two distinct conductance states were attributed to the electron tunneling through the buckminsterfullerene anchoring group and fully extended molecule 1, respectively. The assignment of conductance features to these configurations was further confirmed by control experiments with asymmetrically designed buckminsterfullerene derivative 2 as well as pristine buckminsterfullerene 3, both lacking the G(L) feature. PMID:25651069

  12. DNA远距离电荷传输机制研究进展述论%Research Evolvement of Mechanisms for Long-range DNA Charge Transport

    Institute of Scientific and Technical Information of China (English)

    牛静; 崔运启

    2011-01-01

    Research about mechanisms for DNA charge transport has received considerable attention by researchers.Various factors can affect the long-range DNA charge transport in solution.In this paper,these factors are introduced briefly and current proposed are summarized.%分析了影响DNA电荷传输的因素,阐述了DNA中电荷传输的各种机制,认为DNA分子中任何一种构象都能形成多种电荷传输途径,条件的改变会导致DNA调节电荷传输的机制发生变化.

  13. Charge carrier transport in liquid crystals

    International Nuclear Information System (INIS)

    The materials exhibiting charge carrier mobility ranging from 10−3 to 0.1 cm2/Vs, i.e., between those of amorphous and crystalline materials, had been missing before the 1990s when the electronic conduction in liquid crystals was discovered. Since then, various liquid crystalline materials including discotic and calamitic liquid crystals have been studied in order to clarify their charge carrier transport properties in liquid crystalline mesophases. In this article, the historical background of the discovery of electronic conduction in liquid crystals, intrinsic and extrinsic conductions, unique properties of the charge carrier transport, the effect of molecular alignment on it, and the conduction mechanism in liquid crystalline mesophases are shortly described on the basis of the experimental and theoretical studies accumulated in these two decades, noting that the missing materials were liquid crystals. - Highlights: • Liquid crystals exhibit charge mobility ranging from 10–3 to 0.1 cm2/Vs. • Electronic (intrinsic) and ionic (extrinsic) conductions in liquid crystals • Unique charge carrier transport properties in liquid crystals • Effect of molecular alignment in mesophases on charge carrier transport • Conduction mechanism in smectic liquid crystals

  14. Mechanism of charge transport in ligand-capped crystalline CdTe nanoparticles according to surface photovoltaic and photoacoustic results

    International Nuclear Information System (INIS)

    By combining surface photovoltaic and photoacoustic techniques, we probed the photogenerated charge transport channels of 3-mercaptopropionic acid (MPA)- and 2-mercaptoethylamine (MA)-capped crystalline CdTe nanoparticles on illumination with UV-near IR light. The results experimentally confirmed the presence of a CdS shell outside the CdTe core that formed through the self-assembly and decomposition of mercapto ligands during CdTe preparation. The data revealed that the CdS layer was partly responsible for the deexcitation behavior of the photogenerated carriers, which is related to the quantum tunnel effect. Experiments demonstrated that two quantum wells were located at wavelengths of 440 and 500 nm in buried interfacial space-charge regions, whereas the formation of a ligand layer obstructed charge transfer transitions of the core CdTe nanoparticles to a certain extent.

  15. Simulation of charge transport in organic semiconductors

    NARCIS (Netherlands)

    van der Kaap, Niels

    2016-01-01

    Plastic electronic devices can be used to emit light, or can convert sunlight into electricity. Charge transport in plastic electronic devices is described by thermally activated hopping of electrons between sites with varying energy levels. Since the hopping mechanism is hard to describe analytical

  16. Microscopic Charge Density Wave Transport

    NARCIS (Netherlands)

    Slot, Erwin

    2005-01-01

    This thesis describes the work performed on crystals with a phase transition to a Charge-Density Wave (CDW). The electrical transport properties change when crystal sizes are smaller than characteristic length scales for CDWs, typically 1 micrometer. In contrast to metals, semiconductors and superco

  17. Charge transport in desolvated DNA

    Science.gov (United States)

    Wolter, Mario; Elstner, Marcus; Kubař, Tomáš

    2013-09-01

    The conductivity of DNA in molecular junctions is often probed experimentally under dry conditions, but it is unclear how much of the solvent remains attached to the DNA and how this impacts its structure, electronic states, and conductivity. Classical MD simulations show that DNA is unstable if the solvent is removed completely, while a micro-hydrated system with few water molecules shows similar charge transport properties as fully solvated DNA does. This surprising effect is analyzed in detail by mapping the density functional theory-based electronic structure to a tight-binding Hamiltonian, allowing for an estimate of conductivity of various DNA sequences with snapshot-averaged Landauer's approach. The characteristics of DNA charge transport turn out to be determined by the nearest hydration shell(s), and the removal of bulk solvent has little effect on the transport.

  18. Temperature Dependent Kinetics DNA Charge Transport

    Science.gov (United States)

    Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason

    2012-10-01

    Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare square wave voltammetry of distinct DNA sequences under identical experimental conditions. We vary the probe length within the well matched DNA duplex in order to investigate distance dependent kinetics. This length dependent study is a necessary step to understanding the dominant mechanism behind DNA CT. Using a model put forth by O'Dea and Osteryoung and applying a nonlinear least squares analysis we are able to determine the charge transfer rates (k), transfer coefficients (α), and the total surface concentration (&*circ;) of the DNA monolayer. Arrhenius like behavior is observed for the multiple probe locations, and the results are viewed in light of and compared to the prominent charge transport mechanisms.

  19. Simulating charge transport in flexible systems

    OpenAIRE

    Timothy Clark

    2015-01-01

    Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models) that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our ...

  20. Simulating charge transport in flexible systems

    Directory of Open Access Journals (Sweden)

    Timothy Clark

    2015-12-01

    Full Text Available Systems in which movements occur on two significantly different time domains, such as organic electronic components with flexible molecules, require different simulation techniques for the two time scales. In the case of molecular electronics, charge transport is complicated by the several different mechanisms (and theoretical models that apply in different cases. We cannot yet combine time scales of molecular and electronic movement in simulations of real systems. This review describes our progress towards this goal.

  1. Charge Transport in LDPE Nanocomposites Part II—Computational Approach

    Directory of Open Access Journals (Sweden)

    Anh T. Hoang

    2016-03-01

    Full Text Available A bipolar charge transport model is employed to investigate the remarkable reduction in dc conductivity of low-density polyethylene (LDPE based material filled with uncoated nanofillers (reported in the first part of this work. The effect of temperature on charge transport is considered and the model outcomes are compared with measured conduction currents. The simulations reveal that the contribution of charge carrier recombination to the total transport process becomes more significant at elevated temperatures. Among the effects caused by the presence of nanoparticles, a reduced charge injection at electrodes has been found as the most essential one. Possible mechanisms for charge injection at different temperatures are therefore discussed.

  2. Measuring Charge Transport in an Amorphous Semiconductor Using Charge Sensing

    OpenAIRE

    Maclean, K; Mentzel, T. S.; Kastner, M. A.

    2009-01-01

    We measure charge transport in hydrogenated amorphous silicon (a-Si:H) using a nanometer scale silicon MOSFET as a charge sensor. This charge detection technique makes possible the measurement of extremely large resistances. At high temperatures, where the a-Si:H resistance is not too large, the charge detection measurement agrees with a direct measurement of current. The device geometry allows us to probe both the field effect and dispersive transport in the a-Si:H using charge sensing and t...

  3. Charge Transfer and Charge Transport on the Double Helix

    OpenAIRE

    N. P. Armitage; Briman, M.; Gruner, G.

    2003-01-01

    We present a short review of various experiments that measure charge transfer and charge transport in DNA. Some general comments are made on the possible connection between 'chemistry-style' charge transfer experiments that probe fluorescence quenching and remote oxidative damage and 'physics-style' measurements that measure transport properties as defined typically in the solid-state. We then describe measurements performed by our group on the millimeter wave response of DNA. By measuring ov...

  4. DNA charge transport: Moving beyond 1D

    Science.gov (United States)

    Zhang, Yuqi; Zhang, William B.; Liu, Chaoren; Zhang, Peng; Balaeff, Alexander; Beratan, David N.

    2016-10-01

    Charge transport across novel DNA junctions has been studied for several decades. From early attempts to move charge across DNA double crossover junctions to recent studies on DNA three-way junctions and G4 motifs, it is becoming clear that efficient cross-junction charge migration requires strong base-to-base electronic coupling at the junction, facilitated by favorable pi-stacking. We review recent progress toward the goal of manipulating and controlling charge transport through DNA junctions.

  5. Charge transport in amorphous organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Alexander

    2011-03-15

    Organic semiconductors with the unique combination of electronic and mechanical properties may offer cost-effective ways of realizing many electronic applications, e. g. large-area flexible displays, printed integrated circuits and plastic solar cells. In order to facilitate the rational compound design of organic semiconductors, it is essential to understand relevant physical properties e. g. charge transport. This, however, is not straightforward, since physical models operating on different time and length scales need to be combined. First, the material morphology has to be known at an atomistic scale. For this atomistic molecular dynamics simulations can be employed, provided that an atomistic force field is available. Otherwise it has to be developed based on the existing force fields and first principle calculations. However, atomistic simulations are typically limited to the nanometer length- and nanosecond time-scales. To overcome these limitations, systematic coarse-graining techniques can be used. In the first part of this thesis, it is demonstrated how a force field can be parameterized for a typical organic molecule. Then different coarse-graining approaches are introduced together with the analysis of their advantages and problems. When atomistic morphology is available, charge transport can be studied by combining the high-temperature Marcus theory with kinetic Monte Carlo simulations. The approach is applied to the hole transport in amorphous films of tris(8- hydroxyquinoline)aluminium (Alq{sub 3}). First the influence of the force field parameters and the corresponding morphological changes on charge transport is studied. It is shown that the energetic disorder plays an important role for amorphous Alq{sub 3}, defining charge carrier dynamics. Its spatial correlations govern the Poole-Frenkel behavior of the charge carrier mobility. It is found that hole transport is dispersive for system sizes accessible to simulations, meaning that calculated

  6. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.

    Science.gov (United States)

    Grimes, B. A.; Liapis, A. I.

    2001-02-01

    Mass-transfer systems based on electrokinetic phenomena (i.e., capillary electrochromatography (CEC)) have shown practical potential for becoming powerful separation methods for the biotechnology and pharmaceutical industries. A dynamic mathematical model, consisting of the momentum balance and the Poisson equations, as well as the unsteady-state continuity expressions for the cation and anion of the background electrolyte and of a positively charged analyte (adsorbate), is constructed and solved to determine quantitatively the electroosmotic velocity, the electrostatic potential, the concentration profiles of the charged species in the double layer and in the electroneutral core region of the fluid in the interstitial channels for bulk flow in the packed chromatographic column, and the axial current density profiles as the adsorbate adsorbs onto the negatively charged fixed sites on the surface of the nonporous particles packed in the chromatographic column. The frontal analysis mode of operation is simulated in this work. The results obtained from model simulations provide significant physical insight into and understanding of the development and propagation of the dynamic profile of the concentration of the adsorbate (analyte) and indicate that sharp, highly resolved adsorption fronts and large amounts of adsorbate in the adsorbed phase for a given column length can be obtained under the following conditions: (i) The ratio, gamma(2, 0), of the electroosmotic velocity of the mobile liquid phase at the column entrance after the adsorption front has passed the column entrance to the electrophoretic velocity of the anion is very close to -1. The structure of the equations of the model and model simulations indicate that a stable adsorption front cannot develop when gamma(2, 0) is less than -1 unless the value of the mobility of the cation is less than the value of the mobility of the analyte, which may be a rare occurrence in practical CEC systems. (ii) The ratio of

  7. Ion and water transport in charge-modified graphene nanopores

    CERN Document Server

    Qiu, Yinghua; Chen, Weiyu; Si, Wei; Tan, Qiyan; Chen, Yunfei

    2016-01-01

    Porous graphene has high mechanical strength and atomic layer thickness, which make it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solution are a kind of strong long-range interaction which may have great influence on the fluid transport through nanopores. Here, molecular dynamics simulations were conducted to investigate ion and water transport through a 1.05-nm-in-diameter monolayer graphene nanopore with its edge charge-modified. From the results, it is found that the nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase-decrease profile while the co-ion currents monotonously decrease. The co-ions rejection can reach 75% and 90% when the nanopores are negatively and positively charged, respectively. Cl ions current increases and reaches a plateau, and Na+ current decreases with the charge amount in the systems where they act as counterions. Beside...

  8. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  9. Charge and spin transport in mesoscopic superconductors

    Science.gov (United States)

    Wolf, M J; Hübler, F; Kolenda, S

    2014-01-01

    Summary Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin. Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models. Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures. PMID:24605283

  10. Ion and water transport in charge-modified graphene nanopores

    Institute of Scientific and Technical Information of China (English)

    裘英华; 李堃; 陈伟宇; 司伟; 谭启檐; 陈云飞

    2015-01-01

    Porous graphene has a high mechanical strength and an atomic-layer thickness that makes it a promising material for material separation and biomolecule sensing. Electrostatic interactions between charges in aqueous solutions are a type of strong long-range interaction that may greatly infl uence fl uid transport through nanopores. In this study, molecular dynamic simulations were conducted to investigate ion and water transport through 1.05-nm diameter monolayer graphene nanopores, with their edges charge-modified. Our results indicated that these nanopores are selective to counterions when they are charged. As the charge amount increases, the total ionic currents show an increase–decrease profile while the co-ion currents monotonically decrease. The co-ion rejection can reach 76.5%and 90.2%when the nanopores are negatively and positively charged, respectively. The Cl−ion current increases and reaches a plateau, and the Na+current decreases as the charge amount increases in systems in which Na+ions act as counterions. In addition, charge modification can enhance water transport through nanopores. This is mainly due to the ion selectivity of the nanopores. Notably, positive charges on the pore edges facilitate water transport much more strongly than negative charges.

  11. Effective Topological Charge Cancelation Mechanism

    Science.gov (United States)

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-06-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.

  12. Charge transport in single crystal organic semiconductors

    Science.gov (United States)

    Xie, Wei

    Organic electronics have engendered substantial interest in printable, flexible and large-area applications thanks to their low fabrication cost per unit area, chemical versatility and solution processability. Nevertheless, fundamental understanding of device physics and charge transport in organic semiconductors lag somewhat behind, partially due to ubiquitous defects and impurities in technologically useful organic thin films, formed either by vacuum deposition or solution process. In this context, single-crystalline organic semiconductors, or organic single crystals, have therefore provided the ideal system for transport studies. Organic single crystals are characterized by their high chemical purity and outstanding structural perfection, leading to significantly improved electrical properties compared with their thin-film counterparts. Importantly, the surfaces of the crystals are molecularly flat, an ideal condition for building field-effect transistors (FETs). Progress in organic single crystal FETs (SC-FETs) is tremendous during the past decade. Large mobilities ~ 1 - 10 cm2V-1s-1 have been achieved in several crystals, allowing a wide range of electrical, optical, mechanical, structural, and theoretical studies. Several challenges still remain, however, which are the motivation of this thesis. The first challenge is to delineate the crystal structure/electrical property relationship for development of high-performance organic semiconductors. This thesis demonstrates a full spectrum of studies spanning from chemical synthesis, single crystal structure determination, quantum-chemical calculation, SC-OFET fabrication, electrical measurement, photoelectron spectroscopy characterization and extensive device optimization in a series of new rubrene derivatives, motivated by the fact that rubrene is a benchmark semiconductor with record hole mobility ~ 20 cm2V-1s-1. With successful preservation of beneficial pi-stacking structures, these rubrene derivatives form

  13. Charge Transport in Weyl Semimetals

    OpenAIRE

    Hosur, Pavan; Parameswaran, S. A.; Vishwanath, Ashvin

    2011-01-01

    We study transport in three dimensional Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity by solving a quantum Boltzmann equation within a `leading log' approximation and find it to be proportional to T, upto logarithmic factors arising from the flow of couplings. In the noninteracting disordered case, we compute the finite-frequency Kubo conductivity and show that it ...

  14. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  15. Charge Transport in DNA-Based Devices

    OpenAIRE

    Porath, Danny; Cuniberti, Gianaurelio; Di Felice, Rosa

    2004-01-01

    Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that elect...

  16. Charge Transport in DNA - Insights from Simulations

    OpenAIRE

    Wolter, Mario

    2013-01-01

    Charge transport and charge transfer (CT) capabilities of deoxyribonucleic acid (DNA) are investigated. A QM/MM multi-scale framework is applied to calculate the CT capabilities of DNA under conditions resembling the experimental setup. The simulations are able to explain and predict the outcome of experiments and therefore make suggestions in advance. Based on the findings, suitable DNA sequences can be opted for the design of DNA-based devices as nano-scale electronic elements.

  17. Charge transport in DNA-based devices

    OpenAIRE

    Porath, Danny; Cuniberti, Gianaurelio; Felice, Rosa di

    2004-01-01

    Charge migration along DNA molecules attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experiments on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrica...

  18. Modeling charge transport in organic photovoltaic materials.

    Science.gov (United States)

    Nelson, Jenny; Kwiatkowski, Joe J; Kirkpatrick, James; Frost, Jarvist M

    2009-11-17

    The performance of an organic photovoltaic cell depends critically on the mobility of charge carriers within the constituent molecular semiconductor materials. However, a complex combination of phenomena that span a range of length and time scales control charge transport in disordered organic semiconductors. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. This Account describes a set of computational methods, specifically molecular modeling methods, to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport. Using case studies, we show how this combination of methods can reproduce experimental mobilities with few or no fitting parameters. Although currently applied to material systems of high symmetry or well-defined structure, further developments of this approach could address more complex systems such anisotropic or multicomponent solids and conjugated polymers. Even with an approximate treatment of packing disorder, these computational methods simulate experimental mobilities within an order of magnitude at high electric fields. We can both reproduce the relative values of electron and hole mobility in a conjugated small molecule and rationalize those values based on the symmetry of frontier orbitals. Using fully atomistic molecular dynamics simulations of molecular packing, we can quantitatively replicate vertical charge transport along stacks of discotic liquid crystals which vary only in the structure of their side chains. We can reproduce the trends in mobility with molecular weight for self-organizing polymers using a cheap, coarse

  19. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  20. The charge transport in polymeric gel electrolytes

    CERN Document Server

    Reiche, A

    2001-01-01

    The aim of the present thesis consisted in the study of the charge transport in gel electrolytes, which were obtained by photopolymerization of oligo(ethylene glycol) sub n -dimethacrylates with n=3, 9, and 23, and the survey of structure and property relations for the optimization of the electrolyte composition. The pressure dependence of the electric conductivity was measured. (HSI)

  1. Simulations of charge transport in organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Vehoff, Thorsten

    2010-05-05

    We study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The high mobility of rubrene is explained by two main

  2. Ni2+-Enhanced Charge Transport via π-π Stacking Corridor in Metallic DNA

    OpenAIRE

    Tseng, Shin-Hua; JangJian, Peng-Chung; Tsai, Chuan-Mei; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Chang, Yu-Chuan; Chung, Wei-Hsien; Chang, Chia-Ching

    2011-01-01

    The mechanism underlying DNA charge transport is intriguing. However, poor conductivity of DNA makes it difficult to detect DNA charge transport. Metallic DNA (M-DNA) has better conducting properties than native DNA. Ni2+ may chelate in DNA and thus enhance DNA conductivity. On the basis of this finding, it is possible to reveal the mechanisms underlying DNA charge transport. The conductivity of various Ni-DNA species such as single-stranded, full complement, or mismatched sequence molecules ...

  3. Preface: Charge transport in nanoscale junctions

    Science.gov (United States)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  4. Mechanics and charging of nanoparticle agglomerates

    Science.gov (United States)

    Shin, Weon Gyu

    This thesis consists of two parts. The first part concerns studies on mechanics of real agglomerate particles and the second part involves studies on unipolar diffusion charging of agglomerates. Understanding mechanics of real agglomerate particles consisting of multiple primary particles is important for aerosol sizing instrumentation using electrical mobility and nanoparticle manufacturing process where coagulation and sedimentation occur. A key quantity determining transport properties of agglomerates is the friction coefficient. However, quantitative studies for the friction coefficient of agglomerates are very limited. Transmission Electron Microscopy (TEM) image analysis results of silver agglomerates provides a basis for the comparison of experimental data with estimates based on free molecular models. A new quantitative method to determine the dynamic shape factor and the two exponents, eta and Dfm, which characterize the power law dependence of friction coefficient on the number of primary spheres and the mass on the mobility diameter, was developed using Differential Mobility Analyzer (DMA)-Aerosol Particle Mass (APM) analyzer. Model predictions indicate that eta is independent of agglomerate size while Dfm is sensitive to agglomerate size. Experimentally, it appears the opposite is true. Tandem DMA (TDMA) results also show that the mass-mobility diameter scaling exponent is not dependent on mobility size range. Estimates of non-ideal effects on the agglomerate dynamics were computed as perturbations to the Chan-Dahneke agglomerate model. After the corrections, an agreement between experimental data and model predictions becomes significantly improved. Unipolar diffusion charging becomes more attractive because it has higher charging efficiency than bipolar charging as well as important applications in aerosol sizing instrumentation using electrical mobility, powder coating, and the removal of toxic particles from air stream using Electrostatic

  5. Charge transport by holographic Fermi surfaces

    CERN Document Server

    Faulkner, Thomas; Liu, Hong; McGreevy, John; Vegh, David

    2013-01-01

    We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipation is as efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in temperature.

  6. Charge Redistribution and Transport in Molecular Contacts

    Science.gov (United States)

    Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J.; Jelínek, Pavel; Pascual, J. Ignacio

    2015-09-01

    The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C2 H2 ) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C2 H2 molecule attributed to a weak overlap of their respective frontier orbitals.

  7. Electron transport model of dielectric charging

    Science.gov (United States)

    Beers, B. L.; Hwang, H. C.; Lin, D. L.; Pine, V. W.

    1979-01-01

    A computer code (SCCPOEM) was assembled to describe the charging of dielectrics due to irradiation by electrons. The primary purpose for developing the code was to make available a convenient tool for studying the internal fields and charge densities in electron-irradiated dielectrics. The code, which is based on the primary electron transport code POEM, is applicable to arbitrary dielectrics, source spectra, and current time histories. The code calculations are illustrated by a series of semianalytical solutions. Calculations to date suggest that the front face electric field is insufficient to cause breakdown, but that bulk breakdown fields can easily be exceeded.

  8. DNA Charge Transport over 34 nm

    OpenAIRE

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-01-01

    Molecular wires show promise in nanoscale electronics but the synthesis of uniform, long conductive molecules is a significant challenge. DNA of precise length, by contrast, is easily synthesized, but its conductivity has not been explored over the distances required for nanoscale devices. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Ni...

  9. Biological contexts for DNA charge transport chemistry

    OpenAIRE

    Merino, Edward J.; Boal, Amie K.; Barton, Jacqueline K.

    2008-01-01

    Many experiments have now shown that double helical DNA can serve as a conduit for efficient charge transport (CT) reactions over long distances in vitro. These results prompt the consideration of biological roles for DNA-mediated CT. DNA CT has been demonstrated to occur in biologically relevant environments such as within the mitochondria and nuclei of HeLa cells as well as in isolated nucleosomes. In mitochondria, DNA damage that results from CT is funneled to a critical regulatory element...

  10. Effective models for charge transport in DNA nanowires

    OpenAIRE

    Gutierrez, Rafael; Cuniberti, Gianaurelio

    2006-01-01

    The rapid progress in the field of molecular electronics has led to an increasing interest on DNA oligomers as possible components of electronic circuits at the nanoscale. For this, however, an understanding of charge transfer and transport mechanisms in this molecule is required. Experiments show that a large number of factors may influence the electronic properties of DNA. Though full first principle approaches are the ideal tool for a theoretical characterization of the structural and elec...

  11. Charge-transport-mediated recruitment of DNA repair enzymes

    OpenAIRE

    Fok, Pak-Wing; Guo, Chin-Lin; Chou, Tom

    2008-01-01

    Damaged or mismatched bases in DNA can be repaired by base excision repair enzymes (BER) that replace the defective base. Although the detailed molecular structures of many BER enzymes are known, how they colocalize to lesions remains unclear. One hypothesis involves charge transport (CT) along DNA [Yavin et al., Proc. Natl. Acad. Sci. U.S.A. 102, 3546 (2005)]. In this CT mechanism, electrons are released by recently adsorbed BER enzymes and travel along the DNA. The electrons can scatter (by...

  12. DNA Charge Transport within the Cell

    OpenAIRE

    Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.

    2015-01-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor th...

  13. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  14. Mechanism of electric charge formation polyethylene

    International Nuclear Information System (INIS)

    The electric charge formation in irradiated dielectrics is a phenomenon resulting from interaction of radiation with matter. Using pressure-pulse techniques the general mechanism of eletric charge accumulation and space distribution in electron- and gamma-irradiated polyethylene (low and high density) was studied. The relationship between the charge accumulation and structural and radiation-induced defects in polyethylene was established. Results obtained are applied to other organic materials

  15. Charge and Heat Transport in Polycrystalline Metallic Nanostructures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xing; TAKAHASHI Koji; FUJII Motoo

    2008-01-01

    Metals are typically good conductors in which the abilities to transport charge and to transport heat can be related through the Wiedemann-Franz law. Here we report on an abnormal charge and heat transport in polyerystalline metallic nanostructures in which the ability to transport charge is weakened more obviously than that to transport heat. We attribute it to the influence of the internal grain boundaries and have formulated a novel relation to predict the thermal conductivity. The Wiedemann-Franz law is then modified to account for the influence of the grain boundaries on the charge and heat transport with the predictions now agreeing well with the measured results.

  16. Fractal like charge transport in polyaniline nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Chandrani; Kumar, A., E-mail: ask@tezu.ernet.in

    2013-10-01

    The structural and electrical properties of camphorsulfonic acid (CSA) doped nanotubes, and hydrochloric acid (HCl) doped nanofibers and nanoparticles of polyaniline have been studied as a function of doping level. The crystallinity increases with doping for all the nanostructures. Electrical transport measurements in the temperature range of 5–300 K show an increase in conductivity with doping for the nanostructures. All the nanostructures exhibit metal to insulator (MIT) transition below 40 K. The metallic behavior is ascribed to the electron–electron interaction effects. In the insulating regime of the nanotubes conduction follows the Mott quasi-1D variable range hopping model, whereas the conduction in the nanofibers and nanoparticles occur by variable range hopping of charge carriers among superlocalized states without and with Coulomb interaction, respectively. The smaller dopant size in case of HCl makes the polymer fractal resulting in superlocalization of electronic wave-functions. The confined morphology of the nanoparticles results in effective Coulomb interaction dominating the intersite hopping.

  17. Analysis of electrolyte transport through charged nanopores

    Science.gov (United States)

    Peters, P. B.; van Roij, R.; Bazant, M. Z.; Biesheuvel, P. M.

    2016-05-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3 ×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968), 10.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.

  18. Transverse charge transport through DNA oligomers in large-area molecular junctions

    Science.gov (United States)

    Katsouras, Ilias; Piliego, Claudia; Blom, Paul W. M.; de Leeuw, Dago M.

    2013-09-01

    We investigate the nature of charge transport in deoxyribonucleic acid (DNA) using self-assembled layers of DNA in large-area molecular junctions. A protocol was developed that yields dense monolayers where the DNA molecules are not standing upright, but are lying flat on the substrate. As a result the charge transport is measured not along the DNA molecules but in the transverse direction, across their diameter. The electrical transport data are consistent with the derived morphology. We demonstrate that the charge transport mechanism through DNA is identical to non-resonant tunneling through alkanethiols with identical length, classifying DNA as a dielectric.

  19. Normal and impaired charge transport in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H., E-mail: jhmiller@uh.edu [Department of Physics & Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5005 (United States); Villagrán, Martha Y. Suárez; Maric, Sladjana [Department of Physics & Texas Center for Superconductivity, University of Houston, Houston, TX 77204-5005 (United States); Briggs, James M. [Department of Biology & Biochemistry, University of Houston, Houston, TX 77204-5001 (United States)

    2015-03-01

    We examine the physics behind some of the causes (e.g., hole migration and localization that cause incorrect base pairing in DNA) and effects (due to amino acid replacements affecting mitochondrial charge transport) of disease-implicated point mutations, with emphasis on mutations affecting mitochondrial DNA (mtDNA). First we discuss hole transport and localization in DNA, including some of our quantum mechanical modeling results, as they relate to certain mutations in cancer. Next, we give an overview of electron and proton transport in the mitochondrial electron transport chain, and how such transport can become impaired by mutations implicated in neurodegenerative diseases, cancer, and other major illnesses. In particular, we report on our molecular dynamics (MD) studies of a leucine→arginine amino acid replacement in ATP synthase, encoded by the T→G point mutation at locus 8993 of mtDNA. This mutation causes Leigh syndrome, a devastating maternally inherited neuromuscular disorder, and has been found to trigger rapid tumor growth in prostate cancer cell lines. Our MD results suggest, for the first time, that this mutation adversely affects water channels that transport protons to and from the c-ring of the rotary motor ATP synthase, thus impairing the ability of the motor to produce ATP. Finally, we discuss possible future research topics for biological physics, such as mitochondrial complex I, a large proton-pumping machine whose physics remains poorly understood.

  20. Ion transport through macrocapillaries - Oscillations due to charge patch formation

    Science.gov (United States)

    Kulkarni, D. D.; Lyle, L. A. M.; Sosolik, C. E.

    2016-09-01

    We present results on ion transport through large bore capillaries (macrocapillaries) that probe both the geometric and ion-guided aspects of this ion delivery mechanism. We have demonstrated that guiding in macrocapillaries exhibits position- and angle-dependent transmission properties which are directly related to the capillary material (either metal or insulator) and geometry. Specifically, we have passed 1 keV Rb+ ions through glass and metal macrocapillaries, and have observed oscillations for the transmitted ion current passing through the insulating capillaries. Straightforward calculations show that these oscillations can be attributed to beam deflections from charge patches that form on the interior walls of the capillary. The absence of these oscillations in the metal capillary data serve as further confirmation of the role of charge patch formation.

  1. Magnetic fields for transporting charged beams

    International Nuclear Information System (INIS)

    The transport of charged particle beams requires magnetic fields that must be shaped correctly and very accurately. During the last 20 years or so, many studies have been made, both analytically and through the use of computer programs, of various magnetic shapes that have proved to be useful. Many of the results for magnetic field shapes can be applied equally well to electric field shapes. A report is given which gathers together the results that have more general significance and would be useful in designing a configuration to produce a desired magnetic field shape. The field shapes studied include the fields in dipoles, quadrupoles, sextupoles, octupoles, septum magnets, combined-function magnets, and electrostatic septums. Where possible, empirical formulas are proposed, based on computer and analytical studies and on magnetic field measurements. These empirical formulas are often easier to use than analytical formulas and often include effects that are difficult to compute analytically. In addition, results given in the form of tables and graphs serve as illustrative examples. The field shapes studied include uniform fields produced by window-frame magnets, C-magnets, H-magnets, and cosine magnets; linear fields produced by various types of quadrupoles; quadratic and cubic fields produced by sextupoles and octupoles; combinations of uniform and linear fields; and septum fields with sharp boundaries

  2. Metal oxide charge transport material doped with organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R.; Lassiter, Brian E.

    2016-08-30

    Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.

  3. Mechanisms of multidrug transporters

    NARCIS (Netherlands)

    Bolhuis, H; van Veen, H.W.; Poolman, B.; Driessen, A.J.M.; Konings, W.N

    1997-01-01

    Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidr

  4. Charge-transport-induced dissociation in donor-bridge-acceptor complexes.

    Science.gov (United States)

    Brisker, Daria; Peskin, Uri

    2008-12-28

    Possible mechanisms for charge-transport-induced dissociation in donor-bridge-acceptor complexes are studied. Two mechanisms for dissociation at the molecular bridge are captured within a simple model of an anharmonic bridge vibration coupled nonlinearly to an electronic degree of freedom. A direct mechanism is associated with vibronic excitations to the nuclear continuum and an alternative dissociation mechanism involves intermediate quasibound vibrational states (Feshbach resonances). The two different mechanisms of charge-transport-induced dissociation are analyzed and their interplay as a function of the system parameters is examined. A parameter regime is suggested where the phenomenon should be experimentally accessible.

  5. Models for Energy and Charge Transport, and Storage in Biomolecules

    CERN Document Server

    Mingaleev, S F; Gaididei, Yu B; Johansson, M; Rasmussen, K O; Mingaleev, Serge F.; Christiansen, Peter L.; Gaididei, Yuri B.; Johansson, Magnus; Rasmussen, Kim O.

    1999-01-01

    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.

  6. Single-step Charge Transport through DNA over Long Distances

    OpenAIRE

    Genereux, Joseph C.; Wuerth, Stephanie M.; Barton, Jacqueline K.

    2011-01-01

    Quantum yields for charge transport across adenine tracts of increasing length have been measured by monitoring hole transport in synthetic oligonucleotides between photoexcited 2-aminopurine, a fluorescent analogue of adenine, and N2-cyclopropyl guanine. Using fluorescence quenching, a measure of hole injection, and hole trapping by the cyclopropyl guanine derivative, we separate the individual contributions of single- and multi-step channels to DNA charge transport, and find that with 7 or ...

  7. Bipolar resistive switching and charge transport in silicon oxide memristor

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Si-based thin-film memristor structure was fabricated by magnetron sputtering. • We study bipolar resistive switching and charge transport mechanisms. • Resistive switching parameters are determined by a balance between redox reactions. - Abstract: Reproducible bipolar resistive switching has been studied in SiOx-based thin-film memristor structures deposited by magnetron sputtering technique on the TiN/Ti metalized SiO2/Si substrates. It is established that, after electroforming, the structure can be switched between the quasi-ohmic low-resistance state related to silicon chains (conducting filaments) and the high-resistance state with semiconductor-like hopping mechanism of charge transport through the defects in silicon oxide. The switching parameters are determined by a balance between the reduction and oxidation processes that, in turn, are driven by the value and polarity of voltage bias, current, temperature and device environment. The results can be used for the development of silicon-based nonvolatile memory and memristive systems as a key component of future electronics

  8. Bipolar resistive switching and charge transport in silicon oxide memristor

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, Alexey N., E-mail: mian@nifti.unn.ru [Lobachevsky State University of Nizhni Novgorod, 23/3 Gagarin Prospect, Nizhni Novgorod 603950 (Russian Federation); Belov, Alexey I.; Guseinov, Davud V.; Korolev, Dmitry S.; Antonov, Ivan N.; Efimovykh, Denis V.; Tikhov, Stanislav V.; Kasatkin, Alexander P.; Gorshkov, Oleg N.; Tetelbaum, David I.; Bobrov, Alexander I.; Malekhonova, Natalia V.; Pavlov, Dmitry A. [Lobachevsky State University of Nizhni Novgorod, 23/3 Gagarin Prospect, Nizhni Novgorod 603950 (Russian Federation); Gryaznov, Evgeny G. [Lobachevsky State University of Nizhni Novgorod, 23/3 Gagarin Prospect, Nizhni Novgorod 603950 (Russian Federation); Sedakov Scientific-Research Institute, GSP-486, Nizhny Novgorod 603950 (Russian Federation); Yatmanov, Alexander P. [Sedakov Scientific-Research Institute, GSP-486, Nizhny Novgorod 603950 (Russian Federation)

    2015-04-15

    Graphical abstract: - Highlights: • Si-based thin-film memristor structure was fabricated by magnetron sputtering. • We study bipolar resistive switching and charge transport mechanisms. • Resistive switching parameters are determined by a balance between redox reactions. - Abstract: Reproducible bipolar resistive switching has been studied in SiO{sub x}-based thin-film memristor structures deposited by magnetron sputtering technique on the TiN/Ti metalized SiO{sub 2}/Si substrates. It is established that, after electroforming, the structure can be switched between the quasi-ohmic low-resistance state related to silicon chains (conducting filaments) and the high-resistance state with semiconductor-like hopping mechanism of charge transport through the defects in silicon oxide. The switching parameters are determined by a balance between the reduction and oxidation processes that, in turn, are driven by the value and polarity of voltage bias, current, temperature and device environment. The results can be used for the development of silicon-based nonvolatile memory and memristive systems as a key component of future electronics.

  9. DNA charge transport within the cell.

    Science.gov (United States)

    Grodick, Michael A; Muren, Natalie B; Barton, Jacqueline K

    2015-02-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long-range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long-range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long-range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within Escherichia coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. On the basis of these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  10. Charge transport model to predict intrinsic reliability for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Sean P. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States); Borja, Juan; Plawsky, Joel L., E-mail: plawsky@rpi.edu; Gill, William N. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lu, T.-M. [Department of Physics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Yeap, Kong Boon [GLOBALFOUNDRIES, 400 Stonebreak Rd. Ext., Malta, New York 12020 (United States)

    2015-09-28

    Several lifetime models, mostly empirical in nature, are used to predict reliability for low-k dielectrics used in integrated circuits. There is a dispute over which model provides the most accurate prediction for device lifetime at operating conditions. As a result, there is a need to transition from the use of these largely empirical models to one built entirely on theory. Therefore, a charge transport model was developed to predict the device lifetime of low-k interconnect systems. The model is based on electron transport and donor-type defect formation. Breakdown occurs when a critical defect concentration accumulates, resulting in electron tunneling and the emptying of positively charged traps. The enhanced local electric field lowers the barrier for electron injection into the dielectric, causing a positive feedforward failure. The charge transport model is able to replicate experimental I-V and I-t curves, capturing the current decay at early stress times and the rapid current increase at failure. The model is based on field-driven and current-driven failure mechanisms and uses a minimal number of parameters. All the parameters have some theoretical basis or have been measured experimentally and are not directly used to fit the slope of the time-to-failure versus applied field curve. Despite this simplicity, the model is able to accurately predict device lifetime for three different sources of experimental data. The simulation's predictions at low fields and very long lifetimes show that the use of a single empirical model can lead to inaccuracies in device reliability.

  11. Beam transport and space charge compensation strategies (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Meusel, O., E-mail: o.meusel@iap.uni-frankfurt.de; Droba, M.; Noll, D.; Schulte, K.; Schneider, P. P.; Wiesner, C. [IAP, Goethe University Frankfurt, Frankfurt D-60438 (Germany)

    2016-02-15

    The transport of intense ion beams is affected by the collective behavior of this kind of multi-particle and multi-species system. The space charge expressed by the generalized perveance dominates the dynamical process of thermalisation, which leads to emittance growth. To prevent changes of intrinsic beam properties and to reduce the intensity dependent focusing forces, space charge compensation seems to be an adequate solution. In the case of positively charged ion beams, electrons produced by residual gas ionization and secondary electrons provide the space charge compensation. The influence of the compensation particles on the beam transport and the local degree of space charge compensation is given by different beam properties as well as the ion beam optics. Especially for highly charged ion beams, space charge compensation in combination with poor vacuum conditions leads to recombination processes and therefore increased beam losses. Strategies for providing a compensation-electron reservoir at very low residual gas pressures will be discussed.

  12. Analysis of electrolyte transport through charged nanopores

    NARCIS (Netherlands)

    Peters, P.B.; Roij, van R.; Bazant, M.Z.; Biesheuvel, P.M.

    2016-01-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relat

  13. Effects of cytosine methylation on DNA charge transport

    Science.gov (United States)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  14. Controlling polymer translocation and ion transport via charge correlations.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2014-11-01

    We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer. PMID:25310861

  15. Thermally activated charge transport in microbial protein nanowires.

    Science.gov (United States)

    Lampa-Pastirk, Sanela; Veazey, Joshua P; Walsh, Kathleen A; Feliciano, Gustavo T; Steidl, Rebecca J; Tessmer, Stuart H; Reguera, Gemma

    2016-01-01

    The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors. PMID:27009596

  16. Symmetrization of mathematical model of charge transport in semiconductors

    Directory of Open Access Journals (Sweden)

    Alexander M. Blokhin

    2002-11-01

    Full Text Available A mathematical model of charge transport in semiconductors is considered. The model is a quasilinear system of differential equations. A problem of finding an additional entropy conservation law and system symmetrization are solved.

  17. Probing spin-charge separation using spin transport

    OpenAIRE

    Si, Qimiao

    2000-01-01

    Pedagogical discussions are given on what constitutes a signature of spin-charge separation. A proposal is outlined to probe spin-charge separation in the normal state of the high $T_c$ cuprates using spin transport. Specifically, the proposal is to compare the temperature dependences of the spin resistivity and electrical resistivity: Spin-charge separation will be manifested in the different temperature dependences of these two resistivities. We also estimate the spin diffusion length and s...

  18. Nonlinear charge transport in DNA mediated by twist modes

    OpenAIRE

    Palmero, F.; Archilla, J. F. R.; Hennig, D.; Romero, F. R.

    2003-01-01

    Recent works on localized charge transport along DNA, based on a three--dimensional, tight--binding model (Eur. Phys. J. B 30:211, 2002; Phys. D 180:256, 2003), suggest that charge transport is mediated by the coupling of the radial and electron variables. However, these works are based on a linear approximation of the distances among nucleotides, which forces for consistency the assumption that the parameter $\\alpha$, that describes the coupling between the transfer integral and the distance...

  19. Multiscale modelling of charge transport in organic electronic materials

    Science.gov (United States)

    Nelson, Jenny

    2010-03-01

    Charge transport in disordered organic semiconductors is controlled by a complex combination of phenomena that span a range of length and time scales. As a result, it is difficult to rationalize charge transport properties in terms of material parameters. Until now, efforts to improve charge mobilities in molecular semiconductors have proceeded largely by trial and error rather than through systematic design. However, recent developments have enabled the first predictive simulation studies of charge transport in disordered organic semiconductors. In this presentation we will show how a set of computational methods, namely molecular modelling methods to simulate molecular packing, quantum chemical calculations of charge transfer rates, and Monte Carlo simulations of charge transport can be used to reproduce experimental charge mobilities with few or no fitting parameters. Using case studies, we will show how such simulations can explain the relative values of electron and hole mobility and the effects of grain size, side chains and polymer molecular weight on charge mobility. Although currently applied to material systems of relatively high symmetry or well defined structure, this approach can be developed to address more complex systems such as multicomponent solids and conjugated polymers.

  20. Charge transport in single CuO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junnan; Yin, Bo; Wu, Fei; Myung, Yoon; Banerjee, Parag, E-mail: parag.banerjee@wustl.edu [Department of Mechanical Engineering and Materials Science, One Brookings Drive, Washington University, St. Louis, Missouri 63130 (United States)

    2014-11-03

    Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K–400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (<0.89 × 10{sup 3 }V/cm), an ohmic conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, E{sub T} = 26.6 meV and trap density, N{sub T} = 3.4 × 10{sup 15 }cm{sup −3}. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm{sup 2}/V s and an effective hole concentration of 4 × 10{sup 18 }cm{sup −3} at 250 K.

  1. Charge transport in single CuO nanowires

    Science.gov (United States)

    Wu, Junnan; Yin, Bo; Wu, Fei; Myung, Yoon; Banerjee, Parag

    2014-11-01

    Charge transport in single crystal, p-type cupric oxide (CuO) nanowire (NW) was studied through temperature based (120 K-400 K) current-voltage measurements. CuO NW with a diameter of 85 nm was attached to Au electrodes 2.25 μm apart, using dielectrophoresis. At low electrical field (conduction is observed with an activation energy of 272 meV. The injected electrons fill traps with an average energy, ET = 26.6 meV and trap density, NT = 3.4 × 1015 cm-3. After the traps are saturated, space charge limited current mechanism becomes dominant. For 120 K ≤ T ≤ 210 K phonon scattering limits mobility. For T ≥ 220 K, a thermally activated mobility is observed and is attributed to small polaron hopping with an activation energy of 44 meV. This mechanism yields a hole mobility of 0.0015 cm2/V s and an effective hole concentration of 4 × 1018 cm-3 at 250 K.

  2. Interplays between charge and electric field in perovskite solar cells: charge transport, recombination and hysteresis

    OpenAIRE

    Shi, Jiangjian; Zhang, Huiyin; Xu, Xin; Li, Dongmei; Luo, Yanhong; Meng, Qingbo

    2016-01-01

    Interplays between charge and electric field, which play a critical role in determining the charge transport, recombination, storage and hysteresis in the perovskite solar cell, have been systematically investigated by both electrical transient experiments and theoretical calculations. It is found that the light illumination can increase the carrier concentration in the perovskite absorber, thus enhancing charge recombination and causing the co-existence of high electric field and free carrie...

  3. Radiation-induced charge transport in polymer electrets

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, K. (Technische Univ., Darmstadt (Germany, F.R.). Inst. for Electroacoustics)

    1984-01-01

    Recently, a new physical model has been developed describing the charge dynamics in dielectrics during irradiation. Experimental investigations of the charge transport in polymer electrets were carried out in a modified electron-beam microscope on various materials (FEP, PETP, PVDF). A qualitative comparison of the theoretical results with experimental data shows that, in FEP, electrons are practically immobile, whereas positive charge carriers cause a trap-modulated unipolar hole current. For PETP, analogous results are found except that here the mobility of the electrons dominates. In PVDF, however, both charge carriers must be mobile.

  4. Charge Transport Phenomena in Peptide Molecular Junctions

    Directory of Open Access Journals (Sweden)

    Alessandra Luchini

    2008-01-01

    Full Text Available Inelastic electron tunneling spectroscopy (IETS is a valuable in situ spectroscopic analysis technique that provides a direct portrait of the electron transport properties of a molecular species. In the past, IETS has been applied to small molecules. Using self-assembled nanoelectronic junctions, IETS was performed for the first time on a large polypeptide protein peptide in the phosphorylated and native form, yielding interpretable spectra. A reproducible 10-fold shift of the I/V characteristics of the peptide was observed upon phosphorylation. Phosphorylation can be utilized as a site-specific modification to alter peptide structure and thereby influence electron transport in peptide molecular junctions. It is envisioned that kinases and phosphatases may be used to create tunable systems for molecular electronics applications, such as biosensors and memory devices.

  5. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xeq+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  6. Analysis of electrolyte transport through charged nanopores

    CERN Document Server

    Peters, P B; Bazant, M Z; Biesheuvel, P M

    2015-01-01

    We revisit the classical problem of the flow of an electrolyte solution through charged capillaries (nanopores). In the limit where the length of the capillary is much larger than its radius, the problem can be simplified to a one-dimensional averaged flux-force formalism that relates the relevant fluxes (electrical current, salt flux, fluid velocity) to their respective driving forces (difference in electric potential, salt concentration, pressure). Calculations in literature mainly consider the limit of non-overlapping electrical double layers (EDLs) in the pores and the absence of salt concentration gradients in the axial direction. In the present work these simplifications are relaxed and we discuss the general case with overlapping EDLs and nonzero axial salt concentration gradients. The 3x3 matrix that relates these quantities exhibits Onsager symmetry and for one of the cross coefficients we report a new significant simplification. We describe how Onsager symmetry is preserved under change of variables...

  7. Coulomb Traps and Charge Transport in Molecular Solids

    Science.gov (United States)

    Scher, Harvey

    2000-03-01

    A major result of experimental studies of a diverse assortment of disordered molecular solids is the observation of a common pattern in the charge transport properties. The transport ranges from charge transfer between molecules doped in an inert polymer to motion along the silicon backbone of polysilylenes. The pattern is the unusual combination of Poole Frenkel-like electric field dependence and non-Arrhenius temperature dependence of the mobility. The latter feature has been especially puzzling. We study the drift mobility of a molecular polaron in the presence of an applied field and Coulomb traps. The model is based on one previously developed for geminate recombination of photogenerated charge carriers. The key electric field and temperature dependencies of the mobility measurements are well reproduced by this model. Our conclusion is that this nearly universal transport behavior arises from competition between rates of polaron trapping and release from a very low density of Coulomb traps.

  8. Base pair dynamic assisted charge transport in DNA

    OpenAIRE

    Kats, E. I.; Lebedev, V. V.

    2002-01-01

    An 1d model with time-dependent random hopping is proposed to describe charge transport in DNA. It admits to investigate both diffusion of electrons and their tunneling between different sites in DNA. The tunneling appears to be strongly temperature-dependent. Observations of a strong (exponential) as well as a weak distance dependence of the charge transfer in DNA can be explained in the framework of our model.

  9. DNA Charge Transport: Conformationally Gated Hopping through Stacked Domains

    OpenAIRE

    O'Neill, Melanie A.; Barton, Jacqueline K.

    2004-01-01

    The role of base motions in delocalization and propagation of charge through double helical DNA must be established experimentally and incorporated into mechanistic descriptions of DNA-mediated charge transport (CT). Here, we address these fundamental issues by examining the temperature dependence of the yield of CT between photoexcited 2-aminopurine (Ap*) and G through DNA bridges of varied length and sequence. DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)_nG (n ...

  10. Monte Carlo simulations of charge transport in heterogeneous organic semiconductors

    Science.gov (United States)

    Aung, Pyie Phyo; Khanal, Kiran; Luettmer-Strathmann, Jutta

    2015-03-01

    The efficiency of organic solar cells depends on the morphology and electronic properties of the active layer. Research teams have been experimenting with different conducting materials to achieve more efficient solar panels. In this work, we perform Monte Carlo simulations to study charge transport in heterogeneous materials. We have developed a coarse-grained lattice model of polymeric photovoltaics and use it to generate active layers with ordered and disordered regions. We determine carrier mobilities for a range of conditions to investigate the effect of the morphology on charge transport.

  11. Charge Transport across DNA-Based Three-Way Junctions.

    Science.gov (United States)

    Young, Ryan M; Singh, Arunoday P N; Thazhathveetil, Arun K; Cho, Vincent Y; Zhang, Yuqi; Renaud, Nicolas; Grozema, Ferdinand C; Beratan, David N; Ratner, Mark A; Schatz, George C; Berlin, Yuri A; Lewis, Frederick D; Wasielewski, Michael R

    2015-04-22

    DNA-based molecular electronics will require charges to be transported from one site within a 2D or 3D architecture to another. While this has been shown previously in linear, π-stacked DNA sequences, the dynamics and efficiency of charge transport across DNA three-way junction (3WJ) have yet to be determined. Here, we present an investigation of hole transport and trapping across a DNA-based three-way junction systems by a combination of femtosecond transient absorption spectroscopy and molecular dynamics simulations. Hole transport across the junction is proposed to be gated by conformational fluctuations in the ground state which bring the transiently populated hole carrier nucleobases into better aligned geometries on the nanosecond time scale, thus modulating the π-π electronic coupling along the base pair sequence. PMID:25822073

  12. Activationless charge transport across 4.5 to 22 nm in molecular electronic junctions.

    Science.gov (United States)

    Yan, Haijun; Bergren, Adam Johan; McCreery, Richard; Della Rocca, Maria Luisa; Martin, Pascal; Lafarge, Philippe; Lacroix, Jean Christophe

    2013-04-01

    In this work, we bridge the gap between short-range tunneling in molecular junctions and activated hopping in bulk organic films, and greatly extend the distance range of charge transport in molecular electronic devices. Three distinct transport mechanisms were observed for 4.5-22-nm-thick oligo(thiophene) layers between carbon contacts, with tunneling operative when d  16 nm for high temperatures and low bias, and a third mechanism consistent with field-induced ionization of highest occupied molecular orbitals or interface states to generate charge carriers when d = 8-22 nm. Transport in the 8-22-nm range is weakly temperature dependent, with a field-dependent activation barrier that becomes negligible at moderate bias. We thus report here a unique, activationless transport mechanism, operative over 8-22-nm distances without involving hopping, which severely limits carrier mobility and device lifetime in organic semiconductors. Charge transport in molecular electronic junctions can thus be effective for transport distances significantly greater than the 1-5 nm associated with quantum-mechanical tunneling.

  13. Optimizing interactive program for charged particle transport system design

    International Nuclear Information System (INIS)

    A computer program for charged particle transport system design is described. The program is written in the BASIC language and allows one to make calculations in dialogue with the computer. The BASTRA program permits to get output information both in digital and in graphical forms. The method for optimization is described, that allows one to put 10 limitation on beam parameters in arbitrary places of the transport system. The program can be adapted on every computer having the BASIC language in its software

  14. Modeling Transport in Ultrathin Si Nanowires: Charged versus Neutral Impurities

    DEFF Research Database (Denmark)

    Rurali, Riccardo; Markussen, Troels; Suné, Jordi;

    2008-01-01

    Abstract: At room temperature dopants in semiconducting nanowires are ionized. We show that the long-range electrostatic potential due to charged dopants has a dramatic impact on the transport properties in ultrathin wires and can virtually block minority carriers. Our quantitative estimates of t...

  15. Charge transport in disordered organic field-effect transistors

    NARCIS (Netherlands)

    Tanase, C; Blom, PWM; Meijer, EJ; de Leeuw, DM; Jabbour, GE; Carter, SA; Kido, J; Lee, ST; Sariciftci, NS

    2002-01-01

    The transport properties of poly(2,5-thienylene vinylene) (PTV) field-effect transistors (FET) have been investigated as a function of temperature under controlled atmosphere. In a disordered semiconductor as PTV the charge carrier mobility, dominated by hopping between localized states, is dependen

  16. Observation of quantum interference in molecular charge transport

    DEFF Research Database (Denmark)

    Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels;

    2012-01-01

    for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface...

  17. Charge transport in disordered semiconducting polymers driven by nuclear tunneling

    Science.gov (United States)

    van der Kaap, N. J.; Katsouras, I.; Asadi, K.; Blom, P. W. M.; Koster, L. J. A.; de Leeuw, D. M.

    2016-04-01

    The current density-voltage (J -V ) characteristics of hole-only diodes based on poly(2-methoxy, 5-(2' ethyl-hexyloxy)-p -phenylene vinylene) (MEH-PPV) were measured at a wide temperature and field range. At high electric fields the temperature dependence of the transport vanishes, and all J -V sweeps converge to a power law. Nuclear tunneling theory predicts a power law at high fields that scales with the Kondo parameter. To model the J -V characteristics we have performed master-equation calculations to determine the dependence of charge carrier mobility on electric field, charge carrier density, temperature, and Kondo parameter, using nuclear tunneling transfer rates. We demonstrate that nuclear tunneling, unlike other semiclassical models, provides a consistent description of the charge transport for a large bias, temperature, and carrier density range.

  18. Charge transport and memristive properties of graphene quantum dots embedded in poly(3-hexylthiophene) matrix

    International Nuclear Information System (INIS)

    We show that graphene quantum dots (GQD) embedded in a semiconducting poly(3-hexylthiophene) polymeric matrix act as charge trapping nanomaterials. In plane current-voltage (I-V) measurements of thin films realized from this nanocomposite deposited on gold interdigitated electrodes revealed that the GQD enhanced dramatically the hole transport. I-V characteristics exhibited a strong nonlinear behavior and a pinched hysteresis loop, a signature of a memristive response. The transport properties of this nanocomposite were explained in terms of a trap controlled space charge limited current mechanism.

  19. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  20. Microscopic modeling of charge transport in sensing proteins

    Science.gov (United States)

    Reggiani, Lino; Millithaler, Jean-Francois; Pennetta, Cecilia

    2012-06-01

    Sensing proteins (receptors) are nanostructures that exhibit very complex behaviors (ions pumping, conformational change, reaction catalysis, etc). They are constituted by a specific sequence of amino acids within a codified spatial organization. The functioning of these macromolecules is intrinsically connected with their spatial structure, which modifications are normally associated with their biological function. With the advance of nanotechnology, the investigation of the electrical properties of receptors has emerged as a demanding issue. Beside the fundamental interest, the possibility to exploit the electrical properties for the development of bioelectronic devices of new generations has attracted major interest. From the experimental side, we investigate three complementary kinds of measurements: (1) current-voltage (I-V) measurements in nanometric layers sandwiched between macroscopic contacts, (2) I-V measurements within an AFM environment in nanometric monolayers deposited on a conducting substrate, and (3) electrochemical impedance spectroscopy measurements on appropriate monolayers of self-assembled samples. From the theoretical side, a microscopic interpretation of these experiments is still a challenging issue. This paper reviews recent theoretical results carried out within the European project, Bioelectronic Olfactory Neuron Device, which provides a first quantitative interpretation of charge transport experiments exploiting static and dynamic electrical properties of several receptors. To this purpose, we have developed an impedance network protein analogue (INPA) which considers the interaction between neighboring amino acids within a given radius as responsible of charge transfer throughout the protein. The conformational change, due to the sensing action produced by the capture of the ligand (photon, odour), induces a modification of the spatial structure and, thus, of the electrical properties of the receptor. By a scaling procedure, the

  1. Space-Charge Dominated Beam Transport via Multiresolution

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2001-01-01

    We consider space-charge dominated beam transport systems, where space-charge forces are the same order as external focusing forces and dynamics of the corresponding emittance growth. We consider the coherent modes of oscillations and coherent instabilities both in the different nonlinear envelope models and in initial collective dynamics picture described by Vlasov system. Our calculations are based on variation approach and multiresolution in the base of high-localized generalized coherent states/wavelets. We control contributions to dynamical processes from underlying multiscales via nonlinear high-localized eigenmodes expansions in the base of compactly supported wavelet and wavelet packets bases.

  2. Intermediate tunnelling-hopping regime in DNA charge transport

    Science.gov (United States)

    Xiang, Limin; Palma, Julio L.; Bruot, Christopher; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian

    2015-03-01

    Charge transport in molecular systems, including DNA, is involved in many basic chemical and biological processes, and its understanding is critical if they are to be used in electronic devices. This important phenomenon is often described as either coherent tunnelling over a short distance or incoherent hopping over a long distance. Here, we show evidence of an intermediate regime where coherent and incoherent processes coexist in double-stranded DNA. We measure charge transport in single DNA molecules bridged to two electrodes as a function of DNA sequence and length. In general, the resistance of DNA increases linearly with length, as expected for incoherent hopping. However, for DNA sequences with stacked guanine-cytosine (GC) base pairs, a periodic oscillation is superimposed on the linear length dependence, indicating partial coherent transport. This result is supported by the finding of strong delocalization of the highest occupied molecular orbitals of GC by theoretical simulation and by modelling based on the Büttiker theory of partial coherent charge transport.

  3. Effects of dispersive wave modes on charged particles transport

    CERN Document Server

    Schreiner, Cedric

    2015-01-01

    The transport of charged particles in the heliosphere and the interstellar medium is governed by the interaction of particles and magnetic irregularities. For the transport of protons a rather simple model using a linear Alfv\\'en wave spectrum which follows the Kolmogorov distribution usually yields good results. Even magnetostatic spectra may be used. For the case of electron transport, particles will resonate with the high-k end of the spectrum. Here the magnetic fluctuations do not follow the linear dispersion relation, but the kinetic regime kicks in. We will discuss the interaction of fluctuations of dispersive waves in the kinetic regime using a particle-in-cell code. Especially the scattering of particles following the idea of Lange et al. (2013) and its application to PiC codes will be discussed. The effect of the dispersive regime on the electron transport will be discussed in detail.

  4. Transport mechanism of a glutamate transporter homologue GltPh

    Science.gov (United States)

    Ji, Yurui; Postis, Vincent L.G.; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Glutamate transporters are responsible for uptake of the neurotransmitter glutamate in mammalian central nervous systems. Their archaeal homologue GltPh, an aspartate transporter isolated from Pyrococcus horikoshii, has been the focus of extensive studies through crystallography, MD simulations and single-molecule FRET (smFRET). Here, we summarize the recent research progress on GltPh, in the hope of gaining some insights into the transport mechanism of this aspartate transporter. PMID:27284058

  5. Role of mesoscopic morphology in charge transport of doped polyaniline

    Indian Academy of Sciences (India)

    A K Mukherjee; Reghu Menon

    2002-02-01

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain conformation and charge delocalization. The resistivity of PANI doped by camphor sulfonic acid (CSA)/2-acrylo-amido-1-propane sulfonic acid (AMPSA)/dodecyl benzene sulfonic acid (DBSA) is around 0.02 cm. PANI-CSA and PANI-AMPSA show a metallic positive temperature coefficient of resistivity above 150 K, with a finite value of conductivity at 1.4 K; whereas, PANI-DBSA shows hopping transport at low temperatures. The magnetoresistance is positive (negative) for PANI-CSA (PANIAMPSA); and PANI-DBSA has a large positive MR. The behavior of MR suggests subtle variations in mesoscopic morphology between PANI-CSA and PANI-AMPSA.

  6. New Perspectives on the Charging Mechanisms of Supercapacitors.

    Science.gov (United States)

    Forse, Alexander C; Merlet, Céline; Griffin, John M; Grey, Clare P

    2016-05-11

    Supercapacitors (or electric double-layer capacitors) are high-power energy storage devices that store charge at the interface between porous carbon electrodes and an electrolyte solution. These devices are already employed in heavy electric vehicles and electronic devices, and can complement batteries in a more sustainable future. Their widespread application could be facilitated by the development of devices that can store more energy, without compromising their fast charging and discharging times. In situ characterization methods and computational modeling techniques have recently been developed to study the molecular mechanisms of charge storage, with the hope that better devices can be rationally designed. In this Perspective, we bring together recent findings from a range of experimental and computational studies to give a detailed picture of the charging mechanisms of supercapacitors. Nuclear magnetic resonance experiments and molecular dynamics simulations have revealed that the electrode pores contain a considerable number of ions in the absence of an applied charging potential. Experiments and computer simulations have shown that different charging mechanisms can then operate when a potential is applied, going beyond the traditional view of charging by counter-ion adsorption. It is shown that charging almost always involves ion exchange (swapping of co-ions for counter-ions), and rarely occurs by counter-ion adsorption alone. We introduce a charging mechanism parameter that quantifies the mechanism and allows comparisons between different systems. The mechanism is found to depend strongly on the polarization of the electrode, and the choice of the electrolyte and electrode materials. In light of these advances we identify new directions for supercapacitor research. Further experimental and computational work is needed to explain the factors that control supercapacitor charging mechanisms, and to establish the links between mechanisms and performance

  7. New Perspectives on the Charging Mechanisms of Supercapacitors.

    Science.gov (United States)

    Forse, Alexander C; Merlet, Céline; Griffin, John M; Grey, Clare P

    2016-05-11

    Supercapacitors (or electric double-layer capacitors) are high-power energy storage devices that store charge at the interface between porous carbon electrodes and an electrolyte solution. These devices are already employed in heavy electric vehicles and electronic devices, and can complement batteries in a more sustainable future. Their widespread application could be facilitated by the development of devices that can store more energy, without compromising their fast charging and discharging times. In situ characterization methods and computational modeling techniques have recently been developed to study the molecular mechanisms of charge storage, with the hope that better devices can be rationally designed. In this Perspective, we bring together recent findings from a range of experimental and computational studies to give a detailed picture of the charging mechanisms of supercapacitors. Nuclear magnetic resonance experiments and molecular dynamics simulations have revealed that the electrode pores contain a considerable number of ions in the absence of an applied charging potential. Experiments and computer simulations have shown that different charging mechanisms can then operate when a potential is applied, going beyond the traditional view of charging by counter-ion adsorption. It is shown that charging almost always involves ion exchange (swapping of co-ions for counter-ions), and rarely occurs by counter-ion adsorption alone. We introduce a charging mechanism parameter that quantifies the mechanism and allows comparisons between different systems. The mechanism is found to depend strongly on the polarization of the electrode, and the choice of the electrolyte and electrode materials. In light of these advances we identify new directions for supercapacitor research. Further experimental and computational work is needed to explain the factors that control supercapacitor charging mechanisms, and to establish the links between mechanisms and performance

  8. Magnetic fields facilitate DNA-mediated charge transport

    OpenAIRE

    Wong, Jiun Ru; Lee, Kee Jin; Shu, Jian-Jun; Shao, Fangwei

    2015-01-01

    Exaggerate radical-induced DNA damage under magnetic fields is of great concerns to medical biosafety and to bio-molecular device based upon DNA electronic conductivity. In this report, the effect of applying an external magnetic field (MF) on DNA-mediated charge transport (CT) was investigated by studying guanine oxidation by a kinetics trap (8CPG) via photoirradiation of anthraquinone (AQ) in the presence of an external MF. Positive enhancement in CT efficiencies was observed in both the pr...

  9. DNA-mediated Charge Transport in Redox Sensing and Signaling

    OpenAIRE

    Genereux, Joseph C.; Boal, Amie K.; Barton, Jacqueline K.

    2010-01-01

    The transport of charge through the DNA base pair stack offers a route to carry out redox chemistry at a distance. Here we describe characteristics of this chemistry that have been elucidated and how this chemistry may be utilized within the cell. The shallow distance dependence associated with these redox reactions permits DNA-mediated signaling over long molecular distances in the genome and facilitates the activation of redox-sensitive transcription factors globally in response to oxidativ...

  10. Models for Energy and Charge Transport and Storage in Biomolecules

    OpenAIRE

    Mingaleev, S. F.; Christiansen, P. L.; Gaididei, Yu. B.; M. Johansson; Rasmussen, K.Ø.

    1999-01-01

    Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrodinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the tot...

  11. Charge transport through DNA four-way junctions

    OpenAIRE

    Duncan T Odom; Dill, Erik A.; Barton, Jacqueline K.

    2001-01-01

    Long range oxidative damage as a result of charge transport is shown to occur through single crossover junctions assembled from four semi-complementary strands of DNA. When a rhodium complex is tethered to one of the arms of the four-way junction assembly, thereby restricting its intercalation into the π-stack, photo-induced oxidative damage occurs to varying degrees at all guanine doublets in the assembly, though direct strand scission only occurs at the predicted...

  12. DNA Charge Transport Leading to Disulfide Bond Formation

    OpenAIRE

    Takada, Tadao; Barton, Jacqueline K.

    2005-01-01

    Here, we show that DNA-mediated charge transport (CT) can lead to the oxidation of thiols to form disulfide bonds in DNA. DNA assemblies were prepared possessing anthraquinone (AQ) as a photooxidant spatially separated on the duplex from two SH groups incorporated into the DNA backbone. Upon AQ irradiation, HPLC analysis reveals DNA ligated through a disulfide. The reaction efficiency is seen to vary in assemblies containing intervening DNA mismatches, confirming that the reaction is DNA-medi...

  13. Charge injection and transport in fluorene-based copolymers.

    Science.gov (United States)

    Fong, Hon Hang; Malliaras, George G.; Lu, Tianjian; Dunlap, David

    2007-03-01

    Fluorene-based copolymer is considered to be one of the most promising hole transporting and blue light-emitting conjugated polymers used in polymeric light-emitting diodes (PLEDs). Time-of-flight (TOF) technique has been employed to evaluate the charge drift mobility under a temperature range between 200 - 400 K at the thick film regime (1-10 micron). Meanwhile, contact ohmicity is studied by Dark Current Space Charge Limited Conduction (DISCLC) technique. Charge injection efficiencies from different electrical contacts are also studied and the corresponding injection barriers are independently investigated by photoemission and electroabsorption spectroscopies. Results show that the copolymers exhibit non-dispersive charge transport behavior and possess superior mobilities of up to 0.01cm^2V-1s-1 while single-carrier devices from various electrical contacts such as PEDOT:PSS are varied, depending on the chemical structure of amine component in the fluorene-triarylamine copolymers. Results will shed light on the enhancement of device efficiency and stability in the future polymer electronic devices.

  14. Nonlinear charge transport in the helicoidal DNA molecule

    Science.gov (United States)

    Dang Koko, A.; Tabi, C. B.; Ekobena Fouda, H. P.; Mohamadou, A.; Kofané, T. C.

    2012-12-01

    Charge transport in the twist-opening model of DNA is explored via the modulational instability of a plane wave. The dynamics of charge is shown to be governed, in the adiabatic approximation, by a modified discrete nonlinear Schrödinger equation with next-nearest neighbor interactions. The linear stability analysis is performed on the latter and manifestations of the modulational instability are discussed according to the value of the parameter α, which measures hopping interaction correction. In so doing, increasing α leads to a reduction of the instability domain and, therefore, increases our chances of choosing appropriate values of parameters that could give rise to pattern formation in the twist-opening model. Our analytical predictions are verified numerically, where the generic equations for the radial and torsional dynamics are directly integrated. The impact of charge migration on the above degrees of freedom is discussed for different values of α. Soliton-like and localized structures are observed and thus confirm our analytical predictions. We also find that polaronic structures, as known in DNA charge transport, are generated through modulational instability, and hence reinforces the robustness of polaron in the model we study.

  15. Charge transport dependent high open circuit voltage tandem organic photovoltaic cells with low temperature deposited HATCN-based charge recombination layers.

    Science.gov (United States)

    Wei, Huai-Xin; Zu, Feng-Shuo; Li, Yan-Qing; Chen, Wen-Cheng; Yuan, Yi; Tang, Jian-Xin; Fung, Man-Keung; Lee, Chun-Sing; Noh, Yong-Young

    2016-02-01

    Mechanisms of charge transport between the interconnector and its neighboring layers in tandem organic photovoltaic cells have been systematically investigated by studying electronic properties of the involving interfaces with photoelectron spectroscopies and performance of the corresponding devices. The results show that charge recombination occurs at HATCN and its neighboring hole transport layers which can be deposited at low temperature. The hole transport layer plays an equal role to the interconnector itself. These insights provide guidance for the identification of new materials and the device architecture for high performance devices.

  16. Resonance charge exchange mechanism at high and moderate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-03-01

    Charge exchange mechanisms at high and medium energies are investigated, taking the resonance charge exchange of a proton by an hydrogen atom as an example. It is established that there are two classical charge exchange mechanisms related to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to another. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms are presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made.

  17. Resonant charge exchange mechanisms at high and moderate energies

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-03-01

    Charge transfer mechanisms at high and moderate energies are considered for the case of resonant charge exchange of a proton on a hydrogen atom. It is shown that there are two classical charge exchange mechanisms associated with direct ejection of a proton from a bound state, and one quantum mechanical mechanism, in which an electron goes from one bound state into another. The classical cross section diverges for two of these mechanisms, and the semiclassical scattering amplitude must be calculated using the complex classical trajectory. The physical premises for choosing these trajectories are discussed and calculations of the Van Vleck determinant for the mechanisms are presented. The relative contributions of the various mechanisms to the total charge exchange cross section are analyzed, and the results are compared with other experimental data.

  18. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy

    OpenAIRE

    GUO, ZHI; Manser, Joseph S.; Wan, Yan; Kamat, Prashant V.; Huang, Libai

    2015-01-01

    Charge carrier diffusion coefficient and length are important physical parameters for semiconducting materials. Long-range carrier diffusion in perovskite thin films has led to remarkable solar cell efficiencies; however, spatial and temporal mechanisms of charge transport remain unclear. Here we present a direct measurement of carrier transport in space and in time by mapping carrier density with simultaneous ultrafast time resolution and ∼50-nm spatial precision in perovskite thin films usi...

  19. Effects of Te inclusions on charge-carrier transport properties in CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Highlights: • This work reveals the behaviors of Te inclusion in affecting charge-carrier transport properties in CdZnTe detectors for the first time and analysis the mechanism therein. • The results show that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from the Hecht rule. • This phenomenon is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. • A modified Hecht equation is further proposed to explain the effects of high-density localized defects, say Te inclusions, on the charge collection efficiency. • We believe that this research has wide appeal to analyze the macroscopic defects and their influence on charge transport properties in semiconductor radiation detectors. - Abstract: The influence of tellurium (Te) inclusions on the charge collection efficiency in cadmium zinc telluride (CdZnTe or CZT) detectors has been investigated using ion beam induced charge (IBIC) technique. Combining the analysis of infrared transmittance image, most of the low charge collection areas in the IBIC images prove the existence of Te inclusions. To further clarify the role of Te inclusions on charge transport properties, bias dependent local IBIC scan was performed on Te inclusion related regions from 20 V to 500 V. The result shows that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from Hecht rule. This behavior is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. A modified Hecht equation is further proposed to explain the effects of high

  20. Simulations of charge transport in organic light emitting diodes

    CERN Document Server

    Martin, S J

    2002-01-01

    In this thesis, two approaches to the modelling of charge transport in organic light emitting diodes (OLEDs) are presented. The first is a drift-diffusion model, normally used when considering conventional crystalline inorganic semiconductors (e.g. Si or lll-V's) which have well defined energy bands. In this model, electron and hole transport is described using the current continuity equations and the drift-diffusion current equations, and coupled to Poisson's equation. These equations are solved with the appropriate boundary conditions, which for OLEDs are Schottky contacts; carriers are injected by thermionic emission and tunnelling. The disordered nature of the organic semiconductors is accounted for by the inclusion of field-dependent carrier mobilities and Langevin optical recombination. The second approach treats the transport of carriers in disordered organic semi-conductors as a hopping process between spatially and energetically disordered sites. This method has been used previously to account for th...

  1. Mechanism of Electronic Charging of Coal Mine Dust

    Directory of Open Access Journals (Sweden)

    Cheng Xue-Zhen

    2013-09-01

    Full Text Available The electronic charging of mine dust can cause coal-dust explosion and increase the risk of pneumoconiosis, so it is necessary to take more attention to the study of its electronic charging properties. The mechanism of electronic charging of coal mine dust was investigated in this paper. It was found that the formation and polarity of dust are determined by the energy band structure and of the two contacting sides; then a mathematical model of work function is established in mesoscopic level. The experiments conclude that the work function decreases with the particle size for the dust with same properties, moreover large particles are positively charged and small particles are negatively charged. Finally, the experimental verification of the main particles charged model drive unipolar and bipolar charged modes and confirm the correctness of microstructure and mesoscopic analyses, which furthermore lay the foundation for further research.

  2. Congestion charging mechanisms for roads : an evaluation of current practice

    OpenAIRE

    Hau, Timothy D.

    1992-01-01

    The author explores 20 criteria for a good road pricing system and presents case studies illustrating the costs, revenues, and benefits of alternative congestion charging mechanisms. The author finds that manual tollbooths are not suitable for congestion charging because they are land-, labor-, and time-intensive. Cordon pricing (as in the Bergen toll ring) can be an effective instrument for charging for congestion if half the toll lanes are reserved for seasonal pass holders traveling throug...

  3. Implementation of polarization processes in a charge transport model applied on poly(ethylene naphthalate) films

    Science.gov (United States)

    Hoang, M.-Q.; Le Roy, S.; Boudou, L.; Teyssedre, G.

    2016-06-01

    One of the difficulties in unravelling transport processes in electrically insulating materials is the fact that the response, notably charging current transients, can have mixed contributions from orientation polarization and from space charge processes. This work aims at identifying and characterizing the polarization processes in a polar polymer in the time and frequency-domains and to implement the contribution of the polarization into a charge transport model. To do so, Alternate Polarization Current (APC) and Dielectric Spectroscopy measurements have been performed on poly(ethylene naphthalene 2,6-dicarboxylate) (PEN), an aromatic polar polymer, providing information on polarization mechanisms in the time- and frequency-domain, respectively. In the frequency-domain, PEN exhibits 3 relaxation processes termed β, β* (sub-glass transitions), and α relaxations (glass transition) in increasing order of temperature. Conduction was also detected at high temperatures. Dielectric responses were treated using a simplified version of the Havriliak-Negami model (Cole-Cole (CC) model), using 3 parameters per relaxation process, these parameters being temperature dependent. The time dependent polarization obtained from the CC model is then added to a charge transport model. Simulated currents issued from the transport model implemented with the polarization are compared with the measured APCs, showing a good consistency between experiments and simulations in a situation where the response comes essentially from dipolar processes.

  4. The influence of morphology on charge transport/recombination dynamics in planar perovskite solar cells

    Science.gov (United States)

    Yu, Man; Wang, Yi; Wang, Hao-Yi; Han, Jun; Qin, Yujun; Zhang, Jian-Ping; Ai, Xi-Cheng

    2016-10-01

    The photovoltaic performance of planar perovskite solar cell is significantly influenced by the morphology of perovskite film. In this work, five kinds of devices with different perovskite film morphologies were prepared by varying the concentration of CH3NH3Cl in precursor solutions. We found that best morphology of perovskite film results in the excellent photovoltaic performance with an average efficiency of 15.52% and a champion efficiency of 16.38%. Transient photovoltage and photocurrent measurements are performed to elucidate the mechanism of photoelectric conversion processes, which shows that the charge recombination is effectively suppressed and the charge transport is obviously promoted by optimized morphology.

  5. Charge transport in bacteriorhodopsin monolayers: The contribution of conformational change to current-voltage characteristics

    Science.gov (United States)

    Alfinito, E.; Reggiani, L.

    2009-03-01

    When moving from native to light-activated bacteriorhodospin, modification of charge transport consisting of an increase of conductance is correlated to the protein conformational change. A theoretical model based on a map of the protein tertiary structure into a resistor network is implemented to account for a sequential tunneling mechanism of charge transfer through neighbouring amino acids. The model is validated by comparison with current-voltage experiments. The predictability of the model is further tested on bovine rhodopsin, a G-protein coupled receptor (GPCR) also sensitive to light. In this case, results show an opposite behaviour with a decrease of conductance in the presence of light.

  6. Manganese transport via the transferrin mechanism.

    Science.gov (United States)

    Gunter, Thomas E; Gerstner, Brent; Gunter, Karlene K; Malecki, Jon; Gelein, Robert; Valentine, William M; Aschner, Michael; Yule, David I

    2013-01-01

    Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe(3+) via the Tf mechanism is well understood, uptake of Mn(3+) via this mechanism has not been systematically studied. The stability of the Mn(3+)Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn(3+)Tf and biophysical tools, we have developed a novel approach to study Mn(3+)Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn(3+)Tf into neuronal cell lines with published descriptions of Fe(3+) uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn(3+) is transported by the Tf mechanism similarly to Fe(3+)Tf transport; although Mn(3+)Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types.

  7. Nanoscale charge transport in cytochrome c3/DNA network: Comparative studies between redox-active molecules

    Science.gov (United States)

    Yamaguchi, Harumasa; Che, Dock-Chil; Hirano, Yoshiaki; Suzuki, Masayuki; Higuchi, Yoshiki; Matsumoto, Takuya

    2015-09-01

    The redox-active molecule of a cytochrome c3/DNA network exhibits nonlinear current-voltage (I-V) characteristics with a threshold bias voltage at low temperature and zero-bias conductance at room temperature. I-V curves for the cytochrome c3/DNA network are well matched with the Coulomb blockade network model. Comparative studies of the Mn12 cluster, cytochrome c, and cytochrome c3, which have a wide variety of redox potentials, indicate no difference in charge transport, which suggests that the conduction mechanism is not directly related to the redox states. The charge transport mechanism has been discussed in terms of the newly-formed electronic energy states near the Fermi level, induced by the ionic interaction between redox-active molecules with the DNA network.

  8. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bommisetty, Venkat [Univ. of South Dakota, Vermillion, SD (United States)

    2011-06-23

    This paper provides a summary only and table of contents of the sessions. Excitonic solar cells, including all-organic, hybrid organic-inorganic and dye-sensitized solar cells (DSSCs), offer strong potential for inexpensive and large-area solar energy conversion. Unlike traditional inorganic semiconductor solar cells, where all the charge generation and collection processes are well understood, these excitonic solar cells contain extremely disordered structures with complex interfaces which results in large variations in nanoscale electronic properties and has a strong influence on carrier generation, transport, dissociation and collection. Detailed understanding of these processes is important for fabrication of highly efficient solar cells. Efforts to improve efficiency are underway at a large number of research groups throughout the world focused on inorganic and organic semiconductors, photonics, photophysics, charge transport, nanoscience, ultrafast spectroscopy, photonics, semiconductor processing, device physics, device structures, interface structure etc. Rapid progress in this multidisciplinary area requires strong synergetic efforts among researchers from diverse backgrounds. Such effort can lead to novel methods for development of new materials with improved photon harvesting and interfacial treatments for improved carrier transport, process optimization to yield ordered nanoscale morphologies with well defined electronic structures.

  9. Dust charging and transport on airless planetary bodies

    Science.gov (United States)

    Wang, X.; Schwan, J.; Hsu, H.-W.; Grün, E.; Horányi, M.

    2016-06-01

    We report on laboratory experiments to shed light on dust charging and transport that have been suggested to explain a variety of unusual phenomena on the surfaces of airless planetary bodies. We have recorded micron-sized insulating dust particles jumping to several centimeters high with an initial speed of ~0.6 m/s under ultraviolet illumination or exposure to plasmas, resulting in an equivalent height of ~0.11 m on the lunar surface that is comparable to the height of the so-called lunar horizon glow. Lofted large aggregates and surface mobilization are related to many space observations. We experimentally show that the emission and re-absorption of photoelectron and/or secondary electron at the walls of microcavities formed between neighboring dust particles below the surface are responsible for generating unexpectedly large negative charges and intense particle-particle repulsive forces to mobilize and lift off dust particles.

  10. Charged Polymers Transport under Applied Electric Fields in Periodic Channels

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2013-07-01

    Full Text Available By molecular dynamics simulations, we investigated the transport of charged polymers in applied electric fields in confining environments, which were straight cylinders of uniform or non-uniform diameter. In the simulations, the solvent was modeled explicitly and, also, the counterions and coions of added salt. The electrophoretic velocities of charged chains in relation to electrolyte friction, hydrodynamic effects due to the solvent, and surface friction were calculated. We found that the velocities were higher if counterions were moved away from the polymeric domain, which led to a decrease in hydrodynamic friction. The topology of the surface played a key role in retarding the motion of the polyelectrolyte and, even more so, in the presence of transverse electric fields. The present study showed that a possible way of improving separation resolution is by controlling the motion of counterions or electrolyte friction effects.

  11. DNA Protection by the Bacterial Ferritin Dps via DNA Charge Transport

    OpenAIRE

    Arnold, Anna R.; Barton, Jacqueline K.

    2013-01-01

    Dps proteins, bacterial mini-ferritins that protect DNA from oxidative stress, are implicated in the survival and virulence of pathogenic bacteria. Here we examine the mechanism of E. coli Dps protection of DNA, specifically whether this DNA-binding protein can utilize DNA charge transport through the base pair π-stack to protect the genome from a distance. An intercalating ruthenium photooxidant was employed to generate DNA damage localized to guanine repeats, the sites of lowest potential i...

  12. Charge and Spin Transport in Dilute Magnetic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Carsten A.

    2009-07-23

    This proposal to the DOE outlines a three-year plan of research in theoretical and computational condensed-matter physics, with the aim of developing a microscopic theory for charge and spin dynamics in disordered materials with magnetic impurities. Important representatives of this class of materials are the dilute magnetic semiconductors (DMS), which have attracted great attention as a promising basis for spintronics devices. There is an intense experimental effort underway to study the transport properties of ferromagnetic DMS such as (Ga,Mn)As, and a number of interesting features have emerged: negative magnetoresistance, anomalous Hall effect, non-Drude dynamical conductivity, and resistivity maxima at the Curie temperature. Available theories have been able to account for some of these features, but at present we are still far away from a systematic microscopic understanding of transport in DMS. We propose to address this challenge by developing a theory of charge and spin dynamics based on a combination of the memory-function formalism and time-dependent density functional theory. This approach will be capable of dealing with two important issues: (a) the strong degree of correlated disorder in DMS, close to the localization transition (which invalidates the usual relaxation-time approximation to the Boltzmann equation), (b) the essentially unknown role of dynamical many-body effects such as spin Coulomb drag. We will calculate static and dynamical conductivities in DMS as functions of magnetic order and carrier density, which will advance our understanding of recent transport and infrared absorption measurements. Furthermore, we will study collective plasmon excitations in DMS (3D, 2D and quantum wells), whose linewidths could constitute a new experimental probe of the correlation of disorder, many-body effects and charge and spin dynamics in these materials.

  13. Charging machine for the transport of fuel elements

    International Nuclear Information System (INIS)

    Charging machines for the transport of fuel elements for nuclear reactors have got a bridge body supported by two parallel rails via wheels. According to the invention the wheels are fixed to the bridge body by means of guide rods in such a way that at least relative movements in direction of the wheels and transversal to it are possible. Parallel to the guide rods springs and movement attenuators are force-locking by connected. Therefore a stabilizing effect with respect to the transversal forces occurring during earthquakes is achieved. (orig.)

  14. Acoustic charge transport technology investigation for advanced development transponder

    Science.gov (United States)

    Kayalar, S.

    1993-01-01

    Acoustic charge transport (ACT) technology has provided a basis for a new family of analog signal processors, including a programmable transversal filter (PTF). Through monolithic integration of ACT delay lines with GaAs metal semiconductor field effect transistor (MESFET) digital memory and controllers, these devices significantly extend the performance of PTF's. This article introduces the basic operation of these devices and summarizes their present and future specifications. The production and testing of these devices indicate that this new technology is a promising one for future space applications.

  15. Metal complexes for DNA-mediated charge transport

    OpenAIRE

    Barton, Jacqueline K.; Olmon, Eric D.; Sontz, Pamela A.

    2011-01-01

    In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5′-GG-3′ sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of...

  16. Mass and charge transport in micro and nanofluidic channels

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Olesen, Laurits Højgaard; Okkels, Fridolin;

    2007-01-01

    We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electroosmosis. We use aHilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass and...... charge transport coefficients that satisfy Onsager relations. In the limit of nonoverlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radiusR ¼ 2A=P with Aand P being the cross-sectional area and perimeter......, respectively. In particular, we consider the limits of thin nonoverlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electrohydrodynamic interactions....

  17. DFT Study on the Effect of Different Peripheral Chains on Charge Transport Properties of Triphenylene Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN,Jun-Rong; CAI,Jing; XU,Bu-Yi; LI,Quan; ZHAO,Ke-Qing

    2008-01-01

    Based on the semi-classical model of the charge transport, theoretical studies on the effect of different periph-eral chains including alkynyl on charge transport properties of triphenylene have been carried out using density functional theory (DFT) at the level of B3LYP/6-31G**. The results indicate that all the title compounds are ad-vantageous to the charge transport. The introduction of amide RCONH to the discotic ring of triphenylene can raise the positive charge transport rate largely, and introduction of ester in peripheral chains is helpful to the positive charge transport and negative charge transport. The positive charge transport properties of monosubstituted triphenylene are better than those of disubstituted and trisubstituted triphenylenes obviously.

  18. Simulating charge transport to understand the spectral response of Swept Charge Devices

    CERN Document Server

    Athiray, P S; Narendranath, S; Gow, J P D

    2015-01-01

    Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral response matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event...

  19. Charge transport properties in microcrystalline KDyFe(China)6

    International Nuclear Information System (INIS)

    Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures. - Graphical abstract: Dy and Fe polyhedra packing in the cell of KDyFe(China)6.3.5H2O shows occluded water molecules and potassium ions forming a pseudohexagonal 2D sub-lattice connected to each other by diffusion channels

  20. Mixed quantum-classical dynamics for charge transport in organics.

    Science.gov (United States)

    Wang, Linjun; Prezhdo, Oleg V; Beljonne, David

    2015-05-21

    Charge transport plays a crucial role in the working principle of most opto-electronic and energy devices. This is especially true for organic materials where the first theoretical models date back to the 1950s and have continuously evolved ever since. Most of these descriptions rely on perturbation theory to treat small interactions in the Hamiltonian. In particular, applying a perturbative treatment to the electron-phonon and electron-electron coupling results in the band and hopping models, respectively, the signature of which is conveyed by a characteristic temperature dependence of mobility. This perspective describes recent progress of studying charge transport in organics using mixed quantum-classical dynamics techniques, including mean field and surface hopping theories. The studies go beyond the perturbation treatments and represent the processes explicitly in the time-domain, as they occur in real life. The challenges, advantages, and disadvantages of both approaches are systematically discussed. Special focus is dedicated to the temperature dependence of mobility, the role of local and nonlocal electron-phonon couplings, as well as the interplay between electronic and electron-phonon interactions.

  1. Light-Induced Charge Transport within a Single Asymmetric Nanowire

    Energy Technology Data Exchange (ETDEWEB)

    LIU, CHONG; HWANG, YUN YEONG; JEONG, HOON EIU; YANG, PEIDONG

    2011-01-21

    Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photo-generated electrons and holes within a single asymmetric Si/TiO2 nanowire using Kelvin probe force microscopy (KPFM). Under UV illumination, higher surface potential was observed on the n-TiO₂ side, relative to the potential of the p-Si side, as a result of majority carriers’ recombination at the Si/TiO₂ interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure, with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered.

  2. Mechanical forces and lymphatic transport.

    Science.gov (United States)

    Breslin, Jerome W

    2014-11-01

    This review examines the current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect the pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. An improved understanding of the physiological mechanisms by which lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  3. Mechanical Forces and Lymphatic Transport

    Science.gov (United States)

    Breslin, Jerome W.

    2014-01-01

    This review examines current understanding of how the lymphatic vessel network can optimize lymph flow in response to various mechanical forces. Lymphatics are organized as a vascular tree, with blind-ended initial lymphatics, precollectors, prenodal collecting lymphatics, lymph nodes, postnodal collecting lymphatics and the larger trunks (thoracic duct and right lymph duct) that connect to the subclavian veins. The formation of lymph from interstitial fluid depends heavily on oscillating pressure gradients to drive fluid into initial lymphatics. Collecting lymphatics are segmented vessels with unidirectional valves, with each segment, called a lymphangion, possessing an intrinsic pumping mechanism. The lymphangions propel lymph forward against a hydrostatic pressure gradient. Fluid is returned to the central circulation both at lymph nodes and via the larger lymphatic trunks. Several recent developments are discussed, including: evidence for the active role of endothelial cells in lymph formation; recent developments on how inflow pressure, outflow pressure, and shear stress affect pump function of the lymphangion; lymphatic valve gating mechanisms; collecting lymphatic permeability; and current interpretations of the molecular mechanisms within lymphatic endothelial cells and smooth muscle. Improved understanding of the physiological mechanisms by lymphatic vessels sense mechanical stimuli, integrate the information, and generate the appropriate response is key for determining the pathogenesis of lymphatic insufficiency and developing treatments for lymphedema. PMID:25107458

  4. Feline hepatic biotransformation and transport mechanisms

    NARCIS (Netherlands)

    van Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats

  5. ULF Waves and Diffusive Radial Transport of Charged Particles

    Science.gov (United States)

    Ali, Ashar Fawad

    The Van Allen radiation belts contain highly energetic particles which interact with a variety of plasma and magnetohydrodynamic (MHD) waves. Waves in the ultra low-frequency (ULF) range play an important role in the loss and acceleration of energetic particles. Considering the geometry of the geomagnetic field, charged particles trapped in the inner magnetosphere undergo three distinct types of periodic motions; an adiabatic invariant is associated with each type of motion. The evolution of the phase space density of charged particles in the magnetosphere in the coordinate space of the three adiabatic invariants is modeled by the Fokker-Planck equation. If we assume that the first two adiabatic invariants are conserved while the third invariant is violated, then the general Fokker-Planck equation reduces to a radial diffusion equation with the radial diffusion coefficient quantifying the rate of the radial diffusion of charged particles, including contributions from perturbations in both the magnetic and the electric fields. This thesis investigates two unanswered questions about ULF wave-driven radial transport of charged particles. First, how important are the ULF fluctuations in the magnetic field compared with the ULF fluctuations in the electric field in driving the radial diffusion of charged particles in the Earth's inner magnetosphere? It has generally been accepted that magnetic field perturbations dominate over electric field perturbations, but several recently published studies suggest otherwise. Second, what is the distribution of ULF wave power in azimuth, and how does ULF wave power depend upon radial distance and the level of geomagnetic activity? Analytic treatments of the diffusion coefficients generally assume uniform distribution of power in azimuth, but in situ measurements suggest that this may not be the case. We used the magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) and the electric and the magnetic

  6. Charge carrier transport properties in layer structured hexagonal boron nitride

    Science.gov (United States)

    Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2014-10-01

    Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV), hexagonal boron nitride (hBN) has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K). The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0)-α with α = 3.02, satisfying the two-dimensional (2D) carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1), which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  7. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  8. Non-coupled charge explosion and geo-mechanical dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhou Fengjun; Li Xiaojun; Zhou Li; Zheng Lei

    2012-01-01

    The non-coupled charge explosion and geo-mechanical dynamics problem in real air condition is studied in this paper. It analyzes and calculates the problem by using the real air state equations. Through researching on the non- coupled charge rock bench blasting with big clearance of air, its result indicates that the borehole wall reflection over- pressure is far higher than strength of rock, but much lower than detonation front pressure of the charge. So non-coupled charge explosion blasting engineering is very successful. Furthermore, it introduces the method of shaft forming by blas- ting once and the new tube room technology. And the non-coupled charge explosion is used successfully in the method of shaft forming by blasting once. As it drills and blasts in the top and removes the broken rock from the bottom tunnel, it increases the construction efficiency significantly. This paper has important reference on the improvement of the large- span underground engineering construction.

  9. Temperature dependence of charge transport in conjugated single molecule junctions

    Science.gov (United States)

    Huisman, Eek; Kamenetska, Masha; Venkataraman, Latha

    2011-03-01

    Over the last decade, the break junction technique using a scanning tunneling microscope geometry has proven to be an important tool to understand electron transport through single molecule junctions. Here, we use this technique to probe transport through junctions at temperatures ranging from 5K to 300K. We study three amine-terminated (-NH2) conjugated molecules: a benzene, a biphenyl and a terphenyl derivative. We find that amine groups bind selectively to undercoordinate gold atoms gold all the way down to 5K, yielding single molecule junctions with well-defined conductances. Furthermore, we find that the conductance of a single molecule junction increases with temperature and we present a mechanism for this temperature dependent transport result. Funded by a Rubicon Grant from The Netherlands Organisation for Scientific Research (NWO) and the NSEC program of NSF under grant # CHE-0641523.

  10. Tuning The Optical, Charge Injection, and Charge Transport Properties of Organic Electronic Devices

    Science.gov (United States)

    Zalar, Peter

    Since the early 1900's, synthetic insulating polymers (plastics) have slowly taken over the role that traditional materials like wood or metal have had as basic components for construction, manufactured goods, and parts. Plastics allow for high throughput, low temperature processing, and control of bulk properties through molecular modifications. In the same way, pi-conjugated organic molecules are emerging as a possible substitute for inorganic materials due to their electronic properties. The semiconductive nature of pi-conjugated materials make them an attractive candidate to replace inorganic materials, primarily due to their promise for low cost and large-scale production of basic semiconducting devices such as light-emitting diodes, solar cells, and field-effect transistors. Before organic semiconductors can be realized as a commercial product, several hurdles must be cleared. The purpose of this dissertation is to address three distinct properties that dominate the functionality of devices harnessing these materials: (1) optical properties, (2) charge injection, and (3) charge transport. First, it is shown that the electron injection barrier in the emissive layer of polymer light-emitting diodes can be significantly reduced by processing of novel conjugated oligoelectrolytes or deoxyribonucleic acid atop the emissive layer. Next, the charge transport properties of several polymers could be modified by processing them from solvents containing small amounts of additives or by using regioregular and enantiopure chemical structures. It is then demonstrated that the optical and electronic properties of Lewis basic polymer structures can be readily modified by interactions with strongly electron-withdrawing Lewis acids. Through red-shifted absorption, photoluminescence, and electroluminescence, a single pi-conjugated backbone can be polychromatic. In addition, interaction with Lewis acids can remarkably p-dope the hole transport of the parent polymer, leading to a

  11. The thermoballistic transport model a novel approach to charge carrier transport in semiconductors

    CERN Document Server

    Lipperheide, Reinhard

    2014-01-01

    The book presents a comprehensive survey of the thermoballistic approach to charge carrier transport in semiconductors. This semi-classical approach, which the authors have developed over the past decade, bridges the gap between the opposing drift-diffusion and ballistic  models of carrier transport. While incorporating basic features of the latter two models, the physical concept underlying the thermoballistic approach constitutes a novel, unifying scheme. It is based on the introduction of "ballistic configurations" arising from a random partitioning of the length of a semiconducting sample into ballistic transport intervals. Stochastic averaging of the ballistic carrier currents over the ballistic configurations results in a position-dependent thermoballistic current, which is the key element of the thermoballistic concept and forms  the point of departure for the calculation of all relevant transport properties. In the book, the thermoballistic concept and its implementation are developed in great detai...

  12. An LP-based heuristic for the fixed charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2007-01-01

    The fixed charge transportation problem consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported, transportation costs also include a fixed charge. The paper describes a linear programming based heuristic...

  13. The charge transport in the nanoporous natural zeolite

    International Nuclear Information System (INIS)

    It was presented the electrical characterization of a natural zeolite plate and charge transport, it is studied the functions of pressure (4-760 Torr), temperatures (295-435 K) and diameter (5-25 mm) of the cathode areas in the gas discharge electronic devices (GDED) with nanoporous zeolite cathode (NZC) for the first time. There are not enough investigations devoted to conductivity of zeolites in a dc voltage mode. Comparison of current from GDED is used for the determination of the stabilization under low- and atmospheric pressure glow microdischarges conditions. It is found that the gas in zeolite pores ionizes and accordingly the number of electrons in the pores grows. It is of importance to have knowledge in peculiarities of operation of GDED. It can be supposed that cheap natural zeolite will be effective in low-power GDED

  14. Influence of functional groups on charge transport in molecular junctions

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Jones, Glenn; Thygesen, Kristian Sommer

    2008-01-01

    demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can...... the experimental values, but good agreement is obtained after correcting for self-interaction and image charge effects. (c) 2008 American Institute of Physics....... be predicted from its known electronic effect (whether it is sigma/pi donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than...

  15. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    KAUST Repository

    Shi, Dong

    2016-04-15

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells.

  16. Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering

    Science.gov (United States)

    Shi, Dong; Qin, Xiang; Li, Yuan; He, Yao; Zhong, Cheng; Pan, Jun; Dong, Huanli; Xu, Wei; Li, Tao; Hu, Wenping; Brédas, Jean-Luc; Bakr, Osman M.

    2016-01-01

    We report the crystal structure and hole-transport mechanism in spiro-OMeTAD [2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9′-spirobifluorene], the dominant hole-transporting material in perovskite and solid-state dye-sensitized solar cells. Despite spiro-OMeTAD’s paramount role in such devices, its crystal structure was unknown because of highly disordered solution-processed films; the hole-transport pathways remained ill-defined and the charge carrier mobilities were low, posing a major bottleneck for advancing cell efficiencies. We devised an antisolvent crystallization strategy to grow single crystals of spiro-OMeTAD, which allowed us to experimentally elucidate its molecular packing and transport properties. Electronic structure calculations enabled us to map spiro-OMeTAD’s intermolecular charge-hopping pathways. Promisingly, single-crystal mobilities were found to exceed their thin-film counterparts by three orders of magnitude. Our findings underscore mesoscale ordering as a key strategy to achieving breakthroughs in hole-transport material engineering of solar cells. PMID:27152342

  17. Microscopic theory on charge transports of a correlated multiorbital system

    Science.gov (United States)

    Arakawa, Naoya

    2016-07-01

    Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.

  18. Magnetic fields facilitate DNA-mediated charge transport

    CERN Document Server

    Wong, Jiun Ru; Shu, Jian-Jun; Shao, Fangwei

    2015-01-01

    Exaggerate radical-induced DNA damage under magnetic fields is of great concerns to medical biosafety and to bio-molecular device based upon DNA electronic conductivity. In this report, the effect of applying an external magnetic field (MF) on DNA-mediated charge transport (CT) was investigated by studying guanine oxidation by a kinetics trap (8CPG) via photoirradiation of anthraquinone (AQ) in the presence of an external MF. Positive enhancement in CT efficiencies was observed in both the proximal and distal 8CPG after applying a static MF of 300 mT. MF assisted CT has shown sensitivities to magnetic field strength, duplex structures, and the integrity of base pair stacking. MF effects on spin evolution of charge injection upon AQ irradiation and alignment of base pairs to CT-active conformation during radical propagation were proposed to be the two major factors that MF attributed to facilitate DNA-mediated CT. Herein, our results suggested that the electronic conductivity of duplex DNA can be enhanced by a...

  19. Magnetic Fields Facilitate DNA-Mediated Charge Transport.

    Science.gov (United States)

    Wong, Jiun Ru; Lee, Kee Jin; Shu, Jian-Jun; Shao, Fangwei

    2015-06-01

    Exaggerated radical-induced DNA damage under magnetic fields is of great concern to medical biosafety and biomolecular electronic devices. In this report, the effects of an external magnetic field (MF) on DNA electronic conductivity were investigated by studying the efficiencies of photoinduced DNA-mediated charge transport (CT) via guanine damage. Under a static MF of 300 mT, positive enhancements in the decomposition of 8-cyclopropyldeoxyguanosine ((8CP)G) were observed at both the proximal and distal guanine doublets, indicating a more efficient propagation of radical cations and higher electronic conductivity of duplex DNA. MF-assisted CT has shown sensitivity to magnetic field strength, duplex structures, and the integrity of base pair stacking. Spin evolution of charge injection and the alignment of base pairs to the CT-active conformation during radical propagation were proposed to be the two major factors that MF contributes to facilitate DNA-mediated CT. Herein, MF-assisted CT may offer a new avenue for designing DNA-based electronic devices and unraveling MF effects on redox and radical relevant biological processes. PMID:25946473

  20. DNA Charge Transport: from Chemical Principles to the Cell.

    Science.gov (United States)

    Arnold, Anna R; Grodick, Michael A; Barton, Jacqueline K

    2016-01-21

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science, and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  1. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    NARCIS (Netherlands)

    Senthilkumar, K.; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.

    2003-01-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of

  2. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    CERN Document Server

    Kilgour, Michael

    2015-01-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-B\\"uttiker's probe technique" can properly replicate different transport mechanisms: phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction, to provide results consistent with experiments. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) The electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer. Under large dephasing the electrical conductance is suppressed. (iii) At high enough temperatures, $k_BT/\\epsilon_B>1/25$, with $\\epsilon_B$ as ...

  3. Modeling molecular conduction in DNA wires: Charge transfer theories and dissipative quantum transport

    OpenAIRE

    Bulla, R; Gutierrez, R.; Cuniberti, G.

    2006-01-01

    Measurements of electron transfer rates as well as of charge transport characteristics in DNA produced a number of seemingly contradictory results, ranging from insulating behaviour to the suggestion that DNA is an efficient medium for charge transport. Among other factors, environmental effects appear to play a crucial role in determining the effectivity of charge propagation along the double helix. This chapter gives an overview over charge transfer theories and their implication for addres...

  4. Charge transport and recombination in P3HT:PbS solar cells

    International Nuclear Information System (INIS)

    The charge carrier transport in thin film hybrid solar cells is analyzed and correlated with device performance and the mechanisms responsible for recombination loss. The hybrid bulk heterojunction consisted of a blend of poly(3-hexylthiophene) (P3HT) and small size (2.4 nm) PbS quantum dots (QDs). The charge transport in the P3HT:PbS blends was determined by measuring the space-charge limited current in hole-only and electron-only devices. When the loading of PbS QDs exceeds the percolation threshold, a significant increase of the electron mobility is observed in the blend with PbS QDs. The hole mobility, on the other hand, only slightly decreased upon increasing the loading of PbS QDs. We also showed that the photocurrent is limited by the low shunt resistance rather than by space-charge effects. The significant reduction of the fill factor at high light intensity suggests that under these conditions the non-geminate recombination dominates. However, at open-circuit conditions, the trap-assisted recombination dominates over non-geminate recombination

  5. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Joel Davenas

    2009-06-01

    Full Text Available We investigate the dark and illuminated current density-voltage (J/V characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy1-4-phenylenevinylene (MEH-PPV/single-walled carbon nanotubes (SWNTs composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1 composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  6. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors.

    Science.gov (United States)

    Li, Song-Lin; Tsukagoshi, Kazuhito; Orgiu, Emanuele; Samorì, Paolo

    2016-01-01

    Two-dimensional (2D) van der Waals semiconductors represent the thinnest, air stable semiconducting materials known. Their unique optical, electronic and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. However, the charge transport behavior in 2D semiconductors is more susceptible to external surroundings (e.g. gaseous adsorbates from air and trapped charges in substrates) and their electronic performance is generally lower than corresponding bulk materials due to the fact that the surface and bulk coincide. In this article, we review recent progress on the charge transport properties and carrier mobility engineering of 2D transition metal chalcogenides, with a particular focus on the markedly high dependence of carrier mobility on thickness. We unveil the origin of this unique thickness dependence and elaborate the devised strategies to master it for carrier mobility optimization. Specifically, physical and chemical methods towards the optimization of the major factors influencing the extrinsic transport such as electrode/semiconductor contacts, interfacial Coulomb impurities and atomic defects are discussed. In particular, the use of ad hoc molecules makes it possible to engineer the interface with the dielectric and heal the vacancies in such materials. By casting fresh light on the theoretical and experimental studies, we provide a guide for improving the electronic performance of 2D semiconductors, with the ultimate goal of achieving technologically viable atomically thin (opto)electronics.

  7. Charge transport and ac response under light illumination in gate-modulated DNA molecular junctions

    Science.gov (United States)

    Zhang, Yan; Zhu, Wen-Huan; Ding, Guo-Hui; Dong, Bing; Wang, Xue-Feng

    2015-05-01

    Using a two-strand tight-binding model and within nonequilibrium Green's function approach, we study charge transport through DNA sequences {{(GC)}{{NGC}}} and {{(GC)}1}{{(TA)}{{NTA}}}{{(GC)}3} sandwiched between two Pt electrodes. We show that at low temperature DNA sequence {{(GC)}{{NGC}}} exhibits coherent charge carrier transport at very small bias, since the highest occupied molecular orbital in the GC base pair can be aligned with the Fermi energy of the metallic electrodes by a gate voltage. A weak distance dependent conductance is found in DNA sequence {{(GC)}1}{{(TA)}{{NTA}}}{{(GC)}3} with large NTA. Different from the mechanism of thermally induced hopping of charges proposed by the previous experiments, we find that this phenomenon is dominated by quantum tunnelling through discrete quantum well states in the TA base pairs. In addition, ac response of this DNA junction under light illumination is also investigated. The suppression of ac conductances of the left and right lead of DNA sequences at some particular frequencies is attributed to the excitation of electrons in the DNA to the lead Fermi surface by ac potential, or the excitation of electrons in deep DNA energy levels to partially occupied energy levels in the transport window. Therefore, measuring ac response of DNA junctions can reveal a wealth of information about the intrinsic dynamics of DNA molecules.

  8. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    International Nuclear Information System (INIS)

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH3NH3PbI3 film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell

  9. Intrinsic slow charge response in the perovskite solar cells: Electron and ion transport

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jiangjian; Xu, Xin; Zhang, Huiyin; Luo, Yanhong; Li, Dongmei; Meng, Qingbo, E-mail: qbmeng@iphy.ac.cn [Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing 100190 (China); Beijing Key Laboratory for New Energy Materials and Devices, Beijing 100190 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-19

    The intrinsic charge response and hysteresis characteristic in the perovskite solar cell has been investigated by an electrically modulated transient photocurrent technology. An ultraslow charge response process in the timescale of seconds is observed, which can be well explained by the ion migration in the perovskite CH{sub 3}NH{sub 3}PbI{sub 3} film driven by multiple electric fields derived from the heterojunction depletion charge, the external modulation, and the accumulated ion charge. Furthermore, theoretical calculation of charge transport reveals that the hysteresis behavior is also significantly influenced by the interfacial charge extraction velocity and the carrier transport properties inside the cell.

  10. Molecular Mechanism of Biological Proton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  11. Metal-Molecule Contacts: From Adsorption to Charge Transport

    International Nuclear Information System (INIS)

    Full text: Highly ordered monolayers and thin films of electrically active molecules on single crystal metal surfaces are excellent model systems for metal-molecule contacts. They can be used to study fundamental properties of metal-molecule contacts, employing a wide range of surface analytical techniques. In this talk I will give examples of our recent work regarding structure and bonding at the organic-metal interface, interface energetics, and precision measurements of current transport through metal-adsorbed molecules using an STM tip. The adsorption of large organic molecules on metal surfaces is often affected by a sizeable contribution of van der Waals attraction to the interaction energy. This makes theoretical simulations challenging. Precise measurements of structural parameters of adsorbed molecules are therefore important as benchmarks for novel simulation approaches. On the other hand, with a universal theoretical description still missing, empirical rules, such as the scaling of the adsorption height with the substrate work function that was observed for PTCDA on noble metal surfaces, provide important guidelines for our understanding. Apart from the molecule-substrate interaction, intermolecular interactions play an important role. For example, networks of hydrogen bonds can influence the internal geometry of adsorbed molecules and their adsorption height, whereas intermolecular polarization screening can influence their electronic structure. Adsorbed molecules on single-crystal surfaces are also an excellent starting point for precise and well-controlled charge transport experiments through individual molecules, because with an STM they can be contacted at a defined position within the molecule. In this way, the influence of electron correlation on quantum transport can be studied. Finally, we show that if an STM is equipped with a single D2 molecule that is confined in the STM junction, Pauli repulsion is probed and can be used to record images of

  12. Charge transport models for reliability engineering of semiconductor devices

    International Nuclear Information System (INIS)

    The simulation of semiconductor devices is important for the assessment of device lifetimes before production. In this context, this work investigates the influence of the charge carrier transport model on the accuracy of bias temperature instability and hot-carrier degradation models in MOS devices. For this purpose, a four-state defect model based on a non-radiative multi phonon (NMP) theory is implemented to study the bias temperature instability. However, the doping concentrations typically used in nano-scale devices correspond to only a small number of dopants in the channel, leading to fluctuations of the electrostatic potential. Thus, the granularity of the doping cannot be ignored in these devices. To study the bias temperature instability in the presence of fluctuations of the electrostatic potential, the advanced drift diffusion device simulator Minimos-NT is employed. In a first effort to understand the bias temperature instability in p-channel MOSFETs at elevated temperatures, data from direct-current-current-voltage measurements is successfully reproduced using a four-state defect model. Differences between the four-state defect model and the commonly employed trapping model from Shockley, Read and Hall (SRH) have been investigated showing that the SRH model is incapable of reproducing the measurement data. This is in good agreement with the literature, where it has been extensively shown that a model based on SRH theory cannot reproduce the characteristic time constants found in BTI recovery traces. Upon inspection of recorded recovery traces after bias temperature stress in n-channel MOSFETs it is found that the gate current is strongly correlated with the drain current (recovery trace). Using a random discrete dopant model and non-equilibrium greens functions it is shown that direct tunnelling cannot explain the magnitude of the gate current reduction. Instead it is found that trap-assisted tunnelling, modelled using NMP theory, is the cause of this

  13. Charge transport-driven selective oxidation of graphene

    Science.gov (United States)

    Lee, Young Keun; Choi, Hongkyw; Lee, Changhwan; Lee, Hyunsoo; Goddeti, Kalyan C.; Moon, Song Yi; Doh, Won Hui; Baik, Jaeyoon; Kim, Jin-Soo; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-06-01

    Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2 diode under UV-ozone exposure. We found that under a reverse bias of 0.6 V on the graphene/TiO2 diode, graphene oxidation was accelerated under UV-ozone exposure, thus confirming the role of charge transfer between the graphene and the TiO2 that results in the selective oxidation of the graphene. The selective oxidation of graphene can be utilized for the precise, nanoscale patterning of the graphene oxide and locally patterned chemical doping, finally leading to the feasibility and expansion of a variety of graphene-based applications.Due to the tunability of the physical, electrical, and optical characteristics of graphene, precisely controlling graphene oxidation is of great importance for potential applications of graphene-based electronics. Here, we demonstrate a facile and precise way for graphene oxidation controlled by photoexcited charge transfer depending on the substrate and bias voltage. It is observed that graphene on TiO2 is easily oxidized under UV-ozone treatment, while graphene on SiO2 remains unchanged. The mechanism for the selective oxidation of graphene on TiO2 is associated with charge transfer from the TiO2 to the graphene. Raman spectra were used to investigate the graphene following applied bias voltages on the graphene/TiO2

  14. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    Science.gov (United States)

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry. PMID:26484617

  15. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness

    KAUST Repository

    Jana, Partha Sarathi

    2014-01-01

    Harnessing, and understanding the mechanisms of growth and activity of, biofilms of electroactive bacteria (EAB) on solid electrodes is of increasing interest, for application to microbial fuel and electrolysis cells. Microbial electrochemical cell technology can be used to generate electricity, or higher value chemicals, from organic waste. The capability of biofilms of electroactive bacteria to transfer electrons to solid anodes is a key feature of this emerging technology, yet the electron transfer mechanism is not fully characterized as yet. Acetate oxidation current generated from biofilms of an EAB, Geobacter sulfurreducens, on graphite electrodes as a function of time does not correlate with film thickness. Values of film thickness, and the number and local concentration of electrically connected redox sites within Geobacter sulfurreducens biofilms as well as a charge transport diffusion co-efficient for the biofilm can be estimated from non-turnover voltammetry. The thicker biofilms, of 50 ± 9 μm, display higher charge transport diffusion co-efficient than that in thinner films, as increased film porosity of these films improves ion transport, required to maintain electro-neutrality upon electrolysis. This journal is © the Partner Organisations 2014.

  16. A new parameter to characterize the charge transport regime in Ni/HfO2/Si-n+-based RRAMs

    Science.gov (United States)

    Villena, M. A.; Roldán, J. B.; González, M. B.; González-Rodelas, P.; Jiménez-Molinos, F.; Campabadal, F.; Barrera, D.

    2016-04-01

    In this work, a new parameter is defined to describe the charge transport regime and to understand the physics behind the operation of Ni/HfO2/Si-n+-based RRAMs. An extraction process of the parameter from experimental reset I-V curves is proposed. The new parameter allows to know the relative importance of the two main transport mechanisms involved in the charge conduction in the low resistance state of the device: a tunneling current through a potential barrier and an ohmic component. A complete simulation study on this issue is provided. Furthermore, the reset voltage can be estimated using this new parameter.

  17. Charge Transport in Dendrimer Melt using Multiscale Modeling Simulation

    CERN Document Server

    Bag, Saientan; Maiti, Prabal K

    2016-01-01

    In this paper we present a theoretical calculation of the charge carrier mobility in two different dendrimeric melt system (Dendritic phenyl azomethine with Triphenyl amine core and Dendritic Carbazole with Cyclic Phenylazomethine as core), which have recently been reported1 to increase the efficiency of Dye-Sensitized solar cells (DSSCs) by interface modification. Our mobility calculation, which is a combination of molecular dynamics simulation, first principles calculation and kinetic Monte Carlo simulation, leads to mobilities that are in quantitative agreement with available experimental data. We also show how the mobility depends on the dendrimer generation. Furthermore, we examine the variation of mobility with external electric field and external reorganization energy. Physical mechanisms behind observed electric field and generation dependencies of mobility are also explored.

  18. Peculiarities of charge transport in a semiconductor gas discharge electronic devices

    International Nuclear Information System (INIS)

    The memory effect in planar semiconductor gas discharge system at different pressures (15-760) and interelectrode distance (60-445 μm) were experimentally studied. The study was performed on the bases of current-voltage characteristic (CVC) measurements with the time lag of several hours of afterglow periods. The influence of the active space-charge remaining from previous discharge on the breakdown voltage has been analyzed using the CVC method for different conductivity of semiconductor GaAs photocathode. On the other hand, the CVC data for subsequent dates present a correlation of memory effect and hysteresis behaviour. The explanation of such relation is based on the influence of long-lived active charges on the electronic transport mechanism of semiconductor material

  19. Charge transport through one-dimensional Moiré crystals.

    Science.gov (United States)

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Della Rocca, Maria Luisa; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067

  20. Charge transport through one-dimensional Moiré crystals.

    Science.gov (United States)

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Della Rocca, Maria Luisa; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-20

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  1. Charge transport in DNA nanowires connected to carbon nanotubes

    Science.gov (United States)

    Tan, Bikan; Hodak, Miroslav; Lu, Wenchang; Bernholc, J.

    2015-08-01

    DNA is perhaps the worlds most controllable nanowire, with potential applications in nanoelectronics and sensing. However, understanding of its charge transport (CT) properties remains elusive, with experiments reporting a wide range of behaviors from insulating to superconductive. We report extensive first-principle simulations that account for DNA's high flexibility and its native solvent environment. The results show that the CT along the DNA's long axis is strongly dependent on DNA's instantaneous conformation varying over many orders of magnitude. In high CT conformations, delocalized conductive states extending over up to 10 base pairs are found. Their low exponential decay constants further indicate that coherent CT, which is assumed to be active only over 2-3 base pairs in the commonly accepted DNA CT models, can act over much longer length scales. We also identify a simple geometrical rule that predicts CT properties of a given conformation with high accuracy. The effect of mismatched base pairs is also considered: while they decrease conductivities of specific DNA conformations, thermally induced conformational fluctuations wash out this effect. Overall, our results indicate that an immobilized partially dried poly(G)-poly(C) B-DNA is preferable for nanowire applications.

  2. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier.

    Science.gov (United States)

    Li, Leon D; Crouzier, Thomas; Sarkar, Aniruddh; Dunphy, Laura; Han, Jongyoon; Ribbeck, Katharina

    2013-09-17

    The mucus barrier is selectively permeable to a wide variety of molecules, proteins, and cells, and establishes gradients of these particulates to influence the uptake of nutrients, the defense against pathogens, and the delivery of drugs. Despite its importance for health and disease, the criteria that govern transport through the mucus barrier are largely unknown. Studies with uniformly functionalized nanoparticles have provided critical information about the relevance of particle size and net charge for mucus transport. However, these particles lack the detailed spatial arrangements of charge found in natural mucus-interacting substrates, such as certain viruses, which may have important consequences for transport through the mucus barrier. Using a novel, to our knowledge, microfluidic design that enables us to measure real-time transport gradients inside a hydrogel of mucins, the gel-forming glycoprotein component of mucus, we show that two peptides with the same net charge, but different charge arrangements, exhibit fundamentally different transport behaviors. Specifically, we show that certain configurations of positive and negative charges result in enhanced uptake into a mucin barrier, a remarkable effect that is not observed with either charge alone. Moreover, we show that the ionic strength within the mucin barrier strongly influences transport specificity, and that this effect depends on the detailed spatial arrangement of charge. These findings suggest that spatial charge distribution is a critical parameter to modulate transport through mucin-based barriers, and have concrete implications for the prediction of mucosal passage, and the design of drug delivery vehicles with tunable transport properties.

  3. Charge transport and recombination in polyspirobifluorene blue light-emitting diodes

    NARCIS (Netherlands)

    Nicolai, H.T.; Hof, A.; Oosthoek, J.L.M.; Blom, P.W.M.

    2011-01-01

    The charge transport in blue light-emitting polyspirobifluorene is investigated by both steady-state current-voltage measurements and transient electroluminescence. Both measurement techniques yield consistent results and show that the hole transport is space-charge limited. The electron current is

  4. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    Science.gov (United States)

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties. PMID:27257640

  5. Charge transport properties of metal/metal-phthalocyanine/n-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Afzal

    2010-12-16

    In present work the charge transport properties of metal/metal-phthalocyanine/n-Si structures with low (N{sub D} = 4 x 10{sup 14} cm{sup -3}), medium (N{sub D}=1 x 10{sup 16} cm{sup -3}) and high (N{sub D}=2 x 10{sup 19} cm{sup -3}) doped n-Si as injecting electrode and the effect of air exposure of the vacuum evaporated metal-phthalocyanine film in these structures is investigated. The results obtained through temperature dependent electrical characterizations of the structures suggest that in terms of dominant conduction mechanism in the corresponding devices Schottky-type conduction mechanism dominates the charge transport in low-bias region of these devices up to 0.8 V, 0.302 V and 0.15 V in case of low, medium and high doped n-Silicon devices. For higher voltages, in each case of devices, the space-charge-limited conduction, controlled by exponential trap distribution, is found to dominate the charge transport properties of the devices. The interface density of states at the CuPc/n-Si interface of the devices are found to be lower in case of lower work function difference at the CuPc/n-Si interface of the devices. The results also suggest that the work function difference at the CuPc/n-Si interface of these devices causes charge transfer at the interface and these phenomena results in formation of interface dipole. The width of the Schottky depletion region at the CuPc/n-Si interface of these devices is found to be higher with higher work function difference at the interface. The investigation of charge transport properties of Al/ZnPc/medium n-Si and Au/ZnPc/ medium n-Si devices suggest that the Schottky depletion region formed at the ZnPc/n-Si interface of these devices determines the charge transport in the low-bias region of both the devices. Therefore, the Schottky-type (injection limited) and the space-charge-limited (bulk limited) conduction are observed in the low and the high bias regions of these devices, respectively. The determined width of the

  6. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  7. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    OpenAIRE

    Shocron, Amit N.; Suss, Matthew E.

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Thr...

  8. Direct Observation of the Hole Carriers in DNA Photoinduced Charge Transport.

    Science.gov (United States)

    Harris, Michelle A; Mishra, Ashutosh Kumar; Young, Ryan M; Brown, Kristen E; Wasielewski, Michael R; Lewis, Frederick D

    2016-05-01

    The excited state behavior of DNA hairpins possessing a diphenylacetylenedicarboxamide (DPA) linker separated from a single guanine-cytosine (G-C) base pair by zero-to-six adenine-thymine (A-T) base pairs has been investigated. In the case of hairpins with zero or one A-T separating DPA and G, formation of both DPA anion radical (DPA(-•)) and G cation radical (G(+•)) are directly observed and characterized by their transient absorption and stimulated Raman spectra. For hairpins with two or more intervening A-T, the transient absorption spectra of DPA(-•) and the adenine polaron (An(+•)) are observed. In addition to characterization of the hole carriers, the dynamics of each step in the charge separation and charge recombination process as well as the overall efficiency of charge separation have been determined, thus providing a complete account of the mechanism and dynamics of photoinduced charge transport in these DNA hairpins. PMID:27082662

  9. Charge transport in columnar stacked triphenylenes: Effects of conformational fluctuations on charge transfer integrals and site energies

    OpenAIRE

    K. Senthilkumar; Grozema, F.C.; Bickelhaupt, F.M.; Siebbeles, L.D.A.

    2003-01-01

    Values of charge transfer integrals, spatial overlap integrals and site energies involved in transport of positive charges along columnar stacked triphenylene derivatives are provided. These parameters were calculated directly as the matrix elements of the Kohn–Sham Hamiltonian, defined in terms of the molecular orbitals on individual triphenylene molecules. This was realized by exploiting the unique feature of the Amsterdam density functional theory program that allows one to use molecular o...

  10. The Development of Conductive Nanoporous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    OpenAIRE

    Pei-Ru Chen; Yun-Ju Chuang

    2013-01-01

    We present the development of conductive nanoporous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxylfluorescein (CF), substance P, and tumor necrosis factor-alpha (TNF-α). The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nanotubes, respectively. These nanoporous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive...

  11. Charged Particle Energization and Transport in the Magnetotail during Substorms

    Science.gov (United States)

    Pan, Qingjiang

    field region close to the reconnection site, and then adiabatically accelerated in the high-speed flow channels as they catch up with and ride on the earthward propagating dipolarization structures. The nonlocal adiabatic acceleration mechanism for ions is very similar to that for electrons. However, the motion of energetic electrons is adiabatic except in very limited regions near the reconnection site while the motion of energetic ions is marginally adiabatic in the dipolarization regions. The simulations also show that the earthward transport of both species is controlled by the high-speed flows via the dominant ExB drift in the magnetotail. To understand how the power law electrons are initially produced in the magnetotail, we use an implicit particle-in-cell (PIC) code to model the processes in the near-Earth reconnection region. We find that the power law electrons are produced not in the reconnection diffusion region, but in the immediate downstream of the reconnection outflow in the course of dipolarization formation and intensification. Our study illustrates that during substorms, particles are accelerated via a multi-step process, including local acceleration in the reconnection region and nonlocal acceleration during the earthward transport, and the multi-step acceleration occurs on multiple spatial scales ranging from a few kilometers (the scale of electron diffusion region) to more than ten Earth radii (the transport scale).

  12. Charge transport optimization in CZT ring-drift detectors

    Science.gov (United States)

    Boothman, V.; Alruhaili, A.; Perumal, V.; Sellin, P.; Lohstroh, A.; Sawhney, K.; Kachanov, S.

    2015-12-01

    Ring-drift design has been applied to large (7.5~\\text{mm}× 7.5~\\text{mm}× 2.3 mm) cadmium zinc telluride (CZT) devices. This low-noise, single-carrier-sensing configuration is the gold standard for spectroscopic silicon x-ray detectors. By combining the advantages of ring-drift with the high quantum efficiency and room-temperature operating capabilities of CZT, a simple and compact device for high-resolution spectroscopy of x-rays in the range 50-500 keV can be created. Quality of CZT crystals has improved greatly in recent years and electron-only sensing overcomes the problem of inherently poor hole transport in II-VI semiconductors. The spatial response of our 3-ring CZT device was studied by microbeam scanning while the voltages applied to all electrodes were systematically varied. Maximum active radius extended to 2.3 mm, beyond the second ring. Resolution was limited by electronic noise. Our results show that the lateral field and its ratio to the bulk field exert a crucial influence on active area, peak position and sensitivity. CZT and the device geometry were modelled in 3D with Sentaurus TCAD. Line scans were simulated and trends in performance with bias conditions matched experimental data, validating the model. We aimed to optimize the resolution, sensitivity and active radius of the device. Fields and charge drift were visualized and the active volume was mapped in 3D to improve understanding of the factors governing performance including number of rings, their widths, positions and bias.

  13. Background charges and quantum effects in quantum dots transport spectroscopy

    OpenAIRE

    Pierre M.; Hofheinz M.; Jehl X.; Sanquer M.; Molas G.; Vinet M.; Deleonibus S.

    2009-01-01

    We extend a simple model of a charge trap coupled to a single-electron box to energy ranges and parameters such that it gives new insights and predictions readily observable in many experimental systems. We show that a single background charge is enough to give lines of differential conductance in the stability diagram of the quantum dot, even within undistorted Coulomb diamonds. It also suppresses the current near degeneracy of the impurity charge, and yields negative differential lines far ...

  14. Feline hepatic biotransformation and transport mechanisms

    OpenAIRE

    Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats in veterinary practice, following the increasing popularity of cats in The Netherlands. Drug intolerance, toxic side effects or a lack of efficacy have been observed when treating feline patients w...

  15. Beamline for low-energy transport of highly charged ions at HITRAP

    Energy Technology Data Exchange (ETDEWEB)

    Andelkovic, Z., E-mail: z.andelkovic@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Herfurth, F.; Kotovskiy, N. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); König, K.; Maaß, B.; Murböck, T. [Technische Universität Darmstadt (Germany); Neidherr, D. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Schmidt, S. [Technische Universität Darmstadt (Germany); Johannes Gutenberg-Universität Mainz (Germany); Steinmann, J. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Hochschule Darmstadt (Germany); Vogel, M.; Vorobjev, G. [GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany)

    2015-09-21

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency.

  16. Beamline for low-energy transport of highly charged ions at HITRAP

    International Nuclear Information System (INIS)

    A beamline for transport of highly charged ions with energies as low as a few keV/charge has been constructed and commissioned at GSI. Complementary to the existing infrastructure of the HITRAP facility for deceleration of highly charged ions from the GSI accelerator, the new beamline connects the HITRAP ion decelerator and an EBIT with the associated experimental setups. Therefore, the facility can now transport the decelerated heavy highly charged ions to the experiments or supply them offline with medium-heavy highly charged ions from the EBIT, both at energies as low as a few keV/charge. Here we present the design of the 20 m long beamline with the corresponding beam instrumentation, as well as its performance in terms of energy and transport efficiency

  17. Classification of solar cells according to mechanisms of charge separation and charge collection.

    Science.gov (United States)

    Kirchartz, Thomas; Bisquert, Juan; Mora-Sero, Ivan; Garcia-Belmonte, Germà

    2015-02-14

    In the last decade, photovoltaics (PV) has experienced an important transformation. Traditional solar cells formed by compact semiconductor layers have been joined by new kinds of cells that are constituted by a complex mixture of organic, inorganic and solid or liquid electrolyte materials, and rely on charge separation at the nanoscale. Recently, metal organic halide perovskites have appeared in the photovoltaic landscape showing large conversion efficiencies, and they may share characteristics of the two former types. In this paper we provide a general description of the photovoltaic mechanisms of the single absorber solar cell types, combining all-inorganic, hybrid and organic cells into a single framework. The operation of the solar cell relies on a number of internal processes that exploit internal charge separation and overall charge collection minimizing recombination. There are two main effects to achieve the required efficiency, first to exploit kinetics at interfaces, favouring the required forward process, and second to take advantage of internal electrical fields caused by a built-in voltage and by the distribution of photogenerated charges. These principles represented by selective contacts, interfaces and the main energy diagram, form a solid base for the discussion of the operation of future types of solar cells. Additional effects based on ferroelectric polarization and ionic drift provide interesting prospects for investigating new PV effects mainly in the perovskite materials.

  18. Microscopic studies of the fate of charges in organic semiconductors: Scanning Kelvin probe measurements of charge trapping, transport, and electric fields in p- and n-type devices

    Science.gov (United States)

    Smieska, Louisa Marion

    Organic semiconductors could have wide-ranging applications in lightweight, efficient electronic circuits. However, several fundamental questions regarding organic electronic device behavior have not yet been fully addressed, including the nature of chemical charge traps, and robust models for injection and transport. Many studies focus on engineering devices through bulk transport measurements, but it is not always possible to infer the microscopic behavior leading to the observed measurements. In this thesis, we present scanning-probe microscope studies of organic semiconductor devices in an effort to connect local properties with local device behavior. First, we study the chemistry of charge trapping in pentacene transistors. Working devices are doped with known pentacene impurities and the extent of charge trap formation is mapped across the transistor channel. Trap-clearing spectroscopy is employed to measure an excitation of the pentacene charge trap species, enabling identification of the degradationrelated chemical trap in pentacene. Second, we examine transport and trapping in peryelene diimide (PDI) transistors. Local mobilities are extracted from surface potential profiles across a transistor channel, and charge injection kinetics are found to be highly sensitive to electrode cleanliness. Trap-clearing spectra generally resemble PDI absorption spectra, but one derivative yields evidence indicating variation in trap-clearing mechanisms for different surface chemistries. Trap formation rates are measured and found to be independent of surface chemistry, contradicting a proposed silanol trapping mechanism. Finally, we develop a variation of scanning Kelvin probe microscopy that enables measurement of electric fields through a position modulation. This method avoids taking a numeric derivative of potential, which can introduce high-frequency noise into the electric field signal. Preliminary data is presented, and the theoretical basis for electric field

  19. Charge Injection and Transport in Metal/Polymer Chains/Metal Sandwich Structure

    Institute of Scientific and Technical Information of China (English)

    LI Hai-Hong; LI Dong-Mei; LI Yuan; GAO Kun; LIU De-Sheng; XIE Shi-Jie

    2008-01-01

    @@ Using the tight-binding Su-Schrieffer-Heeger model and a nonadiabatic dynamic evolution method, we study the dynamic processes of the charge injection and transport in a metal/two coupled conjugated polymer chains/metal structure. It is found that the charge interchain transport is determined by the strength of the electric field and the magnitude of the voltage bias applied on the metal electrode. The stronger electric field and the larger voltage bias are both in favour of the charge interchain transport.

  20. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Kilgour, Michael; Segal, Dvira, E-mail: dsegal@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2015-07-14

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This “Landauer-Büttiker’s probe technique” can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, k{sub B}T/ϵ{sub B} > 1/25, with ϵ{sub B} as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker’s probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  1. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    Science.gov (United States)

    Kilgour, Michael; Segal, Dvira

    2015-07-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  2. Charge transport properties of bulk Ta3N5 from first principles

    Science.gov (United States)

    Morbec, Juliana M.; Galli, Giulia

    2016-01-01

    Tantalum nitride is considered a promising material for photoelectrochemical water splitting, however, its charge transport properties remain poorly understood. We investigated polaronic and band transport in Ta3N5 using first-principles calculations. We first studied the formation of small polarons using density-functional theory (DFT) including DFT +U and hybrid functionals. We found that electron small polarons may occur but hole polarons are not energetically favorable. The estimated polaronic mobility for electrons is at least three orders of magnitude smaller than that measured in Ta3N5 films, suggesting that the main transport mechanism for both electrons and holes is bandlike. Since band transport is strongly affected by the carrier effective masses, and Ta3N5 is known to have large electron and hole effective masses, we also investigated whether substitutional impurities or strain may help lower the effective masses. We found a significant reduction in both electron and hole effective masses (up to 17% for electrons and 39% for holes) under applied strain, which may lead to a substantial improvement (up to 30% for electrons and 15% for holes) in the carrier mobilities.

  3. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Samuel M.; Singh, Vivek [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Noh, Hyunwoo [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Cha, Jennifer N. [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering Program and Department of Nanoengineering, University of California, 9500 Gilman Drive, La Jolla, San Diego, California 92093 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Nagpal, Prashant, E-mail: pnagpal@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Materials Science and Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303 (United States); Renewable and Sustainable Energy Institute, University of Colorado Boulder, 2445 Kittredge Loop, Boulder, Colorado 80309 (United States)

    2015-02-23

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  4. Charge transport through exciton shelves in cadmium chalcogenide quantum dot-DNA nano-bioelectronic thin films

    Science.gov (United States)

    Goodman, Samuel M.; Noh, Hyunwoo; Singh, Vivek; Cha, Jennifer N.; Nagpal, Prashant

    2015-02-01

    Quantum dot (QD), or semiconductor nanocrystal, thin films are being explored for making solution-processable devices due to their size- and shape-tunable bandgap and discrete higher energy electronic states. While DNA has been extensively used for the self-assembly of nanocrystals, it has not been investigated for the simultaneous conduction of multiple energy charges or excitons via exciton shelves (ES) formed in QD-DNA nano-bioelectronic thin films. Here, we present studies on charge conduction through exciton shelves, which are formed via chemically coupled QDs and DNA, between electronic states of the QDs and the HOMO-LUMO levels in the complementary DNA nucleobases. While several challenges need to be addressed in optimizing the formation of devices using QD-DNA thin films, a higher charge collection efficiency for hot-carriers and our detailed investigations of charge transport mechanism in these thin films highlight their potential for applications in nano-bioelectronic devices and biological transducers.

  5. Wettability Modulated Charge Inversion and Ionic Transport in Nanofuidic Channels

    CERN Document Server

    Shaik, Vaseem Akram; Hossain, Syed Sahil; Chakraborty, Suman

    2015-01-01

    We unveil the role of substrate wettability on the reversal in the sign of the interfacial charge distribution in a nanochannel in presence of multivalent ions. In sharp contrast to the prevailing notion that hydrophobic interactions may trivially augment the effective surface charge, we demonstrate that the interplay between surface hydrophobicity and interfacial electrostatics may result in a decrease in the effective interfacial potential, and a consequent charge inversion over regimes of low surface charges. We also show that this phenomenon, in tandem with the interfacial hydrodynamics may non-trivially lead to either augmentation or attenuation or even reversal of the net streaming current, depending on the relevant physical scales involved. These results, supported by Molecular Dynamics simulations and experimental data, may bear far ranging consequences in understanding complex biophysical processes and designing nanofluidic devices and systems involving multivalent counterions.

  6. Conditions for charge transport without recombination in low mobility organic solar cells and photodiodes (Presentation Recording)

    Science.gov (United States)

    Stolterfoht, Martin; Armin, Ardalan; Philippa, Bronson; White, Ronald D.; Burn, Paul L.; Meredith, Paul; Juška, Gytis; Pivrikas, Almantas

    2015-10-01

    Organic semiconductors typically possess low charge carrier mobilities and Langevin-type recombination dynamics, which both negatively impact the performance of organic solar cells and photodetectors. Charge transport in organic solar cells is usually characterized by the mobility-lifetime product. Using newly developed transient and steady state photocurrent measurement techniques we show that the onset of efficiency limiting photocarrier recombination is determined by the charge that can be stored on the electrodes of the device. It is shown that significant photocarrier recombination can be avoided when the total charge inside the device, defined by the trapped, doping-induced and mobile charge carriers, is less than the electrode charge. Based upon this physics we propose the mobility-recombination coefficient product as an alternative and more convenient figure of merit to minimize the recombination losses. We validate the results in 3 different organic semiconductor-based light harvesting systems with very different charge transport properties. The findings allow the determination of the charge collection efficiency in fully operational devices. In turn, knowing the conditions under which non-geminate recombination is eliminated enables one to quantify the generation efficiency of free charge carriers. The results are relevant to a wide range of light harvesting systems, particularly those based upon disordered semiconductors, and require a rethink of the critical parameters for charge transport.

  7. Dynamical- and static-disorder effects on charge transport property of organic semiconductors

    Science.gov (United States)

    Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji

    2014-03-01

    In comparison with inorganic materials, electron transfer energy of typical organic semiconductors is small in the range of 10 - 100meV, which is comparable to the magnitude of dynamical disorder of transfer energy originating from the thermal fluctuations of molecular motions. Furthermore, the static disorder inevitably exists in realistic organic devices and disturbs the transport of charge carrier. To clarify the influence of the dynamical and static disorders on the mobility, we employ a realistic static-disorder potential, which is deduced from the data obtained by electron-spin-resonance spectroscopy. We evaluate the carrier mobilities of pentacene and rubrene semiconductors under the realistic situation, using our time-dependent wave-packet diffusion method. In this methodology, we carry out the quantum-mechanical time-evolution calculations of wave packets and the classical molecular dynamics simulations simultaneously. We clarify the relation between the charge transport property and these disorders. We will talk about these results in my presentation. This work was supported by JST, PRESTO, and a Grant-in-Aid for Scientific Research from the JSPS.

  8. Signatures of dynamics in charge transport through organic molecules; Dynamisches Verhalten beim Ladungstransport durch organische Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Secker, Daniel

    2008-06-03

    The aim of the thesis at hand was to investigate dynamical behaviour in charge transport through organic molecules experimentally with the help of the mechanically controlled break junction (MCBJ) technique. the thesis concentrates on the complex interaction between the molecular contact configuration and the electronic structure. it is shown that by variation of the electrode distance and so by a manipulation of the molecule and contact configuration the electronic structure as well as the coupling between the molecule and the electrodes is affected. The latter statement is an additional hint how closely I-V-characteristics depend on the molecular contact configuration. Depending on the applied voltage and so the electric field there are two different configurations preferred by the molecular contact. A potential barrier between these two states is the origin of the hysteresis. A central part of the thesis is dealing with measurements of the current noise. Finally it can be concluded that the detailed discussion reveals the strong effect of dynamical interactions between the atomic configuration of the molecular contact and the electronic structure on the charge transport in single molecule junctions. (orig.)

  9. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube

    NARCIS (Netherlands)

    Tombros, Nikolaos; Buit, Luuk; Arfaoui, Imad; Tsoufis, Theodoros; Gournis, Dimitrios; Trikalitis, Pantelis N.; van der Molen, Sense Jan; Rudolf, Petra; van Wees, Bart J.

    2008-01-01

    The charge transport properties of single superconducting tin nanowires encapsulated by multiwalled carbon nanotubes have been investigated by multiprobe measurements. The multiwalled carbon nanotube protects the tin nanowire from oxidation and shape fragmentation and therefore allows us to investig

  10. Charge transport in organic crystals: critical role of correlated fluctuations unveiled by analysis of Feynman diagrams.

    Science.gov (United States)

    Packwood, Daniel M; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki

    2015-04-14

    Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy "bonding"-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the "missing link" for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.

  11. Charge Transport in Voltage-Biased Superconducting Single-Electron Transistors

    OpenAIRE

    Siewert, Jens; Schön, Gerd

    1996-01-01

    Charge is transported through superconducting SSS single-electron transistors at finite bias voltages by a combination of coherent Cooper-pair tunneling and quasiparticle tunneling. At low transport voltages the effect of an ``odd'' quasiparticle in the island leads to a $2e$-periodic dependence of the current on the gate charge. We evaluate the $I-V$ characteristic in the framework of a model which accounts for these effects as well as for the influence of the electromagnetic environment. Th...

  12. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  13. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters.

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  14. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    2007-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case....... Finally, we briefly compare some exact solution algorithms for this problem....

  15. Battery-powered transport systems. Possible methods of automatically charging drive batteries

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    In modern driverless transport systems, not only easy maintenance of the drive battery is important but also automatic charging during times of standstill. Some systems are presented; one system is pointed out in particular in which 100 batteries can be charged at the same time.

  16. Predictive charge-regulation transport model for nanofiltration from the theory of irreversible processes

    NARCIS (Netherlands)

    Lint, de W.B. Samuel; Benes, Nieck E.

    2004-01-01

    The charge-regulation concept is combined with the theory of irreversible processes to predict multi-component electrolyte transport in nanofiltration membranes. Charging of the membrane surface is described using a 1-pK site-binding model with a triple-layer electrostatic description. Mass transpor

  17. Transport of charged Aerosol OT inverse micelles in nonpolar liquids.

    Science.gov (United States)

    Karvar, Masoumeh; Strubbe, Filip; Beunis, Filip; Kemp, Roger; Smith, Ashley; Goulding, Mark; Neyts, Kristiaan

    2011-09-01

    Surfactants such as Aerosol OT (AOT) are commonly used to stabilize and electrically charge nonpolar colloids in devices such as electronic ink displays. The electrical behavior of such devices is strongly influenced by the presence of charged inverse micelles, formed by excess surfactant that does not cover the particles. The presence of charged inverse micelles results in increased conductivity of the solution, affecting both the energy consumption of the device and its switching characteristics. In this work, we use transient current measurements to investigate the electrical properties of suspensions of the surfactant Aerosol OT in dodecane. No particles are added, to isolate the effect of excess surfactant. The measured currents upon application of a voltage step are found to be exponentially decaying, and can be described by an analytical model based on an equivalent electric circuit. This behavior is physically interpreted, first by the high generation rate of charged inverse micelles giving the suspension resistor like properties, and second by the buildup of layers of charged inverse micelles at both electrodes, acting as capacitors. The model explains the measurements over a large range of surfactant concentrations, applied voltages, and device thicknesses. PMID:21728309

  18. Charge carrier transport at the nanoscale: Electron and hole transport in self-assembled discotic liquid crystals: Mobile ionic charges in nanocomposite solid electrolytes

    NARCIS (Netherlands)

    Haverkate, L.A.

    2013-01-01

    This thesis explores some fundamental aspects of charge carrier transport at the nanoscale. The study is divided in two parts. In the first part, the structural, dynamical and vibrational properties of discotic liquid crystals are studied in relation to the potential of these self-assembled ‘mesopha

  19. Cis- and trans-isomerization-induced transition of charge transport property in PPV oligomers

    International Nuclear Information System (INIS)

    Graphical abstract: Cis→trans isomerization of 2,5-diphenyl-1,4-distyrylbenzene (DPDSB, model compound of PPV) induces significant changes in charge transport properties. Cis-DPDSB demonstrates hole-majority transport while trans-DPDSB exhibits balanced transport. Highlights: → 2,5-diphenyl-1,4-distyrylbenzene (DPDSB) is a model compound of PPV derivatives. → Cis→trans isomerization induces significant changes in charge transport property. → Cis-DPDSB displays hole-majority transport while trans-DPDSB shows balanced one. → This finding helps to understand structure/property relationship in PPV derivatives. - Abstract: Photoisomerization of vinylenes is well known to cause remarkable changes in the photophysical properties of poly (p-phenylene vinylene) (PPV) derivatives. Cis-/trans- isomerization is also expected to induce significant changes in their charge transport properties. In this study, the charge transport properties of cis- and trans-isomers of 2,5-diphenyl-1,4-distyrylbenzene (DPDSB, model compound of PPV) were investigated using a Marcus hopping model. As expected, this conformational transition from cis- to trans-isomer gives rise to a significant difference between hole and electron transport properties. Cis-DPDSB demonstrates an overwhelmingly superior hole transport (μh/μe = 51), which is even higher than that of trans-DPDSB. By contrast, trans-DPDSB exhibits approximately balanced carrier transport property (μh/μe = 1.79). These results are understood on a molecular level by considering the structure-transport relationship through two key parameters: transfer integral and reorganization energy. This finding may be helpful in understanding and extrapolating the structure-property relationship and charge transport property of the corresponding PPV polymers derivatives.

  20. Role of Molecular Weight Distribution on Charge Transport in Semiconducting Polymers

    KAUST Repository

    Himmelberger, Scott

    2014-10-28

    © 2014 American Chemical Society. Model semiconducting polymer blends of well-controlled molecular weight distributions are fabricated and demonstrated to be a simple method to control intermolecular disorder without affecting intramolecular order or degree of aggregation. Mobility measurements exhibit that even small amounts of low molecular weight material are detrimental to charge transport. Trends in charge carrier mobility can be reproduced by a simple analytical model which indicates that carriers have no preference for high or low molecular weight chains and that charge transport is limited by interchain hopping. These results quantify the role of long polymer tie-chains and demonstrate the need for controlled polydispersity for achieving high carrier mobilities.

  1. Phenomena of charged particles transport in variable magnetic fields

    CERN Document Server

    Savane, S Y; Faza-Barry, M; Vladmir, L

    2002-01-01

    This present work is dedicated to the study of the dynamical phenomena for the transport of ions in the presence of variable magnetic fields in front of the Jupiter wave shock. We obtain the spectrum of the accelerated ions and we study the conditions of acceleration by solving the transport equation in the planetocentric system. We discuss the theoretical results obtained and make a comparison with the experimental parameters in the region of acceleration behind the Jupiter wave shock.

  2. Charge transport and shot noise in ballistic graphene sheet

    OpenAIRE

    Sonin, E. B.

    2008-01-01

    The current and the shot noise in a graphene sheet were analyzed in the ballistic regime for arbitrary voltage drops between leads and the sheet in the limit of infinite aspect ratio of the sheet width to its length, when quantization of transversal wave vectors is not essential. The cases of coherent and incoherent ballistic transport were compared. At high voltages the difference with coherent transport is not essential. But at low voltages conductance and Fano-factor dependences for incohe...

  3. Long-range charge transport in single G-quadruplex DNA molecules

    DEFF Research Database (Denmark)

    Livshits, Gideon I.; Stern, Avigail; Rotem, Dvir;

    2014-01-01

    -ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4...

  4. A general relationship between disorder, aggregation and charge transport in conjugated polymers

    KAUST Repository

    Noriega, Rodrigo

    2013-08-04

    Conjugated polymer chains have many degrees of conformational freedom and interact weakly with each other, resulting in complex microstructures in the solid state. Understanding charge transport in such systems, which have amorphous and ordered phases exhibiting varying degrees of order, has proved difficult owing to the contribution of electronic processes at various length scales. The growing technological appeal of these semiconductors makes such fundamental knowledge extremely important for materials and process design. We propose a unified model of how charge carriers travel in conjugated polymer films. We show that in high-molecular-weight semiconducting polymers the limiting charge transport step is trapping caused by lattice disorder, and that short-range intermolecular aggregation is sufficient for efficient long-range charge transport. This generalization explains the seemingly contradicting high performance of recently reported, poorly ordered polymers and suggests molecular design strategies to further improve the performance of future generations of organic electronic materials. © 2013 Macmillan Publishers Limited. All rights reserved.

  5. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Science.gov (United States)

    Huang, Yanhui; Schadler, Linda S.

    2016-08-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  6. On the Nature of High Field Charge Transport in Reinforced Silicone Dielectrics: Experiment and Simulation

    CERN Document Server

    Huang, Yanhui

    2016-01-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field, and were compared with properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial to determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails, and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  7. Administrative mechanics of research fuel transportation

    International Nuclear Information System (INIS)

    This presentation contains the discussion on the multitude of administrative mechanics that have to be meshed for the successful completion of a shipment of spent fuel, HEU or LEU in the research reactors fuel cycle. The costs associated with transportation may be the equivalent of 'a black hole', so an overview of cost factors is given. At the end one could find that this black hole factor in the budget is actually a bargain. The first step is the quotation phase. The cost variables in the quotation contain the cost of packaging i.e. containers; the complete routing of the packages and the materials. Factors that are of outmost importance are the routing restrictions and regulations, physical security regulations. All of this effort is just to provide a valid quotation not to accomplish the goal of completing a shipment. Public relations cannot be omitted either

  8. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thilo; Jäger, Christof M. [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Jordan, Meredith J. T. [School of Chemistry, University of Sydney, Sydney, NSW 2006 (Australia); Clark, Timothy, E-mail: tim.clark@fau.de [Department of Chemistry and Pharmacy, Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen (Germany); Centre for Molecular Design, University of Portsmouth, Portsmouth PO1 2DY (United Kingdom)

    2015-07-28

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves.

  9. A multi-agent quantum Monte Carlo model for charge transport: Application to organic field-effect transistors

    International Nuclear Information System (INIS)

    We have developed a multi-agent quantum Monte Carlo model to describe the spatial dynamics of multiple majority charge carriers during conduction of electric current in the channel of organic field-effect transistors. The charge carriers are treated by a neglect of diatomic differential overlap Hamiltonian using a lattice of hydrogen-like basis functions. The local ionization energy and local electron affinity defined previously map the bulk structure of the transistor channel to external potentials for the simulations of electron- and hole-conduction, respectively. The model is designed without a specific charge-transport mechanism like hopping- or band-transport in mind and does not arbitrarily localize charge. An electrode model allows dynamic injection and depletion of charge carriers according to source-drain voltage. The field-effect is modeled by using the source-gate voltage in a Metropolis-like acceptance criterion. Although the current cannot be calculated because the simulations have no time axis, using the number of Monte Carlo moves as pseudo-time gives results that resemble experimental I/V curves

  10. Charge transport through a semiconductor quantum dot-ring nanostructure

    International Nuclear Information System (INIS)

    Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot–ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes. (paper)

  11. Assessing the potential of different charging strategies for electric vehicle fleets in closed transport systems

    International Nuclear Information System (INIS)

    A key reason for the low sales volumes of electric vehicles is their significantly higher purchasing price in comparison to conventional vehicles. However, various charging strategies can be applied to make these vehicles more profitable. In this paper, controlled charging concepts are transferred to commercial fleets operating in closed transport systems, as we found this field of application particularly well suited for the implementation of charging strategies. We analyzed data gathered in a field experiment conducted in a European port using electric vehicles in combination with a battery-swapping station to calculate the economic potentials of three charging scenarios: (1) optimizing energy procurement (2) trading load-shifting potential on control markets, and (3) a combination of the two. The findings indicate that all approaches are appropriate for reducing economic disadvantages of electric transport vehicles. Furthermore, we find that adjusting charging processes to avoid price peaks is more profitable than offering control reserve. Finally, focusing on the combination of both strategies seems to be most promising from an economic perspective. In this context, operational cost savings of more than 65% can be achieved compared to a similar dieselpowered vehicle when applying this strategy. - Highlights: • We model various charging strategies for electric transport vehicles. • The economic assessment is based on a field experiment with a port operator. • We consider the special market design of spot and ancillary service markets. • All charging strategies presented provide substantial cost-saving potentials. • Optimizing energy procurement is more profitable than offering control reserve

  12. Charge transport and rectification in molecular junctions formed with carbon-based electrodes.

    Science.gov (United States)

    Kim, Taekyeong; Liu, Zhen-Fei; Lee, Chulho; Neaton, Jeffrey B; Venkataraman, Latha

    2014-07-29

    Molecular junctions formed using the scanning-tunneling-microscope-based break-junction technique (STM-BJ) have provided unique insight into charge transport at the nanoscale. In most prior work, the same metal, typically Au, Pt, or Ag, is used for both tip and substrate. For such noble metal electrodes, the density of electronic states is approximately constant within a narrow energy window relevant to charge transport. Here, we form molecular junctions using the STM-BJ technique, with an Au metal tip and a microfabricated graphite substrate, and measure the conductance of a series of graphite/amine-terminated oligophenyl/Au molecular junctions. The remarkable mechanical strength of graphite and the single-crystal properties of our substrates allow measurements over few thousand junctions without any change in the surface properties. We show that conductance decays exponentially with molecular backbone length with a decay constant that is essentially the same as that for measurements with two Au electrodes. More importantly, despite the inherent symmetry of the oligophenylamines, we observe rectification in these junctions. State-of-art ab initio conductance calculations are in good agreement with experiment, and explain the rectification. We show that the highly energy-dependent graphite density of states contributes variations in transmission that, when coupled with an asymmetric voltage drop across the junction, leads to the observed rectification. Together, our measurements and calculations show how functionality may emerge from hybrid molecular-scale devices purposefully designed with different electrodes beyond the so-called "wide band limit," opening up the possibility of assembling molecular junctions with dissimilar electrodes using layered 2D materials.

  13. Rigid band shifts, charge pinning, and charge transport through graphene junctions with wetting metal contacts

    Science.gov (United States)

    Bothwell, Tobias; Barraza-Lopez, Salvador

    2014-03-01

    It is a common perception that graphene band shifts cannot be determined directly when attached to chemisorbed (``wetting'') metals due to the hybridization of graphene bands around the Dirac point. Graphene has deeper energy (sigma) bands which don't hybridize with the metal's bands, providing a definite measure of actual shifts. Looking at hybridization in a controlled way (by varying the metal/graphene separation by hand) one realizes the shifts can actually be considered rigid, i.e., σ - and p - bands shift by about the same energy ΔE. In a related context, charge depinning is the modification of graphene's electron density at a metal/graphene interface with a (back) gate. Depinning happens at metal/graphene interfaces with physisorbed (non-wetting) metals. Oxidation or contamination at the interface can lead to charge depinning as well. Using first-principles calculations, we establish a link between charge depinning at a wetting metal/graphene interface and the quality of such an interface. For this purpose, metal/graphene/insulator structures are studied under transverse bias. We also report transmission coefficients through nanoscale two-terminal graphene/metal junctions.

  14. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    Science.gov (United States)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge

    2015-11-01

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m2 luminance. The critical current density is as high as 210 mA/cm2. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  15. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    International Nuclear Information System (INIS)

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command

  16. Third-order TRANSPORT: A computer program for designing charged particle beam transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Carey, D.C. [Fermi National Accelerator Lab., Batavia, IL (United States); Brown, K.L.; Rothacker, F. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1995-05-01

    TRANSPORT has been in existence in various evolutionary versions since 1963. The present version of TRANSPORT is a first-, second-, and third-order matrix multiplication computer program intended for the design of static-magnetic beam transport systems. This report discusses the following topics on TRANSPORT: Mathematical formulation of TRANSPORT; input format for TRANSPORT; summaries of TRANSPORT elements; preliminary specifications; description of the beam; physical elements; other transformations; assembling beam lines; operations; variation of parameters for fitting; and available constraints -- the FIT command.

  17. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...

  18. Nanoscale quantification of charge injection and transportation process in Si-nanocrystal based sandwiched structure.

    Science.gov (United States)

    Xu, Jie; Xu, Jun; Zhang, Pengzhan; Li, Wei; Chen, Kunji

    2013-10-21

    Si nanocrystals are formed by using KrF pulsed laser crystallization of an amorphous SiC/ultrathin amorphous Si/amorphous SiC sandwiched structure. Electrons and holes are injected into Si nanocrystals via a biased conductive AFM tip and the carrier decay and transportation behaviours at the nanoscale are studied by joint characterization techniques of Kelvin probe force microscopy (KPFM) and conductive atomic force microscopy (CAFM). Quantification of the surface charge density is realized by solving the Poisson equation based on KPFM measurements. Besides, the asymmetric barrier height for electrons and holes is considered to play a dominant role in controlling the charge retention and transportation characteristics. The methodology developed in this work is promising for studying the charge injection and transportation process in other materials and structures at the nanoscale.

  19. The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems

    OpenAIRE

    Woellner, Cristiano F.; Machado, Leonardo D.; Autreto, Pedro A.S.; Freire, Jose A.; Galvao, Douglas S.

    2015-01-01

    In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous- crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-...

  20. Solution, surface, and single molecule platforms for the study of DNA-mediated charge transport

    OpenAIRE

    Muren, Natalie B.; Olmon, Eric D.; Barton, Jacqueline K.

    2012-01-01

    The structural core of DNA, a continuous stack of aromatic heterocycles, the base pairs, which extends down the helical axis, gives rise to the fascinating electronic properties of this molecule that is so critical for life. Our laboratory and others have developed diverse experimental platforms to investigate the capacity of DNA to conduct charge, termed DNA-mediated charge transport (DNA CT). Here, we present an overview of DNA CT experiments in solution, on surfaces, and with single molecu...

  1. Charge transport in organic semiconductors with application to optoelectronic devices

    OpenAIRE

    Montero Martín, José María

    2010-01-01

    El estudio del transporte de carga en semiconductores orgánicos contribuye al desarrollo y optimización de LEDs orgánicos y nuevas células solares. En OLEDs de un sólo portador se ha encontrado una fórmula explícita de la característica densidad de corriente y potencial (J-V) con movilidad dependiente del campo eléctrico. Un test para diferenciar la movilidad dependiente del campo y de la densidad ha sido dado por medio de una ley universal de escalado. Los espectros de capacidad y los tiempo...

  2. Electron Trapping and Charge Transport by Large Amplitude Whistlers

    Science.gov (United States)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2010-01-01

    Trapping of electrons by magnetospheric whistlers is investigated using data from the Waves experiment on Wind and the S/WAVES experiment on STEREO. Waveforms often show a characteristic distortion which is shown to be due to electrons trapped in the potential of the electrostatic part of oblique whistlers. The density of trapped electrons is significant, comparable to that of the unperturbed whistler. Transport of these trapped electrons to new regions can generate potentials of several kilovolts, Trapping and the associated potentials may play an important role in the acceleration of Earth's radiation belt electrons.

  3. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  4. Modelling charge transport lengths in heterojunction solar cells

    Science.gov (United States)

    Musselman, K. P.; Ievskaya, Y.; MacManus-Driscoll, J. L.

    2012-12-01

    A drift-diffusion model is used to estimate the minority carrier transport length and depletion width in heterojunction solar cells from measured external quantum efficiency (EQE) data. The model is applied to Cu2O-ZnO heterojunctions synthesized by electrodeposition and thermal oxidation, and the electron drift and diffusion lengths are estimated: Ldrift ≈ 110 nm for electrodeposited Cu2O and Ldrift ≈ 2790 nm and Ldiff ≈ 310 nm for thermally oxidized Cu2O. Better fitting of EQE data is obtained than with traditional models that neglect recombination in the depletion region.

  5. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    Science.gov (United States)

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-06-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  6. A Nelder and Mead Methodology for Solving Small Fixed-Charge Transportation Problems

    OpenAIRE

    G Kannan; Senthil, P.; P. Sasikumar; V.P. Vinay

    2008-01-01

    The term ‘supply chain management’ has become common in the business world, which can be understood from the positive results of research in the area, particularly in supply chain optimization. Transportation is a frontier in achieving the objectives of the supply chain. Thrust is also given to optimization problems in transportation. The fixed-charge transportation problem is an extension of the transportation problem that includes a fixed cost, along with a variable cost that is proport...

  7. Mechanism of ochratoxin A transport in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-08-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino(/sup 3/H)hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system.

  8. Plant pleiotropic drug resistance transporters:Transport mechanism, gene expression, and function

    Institute of Scientific and Technical Information of China (English)

    Mohammed Nuruzzaman; Ru Zhang; Hong-Zhe Cao; Zhi-Yong Luo

    2014-01-01

    Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.

  9. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Sourav, E-mail: sourav.bhattacharjee@wur.nl [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Opstal, Edward J. van; Alink, Gerrit M. [Wageningen University, Division of Toxicology (Netherlands); Marcelis, Antonius T. M.; Zuilhof, Han [Wageningen University, Laboratory of Organic Chemistry (Netherlands); Rietjens, Ivonne M. C. M. [Wageningen University, Division of Toxicology (Netherlands)

    2013-06-15

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size {approx}45 nm) and polystyrene nanoparticles (PSNPs/size {approx}50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  10. The Development of Conductive Nanoporous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    Directory of Open Access Journals (Sweden)

    Pei-Ru Chen

    2013-01-01

    Full Text Available We present the development of conductive nanoporous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxylfluorescein (CF, substance P, and tumor necrosis factor-alpha (TNF-α. The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nanotubes, respectively. These nanoporous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive potential was applied. The permeation selectivity of these membranes is reversed by converting the polarity of applied potential into negative. Based on this principle, charged molecules (carboxylfluorescein, substance P, and TNF-α are successfully filtered through these membranes. This system shows 30 times more selective for CF than substance P as positive potential was applied, while 2.5 times more selective for substance P than CF as negative potential was applied.

  11. The impact of interplanetary transport on the charge spectra of heavy ions accelerated in SEP events

    Science.gov (United States)

    Kartavykh, J.; Kovaltsov, G.; Ostryakov, V.; Droege, W.

    We investigate the effects of interplanetary propagation on charge spectra of heavy ions observed at 1 AU. A Monte-Carlo approach is applied to solve the transport equation which takes into account spatial diffusion as well as convection and adiabatic deceleration. It is shown that interplanetary propagation results in a shift of charge spectra towards lower energies due to adiabatic deceleration. This fact should be taken into account when experimental data are interpreted. A broadening of charge distributions caused by interplanetary propagation might explain rather wide charge distributions observed in a number of SEP events. We explain the available charge spectra of iron for several impulsive SEP events making use of our model of interplanetary propagation assuming different values of the mean free path.

  12. The Development of Conductive Nano porous Chitosan Polymer Membrane for Selective Transport of Charged Molecules

    International Nuclear Information System (INIS)

    We present the development of conductive nano porous CNT/chitosan membrane for charge-selective transport of charged molecules, carboxyl fluorescein (CF), substance P, and tumor necrosis factor-alpha (TNF-α). The membrane was made porous and conductive via gelatin nanoparticle leaching technique and addition of carbon nano tubes, respectively. These nano porous membranes discriminate the diffusion of positive-charged molecules while inhibiting the passage of negative-charged molecules as positive potential was applied. The permeation selectivity of these membranes is reversed by converting the polarity of applied potential into negative. Based on this principle, charged molecules (carboxyl fluorescein, substance P, and TNF-α) are successfully filtered through these membranes. This system shows 30 times more selective for CF than substance P as positive potential was applied, while 2.5 times more selective for substance P than CF as negative potential was applied.

  13. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  14. Plasmon Decay and Thermal Transport from Spin-Charge Coupling in Generic Luttinger Liquids

    Science.gov (United States)

    Levchenko, Alex

    2014-11-01

    We discuss the violation of spin-charge separation in generic nonlinear Luttinger liquids and investigate its effect on the relaxation and thermal transport of genuine spin-1 /2 electron liquids in ballistic quantum wires. We identify basic scattering processes compatible with the symmetry of the problem and conservation laws that lead to the decay of plasmons into the spin modes. We derive a closed set of coupled kinetic equations for the spin-charge excitations and solve the problem of thermal conductance of interacting electrons for an arbitrary relation between the quantum wire length and spin-charge thermalization length.

  15. Coulombic interactions and multicomponent ionic dispersion during transport of charged species in heterogeneous porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    Electrochemical cross-coupling plays a significant role for transport of charged species in porous media [1, 2]. In this study we performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong electrolytes to study the influence of charge interactions on mass...... the ionic interactions by mapping the Coulombic cross-coupling between the dispersive fluxes of the charged species in the heterogeneous domains. The outcomes of this study are important in many subsurface applications including migration of contaminants and propagation of reaction fronts....

  16. Algorithms for solving the single-sink fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Klose, Andreas

    2006-01-01

    The single-sink fixed-charge transportation problem is an important subproblem of the fixed-charge transportation problem. Just a few methods have been proposed in the literature to solve this problem. In this paper, solution approaches based on dynamic programming and implicit enumeration...... are revisited. It is shown how the problem size as well as the search space of a recently published dynamic programming method can be reduced by exploiting reduced cost information. Additionally, a further implicit enumeration approach relying on solution concepts for the binary knapsack problem is introduced...

  17. Kinetic phenomena in charged particle transport in gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana [Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia); Faculty of Traffic Engineering, University of Belgrade Belgrade (Serbia); Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia)

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

  18. Thickness-dependent charge transport in few-layer MoS2 field-effect transistors

    Science.gov (United States)

    Lin, Ming-Wei; Kravchenko, Ivan I.; Fowlkes, Jason; Li, Xufan; Puretzky, Alexander A.; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2016-04-01

    Molybdenum disulfide (MoS2) is currently under intensive study because of its exceptional optical and electrical properties in few-layer form. However, how charge transport mechanisms vary with the number of layers in MoS2 flakes remains unclear. Here, exfoliated flakes of MoS2 with various thicknesses were successfully fabricated into field-effect transistors (FETs) to measure the thickness and temperature dependences of electrical mobility. For these MoS2 FETs, measurements at both 295 K and 77 K revealed the maximum mobility for layer thicknesses between 5 layers (˜3.6 nm) and 10 layers (˜7 nm), with ˜70 cm2 V-1 s-1 measured for 5 layer devices at 295 K. Temperature-dependent mobility measurements revealed that the mobility rises with increasing temperature to a maximum. This maximum occurs at increasing temperature with increasing layer thickness, possibly due to strong Coulomb scattering from charge impurities or weakened electron-phonon interactions for thicker devices. Temperature-dependent conductivity measurements for different gate voltages revealed a metal-to-insulator transition for devices thinner than 10 layers, which may enable new memory and switching applications. This study advances the understanding of fundamental charge transport mechanisms in few-layer MoS2, and indicates the promise of few-layer transition metal dichalcogenides as candidates for potential optoelectronic applications.

  19. Attenuation of DNA charge transport by compaction into a nucleosome core particle

    OpenAIRE

    Bjorklund, Chad C.; Davis, William B.

    2006-01-01

    The nucleosome core particle (NCP) is the fundamental building block of chromatin which compacts ∼146 bp of DNA around a core histone protein octamer. The effects of NCP packaging on long-range DNA charge transport reactions have not been adequately assessed to date. Here we study DNA hole transport reactions in a 157 bp DNA duplex (AQ-157TG) incorporating multiple repeats of the DNA TG-motif, a strong NCP positioning sequence and a covalently attached Anthraquinone photooxidant. Following a ...

  20. An Acoustic Charge Transport Imager for High Definition Television

    Science.gov (United States)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  1. Polar auxin transport: models and mechanisms

    NARCIS (Netherlands)

    Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.

    2013-01-01

    Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her

  2. Gold plasmonic effects on charge transport through single molecule junctions

    Science.gov (United States)

    Adak, Olgun; Venkataraman, Latha

    2014-03-01

    We study the impact of surface plasmon polaritons, the coupling of electromagnetic waves to collective electron oscillations on metal surfaces, on the conductance of single-molecule junctions. We use a scanning-tunneling microscope based break junction setup that is built into an optical microscope to form molecular junctions. Coherent 685nm light is used to illuminate the molecular junctions formed with 4,4'-bipyridine with diffraction limited focusing performance. We employ a lock-in type technique to measure currents induced by light. Furthermore, the thermal expansion due to laser heating is mimicked by mechanically modulating inter-electrode separation. For each junction studied, we measure current, and use AC techniques to determine molecular junction resonance levels and coupling strengths. We use a cross correlations analysis technique to analyze and compare the effect of light to that of the mechanical modulation. Our results show that junction transmission characteristics are not altered under illumination, within the resolution of our instrument. We argue that photo-currents measured with lock-in techniques in these kinds of structures are due to thermal effects. This work was funded by the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an EFRC funded by the US Department of Energy, Office of Basic Energy Sciences under Contract No. DESC0001085.

  3. Charge transport perpendicular to the high mobility plane in organic crystals: Bandlike temperature dependence maintained despite hundredfold anisotropy

    Science.gov (United States)

    Blülle, B.; Troisi, A.; Häusermann, R.; Batlogg, B.

    2016-01-01

    Charge carrier mobility in van der Waals bonded organic crystals is strongly dependent on the transfer integral between neighboring molecules, and therefore the anisotropy of charge transport is determined by the molecular arrangement within the crystal lattice. Here we report on temperature dependent transport measurements along all three principal crystal directions of the same rubrene single crystals of high purity. Hole mobilities are obtained from the carrier transit time measured with high-frequency admittance spectroscopy perpendicular to the molecular layers (μc) and from the transfer characteristics of two field-effect transistor (FET) structures oriented perpendicularly to each other in the layers (μa and μb). While the measurements of the field-effect channels confirm the previously reported high mobility and anisotropy within the a b plane, we find the mobility perpendicular to the molecular layers in the same crystals to be lower by about two orders of magnitude (μc˜0.2 cm2/Vs at 300 K ). Although the bandwidth is vanishingly small along the c direction and the transport cannot be coherent, we find μc to increase upon cooling. We show that the delocalization within the high mobility a b plane prevents the formation of small polarons and leads to the observed "bandlike" temperature dependence also in the direction perpendicular to the molecular layers, despite the incoherent transport mechanism.

  4. Wirelike charge transport dynamics for DNA-lipid complexes in chloroform.

    Science.gov (United States)

    Mishra, Ashutosh Kumar; Young, Ryan M; Wasielewski, Michael R; Lewis, Frederick D

    2014-11-01

    The dynamics of charge separation and charge recombination have been determined for lipid complexes of DNA capped hairpins possessing stilbene electron-acceptor and -donor chromophores separated by base-pair domains that vary in length and base sequence in chloroform solution by means of femtosecond time-resolved transient absorption spectroscopy. The results obtained for the DNA-lipid complexes are compared with those previously obtained in our laboratories for the same hairpins in aqueous buffer. The charge separation and charge recombination times for the lipid complexes are consistently much shorter than those determined in aqueous solution and are only weakly dependent on the number of base pairs separating the acceptor and donor. The enhanced rate constants for forward and return charge transport in DNA-lipid complexes support proposals that solvent gating is responsible, to a significant extent, for the relatively low rates of charge transport for DNA in water. Moreover, they suggest that DNA-lipid complexes may prove useful in the development of DNA-based molecular electronic devices. PMID:25299823

  5. Charge transport, injection, and photovoltaic phenomena in oligo(phenylenevinylene) based diodes

    NARCIS (Netherlands)

    Melzer, Christian; Krasnikov, Victor V.; Hadziioannou, Georges

    2003-01-01

    We report on the charge transport and injection phenomena of (E,E,E,E)-1,4-bis[(4-styryl)styryl]-2-methoxy-5-(2'-ethylhexoxy)benzene (MEH-OPV5) sandwiched between asymmetric contacts. The hole mobility of MEH-OPV5 was determined by means of transient electroluminescence. The steady-state current was

  6. Charge transport in bottom-up inorganic-organic and quantum-coherent nanostructures

    NARCIS (Netherlands)

    Makarenko, Ksenia Sergeevna

    2015-01-01

    This thesis is based on results obtained from experiments designed for a consistent study of charge transport in bottom-up inorganic-organic and quantum-coherent nanostructures. New unconventional ways to build elements of electrical circuits (like dielectrophoresis, wedging transfer and bottom-up f

  7. Transverse charge transport through DNA oligomers in large-area molecular junctions

    NARCIS (Netherlands)

    Katsouras, I.; Piliego, C.; Blom, P.W.M.; Leeuw, D.M. de

    2013-01-01

    We investigate the nature of charge transport in deoxyribonucleic acid (DNA) using self-assembled layers of DNA in large-area molecular junctions. A protocol was developed that yields dense monolayers where the DNA molecules are not standing upright, but are lying flat on the substrate. As a result

  8. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  9. Analysis of some greedy algorithms for the single-sink fixed-charge transportation problem

    DEFF Research Database (Denmark)

    Görtz, Simon; Klose, Andreas

    2009-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists of finding a minimum cost flow from a number of nodes to a single sink. Beside a cost proportional to the amount shipped, the flow cost encompass a fixed charge. The SSFCTP is an important subproblem of the well-known fixed......-charge transportation problem. Nevertheless, just a few methods for solving this problem have been proposed in the literature. In this paper, some greedy heuristic solutions methods for the SSFCTP are investigated. It is shown that two greedy approaches for the SSFCTP known from the literature can be arbitrarily bad......, whereas an approximation algorithm proposed in the literature for the binary min-knapsack problem has a guaranteed worst case bound if adapted accordingly to the case of the SSFCTP....

  10. Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media

    CERN Document Server

    Schmuck, Markus

    2012-01-01

    Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component pe- riodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to mean pore size; and (iii) the surface charge per volume appears as a continuous "background charge density". The coeffcient tensors in the macroscopic PNP equations can be calculated from periodic reference cell problem, and several examples are considered. For an insulating solid matrix, all gradients are corrected by a single tortuosit...

  11. Experimental Research Of Transport Characteristics Of Charged Gas-solid Two-phase Flow

    Science.gov (United States)

    Kang, Can; Gao, Zhengping; Luo, Tiqian

    2007-06-01

    A tentative system of charged coagulation was designed and built involving fan, motor, vibratory filler, transparent test part and support platform. Titanium dioxides of certain dimension range were used as solid particles simulating for the tiny dusts in practical engineering processes. The transport of gas-solid flows and dispersed solid particles included was presented in a rectangle-section pipe. Charge-to-mass ratio was measured through grid object method. The quantity of electricity of charged particles was measured. The flow variables under different charge voltages were emphasized in detail. And the advanced flow measurement technique—PIV(Particle Image Velocimetry) system was adopted to study the additional electric field effect on the solid-gas flow. The experimental results manifest that if charged voltage is less than -10kV, the charge-to-mass ratio increases continuously and reversely with the voltage, then reaches a saturation value at charged voltage of -60kV. The coupling between flow and electric field results in the obvious variation of characteristics of flows containing solid particles. With changed voltage, the electric field has linear effect on the gas-solid flows. Through comparison between the data under charged and uncharged conditions, axial attenuation of charged particles is weaker than that of uncharged particles. The vorticity near the pipe's bottom wall reaches its peak value. The vorticity near the boundaries under charged condition is relatively bigger and increases with voltage's increasing. Approaching the heart axis of the pipe, the vorticity increases with voltage's decreasing, as proves that solid particles are less restricted by main flow with the influence of electric field. Turbulent kinetic energy of solid particles keeps declining when the voltage varies from 0kV to -40kV, but increases when the voltage approaches -50kV, then declines again as the voltage varys from -50kV to -70kV.

  12. Iterated local search and record-to-record travel applied to the fixed charge transportation problem

    DEFF Research Database (Denmark)

    Andersen, Jeanne; Klose, Andreas

    , transportation costs do, however, include a fixed charge. Iterated local search and record-to-record travel are both simple local search based meta-heuristics that, to our knowledge, not yet have been applied to the FCTP. In this paper, we apply both types of search strategies and combine them into a single......The fixed charge transportation problem (FCTP) is a well-known and difficult optimization problem with lots of applications in logistics. It consists in finding a minimum cost network flow from a set of suppliers to a set of customers. Beside costs proportional to quantities transported...... heuristic search procedure for the FCTP. The hybrid approach results in a relatively efficient heuristic method, capable to improve the currently best known heuristics for the FCTP on some of the test problem instances usually considered in the literature....

  13. Charge transport and recombination dynamics in organic bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Andreas

    2011-08-02

    The charge transport in disordered organic bulk heterojunction (BHJ) solar cells is a crucial process affecting the power conversion efficiency (PCE) of the solar cell. With the need of synthesizing new materials for improving the power conversion efficiency of those cells it is important to study not only the photophysical but also the electrical properties of the new material classes. Thereby, the experimental techniques need to be applicable to operating solar cells. In this work, the conventional methods of transient photoconductivity (also known as ''Time-of-Flight'' (TOF)), as well as the transient charge extraction technique of ''Charge Carrier Extraction by Linearly Increasing Voltage'' (CELIV) are performed on different organic blend compositions. Especially with the latter it is feasible to study the dynamics - i.e. charge transport and charge carrier recombination - in bulk heterojunction (BHJ) solar cells with active layer thicknesses of 100-200 nm. For a well performing organic BHJ solar cells the morphology is the most crucial parameter finding a trade-off between an efficient photogeneration of charge carriers and the transport of the latter to the electrodes. Besides the morphology, the nature of energetic disorder of the active material blend and its influence on the dynamics are discussed extensively in this work. Thereby, the material system of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) serves mainly as a reference material system. New promising donor or acceptor materials and their potential for application in organic photovoltaics are studied in view of charge dynamics and compared with the reference system. With the need for commercialization of organic solar cells the question of the impact of environmental conditions on the PCE of the solar cells raises. In this work, organic BHJ solar cells exposed to synthetic air for finite duration are

  14. Theoretical Prediction of Isotope Effects on Charge Transport in Organic Semiconductors.

    Science.gov (United States)

    Jiang, Yuqian; Geng, Hua; Shi, Wen; Peng, Qian; Zheng, Xiaoyan; Shuai, Zhigang

    2014-07-01

    We suggest that the nuclear tunneling effect is important in organic semiconductors, which we showed is absent in both the widely employed Marcus theory and the band-like transport as described by the deformation potential theory. Because the quantum nuclear tunneling tends to favor electron transfer while heavier nuclei decrease the quantum effect, there should occur an isotope effect for carrier mobility. For N,N'-n-bis(n-hexyl)-naphthalene diimide, electron mobility of all-deuteration on alkyls and all (13)C-substitution on the backbone decrease ∼18 and 7%, respectively. Similar isotope effects are found in the N,N'-n-bis(n-octyl)-perylene diimide. However, there is nearly no isotope effect for all-deuterated rubrene or tetracene. We have found that the isotopic effect only occurs when the substituted nuclei contribute actively to vibrations with appreciable charge reorganization energy and coupling with carrier motion. Thus, this prediction can shed light on the current dispute over the hopping versus band-like mechanisms in organic semiconductors. PMID:26279545

  15. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  16. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.

    Science.gov (United States)

    Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin

    2016-02-21

    Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed.

  17. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics.

    Science.gov (United States)

    Lee, Jeihyun; Park, Soohyung; Lee, Younjoo; Kim, Hyein; Shin, Dongguen; Jeong, Junkyeong; Jeong, Kwangho; Cho, Sang Wan; Lee, Hyunbok; Yi, Yeonjin

    2016-02-21

    Efficient exciton management is a key issue to improve the power conversion efficiency of organic photovoltaics (OPVs). It is well known that the insertion of an exciton blocking layer (ExBL) having a large band gap promotes the efficient dissociation of photogenerated excitons at the donor-acceptor interface. However, the large band gap induces an energy barrier which disrupts the charge transport. Therefore, building an adequate strategy based on the knowledge of the true charge transport mechanism is necessary. In this study, the true electron transport mechanism of a bathocuproine (BCP) ExBL in OPVs is comprehensively investigated by in situ ultraviolet photoemission spectroscopy, inverse photoemission spectroscopy, density functional theory calculation, and impedance spectroscopy. The chemical interaction between deposited Al and BCP induces new states within the band gap of BCP, so that electrons can transport through these new energy levels. Localized trap states are also formed upon the Al-BCP interaction. The activation energy of these traps is estimated with temperature-dependent conductance measurements to be 0.20 eV. The Al-BCP interaction induces both transport and trap levels in the energy gap of BCP and their interplay results in the electron transport observed. PMID:26821701

  18. Analysis of the Contribution of Charge Transport in Iodine-125 induced DNA Damage

    OpenAIRE

    Ndlebe, Thabisile; Panyutin, Igor; Neumann, Ronald

    2010-01-01

    Auger electron emitters, like iodine-125, are the radionuclides of choice for gene-targeted radiotherapy. The highly localized damage they induced in DNA is produced by three mechanisms: direct damage by the emitted Auger electrons, indirect damage by diffusible free radicals produced by Auger electrons travelling in water, and charge neutralization of the residual, highly positively charged, tellurium daughter atom by stripping electrons from covalent bonds of neighboring residues. The purpo...

  19. Charge transport through split photoelectrodes in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan, E-mail: rjose@ump.edu.my [Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300 (Malaysia); Khalidin, Zulkeflee [Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Kuantan 26600 (Malaysia)

    2014-04-28

    Charge transport and recombination are relatively ignored parameters while upscaling dye-sensitized solar cells (DSCs). Enhanced photovoltaic parameters are anticipated by merely widening the devices physical dimensions, viz., thickness and area as evident from the device design adopted in reported large area DSCs. These strip designs lead to ≤50% loss in photocurrent compared to the high efficiency lab scale devices. Herein, we report that the key to achieving higher current density (J{sub SC}) is optimized diffusion volume rather than the increased photoelectrode area because kinetics of the devices is strongly influenced by the varied choices of diffusion pathways upon increasing the electrode area. For a given electrode area and thickness, we altered the photoelectrode design by splitting the electrode into multiple fractions to restrict the electron diffusion pathways. We observed a correlation between the device physical dimensions and its charge collection efficiency via current-voltage and impedance spectroscopy measurements. The modified electrode designs showed >50% increased J{sub SC} due to shorter transport time, higher recombination resistance and enhanced charge collection efficiency compared to the conventional ones despite their similar active volume (∼3.36 × 10{sup −4} cm{sup 3}). A detailed charge transport characteristic of the split devices and their comparison with single electrode configuration is described in this article.

  20. Theoretical study on charge injection and transport properties of six emitters with push–pull structure

    International Nuclear Information System (INIS)

    Highlights: • We investigated six small organic molecules by using computational approaches. • This investigation is mainly based on the Marcus electron transfer theory. • The density functional theory (DFT) was used in this investigation. • The IP, EA, reorganization energy and transfer integral were calculated. • We analyzed the charge properties of the molecules by using the computed results. - Abstract: The charge injection and transport properties of six organic light-emitting molecules with push–pull structures were studied by theoretical calculations. The ground-state geometries for the neutral, cationic and anionic states were optimized using density functional theory. Subsequently, the ionization potentials and electron affinities were calculated. We computed the reorganization energies and the transfer integrals based on the Marcus electron transfer theory. It was found that in addition to being emitters the six compounds are multifunctional materials being capable of transport for both holes and electrons. Moreover, the double-branched compound DCDPC2 was found to have higher charge injection ability and better balanced charge transport properties than single-branched compounds

  1. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    Science.gov (United States)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  3. Charge Carrier Transport and Photogeneration in P3HT:PCBM Photovoltaic Blends

    KAUST Repository

    Laquai, Frederic

    2015-05-03

    This article reviews the charge transport and photogeneration in bulk-heterojunction solar cells made from blend films of regioregular poly(3-hexylthiophene) (RR-P3HT) and methano­fullerene (PCBM). The charge transport, specifically the hole mobility in the RR-P3HT phase of the polymer:fullerene photovoltaic blend, is dramatically affected by thermal annealing. The hole mobility increases more than three orders of magnitude and reaches a value of up to 2 × 10−4 cm2 V−1 s−1 after the thermal annealing process as a result of an improved semi-crystallinity of the film. This significant increase of the hole mobility balances the electron and hole mobilities in a photovoltaic blend in turn reducing space-charge formation, and this is the most important factor for the strong enhancement of the photovoltaic efficiency compared to an as cast, that is, non-annealed device. In fact, the balanced charge carrier mobility in RR-P3HT:PCBM blends in combination with a field- and temperature-independent charge carrier generation and greatly reduced non-geminate recombination explains the large quantum efficiencies mea­sured in P3HT:PCBM photovoltaic devices.

  4. Fluorescence study of the divalent cation-transport mechanism of ionophore A23187 in phospholipid membranes.

    OpenAIRE

    Kolber, M A; Haynes, D H

    1981-01-01

    The mechanism for transport of divalent cations across phospholipid bilayers by the ionophore A23187 was investigated. The intrinsic fluorescence of the ionophore was used in equilibrium and rapid-mixing experiments as an indicator of ionophore environment and complexation with divalent cations. The neutral (protonated) form of the ionophore binds strongly to the membrane, with a high quantum yield relative to that in the aqueous phase. The negatively charged form of the ionophore binds somew...

  5. Grain transport mechanics in shallow overland flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  6. Grain transport mechanics in shallow flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  7. Charge transport properties of graphene: Effects of Cu-based gate electrode

    Science.gov (United States)

    Tang, Qide; Zhang, C. X.; He, Chaoyu; Tang, Chao; Zhong, Jianxin

    2016-07-01

    Using the first-principles nonequilibrium Green's function method, we study effects of Cu and Ni@Cu used as the Cu-based gate electrode on the charge transport of graphene in the field effect transistors (FET). We find that the transmission of graphene decreases with both Cu and Ni@Cu absorbed in the scatter region. Especially, noticeable transmission gaps are present around the Femi level. The transmission gaps are still effective, and considerable cut-off regions are found under the non-equilibrium environment. The Ni@Cu depresses the transmission of graphene more seriously than the Cu and enlarges the transmission gap in armchair direction. The effects on the charge transport are attributed to the redistribution of electronic states of graphene. Both Cu and Ni@Cu induce the localization of states, so as to block the electronic transport. The Ni@Cu transforms the interaction between graphene and gate electrode from the physisorption to the chemisorption, and then induces more localized states, so that the transmission decreases further. Our results suggest that besides being used to impose gate voltage, the Cu-based gate electrode itself will have a considerable effect on the charge transport of graphene and induces noticeable transmission gap in the FET.

  8. Energy mechanism of charges analyzed in real current environment

    CERN Document Server

    Ianconescu, R; Ianconescu, Reuven

    2003-01-01

    We analyze in this work the energy transfer process of accelerated charges, the mass fluctuations accompanying this process, and their inertial properties. Based on a previous work, we use here the dipole antenna, which is a very convenient framework for such analysis, for analyzing those characteristics. We show that the radiation process can be viewed by two energy transfer processes: one from the energy source to the charges and the second from the charges into the surrounding space. Those processes, not being in phase, result in mass fluctuations. The same principle is true during absorption. We show that in a transient period between absorption and radiation the dipole antenna gains mass according to the amount of absorbed energy and loses this mass as radiated energy. We rigorously prove that the gain of mass, resulting from electrical interaction has inertial properties in the sense of Newton's third low. We arrive to this result by modeling the reacting spacetime region by an electric dipole.

  9. Investigations on Cooling Mechanisms of Highly Charged Ions at HITRAP

    Science.gov (United States)

    Maero, Giancarlo; Herfurth, Frank; Kester, Oliver; Kluge, H.-Jürgen; Koszudowski, Stephen; Quint, Wolfgang; Schwarz, Stefan

    2009-03-01

    The upcoming facility HITRAP (Highly Charged Ion TRAP) at GSI will enable high-precision atomic-physics investigations on heavy, highly charged ions at extremely low energies. Species up to U92+ will be produced at the GSI accelerator complex by stripping of relativistic ions and injected into the Experimental Storage Ring (ESR) where they are electron-cooled and decelerated to 4 MeV/u. After ejection out of the ESR and further deceleration in a linear decelerator bunches of 105 ions will be injected into a Penning trap and cooled to 4 K via electron and resistive cooling. Simulations with a Particle-In-Cell (PIC) code have been carried out to study the dynamics of the ion cloud in the Cooler Trap with focus on resistive cooling in presence of space charge.

  10. Discussion on Mechanism of Breech-Blow Caused by Propellant Charge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    From the view point of launch safety caused by fracture of propellant charge, this paper points out that the safety criterion of pressure wave is inadequate to evaluate the launch safety of propellant charge based on the initial negative differential pressure and sensitivity tests. Generally, the maximum barrel pressure does not depend upon the intensity of pressure wave correspondingly. The pressure wave intensity can not describe the fracture degree of propellant charge in chamber and reflect the mechanical environment of propellant charge fracturing exactly and wholly. The evaluation criterion for launch safety of propellant charge should be built on the basis of depicting the fracture degree of propellant bed.

  11. Charge transport in organic multi-layer devices under electric and optical fields

    Science.gov (United States)

    Park, June Hyoung

    2007-12-01

    Charge transport in small organic molecules and conjugated conducting polymers under electric or optical fields is studied by using field effect transistors and photo-voltaic cells with multiple thin layers. With these devices, current under electric field, photo-current under optical field, and luminescence of optical materials are measured to characterize organic and polymeric materials. For electric transport studies, poly(3,4-ethylenedioxythiophene) doped by polystyrenesulfonic acid is used, which is conductive with conductivity of approximately 25 S/cm. Despite their high conductance, field effect transistors based on the films are successfully built and characterized by monitoring modulations of drain current by gate voltage and IV characteristic curves. Due to very thin insulating layers of poly(vinylphenol), the transistors are relative fast under small gate voltage variation although heavy ions are involved in charge transport. In IV characteristic curves, saturation effects can be observed. Analysis using conventional field effect transistor model indicates high mobility of charge carriers, 10 cm2/V·sec, which is not consistent with the mobility of the conducting polymer. It is proposed that the effect of a small density of ions injected via polymer dielectric upon application of gate voltage and the ion compensation of key hopping sites accounts for the operation of the field effect transistors. For the studies of transport under optical field, photovoltaic cells with 3 different dendrons, which are efficient to harvest photo-excited electrons, are used. These dendrons consist of two electron-donors (tetraphenylporphyrin) and one electron-accepter (naphthalenediimide). Steady-state fluorescence measurements show that inter-molecular interaction is dominant in solid dendron film, although intra-molecular interaction is still present. Intra-molecular interaction is suggested by different fluorescence lifetimes between solutions of donor and dendrons. This

  12. Injection and transport of electric charge in a metal/copolymer structure

    Institute of Scientific and Technical Information of China (English)

    Li Dong-Mei; Yuan Xiao-Juan; Ma Jia-Sai; Liu De-Sheng

    2011-01-01

    The dynamical processes of the electric charge injection and transport from a metal electrode to the copolymer are investigated by using a nonadiabatic dynamic approach.The simulations are performed within the framework of an extended version of the one-dimensional Su-Schrieffer-Heeger (SSH) tight-binding model.It is found that the electric charge can be injected into the copolymer by increasing the applied voltage.For different structures of the copolymer,the critical voltage biases are different and the motion of the injected electric charge in the copolymer varies obviously.For the copolymer with a barrier-well-barrier configuration,the injected electric charge forms a wave packet due to the strong electron-lattice interaction in the barrier,then comes into the well and will be confined in it under a weak electric field.Under a medium electric field,the electric charge can go across the interface of two homopolymers and enter into the other potential barrier.For the copolymer with a well-barrier-well configuration,only under strong enough electric field can the electric charge transfer from the potential well into the barrier and ultimately reach a dynamic balance.

  13. A New Mechanism of Higgs Bosons in Producing Charge Particles

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2006-01-01

    A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time.......A new production method of elementary particles by Higgs Bosons will be shown. But before that the structure of photon will be considered deeply, while a new definition of Higgs Boson about color-charges and color-magnet will be given for the first time....

  14. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  15. Secondary metabolites in plants: transport and self-tolerance mechanisms.

    Science.gov (United States)

    Shitan, Nobukazu

    2016-07-01

    Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future. PMID:26940949

  16. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Christensen, Tue; Andersen, Kim Allan; Klose, Andreas

    2013-01-01

    This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....

  17. Crafting zero-bias one-way transport of charge and spin

    Science.gov (United States)

    Foa Torres, L. E. F.; Dal Lago, V.; Suárez Morell, E.

    2016-02-01

    We explore the electronic structure and transport properties of a metal on top of a (weakly coupled) two-dimensional topological insulator. Unlike the widely studied junctions between topological nontrivial materials, the systems studied here allow for a unique band structure and transport steering. First, states on the topological insulator layer may coexist with the gapless bulk and, second, the edge states on one edge can be selectively switched off, thereby leading to nearly perfect directional transport of charge and spin even in the zero bias limit. We illustrate these phenomena for Bernal stacked bilayer graphene with Haldane or intrinsic spin-orbit terms and a perpendicular bias voltage. This opens a path for realizing directed transport in materials such as van der Waals heterostructures, monolayer, and ultrathin topological insulators.

  18. Anomalously augmented charge transport capabilities of biomimetically transformed collagen intercalated nano graphene based biocolloids

    CERN Document Server

    Dhar, Purbarun; Nayar, Suprabha; Das, Sarit K

    2015-01-01

    Collagen micro fibrils bio mimetically intercalate graphitic structures in aqueous media to form graphene nano platelets collagen complex (G Cl). Synthesized G Cl based stable, aqueous bio nanocolloids exhibit anomalously augmented charge transportation capabilities over simple collagen or graphene based colloids. The concentration tunable electrical transport properties of synthesized aqueous G Cl bio nanocolloids has been experimentally observed, theoretically analyzed and mathematically modeled. A comprehensive approach to mathematically predict the electrical transport properties of simple graphene and collagen based colloids has been presented. A theoretical formulation to explain the augmented transport characteristics of the G Cl bio nanocolloids based on the physico chemical interactions among the two entities, as revealed from extensive characterizations of the G Cl bio complex, has also been proposed. Physical interactions between the zwitterionic amino acid molecules within the collagen triple heli...

  19. Long-range charge transport in single G-quadruplex DNA molecules

    Science.gov (United States)

    Livshits, Gideon I.; Stern, Avigail; Rotem, Dvir; Borovok, Natalia; Eidelshtein, Gennady; Migliore, Agostino; Penzo, Erika; Wind, Shalom J.; di Felice, Rosa; Skourtis, Spiros S.; Cuevas, Juan Carlos; Gurevich, Leonid; Kotlyar, Alexander B.; Porath, Danny

    2014-12-01

    DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits.

  20. Charge Effects on Mechanical Properties of Elastomeric Proteins

    Science.gov (United States)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  1. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes.

    Science.gov (United States)

    Tagliazucchi, Mario; Rabin, Yitzhak; Szleifer, Igal

    2013-10-22

    This work reports a comprehensive theoretical study of the transport-rectification properties of cylindrical nanopores with neutral inner walls and chemically modified outer membrane. The chemical species on the two outer sides of the membrane have charges of opposite sign and can be either surface-confined species (i.e., surface charges) or polyelectrolyte brushes. The advantage of this design over other types of rectifying nanopores is that it requires controlling the composition of the outer walls of the pore (which are easy to access) rather than the inner walls, thus simplifying the fabrication process. Ion-current rectification in nanopores with charged outer walls is ascribed to applied-potential-induced changes in the ionic concentration within the pore. The rectification efficiency is studied as a function of pore length, radius, surface charge and bulk electrolyte concentration. An analytical model is derived for the case of surface-confined charges that predicts the current-potential curves in very good agreement with the numerical calculations. Neutral nanopores with polyelectrolyte-modified outer walls have two distinct advantages compared to surface-charged systems: (i) they exhibit higher rectification factors due to the large charge density immobilized by the polyelectrolyte brushes, and (ii) the applied potential deforms the polyelectrolyte chains toward the oppositely charged electrode. This deformation brings the polyelectrolyte brushes into the pore in the low conductivity state and expels them from the pore in the high conductivity regime. Calculations of the potentials of mean-force suggest that the applied-field-induced conformational changes can be used to control the translocation of cargoes larger than ions, such as proteins and nanoparticles.

  2. Monte Carlo Simulations of Charge Transport in 2D Organic Photovoltaics.

    Science.gov (United States)

    Gagorik, Adam G; Mohin, Jacob W; Kowalewski, Tomasz; Hutchison, Geoffrey R

    2013-01-01

    The effect of morphology on charge transport in organic photovoltaics is assessed using Monte Carlo. In isotopic two-phase morphologies, increasing the domain size from 6.3 to 18.3 nm improves the fill factor by 11.6%, a result of decreased tortuosity and relaxation of Coulombic barriers. Additionally, when small aggregates of electron acceptors are interdispersed into the electron donor phase, charged defects form in the system, reducing fill factors by 23.3% on average, compared with systems without aggregates. In contrast, systems with idealized connectivity show a 3.31% decrease in fill factor when domain size was increased from 4 to 64 nm. We attribute this to a decreased rate of exciton separation at donor-acceptor interfaces. Finally, we notice that the presence of Coulomb interactions increases device performance as devices become smaller. The results suggest that for commonly found isotropic morphologies the Coulomb interactions between charge carriers dominates exciton separation effects.

  3. Spin and charge transport in the presence of spin-orbit interaction

    Indian Academy of Sciences (India)

    T P Pareek; P Bruno

    2002-02-01

    We present the study of spin and charge transport in nanostructures in the presence of spin-orbit (SO) interaction. Single band tight binding Hamiltonians for Elliot–Yafet and Rashba SO interaction are derived. Using these tight binding Hamiltonians and spin resolved Landauer–Büttiker formula, spin and charge transport is studied. Specifically numerical results are presented for a new method to perform magnetic scanning tunneling microscopy with non-magnetic tip but in the presence of Elliot–Yafet SO interaction. The spin relaxation phenomena in two-dimensional electron gas in the presence of Rashba SO interaction are studied and contrary to naive expectation, it is shown that disorder helps to reduce spin relaxation.

  4. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  5. Indications of c-axis Charge Transport in Hole Doped Triangular Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    LIANG Ying; LIU Bin; FENG Shi-Ping

    2004-01-01

    The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the tJ model by considering the incoherent interlayer hopping.It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation.The c-axis conductivity spectrum shows a lov-energy peak and the unusual high-energy broad band,while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the Iow temperature insulating-like behavior,which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.

  6. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

    DEFF Research Database (Denmark)

    Sirringhaus, H.; Brown, P.J.; Friend, R.H.;

    1999-01-01

    Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix(I). This has important consequences for electrical properties of these materials: charge transport...... of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT, Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different...... character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications...

  7. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2013-11-01

    Full Text Available The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT and organic photovoltaic cell (OPV, etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecular arrangement of such functional polymer architectures by controlling the polymer chain rigidity, polymer solution aggregation, suitable processing procedures, etc. These basic elements in intrinsic properties and processing strategy described here would be helpful to understand the correlation between morphology and charge transport properties and guide the preparation of efficient functional conjugated polymer films correspondingly.

  8. Enhancement of charge-transport characteristics in polymeric films using polymer brushes

    DEFF Research Database (Denmark)

    Whiting, G.L.; Snaith, H.J.; Khodabakhsh, S.;

    2006-01-01

    We show that charge-transporting polymer chains in the brush conformation can be synthesized from a variety of substrates of interest, displaying a high degree of stretching and showing up to a 3 orders of magnitude increase in current density normal to the substrate as compared with a spin-coate......-coated film. These nanostructured polymeric films may prove to be suitable for electronic devices based on molecular semiconductors as current fabrication techniques often provide little control over film structure....

  9. Charge Transport and Electrical Properties of Spin Crossover Materials: Towards Nanoelectronic and Spintronic Devices

    OpenAIRE

    Constantin LEFTER; Davesne, Vincent; Salmon, Lionel; Molnar, Gabor; Demont, Philippe; Rotaru, Aurelian; Bousseksou, Azzedine

    2016-01-01

    International audience In this paper, we present a comprehensive review of research on electrical and charge transport properties of spin crossover complexes. This includes both the effect of spin-state switching on the dielectric permittivity and electrical conductivity of the material and vice versa the influence of an applied electrical field (or current) on the spin-state of the system. The survey covers different size scales from bulk materials and thin films to nanoparticles and sing...

  10. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

    OpenAIRE

    Astakhov, O.; Carius, R.; F. Finger; Petrusenko, Y.; Borysenko, V.; Barankov, D.

    2009-01-01

    The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparin...

  11. Single-charge transport in ambipolar silicon nanoscale field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Filipp; Konstantaras, Georgios; Wiel, Wilfred G. van der; Zwanenburg, Floris A., E-mail: f.a.zwanenburg@utwente.nl [NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-04-27

    We report single-charge transport in ambipolar nanoscale MOSFETs, electrostatically defined in near-intrinsic silicon. We use the ambipolarity to demonstrate the confinement of either a few electrons or a few holes in exactly the same crystalline environment underneath a gate electrode. We find similar electron and hole quantum dot properties while the mobilities differ quantitatively like in microscale devices. The understanding and control of individual electrons and holes are essential for spin-based quantum information processing.

  12. Oxidation by DNA Charge Transport Damages Conserved Sequence Block II, a Regulatory Element in Mitochondrial DNA

    OpenAIRE

    Merino, Edward J.; Barton, Jacqueline K.

    2007-01-01

    Sites of oxidative damage in mitochondrial DNA have been identified on the basis of DNA-mediated charge transport. Our goal is to understand which sites in mitochondrial DNA are prone to oxidation at long range and whether such oxidative damage correlates with cancerous transformation. Here we show that a primer extension reaction can be used to monitor directly oxidative damage to authentic mitochondrial DNA through photoreactions with a rhodium intercalator. The complex [Rh(phi)_2bpy]Cl_3 (...

  13. Humidity Dependence of Charge Transport through DNA Revealed by Silicon-Based Nanotweezers Manipulation

    OpenAIRE

    Yamahata, Christophe; Collard, Dominique; Takekawa, Tetsuya; Kumemura, Momoko; Hashiguchi, Gen; Fujita, Hiroyuki

    2007-01-01

    The study of the electrical properties of DNA has aroused increasing interest since the last decade. So far, controversial arguments have been put forward to explain the electrical charge transport through DNA. Our experiments on DNA bundles manipulated with silicon-based actuated tweezers demonstrate undoubtedly that humidity is the main factor affecting the electrical conduction in DNA. We explain the quasi-Ohmic behavior of DNA and the exponential dependence of its conductivity with relati...

  14. A Multiplexed, Two-Electrode Platform for Biosensing based on DNA-Mediated Charge Transport

    OpenAIRE

    Furst, Ariel L.; Hill, Michael G.; Barton, Jacqueline K.

    2015-01-01

    We have developed a thin layer, multiplexed biosensing platform that features two working-electrode arrays for detecting small molecules, nucleic acid sequences, and DNA-binding proteins. DNA duplexes are patterned onto the primary electrode array, while a secondary electrode array is used both to initiate DNA monolayer formation and for electrochemical readout via DNA-mediated charge transport (DNA CT) chemistry. Electrochemical reduction of Cu(phendione)_2^(2+) (phendione is 1,10-phenanthro...

  15. Understanding the impact of polymer self-organization on the microstructure and charge transport in poly(3-hexylthiophene)

    Science.gov (United States)

    Aiyar, Avishek R.

    current revealed in the above study provided substantial impetus to understand the role of single chain effects on macroscopic charge transport in P3HT. We report that differences in regioregularity of side chain attachment in poly(3-hexylthiophene) (P3HT) as small as ca. 4% are sufficient to induce dramatic changes in the electronic and morphological properties of the material. Casting the electronic absorption spectra in the framework of Spano's model reveals that the conjugation length of the polymer chain is surprisingly sensitive to regioregularity. This observation correlates well with the field effect mobilities that are attenuated by one to two orders of magnitude in the lower regioregularity polymer film. We suggest that the increased intrachain order coupled with a reduced fraction of grain boundaries in the higher RR film is responsible for the reported differences. These studies serve as important pieces in the microstructure-charge transport puzzle. A greater insight into the correlation is obtained by devising a technique to tune the crystallinity of the P3HT films and correlating that with the field effect mobility. We shown the formation of ordered supramolecular precursors in P3HT solutions through the application of low intensity ultrasound. These precursors survive the casting process, resulting in a dramatic increase in the degree of crystallinity of the thin films obtained by spin coating. The crystallinity of the films is tunable, with a continuous evolution of meso-scale structures observed as a function of ultrasonic irradiation time. A multiphase solid state morphology is obtained that in turn results in a percolation type charge transport mechanism. This investigation is then extended to understand the role of process conditions, the solvent used and molecular parameters such as regioregularity.

  16. Mechanism of isotonic water transport in glands.

    Science.gov (United States)

    Ussing, H H; Eskesen, K

    1989-07-01

    Since water and electrolytes pass cell membranes via separate channels, there can be no interactions in the membranes, and osmotic interactions between water and solutes can be expressed as the product of solute flux, frictional coefficient of solute, and length of pathway. It becomes clear that isotonic transport via a cell is impossible. In glands, where cation-selective junctions impede anion flux between the cells, isotonic water transport is only possible if sodium, after having passed the junction, is reabsorbed in the acinus and returned to the serosal side. Thus it can be recycled via the cation-selective junction and exert its drag on water more than once. This hypothesis was tested on frog skin glands. Skins were mounted in flux chambers with identical Ringer solutions on both sides. Na channels of the principal cells were closed with amiloride in the outside solution, and secretion stimulated with noradrenaline in the inside solution. Influx and efflux of Na, K and Br (used as tracer for Cl) were measured on paired half-skins during the constant-secretion phase. Flux ratios for both Na and K were higher than expected for electrodiffusion, indicating outgoing solvent drag. Flux ratios for K were much higher than those for Na. This is an agreement with the concept that Na is reabsorbed in the acinus and K is not. Two independent expressions for the degree of sodium recycling are developed. Under all experimental conditions these expressions give values for the recycling which are in good agreement. PMID:2473601

  17. Electron injection and transport mechanism in organic devices based on electron transport materials

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M A; Xu Wei; Khizar-ul-Haq; Zhang Xiaowen; Bai Yu; Jiang, X Y; Zhang, Z L; Zhu, W Q [Department of Materials Science, Shanghai University, Jiading 201800 (China)

    2008-11-21

    Electron injection and transport in organic devices based on electron transport (ET) materials, such as 4,7- diphyenyl-1,10-phenanthroline (Bathophenanthroline BPhen), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (Bathocuproine BCP) and bipyridyl oxadiazole compound 1,3-bis [2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene (Bpy-OXD), have been reported. The devices are composed of ITO/ET materials (BPhen, BCP Bpy-OXD)/cathodes, where cathodes = Au, Al and Ca. Current-voltage characteristics of each ET material are performed as a function of cathodes. We have found that Ca and Al exhibit quite different J-V characteristics compared with the gold (Au) cathode. The current is more than one order of magnitude higher for the Al cathode and more than three orders of magnitude higher for Ca compared with that of the Au cathode at {approx}8 V for all ET materials. This is because of the relatively low energy barrier at the organic/metal interface for Ca and Al cathodes. Electron-only devices with the Au cathode show that the electron transfer limitation is located at the organic/cathode interface and the Fowler-Nordheim mechanism is qualitatively consistent with experimental data at high voltages. With Ca and Al cathodes, electron conduction is preponderant and is bulk limited. A power law dependence J {approx} V{sup m} with m > 2 is consistent with the model of trap-charge limited conduction. The total electron trap density is estimated to be {approx}5 x 10{sup 18} cm{sup -3}. The critical voltage (V{sub c}) is found to be {approx}45 V and is almost independent of the materials.

  18. Universal crossover of the charge carrier fluctuation mechanism in different polymer/carbon nanotubes composites

    Science.gov (United States)

    Barone, C.; Landi, G.; Mauro, C.; Neitzert, H. C.; Pagano, S.

    2015-10-01

    Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions deriving from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.

  19. Universal crossover of the charge carrier fluctuation mechanism in different polymer/carbon nanotubes composites

    Energy Technology Data Exchange (ETDEWEB)

    Barone, C., E-mail: cbarone@unisa.it; Mauro, C.; Pagano, S. [Dipartimento di Fisica “E.R. Caianiello” and CNR-SPIN Salerno, Università di Salerno, I-84084 Fisciano, Salerno (Italy); Landi, G.; Neitzert, H. C. [Dipartimento di Ingegneria Industriale, Università di Salerno, I-84084 Fisciano, Salerno (Italy)

    2015-10-05

    Carbon nanotubes added to polymer and epoxy matrices are compounds of interest for applications in electronics and aerospace. The realization of high-performance devices based on these materials can profit from the investigation of their electric noise properties, as this gives a more detailed insight of the basic charge carriers transport mechanisms at work. The dc and electrical noise characteristics of different polymer/carbon nanotubes composites have been analyzed from 10 to 300 K. The results suggest that all these systems can be regarded as random resistive networks of tunnel junctions formed by adjacent carbon nanotubes. However, in the high-temperature regime, contributions deriving from other possible mechanisms cannot be separated using dc information alone. A transition from a fluctuation-induced tunneling process to a thermally activated regime is instead revealed by electric noise spectroscopy. In particular, a crossover is found from a two-level tunneling mechanism, operating at low temperatures, to resistance fluctuations of a percolative network, in the high-temperature region. The observed behavior of 1/f noise seems to be a general feature for highly conductive samples, independent on the type of polymer matrix and on the nanotube density.

  20. Design study of low-energy beam transport for multi-charge beams at RAON

    Science.gov (United States)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  1. A charge carrier transport model for donor-acceptor blend layers

    International Nuclear Information System (INIS)

    Highly efficient organic solar cells typically comprise donor-acceptor blend layers facilitating effective splitting of excitons. However, the charge carrier mobility in the blends can be substantially smaller than in neat materials, hampering the device performance. Currently, available mobility models do not describe the transport in blend layers entirely. Here, we investigate hole transport in a model blend system consisting of the small molecule donor zinc phthalocyanine (ZnPc) and the acceptor fullerene C60 in different mixing ratios. The blend layer is sandwiched between p-doped organic injection layers, which prevent minority charge carrier injection and enable exploiting diffusion currents for the characterization of exponential tail states from a thickness variation of the blend layer using numerical drift-diffusion simulations. Trap-assisted recombination must be considered to correctly model the conductivity behavior of the devices, which are influenced by local electron currents in the active layer, even though the active layer is sandwiched in between p-doped contacts. We find that the density of deep tail states is largest in the devices with 1:1 mixing ratio (Et = 0.14 eV, Nt = 1.2 × 1018 cm−3) directing towards lattice disorder as the transport limiting process. A combined field and charge carrier density dependent mobility model are developed for this blend layer

  2. Impact of metal electrode on charge transport behavior of metal-Gd{sub 2}O{sub 3} systems

    Energy Technology Data Exchange (ETDEWEB)

    Wasiq, M.F., E-mail: wasiq77@yahoo.com [Department of Physics, BahauddinZakariya University, Multan 60800 (Pakistan); Nadeem, M.Y. [Department of Physics, BahauddinZakariya University, Multan 60800 (Pakistan); Mahmood, Khalid [Department of Physics, GC University Faisalabad, 68000 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2015-11-05

    In this paper, we have grown an 80 nm thick Gd{sub 2}O{sub 3} thin film by electron beam evaporation on glass substrate and fabricated different metal (Al, Cu, Cr and Au) electrodes on grown sample under same condition. To investigate the charge transport mechanism in these metal-semiconductor systems, the electrical conductivities and current–voltage (I–V) measurements have been measured over temperature range of 250–400 K. We have found that Mott variable range hopping (VRH) is responsible for conduction behavior in all systems for entire temperature range. A strong correlation between transport properties and metal work function has been observed. A space charge model successfully explained the decreasing trend of conductivity with increasing the metal work function. The conductivity decreased from 2.9 × 10{sup −5} to 1.8 × 10{sup −11} S/cm as the metal work function increased from 4 to 5.1 eV for Al to Au metals respectively. The ideality factor also increased from 1.67 to 2.2 with metal work function from Al to Au metal. The observed result can be explained as; high work function metal forms higher depletion layer as compared to metal having low work function, which compensate the empty sites available for hopping and consequently decreased the hopping conductivity. - Graphical abstract: Different metal electrodes (Al, Cu, Cr and Au) were fabricated on 80 nm Gd{sub 2}O{sub 3} thin film by electron beam evaporation and found that Mott VRH is responsible for conduction behavior in all systems for entire temperature range. We also observed a strong correlation between transport properties and metal work function has been observed. - Highlights: • Charge transport mechanism in metal-Gd{sub 2}O{sub 3}-metal systems in the temperature range 290–380 K. • Al, Cu, Cr and Au metal electrodes were fabricated on 80 nm Gd{sub 2}O{sub 3} thin film by E.B evaporation. • Mott VRH is responsible for conduction behavior in all systems for entire temperature

  3. Charge dependence of neoclassical and turbulent transport of light impurities on MAST

    Science.gov (United States)

    Henderson, S. S.; Garzotti, L.; Casson, F. J.; Dickinson, D.; O'Mullane, M.; Patel, A.; Roach, C. M.; Summers, H. P.; Tanabe, H.; Valovič, M.; the MAST Team

    2015-09-01

    Carbon and nitrogen impurity transport coefficients are determined from gas puff experiments carried out during repeat L-mode discharges on the Mega-Amp Spherical Tokamak (MAST) and compared against a previous analysis of helium impurity transport on MAST. The impurity density profiles are measured on the low-field side of the plasma, therefore this paper focuses on light impurities where the impact of poloidal asymmetries on impurity transport is predicted to be negligible. A weak screening of carbon and nitrogen is found in the plasma core, whereas the helium density profile is peaked over the entire plasma radius. Both carbon and nitrogen experience a diffusivity of the order of 10 m2s-1 and a strong inward convective velocity of ˜40 m s-1 near the plasma edge, and a region of outward convective velocity at mid-radius. The measured impurity transport coefficients are consistent with neoclassical Banana-Plateau predictions within ρ ≤slant 0.4 . Quasi-linear gyrokinetic predictions of the carbon and helium particle flux at two flux surfaces, ρ =0.6 and ρ =0.7 , suggest that trapped electron modes are responsible for the anomalous impurity transport observed in the outer regions of the plasma. The model, combining neoclassical transport with quasi-linear turbulence, is shown to provide reasonable estimates of the impurity transport coefficients and the impurity charge dependence.

  4. Classification of the ejection mechanisms of charged macromolecules from liquid droplets

    Science.gov (United States)

    Consta, Styliani; Malevanets, Anatoly

    2013-01-01

    The relation between the charge state of a macromolecule and its ejection mechanism from droplets is one of the important questions in electrospray ionization methods. In this article, effects of solvent-solute interaction on the manifestation of the charge induced instability in a droplet are examined. We studied the instabilities in a prototype system of a droplet comprised of charged poly(ethylene glycol) and methanol, acetonitrile, and water solvents. We observed instances of three, previously only conjectured, [S. Consta, J. Phys. Chem. B 114, 5263 (2010), 10.1021/jp912119v] mechanisms of macroion ejection. The mechanism of ejection of charged macroion in methanol is reminiscent of "pearl" model in polymer physics. In acetonitrile droplets, the instability manifests through formation of solvent spines around the solvated macroion. In water, we find that the macroion is ejected from the droplet through contiguous extrusion of a part of the chain. The difference in the morphology of the instabilities is attributed to the interplay between forces arising from the macroion solvation energy and the surface energy of the droplet interface. For the contiguous extrusion of a charged macromolecule from a droplet, we demonstrate that the proposed mechanism leads to ejection of the macromolecule from droplets with sizes well below the Rayleigh limit. The ejected macromolecule may hold charge significantly higher than that suggested by prevailing theories. The simulations reveal new mechanisms of macroion evaporation that differ from conventional charge residue model and ion evaporation mechanisms.

  5. Trap-Assisted Transport and Non-Uniform Charge Distribution in Sulfur-Rich PbS Colloidal Quantum Dot-based Solar Cells with Selective Contacts.

    Science.gov (United States)

    Malgras, Victor; Zhang, Guanran; Nattestad, Andrew; Clarke, Tracey M; Mozer, Attila J; Yamauchi, Yusuke; Kim, Jung Ho

    2015-12-01

    This study reports evidence of dispersive transport in planar PbS colloidal quantum dot heterojunction-based devices as well as the effect of incorporating a MoO3 hole selective layer on the charge extraction behavior. Steady state and transient characterization techniques are employed to determine the complex recombination processes involved in such devices. The addition of a selective contact drastically improves the device efficiency up to 3.15% (especially due to increased photocurrent and decreased series resistance) and extends the overall charge lifetime by suppressing the main first-order recombination pathway observed in device without MoO3. The lifetime and mobility calculated for our sulfur-rich PbS-based devices are similar to previously reported values in lead-rich quantum dots-based solar cells. Nevertheless, strong Shockley-Read-Hall mechanisms appear to keep restricting charge transport, as the equilibrium voltage takes more than 1 ms to be established. PMID:26541422

  6. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH3COO) and lithium triflate (LiCF3SO3) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF3SO3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH3COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF3SO3 dissociated more readily than LiCH3COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF3SO3-30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH3COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  7. Role of collector alternating charged patches on transport of Cryptosporidium parvum oocyst in a patchwise charged heterogeneous micromodel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuanyuan; Zhang, Changyong; Hu, Dehong; Kuhlenschmidt, Mark S.; Kuhlenschmidt, Theresa B.; Mylon, Steven E.; Kong, Rong; Bhargava, Rohit; Nguyen, Thanh H.

    2013-02-04

    The role of collector surface charge heterogeneity on transport of Cryptosporidium parvum oocyst and carboxylate microsphere in 2-dimensional micromodels was studied. The cylindrical silica collectors within the micromodels were coated with 0, 10, 20, 50 and 100% Fe2O3 patches. The experimental values of average single collector removal efficiencies (η) of the Fe2O3 patches and on the entire collectors were determined. In the presence of significant (>3500 kT) Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier between the microspheres and the silica collectors at pH 5.8 and 8.1, the values of η determined for Fe2O3 patches were significantly less (p < 0.05, t-test) than that obtained for collectors coated entirely with Fe2O3. However, η on Fe2O3 patches for microspheres at pH 4.4 and for oocysts at pH 5.8 and 8.1, where the DLVO energy barrier was relatively small (ca. 200-360 kT), were significantly greater (p < 0.05, t-test) than that on the collectors coated entirely with Fe2O3. The dependence of η determined for Fe2O3 patches on the DLVO energy barrier indicated the importance of periodic favorable and unfavorable electrostatic interactions between colloids and collectors with alternating Fe2O3 and silica patches. Differences between experimentally determined η and that predicted by a patchwise geochemical heterogeneous model was observed, but can be explained by the model’s lack of consideration for the spatial distribution of charge heterogeneity on the collector surface and colloid migration on patchwise heterogeneous collectors.

  8. Hydrostatic pressure effect on charge transport properties of phenacene organic semiconductors.

    Science.gov (United States)

    Nguyen, Thao P; Shim, Ji Hoon

    2016-05-18

    We investigate the charge transport properties of phenacene organic semiconductors including phenanthrene, chrysene and picene using density functional theory (DFT) calculations under hydrostatic pressure. Under compression, the crystal structures of the three materials are altered and thus, a decrease in the intermolecular distances gives changes in charge transport properties while the molecular structures remain stable. As a result of the applied pressure, the mobilities of these materials increase dramatically. Chrysene shows a transition from a p-type semiconductor to an ambipolar semiconductor at around 2.0 GPa. Interestingly, chrysene favors electron transport at above 3.0 GPa. On the other hand, both phenanthrene and picene exhibit hole transport characteristics under high pressure. Between 3.1 and 4.3 GPa, the picene crystal is found to transform from an anisotropic mobility to an isotropic mobility in the ab plane. We also found that, the bulk modulus representing the resistance of the material under pressure compression follows a linear relationship with molecular length. PMID:27146786

  9. Variable Charge State Impurities in Coupled Kinetic Plasma-Kinetic Neutral Transport Simulations

    Science.gov (United States)

    Stotler, D. P.; Hager, R.; Kim, K.; Koskela, T.; Park, G.

    2015-11-01

    A previous version of the XGC0 neoclassical particle transport code with two fully stripped impurity species was used to study kinetic neoclassical transport in the DIII-D H-mode pedestal. To properly simulate impurities in the scrape-off layer and divertor and to account for radiative cooling, however, the impurity charge state distributions must evolve as the particles are transported into regions of different electron temperatures and densities. To do this, the charge state of each particle in XGC0 is included as a parameter in the list that represents the particle's location in phase space. Impurity ionizations and recombinations are handled with a dedicated collision routine. The associated radiative cooling is accumulated during the process and applied to the electron population later in the time step. The density profiles of the neutral impurities are simulated with the DEGAS 2 neutral transport code and then used as a background for electron impact ionization in XGC0 via a test particle Monte Carlo method analogous to that used for deuterium. This work supported by US DOE contracts DE-AC02-09CH11466.

  10. Rational design of charge transport molecules for blue organic light emitting devices

    Science.gov (United States)

    Padmaperuma, Asanga; Cosimbescu, Lelia; Koech, Phillip; Polikarpov, Evgueni; Swensen, James; Gaspar, Daniel

    2012-02-01

    The efficiency and stability of blue OLEDs continue to be the primary roadblock to developing organic solid-state white lighting as well as power efficient displays. It is generally accepted that such high quantum efficiency can be achieved with the use of organometallic phosphor doped OLEDs. The transport layers can be designed to increase the carrier density as a way to reduce the drive voltage. We have developed a comprehensive library of charge transporting molecules using combination of theoretical modeling and experimental evidence. Our work focuses on using chemical structure design and computational methods to develop host, transport, emitter, and blocking materials for high efficiency blue OLEDs, along with device architectures to take advantage of these new materials. Through chemical modification of materials we are able to influence both the charge balance and emission efficiency of OLEDs, and understand the influence of the location of photon emission in OLEDs as a function of minor chemical modifications of host and electron transport materials. Design rules, structure-property relationships and results from state of the art OLEDs will be presented.

  11. Nonlinear Mechanism of Bed Load Transport

    Institute of Scientific and Technical Information of China (English)

    XU Haijue; BAI Yuchuan; NG Chiu-On

    2009-01-01

    From the group movement of the bed load within the bottom layer, details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper. Whether the sediment is initiated into motion cor-responds to whether the constant term in the equation is equal to zero. If constant term is zero and no dispersive force is considered, the equation represents the traditional Shields initiation curve, and if constant term is zero with-out the dispersive force being considered, then a new Shields curve which is much lower than the traditional one is got, The fixed point of the equation corresponds to the equilibrium sediment transport of bed load. In the mutation analysis, we have found that the inflection point is the demarcation point of breaking. In theory, the breaking point corresponds to the dividing boundary line, across which the bed form changes from flat bed to sand ripple or sand dune. Compared with the experimental data of Chatou Hydraulic Lab in France, the conclusions are verified.

  12. Charge Transport in Field-Effect Transistors based on Layered Materials and their Heterostructures

    Science.gov (United States)

    Kumar, Jatinder

    In the quest for energy efficiency and device miniaturization, the research in using atomically thin materials for device applications is gaining momentum. The electronic network in layered materials is different from 3D counterparts. It is due to the interlayer couplings and density of states because of their 2D nature. Therefore, understanding the charge transport in layered materials is fundamental to explore the vast opportunities these ultra-thin materials offer. Hence, the challenges targeted in the thesis are: (1) understanding the charge transport in layered materials based on electronic network of quantum and oxide capacitances, (2) studying thickness dependence, ranging from monolayer to bulk, of full range-characteristics of field-effect transistor (FET) based on layered materials, (3) investigating the total interface trap charges to achieve the ultimate subthreshold slope (SS) theoretically possible in FETs, (4) understanding the effect of the channel length on the performance of layered materials, (5) understanding the effect of substrate on performance of the TMDC FETs and studying if the interface of transition metal dichalcogenides (TMDCs)/hexagonalboron nitride (h-BN) can have less enough trap charges to observe ambipolar behavior, (6) Exploring optoelectronic properties in 2D heterostructures that includes understanding graphene/WS2 heterostructure and its optoelectronic applications by creating a p-n junction at the interface. The quality of materials and the interface are the issues for observing and extracting clean physics out of these layered materials and heterostructures. In this dissertation, we realized the use of quantum capacitance in layered materials, substrate effects and carrier transport in heterostructure.

  13. Charge Conduction and Breakdown Mechanisms in Self-Assembled Nanodielectrics

    Energy Technology Data Exchange (ETDEWEB)

    DiBenedetto, S.; Facchetti, A; Ratner, M; Marks, T

    2009-01-01

    Developing alternative high dielectric constant (k) materials for use as gate dielectrics is essential for continued advances in conventional inorganic CMOS and organic thin film transistors (OTFTs). Thicker films of high-k materials suppress tunneling leakage currents while providing effective capacitances comparable to those of thin films of lower-k materials. Self-assembled monolayers (SAMs) and multilayers offer attractive options for alternative OTFT gate dielectrics. One class of materials, organosilane-based self-assembled nanodielectrics (SANDs), has been shown to form robust films with excellent insulating and surface passivation properties, enhancing both organic and inorganic TFT performance and lowering device operating voltages. Since gate leakage current through the dielectric is one factor limiting continued TFT performance improvements, we investigate here the current (voltage, temperature) (I (V,T)) transport characteristics of SAND types II ({Pi}-conjugated layer) and III ({sigma}-saturated + {Pi}-conjugated layers) in Si/native SiO{sub 2}/SAND/Au metal-insulator-metal (MIS) devices over the temperature range -60 to +100 C. It is found that the location of the {Pi}-conjugated layer with respect to the Si/SiO{sub 2} substrate surface in combination with a saturated alkylsilane tunneling barrier is crucial in controlling the overall leakage current through the various SAND structures. For small applied voltages, hopping transport dominates at all temperatures for the {Pi}-conjugated system (type II). However, for type III SANDs, the {sigma}- and {Pi}- monolayers dominate the transport in two different transport regimes: hopping between +25 C and +100 C, and an apparent switch to tunneling for temperatures below 25 C. The {sigma}-saturated alkylsilane tunneling barrier functions to reduce type III current leakage by blocking injected electrons, and by enabling bulk-dominated (Poole-Frenkel) transport vs electrode-dominated (Schottky) transport in

  14. Charge conduction and breakdown mechanisms in self-assembled nanodielectrics.

    Science.gov (United States)

    DiBenedetto, Sara A; Facchetti, Antonio; Ratner, Mark A; Marks, Tobin J

    2009-05-27

    Developing alternative high dielectric constant (k) materials for use as gate dielectrics is essential for continued advances in conventional inorganic CMOS and organic thin film transistors (OTFTs). Thicker films of high-k materials suppress tunneling leakage currents while providing effective capacitances comparable to those of thin films of lower-k materials. Self-assembled monolayers (SAMs) and multilayers offer attractive options for alternative OTFT gate dielectrics. One class of materials, organosilane-based self-assembled nanodielectrics (SANDs), has been shown to form robust films with excellent insulating and surface passivation properties, enhancing both organic and inorganic TFT performance and lowering device operating voltages. Since gate leakage current through the dielectric is one factor limiting continued TFT performance improvements, we investigate here the current (voltage, temperature) (I (V,T)) transport characteristics of SAND types II (pi-conjugated layer) and III (sigma-saturated + pi-conjugated layers) in Si/native SiO(2)/SAND/Au metal-insulator-metal (MIS) devices over the temperature range -60 to +100 degrees C. It is found that the location of the pi-conjugated layer with respect to the Si/SiO(2) substrate surface in combination with a saturated alkylsilane tunneling barrier is crucial in controlling the overall leakage current through the various SAND structures. For small applied voltages, hopping transport dominates at all temperatures for the pi-conjugated system (type II). However, for type III SANDs, the sigma- and pi-monolayers dominate the transport in two different transport regimes: hopping between +25 degrees C and +100 degrees C, and an apparent switch to tunneling for temperatures below 25 degrees C. The sigma-saturated alkylsilane tunneling barrier functions to reduce type III current leakage by blocking injected electrons, and by enabling bulk-dominated (Poole-Frenkel) transport vs electrode-dominated (Schottky) transport

  15. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the......The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and...... endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...

  16. Initial Energy Logistics Cost Analysis for Stationary, Quasi-Dynamic, and Dynamic Wireless Charging Public Transportation Systems

    Directory of Open Access Journals (Sweden)

    Young Jae Jang

    2016-06-01

    Full Text Available This paper presents an initial investment cost analysis of public transportation systems operating with wireless charging electric vehicles (EVs. There are three different types of wireless charging systems, namely, stationary wireless charging (SWC, in which charging happens only when the vehicle is parked or idle, quasi-dynamic wireless charging (QWC, in which power is transferred when a vehicle is moving slowly or in stop-and-go mode, and dynamic wireless charging (DWC, in which power can be supplied even when the vehicle is in motion. This analysis compares the initial investment costs for these three types of charging systems for a wireless charging-based public transportation system. In particular, this analysis is focused on the energy logistics cost in transportation, which is defined as the cost of transferring and storing the energy needed to operate the transportation system. Performing this initial investment analysis is complicated, because it involves considerable tradeoffs between the costs of batteries in the EV fleet and different kinds of battery-charging infrastructure. Mathematical optimization models for each type of EV and infrastructure system are used to analyze the initial costs. The optimization methods evaluate the minimum initial investment needed to deploy the public transportation system for each type of EV charging solution. To deal with the variable cost estimates for batteries and infrastructure equipment in the current market, a cost-sensitivity analysis is performed. The goal of this analysis is to identify the market cost conditions that are most favorable for each type of wireless charging solution. Furthermore, the cost analysis quantitatively verifies the qualitative comparison of the three different wireless charging types conducted in the previous research.

  17. BEAMR: An interactive graphic computer program for design of charged particle beam transport systems

    Science.gov (United States)

    Leonard, R. F.; Giamati, C. C.

    1973-01-01

    A computer program for a PDP-15 is presented which calculates, to first order, the characteristics of charged-particle beam as it is transported through a sequence of focusing and bending magnets. The maximum dimensions of the beam envelope normal to the transport system axis are continuously plotted on an oscilloscope as a function of distance along the axis. Provision is made to iterate the calculation by changing the types of magnets, their positions, and their field strengths. The program is especially useful for transport system design studies because of the ease and rapidity of altering parameters from panel switches. A typical calculation for a system with eight elements is completed in less than 10 seconds. An IBM 7094 version containing more-detailed printed output but no oscilloscope display is also presented.

  18. The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1

    International Nuclear Information System (INIS)

    Crystal structures of a membrane protein transporter in three different conformational states provide insights into the transport mechanism. Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties in obtaining the crystal structure of a single transporter in different conformational states, relatively little structural information is known to explain how this process occurs. Here, the structure of the sodium-benzylhydantoin transporter, Mhp1, from Microbacterium liquefaciens, has been determined in three conformational states; from this a mechanism is proposed for switching from the outward-facing open conformation through an occluded structure to the inward-facing open state

  19. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    Science.gov (United States)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  20. Topological effects of charge transfer in telomere G-quadruplex: Mechanism on telomerase activation and inhibition

    CERN Document Server

    Wang, Xin

    2015-01-01

    We explore charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of charge transport in TG4 DNA. The consecutive TG4(CTG4) is semiconducting with 0.2 ~ 0.3eV energy gap. Charges transfers favorably in the consecutive TG4, but are trapped in the non-consecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly ~ 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  1. Effect of hydrogen charging on the mechanical properties of medium strength aluminium alloys 2091 and 2014

    DEFF Research Database (Denmark)

    Bandopadhyay, A.; Ambat, Rajan; Dwarakadasa, E.S.

    1992-01-01

    Cathodic hydrogen charging in 3.5% NaCl solution altered the mechanical properties of 2091-T351 (Al-Cu-Li-Mg-Zr) determined by a slow (10(-3)/s) strain rate tensile testing technique. UTS and YS decreased in the caw of 2091-T351 and 2014-T6(Al-Cu-Mn-Si-Mg) with increase in charging current density....... Elongation showed a decrease with increase in charging current density for both the alloys. However, elongation occurring throughout the gauge length in uncharged specimens changed over to localized deformation, thus increasing the reduction in area in charged specimens. A transition in fracture mode from...

  2. Intrinsic Charge Transport across Phase Transitions in Hybrid Organo-Inorganic Perovskites.

    Science.gov (United States)

    Yi, Hee Taek; Wu, Xiaoxi; Zhu, Xiaoyang; Podzorov, Vitaly

    2016-08-01

    Hall effect measurements in CH3 NH3 PbBr3 single crystals reveal that the charge-carrier mobility follows an inverse-temperature power-law dependence, μ ∝ T(-) (γ) , with the power exponent γ = 1.4 ± 0.1 in the cubic phase, indicating an acoustic-phonon-dominated carrier scattering, and γ = 0.5 ± 0.1 in the tetragonal phase, suggesting another dominant mechanism, such as a piezoelectric or space-charge scattering. PMID:27185304

  3. Fast Charging Battery Buses for the Electrification of Urban Public Transport : A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements

    OpenAIRE

    Matthias Rogge; Sebastian Wollny; Dirk Uwe Sauer

    2015-01-01

    The electrification of public transport bus networks can be carried out utilizing different technological solutions, like trolley, battery or fuel cell buses. The purpose of this paper is to analyze how and to what extent existing bus networks can be electrified with fast charging battery buses. The so called opportunity chargers use mainly the regular dwell time at the stops to charge their batteries. This results in a strong linkage between the vehicle scheduling and the infrastructure plan...

  4. Analytical and numerical studies of photo-injected charge transport in molecularly-doped polymers

    Science.gov (United States)

    Roy Chowdhury, Amrita

    The mobility of photo-injected charge carriers in molecularly-doped polymers (MDPs) exhibits a commonly observed, and nearly universal Poole-Frenkel field dependence, mu exp√(beta0E), that has been shown to arise from the correlated Gaussian energy distribution of transport sites encountered by charges undergoing hopping transport through the material. Analytical and numerical studies of photo-injected charge transport in these materials are presented here with an attempt to understand how specific features of the various models developed to describe these systems depend on the microscopic parameters that define them. Specifically, previously published time-of-flight mobility data for the molecularly doped polymer 30% DEH:PC (polycarbonate doped with 30 wt.% aromatic hydrazone DEH) is compared with direct analytical and numerical predictions of five disorder-based models, the Gaussian disorder model (GDM) of Bassler, and four correlated disorder models introduced by Novikov, et al., and by Parris, et al. In these numerical studies, disorder parameters describing each model were varied from reasonable starting conditions, in order to give the best overall fit. The uncorrelated GDM describes the Poole-Frenkel field dependence of the mobility only at very high fields, but fails for fields lower than about 64 V/mum. The correlated disorder models with small amounts of geometrical disorder do a good over-all job of reproducing a robust Poole-Frenkel field dependence, with correlated disorder theories that employ polaron transition rates showing qualitatively better agreement with experiment than those that employ Miller-Abrahams rates. In a separate study, the heuristic treatment of spatial or geometric disorder incorporated in existing theories is critiqued, and a randomly-diluted lattice gas model is developed to describe the spatial disorder of the transport sites in a more realistic way.

  5. Mechanical Erosion in a Tropical River Basin in Southeastern Brazil: Chemical Characteristics and Annual Fluvial Transport Mechanisms

    Directory of Open Access Journals (Sweden)

    Alexandre Martins Fernandes

    2012-01-01

    Full Text Available This study aims to evaluate the mechanical erosion processes that occur in a tropical river basin, located in the São Paulo state, southeastern Brazil, through the chemical characterization of fine suspended sediments and the transport mechanisms near the river mouth, from March 2009 to September 2010. The chemical characterization indicated the predominance of SiO2, Al2O3, and Fe2O3 and showed no significant seasonal influences on the major element concentrations, expressed as oxides. The concentration variations observed were related to the mobility of chemical species. The evaluation of the rock-alteration degree indicated that the physical weathering was intense in the drainage basin. The fine suspended sediments charge was influenced by the variation discharges throughout the study period. The solid charge estimate of the surface runoff discharge was four times higher in the rainy season than the dry season. The transport of fine suspended sediments at the Sorocaba River mouth was 55.70 t km−2 a−1, corresponding to a specific physical degradation of 37.88 m Ma−1, a value associated with the mechanical erosion rate that corresponds to the soil thickness reduction in the drainage basin.

  6. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  7. The Role of Shape on Electronic Structure and Charge Transport in Faceted PbSe Nanocrystals

    KAUST Repository

    Kaushik, Ananth P.

    2014-03-25

    We have determined the effect of shape on the charge transport characteristics of nanocrystals. Our study looked at the explicit determination of the electronic properties of faceted nanocrystals that essentially probe the limit of current computational reach, i.e., nanocrystals from 1.53 to 2.1 nm in diameter. These nanocrystals, which resemble PbSe systems, are either bare or covered in short ligands. They also differ in shape, octahedral vs cube-octahedral, and in superlattice symmetry (fcc vs bcc). We have provided insights on electron and hole coupling along different facets and overall charge mobility in bcc and fcc superlattices. We have determined that the relative areas of (100) to (111) facets, and facet atom types are important factors governing the optimization of charge transport. The calculated electronic density of states shows no role of -SCH3 - ligands on states near the band gap. Electron coupling between nanocrystals is significantly higher than that of hole coupling; thiol ligands lower the ratio between electron and hole couplings. Stronger coupling exists between smaller nanocrystals. © 2014 American Chemical Society.

  8. Analysis Of Transport Properties of Mechanically Alloyed Lead Tin Telluride

    Science.gov (United States)

    Krishna, Rajalakshmi

    these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-x SnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coecient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical

  9. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    OpenAIRE

    Kundu, Sourav; Karmakar, S. N.

    2016-01-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of envi- ronmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectr...

  10. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    Science.gov (United States)

    Kundu, Sourav; Karmakar, S. N.

    2016-07-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  11. Photoinduced charge transport over branched conjugation pathways: donor-acceptor substituted 1,1-diphenylethene and 2,3-diphenylbutadiene

    NARCIS (Netherlands)

    C.A. van Walree; B.C. van der Wiel; R.M. Williams

    2013-01-01

    Photoinduced charge transport in 1,1-diphenylethene and 2,3-diphenylbutadiene functionalized with an electron donating dimethylamino group and an electron accepting cyano group is reported. UV-spectroscopy reveals that in these compounds, which incorporate a cross-conjugated spacer, a direct charge

  12. Charge-carrier transport in epitactical strontium titanate layers for the application in superconducting components

    International Nuclear Information System (INIS)

    In this thesis thin STO layers were epitactically deposited on YBCO for a subsequent electrical characterization. YBCO layers with a roughness of less than 2 nm (RMS), good out-of-plane orientation with a half-width in the rocking curve in the range (0.2..0.3) at only slightly diminished critical temperature could be reached. The STO layers exhibited also very good crystallographic properties. The charge-carrier transport in STO is mainly dominated by interface-limited processes. By means of an in thesis newly developed barrier model thereby the measured dependencies j(U,T) respectively σ(U,T) could be described very far-reachingly. At larger layer thicknesses and low temperatures the charge-carrier transport succeeds by hopping processes. So in the YBCO/STO/YBCO system the variable-range hopping could be identified as dominating transport process. Just above U>10 V a new behaviour is observed, which concerning its temperature dependence however is also tunnel-like. The STO layers exhibit here very large resistances, so that fields up to 107..108 V/m can be reached without flowing of significant leakage currents through the barrier. In the system YBCO/STO/Au the current transport can be principally in the same way as in the YBCO/STO/YBCO system. The special shape and above all the asymmetry of the barrier however work out very distinctly. It could be shown that at high temperatures according to the current direction a second barrier on the opposite electrode must be passed. So often observed breakdown effects can be well described. For STO layer-thicknesses in the range around 25 nm in the whole temperature range studied inelastic tunneling over chains of localized states was identified as dominating transport process. It could however for the first time be shown that at very low temperatures in the STO layers Coulomb blockades can be formed.

  13. Two-dimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges

    International Nuclear Information System (INIS)

    This paper reviews the formulation and updates some numerical procedures usually adopted in two-dimensional, time-dependent fluid models to study the transport of charged particles in radio-frequency capacitively coupled discharges. The description of charged particle transport is made by solving the continuity and momentum transfer equations for electrons and ions, coupled with Poisson's equation and the electron mean energy transport equations. Inertia terms are considered in the ion momentum transfer equations, by generalizing the earlier definition of effective electric field. The electron mean energy equations are written using specific energy transport parameters, deduced from integration over the electron energy distribution function (EEDF). The model adopts the local mean energy approximation, i.e. it computes the electron transport parameters as a function of the electron mean energy, using either a homogeneous, two-term Boltzmann equation solver or a Maxwellian EEDF. More appropriate boundary conditions for the electron and ion fluxes are used successfully. The model is solved for a GEC Cell reactor type (with 6.4 cm radius and 3.2 cm interelectrode distance) operating at frequency 13.56 MHz, pressures between 10 mTorr and 10 Torr and applied voltages from 100 to 500 V, in electropositive (helium) and electronegative (silane-hydrogen) gases or gas mixtures. The ion kinetics in silane and hydrogen is updated with respect to previous works, by further considering SiH2+, H+ and H3+ ions. In general, simulation results for some typical electrical parameters are closer to experimental measurements available than calculations reported in previous works

  14. Charge Transport in Thin Organic Semiconducting Films: Seebeck and Field Effect Studies

    Science.gov (United States)

    Böhm, W.; Fritz, T.; Leo, K.

    1997-03-01

    We have investigated the charge transport properties of vapor-deposited thin organic films, using the Seebeck effect for determining conduction type and Fermi energy and the field effect to measure mobility and total charge carrier density. We show that the combination of both techniques gives a complete picture of the electrical properties of the films. Wir untersuchen den Ladungsträgertransport in aufgedampften dünnen organischen Schichten, wobei der Seebeck-Effekt zur Bestimmung des Leitfähigkeitstyps und der Lage des Ferminiveaus und der Feldeffekt zur Bestimmung der Leitfähigkeit und der gesamten Ladungsträgerdichte benutzt wird. Es wird gezeigt, daß durch die Kombination beider Methoden ein geschlossenes Bild der elektrischen Eigenschaften erhalten wird.

  15. Charge, spin and thermal transport of graphene-based FNF multilayer

    Science.gov (United States)

    Karbaschi, H.; Rashedi, G.; Mojarabian, F. M.

    2015-07-01

    In this paper the impact of repetition of graphene-based ferromagnet-normal(FN) regions on the transport properties of system is studied, theoretically. Here, the purpose is to generalize the Fert-Grünberg FNF multijunction to a graphene-based one. Thus, parallel and antiparallel magnetization alignments of ferromagnetic regions are considered. The concept of quantum well is used to calculate the transmission probability using the Dirac-Bogoliubov-de Gennes equations. Charge, spin and thermal conductances are investigated for multilayer junctions in terms of magnetization alignments, strength of ferromagnets and thickness of ferromagnet regions. Finally charge, spin and thermal Giant magnetoresistances (GMR) are calculated for the above-mentioned structures. It is obtained that the spin conductance of antiparallel setups is zero, thus it can be used as a spin valve.

  16. Charge, spin and thermal transport of graphene-based FNF multilayer

    Energy Technology Data Exchange (ETDEWEB)

    Karbaschi, H., E-mail: h.karbaschi@sci.ui.ac.ir; Rashedi, G.; Mojarabian, F.M.

    2015-07-15

    In this paper the impact of repetition of graphene-based ferromagnet-normal(FN) regions on the transport properties of system is studied, theoretically. Here, the purpose is to generalize the Fert–Grünberg FNF multijunction to a graphene-based one. Thus, parallel and antiparallel magnetization alignments of ferromagnetic regions are considered. The concept of quantum well is used to calculate the transmission probability using the Dirac–Bogoliubov–de Gennes equations. Charge, spin and thermal conductances are investigated for multilayer junctions in terms of magnetization alignments, strength of ferromagnets and thickness of ferromagnet regions. Finally charge, spin and thermal Giant magnetoresistances (GMR) are calculated for the above-mentioned structures. It is obtained that the spin conductance of antiparallel setups is zero, thus it can be used as a spin valve.

  17. Electroosmotic transport in polyelectrolyte-grafted nanochannels with pH-dependent charge density

    Science.gov (United States)

    Chen, Guang; Das, Siddhartha

    2015-05-01

    "Smart" polyelectrolyte-grafted or "soft" nanochannels with pH-responsiveness have shown great promise for applications like manipulation of ion transport, ion sensing and selection, current rectification, and many more. In this paper, we develop a theory to study the electroosmotic transport in a polyelectrolyte-grafted (or soft) nanochannel with pH-dependent charge density. In one of our recent studies, we have identified that explicit consideration of hydrogen ion concentration is mandatory for appropriately describing the electrostatics of such systems and the resulting monomer concentration must obey a non-unique, cubic distribution. Here, we use this electrostatic calculation to study the corresponding electroosmotic transport. We establish that the effect of pH in the electroosmotic transport in polyelectrolyte-grafted nanochannels introduces two separate issues: first is the consideration of the hydrogen and hydroxyl ion concentrations in describing the electroosmotic body force, and second is the consideration of the appropriate drag force that bears the signature of this cubic monomeric distribution. Our results indicate that the strength of the electroosmotic velocity for the pH-dependent case is always smaller than that for the pH-independent case, with the extent of this difference being a function of the system parameters. Such nature of the electroosmotic transport will be extremely significant in suppressing the electroosmotic flow strength with implications in large number applications such as capillary electrophoresis induced separation, electric field mediated DNA elongation, electrophoretic DNA nanopore sequencing, and many more.

  18. Transport mechanisms in nanopores and nanochannels: can we mimic nature?

    Directory of Open Access Journals (Sweden)

    Mario Tagliazucchi

    2015-04-01

    Full Text Available The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental and theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.

  19. Master equation approach to charge injection and transport in organic insulators.

    Science.gov (United States)

    Freire, José A; Voss, Grasiela

    2005-03-22

    We develop a master equation model of a disordered organic insulator sandwiched between metallic electrodes by treating as rate processes both the injection and the internal transport. We show how the master equation model allows for the inclusion of crucial correlation effects in the charge transport, particularly of the Pauli exclusion principle and of space-charge effects, besides, being dependent on just the microscopic form of the transfer rate between the localized electronic states, it allows for the investigation of different microscopic scenarios in the organic, such as polaronic hopping, correlated energy levels, interaction with image charge, etc. The model allows for a separate analysis of the injection and the recombination currents. We find that the disorder, besides increasing the injection current, eliminates the possibility of observation of a Fowler-Nordheim injection current at zero temperature, and that it does not alter the Schottky barrier size of the zero-field thermionic injection current from the value based on the energy difference between the electrode Fermi level and the highest occupied molecular orbital/lowest unoccupied molecular orbital levels in the organic, but it makes the Arrhenius temperature dependence appear at larger temperatures. We investigate how the I(V) characteristics of a device is affected by the presence of correlations in the site energy distribution and by the form of the internal hopping rate, specifically the Miller-Abrahams rate and the Marcus or small-polaron rate. We show that the disorder does not modify significantly the ebeta square root E field dependence of the net current due to the Schottky barrier lowering caused by the attraction between the charge and its image in the electrode. PMID:15836407

  20. Charge Carrier Transport Through the Interface Between Hybrid Electrodes and Organic Materials in Flexible Organic Light Emitting Diodes.

    Science.gov (United States)

    Zhou, Huanyu; Cheong, Hahn-Gil; Park, Jin-Woo

    2016-05-01

    We investigated the electronic properties of composite-type hybrid transparent conductive electrodes (h-TCEs) based on Ag nanowire networks (AgNWs) and indium tin oxide (ITO). These h-TCEs were developed to replace ITO, and their mechanical flexibility is superior to that of ITO. However, the characteristics of charge carriers and the mechanism of charge-carrier transport through the interface between the h-TCE and an organic material are not well understood when the h-TCE is used as the anode in a flexible organic light-emitting diode (f-OLED). AgNWs were spin coated onto polymer substrates, and ITO was sputtered atop the AgNWs. The electronic energy structures of h-TCEs were investigated by ultraviolet photoelectron spectroscopy. f-OLEDs were fabricated on both h-TCEs and ITO for comparison. The chemical bond formation at the interface between the h-TCE and the organic layer in f-OLEDs was investigated by X-ray photoelectron spectroscopy. The performances of f-OLEDs were compared based on the analysis results. PMID:27483896

  1. Charge injection and transport in low-mobility mixed ionic/electronic conducting systems: Regimes of behavior and limiting cases

    Science.gov (United States)

    Mills, Thomas J.; Lonergan, Mark C.

    2012-01-01

    A comprehensive analysis of a model describing charge-carrier injection and transport in light-emitting electrochemical cells (LECs) and related mixed ionic electronic conductors (MIECs) is given. Ions are treated using a modified drift-diffusion transport equation that accounts for volume-exclusion effects, and electronic injection is treated using a spatially dependent tunneling mechanism that explicitly accounts for both forward and backward fluxes. Systems containing both one and two mobile ionic species are treated and compared. The unique physics of LECs stem from ionic polarization processes that can lead to field screening and narrowed injection barriers, producing increased electrode exchange currents via tunneling. The latter process promotes the establishment of electronic quasiequilibrium throughout the double-layer regions and hence promotes bulk-limited conduction. Explicit expressions are given describing the conditions necessary to assume field screening and bulk-limited conduction, which determine the applicability of either traditional semiconductor device models such as Fowler-Nordheim or electrochemical models such as the Nernst equation. Having established these conditions, several distinct regimes of bulk-limited LEC behavior are described. Explicit formulas for the biases delineating these regimes are given as well as formulas for the current in each regime. At low biases, the current generally increases exponentially with bias; the bulk remains field free, and the transport is predominantly unipolar and diffusive. At high biases, the current rises much less rapidly, and bulk transport is bipolar, occurring through a combination of drift and diffusion. The nature of the bulk region in the high-bias regime is markedly different in systems with one and two mobile ionic species. At intermediate biases, space charge effects preferentially drive injection of the minority carrier causing a transition from unipolar to bipolar injection. It is

  2. TTF/TCNQ-based thin films and microcrystals. Growth and charge transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Vita

    2011-05-26

    The thesis adresses several problems related to growth and charge transport phenomena in thin films of TTF-TCNQ and (BEDT-TTF)TCNQ. The following main new problems are addressed: - The influence of thin-film specific factors, such as the substrate material and growth-induced defects, on the Peierls transition temperature in TTF-TCNQ thin films was studied; - finite-size effects in TTF-TCNQ were investigated by considering transport properties in TTF-TCNQ microcrystals. The influence of the size of the crystal on the Peierls transition temperature was studied. In this context a new method of microcontact fabrication was employed to favor the measurements; - an analysis of radiation-induced defects in TTF-TCNQ thin films and microcrystals was performed. It was demonstrated than an electron beam can induce appreciable damage to the sample such that its electronic properties are strongly modified; - a bilayer growth method was established to fabricate (BEDT-TTF)TCNQ from the gas phase. This newly developed bilayer growth method was showed to be suitable for testing (BEDT-TTF)TCNQ charge-transfer phase formation; - the structure of the formed (BEDT-TTF)TCNQ charge-transfer compounds was analyzed by using a wide range of experimental techniques. An overview and the description of the basic physical principles underlying charge-transfer compounds is given in chapter 2. Experimental techniques used for the growth and characterization of thin films and microcrystals are presented in chapter 3. Chapter 4 gives an overview of the physical properties of the studied organic materials. Chapter 5 discussed the experimental study of TTF-TCNQ thin films. he Peierls transition in TTF-TCNQ is a consequence of the quasi-one-dimensional structure of the material and depends on different factors, studied in chapters 5 and 6. In contradistinction to TTF-TTCNQ, the (BEDT-TTF)TCNQ charge-transfer compound crystallizes in several different modifications with different physical properties

  3. The effect of interfacial layers on charge transport in organic solar cell

    Science.gov (United States)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  4. The diffusive idealization of charged-particle transport in random magnetic fields. [cosmic ray propagation

    Science.gov (United States)

    Earl, J. A.

    1974-01-01

    The uniqueness and accuracy of the equations which describe the transport of charged particles diffusing in a random magnetic field parallel to a relatively large guiding field is examined. With regard to uniqueness, it is found that the same coefficient of diffusion is obtained by three methods that have apparently led to discrepancies in previous work. With regard to accuracy, it is found that two corrections must be added to Fick's law in which the diffusive flux is proportional to the gradient of the density. Explicit expressions are given for a characteristic time and a characteristic length which describe the corrections.

  5. Correlation of nanostructure and charge transport properties of oxidized a -SiC:H films

    Energy Technology Data Exchange (ETDEWEB)

    Gordienko, S.O.; Nazarov, A.N.; Vasin, A.V.; Rusavsky, A.V.; Lysenko, V.S. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kyiv (Ukraine)

    2012-06-15

    This paper considers the influence of low temperature oxidation on structural and electrical properties of amorphous carbon-rich a -Si{sub 1-x}C{sub x}:H thin films fabricated by reactive RF magnetron sputtering. It is shown that oxidation leads to formation of SiO{sub x} matrix with graphite-like carbon inclusions. Such conductive precipitates has a strong effect on charge transport in oxidized a -Si{sub 1-x}C{sub x}:H films (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. A Boltzmann-weighted hopping model of charge transport in organic semicrystalline films

    KAUST Repository

    Kwiatkowski, Joe J.

    2011-01-01

    We present a model of charge transport in polycrystalline electronic films, which considers details of the microscopic scale while simultaneously allowing realistically sized films to be simulated. We discuss the approximations and assumptions made by the model, and rationalize its application to thin films of directionally crystallized poly(3-hexylthiophene). In conjunction with experimental data, we use the model to characterize the effects of defects in these films. Our findings support the hypothesis that it is the directional crystallization of these films, rather than their defects, which causes anisotropic mobilities. © 2011 American Institute of Physics.

  7. Temperature and Magnetic Field Effects on the Transport Controlled Charge State of a Single Quantum Dot

    Directory of Open Access Journals (Sweden)

    Moskalenko ES

    2010-01-01

    Full Text Available Abstract Individual InAs/GaAs quantum dots are studied by micro-photoluminescence. By varying the strength of an applied external magnetic field and/or the temperature, it is demonstrated that the charge state of a single quantum dot can be tuned. This tuning effect is shown to be related to the in-plane electron and hole transport, prior to capture into the quantum dot, since the photo-excited carriers are primarily generated in the barrier.

  8. Simulation Studies of Charge Transport on Resistive Structures in Gaseous Ionization Detectors

    CERN Document Server

    Budanur, Nazmi Burak

    2012-01-01

    We developed a tool for the simulation of charge transport on a conducting plate of finite dimensions. This tool is named Chani. Main motivation of developing Chani was to provide a tool for the optimization of the dimensions and resistivity of the anode electrodes in spark-protected Micropattern Gaseous Detectors (MPGD). In this thesis, we start with the general description of the LHC and the ATLAS Experiment. Then, we review the gaseous ionization detector technologies and in particular, the micromegas technology. We then present the working principles of Chani along with the example calculations. These examples include comparisons with the analytically solvable problems which shows that the simulation results are reasonable.

  9. Common Mitochondrial DNA Mutations Generated through DNA-Mediated Charge Transport

    OpenAIRE

    Merino, Edward J.; Davis, Molly L.; Barton, Jacqueline K.

    2009-01-01

    Mutation sites that arise in human mitochondrial DNA as a result of oxidation by a rhodium photooxidant have been identified. HeLa cells were incubated with [Rh(phi)2bpy]Cl3 (phi is 9,10-phenanthrenequinone diimine), an intercalating photooxidant, to allow the complex to enter the cell and bind mitochondrial DNA. Photoexcitation of DNA-bound [Rh(phi)2bpy]3+ can promote the oxidation of guanine from a distance through DNA-mediated charge transport. After two rounds of photolysis and growth of ...

  10. Charge transport in a nonlinear, three--dimensional DNA model with disorder

    OpenAIRE

    Archilla, Juan F. R.; Hennig, Dirk; J Agarwal

    2002-01-01

    We study the transport of charge due to polarons in a model of DNA which takes in account its 3D structure and the coupling of the electron wave function with the H--bond distortions and the twist motions of the base pairs. Perturbations of the ground states lead to moving polarons which travel long distances. The influence of parametric and structural disorder, due to the impact of the ambient, is considered, showing that the moving polarons survive to a certain degree of disorder. Compariso...

  11. Non-randomized mtDNA damage after ionizing radiation via charge transport

    OpenAIRE

    Xin Zhou; Xinguo Liu; Xin Zhang; Rong Zhou; Yang He; Qiang Li; Zhenhua Wang; Hong Zhang

    2012-01-01

    Although it is well known that there are mutation hot spots in mtDNA, whether there are damage hot spots remain elusive. In this study, the regional DNA damage of mitochondrial genome after ionizing radiation was determined by real-time quantitative PCR. The mtDNA damage level was found to be dose-dependent and regional unequal. The control region was the most susceptible region to oxidative damage. GGG, as an typical hole trap during charge transport, was found to be disproportionally enrich...

  12. Protein–DNA charge transport: Redox activation of a DNA repair protein by guanine radical

    OpenAIRE

    Yavin, Eylon; Boal, Amie K.; Stemp, Eric D. A.; Boon, Elizabeth M; Livingston, Alison L.; O'Shea, Valerie L.; David, Sheila S.; Barton, Jacqueline K.

    2005-01-01

    DNA charge transport (CT) chemistry provides a route to carry out oxidative DNA damage from a distance in a reaction that is sensitive to DNA mismatches and lesions. Here, DNA-mediated CT also leads to oxidation of a DNA-bound base excision repair enzyme, MutY. DNA-bound Ru(III), generated through a flash/quench technique, is found to promote oxidation of the [4Fe-4S](2+) cluster of MutY to [4Fe-4S](3+) and its decomposition product [3Fe-4S](1+). Flash/quench experiments monitored by EPR spec...

  13. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  14. Charging dynamics of a polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results

    Institute of Scientific and Technical Information of China (English)

    Cao Meng; Wang Fang; Liu Jing; Zhang Hai-Bo

    2012-01-01

    We present a novel numerical model and simulate preliminarily the charging process of a polymer subjected to electron irradiation of several 10 keV.The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons.The dynamic spatial distribution of charges is obtained and validated by existing experimental data.Our simulations show that excess negative charges are concentrated near the edge of the electron range.However,the formed region of high charge density may extend to the surface and bottom of a kapton sample,due to the effects of the electric field on electron scattering and charge transport,respectively.Charge trapping is then demonstrated to significantly influence the charge motion.The charge distribution can be extended to the bottom as the trap density decreases.Charge accumulation is therefore balanced by the appearance and increase of leakage current.Accordingly,our model and numerical simulation provide a comprehensive insight into the charging dynamics of a polymer irradiated by electrons in the complex space environment.

  15. Mass and charge transport in micro and nano-fluidic channels

    CERN Document Server

    Mortensen, N A; Okkels, F; Bruus, H

    2006-01-01

    We consider laminar flow of incompressible electrolytes in long, straight channels driven by pressure and electro-osmosis. We use a Hilbert space eigenfunction expansion to address the general problem of an arbitrary cross section and obtain general results in linear-response theory for the mass and charge transport coefficients which satisfy Onsager relations. In the limit of non-overlapping Debye layers the transport coefficients are simply expressed in terms of parameters of the electrolyte as well as the hydraulic radius R=2A/P with A and P being the cross-sectional area and perimeter, respectively. In articular, we consider the limits of thin non-overlapping as well as strongly overlapping Debye layers, respectively, and calculate the corrections to the hydraulic resistance due to electro-hydrodynamic interactions.

  16. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules

    International Nuclear Information System (INIS)

    Highlights: → One-step renormalization approach to describe the DBL-DNA molecule. → Electronic tight-binding Hamiltonian model. → A quasiperiodic sequence to mimic the DNA nucleotides arrangement. → Electronic transmission spectra. → I-V characteristics. -- Abstract: We study the charge transport properties of a dangling backbone ladder (DBL)-DNA molecule focusing on a quasiperiodic arrangement of its constituent nucleotides forming a Rudin-Shapiro (RS) and Fibonacci (FB) Poly (CG) sequences, as well as a natural DNA sequence (Ch22) for the sake of comparison. Making use of a one-step renormalization process, the DBL-DNA molecule is modeled in terms of a one-dimensional tight-binding Hamiltonian to investigate its transmissivity and current-voltage (I-V) profiles. Beyond the semiconductor I-V characteristics, a striking similarity between the electronic transport properties of the RS quasiperiodic structure and the natural DNA sequence was found.

  17. A renormalization approach to describe charge transport in quasiperiodic dangling backbone ladder (DBL)-DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Fulco, U.L. [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Caetano, E.W.S. [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, 60040-531 Fortaleza, CE (Brazil); Freire, V.N. [Departamento de Fisica, Universidade Federal do Ceara, 60455-760 Fortaleza, CE (Brazil)

    2011-10-31

    Highlights: → One-step renormalization approach to describe the DBL-DNA molecule. → Electronic tight-binding Hamiltonian model. → A quasiperiodic sequence to mimic the DNA nucleotides arrangement. → Electronic transmission spectra. → I-V characteristics. -- Abstract: We study the charge transport properties of a dangling backbone ladder (DBL)-DNA molecule focusing on a quasiperiodic arrangement of its constituent nucleotides forming a Rudin-Shapiro (RS) and Fibonacci (FB) Poly (CG) sequences, as well as a natural DNA sequence (Ch22) for the sake of comparison. Making use of a one-step renormalization process, the DBL-DNA molecule is modeled in terms of a one-dimensional tight-binding Hamiltonian to investigate its transmissivity and current-voltage (I-V) profiles. Beyond the semiconductor I-V characteristics, a striking similarity between the electronic transport properties of the RS quasiperiodic structure and the natural DNA sequence was found.

  18. Spin Selective Charge Transport through Cysteine Capped CdSe Quantum Dots.

    Science.gov (United States)

    Bloom, Brian P; Kiran, Vankayala; Varade, Vaibhav; Naaman, Ron; Waldeck, David H

    2016-07-13

    This work demonstrates that chiral imprinted CdSe quantum dots (QDs) can act as spin selective filters for charge transport. The spin filtering properties of chiral nanoparticles were investigated by magnetic conductive-probe atomic force microscopy (mCP-AFM) measurements and magnetoresistance measurements. The mCP-AFM measurements show that the chirality of the quantum dots and the magnetic orientation of the tip affect the current-voltage curves. Similarly, magnetoresistance measurements demonstrate that the electrical transport through films of chiral quantum dots correlates with the chiroptical properties of the QD. The spin filtering properties of chiral quantum dots may prove useful in future applications, for example, photovoltaics, spintronics, and other spin-driven devices. PMID:27336320

  19. 8-cyclopropyl-2'-deoxyguanosine: a hole trap for DNA-mediated charge transport.

    Science.gov (United States)

    Wong, Jiun Ru; Shao, Fangwei

    2014-05-26

    DNA duplexes containing 8-cyclopropyl-2'-deoxyguanosine ((8CP) G) were synthesized to investigate the effect of the C8-modified deoxyguanosine as a kinetic trap for transient hole occupancy on guanines during DNA-mediated hole transport (HT). Thermal denaturation and CD spectra show that DNA duplexes containing (8CP) G are able to form stable B-form duplexes. Photoirradiation of terminal tethered anthraquinone can induce oxidative decomposition of (8CP) G through DNA HT along adenine tracts with lengths of up to 4.8 nm. Shallow and periodic distance dependence was observed in a long adenine tract with intervening guanines. The efficient charge transport indicates that (8CP) G can electronically couple well with a DNA bridge and form HT-active conformational domains to facilitate transient hole delocalization over an adenine tract. PMID:24764318

  20. Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter.

    Science.gov (United States)

    Davis, Bruce A; Nagarajan, Anu; Forrest, Lucy R; Singh, Satinder K

    2016-01-01

    The serotonin transporter (SERT) is an integral membrane protein that exploits preexisting sodium-, chloride-, and potassium ion gradients to catalyze the thermodynamically unfavorable movement of synaptic serotonin into the presynaptic neuron. SERT has garnered significant clinical attention partly because it is the target of multiple psychoactive agents, including the antidepressant paroxetine (Paxil), the most potent selective serotonin reuptake inhibitor known. However, the binding site and orientation of paroxetine in SERT remain controversial. To provide molecular insight, we constructed SERT homology models based on the Drosophila melanogaster dopamine transporter and docked paroxetine to these models. We tested the predicted binding configurations with a combination of radioligand binding and flux assays on wild-type and mutant SERTs. Our data suggest that the orientation of paroxetine, specifically its fluorophenyl ring, in SERT's substrate binding site directly depends on this pocket's charge distribution, and thereby provide an avenue toward understanding and enhancing high-affinity antidepressant activity. PMID:27032980

  1. Research on the mechanisms of EME and charge accumulation during the rock crush

    Institute of Scientific and Technical Information of China (English)

    SU Wei-jia; LI Yan-ming

    2008-01-01

    The phenomenon of EME and charge accumulation were included during the load-bearing failure processing of the rock. The mechanism and signal law of the two kinds of phenomenon through the experiment, as well as the mutual relation of the two kinds of phenomenon, were contribute to monitor the regulation of the mine rock and prevent the dynamic disasters of the mine. There were two charge sensors, one electromagnetic radiated sensors and one pressure sensor in the experiment to detect the EME signal and the charge intensity signal during the load-bearing failure processing of the rock.The results show that the charge intensity signal is prior to the EME signal through the date processing and numerical analysis. The two signals change obviously before the rock crush. The two kinds of phenomenon are homogenous and have obvious master-slave characteristic. With the appeared of the EME signal, the charge intensity signal decreased,the power is released.

  2. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Roomerature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures. © 2013 American Chemical Society.

  3. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    Science.gov (United States)

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-04-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics.

  4. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene

    Science.gov (United States)

    Shankla, Manish; Aksimentiev, Aleksei

    2014-10-01

    Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion, whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing.

  5. Nanoscale Charge Balancing Mechanism in Alkali Substituted Calcium-Silicate-Hydrate Gels

    CERN Document Server

    Özçelik, V Ongun

    2016-01-01

    Alkali-activated materials and related alternative cementitious systems are sustainable material technologies that have the potential to substantially lower CO$_2$ emissions associated with the construction industry. However, the impact of augmenting the chemical composition of the material on the main binder phase, calcium-silicate-hydrate gel, is far from understood, particularly since this binder phase is disordered at the nanoscale. Here, we reveal the presence of a charge balancing mechanism at the molecular level, which leads to stable structures when alkalis (i.e., Na or K) are incorporated into a calcium-silicate-hydrate gel, as modeled using crystalline 14{\\AA} tobermorite. These alkali containing charge balanced structures possess superior mechanical properties compared to their charge unbalanced counterparts. Our results, which are based on first-principles simulations using density functional theory, include the impact of charge balancing on the optimized geometries of the new model phases, format...

  6. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current‑voltage and transient current‑time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v‑1 s‑1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  7. The programme library for numerical simulation of charged particle dynamics in transportation lines

    International Nuclear Information System (INIS)

    The description of a PC codes library to simulate the beam transportation of charged particles is presented. The codes are realized on IBM PC in Visual Basic common interface. It is destined for the simulation and optimization of beam dynamics and based on the successive and consistent use of two methods: the momentum method of distribution functions (RMS technique) and the particle-particle method (PP-Method). The library allows to calculate the RMS parameters of electron and ion beams, passing through a set of quadrupoles, solenoids, bends, accelerating sections. The RMS code is a fast code very suitable for the first test, design and optimization of the beam line parameters. The PP code requires more time for execution but provides a high accuracy of simulation taking into account the space charge effects, aberrations and beam losses. One of the main advantages of PP code presented here is an ability to simulate a real multicomponent beam of different masses and charged states of ions from ion sources

  8. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Prinja, Anil K

    2012-01-09

    The goal of this project was to develop and investigate the performance of reduced-physics formulations of high energy charged particle (electrons, protons and heavier ions) transport that are computationally more efficient than not only analog Monte Carlo methods but also the established condensed history Monte Carlo technique. Charged particles interact with matter by Coulomb collisions with target nuclei and electrons, by bremsstrahlung radiation loss and by nuclear reactions such as spallation and fission. Of these, inelastic electronic collisions and elastic nuclear collisions are the dominant cause of energy-loss straggling and angular deflection or range straggling of a primary particle. These collisions are characterized by extremely short mean free paths (sub-microns) and highly peaked, near-singular differential cross sections about forward directions and zero energy loss, with the situation for protons and heavier ions more extreme than for electrons. For this reason, analog or truephysics single-event Monte Carlo simulation, while possible in principle, is computationally prohibitive for routine calculation of charged particle interaction phenomena.

  9. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors.

    Science.gov (United States)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-12

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm(2) v(-1) s(-1)), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability. PMID:27363543

  10. Charge transport in a-Si:H detectors: Comparison of analytical and Monte Carlo simulations

    International Nuclear Information System (INIS)

    To understand the signal formation in hydrogenated amorphous silicon (a-Si:H) p-i-n detectors, dispersive charge transport due to multiple trapping in a-Si:H tail states is studied both analytically and by Monte Carlo simulations. An analytical solution is found for the free electron and hole distributions n(x,t) and the transient current I(t) due to an initial electron-hole pair generated at an arbitrary depth in the detector for the case of exponential band tails and linear field profiles; integrating over all e-h pairs produced along the particle's trajectory yields the actual distributions and current; the induced charge Q(t) is obtained by numerically integrating the current. This generalizes previous models used to analyze time-of-flight experiments. The Monte Carlo simulation provides the same information but can be applied to arbitrary field profiles, field dependent mobilities and localized state distributions. A comparison of both calculations is made in a simple case to show that identical results are obtained over a large time domain. A comparison with measured signals confirms that the total induced charge depends on the applied bias voltage. The applicability of the same approach to other semiconductors is discussed

  11. Influence of Magnetic Field on Electric Charge Transport in Holomiun Thin Films at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Jan Dudas

    2005-01-01

    Full Text Available Holmium thin films were prepared by evaporation in ultrahigh vacuum (UHV and high precision electrical resistance measurements were performed on them as well as on holomium bulk sample in the wide temperature range from 4,2 K up to the room temperature. Electric charge transport is profoundly influenced by the magnetic structure at low temperatures and a "knee-like" resistance anomaly was observed near the transportation from paramagnetic state to basal-plane spiral structure in bulk with the Neel temperature TN=128,9 K and below ~ 122 K in thin Ho films in a thickness range from 98 nm to 215 nm. Unexpected resistance minimum at ~ 9 K and a slope´s charge of the R vs. T curve near ~ 170 K was observed in 215 nm thin film. Application of magnetic field parallel to the substrate and thin film plane for temperatures below ~ 150 K caused the decrease of resistence value with increasing magnetic flux density. Increasing suppression of the TN value up to ~ 5 K with increasing flux density value up to 5 T was observed in Ho films. 

  12. Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, P., E-mail: patrick.strasser@kek.jp [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ikedo, Y.; Miyake, Y.; Shimomura, K.; Kawamura, N.; Nishiyama, K.; Makimura, S.; Fujimori, H.; Koda, A.; Nakamura, J.; Nagatomo, T. [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Adachi, T. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Pant, A.D. [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ogitsu, T. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Makida, Y.; Yoshida, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sasaki, K. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Okamura, T. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Superconducting curved transport solenoid. • Muon charge selection by superimposed dipole field. • World strongest pulsed muon source. -- Abstract: At the J-PARC Muon Science Facility (MUSE) the Super-Omega muon beamline is now under construction in the experimental hall No. 2 of the Materials and Life Science Facility building. Muons up to 45 MeV/c will be extracted with a large acceptance solid angle to produce the world highest intensity pulsed muon beam. This beamline comprises three parts, a normal-conducting capture solenoid, a superconducting curved transport solenoid and an axial focusing solenoid. Since only solenoids are used, both surface μ{sup +} and cloud μ{sup −} are extracted simultaneously. To accommodate future experiments that would only require either μ{sup +} or μ{sup −} beam, two dipole coils located on the straight section of the curved solenoid provide the muon charge selection by directing one of the beam onto the solenoid inner-wall. The design parameters, the construction status and the initial beam commissioning are reported.

  13. Charge and spin transport in PEDOT:PSS nanoscale lateral devices.

    Science.gov (United States)

    de Oliveira, Thales V A G; Gobbi, Marco; Porro, José M; Hueso, Luis E; Bittner, Alexander M

    2013-11-29

    The electrical transport of the highly conductive poly-(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is investigated with Ohmic and spin-polarized tunnel contacts at nanoscale lateral dimensions. Temperature-dependent charge transport measurements reveal that electrical conductivity scales non-linearly as a function of electrode spacing, which is attributed to the localization of carriers induced by the disorder introduced by the PSS polyelectrolyte. In addition, we demonstrate the integration of this conducting polymer in nanoscale lateral spin-valve devices by increasing the pH of the PEDOT:PSS solution. We present charge and magnetotransport measurement results of NiFe/AlOx/PEDOT:PSS/AlOx/NiFe lateral structures for various thicknesses of the alumina tunnel barriers. We discuss the absence of magnetoresistance of our spin valves within the framework of Valet-Fert theory, and estimate an upper limit for the spin lifetime of carriers in PEDOT:PSS to τsf ≤ 50 ns. PMID:24177495

  14. A Multiplexed, Two-Electrode Platform for Biosensing Based on DNA-Mediated Charge Transport.

    Science.gov (United States)

    Furst, Ariel L; Hill, Michael G; Barton, Jacqueline K

    2015-06-16

    We have developed a thin layer, multiplexed biosensing platform that features two working-electrode arrays for detecting small molecules, nucleic acid sequences, and DNA-binding proteins. DNA duplexes are patterned onto the primary electrode array, while a secondary electrode array is used both to initiate DNA monolayer formation and for electrochemical readout via DNA-mediated charge transport (DNA CT) chemistry. Electrochemical reduction of Cu(phendione)2(2+) (phendione is 1,10-phenanthroline-5,6-dione) at the secondary electrodes induces covalent attachment via click chemistry of ethynyl-labeled DNA probe duplexes onto the primary electrodes that have been treated with azide-terminated alkylthiols. Electrochemical impedance spectroscopy and cyclic voltammetry confirm that catalyst activation at the secondary electrode is essential to maintain the integrity of the DNA monolayer. Electrochemical readout of DNA CT processes that occur at the primary electrode is accomplished also at the secondary electrode. The two-electrode system enables the platform to function as a collector-generator using either ferrocyanide or ferricyanide as mediators with methylene blue and DNA charge transport. Electrochemical measurements at the secondary electrode eliminate the need for large background corrections. The resulting sensitivity of this platform enables the reliable and simultaneous detection of femtomoles of the transcription factors TATA-binding protein and CopG on a single multiplexed device. PMID:26042916

  15. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    Science.gov (United States)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  16. Long-range charge transfer in biopolymers

    Science.gov (United States)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  17. Price Analysis of Railway Freight Transport under Marketing Mechanism

    Science.gov (United States)

    Shi, Ying; Fang, Xiaoping; Chen, Zhiya

    Regarding the problems in the reform of the railway tariff system and the pricing of the transport, by means of assaying the influence of the price elasticity on the artifice used for price, this article proposed multiple regressive model which analyzed price elasticity quantitatively. This model conclude multi-factors which influences on the price elasticity, such as the averagely railway freight charge, the averagely freight haulage of proximate supersede transportation mode, the GDP per capita in the point of origin, and a series of dummy variable which can reflect the features of some productive and consume demesne. It can calculate the price elasticity of different classes in different domains, and predict the freight traffic volume on different rate levels. It can calculate confidence-level, and evaluate the relevance of each parameter to get rid of irrelevant or little relevant variables. It supplied a good theoretical basis for directing the pricing of transport enterprises in market economic conditions, which is suitable for railway freight, passenger traffic and other transportation manner as well. SPSS (Statistical Package for the Social Science) software was used to calculate and analysis the example. This article realized the calculation by HYFX system(Ministry of Railways fund).

  18. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    OpenAIRE

    Shutthanandan V; Becker U; Ramana CV; Julien CM

    2008-01-01

    Abstract Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer me...

  19. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    DEFF Research Database (Denmark)

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear. Results Using a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the...

  20. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    International Nuclear Information System (INIS)

    At present, the mechanism for anomalous energy transport in low-β toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E x B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs

  1. Evaporation as the transport mechanism of metals in arid regions

    NARCIS (Netherlands)

    Lima, A.T.; Safar, Z.; Loch, J.P.G.

    2014-01-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evapora

  2. LOGISTIC APPROACH IN CREATING AN EFFECTIVE MECHANISM OF PASSENGER TRANSPORTATION MANAGEMENT BY RAILWAY TRANSPORT

    Directory of Open Access Journals (Sweden)

    V. I. Kopytko

    2009-09-01

    Full Text Available The logical concept of passenger transportation management on the railway transport is considered. This concept provides the creation of logical centers, which must combine the market mechanism with the government regulation. It is motivated that the efficient work condition of logical centers is a determination of main factors, due to which it is possible to realize the classification of passenger traffic that will allow forecasting the behavior of a logistic structure at the passenger market.

  3. Localized Charge Carrier Transport Properties of Zn1- x Ni x O/NiO Two-Phase Composites

    Science.gov (United States)

    Joshi, D. C.; Dasari, K.; Nayak, S.; Palai, R.; Suresh, P.; Thota, S.

    2016-04-01

    We report the localized charge carrier transport of two-phase composite Zn1- x Ni x O/NiO (0 ≤ x ≤ 1) using the temperature dependence of ac-resistivity ρ ac(T) across the Néel temperature T N (= 523 K) of nickel oxide. Our results provide strong evidence to the variable range hopping of charge carriers between the localized states through a mechanism involving spin-dependent activation energies. The temperature variation of carrier hopping energy ɛ h(T) and nearest-neighbor exchange-coupling parameter J ij(T) evaluated from the small poleron model exhibits a well-defined anomaly across T N. For all the composite systems, the average exchange-coupling parameter (J ij)AVG nearly equals to 70 meV which is slightly greater than the 60-meV exciton binding energy of pure zinc oxide. The magnitudes of ɛ h (˜0.17 eV) and J ij (˜11 meV) of pure NiO synthesized under oxygen-rich conditions are consistent with the previously reported theoretical estimation based on Green's function analysis. A systematic correlation between the oxygen stoichiometry and, ɛ h(T) and J ij(T) is discussed.

  4. A numerical model for charge transport and energy conversion of perovskite solar cells.

    Science.gov (United States)

    Zhou, Yecheng; Gray-Weale, Angus

    2016-02-14

    Based on the continuity equations and Poisson's equation, we developed a numerical model for perovskite solar cells. Due to different working mechanisms, the model for perovskite solar cells differs from that of silicon solar cells and Dye Sensitized Solar Cells. The output voltage and current are calculated differently, and in a manner suited in particular to perovskite organohalides. We report a test of our equations against experiment with good agreement. Using this numerical model, it was found that performances of solar cells increase with charge carrier's lifetimes, mobilities and diffusion lengths. The open circuit voltage (Voc) of a solar cell is dependent on light intensities, and charge carrier lifetimes. Diffusion length and light intensity determine the saturated current (Jsc). Additionally, three possible guidelines for the design and fabrication of perovskite solar cells are suggested by our calculations. Lastly, we argue that concentrator perovskite solar cells are promising.

  5. Reaction mechanisms in transport theories: a test of the nuclear effective interaction

    CERN Document Server

    Colonna, M; Di Toro, M; Frecus, B; Zhang, Y X

    2012-01-01

    We review recent results concerning collective excitations in neutron-rich systems and reactions between charge asymmetric systems at Fermi energies. Solving numerically self-consistent transport equations for neutrons and protons with specific initial conditions, we explore the structure of the different dipole vibrations in the $^{132}Sn$ system and investigate their dependence on the symmetry energy. We evidence the existence of a distinctive collective mode, that can be associated with the Pygmy Dipole Resonance, with an energy well below the standard Giant Dipole Resonance and isoscalar-like character, i.e. very weakly dependent on the isovector part of the nuclear effective interaction. At variance, the corresponding strength is rather sensitive to the behavior of the symmetry energy below saturation, which rules the number of excess neutrons in the nuclear surface. In reactions between charge asymmetric systems at Fermi energies, we investigate the interplay between dissipation mechanisms and isospin e...

  6. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.

    Science.gov (United States)

    Farsi, Zohreh; Preobraschenski, Julia; van den Bogaart, Geert; Riedel, Dietmar; Jahn, Reinhard; Woehler, Andrew

    2016-02-26

    Synaptic transmission is mediated by the release of neurotransmitters, which involves exo-endocytotic cycling of synaptic vesicles. To maintain synaptic function, synaptic vesicles are refilled with thousands of neurotransmitter molecules within seconds after endocytosis, using the energy provided by an electrochemical proton gradient. However, it is unclear how transmitter molecules carrying different net charges can be efficiently sequestered while maintaining charge neutrality and osmotic balance. We used single-vesicle imaging to monitor pH and electrical gradients and directly showed different uptake mechanisms for glutamate and γ-aminobutyric acid (GABA) operating in parallel. In contrast to glutamate, GABA was exchanged for protons, with no other ions participating in the transport cycle. Thus, only a few components are needed to guarantee reliable vesicle filling with different neurotransmitters. PMID:26912364

  7. Disorder Effects in Charge Transport and Spin Response of Topological Insulators

    Science.gov (United States)

    Zhao, Lukas Zhonghua

    Topological insulators are a class of solids in which the non-trivial inverted bulk band structure gives rise to metallic surface states that are robust against impurity backscattering. First principle calculations predicted Bi2Te3, Sb2Te3 and Bi2Se3 to be three-dimensional (3D) topological insulators with a single Dirac cone on the surface. The topological surface states were subsequently observed by angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). The investigations of charge transport through topological surfaces of 3D topological insulators, however, have faced a major challenge due to large charge carrier densities in the bulk donated by randomly distributed defects such as vacancies and antisites. This bulk disorder intermixes surface and bulk conduction channels, thereby complicating access to the low-energy (Dirac point) charge transport or magnetic response and resulting in the relatively low measured carrier mobilities. Moreover, charge inhomogeneity arising from bulk disorder can result in pronounced nanoscale spatial fluctuations of energy on the surface, leading to the formation of surface `puddles' of different carrier types. Great efforts have been made to combat the undesirable effects of disorder in 3D topological insulators and to reduce bulk carriers through chemical doping, nanostructure fabrication, and electric gating. In this work we have developed a new way to reduce bulk carrier densities using high-energy electron irradiation, thereby allowing us access to the topological surface quantum channels. We also found that disorder in 3D topological insulators can be beneficial. It can play an important part in enabling detection of unusual magnetic response from Dirac fermions and in uncovering new excitations, namely surface superconductivity in Dirac `puddles'. In Chapter 3 we show how by using differential magnetometry we could probe spin rotation in the 3D topological material family (Bi2Se 3, Bi2Te3 and Sb2Te3

  8. Charge Transport in Molecular Junctions: A Study of Level-Alignment, Thermoelectric Properties, and Environmental Effects

    Science.gov (United States)

    Kotiuga, Michele

    Here, we use and develop first-principles methods based on density functional theory (DFT) and beyond to understand and predict charge transport phenomena in the novel class of nanostructured devices: molecular junctions. Molecular junctions, individual molecules contacted to two metallic leads, which can be systematically altered by modifying the chemistry of each component, serve as test beds for the study of transport at the nanoscale. To date, various experimental methods have been designed to reliably assemble and measure transport properties of molecular junctions. Furthermore, theoretical methods built on DFT designed to yield quantitative agreement with these experiments for certain classes of molecular junctions have been developed. In order to gain insight into a broader range of molecular junctions and environmental effects associated with the surrounding solution, this dissertation will employ, explore and extend first-principles DFT calculations coupled with approximate self-energy corrections known to yield quantitative agreement with experiments for certain classes of molecular junctions. To start we examine molecular junctions in which the molecule is strongly hybridized with the leads: a challenging limit for the existing methodology. Using a physically motivated tight-binding model, we find that the experimental trends observed for such molecules can be explained by the presence of a so-called "gateway" state associated with the chemical bond that bridges the molecule and the lead. We discuss the ingredients of a self-energy corrected DFT based approach to quantitatively predict conductance in the presence of these hybridization effects. We also develop and apply an approach to account for the surrounding environment on the conductance, which has been predominantly ignored in past transport calculations due to computational complexity. Many experiments are performed in a solution of non-conducting molecules; far from benign, this solution is known

  9. The mechanical cost of transport of fast running animals.

    Science.gov (United States)

    Fuentes, Mauricio A

    2014-03-21

    Regarding running animals, algebraic expressions for the horizontal (ωx) and vertical (ωy) components of the mechanical cost of transport are deduced for a ground force pattern based on the Spring-mass model. Defining μ˜ as the maximum ground forces ratio μ˜=max(Fx)/max(Fy), the analysis shows that the mechanical cost of transport ωx+ωy for fast running animals is approximately proportional to μ˜, and to the relative contact length, and positively correlated to the limb take-off angle and the collision angle. The vertical cost ωy is shown to approximate to zero for fast running animals. Sustained top running speeds are predicted to require the largest possible values of μ˜ and therefore relatively large horizontal propulsive forces, as well as a minimum possible ground contact time. The equations also show that animals running relatively slow would tend to prefer certain interval of values for parameter μ˜, which would minimize both their mechanical cost of transport and their metabolic cost of transport. Very large animals are suspected to be less capable of developing large values of μ˜, which possibly renders them incapable of developing great speeds. PMID:24333209

  10. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    International Nuclear Information System (INIS)

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices

  11. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien;

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit...

  12. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    Science.gov (United States)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  13. On combining Thole's induced point dipole model with fixed charge distributions in molecular mechanics force fields.

    Science.gov (United States)

    Antila, Hanne S; Salonen, Emppu

    2015-04-15

    The Thole induced point dipole model is combined with three different point charge fitting methods, Merz-Kollman (MK), charges from electrostatic potentials using a grid (CHELPG), and restrained electrostatic potential (RESP), and two multipole algorithms, distributed multipole analysis (DMA) and Gaussian multipole model (GMM), which can be used to describe the electrostatic potential (ESP) around molecules in molecular mechanics force fields. This is done to study how the different methods perform when intramolecular polarizability contributions are self-consistently removed from the fitting done in the force field parametrization. It is demonstrated that the polarizable versions of the partial charge models provide a good compromise between accuracy and computational efficiency in describing the ESP of small organic molecules undergoing conformational changes. For the point charge models, the inclusion of polarizability reduced the the average root mean square error of ESP over the test set by 4-10%.

  14. Molecular reorganization in organic field-effect transistors and its effect on two-dimensional charge transport pathways.

    Science.gov (United States)

    Liscio, Fabiola; Albonetti, Cristiano; Broch, Katharina; Shehu, Arian; Quiroga, Santiago David; Ferlauto, Laura; Frank, Christian; Kowarik, Stefan; Nervo, Roberto; Gerlach, Alexander; Milita, Silvia; Schreiber, Frank; Biscarini, Fabio

    2013-02-26

    Charge transport in organic thin film transistors takes place in the first few molecular layers in contact with the gate dielectric. Here we demonstrate that the charge transport pathways in these devices are extremely sensitive to the orientational defects of the first monolayers, which arise from specific growth conditions. Although these defects partially heal during the growth, they cause depletion of charge carriers in the first monolayer, and drive the current to flow in the monolayers above the first one. Moreover, the residual defects induce lower crystalline order and charge mobility. These results, which are not intuitively explained by electrostatics arguments, have been obtained by combining in situ real time structural and electrical characterization together with ex situ AFM measurements, on thin films of a relevant n-type organic semiconductor, N,N'-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis dicarboximide grown by sublimation in a quasi-layer-by-layer mode at different substrate temperatures.

  15. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    International Nuclear Information System (INIS)

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec−V) and the current density-voltage (J–V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec–V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage

  16. Mechanism of charge recombination in meso-structured organic-inorganic hybrid perovskite solar cells: A macroscopic perspective

    Science.gov (United States)

    Yang, Wenchao; Yao, Yao; Wu, Chang-Qin

    2015-04-01

    In the currently popular organic-inorganic hybrid perovskite solar cells, the slowness of the charge recombination processes is found to be a key factor for contributing to their high efficiencies and high open circuit voltages, but the underlying recombination mechanism remains unclear. In this work, we investigate the bimolecular recombination (BR) and the trap-assisted monomolecular recombination (MR) in meso-structured perovskite solar cells under steady state working condition, and try to reveal their roles on determining the device performance. Some interfacial effects such as the injection barriers at the selective contacts are examined as well. Based on the macroscopic device modeling, the recombination resistance-voltage (Rrec-V) and the current density-voltage (J-V) curves are calculated to characterize the recombination mechanism and describe the device performance, respectively. Through comparison with the impedance spectroscopy extracted Rrec data, it is found that under the typical BR reduction factor and deep trap densities observed in experiments, the MR dominates the charge recombination in the low voltage regime, while the BR dominates in the high voltage regime. The short circuit current and the fill factor could be reduced by the significant MR but the open circuit voltage is generally determined by the BR. The different electron injection barriers at the contact can change the BR rate and induce different patterns for the Rrec-V characteristics. For the perovskites of increased band gaps, the Rrec's are significantly enhanced, corresponding to the high open circuit voltages. Finally, it is revealed that the reduced effective charge mobility due to the transport in electron and hole transporting material makes the Rrec decrease slowly with the increasing voltage, which leads to increased open circuit voltage.

  17. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2014-06-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

  18. Electrochemical reactivity and proton transport mechanisms in nanostructured ceria.

    Science.gov (United States)

    Ding, J; Strelcov, E; Kalinin, S V; Bassiri-Gharb, N

    2016-08-26

    Electrochemical reactivity and ionic transport at the nanoscale are essential in many energy applications. In this study, time-resolved Kelvin probe force microscopy (tr-KPFM) is utilized for surface potential mapping of nanostructured ceria, in both space and time domains. The fundamental mechanisms of proton injection and transport are studied as a function of environmental conditions and the presence or absence of triple phase boundaries. Finite element modeling is used to extract physical parameters from the experimental data, allowing not only quantification of the observed processes, but also decoupling of their contributions to the measured signal. The constructed phase diagrams of the parameters demonstrate a thermally activated proton injection reaction at the triple phase boundary, and two transport processes that are responsible for the low-temperature proton conductivity of nanostructured ceria. PMID:27407076

  19. Electrochemical reactivity and proton transport mechanisms in nanostructured ceria

    Science.gov (United States)

    Ding, J.; Strelcov, E.; Kalinin, S. V.; Bassiri-Gharb, N.

    2016-08-01

    Electrochemical reactivity and ionic transport at the nanoscale are essential in many energy applications. In this study, time-resolved Kelvin probe force microscopy (tr-KPFM) is utilized for surface potential mapping of nanostructured ceria, in both space and time domains. The fundamental mechanisms of proton injection and transport are studied as a function of environmental conditions and the presence or absence of triple phase boundaries. Finite element modeling is used to extract physical parameters from the experimental data, allowing not only quantification of the observed processes, but also decoupling of their contributions to the measured signal. The constructed phase diagrams of the parameters demonstrate a thermally activated proton injection reaction at the triple phase boundary, and two transport processes that are responsible for the low-temperature proton conductivity of nanostructured ceria.

  20. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac.

    Science.gov (United States)

    Raparia, D; Alessi, J; Atoian, G; Zelenski, A

    2016-02-01

    The H(-) magnetron source provides about 100 mA H(-) beam to be match into the radio-frequency quadrupole accelerator. As H(-) beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H(-) beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H(-) beam from optically pumped polarized ion source. PMID:26932107

  1. Charge transport in monolayer poly(3-hexylthiophene) thin-film transistors

    International Nuclear Information System (INIS)

    It is found that ultrathin poly(3-hexylthiophene) (P3HT) film with a 2.5 nm-thick layer exhibits a higher mobility of 5.0×10−2 cm2/V·s than its bulk counterpart. The crystalline structure of the as-fabricated ultrathin P3HT layer is verified by atomic force microscopy as well as grazing incidence X-ray diffraction. Transient measurements of the as-fabricated transistors reveal the influence of the interface traps on charge transport. These results are explained by the trap energy level distribution at the interface manipulated by layers of polymer film. (interdisciplinary physics and related areas of science and technology)

  2. Unusual Charge Transport and Spin Response of Doped Bilayer Triangular Antiferromagnets

    Institute of Scientific and Technical Information of China (English)

    LIANG Ying; MA Tian-Xing; FENG Shi-Ping

    2003-01-01

    Within the t-J model, the charge transport and spin response of the doped bilayer triangular antiferromagnetare studied by considering the bilayer interaction. Although the bilayer interaction leads to the band splitting in theelectronic structure, the qualitative behaviors of the physical properties are the same as in the single layer case. Theconductivity spectrum shows the low-energy peak and unusual midinfrared band, the temperature-dependent resistivityis characterized by the nonlinearity metallic-like behavior in the higher temperature range and the deviation from themetallic-like behavior in the lower temperature range and the commensurate neutron scattering peak near the half-fillingis split into six incommensurate peaks in the underdoped regime, with the incommensurability increasing with the holeconcentration at lower dopings, and saturating at higher dopings.

  3. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac

    International Nuclear Information System (INIS)

    The H− magnetron source provides about 100 mA H− beam to be match into the radio-frequency quadrupole accelerator. As H− beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H− beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H− beam from optically pumped polarized ion source

  4. Non-randomized mtDNA damage after ionizing radiation via charge transport

    Science.gov (United States)

    Zhou, Xin; Liu, Xinguo; Zhang, Xin; Zhou, Rong; He, Yang; Li, Qiang; Wang, Zhenhua; Zhang, Hong

    2012-10-01

    Although it is well known that there are mutation hot spots in mtDNA, whether there are damage hot spots remain elusive. In this study, the regional DNA damage of mitochondrial genome after ionizing radiation was determined by real-time quantitative PCR. The mtDNA damage level was found to be dose-dependent and regional unequal. The control region was the most susceptible region to oxidative damage. GGG, as an typical hole trap during charge transport, was found to be disproportionally enriched in the control region. A total of 107 vertebrate mitochondrial genomes were then analyzed to testify whether the GGG enrichment in control region was evolutionary conserved. Surprisingly, the triple G enrichment can be observed in most of the homeothermal animals, while the majority of heterothermic animals showed no triple G enrichment. These results indicated that the triple G enrichment in control region was related to the mitochondrial metabolism during evolution.

  5. Local charge transport properties of hydrazine reduced monolayer graphene oxide sheets prepared under pressure condition

    DEFF Research Database (Denmark)

    Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren;

    2014-01-01

    Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...... increase due to 2D variable-range hopping conduction through small graphene domains in an RGO sheet containing defect regions of residual sp3carbon clusters bonded to oxygen groups, whereas RGO sheets prepared in a closed container under moderate pressure showed linear I-V characteristics...... with a conductivity of 267.2-537.5S/m. It was found that the chemical reduction under pressure results in larger graphene domains (sp2networks) in the RGO sheets when compared to that prepared under atmospheric pressure, indicating that the present reduction of GO sheets under the pressure is one of the effective...

  6. Modulating the rate of charge transport in a metal-organic framework thin film using host:guest chemistry.

    Science.gov (United States)

    Hod, Idan; Farha, Omar K; Hupp, Joseph T

    2016-01-28

    Herein we demonstrate the use of host-guest chemistry to modulate rates of charge transport in metal-organic framework (MOF) films. The kinetics of site-to-site of charge hopping and, in turn, the overall redox conductivity, of a ferrocene-modified MOF can be altered by up to 30-fold by coupling electron exchange to the oxidation-state-dependent formation of inclusion complexes between cyclodextrin and channel-tethered metallocenes.

  7. Charge transport and transfer processes in CuInS2 nanocrystal-based hybrid solar cells

    OpenAIRE

    Miranti, Rany

    2015-01-01

    Colloidally synthesized CIS NCs are investigated in this work for their charge transport and charge transfer properties. By post-synthesis removal and replacement of the different types of ligands surrounding the CIS NCs, these properties can found be enhanced - especially by a combination of successive solution-phase and post-deposition ligand exchanges, which is derived from results obtained by measurements in combination with different polymers as active layer blends for BHJ solar cells. A...

  8. Modulating the rate of charge transport in a metal-organic framework thin film using host:guest chemistry.

    Science.gov (United States)

    Hod, Idan; Farha, Omar K; Hupp, Joseph T

    2016-01-28

    Herein we demonstrate the use of host-guest chemistry to modulate rates of charge transport in metal-organic framework (MOF) films. The kinetics of site-to-site of charge hopping and, in turn, the overall redox conductivity, of a ferrocene-modified MOF can be altered by up to 30-fold by coupling electron exchange to the oxidation-state-dependent formation of inclusion complexes between cyclodextrin and channel-tethered metallocenes. PMID:26666952

  9. Charge transport in poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers

    OpenAIRE

    Hennig, Dirk; Starikov, Eugen B.; Archilla, Juan F. R.; Palmero Acebedo, Faustino

    2003-01-01

    We investigate the charge transport in synthetic DNA polymers built up from single types of base pairs. In the context of a polaron-like model, for which an electronic tight-binding system and bond vibrations of the double helix are coupled, we present estimates for the electron-vibration coupling strengths utilizing a quantum-chemical procedure. Subsequent studies concerning the mobility of polaron solutions, representing the state of a localized charge in unison with its a...

  10. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials

    International Nuclear Information System (INIS)

    This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be - 0.46 mC/m2 and - 0.32 mC/m2, respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments. Highlights: → Chitosan/alginate based fibrous polyelectrolyte complex films were developed. → The average surface charge density of the films was determined using AFM. → Elastic modulus of the films increased with increase in PEC content. → FTIR analysis indicated higher alginate content on surface compared to bulk.

  11. Temperature-mediated polymorphism in molecular crystals: The impact on crystal packing and charge transport

    KAUST Repository

    Stevens, Loah A.

    2015-01-13

    We report a novel synthesis to ultra high purity 7,14-bis((trimethylsilyl)ethynyl)dibenzo[b,def]-chrysene (TMS-DBC) and the use of this material in the growth of single crystals by solution and vapor deposition techniques. We observe that the substrate temperature has a dramatic impact on the crystal growth, producing two distinct polymorphs of TMS-DBC; low temperature (LT) fine red needles and high temperature (HT) large yellow platelets. Single crystal X-ray crystallography confirms packing structures where the LT crystals form a 1D slipped-stack structure, while the HT crystals adopt a 2D brickwork motif. These polymorphs also represent a rare example where both are extremely stable and do not interconvert to the other crystal structure upon solvent or thermal annealing. Single crystal organic field-effect transistors of the LT and HT crystals show that the HT 2D brickwork motif produces hole mobilities as high as 2.1 cm2 V-1 s-1, while the mobility of the 1D structure is significantly lower, at 0.028 cm2 V-1 s-1. Electronic-structure calculations indicate that the superior charge transport in the brickwork polymorph in comparison to the slipped-stack polymorph is due to the presence of an increased dimensionality of the charge migration pathways.

  12. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  13. Studies on low energy beam transport for high intensity high charged ions at IMP

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y., E-mail: yangyao@impcas.ac.cn; Lu, W.; Fang, X. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  14. Studies on low energy beam transport for high intensity high charged ions at IMP.

    Science.gov (United States)

    Yang, Y; Sun, L T; Hu, Q; Cao, Y; Lu, W; Feng, Y C; Fang, X; Zhang, X Z; Zhao, H W; Xie, D Z

    2014-02-01

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18-24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper. PMID:24593453

  15. Momentum transfer theory of non-conservative charged particle transport in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Momentum - transfer approximation is applied to momentum and energy balance equations describing reacting particle swarms in gases in crossed electric and magnetic fields. Transport coefficients of charged particles undergoing both inelastic and reactive, non-particle-conserving collisions with a gas of neutral molecules are calculated. Momentum - transfer theory (MTT) has been developed mainly by Robson and collaborators. It has been applied to a single reactive gas and mixtures of reactive gases in electric field only. MTT has also been applied in crossed electric and magnetic fields recently and independently of our work but the reactive collisions were not considered. Consider a swarm of electrons of charge e and mass m moving with velocity rvec v through a neutral gas under the influence of an applied electric rvec E and magnetic rvec B field. The collision processes which we shall investigate are limited to elastic, inelastic and reactive collisions of electrons with gas molecules. Here we interpret reactive collisions as collisions which produce change in number of the swarm particles. Reactive collisions involve creation (ionization by electron impact) or loss (electron attachment) of swarm particles. We consider only single ionization in approximation of the mass ratio m/m00 are masses of electrons and neutral particles, respectively. We assume that the stage of evolution of the swarm is the hydrodynamic limit (HDL). In HDL, the space - time dependence of all properties is carried by the number density n of swarm particles

  16. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An

    2010-11-01

    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  17. Mechanisms of Carrier Transport Induced by a Microswimmer Bath

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Andreas; Sokolov, Andrey; Aranson, Igor S.; Lowen, Hartmut

    2015-04-01

    Recently, it was found that a wedgelike microparticle (referred to as ”carrier”) which is only allowed to translate but not to rotate exhibits a directed translational motion along the wedge cusp if it is exposed to a bath of microswimmers. Here we model this effect in detail by resolving the microswimmers explicitly using interaction models with different degrees of mutual alignment. Using computer simulations we study the impact of these interactions on the transport efficiency of V-shaped carrier. We show that the transport mechanisms itself strongly depends on the degree of alignment embodied in the modelling of the individual swimmer dynamics. For weak alignment, optimal carrier transport occurs in the turbulent microswimmer state and is induced by swirl depletion inside the carrier. For strong aligning interactions, optimal transport occurs already in the dilute regime and is mediated by a polar cloud of swimmers in the carrier wake pushing the wedge-particle forward. We also demonstrate that the optimal shape of the carrier leading to maximal transport speed depends on the kind of interaction model used.

  18. Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors.

    Science.gov (United States)

    Xie, Wei; Prabhumirashi, Pradyumna L; Nakayama, Yasuo; McGarry, Kathryn A; Geier, Michael L; Uragami, Yuki; Mase, Kazuhiko; Douglas, Christopher J; Ishii, Hisao; Hersam, Mark C; Frisbie, C Daniel

    2013-11-26

    We have examined the significant enhancement of ambipolar charge injection and transport properties of bottom-contact single crystal field-effect transistors (SC-FETs) based on a new rubrene derivative, bis(trifluoromethyl)-dimethyl-rubrene (fm-rubrene), by employing carbon nanotube (CNT) electrodes. The fundamental challenge associated with fm-rubrene crystals is their deep-lying HOMO and LUMO energy levels, resulting in inefficient hole injection and suboptimal electron injection from conventional Au electrodes due to large Schottky barriers. Applying thin layers of CNT network at the charge injection interface of fm-rubrene crystals substantially reduces the contact resistance for both holes and electrons; consequently, benchmark ambipolar mobilities have been achieved, reaching 4.8 cm(2) V(-1) s(-1) for hole transport and 4.2 cm(2) V(-1) s(-1) for electron transport. We find that such improved injection efficiency in fm-rubrene is beneficial for ultimately unveiling its intrinsic charge transport properties so as to exceed those of its parent molecule, rubrene, in the current device architecture. Our studies suggest that CNT electrodes may provide a universal approach to ameliorate the charge injection obstacles in organic electronic devices regardless of charge carrier type, likely due to the electric field enhancement along the nanotube located at the crystal/electrode interface. PMID:24175573

  19. Long-range ballistic transport mechanisms in superconducting spintronics

    Science.gov (United States)

    Samokhvalov, A. V.; Mel'nikov, A. S.; Buzdin, A. I.

    2016-06-01

    We review the mechanisms responsible for long-range Josephson transport in ballistic hybrid superconductor/ferromagnet/superconductor (SFS) structures with the exchange field modulated in either coordinate or momentum space. These mechanisms are based on the suppression of the destructive interference of electron and hole waves in a ferromagnet caused by the exchange field. The interference suppression results in a slow decay of the singlet component of the pair correlation function in a ferromagnet and an increase in the Josephson current in SFS structures.

  20. Increased coordination in public transport – which mechanisms are available?

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Longva, Frode

    2011-01-01

    After several years of New Public Management reforms within public transport, coordination seems to receive increased attention. With examples of actual as well as suggested changes taken from Denmark, Sweden and the UK the aim of the article is to analyse and classify the mechanisms utilized...... and suggested to increase coordination between core stakeholders within passenger railway services and bus services. Four distinctive mechanisms of coordination are suggested, namely organisational coordination, contractual coordination, partnership coordination and discursive coordination. Each coordination...... mechanism has its strengths and failures. The article also debates to what extent the mechanisms conflict with three core characteristics of New Public Management: Unbundling of the public sector into corporatized units; more contract-based competitive provision; and greater emphasis on output controls....

  1. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    Science.gov (United States)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-11-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr2O3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr2O3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr2O3 coatings.

  2. IDDTL: A Novel Identified Internet Data Transport Layer Mechanism

    Directory of Open Access Journals (Sweden)

    Yangyang Gao

    2014-01-01

    Full Text Available This paper proposes an identified data transport layer (IDDTL mechanism, which is implemented based on our present concepts of connection identifier (CID and CID additional information (CID-info. Since the fast evolved Internet scale and largely emerging various applications, especially with the new Internet architectures developed such as information centric network (ICN, the traditional end-to-end transport model has been exposed many defects in sorts of aspects, such as network management, flexibility and security. The novelty of the mechanism consists of two points: 1 it always conceals part of the communication information during the specific data transport process; 2 it splits the whole end-to-end communication process into two segments and forms a three-party and two-segment communication process model. Performance analysis shows that the mechanism could easily mitigate the problems such as distributed denial of service (D/DOS attacks and greatly improve the network management, flexibility and mobility. Furthermore, our simulation and test results demonstrate that IDDTL can be implemented with unique identifiers within an acceptable extra time cost of about 3.6 useconds compared with the traditional end-to-end model.

  3. Effect of base-pair inhomogeneities on charge transport along DNA mediated by twist and radial polarons

    OpenAIRE

    Palmero, F.; Archilla, J. F. R.; Hennig, D.; Romero, F. R.

    2003-01-01

    Some recent results for a three--dimensional, semi--classical, tight--binding model for DNA show that there are two types of polarons, named radial and twist polarons, that can transport charge along the DNA molecule. However, the existence of two types of base pairs in real DNA, makes it crucial to find out if charge transport also exist in DNA chains with different base pairs. In this paper we address this problem in its simple case, an homogeneous chain except for a single different base p...

  4. Mutants of the Base Excision Repair Glycosylase, Endonuclease III: DNA Charge Transport as a First Step in Lesion Detection

    OpenAIRE

    Romano, Christine A.; Sontz, Pamela A.; Barton, Jacqueline K.

    2011-01-01

    Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30...

  5. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of cha

  6. [Combined hopping-superexchange mechanism of charge transfer in DNA; a model with nearest interactions].

    Science.gov (United States)

    Lakhno, V D; Sultanov, V B

    2007-01-01

    In the framework of the earlier developed combined hopping-superexchange mechanism of charge transfer in DNA, a model with all nearest interactions between nucleobases is proposed. It is shown that the transfer rates for various types of nucleotide sequences calculated within this model are in a good agreement with experimental data.

  7. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  8. Mechanisms for the sputtering of condensed-gas solids by charged particles

    International Nuclear Information System (INIS)

    The relationship of sputtering and luminescence data is examined and some aspects of the electronic relaxation process are discussed. Molecular mechanisms of the relaxation process leading to the dissociation or the production of an atomic or molecular species having appreciable kinetic energy are considered in detail. The role of these mechanisms in charged particle sputtering of insulating materials, especially condensed-gas solids and organic solids, is described

  9. Transport and Acceleration of Energetic Charged Particles near an Oblique Shock

    CERN Document Server

    Ruffolo, D

    1999-01-01

    We have developed a numerical simulation code that treats the transport and acceleration of charged particles crossing an idealized oblique, non-relativistic shock within the framework of pitch angle transport using a finite-difference method. We consider two applications: 1) to study the steady-state acceleration of energetic particles at an oblique shock, and 2) to explain observed precursors of Forbush decreases of galactic cosmic rays before the arrival of an interplanetary shock induced by solar activity. For the former, we find that there is a jump in the particle intensity at the shock, which is stronger for more oblique shocks. Detailed pitch angle distributions are also presented. The simple model of a Forbush decrease explains the key features of observed precursors, an enhanced diurnal anisotropy extending several mean free paths upstream of the shock and a depletion of particles in a narrow loss cone at ~0.1 mean free path from the shock. Such precursors have practical applications for space weath...

  10. Non-Axisymmetric Perpendicular Diffusion of Charged Particles and their Transport Across Tangential Magnetic Discontinuities

    Science.gov (United States)

    Strauss, R. D.; le Roux, J. A.; Engelbrecht, N. E.; Ruffolo, D.; Dunzlaff, P.

    2016-07-01

    We investigate the transport of charged particles across magnetic discontinuities, focusing specifically on stream interfaces associated with co-rotating interaction regions in the solar wind. We argue that the magnetic field fluctuations perpendicular to the magnetic discontinuity, and usually also perpendicular to the mean magnetic field, are strongly damped in the vicinity of such a magnetic structure, leading to anisotropic perpendicular diffusion. Assuming that perpendicular diffusion arises from drifts in a turbulent magnetic field, we adopt a simplified approach to derive the relevant perpendicular diffusion coefficient. This approach, which we believe gives the correct principal dependences as expected from more elaborate calculations, allows us to investigate transport in different turbulent geometries, such as longitudinal compressional turbulence that may be present near the heliopause. Although highly dependent on the (possibly anisotropic) perpendicular length scales and turbulence levels, we generally find perpendicular diffusion to be strongly damped at magnetic discontinuities, which may in turn provide an explanation for the large particle gradients associated with these structures.

  11. Fouling control mechanisms of demineralized water backwash: Reduction of charge screening and calcium bridging effects

    KAUST Repository

    Li, Sheng

    2011-12-01

    This paper investigates the impact of the ionic environment on the charge of colloidal natural organic matter (NOM) and ultrafiltration (UF) membranes (charge screening effect) and the calcium adsorption/bridging on new and fouled membranes (calcium bridging effect) by measuring the zeta potentials of membranes and colloidal NOM. Fouling experiments were conducted with natural water to determine whether the reduction of the charge screening effect and/or calcium bridging effect by backwashing with demineralized water can explain the observed reduction in fouling. Results show that the charge of both membranes and NOM, as measured by the zeta potential, became more negative at a lower pH and a lower concentration of electrolytes, in particular, divalent electrolytes. In addition, calcium also adsorbed onto the membranes, and consequently bridged colloidal NOM and membranes via binding with functional groups. The charge screening effect could be eliminated by flushing NOM and membranes with demineralized water, since a cation-free environment was established. However, only a limited amount of the calcium bridging connection was removed with demineralized water backwashes, so the calcium bridging effect mostly could not be eliminated. As demineralized water backwash was found to be effective in fouling control, it can be concluded that the reduction of the charge screening is the dominant mechanism for this. © 2011 Elsevier Ltd.

  12. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO2 nanocomposites for solar cell applications

    Science.gov (United States)

    Dridi, C.; Barlier, V.; Chaabane, H.; Davenas, J.; Ben Ouada, H.

    2008-09-01

    The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO2 particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO2 particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO2:PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages (characteristics under white illumination have shown a dramatic increase of the short circuit current density Jsc and open circuit voltage Voc for a 30% TiO2 volume content corresponding to the morphology exhibiting the best dispersion of TiO2 particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO2 aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO2 composition confirms that the photovoltaic response is optimum for 30% TiO2 volume content. It is concluded that the photovoltaic properties of nc-TiO2:PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO2 nanoparticles in the polymer.

  13. Investigation of exciton photodissociation, charge transport and photovoltaic response of poly(N-vinyl carbazole):TiO(2) nanocomposites for solar cell applications.

    Science.gov (United States)

    Dridi, C; Barlier, V; Chaabane, H; Davenas, J; Ben Ouada, H

    2008-09-17

    The photogeneration of charge carriers in spin-coated thin films of nanocrystalline (nc-)TiO(2) particles dispersed in a semiconducting polymer, poly(N-vinylcarbazole) (PVK), has been studied by photoluminescence and charge transport measurements. The solvent and the TiO(2) particle concentration have been selected to optimize the composite morphology. A large number of small domains leading to a large interface and an improved exciton dissociation could be obtained with tetrahydrofuran (THF). The charge transport mechanism and trap distribution at low and high voltage in ITO/nc-TiO(2):PVK/Al diodes in the dark could be identified by current-voltage measurements and impedance spectroscopy. The transport mechanism is space charge limited with an exponential trap distribution in the high voltage regime (1-4 V), whereas a Schottky process with a barrier height of about 0.9 eV is observed at low bias voltages (characteristics under white illumination have shown a dramatic increase of the short circuit current density J(sc) and open circuit voltage V(oc) for a 30% TiO(2) volume content corresponding to the morphology exhibiting the best dispersion of TiO(2) particles. A degradation of the photovoltaic properties is induced at higher compositions by the formation of larger TiO(2) aggregates. A procedure has been developed to extract the physical parameters from the J-V characteristics in the dark and under illumination on the basis of an equivalent circuit. The variation of the solar cell parameters with the TiO(2) composition confirms that the photovoltaic response is optimum for 30% TiO(2) volume content. It is concluded that the photovoltaic properties of nc-TiO(2):PVK nanocomposites are controlled by the interfacial area between the donor and the acceptor material and are limited by the dispersion of the TiO(2) nanoparticles in the polymer. PMID:21832543

  14. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  15. Topics in quantum transport of charge and heat in solid state systems

    Science.gov (United States)

    Choi, Yunjin

    In the thesis, we present a series of investigations for quantum transport of charge and heat in solid state systems. The first topic of the thesis focuses on the fundamental quantum problems which can be studied with electron transport along with the correlations of detectors to measure physical properties. We theoretically describe a generalized ``which-path'' measurement using a pair of coupled electronic Mach-Zehnder Interferometers. In the second topic of thesis, we investigate an operational approach to measure the tunneling time based on the Larmor clock. To handle the cases of indirect measurement from the first and second topics, we introduce the contextual values formalism. The form of the contextual values provides direct physical insight into the measurement being performed, providing information about the correlation strength between system and detector, the measurement inefficiency, the proper background removal, and the conditioned average value of the system operator. Additionally, the weak interaction limit of these conditioned averages produces weak values of the system operator and an additional detector dependent disturbance term for both cases. In our treatment of the third topic of the thesis, we propose a three terminal heat engine based on semiconductor superlattices for energy harvesting. The periodicity of the superlattice structure creates an energy miniband, giving an energy window to allow electron transport. We find that this device delivers a large amount of power, nearly twice that produced by the heat engine based on quantum wells, with a small reduction of efficiency. This engine also works as a refrigerator in a different regime of the system's parameters. The thermoelectric performance of the refrigerator is analyzed, including the cooling power and coefficient of performance in the optimized condition. We also calculate phonon heat current through the system and explore the reduction of phonon heat current compared to the bulk

  16. Charge transport in bulk CH3NH3PbI3 perovskite

    Science.gov (United States)

    Slonopas, Andre; Foley, Benjamin J.; Choi, Joshua J.; Gupta, Mool C.

    2016-02-01

    The variation of leakage current and polarization hysteresis properties for bulk CH3NH3PbI3 perovskite was studied as a function of temperature to understand the reported hysteresis in photocurrent and the role of ferroelectricity. The leakage current decreased by two orders of magnitude when the temperature was lowered from 350 K to 100 K. The transitions in leakage current were observed at structural phase transition temperatures. The temperature dependence study allowed the identification of current conduction mechanism based on various models for ferroelectrics and insulating materials. Our results show that the leakage current is governed by the space charge limited conduction mechanism which should be considered in addition to ion conduction and ferroelectricity when analyzing current-voltage hysteresis for thin film and bulk materials. The Mott's variable range hopping model fits well to the experimental data indicating the charge conduction is through hopping mechanism from 300 K to 160 K and possibly tunneling below 160 K. The conclusions from polarization hysteresis study are: (1) the hysteresis loop shape is highly dependent upon frequency and show non-saturating behavior, an indicative of strong non-ferroelectric contributions such as resistive component. (2) No domain switching current was observed between the temperature range of 100 K-350 K. (3) An electric field off-set was observed in polarization-electric field curves and it was dependent upon the frequency and temperature. This offset could be caused by the accumulation of vacancies at one interface, which could give rise to hysteresis in forward and reverse bias photocurrent. (4) The time dependence study of instantaneous current as the voltage was increased linearly show strong resistive contribution to hysteresis loop at temperatures above 200 K and capacitive contribution at 100 K.

  17. Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling.

    Science.gov (United States)

    Taherinia, Davood; Smith, Christopher E; Ghosh, Soumen; Odoh, Samuel O; Balhorn, Luke; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel

    2016-04-26

    We report the synthesis, transport measurements, and electronic structure of conjugation-broken oligophenyleneimine (CB-OPI 6) molecular wires with lengths of ∼4 nm. The wires were grown from Au surfaces using stepwise aryl imine condensation reactions between 1,4-diaminobenzene and terephthalaldehyde (1,4-benzenedicarbaldehyde). Saturated spacers (conjugation breakers) were introduced into the molecular backbone by replacing the aromatic diamine with trans-1,4-diaminocyclohexane at specific steps during the growth processes. FT-IR and ellipsometry were used to follow the imination reactions on Au surfaces. Surface coverages (∼4 molecules/nm(2)) and electronic structures of the wires were determined by cyclic voltammetry and UV-vis spectroscopy, respectively. The current-voltage (I-V) characteristics of the wires were acquired using conducting probe atomic force microscopy (CP-AFM) in which an Au-coated AFM probe was brought into contact with the wires to form metal-molecule-metal junctions with contact areas of ∼50 nm(2). The low bias resistance increased with the number of saturated spacers, but was not sensitive to the position of the spacer within the wire. Temperature dependent measurements of resistance were consistent with a localized charge (polaron) hopping mechanism in all of the wires. Activation energies were in the range of 0.18-0.26 eV (4.2-6.0 kcal/mol) with the highest belonging to the fully conjugated OPI 6 wire and the lowest to the CB3,5-OPI 6 wire (the wire with two saturated spacers). For the two other wires with a single conjugation breaker, CB3-OPI 6 and CB5-OPI 6, activation energies of 0.20 eV (4.6 kcal/mol) and 0.21 eV (4.8 kcal/mol) were found, respectively. Computational studies using density functional theory confirmed the polaronic nature of charge carriers but predicted that the semiclassical activation energy of hopping should be higher for CB-OPI molecular wires than for the OPI 6 wire. To reconcile the experimental and

  18. Roles and mechanisms of copper transporting ATPases in cancer pathogenesis.

    Science.gov (United States)

    Zhang, Yuqing; Li, Min; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Copper (Cu) is an essential trace element for cell metabolism as a cofactor to many key metabolic enzymes. Numerous physiological processes rely on the adequate and timely transport of copper ions mediated by copper-transporting ATPases (Cu-ATPases), which are essential for human cell growth and development. Inherited gene mutations of ATP7A and ATP7B result in clinical diseases related to damage in the multiple organ systems. Increased expression of these genes has been recently observed in some human cancer specimens, and may be associated with tumorigenesis and chemotherapy resistance. However, underlying mechanisms of Cu-ATPases in human cancer progression and treatment are largely unknown. In this review, we summarize current progress on the copper transport system, the structural and functional properties of the Cu-ATPases, ATP7A and ATP7B, in copper homeostasis, and their roles in anti-tumor drug resistance and cancer metastasis. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in copper transport as important mediators in human physiology and cancer.

  19. Evaporation as the transport mechanism of metals in arid regions.

    Science.gov (United States)

    Lima, Ana T; Safar, Zeinab; Loch, J P Gustav

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust.

  20. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Kyla A. Stigter

    2015-12-01

    Full Text Available Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P, are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi, the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.

  1. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  2. Oxidation and Metal-Insertion in Molybdenite Surfaces: Evaluation of Charge-Transfer Mechanisms and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Becker, U.; Shutthanandan, V.; Julien, C. M.

    2008-06-05

    Molybdenum sulfide (MoS2), an important representative member of the layered transition-metal dichalcogenides, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and industrial science and technology. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. On the other hand understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is quite important to utilize these minerals in technological applications. Furthermore, such a detailed investigation of thermal oxidation behavior and intercalation process will provide a basis to further explore and model the mechanism of adsorption of metal ions on to geomedia. Therefore, the present work was performed to understand the oxidation and intercalation processes of molybdenite surfaces. The results obtained, using a wide variety of analytical techniques, are presented and discussed in this paper.

  3. Size related transport mechanisms in hybrid metal-polymer nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Gence, L.; Faniel, S.; Vlad, A.; Dutu, C.; Melinte, S.; Bayot, V. [DICE Lab., Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium); Callegari, V.; Demoustier-Champagne, S. [POLY Lab., Universite Catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2008-06-15

    Electrical transport data for hybrid metal-polypyrrole nanowires of various diameters are presented and analyzed. Measurements were performed on both multiple nanowires - embedded within polycarbonate templates - and single nanowires down to low temperature T=4 K. All samples exhibit symmetrical and linear current-voltage (I-V) characteristics at room temperature. Below 77 K, all samples with diameters above 40 nm present nonlinear I-V characteristics and a zero-current plateau at 4 K. The three-dimensional Mott variable-range-hopping model provides a complete framework for the understanding of their behavior. In contrast, the transport mechanism changes for the 40 nm nanowire samples which exhibit a power-law T -dependence of the resistance, indicative of the critical regime of disorder-induced metal-insulator transitions. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Mechanical reliability of geometrically imperfect tubular oxygen transport membranes

    DEFF Research Database (Denmark)

    Kwok, Kawai; Frandsen, Henrik Lund; Søgaard, Martin;

    2014-01-01

    operation. This paper investigates numerically the failure risk of tubular oxygen transport membranes under industrial operating conditions using finite element modeling and Weibull strength analysis. The effects of component manufacturing defects on fracture probability are elucidated by explicit modeling......Mixed ionic and electronic conductors have potential applications as oxygen transport membranes. Realization of the technology is challenged by mechanical reliability of the components which are subjected to stresses arising from oxygen stoichiometry gradients and external overpressure during...... of external pressure, ovality may lead to dramatic stress increase and flattening of oval cross sections. Oval membranes can fail in the long term even though the instantaneous fracture risk is tolerable. Based on industrial relevant conditions, the requirements to the material creep rate and component...

  5. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  6. DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene

    Science.gov (United States)

    Romano, Vittorio; Majorana, Armando; Coco, Marco

    2015-12-01

    A new algorithm for Monte Carlo simulations of charge transport in semiconductors is devised in order to properly deal with Pauli's exclusion principle in the degenerate case. Applications are presented in the case of monolayer graphene and comparisons with solutions of the Boltzmann equation obtained by using a discontinuous Galerkin method furnish a cross-validation of the proposed approach.

  7. Upper and lower limits of the charge translocation stoichiometry of mitochondrial electron transport.

    Science.gov (United States)

    Beavis, A D

    1987-05-01

    The upper and lower limits of the mechanistic stoichiometry (n) of electric charge translocation coupled to mitochondrial electron transport have been determined for the oxidation of succinate and beta-hydroxybutyrate using a recently described method (Beavis, A. D., and Lehninger, A. L. (1986) Eur. J. Biochem. 158, 307-314). This method requires no assumptions regarding the magnitude of proton leakage or pump slippage, but it takes advantage of the ability to predict the direction of change as the coupled fluxes are modulated by specific means. In this study, the rates of K+ uptake (JK) and O2 consumption (JO) were determined from simultaneous electrode measurements in the presence of various concentrations of valinomycin or inhibitors of electron flow. When valinomycin is varied, the rate of proton leakage or pump slippage should decrease as JO increases, with the result that the slope dJK/dJO will be greater than n. On the other hand, when an inhibitor of electron flow is varied, the rate of proton leakage or pump slippage should increase as JO increases, with the result that the slope dJK/dJO should be less than n. The data obtained using this approach indicate that n lies between 6.7 and 7.3 for succinate oxidation and between 10.2 and 11.7 for beta-hydroxybutyrate (or NADH) oxidation. It is concluded that the mechanistic stoichiometry of charge separation coupled to electron flow is 7 q+/O in the span from succinate to oxygen and 11 q+/O in the span from NADH to oxygen. These conclusions are fully consistent with the limits of the mechanistic ATP/O ratios previously determined for these spans (Beavis, A. D., and Lehninger, A. L. (1986) Eur. J. Biochem. 158, 315-322). PMID:3571252

  8. Mechanical transport in two-dimensional networks of fractures

    International Nuclear Information System (INIS)

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  9. Simulation of bipolar charge transport with trapping and recombination in polymeric insulators using Runge-Kutta discontinuous Galerkin method

    International Nuclear Information System (INIS)

    The widely used QUICKEST method with ULTIMATE flux limiter is not capable of solving the charge transport problems with a very steep wavefront accurately, due to the wide stencil adopted. Furthermore, the splitting process of separating the convection and the reaction terms in the method introduces additional errors. To solve such problems accurately, a novel numerical method based on the Runge-Kutta discontinuous Galerkin (RKDG) method is introduced in this paper, which has high-order resolution and weak correlation between cells. The bipolar charge transport under dc voltage in solid dielectrics with trapping and recombination is simulated using this new method. The results of charge profiles provided by the method are obviously different from the simulation results in the existing literature. The method was verified by problems with analytical solution and experimental observations.

  10. Characterization of Charge-Carrier Transport in Semicrystalline Polymers: Electronic Couplings, Site Energies, and Charge-Carrier Dynamics in Poly(bithiophene- alt -thienothiophene) [PBTTT

    KAUST Repository

    Poelking, Carl

    2013-01-31

    We establish a link between the microscopic ordering and the charge-transport parameters for a highly crystalline polymeric organic semiconductor, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT). We find that the nematic and dynamic order parameters of the conjugated backbones, as well as their separation, evolve linearly with temperature, while the side-chain dynamic order parameter and backbone paracrystallinity change abruptly upon the (also experimentally observed) melting of the side chains around 400 K. The distribution of site energies follows the behavior of the backbone paracrystallinity and can be treated as static on the time scale of a single-charge transfer reaction. On the contrary, the electronic couplings between adjacent backbones are insensitive to side-chain melting and vary on a much faster time scale. The hole mobility, calculated after time-averaging of the electronic couplings, reproduces well the value measured in a short-channel thin-film transistor. The results underline that to secure efficient charge transport in lamellar arrangements of conjugated polymers: (i) the electronic couplings should present high average values and fast dynamics, and (ii) the energetic disorder (paracrystallinity) should be small. © 2013 American Chemical Society.

  11. Textured Nanoporous Mo:BiVO4 Photoanodes with High Charge Transport and Charge Transfer Quantum Efficiencies for Oxygen Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Vineet; Perkins, Craig L.; Lin, Qiyin; Law, Matt

    2016-04-01

    We have developed a simple spin coating method to make high-quality nanoporous photoelectrodes of monoclinic BiVO4 and studied the ability of these electrodes to transport photogenerated carriers to oxidize sulfite and water. Samples containing molybdenum and featuring [001] out-of-plane crystallographic texture show a photocurrent and external quantum efficiency (EQE) for sulfite oxidation as high as 3.1 mA cm-2 and 60%, respectively, at 1.23 V versus reversible hydrogen electrode. By using an optical model of the electrode stack to accurately determine the fraction of electrode absorptance due to the BiVO4 active layer, we estimate that on average 70 +/- 5% of all photogenerated carriers escape recombination. A comparison of internal quantum efficiency as a function of film processing, illumination direction, and film thickness shows that electron transport is efficient and hole transport limits the photocurrent (hole diffusion length <40 nm). We find that Mo addition primarily improves electron transport and texturing mostly improves hole transport. Mo enhances electron transport by thinning the surface depletion layer or passivating traps and recombination centers at grain boundaries and interfaces, while improved hole transport in textured films may result from more efficient lateral hole extraction due to the texturing itself or the reduced density of deep gap states observed in photoemission measurements. Photoemission data also reveal that the films have bismuth-rich, vanadium- and oxygen-deficient surface layers, while ion scattering spectroscopy indicates a Bi-V-O surface termination. Without added catalysts, the plain BiVO4 electrodes oxidized water with an initial photocurrent and peak EQE of 1.7 mA cm-2 and 30%, respectively, which equates to a hole transfer efficiency to water of >64% at 1.23 V. The electrodes quickly photocorrode during water oxidation but show good stability during sulfite oxidation and indefinite stability in the dark. By improving

  12. Intrinsic and Extrinsic Charge Transport in CH3NH3PbI3 Perovskites Predicted from First-Principles

    Science.gov (United States)

    Zhao, Tianqi; Shi, Wen; Xi, Jinyang; Wang, Dong; Shuai, Zhigang

    2016-01-01

    Both intrinsic and extrinsic charge transport properties of methylammonium lead triiodide perovskites are investigated from first-principles. The weak electron-phonon couplings are revealed, with the largest deformation potential (~ 5 eV) comparable to that of single layer graphene. The intrinsic mobility limited by the acoustic phonon scattering is as high as a few thousands cm2 V−1 s−1 with the hole mobility larger than the electron mobility. At the impurity density of 1018 cm−3, the charged impurity scattering starts to dominate and lowers the electron mobility to 101 cm2 V−1 s−1 and the hole mobility to 72.2 cm2 V−1 s−1. The high intrinsic mobility warrants the long and balanced diffusion length of charge carriers. With the control of impurities or defects as well as charge traps in these perovskites, enhanced efficiencies of solar cells with simplified device structures are promised. PMID:26822239

  13. The impact of interplanetary transport on the charge spectra of heavy ions accelerated in solar energetic particle events

    Science.gov (United States)

    Kartavykh, Y. Y.; Dröge, W.; Kovaltsov, G. A.; Ostryakov, V. M.

    2006-01-01

    The effect of interplanetary propagation on the energy dependence of the iron mean ionic charge of solar cosmic rays is investigated. The diffusion convection transport equation is solved numerically making use of a Monte-Carlo approach. The interplanetary propagation results in a shift of charge spectra towards lower energies due to adiabatic deceleration which becomes stronger as the particles’ scattering mean free path decreases. Taking the above effect into account, we compare predictions of our model of charge-consistent stochastic acceleration with recent ACE observations. A detailed analysis of two particle events shows that our model can give a consistent explanation of the observed iron charge and energy spectra, and allows to put constrains on the temperature, density, and the acceleration and escape time scales in the acceleration region.

  14. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jianqing [Univ. of Washington, Seattle, WA (United States); Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anantram, M. P. [Univ. of Washington, Seattle, WA (United States)

    2015-09-04

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two

  15. Influence of surface charge on the transport characteristics of nanowire-field effect transistors in liquid environments

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Daijiro, E-mail: daijiro.nozaki@gmail.com, E-mail: research@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Kunstmann, Jens [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Theoretical Chemistry, Department of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden (Germany); Zörgiebel, Felix [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany)

    2015-05-18

    One dimensional nanowire field effect transistors (NW-FETs) are a promising platform for sensor applications. The transport characteristics of NW-FETs are strongly modified in liquid environment due to the charging of surface functional groups accompanied with protonation or deprotonation. In order to investigate the influence of surface charges and ionic concentrations on the transport characteristics of Schottky-barrier NW-FETs, we have combined the modified Poisson-Boltzmann theory with the Landauer-Büttiker transport formalism. For a typical device, the model is able to capture the reduction of the sensitivity of NW-FETs in ionic solutions due to the screening from counter ions as well as a local gating from surface functional groups. Our approach allows to model, to investigate, and to optimize realistic Schottky-barrier NW-FET devices in liquid environment.

  16. Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells

    Science.gov (United States)

    Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve

    2015-01-01

    This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581

  17. Interaction of a Magnet and a Point Charge: Unrecognized Internal Electromagnetic Momentum Eliminates the Myth of Hidden Mechanical Momentum

    CERN Document Server

    Boyer, Timothy H

    2014-01-01

    A model calculation using the Darwin Lagrangian is carried out for a magnet consisting of two current-carrying charges constrained by centripetal forces to move in a circular path in the presence of the electric field from a distant external point charge. In the limit that the magnet's two charges are non-interacting, the calculation recovers the only valid calculation for hidden mechanical momentum. However, if the magnet's charges are mutually interacting, then there is internal electromagnetic linear momentum associated with the perturbed magnet's electrostatic charge distribution and the motion of the magnet's charges. This internal electromagnetic momentum does not seem to be recognized as distinct from the familiar external electromagnetic momentum associated with the electric field of the external charge and the magnetic field of the unperturbed magnet. In the multiparticle limit, the hidden mechanical momentum becomes negligible while the internal electromagnetic momentum provides the compensating lin...

  18. Standard Practice for Measurement of Mechanical Properties During Charged-Particle Irradiation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers the performance of mechanical tests on materials being irradiated with charged particles. These tests are designed to simulate or provide understanding of, or both, the mechanical behavior of materials during exposure to neutron irradiation. Practices are described that govern the test material, the particle beam, the experimental technique, and the damage calculations. Reference should be made to other ASTM standards, especially Practice E 521. Procedures are described that are applicable to creep and creep rupture tests made in tension and torsion test modes. 1.2 The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. The intent is to produce a correspondence between one or more aspects of the neutron and charged particle irradiations such that fundamental relationships are established between irradiation or material parameters and the material respons...

  19. Fundamental mechanism underlying subwavelength optics of metamaterials: Charge oscillation-induced light emission and interference

    CERN Document Server

    Huang, X R; Wang, Mu

    2009-01-01

    Interactions between light and conducting nanostructures can result in a variety of novel and fascinating phenomena. These properties may have wide applications, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture about coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., spoof surface plasmons but without the dispersion property of classical surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms (e.g. resonance), is mainly a geometrical effect that can be universally involved in light scattering from all periodic and nonperiodic structures containing free electrons, including perfect conductors. The spoof surface ...

  20. Low-Energy Electron Potentiometry: Contactless Imaging of Charge Transport on the Nanoscale.

    Science.gov (United States)

    Kautz, J; Jobst, J; Sorger, C; Tromp, R M; Weber, H B; van der Molen, S J

    2015-09-04

    Charge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations. Spatially resolved information is particularly important when studying novel materials like topological insulators, where the current is localized at the edges, or quasi-two-dimensional (2D) systems, where small-scale variations can determine global properties. Here, we demonstrate a new method to determine spatially-resolved voltage maps of current-carrying samples. This technique is based on low-energy electron microscopy (LEEM) and is therefore quick and non-invasive. It makes use of resonance-induced contrast, which strongly depends on the local potential. We demonstrate our method using single to triple layer graphene. However, it is straightforwardly extendable to other quasi-2D systems, most prominently to the upcoming class of layered van der Waals materials.